The Use of ICT Tools to Capture Grass
Data and Optimise Grazing
Management

Ceogosc

Acricurture Anp Foop DeveLopment AursoriTy

Diarmuid McSweeney (No. W20064801)

Department of Computing and Mathematics
Waterford Institute of Technology

Thesis submitted in partial fulfilment of the requirements for the
award of Doctor of Philosophy

Supervisors: Dr. Bernadette O’Brien & Dr. Stepan lvanov

Submitted to Waterford Institute of Technology, July 2019



Declaration

| hereby declare that this material, which | now submit for assessment on the
programme of study leading to the award of Doctor of Philosophy, is entirely my
own work and has not been taken from the work of others save to the extent that
such work has been cited and acknowledged within the text of my work.

Diarmuid McSweeney
Submitted to Waterford Institute of Technology, June 2019



Acknowledgements

| wish to acknowledge Teagasc and Telecommunications Software & Systems
Group, Waterford Institute of Technology for affording me the opportunity to
complete the work presented in this thesis. | would like to thank Dr. Pat Dillon for the
facilities and resources made available to me at the Teagasc Animal & Grassland
Research Centre, Moorepark. Also, | would like to acknowledge the Teagasc Walsh
Fellowship Programme and “ICT Grazing Tools” project for providing funding for my

project.

| would like to specially thank Dr. Bernadette O’Brien for your unwavering support
and encouragement over the years. It's because of your effort, knowledge,

experience and most of all your patience that this thesis is a reality. Thank you for

always having an open door, sharing your knowledge and for giving me so many

opportunities throughout my PhD and most importantly not giving up on me.

| wish to thank Dr. Luc Delaby and Dr. Christina Umstatter for all the help over the
years, whose advice and expertise were instrumental in the completion of this thesis.
| would also like to thank Dr. Stepan Ivanov from Waterford Institute of Technology

for his guidance and supervision.

| thank John Paul Murphy and Ricki Fitzgerald and all the farm staff from both the
Moorepark and Dairygold research farms for their assistance during my trial work
and providing good humour and patience.

Many thanks to the team at True North Technologies for the technical support and

expertise, particularly Paddy Halton for all his effort.

A special thanks to all the placement students, | was always impressed with their
work ethic, enthusiasm and willingness to learn, particularly Louise and Alexis, thank
you for your hard work, entertainment and friendship!

To all the friends I've made during my time in Moorepark, you made the move to

Fermoy easy and very enjoyable. In particular my office mates John, Alan, Nuria,



Justine and Jessi for the priceless entertainment both in the office and after hours
over the years. Many thanks to my other friends outside of Moorepark for your
support and encouragement over the last few years, particularly Neil, without your

guidance this thesis would not have been possible.

To my colleagues in the “precision dairy” project, Lorenzo and Jessi. It was a
pleasure and a honour to work with you, it was an amazing team to be a part of. |
look forward to more visits to Germany and ltaly. I'll learn to ski yet! Special thanks to
Caroline for her friendship, proofreading and formatting in finishing up this thesis,

and more importantly keeping me motivated even when | was at my wits end.

Finally, my family, thank you for all the support over the years, financial and
otherwise. Thank you for all the sacrifices you have made for my education, now it is
time to put it to use.



PUBLICATION LIST

Journal articles (peer-review)

McSweeney, D., Coughlan, N.E., Cuthbert, R.N., Halton, P. & lvanov, S. (2019) Micro-
sonic sensor technology enables enhanced grass height measurement by a Rising

Plate Meter. Information Processing In Agriculture 6:279—284 (see appendix A)

Conference proceedings (peer-review)

McSweeney, D., Foley, C., Halton, P. & O’Brien, B.(2015). Calibration of an automated
grass measurement tool to enhance the precision of grass utilization and allocation in
pasture based farming systems. In: Proceedings of the 18th Symposium of the
European Grassland Federation. ‘Grassland and forages in high output dairy farming
systems’. Grassland Science in Europe, The Netherlands, 15-17 June. Volume 20:

pp. 265-267.

McSweeney, D., Foley, C., Halton, P., Umstatter, C. & O’Brien B. (2014) Novel
concept to allow automation of grazing management within a dairy farm system. In:
International Conference of Agricultural Engineering, 6-10 July 2014, Zurich,

Switzerland. www.eurageng.eu Ref CO379.

McSweeney, D., Ferard, A., Halton, P., Delaby, L. & O’Brien, B. (2016) Calibration of
grass height data capture tool to convert compressed grass height to dry matter yield.
Proceedings of the European Grassland Federation General Meeting, Grassland
Science in Europe, Sustainable meat and milk production from grasslands, September

2016, Trondheim, Norway, pp. XXX—XXX.



McSweeney, D., Coughlan, N.E., Cuthbert, R.N., Halton, P. & lvanov S. (2018). Micro-
sonic sensor technology enables enhanced grass height measurement by a Rising
Plate Meter In Proceedings of the European Grassland Federation General Meeting,
Grassland Science in Europe, Sustainable meat and milk production from grasslands,

17-21 June 2018, Cork, Ireland, pp. 879.

McSweeney, D., Foley, C., Halton, P., Umstatter, C. & O’Brien, B. (2015) Proof of
concept for the feasibility of the “Virtual fence” technology for application in intensive

grazing systems. In: Precision Livestock farming Milan, Italy. pp 437-443.

Umstatter, C., McSweeney, D., Foley, C., Halton, P., Heitkamper, K., Schick, M. &
O’Brien, B. (2016) Konnen virtuelle Zaune Arbeitszeit einsparen? In: Béttinger, S.,
Zick, M., Worner, E., Schempp, T. (eds.), VDI-MEG Kolloquium Landtechnik 41 —

Arbeitswissenschaften. Hohenheim, Germany, pp 51-58.

Umstatter, C., McSweeney, D., Foley, C., Halton, P., Heitkaemper, K., Schick, M. &
O’Brien, B. (2015) Labour requirements of fencing in grazing systems and a potential
technological solution. In: Guarino, M. and Berckmans, D. (eds.), Precision Livestock

Farming "15. Milan, ltaly, pp 84-92.

McSweeney, D., Foley, C., Halton P. & B. O’'Brien (2015). Calibration of an automated
grass measurement tool to enhance the precision of grass measurement in pasture
based farming systems. In: Proceedings of Agricultural Research Forum, Tullamore,

Ireland , 4-5-Mar-2015

O’Brien, B, Foley, C & McSweeney, D (2015). Technologies to enhance data precision

for and automation of grazing management. Proceedings of Conference on Advances



in Knowledge and Technologies for Agriculture. Held at Tullamore Court Hotel,

Tullamore, Ireland. June 10, 2015.

McSweeney, D., Ferard, A., Werner, J., Leso, L. & O'Brien, B. (2016). Preliminary
study of cow activity in a pasture based automated milking system. Abstract no.:
22233. Presented at Precision Dairy Conference held in Leeuwarden, The

Netherlands, 21-23 June, 2016.

Conference proceedings:

O’Brien, B., Werner, J., McSweeney, D., Murphy, D. & Shalloo, L. (2017). ICT
technologies to increase precision and efficiency in grassland systems, In Butler S.,
Horan B., Mee J. and Dillon P. (eds), Open Day Proceedings. “Irish Dairying - Resilient

Technologies” 4 July 2017, Teagasc, Moorepark, Ireland pp. 66-67

O’Brien, B., Foley, C. & McSweeney, D. (2015). Automated grass measurement and
animal control on dairy farms, In Butler S., Horan B., Mee J. and Dillon P. (eds), Open
Day Proceedings. “Sustainable Expansion” 24 July 2017, Teagasc, Moorepark,

Ireland pp. 48-49

Under Review

D. McSweeney, L. Delaby, N.E. Coughlan, A. Ferard, N. Byrne, J. McDonagh, S.
lvanov and B. O’Brien. Grasshopper: conversion of compressed grass height to dry
matter yield by a micro-sonic Rising Plate Meter. The European journal of agronomy.

(Manuscript Number: EURAGR8361)



D. McSweeney, B. O’Brien, N.E. Coughlan, A. Férard, S. Ivanov, P. Halton, and C.
Umstatter. Virtual fencing without visual cues: design, difficulties of implementation,
and associated dairy cow behaviour. Computers and Electronics in Agriculture.

(Manuscript Number: COMPAG_2019_895)

Other outputs linked to this thesis:
Bhargava, K., lvanov, S., McSweeney, D. & Donnelly W. (2018) “Leveraging Fog
Analytics for Context-Aware Sensing in Cooperative Wireless Sensor Networks,”.

Journal ACM Transactions on Sensor Networks 15(2):1-32 (see appendix B)



Contents

Chapter 1: General Introduction....................ccooiii 10
1A Introduction ... 11
Chapter 2 Literature Review ... 20
2.1 The Global Dairy INdustry ............ccccoiiiiiiiiiiiee e 21
2.2 The Dairy Industry Withinlreland.......................ccooo 25
2.3 Challenges Facing Irish Dairy Farms ...................ccoooiiiiiii, 29
2.4 Herbage Production Inlreland.....................ooooi 30
2.5 Thesis ObJeCtiVeS...........ooiiiiiiiiiii e 48
2.6 Research QUESTIONS .............oooiiiiiiiiiii e 49
2.7 Reference List ............c..ooeiiiiiiii 49

Chapter 3: Micro-Sonic Sensor Technology enables enhanced grass

height measurement by a Rising Plate Meter ...................cccoo 71
ADSEIaCE ... o 72
3.1 INtrodUCiON ..........oii 72
B.2MethOdS ... 77
BB RESUIES ... 81
3.4 Discussion and Conclusion ... 82
S5 REFEIrENCES ... 85

to dry matter yield by a Rising Plate Meter ................ccccooos 90
ADSEIaCE ... e 91
4.1 IntrodUucCtion ... 92
4.2 Methods ... 95
4.3 RESUIES ... 98



B REICIEINCES ... e 103

Chapter 5: Virtual Fencing without Visual Cues: Design, Difficulties of

Implementation, and Associated Dairy Cow Behaviour. .......................... 108
ADSEIaCt ... 109
5.1 INtrodUucCtion ... 110
5.2. Materials And Methods................ooooii, 113
5.3 RESUIES ... 128
5.4 DISCUSSION ......ouiiiiiiiiiiiiiiii e e e 135
5.5 CONCIUSION .......oiiiiiiiiiiiii e 140
5.6 REFEIreNCES ........oeeiiiieiiieeee e 141

Chapter 6: General DiScusSion ... 146
6.1 OVEIVIEW ...ttt e e e e e e 147
6.2 Thesis FINAINGS ... 149
6.3 Farmer Implications ... 155
6.4 Industry Implications ... 158
6.5 Research Implications ... 159
6.6 FULUIre WOIKK .........ooeeiiiiiieie e 161
6.7 CONCIUSION ..ot 164
6.8 REFEIreNCES ........oeeiiiieiieeee e 165



Glossary
Artificial intelligence (Al)

Automatic milking system (AMS)

Bit error rate (BER)

Compressed sward height (CSH)

Decision support tools (DST)

Differential Global Positioning System (DGPS)
Dry matter digestibility (DMD)

Geographic information systems (GIS)
Global Positioning System (GPS)

Grey steel wire (GSW)

Herbage allocation (HALC)

Herbage allowance (HA)

Herbage mass (HM)

Hours/cowl/year (H/C/Y)

Information communication technology (ICT)
Internet of Things (loT)

Knowledge Transfer (KT)

PastureBase Ireland (PBI)

Personal computer (PC)

Post grazing sward height (PGSH)

Precision livestock farming (PLF)

Radio Technical Commission for Maritime Services (RTCM)

Rising plate meters (RPM)

Satellite-based Augmentation System (SBAS)
2



Ultra-high frequency (UHF)
Uninterrupted power supply (UPS)
Virtual fence (VF)

Water soluble carbohydrate (WSC)
White nylon fencing tape (WNFT)

Wireless sensor network (WSN)



List of figures:

Figure 2.1 The Irish seasonal grazing system; cows are calved and dried
off to ensure synchrony between herd demand and feed supply.............. 28

Figure 2.2. Grass growth curve for commercial grassland farms
throughout Ireland 2015- 2017, from PastureBase Ireland......................... 32

Figure 2.3. Association between herbage utilisation (kg DM/ha) and net
profit (€/ha) on Irish dairy farms in 2015 (Hanrahan et al., 2018) ............... 34

Figure 2.4: Grass wedge generated from PastureBase Ireland. ............... 39

Figure 3.1: Infographic depicting the wireless communication process
between the Grasshopper micro-sonic sensor Rising Plate Metre, global
positioning system, and accompanying smart device application: 1) GPS
and compressed sward height data are captured by the device; 2) this
data is wirelessly transmitted to the associated smart device application;
3) a designated farm paddock area can be created, stored, or selected; 4)
grazing intensity parameters can be inputted; 4) the Allocation Calculator
can provide real-time decision support; 5) GPS assisted fence placement
is provided; and 6), all data is consolidated within the smart device
application, and can be wirelessly uploaded to Cloud computing and
integrated smart farm databases. ........ccccciiiiiiiinn 76

Figure 3.2: Comparable ability of the cumulative ratchet counter Rising
Plate Metre (A: Jenquip), and micro-sonic sensor Rising Plate Metre (B:
Grasshopper), to accurately measure fixed heights (n = 31). Standard error

g I T 1 = L= Y 80

Figure 5.1: Topology design for the communion infrastructure of the
virtual fence VF system.. The communication methodology linking the
operator, base station and the VF collar on the cow using channel 1.



Channel 2 describes the implementation of the DGPS correction via the

DGPS receiver system and the VF collar on the cow.............cccooviiiiirinnnns 115

Figure 5.2: Map of experimental arena. The virtual fence (VF) boundary
line ‘Boundary A’ was deployed for Experiment 1, and redeployed as
‘Boundary B’ for Experiment 2. Equally, ‘Boundary C’ was deployed for
Experiment 3. The area beyond these boundary lines was considered to

be the eXCIUSION ZONE. ... iece e e re s snsra s snsnssnssnssnssnnsmnnnnrnn 121

Figure 5.3: Total number of virtual fence (VF) boundary challenges made
by dairy cows during Experiment 1, Day 2 — 5, and Experiment 2, Day 6 — 7
(A). Total number of boundary challenges made resulting in the combined
cue-consequence stimuli (i.e. audio warning and adverse stimulus; B).
Total number boundary challenges resulting in delivery of the audio-
warning only cue alone (C). See also Table 5.1. ......rrrreeeririeieeeieecceees 130

Figure 5.4: Observed dairy cow percentage time allocated to behaviours
of ‘GWD’ (i.e. grazing, walking and drinking), Lying and Standing (see
Table 5.2), throughout the duration of acclimation day (Day 1), Experiment
1 (Day 2 - 5), and Experiment 2 (Day 6 — 7). See also Table 5.1............... 133

List of tables:

Table 3.1: Mean latitude and longitude recorded by each device in relation
to the known georectified sampling point (IRENET control station D130,

Ordnance Survey Ireland). ... ——— 81

Table 4.1: Derived correlation coefficients, and associated F values (n =
1640). All P < 0.001, excepting the effect of percentage dry matter content
(o DM) @t P < 0.05. .......eeeeeeeeccccsmnee e s s sssssnse e e s s e s smnn e e s e s s mmnn e e s e e e mmmn e e e enas 100

Table 5.1: Description of the utilisation of visual cues, combined audio
warning cues and adverse stimulus, and audio warning cues alone, or

lack thereof, for Experiment 1: Implementation of a basic cow training
5



protocol; Experiment 2: Relocation of the virtual fence boundary line; and
Experiment 3: Learning evaluation. Where a double dose (i.e. x 2 doses)
was given, these were separated by a two second interval. See Methods

text for greater experimental detail. ... 122

Table 5.2: Descriptions of behavioural characteristics displayed by the
cows in accordance with Schirmann et al. (2012). In this study, due to low
observation counts, associated behaviours were combined to produce

three main behaviour categories. ........cccooimmmmmmminin i ——— 123



ABSTRACT

In temperate regions, where pasture-based milk production systems
predominate, the strategic allocation of pasture grazing area to dairy cows is
essential for optimal management and increased milk outputs. Rising plate
meters (RPM) are frequently used to estimate pasture herbage mass (HM; i.e.
dry matter yield per hectare), through the use of simple regression equations that
relate compressed sward height (CSH) to HM. Measurement must be accurate
and efficient. Despite improved farm management practices aided by a variety of
technological advances, the standard design of a RPM has remained relatively
unchanged. As part of this thesis, a RPM utilising a micro-sonic sensor and digital
data capture capability linked to a smart device application was developed.
Further, the ability of the micro-sonic sensor RPM, to accurately and precisely
measure fixed heights was examined. As correct allocation of grazing area
requires accurate geolocation positioning, the associated GPS technology was
assessed. In order to improve the accuracy and precision of these equations, so
that inherent variation of grasslands is captured, there is a need to incorporate
differences in grass types and seasonal growth As good bassline data are
required for the development of effective conversion of CSH to HM, the variation
of growth for both perennial ryegrass and hybrid ryegrass was recorded over the
seven month growing season, using a total of 308 grass plots. Once the correct
HM is established it must be allocated to the herd in an accurate and efficient
manner. As intensive pasture-based farming systems rely on precise and
frequent allocations of grass to animals, a Virtual Fence (VF) system to enhance
automated allocation of correct forage areas to animals was developed and

assessed, as was an associated cow training protocol. The micro-sonic sensor
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RPM was found to be significantly more accurate for height capture than a
traditional ratchet counter RPM. The ratchet counter RPM underestimated height
by 768 £+ 0.06 mm (mean + SE), while the micro-sonic sensor RPM
overestimated height by 0.18 £ 0.08 mm. These discrepancies can result in an
under- and overestimation of HM by 13.71 % and 0.32 % per Ha™', respectively.
The performance of the on-board GPS did not significantly differ from that of a
tertiary device. Subsequently, three dynamic equations were derived for the
effective conversion algorithms form CSH to HM incorporating different grass
types, time of the year and dry matter percentage, one of algorithms is now in
everyday commercial use. Although the operating capacity of the VF system was
found to be robust, with dairy cows rapidly associating visual cues with VF
boundary lines, and a cue-consequence association with the audio warning and
corrective stimulus, the number of boundary challenges made by cows increased
upon removal of all visual cues. Overall, although further research will be
required, the results presented within this thesis allow for the further development

of decision support tools to improve on-farm grassland management.
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1.1 Introduction

Precision livestock farming (PLF) has the ability to improve management
strategies by increasing the data available to the farmer for decision making. The
increased use of PLF can enable further growth in production by implementing
data-driven decision making on farm. (Eastwood et al., 2004). These efficiencies
and increases are required, as demand for dairy products is anticipated to
increase by 2.3 % year on year until 2025 (IFCN, 2016). Furthermore, since the
removal of the European Union dairy quota system in 2015, European dairy
farmers have the opportunity to expand production for the first time in a
generation. However, it is critical that this expansion is done in an efficient and
sustainable manner, both economically and environmentally, to ensure the
continued sustainable growth of the industry.

Grazed grass is the natural food source for bovines, and can fulfil the
majority of dietary requirements of dairy cows. Nevertheless, in the last century,
intensive confinement systems, with silage feeding and concentrate
supplementation, have replaced many extensive pasture-based milk production
systems. However, grazed grass is now acknowledged as the cheapest and most
sustainable feed available, as a consequence of rising machinery, labour and
feeding costs (O’'Mara, 2008). Thus, in temperate regions of the world, grass-
based ruminant production systems are undergoing a rejuvenation, and are
increasingly being implemented (Dillon et al.,, 2005). Notably, the lower
production costs associated with grass-based grazing systems aid farmers’ ability
to overcome the challenge of increased market price volatility, for inputs such as
fertiliser and concentrates, and final milk outputs. In addition, policy objectives,

societal expectations and environmental concerns have all supported an
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increased up-take of pasture-based milk production. The ability of Irish farms to
grow and utilise grass in an efficient and profitable manner is widely considered
to be a major competitive advantage over other ruminant producing countries, in
terms of low cost animal production (Hurtado-Uria et al., 2013). Research has
shown that each 10% increase in the percentage grazed grass as a proportion of
the overall diet of a dairy cow reduces the cost of milk production by 2.5 cents/litre
' (Dillon et al., 2005). This is further emphasized by Finneran et al. (2010), who
reporting that grazed grass is the most cost effective feed available to all ruminant
livestock production systems

Nationally, it is estimated that the average dairy farm utilises 7.1 tonnes of
grass DM/ha" (Creighton et al., 2011), while more efficient farms are growing and
utilising in excess of 12—14t of grass DM/ha™" over a 280 day grazing season with
stocking rates of over 3 cows/ha (Shalloo et al., 2011). A wide range of factors
effect pasture growth at farm level which are outside of a farmer’s control
including soil type, region, altitude and meteorological conditions. However,
Shalloo et al., (2011) highlighted other factors within the farmers control such as,
grassland management, soil fertility and national reseeding levels as having a
strong influence on overall pasture production in Ireland. These are areas of
grassland farming that could be vastly improved with the aid of data informed
decision making on farm. In addition, there are a variety of further benefits to be
realised from regular pasture measuring and budgeting, such as greater spring
grass supply through improved autumn management, optimum utilisation of
spring grass, early identification of pasture surpluses and deficits and the
achievement of higher performances from pasture based systems (O’Donovan

and Dillon, 1999). Research states that in Ireland, only approximately 10% of
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dairy farms carry out weekly grass measurements (Creighton et al., 2011). The
advancement in and accessibility to modern information technology and
information science has supplied researchers with possibilities to provide farmers
with improved decision support tools for management of grazing dairy systems
not only for herbage mass (HM, i.e. dry matter yield) estimation but also for
pasture allocation. The ability to objectively quantify HM will enhance the
precision of pasture allocation and grass management decisions by farmers.

