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ABSTRACT The edge of the network plays a vital role in an Internet of Things (IoT) system, serving as
an optimal site to perform an operation on data before transmitting it over the network. We present the fog-
specific decomposition of multivariate linear regression as the predictive analytic model in our work using
the statistical query model and summation form. The decomposition method used is not the contribution, but
applying the decomposition method to the analytics model to run in a distributed manner in the fog-enabled
IoT deployments is the contribution. What is novel is the decomposition made on a fog-based distributed
setting. To test the performance, our proposed approach has been applied to a real-world dataset and evaluated
using a fog computing testbed. The proposedmethod avoids sending raw data to the cloud and offers balanced
computation in the infrastructure. The results show an 80% reduction in the amount of data transferred to
the cloud using the proposed fog-based distributed data analytics approach compared with the conventional
cloud-based approach. Furthermore, by adopting the proposed distributed approach, we observed a 98% drop
in the time taken to arrive at the final result compared with the cloud-centric approach. We also present the
results on the quality of analytics solution obtained in both approaches, and they suggest that the fog-based
distributed analytics approach can serve as equally as the traditional cloud-centric approach.

INDEX TERMS Fog computing, cloud computing, Internet of Things (IoT), data analytics, decomposition,
distributed.

I. INTRODUCTION
With the exponential growth rate of technology, the future of
all activities involves an omnipresence of widely connected
devices, or as we better know it, the Internet of Things (IoT).
IoT is set to reform the future of connectivity and reachability.
With the emerging IoT adoption, it is estimated [1] that
there will be 1 trillion interconnected IoT devices by 2025.
A recent major survey [2] revealed that IoT will be the
center of the upcoming technologies, and would drive sig-
nificant impacts in machine-aided commerce applications in
the next five years. Another recent publication [3] by Cisco
in June 2017 indicates that we have already reached the
Zettabyte Era, and the number of devices connected to the
Internet is growing exponentially.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jad Nasreddine.

A thing,1 in the IoT, can be a physical device such as
temperature sensor, a personwith bodywearable or implanted
device such as heart monitor implant, a farm animal with
a wearable device, an automobile that has built-in sen-
sors or any other man-made or natural object that can be
assigned a unique identifier such as an IP address and pro-
vided with the ability to transfer data over a network. The
simple idea is that anything that can be connected will be
connected.

IoT aims to bring every object online, hence generat-
ing massive amounts of data that can overwhelm the cloud
centric application systems. Fog computing is a relatively
new networking paradigm that aims to provide traditionally

1It is noteworthy that there are other terms such as ‘‘objects’’, ‘‘Inter
Connected Objects (ICOs)’’ [4] that have the same meaning as things here
and are frequently used in IoT and fog related documentation. Some other
terms used by the research community are ‘‘smart objects’’, ‘‘devices’’, and
‘‘nodes’’ [5]
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centralized data-center operations at the edge of the network.
It has recently emerged as a potential architecture for scaling
IoT network applications. Several interpretations [6] have
been proposed for the implementation of fog nodes and their
configuration—via servers, networking devices, cloudlets,
base stations, or vehicles. Fog computing utilizes the avail-
able in-network computing resources and shows the capabil-
ity of reducing the dependency on the cloud by facilitating
data analytics on the network edge [7]. This improves the
responsiveness of the system, reduces resource requirements
on the remote cloud infrastructure, and in turn increases the
efficiency of the system in terms of energy consumption and
network usage [8].

The capabilities of the computing gateways [9] comes as an
important aspect of fog computing architecture for IoT based
applications. With the increasing demand of providing smart
solutions, the shift towards utilization of gateway devices as
fog nodes for edge analytics is being supported by an increas-
ing number of industrial [10]–[12] IoT platform developers
and solution providers, including IBM, Intel, and Microsoft.

The increasing range of real-world IoT deployments essen-
tially increases the sources of data generation, thereby glob-
ally strengthening the challenges already being faced in the
Big Data space [13], particularly regarding moving data from
one end (i.e. from data sources such as sensor/IoT devices
at the edge level of infrastructure) to the other extreme end
(i.e. centralized data centers at the cloud) in the network
infrastructure. Therefore, building architectures that allow
executing services in multiple points have recently gained
attention from industry players [14], [15].

Sending the entire data set across the extreme ends in the
infrastructure becomes an unrealistic solution, specifically
in scenarios with constrained network bandwidth and scarce
internet connectivity. Instead, approaches that collect data
and perform computational processing near the data source
itself present a more practical alternative in such scenarios.
This generates a vast array of benefits across use cases such
as those with video oriented applications, where the transport
of video across infrastructure can claim considerable network
resources such as requirement for storage at each node from
source to destination. While IoT deployments vary across
use cases, the most prominently common underlying aim is
to analyze the data generated from the devices to achieve
a specific set objective. Analyzing data at early stages of
infrastructure pipeline presents additional benefits of data
and communication security in the overall system, owing
to the fact that raw data is now processed closer to the
data source, and only processed data is sent further. The
efficient use of available computational resources realized by
means of fog computing, in turn, promotes the idea of green
computing [16], [17].

