

Abstract—This paper addresses two known issues for dy-

namically composed services in digital ecosystems. The first

issue is that of efficient distributed transaction management.

The conventional view of transactions is unsuitable as the local

autonomy of the participants is vital for the involvement of

SMEs. The second issue is that of charging for such distributed

transactions, where there will often be dynamically created

services whose composition is not known in advance and might

involve parts of different transactions. The paper provides so-

lutions for both of these issues, which can be combined to pro-

vide for a unified approach to transaction management and

accounting of dynamically composed services in digital ecosys-

tems.

Index Terms—Distributed Services, Coordination, Transac-

tions, Accounting, Digital Ecosystem.

I. INTRODUCTION

Many in the business and research communities are

pursuing the vision of digital business ecosystems –

distributed software environments through which

organisations can seamlessly access customised, potentially

disposable, services to aid them carry out a myriad of tasks.

These services can be either pure software applications, or

“real world” services represented by a software wrapper

supporting automated transaction processing. Full

realisation of this vision requires deployment of facilities

for the dynamic discovery, composition, interoperation and

execution monitoring of a potentially huge number of

available services. The DBE integrated project [1] focuses

on the development of an open-source distributed environ-

ment (the DBE) that can support the spontaneous creation

of applications through the composition of (not necessarily

open-source) software services and components. In doing so

the project is adopting the business modelling approach de-

scribed above, but complementing it with the adoption of

evolutionary algorithms inspired by biological processes,

that provide bottom-up incremental improvement of busi-

ness models through run-time feedback on service perform-

ance. The DBE is being targeted primarily towards SMEs,

who will be able to concatenate their offered services within

service chains formulated on a pan-European basis. By of-

fering access to a large pool of service providers and con-

sumers, and itself providing advanced recommendation sys-

tems and evolutionary algorithms, the DBE will support

continued global optimisation of service chains, benefiting

all actors, in particular SMEs [2].

However, the adoption of such a collaborative

environment by SMEs is largely dependent on whether we

are able to guarantee consistency and preserve local

autonomy. Current frameworks [6, 7] tend to focus on

providing consistency but, at the transaction level, this

comes at the cost of violating the local autonomy of the

participants.

Businesses utilising DBE services will need to be

charged and billed in accordance with their service usage

patterns. In any business environment charging processes

are of crucial importance, thus the success of the DBE, or

indeed any environment supporting dynamic service

composition, will be contingent on the ability of providers

to charge and collect fees for service usage. Given that there

will be no a priori knowledge of the structure of, or

business model associated with, dynamically composed

services, the design and deployment of a sufficiently

flexible accounting system is a challenging task.

Both the transaction management and accounting

solutions presented here are being made available through

open source projects providing SMEs with affordable

solutions to engage in eCommerce through digital

ecosystems platforms.

This work is funded partly through the EU Digital

Business Ecosystems Integrated Project [1] and partly

through the EU OPAALS network of excellence project.

II. DISTRIBUTED TRANSACTION MANAGEMENT

The long-term nature of business transactions frames the

concept of a transaction in Digital Business Ecosystems and

makes defining a consistent transaction model even more

challenging. The conventional view of a transaction [5],

based on the ACID (Atomicity, Consistency, Isolation, Du-

rability) properties, cannot capture the primary requirements

of DEs. From a business point of view, most usage scenar-

ios in Digital Ecosystems involve long-term transactions

and thus Atomicity is an unacceptable constraint. From a

distributed transactions point of view, Isolation can lead to

significant degradation of performance in the services of-

fered (critical data is locked until a transaction completes)

or to increased probability of deadlock (as services may be

locked into composite transactions that do not terminate).