Profitability of grazing systems is driven by the degree of grass utilisation,
which in turn is a function of both increased grass growth and optimum utilisation
of that growth. The accurate and timely measurement of pasture is integral to
effective grazing management practice (Creighton et al., 2011). The accurate
estimation of HM and subsequently, the correct allocation of grass for the herd
are crucial elements in maximising utilisation. In order for the farmer to allocate
the grazing area correctly, they will need accurate, timely data on the herbage
biomass availability on the farm. This can only be achieved by regular
measurement of HM in each paddock. The HM of the paddock together with the
herbage allowance (HA) (the amount of herbage the manager wants to give the
herd) are used to calculate the herbage allocation (HALC) or area required for
grazing, which is subsequently measured, fenced and offered to the herd.
Inaccurate or subjective assessment of HM can result in the under or over
allocation of grass to the herd.

The development of information communication technology (ICT) tools to
capture data, such as smart device connected tools that measure herbage mass,
automatically grant the ability to collect vast amounts of data with minimal

operator effort, which was not previously possible through visual assessment.
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Alternatively, measurements are conducted by a standardised ICT tool it allows
consistent and repeatable values to be acquired. This objectivity of measurement
offers the possibility for multiple users to operate the same piece of technology
and obtain consistent results. With minimal training, an operator can expedite
data collection, the reliability of these measurements ensures the correct quantity
of grass DM is allocated, to provide for the high energy demands of the lactating
cow, and establishes the correct post-grazing grass residual to increase the
herbage quality of the paddock for subsequent rotations (Lee et al., 2008).
Previous studies have indicated that optimal daily HALC for lactating cows can
increase milk production by 10% (Fulkerson et al., 2005). It is not sufficient to
know the correct HA for the herd, care must be taken to ensure that the
appropriate HM and HACL is provided. This not only affects cow production, but
also future HM and herbage quality. For example, grazing pastures with HM of
1,700 kg DM" ha™! rather than 2,200 kg DM" ha™, significantly increased future
sward quality and milk solids output per ha™' (McEvoy et al., 2009). Without the
availability of accurate and relevant data, it is difficult to ensure this is archived.
Research investigating grass quality has concluded that the highest milk
output per ha and per cow, with low post-grazing residuals and enhanced sward
quality, was achieved using the management strategy of grazing a low HM (1,600
- 1,700 kg DM" ha™") at a high HA (20 kg DM cow! day™') (McEvoy et al., 2009;
Roca-Fernandez et al., 2012). However, under-estimating HM could potentially
reduce milk solids per ha”', while inadvertently increasing the HA (or HALC)
would increase the quantity of residual grass left behind, thus reducing the

herbage quality in subsequent grazing rotations. A key factor in the success of
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ICT tool adoption by farmers is the accurate and reliable performance of the ICT
tool, which must be achieved through rigorous validation procedures.

The labour demand of grassland management in terms of grass
measurement and allocation and fencing is considerable. Research on the labour
requirement of grassland management was investigated by Demming et al.
(2018). They found that some farmers were expending approximately 0.35
hours/cow/year for grass measurement and 0.43 hours/cow/year at
allocation/fencing/setting up of strip wires. Lyons et al. (2016) suggested that
progress on the usefulness of animal technologies is dependent on their
integration in decision support software and combining data from different
sources and processing information with powerful data analytics tools. That study
also revealed, that to-date, automation technologies which are labour saving are
more popular with farmers than those designed to collect data for decision
making, especially for physically demanding tasks, such as for milking.

New technologies to assist in the measuring and managing of grassland
have the potential to facilitate increased profitability of the farm enterprise.
However, the implementation of sensor technology on commercial dairy farms
remains slow, especially on pasture-based dairy systems. Consequently, the
current management of grazing cows is largely not supported by technology. Until
recently, the main application of sensor technology within the dairy sector was
aimed at confinement systems, where cows are housed year round. However,
high adoption rates of smart devices, such as smartphones has allowed the
average farmer (within both indoor and outdoor production systems) to potentially
have access to a platform with large computing capabilities, whilst also having a

connection to the wealth of knowledge of the internet. These recent advances
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have made ICT in agriculture capable of performing complex tasks remotely.
These smart devices (smartphones) may be ideally suited to pasture based
production, as it allows for data collection and transmission in the absence of a
designated technology hub (Shalloo et al., 2018). These smart devices may
represent vital tools for a dairy farmer implementing an efficient pasture based
system of farming in the future. With increasing herd sizes and skilled labour
shortages, sensor technology will likely play a significant role in overcoming the
challenges associated with the expansion of dairy herds (Werner et al., 2018).
Sensor technology that can aid the measurement of pasture and enable data
driven grassland management, for real-time decision support poses a
considerable advantage to grass based farmers (Hanrahan et al., 2017)

Dolecheck et al. (2013) suggested that in an ideal precision operated farm,
the technology should be low cost, reliable, robust, flexible, and easy to maintain
and update, and should provide information that immediately can be turned into
management action. This is the goal with regard to ICT within pasture
management.

The potential impact of using ICT tools for grass measurement is
considerable. The focus of this thesis has centred on the development of two ICT
tools, (1) A smart-device linked, micro-sonic sensor enabled Rising Plate Meter
(RPM), and (2) a prototype Virtual Fence (VF) system the potential for linking
herbage measurement with a spatial dimension, thus allowing precise allocation
of feed using GPS technology. This is accomplished through developing an ICT
tool for automated data capture of grass data, a smart phone application and the
integration with an online grassland management DST. This approach has

resulted in an increase in farmer confidence in their ability to grass measure, as
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well as resulting in an increase in volume of information obtained, while sampling.
Additionally, research work has been conducted with an objective to develop a
protocol for the effective operation of the VF for dairy cows within an intensive
pasture-based production system.

Equipped now with the tools to collect large volumes of data regarding HM
and also the facility to autonomously allocate, and guide cows to, the necessary
HA for the herd, the necessity of data management and decision support systems
is critical for the uptake of sensor technology. Pasture management systems such
as PastureBase Ireland furnish users with support around grassland
management decisions, through the provision of decision support tools (DST),
and also has the potential to contribute to new research pertaining to grassland
management. Grass biomass estimates entered into the database are used to
produce a grass wedge, giving a visual representation of the grass available on
farm at a particular point in time. The grass wedge can identify the presence of
potential surpluses or deficits in herbage availability expected to occur. If a
surplus is identified, paddocks should be harvested as soon as possible, subject
to weather conditions, thus allowing the paddock back into the grazing rotation.
The PBI decision support tool/database also contains spring and autumn rotation
planners to aid farmers’ grazing management in the early and late periods of the
season. The spring rotation planner assists farmers to plan the first grazing
rotation which is critical to maximise subsequent sward quality and production of
further rotations.

A micro-sonic sensor enabled RPM with global positioning system (GPS)
technology and mapping capabilities, i.e. a reliable, precise, consistent and easy

to use tool to estimate HM has been commercially launched. Also, the
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development of “smart” biomass prediction algorithms that can be implemented
via a smart device application with the ability to autonomously apply detailed
calculations that include parameters not previously practically implementable
using traditional measurement techniques. Following on from this a VF system
prototype to create boundaries that can (i) maintain cows in a space defined by
a farm operative, dependent on grass availability; (ii) be respondent to grassland
measures, such as height and density, so that the boundary advances as the
herd residency time in a grazing area increases; (iii) be respondent to individual
cow intake requirements so that the boundary advances for the individual cow
were also designed and implemented within this thesis. Eastwood et al. (2009)
states that more detailed information on pasture resources and utilisation are the
‘missing link’ for whole farm precision systems. However, it is important to
remember such tools must improve whole farm pasture utilisation while at the

same time reduce labour demand associated with grassland management tasks.
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2.1 The Global Dairy Industry

Since prehistoric times, humankind has comprehended that food security
can be sustained through the domestication of animals, to be used as an easily
accessible, reliable and nutritional food source. The primary focus in early
domestication practices were ruminants, as they have the advantageous ability
to convert high fibrous feedstuff into milk or meat, while not competing against
humans for shared food sources (van Wieren, 1996). However, in the last
century, with the intensification of agricultural production the resulting dairy
husbandry practices have also radically changed. Previously, dairying was
comprised of extensive small-scale production systems, which almost exclusively
relied on small local pasture-based dairy herds. These were used for the
provision of dairy products for a single household or a small number of
neighbouring households. However, from approximately the mid-20t" century, the
mechanisation of agricultural production and the introduction modern agricultural
practices has significantly advanced, resulting in the replacement of human
labour, and the reduction of time and cost required for many aspects of herd
management (Knaus, 2016; Thornton, 2010).

Increasing global demand, for animal-based protein, to be readily available
throughout the year, has resulted in the increased and sustained production of
dairy livestock. Consequently, for optimal and profitable production, and to
guarantee consistent production in many regions of the world, it has become
necessary to confine herds within housed systems (Pinxterhuis et al., 2015). In
particular, to ensure consistent and sustained milk production, many dairy
producers in the European Union (EU) and the United States of America (US)

have transitioned from low-cost, grazing-based systems into high-cost and
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intensive housed systems. In general, these intensive systems rely on the
consumption of feed produced off farm, in the form of concentrates (Knaus,
2016). These concentrates are low-fibre, high-energy feeds, which may have a
low, medium, or high protein content. Most often, concentrates are fed to raise
the energy levels of dairy cows that are in negative energy balance and to
compensate for any deficiencies in their diet. However, high production and
transport costs make concentrates far more expensive per unit of feed value, than
grass based forage. For the majority of grass-based systems, the majority of the
herd dietary requirements are serviced by feed produced on the resident farm,
allowing for more control over cost of production and quality of the feed produced.
To maximise profit, cows should achieve as much of their maintenance, growth
and production requirements from forage, preferably grazed grass produced on
the resident farm. Nonetheless, concentrates are essential at key times in the
production cycle of dairy cows, e.g. when grass growth is less than herd demand
resulting in a grass deficit situation or in extreme weather periods.

Grass-based production systems have many benefits other than those
directly related to the efficiency of production. As highlighted by Dillon et al.
(2005), there are many environmental and societal benefits to the implementation
of grass-based production systems. Furthermore, milk produced from a grass-
based diet has been found to have significant human health benefits, attributed
to increased levels of monounsaturated fatty acids and higher concentrations of
conjugated linoleic acid relative to those found in milk produced from confinement
systems (Dillon et al., 2005). In Ireland, for example, grass-based production
systems have a lower carbon footprint per unit of milk compared to confinement

dairy systems in the UK and US (O'Brien et al., 2014).
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Historically, grass-based production systems were typical in many areas
of Europe, particularly in regions such as the lowlands of north-western Europe.
However, in recent times, grazing has been out-competed with maize production
and biofuel crops for renewable energy systems (Taube et al., 2014). Since the
beginning of the 1960s, the cost per unit of net energy for corn has been less
than that for grass-based forage in regions of the EU and the US, including
grazing, freshly harvested or grass preserved as hay or silage, where climate
allows for the production of corn. Undoubtedly, this has encouraged farmers to
include large amounts of concentrates in dairy cow diet, which has promoted the
gradual transition towards intensive confinement within dairy production systems,
particularly where land availability is a significant constraint (O'Brien et al., 2012c;
Van Soest, 1994). For many European regions it is simply more cost-effective to
increase production through concentrate feeding rather than pasture-based
grazing (Macdonald et al., 2017). Despite grazing's potentially substantial
economic and environmental benefits, the advancement of this sector is
constrained by a lack of expertise in grassland management, compounded by
farmers efforts to stabilise farm cash-flow and avoid underutilising capital
investments, most European dairy farms now operate confinement and year-
round calving systems (Knaus, 2016; Thomet, 2011).

In particular, with the abolition of the EU milk quota regime (EEC 3950/92)
in March 2015, European dairy farmers were allowed to increase milk production
without restrictions for the first time since April 1984. Access to the world market
without quota constraints has allowed farmers to produce as much milk as the
resources available on farm will allow for example, land availability for the

production of herbage, access to skilled labour and capital infrastructure. Along
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with this, generations of selective breeding programs have led to the successful
development of high-yielding dairy cows that return higher milk yields when fed a
highly nutritious diet. This has resulted in a requirement to provide a consistently
high nutritional diet to the cows, to prevent hunger and loss of body condition,
and maintain high milk yields (Kolver & Muller, 1998).

Furthermore, the shortage of skilled and affordable labour has accelerated
the development and uptake of robotic milking systems. Due to the robotic milking
systems ability to decrease milking interval thus increasing milkings/cow/day,
farmers are opting for a genetically superior cow with increased milk production
capability, causing the energy demand of the herd to increase, further supporting
the trend for continuous housing of dairy cows in recent years to ensure the
increased energy demand is met (Arnott et al., 2017). Currently as this trend
continues, and research indicates that the use of pasture-based systems for dairy
production is rapidly decreasing across Europe (Reijs et al., 2013). For example,
based on economic model calculations, it is expected that by 2025 the number of
dairy cows in the Netherlands with access to pasture will be reduced by half
(Wageningen, 2013). In factin 2017, only 10% of global milk production originates
from grazing systems (Dillon, 2017).

Nevertheless, in temperate regions of the world, intensive grass-based
ruminant dairy production systems have experienced a rejuvenation, due to their
improved environmental and financial sustainability when compared with
intensive confinement systems (Van den Pol-van Dasselaar et al., 2018; Dillon et
al., 2005). The lower production costs associated with grass-based systems
helps overcome the challenges of uncertainty regarding weather and the

increased market volatility for outputs such as milk and meat.
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2.2 The Dairy Industry Within Ireland

The dairy industry is a crucial component of the Irish economy, processing
approximately seven billion litres of milk per annum, supplied by 18,000 family
farms, many of whom are owners of the primary business. This results in over €4
billion worth of international exports in dairy products, ingredients and nutritional
products per annum (DAFM 2017). The production system to be deployed on
farms are primarily determined by weather patterns and the resources available
to farmers (O’Brien & Hennessy, 2017). Ireland has a competitive advantage over
many countries due to the ability to grow large quantities of pasture over a long
growing season (Dillon et al., 2008). This extended growing season is facilitated
by a temperate humid maritime climate (Keane & Sheridan, 2004). The rate of
grass growth is highly variable and is sensitive to many meteorological factors,
such as soil moisture, soil temperature and solar radiation levels. Ireland’s climate
experiences steady air temperatures throughout the year, with cool summers (14
- 16°C) and mild damp winters (5 - 7°C) (Keane & Sheridan, 2004). Unlike many
other countries at similar latitudes, Ireland does not experience the same
seasonal climatic extremes because of its proximity to the Atlantic Ocean and the
Gulf Stream. Soil moisture is generally sufficient with average rainfall levels of
between 750 mm in the east and north-east and over 1200 mm in the west, north-
west and south-west (Drennan et al, 2005), generally exceeding
evapotranspiration rates. Air temperatures are important as they directly
influence soil temperature which determines the start and end of the grass
growing season. Soil temperature is measured at a depth of 100 mm,
representing the soil profile available to the grass plant’s root system. The

threshold soil temperature for grass growth is 6°C, below which there is minimal
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growth (Keane & Sheridan, 2004). When soil temperature exceeds 5°C it is
defined as a growing day. In Ireland the growing season ranges from 330 days in
the south-west, to 240 days in the north-east. (O'Donovan et al., 2011).

Pasture growth typically commences in February and increases rapidly to
peak pasture growth of up to 100 kg DM/ha per day in May/June and
subsequently decreases on a gradual basis during the summer and autumn, until
growth almost ceases in December (Hurtado-Uria et al., 2013) (Figure 1). Irish
farmers operate seasonal production systems, similar to systems in New Zealand
and Australia and are established in such a manner as to maximise the utilisation
potential of grazed pasture, through aligning the start of calving with onset of
pasture growth (Dillon et al., 2005). This is immensely beneficial as grass,
particularly grazed grass, is of high nutritive value (O’Neill et al., 2011), and has
been found to be the cheapest source of feed available to Irish ruminant
production systems (Finneran et al., 2012)

Ireland remains uniquely positioned to capitalise on the EU policy changes
which have resulted in the removal of milk quotas. Early predictions by Lips &
Rieder (2005) had suggested that Irish milk production could increase by 39%,
while the Food Harvest 2020 report had set a target of 50% increased milk
production by 2020, in relation to a pre-quota baseline. Interestingly, Ireland has
already accomplished this target, with a record-breaking production of 7.5 billion
litres in 2018. Thus, Ireland is now two years ahead of the Food Harvest 2020
target (DAFM 2010, 2019). However current, international food markets for
agricultural produce are extraordinarily dynamic, and subject to the constant
fluctuation of price, policy changes, higher societal expectations, and

environmental constraints (Hanrahan et al,, 2018). In order to maintain and
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develop agriculture production within Ireland it is essential that robust and
sustainable production systems are employed whilst continuously reducing the
environmental impact. For dairy production systems, this may be achieved with
increasing the proportion of grazed grass fed to dairy cows, as the cost of feeding
the cow can contribute about 50% of the total cost of milk production. Also by
increasing the proportion of grazed grass in the cow’s diet it will result in having
the lowest environmental impact (Hemme et al., 2014; O'Brien et al., 2014).
French et al. (2015) illustrated that every extra ton of grass DM/ha utilized
increased farm profit by €267/ha. Ramsbottom et al. (2015) also commented that
it is not the system with the greatest milk production that is most profitable, but
the system with the lowest total costs. Thus, with low cost grass production
capability, the most appropriate system in the Irish scenario is the grass based
system of milk production.

The seasonal production system that is operated in Ireland has been
designed to match herd nutritional intake demands with the growth profile of
perennial ryegrass swards (see Figure 2.1; Holmes et al., 2002). The relative cost
of pasture as a feed source for livestock production, when compared to grass
silage (1.8 euro) and concentrate (2.4 euro) is very good at 1 euro (Finneran et
al., 2010). Moreover, in comparison to mechanically harvested or purchased
feeds, grazed grass provides a relatively inexpensive and uniquely nutritious feed
source for milk production (Finneran et al., 2012). Additionally, maximising the
amount of grass used improves farm profit with each additional tonne of grazed
grass utilised per hectare, by increasing net profittha by €161 on Irish farms
(Dillon, 2011). Increasing the proportion of grazed grass in the diet of the dairy

cows by 10% has been shown to reduce costs of production by 2.5 cents per litre
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of milk produced (Dillon et al., 2005). This has a significant impact on dairy farm
profitability, as various farm economic analyses have demonstrated a lack of
association between milk produced and operating profit (Silva-Villacorta et al.,
2005; Ramsbottom et al., 2015). Furthermore, systems dependant on high inputs
of concentrates tends to have reduced profitability relative to systems that rely on
high quality grazed grass, particularly in periods of low milk price (McCarthy et

al., 2007b; Patton et al., 2012; Ramsbottom et al., 2015).
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Figure 2.1 The Irish seasonal grazing system; cows are calved and dried off to

ensure synchrony between herd demand and feed supply.
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2.3 Challenges Facing Irish Dairy Farms

Since the removal of the EU milk quota, the predicted expansion of the
Irish dairy industry has been met and surpassed (Lapple & Hennessy, 2012;
DAFM, 2019). However, the rapid expansion coupled with volatile global milk-
markets, requires that farmers develop sustainable milk production systems,
focused on technical and financial efficiencies (Kelly et al., 2012). Key to the
success of the Irish dairy industry both nationally and internationally is the
increased consumer interest in high quality food production, with consumers now
displaying an increased preference for milk products produced from pasturing
cows, particularly in the US and Asian markets (Weinrich et al., 2014).

However, various challenges are associated with pasture-based systems.
In particular, there is a shortage of skilled labour (Deming et al., 2015), and
suitable land availability (Thorne et al., 2016). Teagasc (2017) estimated that by
2025 average herd size will increase to 104 cows from 75 cows in 2013, and this
presents the challenge given the shortage of suitably skilled labour. Sourcing
skilled labour is difficult as there are significant differences in the level of labour
required during each season of the year in Irish dairy farming, with the spring time
(February-April) having the highest demand for labour due to calving, calf rearing,
and milking (O’'Donovan, 2011; Deming et al., 2015). The calving period is
becoming more compact on Irish dairy farms with increasing numbers of farmers
achieving a 90 % calving rate within six weeks (Teagasc, 2017). This intense
seasonality poses an issue for employers as they require employees during a
short period of high labour demand during the busy months. As a result
employers often do not require full-time employees as it may be difficult to justify

a full-time position during the low labour demand of the farm during the winter

29



months. Given that second to feed costs, labour has been identified as one of the
highest costs on dairy farms, farm employers find it difficult to retain trained skilled
labour as many employees opt to move to a different industry for more consistent
employment (Hemme et al., 2014).

Although there is the potential to increase the productivity of dairy farms
given the current under-utilisation of land resources (O'Donnell et al., 2008), a
proportional increase in the amount of grazing land available to farmers is
required to facilitate increased herd sizes (van den Pol et al., 2008). Pastures
also need to be easily accessible from the milking parlour, as increased distances
between grazing pastures and milking-parlours could potentially have a negative
impact on cow hoof health (Laven & Lawrence, 2006). Additionally, there is also
an increased labour demand associated with herding the cows to and from the
pasture (Ofner-Schrock et al., 2009). Local abiotic factors, such as regional
weather conditions and geographical location of individual farms can also
represent challenges for a high output pasture-based milk production system. For
example, approx. 1000 mm of rainfall, being evenly distributed throughout the
year, is ideally required for optimal grass growth but this does not always happen

(Dillon et al., 2005).

