
Resource Aware Placement of IoT Application
Modules in Fog-Cloud Computing Paradigm

Mohit Taneja∗,†, Alan Davy∗,†
∗Telecommunications Software and Systems Group, Waterford Institute Of Technology, Waterford, Ireland

†CONNECT- Centre for Future Networks and Communications, Ireland
Email: {mtaneja, adavy}@tssg.org

Abstract—With the evolving IoT scenario, computing has
spread to the most minuscule everyday activities, leading to
a momentous shift in the way applications are developed and
deployed. With the volume of impact increasing exponentially, a
coherent approach of deploying these applications is critical for
an efficient utilization of the network infrastructure. A typical
IoT application consists of various modules running together
with active interdependencies; traditionally running on the Cloud
hosted in global data centres. In this paper, we present a
Module Mapping Algorithm for efficient utilization of resources
in the network infrastructure by efficiently deploying Application
Modules in Fog-Cloud Infrastructure for IoT based applications.
With Fog computing into picture, computation is dynamically
distributed across the Fog and Cloud layer, and the modules
of an application can thus be deployed closer to the source on
devices in the Fog layer. The result of this work can serve as a
Micro-benchmark in studies/research related with IoT and Fog
Computing, and can be used for Quality of Service (QoS) and
Service Level Objective benchmarking for IoT applications. The
approach is generic, and applies to a wide range of standardized
IoT applications over varied network topologies irrespective of
load.

Index Terms—Fog computing, Cloud computing, Latency sen-
sitive, Application module, Resource aware placement.

I. INTRODUCTION

The Internet of Things (IoT) has reformed the future of
connectivity and reachability. It aims to bring every object
online, hence generating a huge amount of data that can over-
whelm the storage systems and cause a significant surge in the
application reaction time. With IoT into play, the near future
will involve billions of interconnected IoT devices emitting
large volumes of data streams for processing. In its report,
McKinsey [1] estimates that the user base will have 1 trillion
interconnected IoT devices by 2025, further substantiating the
impending scenario. According to this estimate, by 2025 the
IoT will have a potential economic impact of USD 11 trillion
per year, which nearly represents 11 percent of the world econ-
omy. Cloud computing can help here by offering on-demand
scalable storage and processing services that can scale the IoT
requirements; however, for latency-sensitive applications the
delay caused because of communication distance between user
base and Cloud is still unpleasant. Cloud computing has its
advantages, but with accelerated increase in ubiquitous mobile
and sensing devices coupled with upgradation in technology,
the upcoming IoT ecosystem challenges the traditional Cloud
computing network architecture. To address the above said

challenges, meet the dynamic scalability, efficient in-network
processing and latency sensitive communication, the need for
IoT applications has led to the evolution of Fog Computing
paradigm [2], [3].

Fog computing aims to extend the Cloud services and
utilities to the network edge, thus catering to the need of
latency sensitive applications and providing real-time data pro-
cessing and dispatching. In this new paradigm, computing is
dynamically distributed across the Cloud sites and the network
elements based on the Quality of Service (QoS) requirements.
Together, these two paradigms can offer a fruitful interplay
between the Fog and Cloud, particularly when it comes to
catering the needs of latency sensitive applications. However,
the devices closer to the network edge (routers, access points,
gateways etc.) are traditionally not computationally powerful
enough to host all the modules of an application (or het-
erogeneous modules of various applications, for that matter)
in the IoT ecosystem, and hence the strategy needs to be
formulated in a way which keeps these constraints in mind,
i.e., iterates from Fog layer towards the Cloud and tries to
place the modules first on the available resources on Fog layer,
thereafter iterating towards the Cloud.

It is beyond doubt that there would arise a need of further
research to meet the challenges related to the evolving Fog-
Cloud Architecture. The new paradigm requests a change in
the way applications are developed and deployed, and to fill
this gap, we introduce and formulate a strategy for efficient
allocation/placement of application modules in a combined
Fog-Cloud paradigm, the main aim of which is to provide
an efficient utilization of network resources and minimize ap-
plication latency. In this paper, we present a different approach
to the problem from the application deployment perspective,
which aims for the ultimate benefit of various players in the
IoT ecosystem. Our approach to the problem addresses the
following:

• The latency sensitive need of the upcoming and future
IoT applications and their deployment strategy in the Fog-
Cloud architecture.