Transaction models for web services include WS-

BusinessActivity [6] and BTP [7] among others. They are

primarily concerned with consistency but in guaranteeing it,

the underlying coordination framework requires access to

the internal build-up of the communicating parties. The Co-

ordinator and Participant roles are tightly-coupled and if a

 Amir R. Razavi
1
, Paul J. Malone

2
, Sotiris Moschoyiannis

1
, Brendan Jennings

2
 and Paul J. Krause

1

1
Department of Computing, School of Electronics and Physical Sciences, University of Surrey, Guildford, England,

e-mail: (a.razavi,s.moschoyiannis,p.krause)@surrey.ac.uk
2
Telecommunications Software and Systems Group, Waterford Institute of Technology, Waterford, Ireland,

e-mail: (pmalone,bjennings) @tssg.org

A Distributed Transaction and Accounting Model

for Digital Ecosystem Composed Services

fault occurs while the transaction is finalising (transition to

Fault state while in Close state) it can only be dealt with at

the participant’s platform. This not only implies that par-

ticipating SMEs cannot have exclusive control of their local

design but also that the underlying services are no longer

stateless. Such presumptions are against the primary re-

quirements of SOA [9] and hinder the development of a

Digital Ecosystem for SMEs.

III. ACCOUNTING AND CHARGING FOR NETWORKED

SERVICES

Accounting involves the collection and analysis of serv-

ice and resource usage metrics for purposes such as billing,

capacity and trend analysis, cost allocation and auditing. It

requires that service consumption be measured, rated, and

that resultant charging information be communicated be-

tween appropriate business entities. As shown in Fig. 1, ac-

counting systems for networked services incorporate sub-

systems for metering, mediation, rating and billing.

Fig. 1 Accounting System for Networked Services

Accounting for services, including composite services,

whose characteristics are known in advance is a mature

area. For example, in the telecommunications domain there

is wide deployment of complex mediation, rating and bill-

ing systems which support sophisticated usage- and content-

based charging models for pre-paid and post-paid, private

and corporate customers. In such systems the components

involved in the accounting process must be manually pre-

configured to account for specific services at the time those

services are initially deployed. This will not be the case for

composed services dynamically created and executed within

a short time span – business logic for accounting must be

automatically configured when service compositions are

initially constructed, or subsequently modified.

Despite its importance, accounting for composed serv-

ices has received little attention in the published literature.

Bhushan et al. [3] propose a system architecture that sup-

ports the requirement for service providers to cooperate in

the provision of composed services in a federated manner

and share the generated revenue. However, they addresses

only statically composed services – accounting components

would still have to be pre-configured with the relevant ac-

counting logic. Agarwal et al. [4] propose a method for me-

tering and accounting for composite e-services that is not

dependent on a-priori knowledge of the service composi-

tion. However, their approach supports only two specific

service pricing models (flat rate per amount of resource

used and flat rate per transaction). More significantly, the

charge for an invocation of a composed service will always

be the summation of the charges associated with standalone

invocations of the constituent services; this will not always

reflect the potentially complex business relationships be-

tween the service providers.

IV. DISTRIBUTED TRANSACTION MODEL

Our primary concern is with the support for long-term

business transactions involving open communities of SMEs.

Hence, service composition in this context is multidimen-

sional and different forms of composition are needed to sat-

isfy evolving business requirements. In contrast with the

conventional view of transactions (data centric), web serv-

ice compositions deal with at least three aspects: order, de-

pendency, and alternative service execution [11].

In our approach, a multi-service transaction is repre-

sented by a tree structure (see Fig. 3). Each node of the tree

is either a coordinator (can be considered a composed serv-

ice) or a basic service. The tree describes the coordination

of the involved services and we may thus refer to the root of

the tree as the master composed service. Basic services ap-

pear only as leaves of the tree. The resulting directed graph

indicates the sub-transactions involved in a transaction and

the corresponding hierarchical collection of basic and com-

posed services. The coordinator nodes determine the order-

ing of execution and infer dependencies within the associ-

ated service hierarchy. We will describe how such issues,

often collectively wrapped up in the term choreography

[10], are addressed within our approach in the sequel.