2.4 Herbage Production In Ireland

Many studies have highlighted the potential for increased milk yield from
grazed grass through a focus on critical components of grass-based systems,
particularly high grass utilisation (Creighton et al., 2011; Dillon et al., 2005;
McCarthy et al., 2013). Due to Ireland’s favourable climatic conditions, there is

potential to consistently produce between 13 and 15.5 t DM/ha annually under
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optimum grassland management (O'Donovan et al., 2011), over a 300 day
grazing season with stocking rates of over three cows/ha (Shalloo et al., 2011).
However, a wide range of factors affect pasture growth, many of which are
outside of a farmer's control. These include soil type, region, altitude and
meteorological conditions. Nevertheless, Shalloo et al. (2011) have highlighted
that directly manageable factors, such as grassland management, soil fertility and
reseeding levels, have a strong influence on overall pasture production. Further,
these factors represent areas of grassland management that can be improved
with the use of informed decision-making by farmers. At present, Irish dairy
farmers are growing 9.1 t DM/ha (McEvoy et al., 2011). Records through Ireland’s
national grassland database, PastureBase Ireland (PBI), indicate that the bottom
20 % of farms measuring and managing grass are only growing 11.0 t DM/ha,
with the average farm is growing 13.8 t DM/ha, while the topmost 20 % of
recorded farms are growing 16.7 t DM/ha. The variation in seasonal herbage
production on these PBI farms is as follows: 816 — 1,199 kg DM/ha in spring,
4,462 — 4,932 kg DM/ha in mid-season and 5,937 — 6,442 kg DM/ha in autumn.
The farms producing the greatest quantity of herbage, achieve an extra grazing
per year compared to the farms producing the least (7.7 and 6.8

grazings/paddock/year).
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Figure 2.2. Grass growth curve for commercial grassland farms throughout

Ireland 2015- 2017, from PastureBase Ireland

The value of grass within grazing production systems varies throughout
the year because of seasonal differences in the nutritional value of grass and its
availability. Due to low growth rates in the spring and autumn (Figure 2.2) and
high animal intake demand, herbage grown during these periods cannot satisfy
demand. Thus, this grass is of a higher economic value per tonne than pasture
grown in the mid-season when supply exceeds demand (O'Donovan & Kennedy,
2007; McEvoy et al., 2011), as herbage grown in beginning and end of the

growing season can displace the use of expensive concentrates in the cows diets.
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2.4.1 Perennial Ryegrass

Perennial ryegrass (Lolium perenne L.), Italian ryegrass (Lolium
multiflorum Lam.) and hybrid ryegrass (Lolium x Boucheanum Kunth) are the
predominantly sown forage grasses in north-western Europe (Wilkins and
Humphreys, 2003). Perennial ryegrass is one of the most dominant forage grass
species grown in temperate regions of the world (Wilkins and Humphreys, 2003).
It is ideally suited to Irish conditions and as a result accounts for 95 % of Irish
grass seed sales (Culleton et al., 1992). Italian ryegrass is a bi-annual species,
which offers a short-term yield advantage over perennial ryegrass. Hybrid
ryegrass is a cross between perennial and ltalian ryegrass, combining the
persistence, density and quality of perennial ryegrass with the high yield potential
of Italian ryegrass. Typically ltalian and hybrid ryegrass are more suited to
intensive conservation systems rather than animal grazing, hence, the dominant

market share of perennial ryegrass in Ireland.

2.4.2 Herbage Utilisation

The key objective of grazing systems in Ireland is to achieve high levels of
herbage utilisation (O'Donovan et al., 2011). Figure 2.3 shows the relationship
between herbage utilisation and profit per hectare on dairy farms in 2015.
Herbage utilisation explains much of the variation in net profit per hectare, with
each additional tonne utilised increasing net profit by an estimated €173 per
hectare on dairy farms (Hanrahan et al., 2018) and €105 per hectare on dry-stock
farms (Crosson et al., 2016). Management of stocking rate, rotation length and

pre-grazing herbage mass influence sward utilisation levels (McCarthy et al.,
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2013). Sward structure can influence utilisation levels (O'Donovan et al., 2011)
as tetraploid varieties can achieve higher levels of herbage utilisation (Gowen et
al., 2003). On average, specialist Irish dairy farms utilise 7.8 t DM/ha (Hanrahan

et al., 2018).
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Figure 2.3. Association between herbage utilisation (kg DM/ha) and net profit

(€/ha) on Irish dairy farms in 2015 (Hanrahan et al., 2018)

2.4.3 Grass Measurement

Appropriate pasture measurement and forage budgeting are important
mechanisms to enable increased farm profitability through the effective use of
available pasture (Creighton et al., 2011). Measuring herbage availability
regularly enables farmers to make better informed and more effective grassland
management decisions. However, the correct estimation of available grass and
subsequent allocation of pasture to grazing cows can be challenging. It can

depend on grass growth rates, grass quality, and grass utilisation by cows, as
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well as identifying the herbage intake requirement of the cow at her stage of
lactation (McEvoy et al., 2011). McCarthy et al. (2011) also mentioned that the
balance between feed ‘supply and demand’ is critical, as an imbalance will result
in either underfeeding of the herd or waste of excess feed resulting in reduced
regrowth or reduced grass quality. A range of methods, both destructive and non-
destructive have been shown to be effective in the measurement of grass. In a
comparison of four grass measurement methods by O'Donovan et al. (2002a),
four methods of herbage mass estimation were accessed, visual assessment,
Rising Plate Meter (RPM), sward stick and pasture probe capacitance meter with
coefficient of variation results of 9, 10, 12, 21 % respectively. In that study,
swards which were visually assessed were under-estimated for herbage mass. It
is essential to combine visual non-destructive measurement with destructive
measurement for assessor calibration. This can also be done by farmers who
wish to calibrate themselves for visual estimation by cutting a series of small
quadrats (0.25 m?) to the target animal grazing residual height (3.5 - 4 cm). The
cut herbage can then be placed in a bag to be weighed using pocket scales and
the herbage mass calculated using an appropriate dry matter content for the
prevailing conditions, as recommended by Kennedy et al. (2016). Following this,
the herbage yield per hectare is estimated as: Kg Dry Matter(DM)/ha = Fresh
weight (kg) x (DM % + 100) x 40,000

An alternative non-destructive method for the collection of biomass data is
the use of a rising plate meter (RPM). Formulas developed by applying the
regression relationship of a standing grass crop to predictive values, such as
plant height, leaf area, vegetation density, canopy, cover and age (Vermeire &

Gillen, 2001). The RPM has been widely investigated as a predictor of Herbage
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Mass (HM) (Castle,1976; Earle & McGowan, 1979; Mitchell, 1982; Stockdale,
1984; Stockdale & Kelly, 1984; Douglas & Crawford, 1994; Karl & Nicholson,
1987). Commercial instruments often come with standard equations, and the
precision of the instrument depends on the adjustment of these calibration
equations. Many studies have shown that the use of indirect methods to obtain a
measure of HM, using the standardised equations are not repeatable in different
conditions and situations, because of variations in pastures, management and
climate (Frame, 1993). Dowdeswell (1998) reported a poor relationship between
yields estimated with a RPM using New Zealand equations and actual measured
yield calculated from the cut and weigh method. These authors suggested that a
coefficient of variation larger than 10% could be considered statistically
acceptable, but economically inaccurate. Given the inherent spatial and temporal
variability of pastures, it may be difficult for a producer to achieve an error lower
than the proposed 10%, however, some authors found that local calibrations can
reduce error to about 10% (Rayburn & Rayburn, 1998). From the total height of
the sward, the target Post Grazing Sward Height (PGSH) is subtracted to
determine the amount of herbage available to grazing animals.

Grassland measurement plays a major role in the level of herbage
utilisation achieved. Pre-grazing HM directly influences sward utilisation, with
lower herbage masses achieving higher utilisation (Holmes et al., 1992). Curran
et al. (2010) reported increased levels of herbage utilisation when HM was
reduced from 2,400 kg DM/ha to 1,600 kg DM/ha, where the daily allocation of
herbage was 20 kg DM. Swards that have a low pre- grazing herbage mass
contain higher proportions of green leaf and lower proportions of stem and dead

material, resulting in higher dry matter digestibility (DMD) values and higher cow
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milk production (Hoogendoorn et al, 1992). Improved utilisation is further
enhanced by the farmer offering lower HM to cows as they preferentially select
green leaf material from the sward (Gilliland et al., 2002, Tufion et al., 2014).
The optimum pre-grazing HM ranges between 1,400 — 1,600 kg DM/ha
(Wims et al., 2014). This range maintains herbage growth and utilisation levels,
with no negative impact on sward quality and animal performance (Wims et al.,
2014). Maintaining pre-grazing HM below 1,250 kg DM/ha for prolonged periods
is shown to cause a reduction in herbage production (O’'Donovan, 2000). Low
herbage masses are maintained by using a short regrowth interval, however, this
can deplete water soluble carbohydrate (WSC) reserves used to fuel the regrowth
of defoliated plants (Fulkerson & Slack, 1995, Fulkerson & Donaghy, 2001).
Inaccuracies in HM assessments can result in the incorrect herbage allowances
being allocated to the herd giving rise to suppressed milk production and poor
herbage utilisation. Consequently the measurement of herbage needs to be as

accurate as possible.

2.4.4 Grassland Time and Labour Requirement

Grassland measurement is a demanding task on a farmer’s time.
Regardless of the method of measurement the task is laborious and complex with
multiple opportunities for error to occur. Kolver et al. (1996) highlights that
farmers’ need extensive practical experience of grassland management and the
computer skills necessary to apply model calculations from systems such as
PastureBase Ireland (PBI) to handle the various changes and fluctuations during

the pasture season. Research on the labour requirement of grassland
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measurement was investigated by Demming et al. (2018). The efficiency of the
operators was accessed on the time assigned to grass measurement on a
hours/cow/year (H/C/Y) basis. For herds with less than 150 cows, the operator
spent a mean (xSD) 0.35 £0.2 H/C/Y on grass measurement, while herds of
between 150-249 cows expended 0.30 £0.19 H/C/Y and herds of >250 cows,
expended 0.23 + 0.26 H/C/Y. The most efficient 25% of farmers were found to
spend 0.28 + 0.23 H/C/Y on grassland measurement, while the least efficient
farms devoted 0.41 £ 0.23 H/C/Y. It needs to be noted that the farmers involved

in this study were already “known to be efficient” Farmers.

2.4.5 Decision Support Tools

Several pasture management software systems exist worldwide, e.g.
Agrinet (UK), Pasturemate & FarmlQ (NZ), PasturePlan (France) and
PastureBase (Ireland) (PBI). PBI is a web-based, grassland database which has
a dual function of providing real time decision support for practitioners while
functioning as a national grassland database, capturing information for
benchmarking and research purposes (Hanrahan et al., 2017). This allows the
quantification of grass growth and herbage production (total and seasonal)
across different enterprises, grassland management systems, regions and soil
types using a common measurement protocol and methodology. The system
operates with the individual farm paddock as the basic measurement unit. All
measurements on PBI are described and calculated on a per hectare basis for
individual paddocks. All grassland data is recorded by the farmer through the web

or smartphone interface.

38



kg DM/ha

Figure 2.4: Grass wedge generated from PastureBase Ireland.

Grass biomass estimates entered into the database are used to produce
a grass wedge, giving a visual representation of the grass available on farm at a
point in time. The grass wedge can identify the presence or potential surpluses
or deficits in herbage availability to occur (Figure 2.4). A line from the target pre-
grazing cover (eg. 1,600 kg DM/ha) to the target residual cover (eg. 100 kg
DM/ha) is plotted on the wedge graph. A perfect wedge is one where each
paddock is meeting the wedge line, indicating an adequate grass supply. If a
surplus is indicated (paddock above the wedge line), paddocks should be
removed as silage as soon as possible depending on weather conditions,
allowing the paddock back into the grazing rotation. Generally, the paddocks
selected for surplus silage are those where covers exceed the targeted pre
grazing cover of 1,600 kg DM/ha. When a deficit in herbage availability occurs,
the surplus silage can be supplemented back into animals’ diets, filling the gap

on the wedge or additional concentrate can be supplemented to correct the drop
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in herbage availability. The use of PBI allows operators more foresight and to
make timely decisions regarding grassland management.

The PBI decision support tool/database also contains spring and autumn
rotation planners to aid farmers’ grazing management in the early and late
periods of the season. The spring rotation planner assists farmers to plan the first
grazing rotation which is critical to maximise subsequent sward quality and
production of further rotations. This planner is not a feed budgeting tool. It divides
the grazing platform into weekly proportions ensuring sufficient grass is grazed
early enough to allow for adequate regrowth in the second grazing rotation, this
helps to form an evenly shaped grass wedge in the second rotation. The aim is
to have 30% of the grazing platform grazed by the 15t of March, 60% by the 17t
of March and the first rotation completed by the 15t of April.

The autumn rotation planner facilitates extending the grazing season late
into the year and allows grass covers to build sufficiently to allow for early spring
grazing to coincide with the calving period. Depending on the seasonal growth
profile of the regional farm, the planner commences the close-off of paddocks
after grazing from early October, with 60% of the land area being unused from
the 15t of November, and the remaining 40% closed by the 15t of December. The

actual area versus the target is plotted in the respective reports generated by PBI.

2.4.6 Technical Support for Grass Management

A study by Hanrahan et al. (2017) has shown that automated sensor
systems capable of measuring and managing pasture production have provided
measurable benefits on farm. Eastwood et al. (2009) noted that more detailed

information on pasture resources and their efficient utilisation are the ‘missing
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link' for the improvement of whole farm production systems. However, Hanrahan
et al. (2017) highlights that farmers’ need practical experience of grassland
management and the computer skills to apply model calculations from systems
such as PBI to handle the various changes and fluctuations during the pasture

season.

2.4.7 Allocation of Grass

Allocation refers to the appropriate area being assigned to the herd based
on demand (quantity of cows X targeted daily intake X residency time) and the
HM available in the paddock. The correct allocation is critical to achieving the
targeted PGSH. The accuracy of the allocation is dependent on the data on which
it is based. Inaccurate data in terms of demand or HM availability will lead to the
under or over allocation of herbage to the herd, resulting in poor utilisation of
grass as well as a negative effect on subsequent rotations.

Originally, all the ancestors of modern domesticated livestock roamed
freely. With domestication by mankind, livestock were fenced in using primitive
materials such as wood and stone, these were slow and expensive to establish
and weren’t completely effective. Animal containment with modern fences as we
know it today can trace it origins back to the mid-18" century with the
development of barbed wire in France (McCallum & McCallum, 1972). In the last
50 years due to the risk of injury to both livestock and human, electrified fencing
has become the standard for livestock containment.

The profitability of intensive pasture-based systems is reliant upon precise,
accurate and timely grazing management strategies. Therefore, there is a clear

need to meet, but not exceed, daily nutritional demands of grazing animals
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(Kennedy et al., 2009). In particular, the practice of strip-grazing, whereby
animals are moved once or more on a daily basis between predefined grazing
areas of known grass height and quality, is considered to be a best practice
protocol for optimal grass utilisation and improved farm productivity (Abrahamse
et al., 2008; Umstatter, 2011; Koene et al., 2016).

Therefore, the effective control of grazing animal movements is imperative
to any intensive pasture-based system. Consequently, the implementation of
Precision Livestock Farming (PLF) techniques in relation to grassland
management represents a considerable opportunity to enhance farm productivity
and profitability (Dillon 2011). Accordingly, interest in flexible fencing technology
to improve pasture allocation has greatly increased (Umstatter et al., 2015a,b).
Such technology can facilitate rapid and less-labour intensive manipulation of
stocking densities, improved use of seasonal growth, protection of vulnerable
areas, and reduce human-wildlife conflict caused by conventional fencing
(Umstatter, 2011; Umstatter et al,, 2013). Although some improvement to
flexibility was made possible by the invention of single-strand electric fencing,
further developments are urgently required to optimise management protocols,
improve ease of allocation, and reduce labour.

Electric fencing relies on each individual animal forming a cue-
consequence association between the visual cue of the fence structure (fence
posts and wire) with the negative stimulus of a mild electric shock. Although this
method is effective, erecting and maintaining fencing is both time and labour
intensive (Umstatter et al., 2015a). Yet, a number of studies have demonstrated
that domesticated cattle can respond to a variety of visual and auditory sensory

cues (Howery et al., 2000; Lee et al., 2007; Umstatter, 2011; Umstatter et al.,
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2013). Accordingly, virtual fence (VF) systems have sought to utilise novel
sensory cues in the formation of cue-consequence learning (Bishop-Hurley et al.,
2007).

Virtual fencing can be defined as a structure or system which acts as a
boundary or enclosure, in the absence of any physical barrier (Umstatter, 2011).
Various types of VF system have been developed and examined, utilising
wearable technology upon a variety of livestock across a range of agricultural
settings (Butler et al., 2004; Bishop-Hurley et al., 2007; Jouven et al., 2012;
Umstatter et al., 2013; Brunberg et al., 2015; Monod et al., 2009). However, the
overwhelming majority of these studies have focused on rangelands, where
animals can freely roam over large areas. Currently, while a small-scale VF
system approach has been effectively utilised to contain domestic pets, few trials
have been put in place to examine if a VF system is a feasible and welfare friendly
means of controlling livestock movement in a small-scale intensive farm
(Umstatter, 2014). The successful implementation of a VF system into a working
farm can potentially be complex and fraught with technical challenges, such as
network communications, differential system interfaces, farm topography,
precision confinement energy supply, animal welfare and training (Umstatter,
2011). In addition, although the installation of an induction cable fence line is less
labour intensive than erecting and moving electric fences on a frequent basis,
global positioning system (GPS) based systems could potentially eliminate the
need for such cabling entirely. As systems which rely on buried cables can also
be labour intensive to establish and reorganise. Accordingly, VF systems which

do not require perimeter cabling could provide a beneficial solution for farmers
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needing to move fences on a frequent basis, such as in strip grazing (Umstatter
et al., 2015a).

Within intensive pasture-based systems, VF requires a management
system to dynamically deploy and move boundaries, depending on herd size and
available grazing resources. The system should allow managers to increase,
decrease, or provide completely new areas of pasture by redeploying the VF
boundary. Moreover, the system could be used to incrementally herd cows from
one area to another by slowly redeploying the VF boundary in small stages, e.g.
1 m min™', which would force the animals to shift their position along the pasture,
while retaining or decreasing the overall grazing area allocation. Additionally, to
be truly successful, the VF system must be applicable to the full herd, a subset
of the herd, or even an individual animal as dependent upon grazing
requirements. It could be envisaged that some herd members may have larger
or separate grazing areas than other animals, such as in-calf cows or bulls.
Moreover, to be truly dynamic a VF system should not need to rely on perimeter
cabling, which can be expensive and labour intensive to establish and redeploy.
Equally, it is imperative that the VF system is understood by the animals, as
ambiguity in relation to boundary areas can cause a significant negative impact
in terms of stress, which has been shown to reduce milk yield and weight gain in
dairy cows (Hedlund & Lavlie, 2015; Adamczyk, 2018). Therefore, the location of
the boundaries of a VF system, within which cows are contained, must be
effectively communicated to each individual animal.

Although electric fences are routinely used for controlling livestock, the use
of electric stimuli has become less ethically acceptable for many stakeholders,

scientists and a larger proportion of the general public (Umstatter, 2011). As VF
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systems require wearable technology, systems should aim to utilise warning-cues
that reduce the need for aversive electric stimuli. Key is to establish a cue-
consequence association to ensure animal welfare (Spitzer, 2017). Therefore,
the development of a suitable training programme, which can be easily
implemented by the farmer to quickly familiarise livestock with the VF system is

required (Umstatter, 2011; Koene et al., 2016).

2.4.8 Role of Technology in Grassland Production

The growing population coupled with diminishing arable land and
unpredictable weather conditions raise concerns of food security in the near
future, thus, making it imperative to utilise the available natural resources
efficiently. The use of Information Communication Technology (ICT) in agriculture
has been proposed to allow precise monitoring and automation of farm processes
under the umbrella of Precision Farming. This is expected to improve control over
the farm processes and, in turn, increase the productivity and sustainability of
farming. Originally, Remote Sensing along with Geographic Information Systems
(GIS) and GPS was used for monitoring the farms (Seelan et al., 2003).

However, these systems are expensive and offer a limited spatial-temporal
resolution. Today, sensor devices facilitate collection of a wide variety of farm
data such as soil composition and dynamics, crop growth, climate changes and
animal health and mobility. Timely analysis of the sensor data allows prediction
of the onset of diseases, adverse weather conditions and fodder availability in
early warning systems to help farmers make informed decisions (Rehman et al.,

2003). Individual agricultural sensor systems exist already. Taylor et al. (2013)
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for instance, described a wireless sensor network (WSN) system deployed at the
Kirby farm near Armidale, New South Wales. The system incorporates various
sensors to monitor soil moisture, temperature, humidity and pressure, rainfall,
and hail. Monitoring data from sensors is transmitted to a centralised entity, where
it is formatted and analysed to be sent to farmers. A survey conducted in the
Netherlands (Steeneveld & Hogeveen, 2015) shows that almost two-fifths of the
farms surveyed have adopted some sensor-based farm monitoring. Another
study, Auat-Cheein & Carelli (2013), discusses the use of unmanned robotic
systems for farming applications. These systems aim at the automation of specific
farm monitoring and mapping tasks, e.g. yield mapping, to reduce manual labour.
Several systems have also been developed for monitoring animal health and
mobility, with the aim of early detection of diseases to promote animal welfare. A
review of various sensor systems for animal health management in dairy farming
has been presented in Rutten et al. (2013). These systems are primarily designed
to monitor animal fertility, metabolism, and mastitis. A few systems have also
been developed for mobility monitoring of animals. Mobility patterns give an
understanding of animal behaviour and can be used to detect health issues such
as lameness (Alsaaod et al., 2012). Additionally, mobility tracking facilitates the
implementation of the VF technology that uses acoustic and electric stimuli to
control the movement of animals within a farm. Current VF solutions make use of
either electromagnetic coupling between animal wearable sensor devices, and
an insulated wire unrolled on the farm (Monod et al., 2018) or GPS receivers fitted
to the wearable devices to estimate the position of animals concerning the VF

(Swain et al., 2009).
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Despite the numerous advantages, very few sensor systems have been
deployed into use for pasture-based production systems. This is primarily due to
the limited capability of sensor devices in pasture conditions coupled with the lack
of confidence on a typical farm. Conventionally, the tasks assigned to these
devices are limited to data collection and transmission while the analysis takes
place on a smart device or the cloud. A study conducted by Rutten et al. (2013)
describes such a system for animal health management and highlights the lack
of analytics and intelligence in sensor devices. This introduces latency in analysis
and poses a significant constraint in sensor technology implementation in large-
scale, rural farm environments that suffer from intermittent or no Internet
connectivity. While additional infrastructure may resolve specific issues, it would
increase the deployment and maintenance costs of the system causing
reluctance among farmers to embrace the use of technology systems.
Consequently, there is a need to improve the operation of communication
network systems to allow on-site analysis and prediction, especially, for latency-
sensitive data to develop cost-effective and autonomous farming solutions.