• Efficient utilization of resources in the network infras-
tructure.

The paper is structured as follows: §II contains related work,
§III elaborates the system model and formulates the problem,
§IV is the proposed solution, §V evaluates and validates the

978-3-901882-89-0 @2017 IFIP 1222

results, and §VI contains the concluding remarks and future
work.

II. RELATED WORK

As Fog computing is a relatively new paradigm, research
on it is still in its nascent stage. The ongoing work ranges
from defining the architecture [4] to assessing its suitability in
the context of IoT [5]. Other aspects include the programming
model approach to be followed for development of Fog based
IoT applications [6] to its scalability for large scale geograph-
ical distribution [7], [8], as well as a context aware real-
time data analytics platform for the Fog [9]. In [10], authors
suggest that Fog computing is one of the key ingredients and
enablers in the IoT ecosystem. Authors in [11] explore energy
consumption optimization and energy management as a service
in Fog Computing architecture. The importance, applicability,
need and challenges have been addressed by authors in [12],
[13] at a preliminary level. The work done by authors in
[14] models the problem of workload allocation from a power
consumption perspective; and [15] looks into optimizing the
service allocation in combined Fog-Cloud scenarios. All these
contributions, including ours, work together to enable the
deployment of the Fog as a platform to provide better services
to the end user, and increase the network efficiency over
existing infrastructure to enable and unleash the full potential
of the new breed of applications triggered by IoT and smart
technology scenarios.

Further, our work can be extended to work in context of
Edge computing for Fog only or Fog-Cloud scenarios. For
them, another set specifying the resources available in the
Edge layer can be included and mapped. The authors in [16]
have worked upon distributed scheduling of event analytics
across Edge and Cloud.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Fog-Cloud approach leverages the strengths of both Edge
and Cloud computing by enabling low latency processing over
a wide geographical base, while at the same time allowing for
a scope of management of compute, networking and storage
services between the centralized Cloud and the distributed end
devices. This, in turn, thereby supports mobility, as well as
resource and interface heterogeneity.

A generic Fog-Cloud architecture illustrating the distributed
data processing in Fog-Cloud Environment is shown in Fig. 1.
While the end devices come under the first tier, the Fog and the
Cloud layer comprise the second and the third tier respectively,
thereby together forming the Three Tier Architecture. Each
tier can be mapped to support a specific component of the
application, which is further elaborated and worked upon
further in this section.

In the architecture, any element in the network that is
capable of hosting application module(s) is considered as a
Fog Device [17]. Depending on case, it may be some other
common device, such as small server, or routers, access-
points, or gateway etc [18]. Amongst the available networking
devices in the network infrastructure, the devices of prime

Fig. 1. Fog-Cloud Architecture (Distributed Data Processing) in standardized
IoT architecture

consideration to us here in Fog-Cloud architecture are the
gateways that connect the devices in the bottom most layer
(Tier 1/IoT layer) to the Internet. While the Fog layer can be
conceptualized as that comprising of all the aforementioned
devices, in practicality, the gateways have emerged as the key
constituents of the Fog, for the reason that they support/enable
protocol conversion across different network segments, and are
thus least conservative about additional requirements and con-
straints. Thus, the gateways that are also additionally working
as Fog devices in the network are termed as Smart Gateways,
and are present in Tier 2 of the network architecture.

Each network node has a specific computing capability,
which in turn forms (and contributes to) the resources available
in that layer. While the devices in the Fog layer have a
defined and limited computing capability owing to a hardware
constraint of the resources each device has, the Cloud, on
the other hand has corresponding resources realized in terms
of multiple virtual machines (VMs), each configurable to a
specific configuration which tells the computing capability
of that VM. This is owing to the fact that the overall
computational/resource capacity of the Cloud, as a whole, is
tremendously more than that of a typical device available in
Fog layer, so much that in comparison to the Fog devices, the
Cloud is visualized as being limitless. Thus, the complete set
of resources comprise of the devices at the Fog, and VMs at
the Cloud.