Contrary to the cloud which can be thought of as resource
rich, the fog devices are resource constrained in nature
whereby resource scaling (up/down and horizontal/vertical)
cannot be done dynamically. The fog devices are already
performing their fundamental computing/network operation

(for e.g. in case of gateway acting as a fog device, it is
already forwarding the packets to the set destination), so these
operations are already utilizing the available resources
(CPU, RAM and bandwidth) on it. An additional deployment
of a complete data analytics computing module on the said
resource might lead to full utilization of resources on device
as the workload or data input increases, and may also affect
its fundamental network operation. Hence, a careful place-
ment of computing operations is sought for efficient overall
system performance, and thus, the approach of decomposed
computing units seems ideal in an IoT environment with fog
assistance.

For e.g. consider a case where the additional deployment of
physical devices is not possible and we are required to predict
temperature based on given readings of limited environmental
parameters such as humidity and air pressure for a large
physical area. In such scenario sending all the raw sensing
data to cloud for analyzing and sending the result back to user
is neither feasible nor scalable [18]. This becomes even more
challenging with limited Internet connectivity and growing
volume of data. In such scenarios it’s ideal to leverage fog
computing architecture where fog focuses on local knowl-
edge in different local areas, while cloud can have a global
view of the environment by combining all the information
received from fog. These kinds of cases exists in industrial
systems such as monitoring complex hydraulic systems [19]
to be working in order, and to its desired capacity. Another
related example can be to know the temperature of different
areas of a large stadium during an event to get actionable
insights for regulating air conditioning of those specific areas.

Our contribution is summarized as follows:
• We present the fog based distributed data analytics solu-
tion for IoT deployments.

• The decomposition method used for distributing the
analytics/intelligence in the infrastructure is based on
Statistical Query Model and Summation Form, which
makes it closed form in nature.

• To the best of our knowledge this is first attempt to
decompose an analytics model (in closed form) to make
it run in distributed manner in a fog based setting.

• The solution and methodology is generic is nature and
is applicable to a wide variety of IoT based use case
scenarios.

• The proposed approach has been applied to a real-world
data set in a fog based testbed, and metrics related
to resource utilization and quality of analytics solution
have been presented.

The paper has been further structured as follows:
§II presents the literature review, background, related work
and motivation, §III outlines the mathematical model of
the system and the problem, §IV presents the analytics
model (Multivariate Linear Regression) used in the work,
§V presents the decomposition methodology, §VI presents
the experimental setup and data sets used, §VII presents
results and discussion, and finally §VIII presents the conclu-
sion and future work.
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II. LITERATURE REVIEW: BACKGROUND, RELATED
WORK AND MOTIVATION
IoT can be seen as a network of interconnected physi-
cal or virtual ‘things’ that are capable of using intelligent
interfaces to be integrated as an information network in order
to communicate with one another, with other devices andwith
services over the Internet to accomplish some objective [20].
Authors in [21] identified and envisioned the adoption of IoT
to affect both domestic and industry fronts. Some examples
of domestic impact include application scenarios in assisted
living, e-health, etc. On the industrial front, the areas of
most visible impact include the likes of automation, industrial
manufacturing, logistics, and intelligent transportation.

In traditional centralized approaches [22], [23] for data
analytics in IoT, all collected data are transferred to central-
ized location such as server(s) in data center (i.e. cloud) and is
then subjected to the desired data analytics model, thus such
approaches suffer from the bottleneck of data transfer. The
centralized approach becomes redundant when data itself is
being generated and stored in a distributed manner, and the
entire data set has to be transported across the infrastructure
for analysis. In some use cases such as healthcare, network
nodes might not want to share data because of privacy issues.
Our work decomposes the desired data analytics model to run
on the edge of the network coping with the above mentioned
constraints.

There are approaches [24], [25] that have been proposed
for Wireless Sensor Networks (WSNs) based on selective
forwarding that take into account the constraint of band-
width, latency and energy. The issue with such approaches
is that they only focus on communication efficiency with-
out being aware of analytical task being performed at the
destination. Further advanced methods based on selective
forwarding [26]–[28] work on dynamic optimal decision
making to find best time to deliver data for communication
efficiency and to minimize reconstruction error at the desti-
nation. However, such methods are limited to communication
overhead and have not be developed and applied to the net-
work edge i.e. in a fog based setting.

Authors in [29] present the survey of a subset of methods
that can be modified to run in a distributed manner to solve
the problem of linear least-squares.