First, we consider five different coordinator types, draw-

ing upon [11], that allow for various forms of service com-

position to be expressed in our model.

1. Sequential coordinator: the services are invoked se-

quentially and the execution of a service is dependent on the

previous one. This coordinator can handle sequential proc-

ess-oriented service composition with provision for both

Sequential with Commit Dependency (SCD) and Sequential

with Data Dependency (SDD).

2. Parallel coordinator: the services can be executed in

parallel. This coordinator handles parallel process-oriented

service composition covering Parallel with Commit De-

pendency (PCD), Parallel with Data Dependency (PDD)

and Parallel without Dependency (PND).

3. Sequential Alternative coordinator: the services will

be attempted in succession until one produces the desired

outcome, as specified by some criterion (e.g. cost, time)

4. Parallel alternative coordinator: alternative services

are executed in parallel and once a service produces the de-

sired outcome, the rest are aborted.

5. Data-oriented coordinator: this coordinator handles

data-oriented service composition and specifically deals

with released data items within a transaction (between its

sub-transactions) or partial results released between differ-

ent transactions.

6. Delegation: this coordinator allows the whole transac-

tion or a sub-transaction to be delegated to another platform.

The first four coordinator types are rather self-

explanatory. In long-lived transactions, partial results need

to be shared between transactions before their termination

(commitment). This is the purpose of the data-oriented co-

ordinator. The delegation coordinator provides a means of

overcoming traffic bottlenecks or low bandwidth connec-

tions or (lack of) processing power. In this paper we are

mostly interested in a charging scheme for distributed multi-

service transactions and thus these coordinator types will

not be covered in greater detail.

Consider the simple transaction tree depicted in Fig. 2

where we have adopted the notation of [8]. It comprises five

basic services whose order of execution is determined by

the three coordinators.

Fig. 2 Multi-service transaction in a tree structure

The “master composed service” is a sequential alterna-

tive coordinator defining two alternative execution scenar-

ios: (i) service s1 followed by s2, and (ii) service s1 followed

by s2, followed by s3, s4, and s5 in parallel. The second sce-

nario of composed services will only be executed if the out-

come of the first does not meet some preset condition.

The tree structure representation of a transaction allows

us to exemplify the local coordination of the corresponding

(compositions of) services that is required in performing the

transaction in question.

To accommodate distributed long running transactions

that involve composed services, we need to relax the ACID

properties, particularly Atomicity and Isolation without

compromising Consistency. For this purpose, we need to

consider some additional structure that guarantees the con-

sistency of the transaction model within a highly dynamic

and purely distributed environment of a Digital Ecosystem.

At the same time, we are considering SOC [9] as the

primary computing paradigm for DBE. This entails that the

model should defer from any tight-coupling between initia-

tor and coordinator or between initiator and participant, as is

the case with WS-BusinessActivity [6]. We therefore keep

state information at the deployment level and abstain from

interfering with service execution as such as we wish not to

break the local autonomy of the realisation platform.

Next, we describe two graphs that capture the dependen-

cies between sub-transactions (basic and/or composite serv-

ices) of a single transaction or belonging to different trans-

actions. Keeping track of such dependencies is essential if

the underlying transaction model is to provide capabilities

for charging for services, including composed services, and

reverse action (when a sub-transaction fails or is aborted).

The Internal Dependency Graph (IDG) is a directed

graph of arcs and nodes, which keeps logs of value depend-

encies within a transaction tree. Each node represents a co-

ordinator or service (sub-transaction) and the direction of

the arc between nodes indicates a dependency of one node

on another.

In the transaction tree of Fig. 2, for example, s2 and s1 are

children of a sequential coordinator and hence s2 is depend-

ent on the results released by s1. This means that service s2

cannot be invoked before s1 has. It also has as a conse-

quence that if s1 is aborted, then s2 must also be aborted.

This dependency between s2 and s1 is shown in the IDG of

Fig.3(i).