The computational capacity (or resource capacity) of a
network node is bounded by a general set of finite constraints,
and can be represented as a set of three narrowed-down basic
attributes, namely CPU, RAM and Bandwidth. It is, however,
to be noted that the proposed algorithm is scalable even on
adding more number of attributes for a node, and more of
them (like storage capacity) can be included if required by
the application specifically. Thus, if ni represents a network
node i in the infrastructure, the capacity of the said node is

1223IFIP/IEEE IM 2017 Special Track on Management of IoT

represented as:

Cap(ni) = < CPUi, RAMi, Bandwidthi > (1)

The set of all computing resources available within the IoT
infrastructure/ecosystem is given by N .

N = {ni} (2)

N can be divided into two mutually exclusive subsets— NF

and NC .

NF = Set of network nodes in Fog layer (3)

NC = Set of network nodes in Cloud layer (4)

NF ∪NC = N (5)

NF ∩NC = φ (6)

The applications developed for deployment in this Fog-
Cloud architecture as used in our paper are based on the
Distributed Data Flow Model (DDF) [6]. Distributed com-
puting environment calls for distributed components, which
would give better results with multi-component applications,
for which DDF is one of the best approaches available.

As shown in Fig. 2, the application developed and deployed
for simulation of the algorithm as proposed in the paper was
modeled as a Directed Acyclic Graph (DAG), with various
application modules constituting the data processing elements.
In context of analytics applications such as stream analytics
or event based analytics, these modules are usually termed
as application operators. In the DAG so formed, the vertices
represent the various modules of the application, and the
edges represent the data dependencies between them. These
modules perform processing on the incoming data, and the
edges connect the output of one module to the input of
another, representing the flow of data between the modules. In
mathematical notation, the DAG G of an application consists
of vertices (V) and edges (E) and is written as follows:

G = 〈V,E〉 (7)

Each module of the application has a requirement rep-
resented as a set of three attributes, namely CPU, RAM
and Bandwidth. The proposed algorithm, though, is similarly
scalable even on adding more number of attributes as require-
ments, and thus more of them can be included if need be. Thus,
if vi represents an application module i in the application, the
requirement of the said module is represented as:

Req(vi) = < CPUi, RAMi, Bandwidthi > (8)

The set of all modules of the application is denoted by V .

V = {vi} (9)

An edge originating from an application module vi to another
application module is denoted by ei, and indicates data flow
in an application. The set of all edges in the DAG of an
application is denoted by E.

E = {ei | ei = 〈vi, vj〉} ∀vi, vj ∈ V (10)

Fig. 2. Directed Acyclic Graph (DAG) of the application deployed, with
relevant tuples indicating the values used for simulation of the algorithm. The
number of modules as well as sensors/actuators are synchronous to the needs
of a typical IoT application, and may vary as per the use case and application
size; the modules can be conveniently linked to various logics to convey the
various stages of application processing, as are the ones conveyed by the color
pair encoding here.

There are two types of edges possible in a DAG— periodic
and event based. Tuples on a periodic edge are emitted
regularly at the specified interval; whereas in event based, a
tuple is sent out if the source module of the edge receives an
incoming tuple, and the defined selectivity model (Fractional
Selectivity, in our case) allows its emission.

A Module Mapping function M,

M : V → N (11)

indicates the network node on which the application module
is placed during the application deployment, such that it meets
the following:

∀(vi, ni) ∈M
=⇒ Req(vi)≤Cap(ni)

∀vi∈V
∀ni∈N

(12)

While traditionally all the application modules were placed
on the Cloud, this brought in a tremendous network cost, in
addition to a high application response. With Fog-Cloud Com-
puting approach, these application modules can be distributed
across the Fog and the Cloud resources based on meeting
the module requirements and network capacity constraints as
shown in the above equation (12).

