
 

 
 

 

Abstract—This paper addresses two known issues for dy-

namically composed services in digital ecosystems. The first 

issue is that of efficient distributed transaction management. 

The conventional view of transactions is unsuitable as the local 

autonomy of the participants is vital for the involvement of 

SMEs. The second issue is that of charging for such distributed 

transactions, where there will often be dynamically created 

services whose composition is not known in advance and might 

involve parts of different transactions. The paper provides so-

lutions for both of these issues, which can be combined to pro-

vide for a unified approach to transaction management and 

accounting of dynamically composed services in digital ecosys-

tems. 

 
Index Terms—Distributed Services, Coordination, Transac-

tions, Accounting, Digital Ecosystem. 

I. INTRODUCTION 

Many in the business and research communities are 

pursuing the vision of digital business ecosystems – 

distributed software environments through which 

organisations can seamlessly access customised, potentially 

disposable, services to aid them carry out a myriad of tasks. 

These services can be either pure software applications, or 

“real world” services represented by a software wrapper 

supporting automated transaction processing. Full 

realisation of this vision requires deployment of facilities 

for the dynamic discovery, composition, interoperation and 

execution monitoring of a potentially huge number of 

available services. The DBE integrated project [1] focuses 

on the development of an open-source distributed environ-

ment (the DBE) that can support the spontaneous creation 

of applications through the composition of (not necessarily 

open-source) software services and components. In doing so 

the project is adopting the business modelling approach de-

scribed above, but complementing it with the adoption of 

evolutionary algorithms inspired by biological processes, 

that provide bottom-up incremental improvement of busi-

ness models through run-time feedback on service perform-

ance. The DBE is being targeted primarily towards SMEs, 

who will be able to concatenate their offered services within 

service chains formulated on a pan-European basis. By of-

fering access to a large pool of service providers and con-

sumers, and itself providing advanced recommendation sys-

tems and evolutionary algorithms, the DBE will support 

continued global optimisation of service chains, benefiting 

all actors, in particular SMEs [2]. 

However, the adoption of such a collaborative 

environment by SMEs is largely dependent on whether we 

are able to guarantee consistency and preserve local 

autonomy. Current frameworks [6, 7] tend to focus on 

providing consistency but, at the transaction level, this 

comes at the cost of violating the local autonomy of the 

participants. 

Businesses utilising DBE services will need to be 

charged and billed in accordance with their service usage 

patterns. In any business environment charging processes 

are of crucial importance, thus the success of the DBE, or 

indeed any environment supporting dynamic service 

composition, will be contingent on the ability of providers 

to charge and collect fees for service usage. Given that there 

will be no a priori knowledge of the structure of, or 

business model associated with, dynamically composed 

services, the design and deployment of a sufficiently 

flexible accounting system is a challenging task.  

Both the transaction management and accounting 

solutions presented here are being made available through 

open source projects providing SMEs with affordable 

solutions to engage in eCommerce through digital 

ecosystems platforms. 

This work is funded partly through the EU Digital 

Business Ecosystems Integrated Project [1] and partly 

through the EU OPAALS network of excellence project. 

II. DISTRIBUTED TRANSACTION MANAGEMENT 

The long-term nature of business transactions frames the 

concept of a transaction in Digital Business Ecosystems and 

makes defining a consistent transaction model even more 

challenging. The conventional view of a transaction [5], 

based on the ACID (Atomicity, Consistency, Isolation, Du-

rability) properties, cannot capture the primary requirements 

of DEs. From a business point of view, most usage scenar-

ios in Digital Ecosystems involve long-term transactions 

and thus Atomicity is an unacceptable constraint. From a 

distributed transactions point of view, Isolation can lead to 

significant degradation of performance in the services of-

fered (critical data is locked until a transaction completes) 

or to increased probability of deadlock (as services may be 

locked into composite transactions that do not terminate).  

Transaction models for web services include WS-

BusinessActivity [6] and BTP [7] among others. They are 

primarily concerned with consistency but in guaranteeing it, 

the underlying coordination framework requires access to 

the internal build-up of the communicating parties. The Co-

ordinator and Participant roles are tightly-coupled and if a 
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fault occurs while the transaction is finalising (transition to 

Fault state while in Close state) it can only be dealt with at 

the participant’s platform. This not only implies that par-

ticipating SMEs cannot have exclusive control of their local 

design but also that the underlying services are no longer 

stateless.  Such presumptions are against the primary re-

quirements of SOA [9] and hinder the development of a 

Digital Ecosystem for SMEs. 