Distributed approaches [30]–[32] specific to regression
work on the constraint that gathering data centrally is either
expensive or impossible, and focus on distributing estima-
tion of global model parameters over nodes with the aim
to achieve the same prediction performance that would have
been achieved by the corresponding centralized model. The
issue with such approaches is that they need additional tech-
niques for parameters update and synchronization, which
restricts their use for a wide set of IoT based applications.

Recent work [32], [33] in edge-analytics exploits the com-
putational power of devices such as Raspberry Pi and Bea-
gleBone to design and launch lightweight algorithms directly
at the data sources. Authors in [33] presents edge stochastic
gradient descent (EdgeSGD) algorithm for solving linear

regression problem with the objective of estimating the fea-
ture vector on the edge node.

They show that such approaches can converge faster to the
optimal values as compared to the centralized approach. Their
approach is different from ours as their approach is iterative
in nature and needs to converge to find the solution, while we
present the closed form solution of the problem that fits to
the parameter without the need to use an iterative algorithm.
We elaborate more on this in the next sections.

Authors in [34] and [35] present methods of data sup-
pression based on local forecasting models on sensors in
view of re-constructing data at the sink node. These methods
exclusively focus on reducing data communication by means
of data suppression using forecasting models.

Data in IoT deployments moves from things to cloud, and
along this continuum passes through a number of network
devices such as routers, gateways, etc. Each of these devices
can be a potential candidate to host partial computing ana-
lytics capability to analyze the data, and further sending the
calculated partial results instead of sending the raw data to
cloud [36].

Initial exploratory work by authors in [37] shows that
such decompositions can reduce bandwidth consumption and
can significantly decrease the associated costs. But further
research and developments on pointers like decomposition
methods, system performance and quality of analytics need to
be carefully studied to design efficient distributed algorithm
solutions for fog enabled IoT settings, and that is where we
position our work.

Our approach, as devised from [38] and explained fur-
ther in the next sections does not modify the algorithm
in use, rather remains an exact implementation of it albeit
capable of running in a distributed manner in fog enabled
IoT deployments.

III. MATHEMATICAL MODEL OF THE SYSTEM AND
PROBLEM FORMULATION
We consider the network architecture with fog nodes forming
a layer between IoT devices and the cloud. A graphical
representation of the same is shown in Fig. 1. We examine
scenarios where local IoT devices and the remote cloud ser-
vices carry out data sensing, collection and analytics. With
fog layer in the middle of IoT devices and cloud, the analytics
computation can be distributed among fog nodes and can be
collectively solved by either fog nodes alone or in a combined
manner by fog nodes and cloud.

We consider a tree like network architecture in which an
IoT device i is connected with its unique fog node j which is
further connected to the cloud. We have sensing devices that
are transmitting their data to fog nodes and they are sending
their data towards cloud or another central location. The tree
topology is a hierarchy of nodes with single root node at the
highest level of hierarchy, which is connected to one or many
nodes in the level below. The communication, comput-
ing and storage capabilities (we collectively call them as
CCS capabilities) in node(s) increases as one moves from
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FIGURE 1. Three tier IoT-fog-cloud architecture (with multi-tier fog).

branches of the tree towards the root node. In this tree-like
topology, the root represents cloud, intermediate nodes repre-
sent fog nodes and the leaf nodes represent IoT devices. Data
in IoT based deployments moves from ‘ things ’ to cloud or in
terms of tree representation from branches of the tree to cloud
via fog nodes, allowing data to be processed closer to where
its generated. As presented by the authors in [39], the benefits
of tree topology include the fact that it’s scalable in nature,
and has a simple structure that makes it easier to identify and
isolate faults. The graphical representation of an end-to-end
tree2 like network architecture is as shown in Fig. 2.
The neighborhood of fog node j is denoted as Nj which

is the set of IoT devices connected to it and is written as
Nj = {nj} such that i ∈ Nj. The range of communication of
a fog node is defined in terms of its communication distance
capability i.e. any IoT device that can communicate with the
fog node within its range can become a part of the fog node’s
neighborhood.

We consider a discrete time domain t ∈ T = {1, 2, . . .}
such that an IoT device i at every time instance t ∈ T senses
a d-dimensional vector xt ∈ Rd termed as sensed or con-
text vector3 containing contextual features/parameters for

2It should be noted that there can be topologies inside each layer/level but
the main structure and abstract reduced topology is tree-like.

3Note that any vector by defualt is assumed as column vector, the defualt
convention is to write given vector as column vector.

FIGURE 2. Tree topology in IoT deployments.

e.g. accelaration, g-force values, temperature, humidity, fea-
ture counter etc. The IoT device i communicates with its fog
node j by sending sensed vectors at a a set frequency f . The
transmission frequency f of IoT devices depends on a number
of factors such as sampling rate and can range from seconds
to minutes to hour(s) depending upon the use case. So at
any time instance t ∈ T fog node j receives a set of sensed
vector from an IoT device and overall sets of sensed vectors
from its neighbourhood Nj. A set frequency (or to say time-
window or time-frame) is defined on fog node to perform the
computing operation over data received till that point.