We propose to identify the DAG of the application as having
Static and Dynamic Characteristics as follows:
• Static Characteristics: These are those which we expect

developers to provide, and remain invariant over time
for an application— such as data (Tuple) emission rate
of sensors, data processing rate (Selectivity Model) of
application modules, etc.

• Dynamic Characteristics: These are those which come
into play once the application has been deployed on
the network infrastructure. These are dynamic run time
characteristics of Fog and Cloud resources (which are
network nodes in the IoT Ecosystem)— such as their
network connectivity.

In the scope of the present study, only the static charac-
teristics of the application DAG have been presented/studied
in this paper. The results from these, however, can further

IFIP/IEEE IM 2017 Special Track on Management of IoT1224

be translated to address the dynamic characteristics, as in the
scope of future work.

The application was formulated, modeled and deployed by
building upon the components of iFogSim : a toolkit developed
by Gupta et. al [19] over the CloudSim [20] framework
for modeling and simulating IoT, Edge and Fog Computing
environments. Built to extend the capabilities of its highly
vouched and reliable Cloud counterpart to bring in the Fog
layer and address its added properties, iFogSim, though just
recently in, is a tool we found having a good scope for further
testing the capabilities of applications using the Fog over and
along with the Cloud.

The application that has been designed and modeled in the
paper is motivated from standardized realistic IoT scenarios
like health care [21] and latency-critical gaming [22]. The
processing has been redefined to suit such cases by way of
the DAG, and the tuple mapping, processing and management
been further intensified to cover all cases and ensure a deeper
testing of the algorithm. The application works on the Sense-
Process-Actuate Model, where the information collected by
sensors is emitted as data streams, which is processed and
acted upon by application modules running on Fog and Cloud
layer, and the resultant commands (or Outputs) are sent to
the actuators. The other model, which is Stream Processing
Model, is where a network of application modules running
on Fog and Cloud layer continuously process data streams
emitted from sensors, and information mined (or aggregated)
from the incoming streams is stored in Cloud hosted in a data
centre for large-scale, long-term and complex analytics. The
Stream Processing Model is considered as a subcategory of the
Sense-Process-Actuate Model. These models can, however, be
extended to cater use-cases other than IoT applications as well.

As shown in Fig. 2, the DAG of the application modeled in
the simulation consists of six application modules— module 1
to module 6. IoT Sensor represents an Internet of Things
sensor, which emits tuples of type IoT Sensor to module 1.
Display is an actuator, which is designed to respond to changes
in the environment captured by the sensor. Tuples form the
fundamental unit of communication between entities in the IoT
Ecosystem, and are indicated over the edges in the DAG. The
colored dots signify tuple mapping; for example, an incoming
tuple of type TT 3 on module 3 will result in an output tuple
of type TT 4.

Note that module 1 of the application needs to be placed
(and run) on the end devices (Device-X-X in topology, Fig.
3 and IoT Sensor in Fig. 2) to ensure that the user base,
or the source application modules, are co-located with Fog
devices in the Fog layer. The actionable (sensor and actuator)
are connected to these devices running module 1 on them.

IV. PROPOSED SOLUTION

To enable resource aware placement of application modules
in IoT Fog-Cloud Paradigm, we propose three integrated
algorithms.

A. Working of Algorithm

Algorithm 1 is the ModuleMapping Algorithm, which en-
ables Fog-Cloud Placement. It returns the efficient mapping
of modules of an application onto a network infrastructure.
Taking the set of network nodes N and set of application
modules V as input, it first sorts the network nodes and
modules in ascending order as per their capacity and require-
ment respectively. A Key-Value pair corresponding to Network
Node as Key and Application Module as Value is then created.
The Control Loop of the algorithm (for loop/line5) runs for
all the modules of the application that need to be placed,
and calls the function LOWERBOUND (Algorithm 2) in each
iteration, which searches for the eligible network node meeting
the requirement of the module (constraint specified in equation
12). The requirement check is ensured by COMPARE function
(Algorithm 3), and when an eligible network node is found,
the corresponding Key-Value pair entry is added into the result
(moduleMap). This way the algorithm iterates from Fog nodes
to Cloud nodes, first placing the modules on eligible nodes in
Fog layer, and once the nodes in Fog layer are exhausted or if
there is no eligible node in the Fog layer, only then it places
the corresponding module on Cloud.