Furthermore, while different sensor technology systems have been
designed to cater to various aspects of a farm - crops, soil, yield and animals
performance, these systems work independently of each other. This causes
difficulty and delay in correlating data from different systems to expedite the
decision-making process. Cooperation between these systems is, thus, desirable
for the design of effective decision-support systems that aim at integrated farm
management. Real-time actionable data needs to be made available to the farmer
to aid in instantiations data-informed decision making. For instance, a system

capable of capturing real-time pasture biomass data and autonomously assigning
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the livestock to the correct grazing area via a VF system. We consider and
address these gaps in the existing design of grass-based technology solutions
through the research presented in this thesis.

Technologies that support grass utilisation and cow reproductive fertility
will likely facilitate positive economic returns for farmers, through the
intensification of pasture-based production resulting in increased milk yield and

reduced costs (Shalloo et al., 2018; Yahya, 2018).

2.5 Thesis Objectives

This thesis was undertaken to design and develop ICT tools to assist
grassland famers to improve the accuracy and precision of pasture management,
to thereby increase the efficiency of their farming system. The primary objective
of this thesis was to facilitate the development of a micro-sonic enabled RPM to
allow automatic and precise grass measurement and thus improve real time
allocation of grass and subsequently the integration of this data with an online
DST to allow the enhanced dataset produced by the RPM to be automatically

uploaded for detailed decision support on farm.

A further objective of this thesis was to develop and test the principle of
virtual fence technology for control of cow movement and confinement within an
intensive grazing system, i.e. strip-grazing. A detailed examination of the
livestock training and behaviour was deemed to be a focal point of this work as it
was not previously investigated in the context of intensive strip-grazing, and was

identified as a significant challenge to overcome.
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The combination of these two ICT tools could bring grazing into the domain
of precision livestock farming. The combination of herbage mass data and live
animal parameters such as grazing behaviour and accelerometer data is
essential in understand and achieving grazing efficiency (Werner et al., 2018). By
studying the production of the sward as well as the demand of the herd and
having strategies developed to direct and retain livestock in a prescribed grazing

area will be a great benefit to the farmer.

2.6 Research Questions
. Can a grass measurement system be developed that would incorporate high
accuracy micro sonic measurement technology as well as having a geospatial

dimension associated with the data?

. Can site-specific algorithms be developed to predict grass quantity using a smart-

device application?

. Is the integration of virtual fence technology into an intensive grazing production

system possible?
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Abstract

Globally, the Rising Plate Meter (RPM) is a device used to measure
compressed sward height, to estimate herbage mass. Despite improved farm
management practices aided by a variety of technological advances, the
standard design of a RPM has remained relatively unchanged. Recently, a RPM
utilising a micro-sonic sensor and digital data capture capability via a Bluetooth
communications link to a smart device application has been developed. Here we
assess the comparable ability of both the cumulative ratchet counter RPM, and
the micro-sonic sensor RPM, to accurately and precisely measure fixed heights.
Moreover, as correct allocation of grazing area requires accurate geolocation
positioning, we assess the associated GPS technology. The micro-sonic sensor
RPM was significantly more accurate for height capture than the cumulative
ratchet counter RPM. Overall, across all heights, the cumulative ratchet counter
RPM underestimated height by 7.68 + 0.06 mm (mean + SE). Alternatively, the
micro-sonic sensor RPM overestimate height by 0.18 £ 0.08 mm. In relation to a
practical applications, these discrepancies can result in an under- and
overestimation of kilograms of dry matter yield by 13.71% and 0.32% per hectare,
respectively. The performance of the on-board GPS did not significantly differ
from that of a tertiary device. The wireless technology, integrated mapping, and
decision support tools offered by this innovative micro-sonic sensor RPM

provides for a highly efficacious grassland management tool.

3.1 Introduction
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The development of electronic and data transmission systems continues
to enable radical changes in agricultural practices worldwide (Pivoto et al., 2018).
Enhanced data capture, information and communication technologies have
facilitated considerable improvements to the efficiency, effectiveness and
productivity of various agricultural sectors (Pivoto et al., 2018; Zhang et al., 2018).
However, these technologies remain substantially underutilised in modern
agricultural production systems (O’Grady & O’Hare, 2017). Although smart
farming systems may utilise these technological advancements to feed into
automated management systems, incorporation of information and
communication technologies into machinery, equipment, and sensors can also

facilitate real-time decision support tools within non-automated systems.

The profitability of intensive pasture-based systems is reliant upon
precise, accurate and timely grazing management strategies. Consequently, the
implementation of precision data capture and communication technologies in
relation to grassland management represents a considerable opportunity to
enhance farm productivity and profitability (Zhang et al., 2018; Wathes et al.,
2008; Dillion, 2011). Sward herbage mass (HM) can be utilised to inform
efficient daily grassland management, via allocation of a sufficient grazing area
to meet (but not exceed) the daily nutritional demands of grazing animals
(Hanrahan et al., 2017; Kennedy et al., 2011). Moreover, regular estimation of
paddock HM can be utilised to inform long term grassland management, to
achieve optimal pasture utilisation and animal performance (Hanrahan et al.,
2017). Currently, in Ireland, for example, farmers’ use of grass measurement

remains low; only circa 10% of dairy farmers conduct weekly grass
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measurements. Therefore, there exists considerable potential to increase grass
measurement frequency and farmland productivity (Dillion, 2011; Creighton et
al., 2011).

Traditionally, HM is determined by observer visual estimation. However, this
method is highly subjective and prone to considerable inter-observer variability
(Tucker, 1980). Although more accurate estimates of HM can be obtained from
the sward weights obtained from clipped sample quadrats, this process is
destructive and time intensive (Brummer et al., 1994; Adesogan et al., 2000). The
Rising Plate Meter (RPM) is a grassland management tool utilised worldwide as
a method of measuring compressed sward height (CSH). This technology is
considered to be an accurate, precise, time efficient, and less labour intensive
method for sampling HM (Sanderson et al., 2001;Soder et al., 2006), from which
dry matter yield (DMY; i.e. the grass nutritional value) can be calculated.
However, device accuracy can be affected by numerous factors, such as growth
state of plants (Mosquera-Losada & Gonzalez-Rodriguez, 1998), season
(Bransby, 1977), species composition (Castle, 1976) and grassland management
regime (Powell, 1974).

Despite many recent advances in various precision agriculture, data capture
and communication technologies (O’Grady & O’Hare, 2017; Pivoto et al., 2018),
the design and application process of RPMs has remained similar to that of earlier
devices (Sanderson et al., 2001; Castle, 1976). Most RPMs consist of an
aluminium steel plate through which a one metre vertical shaft freely passes.
When this shaft is lowered to ground level within a grass sward, the plate will rise
(depending on grass height) relative to the shaft, and this distance is recorded on

a cumulative ratchet counter mounted upon the device. The average CSH can
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then be calculated across multiple samples. The RPM is calibrated by relating the
CSH readings of a number of sample quadrats to the DMY of these quadrats, cut
to ground level.

In recent years, technological advances such as various plant sensitive
sensors, Global Positioning Systems (GPS), Bluetooth connectivity, and low-
power portable user interfaces (smart phones and tablets), have been used to
improve farm management practices (Pivoto et al., 2018; O'Grady & O’Hare,
2017; Dillion, 2011). These data capture and communication technologies can
likely be utilised to improve grass measurement and facilitate real-time decision
support in relation to grassland management, e.g. grazing allocations. Recently,
a RPM utilising a micro-sonic sensor and digital data capture via a Bluetooth
communications link to a smart device application has been developed (Figure
3.1).

In essence, the time of flight- taken from transmission of a micro-sonic beam
to return of the reflected echo signal is used to calculate the distance between
the sensor and the sampling plate. The higher the upwards displacement of the
sampling plate, the shorter the time between transmission and return of the
reflected signal. The height of the object underneath the rising plate is then
calculated. This measured height is then transmitted via Bluetooth to a smart
device. This smart device also utilises GPS technology for paddock mapping and
advisory (decision-support) grazing-area allocation based on animal in-take
requirements. Although the cumulative ratchet counter RPM does not facilitate
on-board GPS, users can use tertiary GPS enabled devices to manually map

paddock areas.
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GPS Assisted Fence
[ Upload to Cloud Placement J

Allocation Calculator
Farm Map SMART PHONE Number of Cows+
Daily Herbage Allocation+
Residency Time

GRASSHOPPER

Compressed Sward
ars [ Height Data J

Figure 3.1: Infographic depicting the wireless communication process between
the Grasshopper micro-sonic sensor Rising Plate Metre, global positioning
system, and accompanying smart device application: 1) GPS and compressed
sward height data are captured by the device; 2) this data is wirelessly
transmitted to the associated smart device application; 3) a designated farm
paddock area can be created, stored, or selected; 4) grazing intensity
parameters can be inputted; 4) the Allocation Calculator can provide real-time
decision support; 5) GPS assisted fence placement is provided; and 6), all data
is consolidated within the smart device application, and can be wirelessly

uploaded to Cloud computing and integrated smart farm databases.
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Here we assess the accuracy and precision of RPM height measurements
by both the standard cumulative ratchet counter, and the newly developed micro-
sonic sensor unit. Given that correct allocation of grazing area requires accurate
geolocation positioning, the on-board GPS technology of the newly developed
RPM was compared to the GPS functionality of a representative and commonly

used device, i.e. a smartphone.

3.2 Methods

Experiment 1: repeated accuracy of height data capture by two Rising Plate
Meters (RPMs)

A cumulative ratchet counter RPM (Jenquip; Filip's Manual Folding Plate Meter,
New Zealand) and the micro-sonic sensor RPM (Grasshopper Il; True North
Technologies, Ireland) were used to measure standing PVC pipes (110 mm
diameter; n = 31) of known heights, 25-178 mm (McSweeney et al., 2015). The
pipes were accurately cut to the specified length by a professional engineering
company. All pipe sections were placed on a level surface, and each pipe was
randomly chosen to be measured by the RPMs. A total of 30 height measures
were recorded per pipe by each RPMs. The micro-sonic sensor RPM sample
measurements were obtained first, immediately followed by the cumulative
ratchet counter RPM.

Although the micro-sonic sensor RPM facilitated instantaneous digital
capture and storage (.csv format) of measurement data, via a Bluetooth
communications link between the sensor unit and an accompanying smart device
application (Android operating system), the ratchet counter RPM data was

recorded by hand, and height measurement calculated. Prior to data capture, the
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micro-sonic sensor was normalised to ensure a baseline of height zero was

established. The cumulative ratchet counter does not require normalisation.

Experiment 2: geolocation performance of a Rising Plate Meter (RPM) utilising
on-board and external GPS technology.

To assess device geolocation performance, latitude and longitude output
was sampled directly upon a known georectified point that consisted of a brass
rivet set in concrete footpath (IRENET control station D130, Ordnance Survey
Ireland). Both the on-board GPS and GPS functionality of a representative
smartphone device (Samsung S7 Edge SM-G935F OS 7.0), were simultaneously
assessed (both n = 30). The smartphone was held directly over the handle of the
RPM, which was positioned centrally and precisely upon the georectified point.
To force the devices to continually recalculate their geolocation positioning,
between each georectified sampling event, the experimental operators walked (=
20m) in a random direction away from the sampling point and recorded an
additional non-test measurement with both devices. Although, mobile network
accessibly may improve geolocation accuracy, in situ signal connection
opportunities can vary greatly. Therefore, the smartphone mobile network
connection was disabled during sampling. This required the smartphone to rely
on satellite connections only when triangulating its geolocation, as does the RPM

device.

Statistical analysis
All statistical analyses were performed using R v3.4.3 (R Core

Development Team., 2017). The difference between actual and recorded pipe
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heights was converted to proportional error and analysed using beta regression
with the ‘betareg’ package in R (Cribari & Zeileis, 2010). This model incorporated
both the effects of ‘device’ and ‘pipe height’, and their interaction. We transformed

data to reduce extremes (0s) prior to analysis (Smithson & Verkuilen, 2006):

ye = (y(n—=1)+0.5)/n

eqgn. (1)

where y:is the transformed output and n is the sample size.

As the captured geolocation data did not meet the assumptions of parametric

tests, latitudinal and longitudinal error, relative to the georectified baseline point,

were analysed between devices using paired Wilcoxon tests.
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Figure 3.2: Comparable ability of the cumulative ratchet counter Rising Plate
Metre (A: Jenquip), and micro-sonic sensor Rising Plate Metre (B:
Grasshopper), to accurately measure fixed heights (n = 31). Standard error < 1

in all cases.
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Table 3.1: Mean latitude and longitude recorded by each device in relation to

the known georectified sampling point (IRENET control station D130, Ordnance

Survey Ireland).
Mean latitude Georectified Mean longitude Georectified
Device
(£ 1SD) latitude (£ 1SD) longitude

52.16265970 8.27727091

Grasshopper 52.16264111 8.27729278
(£ 5.145x10%) (£ 1.327x10%)
52.16265204 8.27726680

Smartphone 52.16264111 8.27729278
(+ 6.827x10%) (£ 1.121x10%)

3.3 Results

Across all pipe heights, the cumulative ratchet counter RPM underestimated
height (mean + SE) by 7.68 + 0.06 mm, with a maximum underestimate of 11 mm
(Figure 3.2A). Alternatively, the micro-sonic sensor RPM overestimated height by
0.18 £ 0.08 mm, with a maximum overestimate of 6 mm (Figure 3.2B). Overall,
the micro-sonic sensor RPM more accurately measured the pipe heights than the
cumulative ratchet counter RPM (z = 40.42, P < 0.001; Figure 3.3). Proportional
recording errors were reduced significantly as pipe heights increased overall (z =
-9.08, P < 0.001). The ‘RPM x pipe height’ effect was significant (z = -16.60, P <
0.001), reflecting greater differences in accuracy between the RPMs at lower pipe

heights. Neither of the devices differed significantly in their accuracy relative to a

georeferenced point, across either latitudinal (V 346.00, P = 0.25) or
longitudinal readings (V = 344.00, P = 0.26. Both of these devices were

consistently precise (Table 3.1).
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3.4 Discussion and Conclusion

Accurate, precise and timely measurement of pasture HM is integral to
effective implementation of optimal grazing management practices, particularly
for farmers who rely on pasture as a primary feed source. This examination of a
recently developed micro-sonic sensor, has shown that such technological
advancements can enhance the accuracy and precision of grass measurement
and data capture. Until recently, the traditional cumulative ratchet counter design
only facilitated measurement in increments of five millimetre (0, 5, 10 ...),
however, the micro-sonic sensor RPM has accomplished one millimetre
increments. Although the average underestimation of height by the cumulative
ratchet counter RPM (7.68 £ 0.06 mm) is low, small errors in measurement can
lead to larger errors over large pasture areas. At an average overestimate of 0.18
+ 0.08 mm, the micro-sonic sensor has been shown to be highly accurate.

As a brief practical example, in the case of the cumulative ratchet counter,
if we assume height of 1 cm = 250 kg dry matter yield per hectare, then 250 kg x
0.768 cm = 192 kg of DMY.. In a simplified gazing allocation regime of ten grazing
assignments per year, an underestimation of 192 kg DMY ha' is multiplied by
ten, giving an error of 1920 kg DMY ha-'. Scaling upwards, across a 50 ha farm,
annual underestimation is 50 x 1920 = 96,000 kg DMY ha™'. If we assume the
farm (50 ha) will grow 14,000 kg DMY ha', then annual dry matter production is
700,000 kg ha™'. The annual underestimation of DMY would be 13.71 % (i.e. 96,
0000 + 700, 000). Contrastingly, inflation of grass height by 0.18 mm on the same
hypothetical farm and grazing regime, results in an annual overestimated DMY

of 0.32 % when using the micro-sonic sensor RPM.
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Underestimation of available DMY results in poor allocation of forage to
animal requirements. In essence, the stocking rate could be increased to better
utilise the available grassland and increase overall farm production and
profitability. In Ireland, for example, one metric tonne of grass has a monetary
feed resource value of €162 — 267 to dairy farmers (Dillion, 2011; French et al.,
2015), depending on milk market prices. Underestimation of available DMY
essentially results in a loss of this forage value to the overall farm profitability.

The micro-sonic sensor RPM, by utilising on-board GPS technology, can
facilitate digital data capture features not currently associated with other RPMs,
which utilise a cumulative ratchet counter design. Use of the micro-sonic sensor
RPM would enable the real-time paddock mapping, give fence plotting directions,
and direct appropriate grass allocation for the herd. The integration of the smart
device application would allow for real-time assessment of the palatability of
grass swards by consideration of pre- and post-grazing residuals.

The micro-sonic sensor RPM incorporates GPS technology to aid decision
support of grazing area allocation in relation to animal in-take requirements and
available sward HM. Although the cumulative ratchet counter RPM does not
facilitate on-board GPS, basic GPS enabled smartphones can be used to map
paddock areas within an integrated Geographic Information System (GIS)
environment. However, while the GPS enabled RPM did not perform better than
the smartphone, manual recording of GPS data and the associated cumulative
ratchet scores is a time consuming process. Automatic capture of geolocation
data by the micro-sonic sensor RPM, communicated through a Bluetooth
communications link to a smart device application, and further presented in a

single data file, represents a highly efficient method for real-time decision support.
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Further automated geo-tagging of ground reference points can facilitate
calibration of herbage evaluation from satellite aerial imagery, and integrated with
within @ communication network for the transmission of data from other in field
sensor technology.

The application of any grass height measurement technique requires the
operator to collect a sample size within a pasture that is sufficient to ensure that
the variation in grass height and HM is accurately captured. The smart device
application associated with the micro-sonic sensor RPM, coupled with the
available GPS technology, can facilitate assessment of intra paddock variations
in grass growth and grazing pressure, while inter and intra paddock DMY can be
mapped and assessed to inform future fertiliser applications. Captured data can
subsequently be uploaded to on-line decision support tools, which can advise on
the allocation of grazing areas. Although manual placement of fences is
necessary at present, there is considerable potential to link the recommended
grazing area allocation to fenceless farming (i.e. virtual fencing; (Umstatter,
2011). Therefore, while the cumulative ratchet counter RPM has been a valuable
tool for researchers and practitioners since its conception, the recently developed
micro-sonic sensor RPM represent a significant advancement for grassland
management. As the micro-sonic sensor device relies on algorithms to calculate
DMY, rather than an operator performed manual calculation, the associated
smart application can be directed to make formula corrections for seasonal and
regional HM variation (Nakagami, 2016). However, despite the substantial
benefits, further research and development is required to improve application of
this device (e.g. incorporation of grass quality measurement), and integrate the

device into smart farming systems.
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Abstract

The strategic allocation of pasture grazing area to dairy cows is essential
for optimal management and increased outputs. Rising plate meters are
frequently used to estimate pasture herbage mass, i.e. dry matter yield per
hectare) through the use of simple regression equations that relate compressed
sward height to herbage mass. However, to improve the accuracy and precision
of these equations, so that inherent variation of grasslands is captured, there is
a need to incorporate differences in grass types and seasonal growth. Yet, good
bassline data is required for the development of effective algorithms. Using a total
of 308 grass plots, the variation of growth for both perennial ryegrass and hybrid
ryegrass was recorded over the seven month growing season, i.e. March —
September. From these data, three dynamic equations were derived. Overall,
although all equations were found to be highly accurate and precise, Eq. 2 was
considered the most effective (R? =0.7; RMSE = 248.05), allowing herbage mass
to be predicted reliably from compressed sward height data. Accordingly, smart-
device linked rising plate meters, programmed with dynamic algorithms, can be
used to reliably calculate herbage mass, whilst improving time and labour
efficiency on-farm. Although further research will be required, the results
presented allow for the further development of decision support tools to improve
on-farm grassland management, particularly at the paddock rather than national

level.
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4.1 Introduction

Currently, there exists a growing demand for dairy products worldwide
(Godfray et al., 2010). In temperate climates, pasture-based ruminant production
offers a competitive and sustainable alternative to intensive, high-input systems
(Dillon et al., 2008; Lawrence et al., 2016). In particular, the utilisation of grazed
grass provides for a highly efficient, nutritious and inexpensive source of energy
for ruminant production (Dillon et al., 2005; Finneran et al., 2012). Importantly,
the quantity and quality of herbage offered to grazing animals has a substantial
impact on their performance e.g. milk production (Patton et al, 2016).
Accordingly, to meet the daily nutritional demands of animals, the strategic
allocation of grazing area is an essential management practice (O’Donovan,
2000; O'Donovan & Delaby, 2008; Kennedy et al., 2009; Curran et al., 2010).
However, determination of the appropriate allocation of grazing area can only be
achieved when using reliably accurate and precise estimates of herbage mass
(HM; kg DM/ha), i.e. dry matter yield per hectare).

Accurate measurement of HM can also be used to budget available forage
in grazing systems, particularly as grass is an unstable resource (Sanderson et
al., 2001; Lépez-Diaz et al., 2011). For example, regular estimation can help
ensure an adequate supply of herbage to meet demand throughout the grazing
season, and inform decisions on the removal of surplus herbage to balance its
supply and demand, whist maintaining herbage quality. In addition, regular
measurement of herbage can be used to identify poor performing grass swards,
allowing the farmer to take corrective action such as reseeding, addressing soil
fertility issues, and drainage (O’'Donovan, 2000; Hakl et al., 2012; Shalloo et al.,

2011). Considerable potential exists to increase the accuracy and precision of
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pasture allocation, and subsequent farm productivity (Creighton et al., 2011;
Dillon, 2011). In essence, greater use of reliably collected on-farm data can
improve management practices, through the provision of knowledge-based real-
time decision support tools.