Depending on specification, data retention capacity and set
calibration of IoT devices it can also store the transmitted
sensed vectors locally and keep on appending the sensed
vectors, and then purge the local storage after the specified
period, let’s say for example 12 hours. Usually in sensing
devices a sliding window is specified using certain param-
eters which keeps on appending the new sensed vectors and
discarding the older ones based on their appearance without
having the specific need to save them in local storage, but
it is dependent on the IoT device(s) in use i.e. the sensing
infrastructure, and varies from one to another.

IV. ANALYTICS MODEL-MULTIVARIATE LINEAR
REGRESSION
One of the most widely used and well-understood predictive
analytics model is the multivariate linear regression [40], and
thus we choose it as the analytics model in this work for the
desired fog specific decomposition. Given a data set D =〈
xink , y

out
k

〉m
k=1 with m training examples where xink ∈ Rd and

youtk ∈ R represents input-output pairs, the linear regression
estimates the current coefficient w ∈ Rd which interprets the
dependency between xink and youtk :

w∗ = argminw∈Rd
m∑
k=1

(
youtk − wT(xink )

2
)

(1)

The predicted output by the linear regression model is
ŷoutk = wT(xink ), k = {1, 2 . . .m}. The Root Mean Square

40972 VOLUME 7, 2019



M. Taneja et al.: Distributed Decomposed Data Analytics in Fog-Enabled IoT Deployments

FIGURE 3. Brief categorical representation of methods available to solve
the problem of linear regression.

Error (RMSE) over q predictions is defined as:

ε =

√√√√(1
q

q∑
k=1

(youtk − ŷ
out
k )2

)
(2)

Linear regression is also referred as Ordinary Least Squares
(OLS) and Linear Least Squares (LLS). The methods to solve
Linear Regression or so as to say the problem of Linear
Least Square i.e. equation 1 are typically classified in two
categories, Closed Form Solution or Direct Methods and
Iterative Methods. The same has been illustrated in Fig. 3.

Each of these methods are equally used in different
domains of study depending on number of factors including
the type of problem being solved using Linear Regression and
the objective at hand such reducing time to get the solution,
to get numerical stability [41] in the solution etc. The main
difference in the available approaches is that each of them
uses a different numerical method to solve the problem. There
is extensive research in numeric linear algebra which looks at
and aims for parallelizing and to certain extent distributing
these numerical operations [41], [42] with each having its
own set objective. What is different and novel here is the
utilization of fog computing paradigm to achieve that and
trying to get an efficient solution for the upcoming IoT and
fog based applications and use case scenarios.

Our objective is to have the fog specific decomposition of
the linear regression and focus on the arising trade-offs in
latency (computing and communication), quality (analytical
result obtained without decomposition and with decomposi-
tion) as the metrics for evaluation. We choose matrix rep-
resentation based closed form solution for linear regression
in this work and present its fog specific decomposition in
the next section. The major difference and reason behind
choosing closed form solution is that Gradient Descent and
Stochastic Gradient Descent are iterative in nature and their
convergence towards solution is time consuming whereas
matrix representation based closed form solution gives us
a way for solving the least squares problem fit to the

parameter without needing to use an iterative algorithm.
Other reasons of preferring direct methods over iterative
include their robustness and predictable behaviour in terms
of resources required for their execution [43], [44]. The
selection of the method depends on the context of the
problem being solved [29]. So given m training examples:
(xin1 , y

out
1 ), (xin2 , y

out
2 ), . . . . . . , (xinm, y

out
m ), we write a matrix

X ∈ Rm×n with xin1 , x
in
2 , . . . . . . , x

in
m as rows, and column

vector y ∈ Rm×1, y = [yout1 , yout2 , . . . . . . , youtm ]m×1 as the
targeted value corresponding to each row, then the solution
for parameter w is:

w∗ = (XTX)−1XTy (3)

V. DECOMPOSING DATA ANALYTICS MODEL
In this section we present the decomposition method for fog
enabled IoT systems.We present the theoretical fundamentals
that are used in this work for the decomposition of the multi-
variate linear regression model. The following mathematical
notation is used in the sub-section-A below:
• Data set D =

〈
xinl , y

out
l

〉m
l=1

• X is input to the learning model — X = 〈(xinl )〉
m
l=1

• Y is a function of X that we want to learn —
Y = F(x) = 〈youtl 〉

m
l=1

A. STATISTICAL QUERY MODEL AND SUMMATION FORM
The Statistical Query Model [45], [46] is often presented as
a restriction on the Valiant model [47]. In Valiant model,
the learning algorithm uses randomly drawn training example
〈xinl , y

out
l 〉 to learn the target function f where as in Statistical

Query model the learning algorithm uses some aggregates
over the examples and not the individual examples. Given a
function f (x, y) over instances (data points x and labels y),
the statistical computing operation returns an estimate of
the expectation of f (x, y)(averaged over training/test distri-
bution). Any learning model/algorithm that calculates suffi-
cient statistics or gradients fits this model, and since these
calculations may be batched, they are expressible as a sum
over data points [38]. The class of such models/algorithms is
large,4 [38] for example Linear Regression, Naive Bayes,
Logistic Regression, Support Vector Machine (SVM) are to
name few among-st many others.