Algorithm 1 ModuleMapping Algorithm: Fog-Cloud Place-
ment
Input : Set of Network nodes N and Application modules V
Output : Mapping of modules on to network nodes

1: function MODULEMAP(NetworkNode nodes[], AppMod-
ule modules[])

2: Sort(nodes[]),Sort(modules[]); . in ascending order
3: Map < NetworkNode,AppModule[] > moduleMap;
. Creates Key-Value Pair with Network Node as Key and
AppModule as Value

4: int low = 0, high = nodes.size-1, start;
5: for start =0 to modules.size do
6: int i=LOWERBOUND(nodes[],modules[start],low,high);
7: if (i != -1) then
8: moduleMap.insert(nodes[i],modules[start]);
9: Cap(node[i]) = Cap(node[i]) - Req(modules[start]);

10: Sort(nodes[]); . in ascending order
11: low = i + 1;
12: else
13: moduleMap.insert(nodes[nodes.size-1],modules[start]);
14: end if
15: end for
16: return (moduleMap);
17: end function

B. Time Complexity

The sorting of the set of network nodes and application
modules takes O(|N | ∗ log |N |) and O(|V | ∗ log |V |) time
respectively. The LOWERBOUND function is called for all the
modules of the application, and uses the principle of Binary
Search as its basis for searching for the eligible network node
for module placement, thus giving us the time complexity of

1225IFIP/IEEE IM 2017 Special Track on Management of IoT

Algorithm 2 LowerBound Algorithm - Algorithm used for
Search

1: function LOWERBOUND(NetworkNode nodes[], App-
Module module, int low, int high)

2: int length = nodes.size, mid =
(low + high)

2
;

3: while (True) do
4: NetworkNode x = node[mid];
5: if COMPARE(x, module) == 1 then
6: high = mid-1;
7: if (high<low) then return mid;
8: end if
9: else

10: low = mid + 1;
11: if (low>high) then
12: return((mid<length-1)?mid+1:-1);
13: end if
14: end if
15: mid =

(low + high)

2
;

16: end while
17: end function

Algorithm 3 Compare Network Node and Application Module
1: function COMPARE(NetworkNode a, AppModule b)
2: if

(
a.CPU≥ b.CPU && a.RAM≥b.RAM &&

a.Bandwidth≥b.Bandwidth
)

then return 1;
3: end if
4: return -1;
5: end function

O(|V | ∗ log |N |). An additional sorting is required after up-
dating the network node selected for the placement of module
(line 10, Algorithm 1) which gives us another time complexity
of O(|N | ∗ log |N |). Thus the overall time complexity of the
solution is O((|N |+ |V |+ |N | ∗ |V |)∗ log |N |+ |V | ∗ log |V |).

If |N | is much greater than |V |, then the upper bound
becomes |N |*|V | and the complexity becomes O(|N | ∗ |V | ∗
log |N |).

Usually, the Brute Force solution to such problems tends to
be NP-hard, and thus we present the heuristic approach to the
problem, which contributes to a logarithmic time complexity.

V. EXPERIMENTAL EVALUATION AND VALIDATION

To test the proposed algorithm, the application was run
on network topologies supplied by us as a JSON (JavaScript
Object Notation) file. The scenario has been varied over three
network topologies with different workloads respectively, the
graphical view of one of which as generated by iFogSim is
indicated in Fig. 3. The experiment was iterated on topologies
with 2, 4 and 6 Fog gateways, each having two devices per
Fog gateway. The experimental network configurations can be
found in TABLE I, II and III.