III. ACCOUNTING AND CHARGING FOR NETWORKED 

SERVICES 

Accounting involves the collection and analysis of serv-

ice and resource usage metrics for purposes such as billing, 

capacity and trend analysis, cost allocation and auditing. It 

requires that service consumption be measured, rated, and 

that resultant charging information be communicated be-

tween appropriate business entities. As shown in Fig. 1, ac-

counting systems for networked services incorporate sub-

systems for metering, mediation, rating and billing. 

 
Fig. 1 Accounting System for Networked Services 

 

Accounting for services, including composite services, 

whose characteristics are known in advance is a mature 

area. For example, in the telecommunications domain there 

is wide deployment of complex mediation, rating and bill-

ing systems which support sophisticated usage- and content-

based charging models for pre-paid and post-paid, private 

and corporate customers. In such systems the components 

involved in the accounting process must be manually pre-

configured to account for specific services at the time those 

services are initially deployed. This will not be the case for 

composed services dynamically created and executed within 

a short time span – business logic for accounting must be 

automatically configured when service compositions are 

initially constructed, or subsequently modified. 

Despite its importance, accounting for composed serv-

ices has received little attention in the published literature. 

Bhushan et al. [3] propose a system architecture that sup-

ports the requirement for service providers to cooperate in 

the provision of composed services in a federated manner 

and share the generated revenue. However, they addresses 

only statically composed services – accounting components 

would still have to be pre-configured with the relevant ac-

counting logic. Agarwal et al. [4] propose a method for me-

tering and accounting for composite e-services that is not 

dependent on a-priori knowledge of the service composi-

tion. However, their approach supports only two specific 

service pricing models (flat rate per amount of resource 

used and flat rate per transaction). More significantly, the 

charge for an invocation of a composed service will always 

be the summation of the charges associated with standalone 

invocations of the constituent services; this will not always 

reflect the potentially complex business relationships be-

tween the service providers.  

IV. DISTRIBUTED TRANSACTION MODEL 

Our primary concern is with the support for long-term 

business transactions involving open communities of SMEs. 

Hence, service composition in this context is multidimen-

sional and different forms of composition are needed to sat-

isfy evolving business requirements. In contrast with the 

conventional view of transactions (data centric), web serv-

ice compositions deal with at least three aspects: order, de-

pendency, and alternative service execution [11]. 

In our approach, a multi-service transaction is repre-

sented by a tree structure (see Fig. 3). Each node of the tree 

is either a coordinator (can be considered a composed serv-

ice) or a basic service. The tree describes the coordination 

of the involved services and we may thus refer to the root of 

the tree as the master composed service. Basic services ap-

pear only as leaves of the tree. The resulting directed graph 

indicates the sub-transactions involved in a transaction and 

the corresponding hierarchical collection of basic and com-

posed services. The coordinator nodes determine the order-

ing of execution and infer dependencies within the associ-

ated service hierarchy. We will describe how such issues, 

often collectively wrapped up in the term choreography 

[10], are addressed within our approach in the sequel.  

First, we consider five different coordinator types, draw-

ing upon [11], that allow for various forms of service com-

position to be expressed in our model. 

1. Sequential coordinator: the services are invoked se-

quentially and the execution of a service is dependent on the 

previous one. This coordinator can handle sequential proc-

ess-oriented service composition with provision for both 

Sequential with Commit Dependency (SCD) and Sequential 

with Data Dependency (SDD). 

2. Parallel coordinator: the services can be executed in 

parallel. This coordinator handles parallel process-oriented 

service composition covering Parallel with Commit De-

pendency (PCD), Parallel with Data Dependency (PDD) 

and Parallel without Dependency (PND). 

3. Sequential Alternative coordinator: the services will 

be attempted in succession until one produces the desired 

outcome, as specified by some criterion (e.g. cost, time)  

4. Parallel alternative coordinator: alternative services 

are executed in parallel and once a service produces the de-

sired outcome, the rest are aborted. 

5. Data-oriented coordinator: this coordinator handles 

data-oriented service composition and specifically deals 

with released data items within a transaction (between its 

sub-transactions) or partial results released between differ-

ent transactions. 