While accurate estimation of HM can be achieved through assessment of
sward heights obtained from clipped quadrants, this is laborious and time
intensive endeavour (Asdogen et al., 2000; Sanderson et al., 2001; Lépez-Diaz
et al., 2011). Although HM is most often estimated by visual observation, this
method is highly subjective and prone to considerable inter-observer variability
(Tucker, 1980; O'Donovan et al., 2002; Lopez-Diaz et al., 2011). For optimal and
informed management, grass needs to be measured quickly and reliably in
relation to both accuracy and precision. The rising plate meter (RPM) can be used
to estimate the HM of grasslands based on the compressed sward height (CSH)
(Sanderson et al., 2001; Hakl et al., 2012). Overall, this device is considered to
be an accurate, precise and labour efficient method for sampling HM (Sanderson
et al., 2001; Soder et al., 2006). However, device reliability can be affected by the
naturally large variation of dry matter (DM) within CSH, which is governed by
numerous factors, such as plant growth state (Mosquera-Losada & Gonzalez-
Rodriguez, 1998), season (Bransby et al., 1977), species composition (Castle,
1976), and grassland management regime (Powell, 1974).

In recent years, technological advances such as accurate sensors, Global
Positioning Systems (GPS), Bluetooth connectivity, and low-power portable user
interfaces (i.e. smart-devices), have been used to improve farm management
practices (Dillon, 2011). Accordingly, these technologies can be used to improve

in-field measurement and facilitate real-time decision support in relation to
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grassland management. In particular, a RPM utilising a micro-sonic sensor and
digital data capture via a Bluetooth communications link to a smart-device
application has been developed (i.e. Grasshopper) (McSweeney et al., 2019).
This RPM device and its associated micro-sonic sensor were found to measure
sward height correctly (McSweeney et al., 2019). Although the device can be
programmed to calculate HM within its associated smart-device application using
various formulas, a good reference population to act as baseline data that has
realistically captured inherent variations of grassland is required for the
development of effective, reliable and dynamic algorithms.

To optimize reliability, equations need to be developed across the growing
season and for different grass species, ploidies and varieties. Previously, for
example, a dynamic formula was developed for North West France on perennial
ryegrass (Lolium perenne L.) monoculture swards and mixed swards of perennial
ryegrass and white clover (Defrance et al., 2004). However, a significant effect of
season was observed within this formula, i.e. calculated HM based upon CSH
varied by month. Accordingly, optimal grassland management requires the use
of a formula altered on a monthly basis. Here, therefore, we develop a dynamic
formula to accurately determine HM for Irish grasslands throughout the grass

growing season, for both perennial and hybrid ryegrass.
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4.2 Methods

4.2.1 Study site

The study was conducted upon perennial ryegrass and hybrid ryegrass
plots (n = 308) sown on a free-draining acid brown earth soil of sandy loam texture
at Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark,
Fermoy, Co. Cork, Ireland (52°09'50"N, 08°15'50"W). Plots were managed under
simulated (n = 120: 5 x 1.5 m) or actual grazing (n = 188: 10 x 1.5 m) regimes.
Plots managed under simulated grazing conditions were mechanically harvested
on eight to nine occasions annually. While animal grazed plots were managed
equally on a 21-30 day grazing rotation resulting in eight to nine sampling
occasions annually.

Prior to sowing, glyphosate was used to kill the previous sward, the entire
area was then ploughed and tilled to provide a fine and firm seed bed which
received 37 kg N ha™', 37 kg P ha™'and 74 kg K ha™'. All plots were sown using a
plot seeder (WINTERSTEIGER Plotseed S; WINTERSTEIGER AG., Austria) in
August. Once the newly sown plots had reached the two leaf growth stage they
were sprayed with a post-emergence herbicide to control the establishment of
broad-leaved weeds.

With an equal number of diploids and tetraploids, simulated grazing plots
were comprised of perennial ryegrass or hybrid ryegrass. Both ryegrass types
were established as monocultures at a sowing rate of 37 kg ha”', and as
polycultures totalling 37 kg ha™', for all possible combinations for sowing rates of:
9.25; 18.5; and 27.75 kg ha'. For example, sowing rates were combined for

perennial ryegrass (9.25 kg ha™') and hybrid ryegrass (27.5 kg ha™'), and again
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for the corresponding mix of perennial ryegrass (27.5 kg ha') and hybrid ryegrass
(9.25 kg ha™). Plots designated for actual grazing were likewise constructed using
an equal number of diploid and tetraploid perennial ryegrass types, with sowing
rates of 34 and 37 kg ha™, respectively. All actual grazing plots were sown as
ryegrass monocultures.

All plots were constructed in a randomised complete block design,
consisting of four replicates. For a simulated grazing protocol, plots were
harvested using a rotary blade mower to a cutting height of 4 cm (Etesia Hydro
124D; Etesia Ltd., UK), when HM was visually estimated as ~1500 kg DM ha™'.
Animal grazed plots were likewise allowed to reach a visually estimated pre-
grazing HM of ~1500 kg DM ha™'. The grazed area was offered on a replicate
basis to dairy cows for 24-36 hours, dependant on animal intake, to reach a target

grass height of ~4 cm.

4.2.2 Dry Matter Yield

Dry matter (DM) yield was determined by weighing all herbage cut from
simulated grazing plots. Similarly, a 1 m? sub-sample was cut from actual grazing
plots, this material was then returned to the source plot to allow consumption by
grazing cows. In all cases, a 0.1 kg subsample was retained and dried at 60°C
for 48 hours to determine percentage DM content (% DM m?) in relation to original
wet weight. The HM was then derived with respect to the area cut, the wet weight

and the percentage DM content.
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4.2.3 Grass Height Measurement

Ten CSH measurements were collected from each plot both immediately
prior to and post herbage removal. These measurements were captured with a
micro-sonic sensor unit (Grasshopper IlI; True North Technologies, Ireland),
mounted perpendicular to the shaft of a handheld, commercially available RPM
(Jenquip; Filip's Manual Folding Plate Meter, New Zealand). The Grasshopper
micro-sonic sensor is designed to measure the distance between the sensor and
the top of the rising plate, to determine height displacement of an object
underneath the plate. Instantaneous digital data capture of measurement data,
together with a geo-tag describing the location, was facilitated via a Bluetooth
communications link between the sensor unit and an accompanying smart-device
application (Android operating system). All captured data was saved to the smart-
device in a Microsoft Excel File (.CSV Format). Prior to data capture, the micro-
sonic sensor could be normalised to ensure a baseline of height zero is

established while the plate was at its resting position.

4.2.4 Algorithm Establishment

To establish an algorithm for the conversion of CSH to predicted HM, a
variety of variables were examined, including: type of ryegrass (TRG; 2 levels:
perennial ryegrass and hybrid ryegrass); Month (7 levels: March — September,
inclusive); the percentage DM content (% DM); actual HM (kg DM-" ha™'); pre-cut
CSH of grass (cm); height cut (cm), i.e. pre-cut CSH minus the post-cut CSH;
and DM per centimetre of grass cut, i.e. HM divided by height cut (kg DM-"cm™™).

Pre-cut CSH of < 5 cm were discarded, as were unrealistic values of > 550 kg
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DM-" cm-. Correlation coefficients were calculated for the examined variables to
determine effect statistics (see Table 1). These coefficients were used to derive
and validate values for the prediction of HM, in relation to actual values recorded
for each plot. Pearson’s R? and associated Root Mean Square Error (RMSE)

values were calculated for each equation.

4.3 Results

In total, the constructed dataset was comprised of 1640 usable plot
assessments, with each of these including values for all the required variables.
Firstly, a value for predicted HM was derived in relation to actual pre-cut CSH (h)
values, and the pre-cut CSH square expression (h?). Within the equation, the
corresponding coefficients for the statistical effect statistics were each multiplied
by these selected parameters (Eq. 1: R? =0.59; P < 0.001). All coefficients were
highly significant at P < 0.001 (Table 4.1). RMSE of 291.21 was calculated for

Eq.1:

Predicted herbage mass = (-227.6 + (233.3 x h) + (-5.35 x h?)) (Eq. 1)

Secondly, building on this approach, a predicted value for HM was derived
using coefficients for TRG (f) and month (m), with inclusion of the actual pre-cut
CSH (h) and the pre-cut CSH square expression (h?). Once again, the correlation
coefficients for the statistical effect of both pre-cut CSH and the pre-cut CSH
square expression were each multiplied by these model parameters (Eq. 2; R?
=0.7; P < 0.001). All coefficients were highly significant at P < 0.001 (Table 4.1).

RMSE of 248.05 was calculated for Eq. 2:
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Predicted herbage mass = (-446.5 + t + m + (263.9 x h) + (-6.6 x h?)) (Eq. 2)

Further, a third model for predicted HM was then developed using
coefficients for TRG (f) and month (m), with inclusion of the percentage DM
content (d) and the corresponding value for pre-cutting CSH (h). As before, the
correlation coefficients for statistical effect were each multiplied by their
dependent model parameter (Eq. 3; R? =0.68; P < 0.001). All coefficients were
significant at P < 0.001, other than calculated percentage DM at P < 0.05 (Table

4.1). RMSE of 256.56 was calculated for Eq. 3:

Predicted herbage mass = (111.8 +t+ m+ (8.9 x d) + (118.7 x h)) (Eq. 3)
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Table 4.1: Derived correlation coefficients, and associated F values (n = 1640).

All P < 0.001, excepting the effect of percentage dry matter content (% DM) at P

<0.05.

Equation1 | F Equation 2 | F Equation 3 | F
Origin -227.6 -446.5 111.8
TRG -- 83.58 86.89
PRG -- 72.3 78.2
HRG -- -72.3 -78.2
Month -- 76.2 64.11
March 90 -0.3
April -- 22.5 54
May -- 75.1 75.1
June -- 64.3 33.6
July -- -275.9 -209.7
August -- -160 -154.2
September -- 184 250.1
Pre-cut CSH | 233.3 279.34 263.9 388.9 118.7 2133.01
Sq. Pre-cut | -5.35 70.49 -6.6 120.67 | -- --
CSH
% DM -- -- -- -- 8.9 6.48
R? 0.59 1170.54 | 0.7 428.09 | 0.68 388.35
Root Mean | 291.21 248.05 256.56
Square Error
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4.4 Discussion

This study confirms the relationship between CSH and HM. In essence, the
height of grass can be used as a reliable indicator of HM. Although Eq. 1 provides
a simple straightforward estimate based on pre-cut CSH values alone, this
equation cannot facilitate a dynamic assessment for type of ryegrass measured
and time of year. EqQ. 1 is also the least accurate or precise given the associated
Pearson’s R? and RMSE values, respectively. However, both Eq. 2 and 3 are
especially beneficial as both can account for perennial ryegrass type and
variation in relation to time of year. These equations will allow for the construction
of dynamic formula within the smart-device application and associated novel
micro-sonic RPM linked technology. In essence, the most applicable formula can
be selected by an on-farm operator, based on the readily available information
concerning the type of ryegrass and sampling month, to reliably predict HM.
However, Eq. 2 is marginally more accurate and precise than Eq. 3, with respect
to Pearson’s R? and RMSE values. Importantly, Eq. 2 is also a more
advantageous formula, as it is derived from pre-cut CSH values rather than actual
percentage DM content, which is not necessarily readily measurable on-farm due
to impracticalities.

As demonstrated by many previous studies, it has been difficult to achieve
RMSE values of below 250 kg DM-' ha!, with most studies achieving values
closer to 300 kg DM" ha™' (Lopez-Diaz et al., 2011). Although the relationship is
still imprecise, a RMSE ranging from 250-300 kg DM" ha™! has been the limit of
predictive equations for HM assessment based on measurements obtained from
RPMs. Accordingly, the RMSE values obtained for all equations in this study are

within an acceptable range, while both Eq. 2 and 3 have especially favourable
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RMSE statistics. To date, most regression formulas used to calculate HM from
CSH have been linear in nature, as this allows for easier calculations. However,
smart polynomial regression formula, such as the equations derived by this study,
are a far more accurate estimation of HM. For example, Mitchell and Large (1983)
achieved strong correlations between CSH and HM (R? = 0.98) for specific time
points across the grass growing season. However, when Sanderson et al. (2001)
applied one of these time specific formulas consistently over a full grazing
season, the correlation was significantly reduced (R? = 0.31). The additional
model parameters required by Eq. 2, i.e. type of ryegrass and month, will be
known to farm operators in the field.

Despite statistical indications of high accuracy and precision, further
research will be required to better understand elements of formula inaccuracy
and imprecision. As such, an improved knowledge of on-farm variability is
needed. To achieve this, additional model parameters could be included and
validated, with a view to produce regional if not paddock specific formula, rather
than national level equations. These equations could then be used to produce
dynamic algorithms capable of calculating reliable HM estimates, based on
operator selected criteria. With the advent of automated grass height data capture
tools, such as micro-sonic RPMs and associated smart-device web-applications,
dynamic and reliable calculation of HM can be achieved in a practical user-
friendly manner. In addition, these tools can potentially be linked to other
grassland technologies, to provide ‘smart-farm’ solutions through highly
automated systems. For example, upon collection of CSH data with a smart-
device linked to a RPM with an on-board GPS, using a web based geolocation

application can define the optimal grazing area for the herd within a pasture.
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Here, we have produced a series of formula that can be used within smart-
device linked RPMs, for reliable algorithmic conversion of CSH to HM. Although
further research is required to develop the equations to encompass more site-
specific effects, our results represent a promising starting-point for the further
advancement of decisions support tools, to improve on-farm grassland

management.
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Abstract

Intensive pasture-based farming systems rely on precise and frequent
allocations of grass to animals. Virtual fence (VF) systems have been
successfully used to contain animals within predefined boundaries. Accordingly,
utilisation of a VF system to enhance automated allocation of correct forage areas
to animals would represent a major advancement for grazing management
strategies. Traditional VF systems rely on a perimeter cable to establish the
boundary line, and this then needs to be deployed and physically moved to alter
the parameters of the boundary. In our study, wearable GPS technology was
used to implement a VF system without the need for such cabling. To accomplish
this, we designed and developed a VF system comprised of a wearable collar
with associated on-farm communication infrastructure. Moreover, we attempted
to train dairy cows to associate an audio warning stimulus with boundary
encroachment. Overall, the operating capacity of the cow-collar and the
communications network were found to be robust. However, although dairy cows
rapidly associated visual cues with VF boundary lines, and quickly developed a
cue-consequence association between the audio warning and corrective
stimulus, the number of boundary challenges made by cows increased upon
removal of all visual cues. In addition, we observed a reduction in time spent
grazing and ruminating during the training period, which suggested cows had
become stressed within the designated inclusion zone. Nevertheless, our results
are preliminary and further experimental work is required to truly assess best

implementation protocols for virtual fencing without visual cues.
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5.1 Introduction

The profitability of intensive pasture-based systems is reliant upon precise,
accurate and timely grazing management strategies. Therefore, there is a clear
need to meet, but not exceed, daily nutritional demands of grazing animals
(Kennedy et al., 2009). In particular, the practice of strip-grazing, whereby
animals are moved once or more on a daily basis between predefined grazing
areas of known grass height and quality, is considered to be a best practice
protocol for optimal grass utilisation and improved farm productivity (Abrahamse
et al., 2008; Umstatter, 2011; Koene et al., 2016). Research suggests that Irish
dairy farms can increase profit per grazed hectare by circa €267 for each
additional tonne of grass utilised (French, 2015). Therefore, the effective control
of grazing animal movements is imperative to any intensive pasture-based
system. Consequently, the implementation of Precision Livestock Farming (PLF)
techniques in relation to grassland management represents a considerable
opportunity to enhance farm productivity and profitability (Dillon, 2011).
Accordingly, interest in flexible fencing technology to improve pasture allocation
has greatly increased (Umstatter et al., 2015a,b). Such technology can facilitate
rapid and less-labour intensive manipulation of stocking densities, improved use
of seasonal growth, protection of vulnerable areas, and reduce human-wildlife
conflict caused by conventional fencing (Umstatter, 2011; Umstatter et al., 2013).
Although some improvement to flexibility was made possible by the invention of
single-strand electric fencing, further developments are urgently required to

optimise management protocols, improve ease of allocation, and reduce labour.
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Electric fencing relies on each individual animal forming a cue-consequence
association between the visual cue of the fence structure (fence posts and wire)
with the negative stimulus of a mild electric shock. Although this method is
effective, erecting and maintaining fencing is both time and labour intensive
(Umstatter et al., 2015a). Yet, a number of studies have demonstrated that
domesticated cattle can respond to a variety of visual and auditory sensory cues
(Howery et al., 2000; Lee et al., 2007; Umstatter, 2011; Umstatter et al., 2013).
Accordingly, virtual fence (VF) systems have sought to utilise novel sensory cues
in the formation of cue-consequence learning (Bishop-Hurley et al., 2007;
Campbell, 2019). Virtual fencing can be defined as a structure or system which
acts as a boundary or enclosure, in the absence of any physical barrier
(Umstatter, 2011). Various types of VF system have been developed and
examined, utilising wearable technology upon a variety of livestock across a
range of agricultural settings (Butler et al., 2004; Bishop-Hurley et al., 2007;
Jouven et al., 2012; Umstatter et al., 2013; Brunberg et al., 2015; Monod et al.,
2009). However, the overwhelming majority of these studies have focused on
rangelands, where can freely roam over large areas. Currently, while a small-
scale VF system approach has been effectively utilised to contain domestic pets,
few have been put in place to prove if a VF system is a feasible and welfare
friendly means of controlling animal movement in a small-scale intensive farm
(Umstatter, 2014). However, recently there has been two commercially VF
systems that have become available to the general farming public (Nofence AS,
Batnfjordsgra, Norway & Agersens, Victoria, Australia)

The successful implementation of a VF system into a working farm can

potentially be complex and fraught with technical challenges, such as network
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communications, differential system interfaces, farm topography, precision
confinement, energy supply, animal welfare and training (Umstatter, 2011). In
addition, although the installation of an induction cable fence line is less labour
intensive than erecting and moving electric fences on a frequent basis, labour is
associated with burying of cables and GPS based systems could potentially
eliminate the need for such cabling entirely. Particularly as systems which rely on
buried cables can also be labour intensive to establish and reorganise.
Accordingly, VF systems which do not require perimeter cabling could provide a
beneficial solution for farmers needing to move fences on a frequent basis, such
as in strip grazing (Umstatter et al., 2015a).

Within intensive pasture-based systems, VF requires a management
system to dynamically deploy and move boundaries, depending on herd size and
available grazing resources. The system should allow managers to increase,
decrease, or provide completely new areas of pasture by redeploying the VF
boundary. Additionally, to be truly successful, the VF system must be applicable
to the full herd, a subset of the herd, or even an individual animal as dependent
upon grazing requirements. It could be envisaged that e.g some herd members
may have larger or separate grazing areas to other animals, such as in-calf cows
or bulls. To be truly dynamic a VF system should not need to rely on perimeter
cabling, which can be expensive and labour intensive to establish and redeploy.
But it is imperative that the VF system is understood by the animals, as ambiguity
in relation to boundary areas can cause a significant negative impact in terms of
stress, which has been shown to reduce milk yield and weight gain in dairy cows

(Hedlund & Lgvlie 2015; Adamczyk, 2018). Therefore, the location of the
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boundaries of a VF system, within which cows are contained, must be effectively
communicated to each individual animal.

Although electric fences are routinely used for controlling livestock, the use
of electric stimuli has become less ethically acceptable for many stakeholders,
scientists and a larger proportion of the general public (Umstatter, 2011). As VF
systems require wearable technology, systems should aim to utilise warning-cues
that reduce the need for aversive electric stimuli. Key is to establish a cue-
consequence association to ensure animal welfare (Spitzer, 2017). Therefore,
the development of a suitable training programme, which can be easily
implemented by the farmer to quickly familiarise livestock with the VF system is
required (Umstatter, 2011 Koene et al., 2016).

In our study, we aimed to: (a) develop and deploy a user-friendly VF system,
which did not rely on perimeter cabling, to retain small groups of grazing dairy
cows within a pre-defined grazing allocation; and (b) evaluate the concept of VF
without visual cues in terms of (i) the retention of dairy cows by a VF with the use

of warning stimuli alone; and (ii) animal behaviour as an expression of welfare.