Authors in [38] show that any algorithm that fits the Sta-
tistical Query Model may be written in a certain ‘‘summation
form’’. This form does not change the underlying algorithm
and so is not an approximations, but is instead an exact
implementation. They show that the summation form can
be expressed in a map-reduce framework and the technique
can achieve a linear speed up with the number of cores on
a multicore machine. Their approach is a novel contribution
to achieve parallelization for a large class of machine learn-
ing methods on a multicore machine. Their main objective
was to develop a general and exact technique for parallel

4Although we present the fog specific decomposition only for Linear
Regression, but in the same manner the methodology can be extended and
modified for decomposition of other predictive analytics models as well.
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programming of a large class of ML (Machine Learning)
algorithms for multicore processors. The authors show that
when an algorithm does sum over data then its calcula-
tion/computation can be distributed over multiple cores by
dividing the data set into as many pieces as there are cores,
give each core its share of data to sum the equations over,
and aggregate the results at the end. They call this form of
the algorithm as the ‘‘summation form’’. We use and extend
their technique for the fog specific decomposition in our
work to achieve distributed data analytics in fog enabled IoT
deployments.

B. SUMMATION FORM OF LINEAR REGRESSION
In this section we present that how to put the algorithm
into ‘‘summation form’’ as worked by authors in [38]. The
solution for the parameter w as shown in equation 3 is:

w∗ = (XTX)−1XTy (4)

To put the above computation into ‘‘summation form’’,
it is reformulated into a two phase algorithm where first
‘‘sufficient statistics’’ are computed by summing over the
data, and those statistics are aggregated to get and solve:

w∗ = A−1b (5)

where A = XTX and b = XTy, and is computed as follows:

A =
m∑
α=1

(
xinα (x

in
α )

T) and b =
m∑
α=1

(xinα y
out
α )

m is the total number of training examples in the dataset.
The computation of A and b can now be divided into equal
size pieces and distributed amongst the cores as presented
by authors [38] to achieve parallelization for ML programs
on multicore machines. In terms of their proposed Map-
reduce framework for ML the above computation is divided
among mappers. As in this case, one set of mappers is used
to compute

∑
subgroup

(
xinα (x

in
α )

T) and another set to compute∑
subgroup(x

in
α y

out
α ). A set of reducers then respectively sum

up the partial values for A and b, and finally computes the
solution w∗ = A−1b (i.e. equation 5).
In our work instead of distributing the computing opera-

tions over cores, the computing operation of summation is
put on each fog node in the infrastructure. So each of the fog
node performs the computing operation of summing over the
collected data and then sending the summarized outputs to
either fog node or cloud (depending on the implementation
and use-case) rather than sending raw data over the network.

Inmany industrial settings and IoT deployments, the data is
collected and stored in a decentralized manner.When the data
generation/ storage is itself distributed, then it appears more
desirable to also process/analyse it in a distributed fashion to
avoid the bottleneck of data transfer to the centralized cloud.

The pseudo code of the implementation discussed in this
section and as used in the experiments has been presented
in Algorithm 1 and Algorithm 2. Algorithm 1 represents
the Linear Regression component running on fog nodes and

Algorithm 1 FLRC (Fog Linear Regression Component) -
Decomposed Computing Program Running on Each Fog
Node VM
Initialize : At = 0, bt [ ] = 0
F At will be a real value and bt will be a vector with same
dimension as [xinα ]t . At and bt will contain the partial calcu-
lated values after the execution of the program.
Input : Xt [ ] = [xinα ]t , Yt [ ] = [youtα ]t
F [xinα ]t and [y

out
α ]t represent the data received in set process-

ing frequency t
Output : Processed outputs calculated in the set processing
frequency
1: function FLRC( Xt [ ], Yt [ ])
2: for index = 0 to (size of Xt [ ]) − 1 do
3: At+ = dotproduct (Xt [index], Transpose (Xt

[index]))
4: bt [ ] + = Xt [index] * Yt [index]
5: index + = 1
6: end for
7: return (At, bt [ ])
8: end function