The services s3, s4, and s5 are children of a parallel coor-

dinator. This implies that when value dependencies exist if

one of the services is aborted then the rest of the services

must also be aborted. This is shown in the corresponding

IDG given in Fig. 3(ii).

Fig. 3 Internal Dependency Graph

We have seen that in a distributed multi-service transac-

tion, dependencies may exist not only between services of a

transaction but also between services of different transac-

tions. For instance, consider the case of (compensatable)

sub-transactions that release partial results in a conditional

commit state [8]. This incurs a dependency between the cor-

responding service executions.

To capture such dependencies, we use another graph,

called the External Dependency Graph (EDG). This graph

keeps track of dependencies between (services or coordina-

tors of) different transactions. The log structure it provides

can also be used in recovery routines for running a compen-

sating procedure, upon failure.

Fig. 4 shows (part of) the EDG for the transaction T1 (of

Fig. 2) and transaction T2. It indicates that the service s9 of

T2 uses results released by service s5 of T1, and is thus de-

pendent on s5.

Fig. 4 External Dependency Graph

The IDG and EDG provide a means of recording important

system logs which can be stored locally, on the correspond-

ing local coordinator, but their effect is both local, in terms

of local faults, forward recovery and contingency plans, and

global, in terms of abortion, restarting, recalculating, and

alternative execution. Both graphs are used in the rating

process of accounting, discussed in §V, for determining the

final charges of composed services of a transaction (IDG)

and across transactions (EDG).

V. TWO PHASE RATING PROCESS

We return now to the rating algorithm. To meet the

requirements outlined in §III we propose that DBE rating

engines employ a two phase rating process. In phase 1 of

this process, services comprising a composed service are

rated as if they are being executed as “standalone” services,

leading to the generation of interim charges for each of

these services. In phase 2, the interim charges are modified

in accordance with provider specified rules specifying how

charges are to be modified if that provider’s service(s) are

used with other specified services in the context of a

composed service. To facilitate the two phase process we

utilise two-part charging schemes: part 1 dictates how

charges are to be calculated when the service is invoked in

isolation, and part 2 dictates any modifications to these

charges if other specified services or service providers are

present in the current transaction.

For the purpose of rating, we view composed services as

hierarchical collections of atomic and composed services, in

the same way that the transaction model is illustrated above

in Fig. 2. We refer to the service at the top level of the

hierarchy as the “master composed service”. Services at the

bottom of the hierarchy must all be atomic (basic) services

(from the rating engine’s perspective). All DBE services

have associated with them a providerID, which uniquely

identifies their provider within the DBE; they have a

serviceID, which uniquely identifies the service amongst the

set of services offered by their provider; and an instanceID

which distinguishes between multiple instances of the same

service type (for example, serving different geographical

markets). Therefore, the tuple of (providerID, serviceID,

instanceID) uniquely identifies a service instance across the

entire DBE.

When a Transaction Workflow Manager invokes a

master composed service it assigns a transactionID that

uniquely identifies this invocation of the master composed

service during the timeframe between initial invocation and

the completion of all processing associated with that

invocation. The Transaction Workflow Manager then

provides all services comprising the master composed

service with this transactionID. All Metering records

relating to these services will contain this transactionID, as

well as the providerID, serviceID, and instanceID. In

addition, the Transaction Workflow Manager indicates to

the rating engine that an invocation of the master composed

service with the specified transactionID is commencing,

and provides it with details of the associated service

hierarchy. The presence of the transactionID in all metering

records provides a means for the accounting system to

identify a service’s execution context.
As the services are executed, metering records relating to

them are generated and transferred to the rating engine;

these records are rated using part 1 of the charging scheme

associated with that service. This is phase 1 of the rating

process; it results in the generation of interim charge

records for the invocations of the associated service

instances.