5.2. Materials And Methods

All experimentation was completed at the Animal and Grassland,
Research and Innovation centre, Teagasc Moorepark, Ireland (50°7N; 8°16W),
and approved by the Teagasc Animal Ethics Committee under the European
Union (Protection of Animals used for Scientific Purposes) (Amendment)

Regulation 2013.
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5.2.1 Technical Description Of The Virtual Fencing System

The cow-collar

Many animal management systems employ wearable technologies, which are
most often deployed in the form of a collar. Accordingly, the VF prototype
designed and developed in this study utilised a collar based system. The collar
consisted of a housing-unit (HU) and a 75 mm wide nylon based laminated strap
to facilitate attachment to the animal. The HU (174 mm L x 131 mm W x 105 mm
H; 1132 g) was constructed from a high density polymer and contained the
system electronics, microprocessor and a four pin block connector, which acted
as a combined re-charge port and a firmware upgrade port. The electrodes
(stainless steel braids; 100 mm L x 10 mm W) for delivery of the electric stimulus
were located at two points on the collar strap. Both the collar strap and HU were
treated with waterproofing spray and targeted silicon barrier use, to minimise
moisture ingress to the components. Equally, the collar strap incorporated a
cabling pocket to facilitate cabling for communication between the HU, the
electrodes and a GPS with a DGPS (Differential Global Positioning System)
receiver. The GPS and DGPS receivers were located at the highest point on the
collar to permit best view of available GPS satellites (i.e. both receivers sat on
the dorsal side of a collared cow’s neck, with the HU located 180° below, at the
ventral). The GPS receiver chosen for the project was a MediaTek MT 3711
(MediaTek USA Inc., Woburn, Massachusetts, USA) with a DGPS custom
firmware option loaded for both SBAS (satellite-based augmentation system) and
RTCM 104 protocol (Radio Technical Commission for Maritime Services). The

receiver was controlled by the unit microprocessor.
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A light-weight LiPo power solution was selected for storage capacity (4400 mAh;
achieving a design life with average consumption of 3 - 4 days) and short re-
charge times. In order to enhance precision and accuracy of the VF system, a
permanent reference point, utilising a DGPS reference station, was established

on-site at Moorepark using a Trimble 4000 series GPS receiver.
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Figure 5.1: Topology design for the communion infrastructure of the virtual
fence VF system.. The communication methodology linking the operator, base
station and the VF collar on the cow using channel 1. Channel 2 describes the
implementation of the DGPS correction via the DGPS receiver system and the

VF collar on the cow.
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5.2.2 The Radio Data Network

The Ultra High Frequency (UHF) 433 MHz radio band (designated as Channel 1
for this study) represented the cow based network over which all traffic data
(except DGPS data, which was sent over at the UHF 900 MHz band, i.e. Channel
2) was passed to and from the cow. These bands were operated within the ISM
(i.e. the industrial, scientific, and medical radio bands). However, given the
limitation of the ISM bands, a robust methodology was used at an on-air rate of
9600 Bits s'. The typical usage may be described as follows: a command
message was passed to the cow, to which the cow responded (i.e. once an
individual command was received, the collar acknowledged receipt), and a notice
of command completion was then sent to the control station, where an operator
used a Personal Computer (PC) and keyboard to issue commands or access the
system logs. Base station power requirements were supplied by the national
electric system and an Uninterruptible Power Supply (UPS) backup system was
provided for the control station equipment and the reference DGPS station (figure
5.1).

Command messages could be addressed to the herd as a whole or to each
individual separately. Initially, however, when the command message was
addressed to the herd as a whole, an acknowledgement was not returned, as
data collisions occurred when responses were transmitted almost
simultaneously. To address this, a unique transmission delay (circa 5 — 20 ms)
was included on each collar, and this permitted acknowledgements to be
received. Typical examples of commands sent in real-time by an operator
included: (a) activation or deactivation of the VF as required; (b) arm/disarm a

single or combination of selected stimulus options (audio, tactile, electrical
116



shock); or (c), a housekeeping command requesting position, battery life and
other data. All traffic on Channel 1 was logged by the system, and this provided
a record of the number and type of stimulus a cow received and the cow position

when the stimulus was delivered.

The confinement of DGPS data to the 900 MHz band (Channel 2) allowed
for a separate receiver (carried by each animal) to receive satellite corrections.
The rationale for this approach was primarily a data traffic consideration. DGPS
data was transmitted every second in approximately 400 ms bursts. This
occupied a significant proportion of the available airtime on the channel, and
given the requirement to have command messages sent from both the control
station and an in-paddock, mobile command interface asynchronously (i.e. on
independent timelines), a separate data channel for DGPS was considered

appropriate.

5.2.3 Mobile Command Interface

In addition to the use of a PC, it was also considered necessary that an
operator should have remote in-paddock control of the VF system for
experimental purposes. A smart-device application (i.e. phone or tablet App) was
developed to send commands to a mobile control station. Both the UHF radio
band and DGPS networks successfully transmitted data up to 1 km. Moreover, to
facilitate greater levels of mobile connectivity, secondary relay points could also
be deployed to suit local topography and increase the network communication

range. A smart protocol was used so that data collisions between an operator at
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the control station and an in-paddock operator did not occur. The App developed
to achieve this used an android operating version 4.3 or later. Both the field based
radio network elements and the cow-borne hardware were designed to meet IP67

standards.

5.2.4 Data Logging

Raw GPS data was processed using a standard firmware library. Selected
outputs of latitude, longitude, altitude, SBAS status, DGPS status, satellites, date,
time, individual cow identification, and alert stimulus options, were produced.
These data were then sent to the operator via Channel 1 when requested,
together with other metrics such as battery status. All items of data traffic to and
from each cow was logged (utilising TeraTerm® open source data management
software, Tera Term Project, Japan) at the base station by a dedicated receiver
and PC, time stamped with sub-second precision. All data were saved to a
dedicated drive as self-generating log files in .csv format. Equally, this time-
stamped record of all data traffic ensured ethical and animal welfare procedures
were adhered to. Equally, each time the VF system was revised, an
acknowledgement that the new coordinates had been successfully implement

was received from all active collars.

5.2.5 Deployment Of Virtual Fencing Without Visual Cues; Proof Of

Concept

The operating capability of the VF system was examined on a daily basis

(prior to proceeding with experimental trials) for robustness of the communication
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infrastructure, by monitoring the Bit Error Rate (BER); once this was below the
acceptable threshold the system was deemed robust. Any identified
shortcomings of the VF system (e.g. electronics, battery longevity, GPS accuracy,
and suitability of the collar strap) were subsequently corrected. All collar stimuli
were delivered manually by an operator via remote control to ensure that the
behaviours shown by the cows were a direct result of the cue applied. Upon
delivery, the exact time was noted and this was then later checked against the

time-stamped record held within the collar.

5.2.6 Assessment Of Audio And Tactile Warning Stimuli

Initially, cow response to both the audio and tactile warning stimuli, and the
adverse stimulus (electric shock) during a boundary challenge event, i.e. an
attempt by an animal to cross an active VF boundary line, was assessed. A small
experimental paddock was enclosed on three sides with electrified, single-strand
wire fencing. The remaining fourth side utilised the VF system as a boundary.
The area within these boundaries was considered the ‘inclusion zone’ (52 m L x
21 m W), while the larger paddock area directly beyond the VF was the ‘exclusion
zone'. The inclusion and exclusion zones combined had an area of circa 0.51

hectares.

Twelve non-lactating, multiparous Holstein Friesian dairy cows were
selected from the Teagasc, Moorepark dairy herd. All twelve cows were fitted with
a VF collar and randomly divided into two groups of six cows each: Group A and
Group B. Only one cow was placed within the inclusion zone at any one time,

entering at the furthest point from the VF boundary. When an individual cow from
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Group A challenged the VF boundary, it was exposed to an audio warning (120
dB for three seconds) followed by a single electric shock (0.8 kV). In contrast,
individuals from Group B were exposed to a tactile warning (vibration for three
seconds) followed by a single electric shock. Animals within the experimental
paddock were observed at all times by two operators from a concealed location.

A boundary challenge was defined as a cow moving to within 0.5 m of the
central VF boundary line. The reactive behaviour of each animal on receiving the
warning and/or adverse stimuli were classified into five categories: (1) no
response; (2) halted; (3) halted, then moved quickly forward almost immediately;
(4) halted, then moved quickly backwards almost immediately; and (5) halted,
then slowly turned back. If a cow did not voluntarily approach the VF boundary
within 15 minutes post commencement of the trial, the animal would be slowly
herded at walking pace towards the VF boundary, but was not herded across it.

Each animal was given two opportunities to challenge the VF boundary.
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Position

5m

Figure 5.2: Map of experimental arena. The virtual fence (VF) boundary line
‘Boundary A’ was deployed for Experiment 1, and redeployed as ‘Boundary B’
for Experiment 2. Equally, ‘Boundary C’ was deployed for Experiment 3. The

area beyond these boundary lines was considered to be the exclusion zone.
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Table 5.1: Description of the utilisation of visual cues, combined audio warning

cues and adverse stimulus, and audio warning cues alone, or lack thereof, for

Experiment 1: Implementation of a basic cow training protocol; Experiment 2:

Relocation of the virtual fence boundary line; and Experiment 3: Learning

evaluation. Where a double dose (i.e. x 2 doses) was given, these were

separated by a two second interval. See Methods text for greater experimental

detail.
Exposure Day Visual Cue Stimulus Received *
Experiment 1
1(a & b) No boundary None given
2a Boundary A: visual cue = WNFT Audio cue + Adverse stimulus x2 (1,2)
Subsequently Audio cue only
2b Boundary A: visual cue = WNFT Audio cue + Adverse stimulus x2 (1,2)
Subsequently Audio cue only
3a Boundary A: visual cue = WNFT Audio cue + Adverse stimulus x1 (1,2)
Subsequently Audio cue only
3b Boundary A: visual cue = GSW Audio cue + Adverse stimulus x1 (1,2)
Subsequently Audio cue only
4a Boundary A: visual cue = GSW Audio cue + Adverse stimulus x1 (1,2)
Subsequently Audio cue only
4b Boundary A: visual cue = none Audio cue + Adverse stimulus x1 (1,2)
Subsequently Audio cue only
5(@&b) Boundary A: visual cue = none Audio cue only
Experiment 2
6a Boundary B: visual cue = GSW Audio cue + Adverse stimulus x1 (1)
Subsequently Audio cue only
6b Boundary B: visual cue = none Audio cue + Adverse stimulus x1 (1)
Subsequently Audio cue only
7 (@ &b) Boundary B: visual cue = none Audio cue only
Experiment 3
8(a&b) Boundary C: visual cue = none Audio cue only
9(@a&b) Boundary C: visual cue = none Audio cue only

*x1 =1 dose; x2 = 2 doses; (1) = 15t Boundary Challenge; (2) = 2"¢ Boundary Challenge; WNFT =

white nylon fencing tape; GSW = grey steel wire
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Table 5.2: Descriptions of behavioural characteristics displayed by the cows in

accordance with Schirmann et al. (2012). In this study, due to low observation

counts, associated behaviours were combined to produce three main behaviour

categories.
Behaviour  Abbrev Combined o
_ Description
Type Behaviours

Stand + SR Stands on four extended legs + chewing food

Ruminate boluses
Stand :

Stand + s Stands on four extended legs + all behaviour

Inactive except ruminating, e.g. sleeping or vigilance

Lying + L :

. LR Any position lying down + chewing food boluses
Ruminate
Lying
Lying + L Any position lying down + all behaviour except
Inactive ruminating, e.g. sleeping or vigilance
. Head held close to the ground + continuously grazing
Grazing G o . ] )
while either standing stationary or moving slowly
. Pacing too fast to graze, with head held in a raised
Walking w GWD N
position
Drinking D Drinking water at water trough + time taken

between gulps
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5.2.7 Test Of The Efficiency Of A Cow Training Protocol For Use With A
Virtual Fence System And Evaluation Of The Concept Of VF Without

Visual Cues

The introduction of a training protocol was informed by the results of the first
deployment. Therefore, only the audio warning stimulus was retained for further
experimental work. This was deployed in conjunction with the adverse stimulus.
The experimental paddock, utilised during the training study, was subdivided into
two inclusion zones: Zone 1 (191 m?) and 2 (374 m?). The remainder of the
paddock was considered to be the exclusion zone (Figure 2). The external
boundaries of Zones 1 and 2 and the exclusion area consisted of electrified,
single-strand wire fencing and/or wooden fencing. The training protocol involved
two experiments over seven days: Experiment 1 (Days 1-5) and Experiment 2
(Days 6-7). Evaluation of the VF was conducted in Experiment 3 (Days 8-9),
which utilized Zone 3 (975m?; see Figure 2).

A first test of a training protocol was conducted on a small number of cows
due to availability of experimental animals and the time pressure of being close
to the end of the vegetation period. Nine non-lactating multiparous Holstein
Friesian cows, which had not been previously exposed to the VF system, were
used. The nine cows were randomly divided into three groups of three individuals:
Groups 1, 2 and 3. Each group was trialled successively and independently of
the other groups. Cows proceeded directly from Experiment 1 to Experiment 2 to
Experiment 3. All animals were allowed to acclimatise to wearing the VF collars
for a seven-day period prior to experimental commencement. Collars were fitted

and removed daily for both the seven-day acclimatisation period and the
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subsequent seven-day experimental period. All animals were also examined for
signs of lesions or rubbing caused by the collars.

To incentivise the cows to challenge the VF boundary, all zones were
managed such that grass availability was always greater in the exclusion zone
relative to all inclusion zones. The grass heights were recorded daily using a
Jenquip rising-plate meter (Agriworks LTD, Feilding, New Zealand) pre and post
the experimental period. To ensure cows achieved their nutritional requirements
within every 24 h period, cows were placed in holding paddocks outside of the
experimental period. To prevent the cows from gorging during non-experimental
periods, grass allocation within the holding paddocks was based on dry matter
(DM) availability, such that the combined DM of the experimental and holding

paddocks would not exceed the animals’ daily DM hr' grazing requirements.

5.2.7.1 Experiment 1: Implementation of a basic cow training protocol
Experiment 1 was conducted for a five day period (Day 1 — 5) from 11:00 —
16:00, daily. Each experimental day was further split into two half-days of an
equal 2.5 h duration (e.g. Day 1a = 11:00 — 13:30; Day 1b = 13:30 — 16:00; see
Table 5.1). On Day 1, Group 1 cows were allowed to move freely across the entire
experimental paddock, i.e. combined inclusion and exclusion zones. Cows were
then restricted to the combined area of Zones 1 and 2 on Day 2a, 2b and 3a. This
was achieved by using a visual reference for the active VF boundary, a strip of
white nylon fencing tape (WNFT; 710 cm L x 30 mm W) was placed on the ground
to enable animals to identify the centre line of the active VF (Boundary A; Figure
2). Subsequently, on Day 3b and 4a, the WNFT was replaced with a strip of grey

steel wire (GSW; 710 cm L x 2.5 mm W). Following this, on Day 4b, 5a and 5b,
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the GSW was removed and no visual reference depicting the centre line of the
VF was supplied to the cows.

To develop an association between the audio warning stimulus and the
adverse electric shock stimulus, when a cow approached Boundary A on Day 2a
and 2b the animal received an audio warning followed by the adverse stimulus.
This delivery of the audio and aversive stimuli was repeated twice (within 2 s) on
both the first and second boundary challenge made by an animal (Table 5.1).
This was done to rapidly enforce the cue-consequence associate from
commencement. Following this, for any subsequent boundary challenges made
by cows on Day 2a and 2b, the animal only received the audio warning stimulus.
On Day 3a, the animal received the combined warning and aversive stimuli once
for both its first and second boundary challenge, and only the audio warning cue
for any subsequent boundary challenges. This protocol was repeated on Day 3b
and 4a during the utilisation of GSW as a visual cue, and again on Day 4b when
the GSW was removed (Table 5.1). This was done to reinforce the cue-
consequence association for the cows on a daily basis. On day 5a and 5b the
cows only received an audio warning if they challenged the VF boundary, and did

not receive an adverse stimulus.

5.2.7.2 Experiment 2: Relocation of the virtual fence boundary line

On Day 6a cow response to the redeployment of the VF boundary was
examined. Cows were restricted to Zone 2 via activation of Boundary B (Figure
2). Once again, the GSW was provided as a visual reference point for the
animals. However, the GSW was removed on Day 6b, 7a and 7b, with no visual

reference provided. On Day 6a and 6b the animals received the combined
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warning and adverse stimuli for their first Boundary B) challenge event, and an
audio warning only for any subsequent boundary challenge. On Day 7a and 7b,
animals only received an audio warning if Boundary B was challenged (Table

5.1).

5.2.7.3 Experiment 3: Learning evaluation

To evaluate the extent to which the animals retained an awareness of the
cue-consequence association between the audio warning and the aversive
stimulus, Group 3 animals were subsequently placed together in an additional
inclusion Zone 3, on two consecutive days (Days 8 and 9) (6 h: 11:00 — 17:00).
The animals were not supplied with a visual reference depicting the centre line of
the VF boundary. Animals only received an audio warning if they challenged the

boundary (Table 5.1).

5.2.7.4 Data collection

The total number of boundary challenges and the subsequent animal
response was recorded on each half-day. Change in behavioural characteristics
displayed by the cows on each half-day was used to assess the success of the
training protocol and its impact on animal stress levels. All behaviour
characteristics displayed by all cows were recorded in accordance with
behavioural traits described by Schirmann et al. (2012; Table 5.2). Due to very
few counts, the behaviours of ‘grazing’, ‘drinking’ and ‘walking’ were combined to
create a single category ‘GWD’, while ‘stand + ruminate’ and ‘stand + inactive’
became ‘Stand’. Equally, ‘lying + ruminate’ and ‘lying + inactive’ were combined

as ‘Lying’. Cow behaviour was observed for the duration of every experimental
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period (5 h) by two trained operators. Instantaneous scan sampling at 10 minute
intervals was utilised to collect 30 scans for each individual cow per day during
Experiments 1 and 2, while 36 day behavioural scans/day were collected for each
individual cow in Experiment 3. The location of each cow within Zone 3 was
recorded with each scan sample. This was achieved by dividing Zone 3 into three
equal sections (A, B and C; each of 0.03 ha), the boundaries of which were
denoted by a red mark on timber posts, visible to the experimental operators
(Figure 5.2). To encourage cows to graze the entire Zone 3 area and challenge
the VF boundary, DM availability across Zone 3 was kept exceptionally low.
Operators were able to differentiate between individual animals by the differently
coloured VF system collars when recording behaviours displayed and boundary
challenges made.

In all instances, for all experiments, cows were manually and immediately
reintroduced to the inclusion zone by an operator when they moved beyond the
bounds of the VF. On days with extreme weather conditions and particularly wet
days (n = 2), no experimental work was carried out in order to avoid behavioural

bias due to environmental influences.

5.3 Results
Proof of Concept

The operating capacity of the wearable cow-collar and the
communications infrastructure proved to be robust over the duration of the
experimental work. The cow-collars and on-farm infrastructure remained
impervious to environmental conditions and functioned as desired. Moreover, no

lesions or rubbing from the collars were observed on cows. Cow-collars were
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charged nightly and performed as required. The main power requirements for the
cow-collar included the combined GPS/DGPS receiver (circa 60%), the

microprocessor control unit (circa 20%), and the stimulus unit (circa 5 - 20%).
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Figure 5.3: Total number of virtual fence (VF) boundary challenges made by
dairy cows during Experiment 1, Day 2 — 5, and Experiment 2, Day 6 — 7 (A).
Total number of boundary challenges made resulting in the combined cue-
consequence stimuli (i.e. audio warning and adverse stimulus; B). Total number
boundary challenges resulting in delivery of the audio-warning only cue alone

(C). See also Table 5.1.
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These power requirements varied between a 15 - 150 mA drain on the
battery. The collars were observed to be accurate at circa 10 — 50 cm. In all cases,
the stimuli recorded manually by the experimental operators was similar to the

record stored within the cow-collar.

5.3.1 Warning Cue Assessment

It was established by observing cow reactions, that all animals responded
to both of the combined stimuli options (i.e. audio warning and the adverse
electric shock; tactile warning and the adverse electric shock), as the behaviour
of all 12 cows noticeably changed on receipt of the stimuli. In most instances,
cows initially halted and then ran forward across the VF boundary in response to
both treatments. Upon the second boundary challenge event, when Group B
animals received only a tactile warning stimulus, five (83.3%) animals displayed
no alteration in behaviour. These animals did not halt, turn back, or move forward
at a faster pace. However, five cows from Group A displayed a clear alteration of
behaviour upon receipt of the audio stimulus. Therefore, it was considered that
the audio warning was more effective than the tactile stimulus for inducing a
behavioural change. Accordingly, only audio warnings were used in the

subsequent experiments.

5.3.2 Experiment 1: The Training Protocol

The total number of VF boundary challenges made by the dairy cows
decreased with each half-day of exposure during utilisation of visual cues (Days
2a—4a; Figure 5.3 A). Equally, few cows subsequently re-challenged the VF after

receiving the audio warning-cue coupled with the adverse stimulus, while visual
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cues were present (Days 2a—4a; Figure 5.3 B, C). However, those which did were
successfully retained by the audio warning cue (Days 2a—4a; Figure 5.3 C). Post
Day 2a and 2b, the audio warning cue combined with the adverse consequence,
and the audio warning cue alone, prevented all cows from crossing the VF
boundary (Days 3a—4a; Figure 5.3). However, the number of boundary
challenges made by cows increased upon removal of the visual cues (Days 4b—
5b; Figure 5.3), while successful detention of cows within the VF decreased by

up to 50% (Day 4b-5b; Figure 5.3).
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Figure 5.4: Observed dairy cow percentage time allocated to behaviours of
‘GWD'’ (i.e. grazing, walking and drinking), Lying and Standing (see Table 5.2),
throughout the duration of acclimation day (Day 1), Experiment 1 (Day 2 — 5),

and Experiment 2 (Day 6 — 7). See also Table 5.1.
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Figure 5.5: Observed dairy cow percentage time allocated to Sections A, B and
C within Zone 3 over the six-hour experimental period (11:00 — 17:00) on Days

8 and 9, based upon 36 instantaneous scan samples per day.
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While the number of boundary challenges decreased with each half-day of
exposure during utilisation of visual cue, scan samples indicated that time spent
GWD by the dairy cows also decreased, from circa 62% to 16% over this period
(Day 2—4a; Figure 5.4). In particular, time spent standing increased between
Days 2—4a, from circa 13% to 43%. However, time allocated to GWD increased
to circa 40% of the observed dairy cow time budget, upon removal of the visual
cues (Days 4b-5; Figure 5.4). Time spent standing remained high, circa 40%,
when compared to ‘Stand’ times observed at the beginning of this experiment

(Days 1-5; Figure 5.4).

5.3.3 Experiment 2: Boundary Relocation

Upon initial redeployment of the VF from Boundary A (Experiment 1) to
Boundary B, highlighted to animals via utilisation of GSW as a visual cue, no
boundary challenges were made (Day 6a; Figure 5.3A). However, the complete
removal of visual cues resulted in an increased number of boundary challenges
(Days 6b-7b; Figure 5.3A).