Algorithm 2 CLRC (Cloud Linear Regression Component) -
Program Running on Cloud to Combine the Partial Results
Obtained From Fog Nodes
Initialize : A = 0, b [ ] = 0,w∗ [ ] = 0
Input : Processed outputs obtained from Fog Nodes i.e.
Different At’s and bt’s [ ] received during the whole duration
of the experiment
Output : Regression Coefficients i.e. Linear Regression
Model in the Distributed Approach
1: function CLRC(At’s, bt’s [ ])
2: A = SUM of all At’s received
3: b [ ] = SUM of all bt’s received

4: w∗ [ ] =
b
A

5: return (w∗ [ ])
6: end function

Algorithm 2 represents the component running in cloud for
the fog based distributed analytics approach. In cloud centric
approach, both Algorithm 1 and 2 runs on the cloud as the
whole processing happens there and fog node acts as normal
gateways without the analytics component running on them.

VI. EXPERIMENTAL SETUP AND DATA-SETS
The experiment was performed on the OpenStack VM (Vir-
tual Machine) instances. The setup consists of a total
of 5 VMs as shown in figure 4. The configuration details
of the VMs are presented in table 1. All VMs have
Ubuntu 18.04.2 LTS as their operating system and Intel Xeon
processors (@2.60 GHz).

The configuration of VMs acting as fog nodes were
kept inline to the commercially available IoT Gateways by
Dell and Intel [48], [49]. The computing capacity of the
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FIGURE 4. Experimental setup deployed on OpenStack.

TABLE 1. Experimental configurations.

VMs increases as we move up in the hierarchy. We used
real-world dataset from UCI repository [50] in our experi-
ments to evaluate the performance of the proposed mech-
anism. The dataset [51] contains 9358 instances of hourly
averaged responses of chemical compounds and environ-
mental parameters from air quality sensor. In the dataset,
the parameters used to measure the air pollution of a spe-
cific area include—CO (ground truth values), PT08.S1 (CO),
NMHC (Non Metanic HydroCarbons, ground truth values),
Benzene (C6H6, ground truth values), PT08.S2 (NMHC),
NOx (ground truth values), PT08.S3 (NOx), NO2 (ground
truth values), PT08.S4 (NO2), PT08.S5 (O3), temperature,
relative humidity, absolute humidity. These parameters are
used to measure the air pollution of a specific area. It consists
of a total of 13 features out of which 5 represent the ground
truth values for the same type. The authors in [51] have used
this dataset for benzene estimation in an urban environment
pollution scenario. We also use this dataset for benzene esti-
mation in our linear regression task. We remove the ground
truth values from the dataset and thus remain with 8 features
as input (xini ) to the regression task with Benzene (C6H6,
ground truth values) as the targeted variable youti .
The data is column-standardized (mean centering and scal-

ing) and normalized i.e. each vector xini is mapped to
xini −µ
σ

with mean value µ and variance σ 2, and scaled in [0, 1].
The 8 features correspond to 8 sensors in the real-word

setting. The data split is made as 70-30 i.e. 70% (approxi-
mately 6540 instances) data is used for model training and
30% (approximately 2818 instances) is used for testing.

FIGURE 5. Real-world equivalent representation of the experimental
setup deployed on OpenStack.

We then randomly divide the train data into three equal parts
each containing approximately 2180 instances and each part
is streamed on row by row basis to corresponding VM acting
as fog node gateway. This corresponds to a real-world setup
where a group of 8 sensors is present in 3 different locations
(so 24 sensors in all) which are streaming their sensed values
to their corresponding gateways. The graphical representation
of such an equivalent real-world setup is as shown in Fig. 5

We have chosen Message Queue Telemetry Transport
(MQTT) [52] as the streaming protocoal in our setup.
MQTT is an open-source protocol originally invented and
developed by IBM [53]. It is a lightweight publish-subscriber
model based protocol designed on top of the TCP/IP stack.
It is specifically targeted for remote location connectivity
with characteristically unreliable network environments such
as high delays and low bandwidth [54]. The MQTT archi-
tecture comprises of two components, namely MQTT clients
(such as publishers and subscribers) and MQTT broker (for
mediating messages between publishers and subscribers).
In our setup these components are as follows:
• MQTT Publisher: Script running on streaming
VM acts as the MQTT publisher client. It streams the
data on row by row basis every second (i.e 1 row
per second) to each of three VMs acting as fog node
gateway.

• MQTT Broker: The VMs acting as fog node gate-
way act as broker between VM acting as cloud and
VM streaming data as sensor. The VMs acting as fog
node gateway subscribe to the streaming VM acting as
publisher.

• MQTT Subscriber:Another script running on VM act-
ing as cloud subscribes to the VMs acting as fog node
gateways.