6. Delegation: this coordinator allows the whole transac-

tion or a sub-transaction to be delegated to another platform. 

The first four coordinator types are rather self-

explanatory. In long-lived transactions, partial results need 

to be shared between transactions before their termination 

(commitment). This is the purpose of the data-oriented co-

ordinator. The delegation coordinator provides a means of 

overcoming traffic bottlenecks or low bandwidth connec-

tions or (lack of) processing power. In this paper we are 



 

 
 

mostly interested in a charging scheme for distributed multi-

service transactions and thus these coordinator types will 

not be covered in greater detail. 

Consider the simple transaction tree depicted in Fig. 2 

where we have adopted the notation of [8]. It comprises five 

basic services whose order of execution is determined by 

the three coordinators. 

 
Fig. 2 Multi-service transaction in a tree structure 

 

The “master composed service” is a sequential alterna-

tive coordinator defining two alternative execution scenar-

ios: (i) service s1 followed by s2, and (ii) service s1 followed 

by s2, followed by s3, s4, and s5 in parallel. The second sce-

nario of composed services will only be executed if the out-

come of the first does not meet some preset condition. 

The tree structure representation of a transaction allows 

us to exemplify the local coordination of the corresponding 

(compositions of) services that is required in performing the 

transaction in question. 

To accommodate distributed long running transactions 

that involve composed services, we need to relax the ACID 

properties, particularly Atomicity and Isolation without 

compromising Consistency. For this purpose, we need to 

consider some additional structure that guarantees the con-

sistency of the transaction model within a highly dynamic 

and purely distributed environment of a Digital Ecosystem. 

At the same time, we are considering SOC [9] as the 

primary computing paradigm for DBE. This entails that the 

model should defer from any tight-coupling between initia-

tor and coordinator or between initiator and participant, as is 

the case with WS-BusinessActivity [6]. We therefore keep 

state information at the deployment level and abstain from 

interfering with service execution as such as we wish not to 

break the local autonomy of the realisation platform.  

Next, we describe two graphs that capture the dependen-

cies between sub-transactions (basic and/or composite serv-

ices) of a single transaction or belonging to different trans-

actions. Keeping track of such dependencies is essential if 

the underlying transaction model is to provide capabilities 

for charging for services, including composed services, and 

reverse action (when a sub-transaction fails or is aborted).  

The Internal Dependency Graph (IDG) is a directed 

graph of arcs and nodes, which keeps logs of value depend-

encies within a transaction tree. Each node represents a co-

ordinator or service (sub-transaction) and the direction of 

the arc between nodes indicates a dependency of one node 

on another. 

In the transaction tree of Fig. 2, for example, s2 and s1 are 

children of a sequential coordinator and hence s2 is depend-

ent on the results released by s1. This means that service s2 

cannot be invoked before s1 has. It also has as a conse-

quence that if s1 is aborted, then s2 must also be aborted. 

This dependency between s2 and s1 is shown in the IDG of 

Fig.3(i). 

The services s3, s4, and s5 are children of a parallel coor-

dinator. This implies that when value dependencies exist if 

one of the services is aborted then the rest of the services 

must also be aborted. This is shown in the corresponding 

IDG given in Fig. 3(ii). 

 
Fig. 3 Internal Dependency Graph 

We have seen that in a distributed multi-service transac-

tion, dependencies may exist not only between services of a 

transaction but also between services of different transac-

tions. For instance, consider the case of (compensatable) 

sub-transactions that release partial results in a conditional 

commit state [8]. This incurs a dependency between the cor-

responding service executions. 

To capture such dependencies, we use another graph, 

called the External Dependency Graph (EDG). This graph 

keeps track of dependencies between (services or coordina-

tors of) different transactions. The log structure it provides 

can also be used in recovery routines for running a compen-

sating procedure, upon failure. 

Fig. 4 shows (part of) the EDG for the transaction T1 (of 

Fig. 2) and transaction T2. It indicates that the service s9 of 

T2 uses results released by service s5 of T1, and is thus de-

pendent on s5. 