Fig. 3. One of the network topologies used for deployment iteration. The
simulation has been varied over three such topologies with varied workloads,
but essentially the same standardized network structure.

TABLE I
EXPERIMENTAL NETWORK CONFIGURATIONS

Between Latency (ms)
Cloud ISP Gateway 200

ISP Gateway Fog-X-Gateway 25
Fog-X-Gateway Device-X-X 5

Device-X-X Sensor 2
Device-X-X Actuator 3

TABLE II
EXPERIMENTAL NETWORK CONFIGURATIONS

Devices in Network Upstream Downstream RAM CPU
Infrastructure Capacity (Mbps) Capacity (Mbps) (MB) (MIPS)

Cloud 1000 10000 40960 40000

ISP Gateway 10000 10000 8192 10000

Fog-X-Gateway 10000 10000 6144 8000

Device-X-X 100 250 2048 4000

TABLE III
EXPERIMENTAL NETWORK CONFIGURATIONS

Tuple Type Tuple CPU Length (MIPS) Network Length
IoT Sensor 3000 500

TT 2, TT 3, TT 4, TT 5 6000 500

TT 6, TT 7, TT 8, TT 9 1000 500

TT 10, TT 11 1500 1000

ACTUATOR (A/B) 2000 500

#The average tuple emission rate of a sensor is 10 milliseconds,
specified by a deterministic distribution.

The proposed Fog-Cloud placement approach (ModuleMap-
ping Algorithm) was compared with the traditional Cloud-
based placement approach in terms of Application Latency
(Response Time), Network Usage and Energy Consumption;
various metrics reported by iFogSim for the modeled appli-
cation using both the placement approaches were collected.
The results of the simulation (Fig. 4, 5, 6) demonstrate an
immensely favorable impact on Network Usage, Application
Latency (Response Time) and Energy Consumption in the
proposed placement approach on all 3 network topologies
used.
As shown in Fig. 4, there was noticed a staggering decrease in
the network usage via the approach as proposed in the paper.

IFIP/IEEE IM 2017 Special Track on Management of IoT1226

58969.75

112534.75

158046.5

199565.75

460317.75

782453.25

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Config-1(2FG/Workload-4Devices) Config-2(4FG/Workload-8Devices) Config-3(6FG/Workload-12Devices)

N
et

w
o

rk
 U

sa
ge

 (
in

 K
ilo

B
yt

es
)

Network Topology Configurations (Number of Fog-Gateways/Corresponding Workload)

Network Usage
(Product of Data Transfer and Delay)

Fog-Cloud Placement Traditional Cloud Placement

Fig. 4. Staggering decrease in network usage via proposed approach

There was also a huge effect of efficient module mapping
on end-to-end latency, with highly favourable results towards
Fog-Cloud placement as per the designated approach as shown
in Fig. 5. Fig. 6 shows the variation of energy consumption
in both the placement approaches, where we look towards
creating a balance between energy consumption at high (Cloud
data centres) and low (Fog layer) cost sites by spreading
computing across the network via the proposed approach.

230.65

455.84 455.84

713.83 727.92

1010.98

0

200

400

600

800

1000

1200

Config-1(2FG/Workload-4Devices) Config-2(4FG/Workload-8Devices) Config-3(6FG/Workload-12Devices)

D
el

ay
 (

in
 m

ill
is

ec
o

n
d

s)

Network Topology Configurations (Number of Fog-Gateways/Corresponding Workload)

Application Latency
(End-to-End Latency)

Fog-Cloud Placement Traditional Cloud Placement

Fig. 5. Huge effect of efficient module mapping on end-to-end latency

VI. CONCLUSION AND FUTURE WORK

Carrying forward our work [23], [24] here we present the
result of the efficient utilization of resources in the network
infrastructure by efficiently deploying Application Modules
in Fog-Cloud Infrastructure for IoT based applications. We
present the impact of an evolving paradigm that is Fog
Computing towards solving the problem of latency in time
critical IoT applications, while also accounting for the pressure