The processing frequency for data received at fog node
VMs (i.e. MQTT Broker) was set to 5 seconds. We used
Paho [55] as MQTT client library and Mosquitto [56] as
MQTT broker library in our implementation. The VMs acting
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TABLE 2. Accuracy of generated models.

as fog node gateway receive data, performs the computing
operation as described earlier and presented in Algorithm 1,
and sends the output to the VM acting as cloud.

The experiment was performed in two scenarios, onewhere
the VMs acting fog node gateways perform the comput-
ing operation of calculating subgroups of A and b as per
Algorithm 1, and send the processed output to the cloud VM.
Second scenario is the traditional centralized setup where fog
gateway VMs receive the streaming data and forward it as it
is to the cloud, and the whole data analytics operation takes
place in the cloud VM. The results from the first scenario
have been labelled as Distributed Approach and from second
scenario as Cloud Centric Approach.

VII. RESULTS AND DISCUSSION
The system utilization metrics such as CPU, memory and
bandwidth utilization were noted in both the scenarios and
have been presented in this section. Along with that, metrics
to measure the quality of analytics solution in both scenarios
were evaluated and have also been presented here. The cen-
tralized solution acts as a comparative measure against the
distributed approach.

The following notations have been used in this section:
• Fog Layer: Average value of metrics obtained from the
3 VMs acting as fog nodes

• Cloud Layer: VM acting as Cloud
The experiment runs for approximately around 35 minutes.
We used Python Resmon [57] and Glances [58] to measure
the resource utilization metrics of VMs in the experiment.

A. ACCURACY AND DISTRIBUTION PLOTS
The Linear Regression model generated in both the
approaches was tested on the same test data, and results of
the same have been presented in table 2. The values presented
for both RMSE (Root Mean Square Error) and variance
score/accuracy are up-to 4 significant digits after the decimal.

The lower the RMSE the better the model. The results
suggest that both the approaches generate the same model,
as the RMSE and variance score values obtained are exactly
the same. So distributed approach can be used to obtained the
same results as one would have obtained from the traditional
centralized approach.

The error distribution in both the approaches has been
presented in fig. 6. The X-axis here represents 1Y =

Ytest − Ypredicted and Y-axis represents the probability den-
sity of it. The first thing to notice here is that the errors
are centered at zero in both approaches i.e. the most often
found error is zero, which is good. The distribution plot
from both the approaches look exactly the same, which sug-
gests that distributed approach can be used in fog enabled

FIGURE 6. Error distribution plot in both approaches.

IoT deployments. In both the approaches the errors are more
on the positive side as we can see from the heights of the
distribution on the +ve side and there are fewer error on
the −ve side. The errors are fairly small in both approaches
which suggests that its a fairly decent solution.

Fig. 7 presents the scatter plot of actual and predicted
values in both the approaches. Fig. 7a represents the plot
on shared axis and fig. 7b represents the plot on same axis.
As visible from the plot, the distributed approach and cloud
centric approach trace out each other.

B. CPU UTILIZATION
The CPU utilization of various entities involved in the exper-
imental setup has been presented as box plots in Fig. 8. The
values shown in the figure represents the median values. The
results of CPU utilization have been discussed below:

1) FOG LAYER CPU UTILIZATION
CPU utilization of fog node VMs increases in the distributed
approach as now they are also performing the analytics oper-
ation rather than just forwarding the data to cloud for anal-
ysis. This also adds to efficient resource utilization of these
devices.

2) CLOUD LAYER CPU UTILIZATION
CPU utilization of Cloud VM is less in distributed approach
and more in the traditional cloud-centric approach. The rea-
son for this is that in cloud centric approach all the processing
happens in cloud, while in distributed approach cloud only
sums up the partial results obtained from fog nodes, thus
leading to less CPU utilization in the latter.

This is beneficial for the user as now the monetary cost will
be less for the cloud service utilization under the ‘pay as you
go’ model. In most IoT based deployments the gateways are
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FIGURE 7. Scatter plot that shows that the distributed and cloud centric approach both trace out each other. (a) Scatter Plot of actual and predicted
values in both approaches. (b) Scatter Plot of actual and predicted values in both approaches plotted together.

FIGURE 8. CPU utilization visualized for both the distributed and cloud centric approach. (a) Fog layer CPU utilization. (b) Cloud layer CPU
utilization.

usually owned by the user so effectively the user will have to
pay significantly less amount in the distributed approach.

C. MEMORY UTILIZATION
The memory utilization has been presented as bar plots
in Fig. 9. The values shown in the plot represent the median
values. This follows the same behavior as for CPU utilization
as discussed above.

D. DATA REDUCTION
Bar plot in Fig. 10 represents the reduction in amount of
data being streamed from fog VMs to cloud VMs in both
approaches. There is 80% reduction in the amount of data
being streamed in distributed approach as compared to the

cloud centric approach. The reason for this reduction is the
Fog Linear Regression Component (Algorithm 1) running on
fog VMs in distributed analytics approach while in cloud cen-
tric approach they just act as normal gateways to forward the
data received to cloud for analytics and the whole analytics
operation happens there.