 
Fig. 4 External Dependency Graph 

 

The IDG and EDG provide a means of recording important 

system logs which can be stored locally, on the correspond-

ing local coordinator, but their effect is both local, in terms 

of local faults, forward recovery and contingency plans, and 

global, in terms of abortion, restarting, recalculating, and 

alternative execution. Both graphs are used in the rating 

process of accounting, discussed in §V, for determining the 

final charges of composed services of a transaction (IDG) 

and across transactions (EDG). 

V. TWO PHASE RATING PROCESS 

We return now to the rating algorithm. To meet the 

requirements outlined in §III we propose that DBE rating 

engines employ a two phase rating process. In phase 1 of 



 

 
 

this process, services comprising a composed service are 

rated as if they are being executed as “standalone” services, 

leading to the generation of interim charges for each of 

these services. In phase 2, the interim charges are modified 

in accordance with provider specified rules specifying how 

charges are to be modified if that provider’s service(s) are 

used with other specified services in the context of a 

composed service. To facilitate the two phase process we 

utilise two-part charging schemes: part 1 dictates how 

charges are to be calculated when the service is invoked in 

isolation, and part 2 dictates any modifications to these 

charges if other specified services or service providers are 

present in the current transaction. 

For the purpose of rating, we view composed services as 

hierarchical collections of atomic and composed services, in 

the same way that the transaction model is illustrated above 

in Fig. 2. We refer to the service at the top level of the 

hierarchy as the “master composed service”. Services at the 

bottom of the hierarchy must all be atomic (basic) services 

(from the rating engine’s perspective). All DBE services 

have associated with them a providerID, which uniquely 

identifies their provider within the DBE; they have a 

serviceID, which uniquely identifies the service amongst the 

set of services offered by their provider; and an instanceID 

which distinguishes between multiple instances of the same 

service type (for example, serving different geographical 

markets). Therefore, the tuple of (providerID, serviceID, 

instanceID) uniquely identifies a service instance across the 

entire DBE. 

When a Transaction Workflow Manager invokes a 

master composed service it assigns a transactionID that 

uniquely identifies this invocation of the master composed 

service during the timeframe between initial invocation and 

the completion of all processing associated with that 

invocation. The Transaction Workflow Manager then 

provides all services comprising the master composed 

service with this transactionID. All Metering records 

relating to these services will contain this transactionID, as 

well as the providerID, serviceID, and instanceID. In 

addition, the Transaction Workflow Manager indicates to 

the rating engine that an invocation of the master composed 

service with the specified transactionID is commencing, 

and provides it with details of the associated service 

hierarchy. The presence of the transactionID in all metering 

records provides a means for the accounting system to 

identify a service’s execution context. 
As the services are executed, metering records relating to 

them are generated and transferred to the rating engine; 

these records are rated using part 1 of the charging scheme 

associated with that service. This is phase 1 of the rating 

process; it results in the generation of interim charge 

records for the invocations of the associated service 

instances. 

In the phase 2 of the process the rating engine modifies 

the interim charge records generated in phase 1 as dictated 

by the part 2s of the relevant charging schemes. These 

elements of the charging schemes capture relationships 

between services or between service providers and provide 

the rating engine with appropriate discounts (or tariffs) to be 

applied when such services have transaction dependency 

relationships as indicated by the IDGs and EDGs provided 

by the transaction workflow manager.   

VI. SUMMARY 

Within a Digital Business Ecosystem a number of long 

running transactions take place, involving various service 

compositions, and there is an increased likelihood that some 

sub-transaction is aborted. Preliminary analysis of our 

transaction model shows that it is possible to provide a 

compensating mechanism that warranties consistency. The 

log structures of the IDG and EDG capture the 

dependencies due to released results within a transaction 

and partial results between transactions, respectively. To 

ensure consistency at all times, such dependencies need to 

be taken into account so that all dependent subtranscations 

are also aborted. At the same time, it is also possible to 

address omitted results (non-dependent subtransactions that 

may have provided valuable results and need not be 

aborted) through a forward recovery routine, again based on 

the IDG and EDG. 

Additionally, work is in progress on a formal behavioural 

description of the proposed transaction model, which can be 

subsequently used for the rating of the corresponding 

service compositions. By verifying the behaviour exhibited 

by the underlying service compositions, the testing and 

deployment of the transactions and their accounting scheme 

can be eased. The formal representation of a transaction also 

allows to identify the possible sequences, if any, of reverse 

actions for compensation and forward recovery. 
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