-2

0

2

4

6

8

10

12

Fog-Cloud Placement Traditional Cloud
Placement

Fog-Cloud Placement Traditional Cloud
Placement

Fog-Cloud Placement Traditional Cloud
Placement

Config-1(2FG/Workload-4Devices) Config-2(4FG/Workload-8Devices) Config-3(6FG/Workload-12 Devices)

En
er

gy
 C

o
n

su
m

ed
 (

in
 M

eg
aJ

o
u

le
s)

Placement Approach
Network Topology Configurations (Number of Fog-Gateways/Corresponding Workload)

Energy-Consumption
(Using Linear Power Consumption Model)

Devices in IoT Layer(Tier1) Fog-Layer(Tier2) Cloud(Tier3)

Fig. 6. Variation of energy consumption in both the placement approaches—
Creating a balance between energy consumption at high (Cloud data centres)
and low (Fog layer) cost sites by spreading computing across the network

on the existing network resources owing to the exponentially
increasing workload due to heavy IoT usage in daily life across
myriad sectors.

We outlined the key characteristics that impact the per-
formance of such IoT applications, and have classified and
kept into account the static part while increasing the network
efficiency and broadening the scope of such applications. The
logarithmic complexity of the Module Mapping Algorithm as
proposed in the paper trumps the usual Brute Force solution
to such problems, which tends to be NP-hard.

We believe that the result of this work can serve as a
Micro-benchmark in studies/research related with IoT and Fog
Computing, as the algorithmic approach is generic and the case
study of the application has been developed keeping in mind
several inline use cases applying to a wide range of IoT and
Fog/Cloud applications over varied network topologies. The
result obtained can thus be used for QoS and Service Level
Objective benchmarking for IoT applications.

In future work, we plan to include further dynamic charac-
teristics of the DAG once the application has been deployed.
This includes the likes of network connectivity, failure of
nodes, etc., all of which are dynamic run time characteristic
of Fog and Cloud components. We also plan to look into
the scheduling policies of resources on Fog Devices after the
application deployment.

ACKNOWLEDGMENT

This work has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) and is
co-funded under the European Regional Development Fund
under Grant Number 13/RC/2077.

1227IFIP/IEEE IM 2017 Special Track on Management of IoT

REFERENCES

[1] J. Manyika et al., “Unlocking the potential of the Internet of Things,”
McKinsey & Company, June 2015- [Available Online,Last Accessed
October 2016].

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and its
role in the Internet of Things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[3] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for Internet of Things and analytics,” in Big Data and Internet
of Things: A Roadmap for Smart Environments. Springer, 2014, pp.
169–186.

[4] I. Stojmenovic, “Fog computing: A Cloud to the ground support for
smart things and machine-to-machine networks,” 2014 Australasian
Telecommunication Networks and Applications Conference, ATNAC
2014, pp. 117–122, 2015.

[5] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the Suitability of
Fog Computing in the Context of Internet of Things,” IEEE Transactions
on Cloud Computing, vol. pp, no. 99, pp. 1–1, 2015.

[6] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung, “Developing
IoT applications in the Fog: A Distributed Dataflow approach,” Proceed-
ings - 2015 5th International Conference on the Internet of Things, IoT
2015, pp. 155–162, 2015.

[7] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S.
Hong, “A proximal algorithm for joint resource allocation and minimiz-
ing carbon footprint in geo-distributed Fog Computing,” International
Conference on Information Networking, pp. 324–329, 2015.

[8] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder,
“Incremental deployment and migration of Geo-distributed situation
awareness applications in the Fog,” in Proceedings of the 10th ACM In-
ternational Conference on Distributed and Event-based Systems. ACM,
2016, pp. 258–269.

[9] P. P. Jayaraman, J. B. Gomes, H. L. Nguyen, Z. S. Abdallah, S. Kr-
ishnaswamy, and A. Zaslavsky, “CARDAP: A scalable energy-efficient
context aware distributed mobile data analytics platform for the Fog,” in
East European Conference on Advances in Databases and Information
Systems. Springer, 2014, pp. 192–206.