E. TIME
We also measured the time required to calculate the regres-
sion coefficients in both the approaches i.e. to generate the
final linear regressionmodel. In both the approaches, the final
model is calculated at the cloud. The values have been pre-
sented in table 3.
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FIGURE 9. Memory utilization visualized for both the distributed and cloud centric approach. (a) Fog layer memory utilization. (b) Cloud layer
memory utilization.

FIGURE 10. Reduction in amount of data being streamed from fog VMs to
cloud VM in fog based distributed approach.

TABLE 3. Time taken to calculate regression coefficients in both
approaches.

There is significant reduction in the amount of time
required to calculate the final model in distributed approach
compared to the cloud centric approach. The reason behind
this is that in distributed approach cloud sums (Algorithm 2)
the partial outputs obtained from fog nodes and then cal-
culates the final model, while in cloud centric approach,
the entire end-to-end processing happens in cloud (i.e. both
Algorithm 1 and Algorithm 2 run on cloud).

F. FURTHER DISCUSSION
1) USE CASE AND CONSTRAINTS
Given that the streaming rate of data from sensor/base node
to the fog device is fixed, there are two kinds of use cases that

define the role of the fog node in the distributed computing
approach:

1) The first use case is where the fog node uses its
resources for pre-processing the data acquired from
sensors. This serves two purposes:
a) Data reduction:Lesser data is sent from fog node

to the cloud
b) Decreased computation time (in the cloud):

Since the data is already pre-processed with some
initial operations, the time taken for the cloud
component to process the entire data set into the
desired output is lesser than the regular cloud-
centric case. This is in addition to no overheads
in terms of the total time required in the complete
end-to-end process.

2) The second use case is where the fog node acts as both
the data processing and decision making entity. This is
particularly for latency sensitive use cases, where the
data streaming and processing scenarios require latency
critical decision making.

The three constraints that drive the above scenarios
include:

1) Rate of streaming of data from end node to fog layer
2) Resource capacity of fog layer
3) Nature of use case:

a) latency sensitive / time critical decision making
b) regular computation required from data set

2) IMPACT OF CHANGING PROCESSING FREQUENCY AT
FOG NODE AND DATA REDUCTION
With the above understanding we also measured the effect of
varying processing frequency for the data received at fog node
and corresponding reduction in data transfer from Fog Layer
to Cloud Layer. The corresponding plots has been presented
in Fig. 11a and 11b.

As visible from the plot, if we keep the data processing
frequency at fog nodes same as the data receiving rate then
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FIGURE 11. Impact of changing data processing frequency at fog node and data reduction. (a) Effect of changing data processing frequency
at fog node VMs and corresponing % reduction in data transfer to cloud using fog based distributed data analytics approach compared to
traditional cloud centric approach. (b) Effect of changing data processing frequency at fog node VMs and corresponing reduction in data
transfer to cloud using fog based distributed data analytics approach compared to traditional cloud centric approach.

there is no reduction in the data transfer, but as we gradually
increase the processing frequency the data reduction becomes
significant. The decrease in data reduction with increasing
processing frequency almost saturates after some point and
% reduction in data transfer becomes smaller.

In cloud centric approach even if we increase the data
processing frequency at fog nodes, they still send all the
received data, just that now they send it collectively, while in
distributed approach, only the processed data is sent further
to cloud and hence gain in data reduction. With higher pro-
cessing frequency at fog node, which in turn means bigger
buffer size to process the received data, the approach in turn
effectively becomes centralized in nature, and thus the gain is
reduction does not increase much after a certain point.

VIII. CONCLUSION AND FUTURE WORK
Carrying forward our work [59] here we present the method,
approach and results for adopting distributed decomposed
data analytics in fog enabled IoT deployments. The benefit
of using fog computing for all IoT based applications may
not be obvious since benefits gained may not be significant
to motivate the use of the edge of the network. It might also be
argued that it is more desirable to develop cloud centric solu-
tions with sufficiently large number of resources available on
hand, rather than designing fully distributed computing pro-
grams/algorithms which might bring along additional com-
plexities. However, the number of data centres is less likely to
grow at the same rate as the number of devices at the network
edge (and thus the generated amount of data) being connected
to the Internet, since traditional data centres consume a lot of
power and global network bandwidth, and have begun to raise
the impending concern of increased carbon footprint.

Overall, keeping in mind the challenges, the decomposi-
tion of analytics programs in fog assisted IoT environments
does look promising towards the effort to design efficient
distributed data analytics solutions and making the edge of
network smarter, and in line with the vision of distributed

computing towards future networks. Our future work involves
building a framework for efficient placement of decomposed
computing units and dynamic task sharing between fog and
cloud.
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