Scan samples indicate that cow GWD behaviour remained at moderately
low levels upon redeployment of the VF boundary (Days 6a-7), while ‘Lying’
behaviour increased up to circa 47%, and time spent standing decreased to circa
20% (Days 6a; Figure 5.4). However, upon removal of the visual cue, observed
‘Lying’ behaviour greatly decreased to circa 14% of the cows’ time budget, while
time spent at ‘Stand’ greatly increased to circa 52% (Day 6b; Figure 5.4). On the
last day of the experiment, time spent ‘Lying’ and at ‘Stand’ equated to 75% of

dairy cow time budgets.
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5.3.4 Experiment 3: Learning evaluation: Redeployment and Recollection of
Cue-Consequence — Zone 3

To evaluate the extent to which dairy cows retained an awareness of the
cue-consequence association when moved to a novel area, Group 3 cows were
moved to Zone 3 for two days immediately post cessation of Experiment 2 (i.e.
Days 8 and 9; Figure 2). In total, nine VF boundary challenges were made on
Day 8, and ten challenges on Day 9. The audio warning cue successfully
prevented cows crossing the VF boundary on only 22% and 20% of VF these
challenges, respectively.

Overall, the cows spent circa 84% and 77% of their collective time budget
within Section A of Zone 3 on Days 8 and 9, respectively (Figure 5). Cows
displayed a similar behavioural budget of circa 33.5% GWD, 44% Lying; 22.5%

Standing on both Days 8 and 9.

5.4 Discussion

Virtual fence technology can be a useful tool for those who need to restrict
livestock movements. Here, our prototype VF system of a wearable cow-collar,
linked to a server for the purpose of processing changeable user commands and
redeployment of VF boundary lines in a user-friendly manner, was effectively
utilised in a non-automated trial, upon a realistic intensive dairy farming scenario.
Although only three cows were used per experimental unit, with animals
incentivised to move beyond the VF boundary for improved foraging
opportunities, the allocated spatial areas in Experiment 1 and Experiment 2 were

in excess of normal stocking densities, e.g. circa 100 m? cow' at a DM availability
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of 1500 kg hectare'. This equates to approximately 2.6 cows/ha. However,
provision of larger grazing areas is typical of low DM availability.

The VF system deployed in this study fully auto-saved all data with a time-
stamped record and animal ID. This can be used to ensure all ethical and animal
welfare procedures are adhered to, and represents an opportunity for greater in
situ farm animal welfare monitoring. However, to ensure precise timing of stimuli
application, further development of our VF system to prevent data collisions when
multiple cow-collars simultaneously transmit data is required. Additionally, our
data transmission infrastructure, communication network and wearable cow-
collar, could be further developed and deployed for animal location tracking,
motion sensing, health and welfare monitoring, and automated ID logging at
milking parlour stalls. Equally, the communication network developed during this
experiment could possibly allow for the deployment of a range of on-farm
sensors.

VF systems rely on animals quickly associating a warning cue with
boundary encroachment, and a subsequent adverse stimulus. While the VF
system was successfully deployed, the response of the dairy cows to the
proposed VF training regime was less than optimal. As reported by a number of
studies (e.g. Umstatter et al., 2013; Koene et al., 2016, Campbell et al., 2019),
we observed that an audio warning combined with a corrective stimulus can
rapidly facilitate a cue-consequence association. The cows appeared to quickly
associate visual cues with the boundary line of the VF. In particular, boundary
challenges decreased over the duration of Experiment 1, when visual cues were
present. However, upon complete removal of the visual cues, the number of

boundary challenges greatly increased. In addition, at the beginning of
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Experiment 2, with the reinstatement of a visual cue, no boundary challenges
were made. Once again, however, upon removal of visual cues the number of
boundary challenges increased. Similar rapidly learnt associations of visual cues
and an adverse stimulus have previously been recorded in cattle (Umstatter et
al., 2015b; Koene et al., 2016). In particular, Umstatter et al. (2015b) observed
that once cows became familiar with the VF system, the animals appeared to use
the visual cue of the perimeter cable for boundary orientation, rather than the
audio warning cue. Accordingly, visual cues may provide for a stronger
reinforcement than the audio warning. Notably, to facilitate cow familiarisation
with a VF system, Koene et al. (2016) used an electric wire as a visual cue over
a six-day training period. However, although Koene et al. (2016) discussed cow
behavioural changes in relation to the VF system, no data concerning success of
cow containment by the VF system was presented. Interestingly, in our study, the
vibrating tactile warning stimulus did not induce a behavioural change for almost
all of the examined cows. Overall, this may reflect an innate reliance of herd
animals upon visual and audio cues for predator avoidance, and spatial
orientation in relation to foraging opportunities and the location of the herd.
Despite the rapid pace at which the ‘steps’ of the training protocol
progressed (e.g. visual cues, boundary redeployment, combined cue-
consequence, or audio warning cue alone), the success of dairy cow containment
within the designated zones, whereby animals were deterred from crossing the
VF boundary, remained reasonably high during Experiments 1 and 2. Equally,
the response of cows in Experiment 2 would suggest that redeployment of
boundaries utilising visual cues is an effective method to convey boundary

changes to cows. However, removal of the GSW resulted in several instances of
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cows crossing the VF boundary despite receiving full cue-consequence stimuli.
Moreover, the boundary challenge behaviour of cows assessed in Experiment 3
suggest that the audio warning cue-consequence association will break-down
within a novel area without some form of continual corrective reinforcement.
Accordingly, the development and deployment of more robust experimental
protocols are required to truly assess learning evaluation in dairy cows post
training exposure. In addition, as is suggested by Koene et al. (2016), a simpler
training protocol enacted over a longer duration may enhance cow cue-
consequence formation. Also, the inclusion of a trained cow to a group of novice
individuals may facilitate peer-to-peer learning. Smaller training zones, which
would force cows to challenge the VF boundary in a more consistent and
systemic way, may also be beneficial for improved cue-consequence association.

Individual cows are likely to learn at different speeds. Similarly, each cow
will likely be exposed to the cue-consequence at different rates, as individuals will
likely vary in their motivation to leave the inclusion zone (i.e. challenge the VF
boundary). For example, greater grass availability within the inclusion zone may
further reduce the number of boundary challenge attempts. Accordingly, strip
grazing may place excessive pressure on the animals due to the limited grass
availability in that system. Audio warning cues emitted from the cow-collar may
be problematic for animals to associate with an exact VF boundary, due to their
possible inability to pinpoint the locational direction to which the cue pertains.
Equally, as the audio originated from the ventral of the animals neck, this may
not support the learning process to avoid an area in front of the animal. This may
explain some instances of VF boundary crossing documented by this study,

whereby cows quickly moved forward rather than backward. Such a response
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has also been noted in other studies in which audio cues were used (Lee et al.,
2007; 2009). Interestingly, as described by Lee et al. (2007), application of stimuli
based the animal’s directional movement rather than their exact location may
allow cattle to learn the association between its behaviour of crossing a VF
boundary rather than merely challenging the line due to spatial proximity.
However, despite this, other mechanisms for the delivery of warning cues need
to be examined. Further in-depth experimental work is required to evaluate if dairy
cows truly learn the principle of the VF system, rather than simply display
avoidance behaviour of a perceived threat. In more detail, Campbell et al. (2019)
found that animals learned to respond to the audio cue, however, “this may have
been socially-facilitated avoidance learning in addition to associative avoidance
learning”. The concentrated use of Section A within Zone 3 in our study, despite
limited grass availably (240kg/DM/ha), suggested that the cows were
uncomfortable grazing near or approaching the VF boundary. Although, as
mentioned, the majority of boundary challenges during Experiment 3 failed to be
deterred by the audio warning alone.

In addition, the audio warning cue was observed to have a contamination
effect across the groups, whereby animals responded to audio cues broadcast
from other individual’s collars. Experimental operators recorded that in > 80% of
cases, the audio cue emitted from one cow-collar noticeably affected at least one
other individual within the groups, via, inter alia, head movement, cessation of
rumination or grazing, and even flight response (i.e. running away). Incidentally,
several instances of abnormal behaviour were observed. In particular, a number
of individuals repeatedly pushed others in the direction of the VF. This may have

been a display of dominance or an attempt to force other individuals to ‘discover’
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a safe route of passage through the VF boundary line. A general decrease in
grazing activity was observed across all three experiments following deployment
of the VF system, a similar cow behavioural change was documented by Koene

et al. (2016).

5.5 Conclusion

We effectively utilised wearable GPS technology to implement an
instantaneously deployable and changeable VF system without the need for a
perimeter cable. While our developed communications infrastructure was found
to be robust, the response of cows to our VF system was less than optimal.
Nevertheless, our results suggest that dairy cows kept within intensive strip-
grazing systems can be quickly and successfully trained to recognise VF
boundary encroachment via the cue-consequence association of an audio
warning and adverse stimulus. However, it appears that without continued
reinforcement this cue-consequence association can deteriorate. Furthermore,
the negative behavioural effects experienced by the cows in the experiment are
of paramount importance, as any future work will need to develop protocols to
minimise these negative effects on animal welfare. Overall, our results are
preliminary and further experimental work is required to truly assess best
implementation protocols for VF system without visual cues. In particular, further
evaluation of the time needed by dairy cows to learn to negotiate complex VF
systems is required. The use of visual cues may be counterproductive, leading to
competition in saliency of visual and audio stimuli. Equally, audio warning cues
broadcasted from the cow-collar may be problematic for animals to associate with

an exact VF boundary, due to their possible inability to pinpoint the locational
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direction to which the cue pertains. Therefore, other mechanisms for the delivery

of warning cues need to be examined.
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6.1 Overview

The research presented in this thesis has examined the potential for
capturing reliable herbage mass (HM) measurement (i.e. Dry Matter Yield) in
relation to compressed sward height (CSH), using an innovative, smart-device
linked micro-sonic sensor enabled RPM. Conversion equations were also
developed to support improved assessment, based on time of year and grass
type were also developed. Further, the RPM was designed to link captured
measurements with a geo-spatial dimension, thus allowing for improved real-time
decision making and optimised allocation of the grazing area needed to fulfil daily
herd requirements. In addition, grazing allocations can potentially be made
through a GPS enabled Virtual Fence (VF) system, for which this study developed
a working-porotype. Both of these devices confirm the rational of implementing
ICT enabled tools for optimisation of pasture based farming.

Initially, an automated data capture tool for the collection of HM was
developed. This device was based on the concept of the classic RPM, but was
innovated through the application of micro-sonic sensor and on-board geo-
locational technology. Moreover, the information captured by the RPM can be
successfully transmitted to a smart-device, through a wireless Bluetooth
connection, and displayed via an application interface. Communication and
integration of the data within an online grassland management DST, e.g. PBI,
was also successfully achieved.

Validation of the micro-sonic sensor enabled RPM was conducted to
assess the accuracy and precision of the device for the measurement of CSH
and geo-location positioning. The experimental results contained within this

thesis, have shown this ICT based tool to be a substantial improvement, in
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respect to device accuracy and precision, in comparison to the existing state of
the art technology, i.e. the ratchet counter RPM (Chapter 3). In addition, this
thesis has further advanced the availability of dynamic algorithms for the
conversion of CSH measurements to available HM, which incorporate significant
grass growth variables, such as month effect, DM and grass type. These
algorithms were integrated with the micro-sonic sensor enabled RPM, which is
now commercially available to farmers, researchers and stake-holder
organisations. It is envisaged that this device will further facilitate improved data
collection and aid informed grassland management decision making, i.e. data
driven decisions.

The second ICT grazing tool developed, as a result of this thesis, was a
functioning prototype for a VF system. Here, the aim was to design a system that
could be used to govern cow movement and grazing allocation through a
containment boundary line, without the utilisation of conventional fencing
systems. By integrating herd HM, captured with the micro-sonic sensor enabled
RPM and with online DST’s, it was envisioned that the VF system would guide
and contain the herd within an allocated area with the correct herbage allocation
(HALC), while also collecting geo-spatial information of individual cow movement.
The development and validation of the communications network, hardware and
firmware for the VF system was a considerable undertaking, though, the
implementation of different proof of concept designs. Initially, a working-prototype
of a VF system was assembled and installed. A detailed study of an animal
training protocol was then conducted. However, it was not deemed to be
successful as there were considerable issues regarding the cue-consequence

association for the cows involved in the experiment (Chapter 5). Correspondingly,
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however, a significant change in cow behaviour was observed, altering from a
large proportion of time grazing and/or ruminating to standing/lying inactive when
the fence was turned on. This indicated that there was a negative effect on cow
behaviour as a result of the VF being turned on.

Overall, however, the outcome of this thesis indicates that ICT has a
significant role to play in the future of grazing production systems. The approach
used in this study has allowed for the development of an ICT tool to aid farmers
in their capability to manage grass effectively through improved management
practices, through the provision of a real-time decision support tool. An important
factor identified for technology adoption by pasture-based farmers, is the
technology’s ability to provide a financial return on investment, be it in terms of
increased efficiency in relation to production, promotion of sustainability or direct
financial benefit. Yet, the development of systems that return meaningful decision
support to farmers will play a major role in grass-based milk production in the
future and are predicted to improve financial return (Hostiou et al., 2017; French
et al., 2015).

This chapter will summarise the contributions and in particular discuss the

insights from the results of the multi-disciplinary research of this thesis.

6.2 Thesis Findings

6.2.1 Micro-Sonic Sensor Enabled RPM

Until recently, grassland management was a ‘best guess’ scenario, with
farmers quantifying the available herbage intuitively, predominantly through
visual observation, and allocating grazing area to the herd accordingly

(O’Donovan et al., 2002a). This resulted in an underutilisation of grass, and often
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failed to capture the production performance of individual paddocks. Further, the
lack of data-driven decision-making has resulted in significant losses to the
farming enterprise in terms of efficiency, production and profitability (Hanrahan et
al., 2018). While this may not have created issues previously, with the modern
expansion of herd size, the application of visual observation may now be
insufficient for the enterprise to increase or even sustain profitability. Visual
observation is a time-consuming and laborious task and can only be conducted
by experienced operators (O’'Donovan et al., 2002b). However, as the
development of sensor technologies and ICT have progressed, the availability of
pasture-suitable sensors have improved. Currently, farmers have a variety of
technologies available for incorporation into ICT systems, such as grassland
DST, grazing behaviour monitoring systems and cow-borne accelerometer for
individual cow health monitoring, allowing for automated measurement of cow
performance in a grazing system (French et al., 2015). The missing link, to have
a holistic approach to smart-grazing, is the automated data capture of herbage
mass and subsequent allocation of grazing area. The development of ICT tools
for intensive grass-based production systems could potentially be a major
advancement for pasture-based farming practices (Eastwood et al., 2009).
Increasing, data available to farmers in relation to the performances of key
parameter, such as grass growth, soil quality, weather conditions, to aid
increased production and improved on-farm decision making can have a positive
effect for efficiency, and consequently, profitability.

Advisory services to farmer may also wish to consider developing
knowledge and expertise on the data generated by sensor systems so that

independent sources of advice and resources are available to farmers to improve
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the returns farmers make from investments into technology, and so drive the
adoption of beneficial technology. In addition to DST’s these could include
centralised information sources on technology efficacy, standard operating
procedures for using the technology and budgeting tools designed with
technology investment appraisal in mind (O’Leary et al., 2018).

During the research, development and validation stages of the micro-sonic
sensor enabled RPM product lifecycle, an assessment into the primary end users
(grassland farmers) requirements was conducted. This assessment was
completed through a comprehensive discussion with focus groups via the
Knowledge Transfer (KT) networks throughout Ireland. The objective of the KT
Programme is to inform and up-skill Irish farmers on best practice, to encourage
efficiency and effectiveness of work and ensure they engage in a process of
continuous improvement which will not only develop their enterprise but also
contribute the overall development of the agri-food sector. As part of their
commitment to the programme farmers attend regular meetings with their KT
Group (Bohan et al., 2017). After discussion with the participants at these
meetings the optimal product offering was derived. The primary requirement of
the micro-sonic sensor enabled RPM was to allow novice and inexperienced
grassland farmers a solution that could expedite the training and acquisition of
technical knowledge required to make informed grassland decisions.

An initial proof of concept was conducted where each element including;
the micro-sonic sensor, Bluetooth, GPS, microprocessor and the ease of
mechanical assembly were assessed through feed-back groups. After design
testing was deemed to be successful, the development cycle continued with the

laying out of technical specification, and feature set requirements, incorporating
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the findings of the research from pasture producer focus groups. During the
development process several prototypes were developed and thoroughly tested
for inadequate performance, such as sensor malfunction. A performance report
documenting “bugs” with the smart device application, device firmware and RPM
mechanical assembly was produced for each protype and used to improve
subsequent models. When a minimal viable product was produced, i.e. a product
with enough features to satisfy early adopters, a selection of receptive farmers
were selected to conduct an assessment on a working farm and provide
feedback. Upon receiving their comments, further improvements were made.
Before commercial release each element of the design was critically evaluated
by a team, expert in the operation of similar devices, any recommendations
deemed valid were implemented. Special attention was paid to the user
experience and ensuring that the operational process was as practical and
intuitive as possible. Ergonomics is the science that aims to learn about human
abilities and limitations, and then apply this learning to improve people's
interaction with products, systems and environments (Kadefors et al., 1993).
Ergonomics were also evaluated in relation to the product weight, ease of
operation and minimisation of operator fatigue. To facilitate this, alterations were
made to the design, e.g. the grip, and build materials that reduced weight but

maintained durability were selected.

6.2.2 Development of a Dynamic Algorithm for the Conversion of CSH

The study in chapter 4 confirms that a relationship between CSH and HM
can be measured using an RPM, and that CSH can be used an indication of HM.

However, from the literature, the relationship between CSH and HM can be
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described as variable, with RMSE values varying significantly (Lépez-Diaz et al.,
2011). In order to determine the relationship between CSH and HM, three
equations were developed in this study. All equations were acceptable for use
with RPM’s, although Eq. 1 provided the simplest formula to implement as it is
based on pre-cut CSH values alone. Yet, Eq. 1 was limited in its inability to
incorporate the type of ryegrass measured and time of year into its assessment.
Therefore, Eq. 1 was the least accurate or precise of the equations presented.
Yet, Eq. 1 would still be acceptable for on-farm herbage assessment. However,
both Eq. 2 and 3 incorporated ryegrass type and variation, in relation to time of
year, allowing both equations more accuracy. Eq. 3 had the added advantage of
including DM as a parameter. However, as the exact DM is not always available
to the operator in the paddock at the time of measurement, Eq. 3 is less practical
for most end-users.

From the literature, it had been difficult to achieve RMSE below 250 kg
DM-"ha™', with most equations generated accomplishing values closer to 300 kg
DM-" ha™' (Lopez-Diaz et al., 2011). However, from the work completed in this
study, equations have been generated that have been below 300 kg DM-' ha™.
The major development from the work of this thesis was the proof of concept that
the smart device application which receives data from the micro-sonic sensor
enabled RPM, can perform more advanced calculations in the conversion of CSH
to HM that previously was not practically achievable. After further assessment,
the most implementable equation developed from the study was Eq. 2 as the
parameters necessary for its application were type of ryegrass and month, both

of which are known to the operator in the field. Consequently, Eq. 2 has been
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combined with the micro-sonic sensor enabled RPM and is now being used

commercially.

6.2.3 Design, Implementation, and Associated Dairy Cow Behaviour within

a Virtual Fence System

One of the research aims of the thesis was the development of a working
prototype of a VF system that could be evaluated within an intensive grazing
system (Chapter 5). While existing VF systems can be deployed in rangeland
environments, a wire free VF system does not currently exist for intensive grazing
systems (Umstatter, 2011) However, VF technology for intensive strip-grazing
would be a useful tool for farmers that need to control livestock movements
remotely. This could also include the automated fetching of cows that are overdue
for milking within an automatic milking system (AMS). Further applications of VF
within AMS could facilitate the dynamic control of residency time of the cows in a
block to ensure that distribution of milking’s is optimised to minimise cow waiting
for access to the AMS, thus, fully utilising the performance potential of AMS by
maximising cow flow while minimising cow waiting times. In Chapter 5, our
prototype VF system of a wearable cow-collar, linked to a wireless network
communication system, for the purpose of transmitting and receiving user
commands and redeployment of VF boundaries was developed and tested.

The development of the VF working protype system was a considerable
task. In order to ensure cow comfort and welfare, several methods of attaching
the VF collar to the cow were investigated. Central to this was the selection of the
textile from which the collar strap was composed from. The material had to be

durable, IP 67 rated, and allow for the protected transfer of cabling from the
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electronic housing unit to the probes which delivered of the electric stimuli.
Cabling was also run from the DGPS receiver, which was placed at the top of the
collar, to enhance the device localisation. An essential welfare element for
consideration was to avoid abrasion between the textile and the cow’s skin.
Ultimately, a high-grade nylon strapping was selected, two pieces were stitched
together to allow for the transport of cabling and the fabric was treated with water
repellent solution. The textile did not compromise the integrity of the cow’s skin,
however, water ingress was still an issue in conditions of heavy and prolonged
precipitation.

During the experiments conducted to test the efficacy of the training
protocol design, every effort was made to minimise the stress caused to the cows
and to minimise any adverse effect. During the experiment detailed data was
collected by the VF system, such as stimulus delivery, cow location, device status
was saved with a time-stamped record and animal ID to ensure no negative
effects were experienced by the cows. The training protocol used can act as a
starting point for the further development of training protocols for effective VF

systems (Hedlund & Lovlee, 2015; Adamczyk, 2018).