[10] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and M. Ne-
mirovsky, “Key ingredients in an IoT recipe: Fog Computing, Cloud
computing, and more Fog Computing,” in 2014 IEEE 19th International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD). IEEE, 2014, pp. 325–329.

[11] M. A. Al Faruque and K. Vatanparvar, “Energy Management-as-a-
Service Over Fog Computing Platform,” IEEE Internet of Things Jour-
nal, vol. 3, no. 2, pp. 161–169, 2016.

[12] J. Preden, J. Kaugerand, E. Suurjaak, S. Astapov, L. Motus, and
R. Pahtma, “Data to decision: pushing situational information needs to
the edge of the network,” in 2015 IEEE International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness and Decision.
IEEE, 2015, pp. 158–164.

[13] T. H. Luan, L. Gao, Z. Li, Y. Xiang, and L. Sun, “Fog computing:
Focusing on mobile users at the Edge,” arXiv preprint arXiv:1502.01815,
2015.

[14] R. Deng, R. Lu, C. Lai, and T. H. Luan, “Towards power consumption-
delay tradeoff by workload allocation in Cloud-Fog Computing,” in 2015
IEEE International Conference on Communications (ICC), June 2015,
pp. 3909–3914.

[15] V. B. C. Souza, W. Ramrez, X. Masip-Bruin, E. Marn-Tordera, G. Ren,
and G. Tashakor, “Handling service allocation in combined Fog-Cloud
scenarios,” in 2016 IEEE International Conference on Communications
(ICC), May 2016, pp. 1–5.

[16] R. Ghosh and Y. Simmhan, “Distributed Scheduling of Event Analytics
across Edge and Cloud,” arXiv preprint arXiv:1608.01537, 2016.

[17] E. Kavvadia, S. Sagiadinos, K. Oikonomou, G. Tsioutsiouliklis, and
S. Aı̈ssa, “Elastic virtual machine placement in Cloud Computing
network environments,” Computer Networks, vol. 93, pp. 435–447, 2015.

[18] L. M. Vaquero and L. Rodero-Merino, “Finding Your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, Oct. 2014.

[19] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim:
A Toolkit for Modeling and Simulation of Resource Management
Techniques in Internet of Things, Edge and Fog Computing
Environments,” pp. 1–22, 2016. [Online]. Available: http://arxiv.org/
abs/1606.02007

[20] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable Cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,” in High Performance Computing Simu-
lation, 2009. HPCS ’09. International Conference on, June 2009, pp.
1–11.

[21] T. N. Gia, M. Jiang, A. M. Rahmani, T. Westerlund, P. Liljeberg,
and H. Tenhunen, “Fog computing in healthcare Internet of Things:
A case study on ECG feature extraction,” Proceedings - 15th IEEE
International Conference on Computer and Information Technology, CIT
2015, 14th IEEE International Conference on Ubiquitous Computing
and Communications, IUCC 2015, 13th IEEE International Conference
on Dependable, Autonomic and Se, pp. 356–363, 2015.

[22] J. K. Zao, T. T. Gan, C. K. You, S. J. R. Mndez, C. E. Chung, Y. T. Wang,
T. Mullen, and T. P. Jung, “Augmented Brain Computer Interaction
Based on Fog Computing and Linked Data,” in Intelligent Environments
(IE), 2014 International Conference on, June 2014, pp. 374–377.

[23] M. Taneja and A. Davy, “Resource aware placement of data analytics
platform in Fog Computing,” Procedia Computer Science, vol. 97C-
PROCS9714, pp. 153–156, 2016.

[24] M. Taneja and A. Davy, “Poster Abstract: Resource Aware Placement
of Data Stream Analytics Operators on Fog Infrastructure for Internet
of Things Applications,” in 2016 IEEE/ACM Symposium on Edge
Computing (SEC), Oct 2016, pp. 113–114.

IFIP/IEEE IM 2017 Special Track on Management of IoT1228