In the phase 2 of the process the rating engine modifies

the interim charge records generated in phase 1 as dictated

by the part 2s of the relevant charging schemes. These

elements of the charging schemes capture relationships

between services or between service providers and provide

the rating engine with appropriate discounts (or tariffs) to be

applied when such services have transaction dependency

relationships as indicated by the IDGs and EDGs provided

by the transaction workflow manager.

VI. SUMMARY

Within a Digital Business Ecosystem a number of long

running transactions take place, involving various service

compositions, and there is an increased likelihood that some

sub-transaction is aborted. Preliminary analysis of our

transaction model shows that it is possible to provide a

compensating mechanism that warranties consistency. The

log structures of the IDG and EDG capture the

dependencies due to released results within a transaction

and partial results between transactions, respectively. To

ensure consistency at all times, such dependencies need to

be taken into account so that all dependent subtranscations

are also aborted. At the same time, it is also possible to

address omitted results (non-dependent subtransactions that

may have provided valuable results and need not be

aborted) through a forward recovery routine, again based on

the IDG and EDG.

Additionally, work is in progress on a formal behavioural

description of the proposed transaction model, which can be

subsequently used for the rating of the corresponding

service compositions. By verifying the behaviour exhibited

by the underlying service compositions, the testing and

deployment of the transactions and their accounting scheme

can be eased. The formal representation of a transaction also

allows to identify the possible sequences, if any, of reverse

actions for compensation and forward recovery.

[1] Digital Business Ecosystem, EU FP6 integrated project number IST-

2003-50793, [Online], Available: http://www.digital-ecosystem.org

[2006, June 06].

[2] Heistracher, T., Kurz, T., Masuch, C., Ferronato, P., Vidal, M.,

Corallo, A., Briscoe, G. & Dini, P. 2004, Pervasive Service

Architecture for a Digital Business Ecosystem, in Proc. 1st Int’l

Workshop on Coordination and Adaptation Techniques for Software

Entities (WCAT04), [Online], Available:

http://wcat04.unex.es/papers/09_heistracher_kurz_masuch_ferronato

_vidal_corallo_dini.pdf [2006, June 06].

[3] Bhushan, B., Tschichholz, M., Leray, E. & Donnelly, W. 2001,

Federated Accounting: Service Charging and Billing in a Business to

Business Environment, in Proc. 7th IFIP/IEEE Int’l Symp. on

Integrated Network Management (IM 2001), IEEE, pp. 107-121;

[4] Agarwal, V., Karnik, N. & Kumar, A. 2003, Metering and accounting

for composite e-Services, in Proc. 1st IEEE Int’l Conf. on E-

Commerce, IEEE, pp. 35-39;

[5] C.J. Date. An Introduction to Database Systems. 5th Edition, Addison

Wesley, USA, 1996.

[6] L.F. Cabrera, G. Copeland, W. Cox et al. Web Services Business

Activity Framework (WS-BusinessActivity). August 2005. Available

http://www128.ibm.com/developerworks/webservices [19 Sep 2006]

[7] P. Furnis, S. Dala, T. Fletcher et al. Business Transaction Protocol,

version 1.1.0, November 2004. Available at http://www.oasis-

open.org/committes/downaload.php [19 September 2006]

[8] M.P. Papazoglou, A. Dells et al. Language Support for Long-Lived

Concurrent Activities. In Proc. ICDCS’96, pp. 698-705, IEEE, 1996.

[9] M.P. Papazoglou. Service-Oriented Computing: Concepts, Character-

istics and Directions. In Proc. WISE’03, IEEE, pp. 3-12, 2003.

[10] W3C-WSCI, Web Service Choreography Interface (WSCI) 1.0. Web

Services Choreography Working Group, 2002.

[11] J. Yang, M. Papazoglou and W-J. van de Heuvel. Tackling the Chal-

lenges of Service Composition in E-Marketplaces. In Proc. 12th

RIDE-2EC, pp. 125-133, IEEE Computer Society, 2002.