6.3 Farmer Implications

The micro-sonic sensor enabled RPM has been commercialised and is
now available for purchase by farmers, researchers and research organisations.
Currently over 700 units have been sold across Ireland, UK, France, Germany,
Belgium, Switzerland and other EU countries, as well as NZ, Australia and South
Africa. This ICT tool allows an inexperienced grassland farmer, with minimal

training, to capture high quality data in relation to the HM availability on farm, thus
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enabling informed real-time decision making on grassland management. The tool
will capture pasture performance at farm and paddock level, allowing the user to
make informed grassland decisions, both long-term and immediate real-time,
such as identification of paddocks requiring reseeding, immediate assignment of
HA to a herd, respectively. An important innovation of the micro-sonic sensor
enabled RPM, is its ability to accurately map each paddocks’ productive areas
for grass growth, i.e. removing unproductive areas immediately adjacent to
paddock entrances and excluding areas around water troughs. It is critical for a
grassland manager to know the accurate area of productive grassland on the
farm, as this will dictate stocking rate, HA allocation, and fertiliser use. A further
feature within the smart-device application is the ability to virtually plot the fence
position for deployment of new fencing lines, e.g. strip-grazing, with the
appropriate allocation of grass required by herd. The associated smart-device
application can then be used to navigate the operator to set-up the fence in the
correct position, further minimising any guesswork by the farmer.

The development of equations for the prediction of HM from CSH (Chapter
4) in conjunction with the smart device application, affords farmers the ability to
use a site specific formula for on-farm calculations of HM for a range of different
conditions and periods of the year. This will increase the reliability of predicted
HM for the farm, thus improving the grassland decision making process. Further,
the integration of the micro-sonic sensor enabled RPM dataset with online DST’s
(e.g. PBI) is a significant first step in the creation of a whole farm smart grazing
technology system. The amalgamation of datasets from several on farm sensor
systems such as soil, weather, grass and cow performance allows farmers a

deeper understanding of the interaction of the different parameters of production
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on the farm (French et al., 2015). This collective data displayed via an easy-to-
use interface would make for a major advancement of the decision support and
performance reporting available to the farmer (Shalloo et al., 2018).

Although VF systems have recently become commercially available in both
Norway and NZ, the primary focus of these systems is still rangeland
management, and therefore, do not need the same resolution that an application
within intensive grazing production systems would need. However, the use of VF
would offer considerable advantages to intensive grassland farmers. For
example, the potential flexibility offered would allow farmers to implement more
dynamic grazing strategies(as it can be conducted remotely), particularly in the
spring, as the VF system could be used to further allocate or restrict pasture as
weather and ground conditions would dictate facilitating the use of a spring
rotation planner (Hanrahan et al., 2017).

The research conducted in this thesis has contributed to a recent trend of
deploying sensor technology in the form of DST linked RPMs. In general, while it
is expected that sensor technology will play a vital part in the sustainable future
growth of the agricultural industry there are a few obstacles to first overcome
(Shalloo et al., 2018). For the successful adoption of agricultural technology
within the farming population, farmers must be made aware of the benefits that
this technology can offer to their enterprise. To ensure the equipment is accurate
and independently validated, it should come from an independent research
organisation where the information disseminated to farmers is unbiased.
Furthermore, while many sensor systems are intuitive to operate, farmers do
need an appropriate level of understanding, but this is no more complicated than

the operation of an average off-the-shelf smart device. From personal
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experience, during the set-up process of a new micro-sonic sensor enabled RPM
with a farmer, the farmer had a good working knowledge of the system in under
one hour. This level of training guarantees that the sensor was operated correctly,
ensuring the accuracy of the data. Also, knowledge transfer in the interpretation
of the results and the use of DST’s to induce data driven decision making on the
farm is imperative to the successful use of sensor technology. Another important
element is farmer confidence in the accuracy of the technology. If there is
skepticism about accuracy of the sensor results, then the farmer will not trust the
data and most likely discard it. It is crucial that data is accurate and repeatable to
ensure high levels of adoption. The high accuracy reported in chapter 3 of the
data captured by the tool, combined with the real-time user feedback via the
smart device application allows operators to ensure that the device is operating

correctly, this encourages trust from the farmer.

6.4 Industry Implications

The ability of the micro-sonic sensor enabled RPM to capture an enhanced
dataset (CSH, time, date, latitude, longitude and ambient temperature) offers
commercial companies an opportunity to amalgamate this data with other sensor
data being collected on farm. The consolidation of all these data streams will
enhance DST outputs to framers. For companies that offer holistic farm
management packages, it will greatly influence their market share and
additionally, it provides them with valuable information on the utility of technology
deployed, determining if on-farm sensors can add additional value to the product

offering.
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Although VF technology would have considerable advantages to an
intensive grazing system and has the possibility to become a very successful
product offering for a commercial agricultural industry, considerable development
is necessary before a product solution can be commercially offered to the farming

public.

6.5 Research Implications

The ability of the micro-sonic sensor enabled RPM to record each measure
point with millimetre resolution while also including a geo-tag offers researchers
invaluable insights into sward dynamics. Furthermore, the capacity to upload a
.CSV file directly from the smart device significantly reduces the time and the
possibility of error that was previously necessary for the transcription of the hand
written record into a software package such as Microsoft Excel. Currently the
micro-sonic sensor RPM system is being used by agricultural research

organisations across Europe and NZ.

Further, automated geo-tagging of ground reference points can facilitate
calibration of herbage evaluation from satellite aerial imagery. Integration with the
communication network for the transmission of data from other in field sensor
technology e.g. grass quality sensors. The application of any grass height
measurement technique requires the operator to collect a sample size, within a
pasture, that is sufficient to ensure that the variation in grass height and HM is
accurately captured (Murphy et al., 2018). The smart device application
associated with the micro-sonic sensor RPM, coupled with the available GPS

technology, can facilitate assessment of intra paddock variations in HM therefore
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informing the operator when the necessary number of samples have been
achieved. Inter and intra paddock DMY can be mapped and assessed to inform
future fertiliser applications. Captured data can subsequently be uploaded to
online DST’s, which can allow for accurate pasture analysis and reporting of
pasture performance.

In addition, these ICT tools can potentially be linked to other grassland
technologies, to provide ‘smart-farm’ solutions through highly automated
systems. For example, based on Yahya (2018) employing technologies such as
drones, robotics, Internet of Things (IoT), vertical farms, artificial intelligence (Al),
and solar energy, systems could use machine learning to automation decision
making on farm and enact the decision. However is it important that care should
be taken that fail safes are built in not to cause major issue due to an incorrect
action being taken. Although the VF prototype developed and tested in this thesis
does not have immediate commercial potential, the data transmission
infrastructure developed during the experiment is now robust. This network can
be used to facilitate communication between wearable cow-collars to monitor
location tracking, motion sensing, health and welfare monitoring, and automated
ID logging at milking parlour stalls (Bhargava et al., 2018). The system can easily
be adapted to integrate sensor systems that can transmit real time data to the
base station and influence the actioning of parameters within an experiment. The
VF system deployed in this study fully auto-saved all data with a time-stamped

record and animal ID, ensuring all animal welfare standards were adhered too.
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6.6 Future Work
Optimising the operation of the Micro-sonic sensor RPM

Currently, there is no definitive sampling protocol for the use of RPMs.
Increased accuracy of the micro-sonic enable sensor RPM system could be
achieved by development of a more robust sampling protocol. The development
of a smart protocol that notifies the operator in real-time via the smart device
application about the correct resolution and distribution of samples to be taken in
the paddock would be of high utility to the operator as it could achieve labour
saving, which is currently the key limitation to grass measurement. Consequently,
this will result in a greater uptake in grass measurement, as well as ensuring that
data collected is of high accuracy. The optimum sampling rate would be
dependent on the heterogenicity and grass height variation within the sward.

The communications network and infrastructure developed as part of the
micro-sonic sensor enabled RPM has the capacity to be used for ‘add-on’
sensors. An example may be represented by a sensor that can utilise infrared
waves to analyse the quality and dry matter of sward and translate it to a smart
device, with data being further transmitted to an online DST where it could be
added to the parameters to allow for more data driven decision support. However,
there is a considerable body of work in the development of the algorithms
necessary for the conversion of these results to an actionable value that can be
interpreted by the farmer.

Heterogeneity of HM within grass swards due to grass species, fertilizer
application, period of the growing season, prevailing weather condition and clover
content is recognised as a significant variable within literature but effects on the

application of RPM operation are relatively unknown. A detailed investigation into
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the factors that influence heterogeneity would offer an insight to the development
of the most advantageous sampling methodology. The ability of the micro-sonic
sensor enabled RPM allows for the automatic acquisition of GPS data and
compilation of all CSH data in a single .CSV file will allow for detailed statistical
analysis of the data. An economic analysis, on the number of sampling strategies,
to determine financial feasibility will be further advance our knowledge of

grassland measurement.

Investigation Into Sward Parameters To Identify Useful Relationships

An extension of the study conducted in chapter 4 to explore if more sward
parameters are available to measure that may influence the prediction of HM from
CSH. Identifying new parameters may further strengthen the accuracy and
precision of conversion algorithms.

Following on from the above, future development of the dynamic biomass
prediction algorithms will be required. The extension of the experimental protocol
to incorporate different experimental sites both in Ireland and internationally will
be required to enhance the robustness of the algorithms produced. An
experiment investigating the effect of sampling during the entirety of the grass
growing season, various enterprises (i.e. dairy, beef and sheep production
systems), and a broad range of cultivars will be necessary to further develop site
specific algorithms. To accomplish this close collaboration with both domestic
and international stakeholders and research institutes will be required for
development and validation of new algorithms. Furthermore, localised algorithms
can be produced and made readily available to the micro-sonic sensor enabled

RPM smart device application.
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In order to fully utilise the capabilities of the dataset generated by the micro-
sonic sensor enabled RPM, CSH and geo-locational measurement should be
integrated with a machine learning system and better statistical models capable
of accounting for more variance created by farm environments. This should allow
for detailed yield maps of the farm to be generated over time to assess the
performance of specific areas of the farm, increasing the granularity of the data

from paddock data to site specific data, i.e. 50cm? plots.

Future Research Necessary for the Successful Implementation of a Virtual
Fence System

A significant challenge for VF technologies revolves around the efficient use
of electrical power. This subject should be investigated in a multifaceted
approach. The challenge would be to investigate high capacity power cells that
could prolong operation, followed by fast charging technology allowing the VF
collar to be charged via electrical induction transfer, (wireless charging) during
milking or at a feed barrier. Furthermore, the opportunity to charge the collars by
some means of renewable rower, kinetic, solar or heat transfer from the cow’s
own body heat. Finally, research into alternative communication networks that
have a low power demand (i.e. Lora, Sigfox or Zigbee) and other power saving
strategies on board the collar.

Currently US and EU government policy have allowed for the roll out of the
5G network. One of the features of a 5 GHz network is their ability to accurately
pinpoint location and transmit high data volumes in a relatively low-energy
fashion. A study investigating the feasibility of its application within VF technology

could be very beneficial to the further progression of VF systems.

163



Given the sub optimal response of the cows to the VF training protocol
developed in this study, it is important that future protocols are developed and
tested based on research conducted in this thesis. The most important conclusion
that is highlighted by the VF study in Chapter 5 is the adverse effect the VF has
on cow behaviour, it is of paramount importance that future VF systems address
the increase in cow stress levels associated with the VF system. In the study
presented in this thesis, the effect of the VF system on dairy cow milk production
was not investigated. It would be important that further studies investigate the

effects of VF on milk yield.

Interfacing of Different on Farm Data Streams

Low utility of on-farm data in relation to analyses is an issue that needs to be
addressed. Lyons et al. (2016) noted that progress on the usefulness of animal
technologies is centred on their integration into decision support software, and
combining data from different sources and processing information with powerful
data analytics tools is difficult due to mutable data format standards. This
highlights the need for the introduction of a common open-source and
standardised data collecting procedure for on-farm sensor technology. This
would allow for the seamless transfer of data between different DST systems

instead of the current proprietary nature of device data.

6.7 Conclusion
The results of this thesis have demonstrated that ICT support tools can be
can be highly useful for applications within dairy farming, particularly pasture-

based farming. The precise and accurate estimation of HM and HA, combined
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with the fine resolution control of each cow with a VF system have the potential
to reduce labour associated with fencing, optimise pasture utilisation, and
subsequent cow milk production. Integration of DST systems and VF network
infrastructure have been developed and further work will combine these
technologies to advance the precision of grazing management in pasture based
dairy systems.

This thesis has facilitated the development of a micro-sonic sensor RPM,
and has shown that such technological advancements can enhance the accuracy
and precision of grass measurement and data capture. Traditional methods of
HM assessment only facilitated low resolution measurement. However the micro-
sonic sensor RPM has accomplished millimetre accuracy and precision.

However, a major consideration to any future VF experimentation has to
carefully investigate strategies to minimise cow stress. The level of stress needs

to at a minimum be on par with conventional fencing systems.
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Globally, the Rising Plate Meter (RPM) is a device used to measure compressed sward
height, to enable estimation of herbage mass. Despite improved farm management prac-
tices aided by a variety of technological advances, the standard design of a RPM has
remained relatively unchanged. Recently, however, a RPM utilising a micro-sonic sensor,
with digital data capture capability via a Bluetooth communications link to a smart device
application, has been developed. Here, we assess the comparable ability of both a standard
cumulative ratchet counter RPM and the micro-sonic sensor RPM, to accurately and pre-
cisely measure fixed heights. Moreover, as correct allocation of grazing area requires accu-
rate geolocation positioning, we assess the associated GPS technology. The micro-sonic
sensor RPM was significantly more accurate for height capture than the cumulative ratchet
counter RPM. Overall, across all heights, the cumulative ratchet counter RPM underesti-
mated height by 7.68 + 0.06 mm (mean = SE). Alternatively, the micro-sonic sensor RPM
overestimated height by 0.18 + 0.08 mm. In relation to a practical applications, these dis-
crepancies can result in an under- and overestimation of dry matter yield by 13.71% and
0.32% kilograms per hectare, respectively. The performance of the on-board GPS did not sig-
nificantly differ from that of a tertiary device. Overall, the wireless technology, integrated
mapping, and decision support tools offered by the innovative micro-sonic sensor RPM pro-
vides for a highly efficacious grassland management tool.
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1. Introduction

The development of electronic and data transmission sys-
tems continues to enable radical changes in agricultural prac-
tices worldwide [1]. Enhanced data capture, information and
communication technologies have facilitated considerable
improvements to the efficiency, effectiveness and productiv-
ity of various agricultural sectors [1,2|. However, these tech-
nologies remain substantially underutilised in modern

2214-3173 © 2018 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of KeAi.
This is an open access article under the CC BY-NC-ND license (http:/creativecommons.org/licenses/by-nc-nd/4.0/).
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agricultural production systems [3]. Although smart farming
systems may utilise these technological advancements to
feed into automated management systems, incorporation of
information and communication technologies into machin-
ery, equipment, and sensors can also facilitate real-time deci-
sion support tools within non-automated systems.

The profitability of intensive pasture-based systems is reli-
ant upon precise, accurate and timely grazing management
strategies. Consequently, the implementation of precision
data capture and communication technologies in relation to
grassland management represents a considerable opportunity
to enhance farm productivity and profitability [2,4,5]. Sward
herbage mass (HM) can be utilised to inform efficient daily
grassland management, via allocation of a sufficient grazing
area to meet (but not exceed) the daily nutritional demands
of grazing animals [6,7]. Moreover, regular estimation of pad-
dock HM can be utilised to inform long term grassland man-
agement, to achieve optimal pasture utilisation and animal
performance [6]. Currently, in Ireland, for example, farmers’
use of grass measurement remains low; only circa 10% of dairy
farmers conduct weekly grass measurements. Therefore,
there exists considerable potential to increase grass measure-
ment frequency and farmland productivity [5,8].

Traditionally, HM is determined by observer visual estima-
tion. However, this method is highly subjective and prone to
considerable inter-observer variability [9]. Although more
accurate estimates of HM can be obtained from the sward
weights obtained from clipped sample quadrats, this process
is destructive and time intensive [10,11]. The Rising Plate
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Meter (RPM) is a grassland management tool utilised world-
wide as a method of measuring compressed sward height
(CSH). This technology is considered to be an accurate, pre-
cise, time efficient, and less labour intensive method for sam-
pling HM [12,13], from which dry matter yield (DMY; i.e. the
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in relation to grassland management, e.g. grazing allocations.
Recently, a RPM utilising a micro-sonic sensor and digital data
capture via a Bluetooth communications link to a smart
device application has been developed (Fig. 1).

In essence, the time of flight- taken from transmission of a
micro-sonic beam to return of the reflected echo signal is
used to calculate the distance between the sensor and the
sampling plate. The higher the upwards displacement of the
sampling plate, the shorter the time between transmission
and return of the reflected signal. The height of the object
underneath the rising plate is then calculated. This measured
height is then transmitted via Bluetooth to a smart device.
This smart device also utilises GPS technology for paddock
mapping and advisory (decision-support) grazing-area alloca-
tion based on animal in-take requirements. Although the
cumulative ratchet counter RPM does not facilitate on-board
GPS, users can use tertiary GPS enabled devices to manually
map paddock areas.

Here we assess the accuracy and precision of RPM height
measurements by both the standard cumulative ratchet coun-
ter, and the newly developed micro-sonic sensor unit. Given
that correct allocation of grazing area requires accurate geolo-
cation positioning, the on-board GPS technology of the newly
developed RPM was compared to the GPS functionality of a
representative and commonly used device, i.e. a smartphone.

2. Methods

2.1.  Experiment 1: Repeated accuracy of height data
capture by two Rising Plate Meters (RPMs)

A cumulative ratchet counter RPM (Jenquip; Filip’s Manual
Folding Plate Meter, New Zealand) and the micro-sonic sensor
RPM (Grasshopper II; True North Technologies, Ireland) were
used to measure standing PVC pipes (110 mm diameter;
n=31) of known heights, 25-178 mm [18]. The pipes were
accurately cut to the specified length by a professional engi-
neering company. All pipe sections were placed on a level sur-
face, and each pipe was randomly chosen to be measured by
the RPMs. A total of 30 height measures were recorded per
pipe by each RPMs. The micro-sonic sensor RPM sample mea-
surements were obtained first, immediately followed by the
cumulative ratchet counter RPM.

Although the micro-sonic sensor RPM facilitated instanta-
neous digital capture and storage (.csv format) of measure-
ment data, via a Bluetooth communications link between
the sensor unit and an accompanying smart device applica-
tion (Android operating system), the ratchet counter RPM data
was recorded by hand, and height measurement calculated.
Prior to data capture, the micro-sonic sensor was normalised
to ensure a baseline of height zero was established. The cumu-
lative ratchet counter does not require normalisation.

2.2.  Experiment 2: Geolocation performance of a Rising
Plate Meter (RPM) utilising on-board and external GPS
technology

To assess device geolocation performance, latitude and longi-
tude output was sampled directly upon a known georectified
point that consisted of a brass rivet set in concrete footpath

(IRENET control station D130, Ordnance Survey Ireland). Both
the on-board GPS and GPS functionality of a representative
smartphone device (Samsung S7 Edge SM-G935F OS 7.0), were
simultaneously assessed (both n=30). The smartphone was
held directly over the handle of the RPM, which was posi-
tioned centrally and precisely upon the georectified point.
To force the devices to continually recalculate their geoloca-
tion positioning, between each georectified sampling event,
the experimental operators walked (>20m) in a random
direction away from the sampling point and recorded an addi-
tional non-test measurement with both devices. Although,
mobile network accessibly may improve geolocation accu-
racy, in situ signal connection opportunities can vary greatly.
Therefore, the smartphone mobile network connection was
disabled during sampling. This required the smartphone to
rely on satellite connections only when triangulating its
geolocation, as does the RPM device.

2.3.  Statistical analysis

All statistical analyses were performed using R v3.4.3 [19]. The
difference between actual and recorded pipe heights was con-
verted to proportional error and analysed using beta regres-
sion with the ‘betareg’ package in R [20]. This model
incorporated both the effects of ‘device’ and ‘pipe height’,
and their interaction. We transformed data to reduce
extremes (0's) prior to analysis [21]:
Ye=(yn-1)+05)/n (€
where y, is the transformed output and n is the sample size.
As the captured geolocation data did not meet the
assumptions of parametric tests, latitudinal and longitudinal
error, relative to the georectified baseline point, were anal-
ysed between devices using paired Wilcoxon tests.

3. Results

Across all pipe heights, the cumulative ratchet counter RPM
underestimated height (mean + SE) by 7.68 +0.06 mm, with
a maximum underestimate of 11 mm (Fig. 2A). Alternatively,
the micro-sonic sensor RPM overestimated height by 0.18
+0.08 mm, with a maximum overestimate of 6 mm (Fig. 2B).
Overall, the micro-sonic sensor RPM more accurately mea-
sured the pipe heights than the cumulative ratchet counter
RPM (z = 40.42, P <0.001; Fig. 2). Proportional recording errors
were reduced significantly as pipe heights increased overall
(z=-9.08, P <0.001). The ‘RPM x pipe height’ effect was sig-
nificant (z=-16.60, P <0.001), reflecting greater differences
in accuracy between the RPMs at lower pipe heights.

Neither of the devices differed significantly in their accu-
racy relative to a georectified point, across either latitudinal
(V=346.00, P=0.25) or longitudinal readings (V= 344.00,
P =0.26. Both devices were consistently precise (Table 1).

4. Discussion

Accurate, precise and timely measurement of pasture HM is
integral to effective implementation of optimal grazing man-
agement practices, particularly for farmers who rely on pas-
ture as a primary feed source. This examination of a
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Fig. 2 - Comparable ability of the cumulative ratchet counter
Rising Plate Metre (A: Jenquip), and micro-sonic sensor
Rising Plate Metre (B: Grasshopper), to accurately measure
fixed heights (n = 31). Standard error < 1 in all cases.

recently developed micro-sonic sensor, has shown that such
technological advancements can enhance the accuracy and
precision of grass measurement and data capture. Until
recently, the traditional cumulative ratchet counter design
only facilitated measurement in increments of five millimetre
(0,5, 10...), however, the micro-sonic sensor RPM has accom-
plished one millimetre increments. Although the average
underestimation of height by the cumulative ratchet counter
RPM (7.68 + 0.06 mm) is low, small errors in measurement can
lead to larger errors over large pasture areas. At an average
overestimate of 0.18 + 0.08 mm, the micro-sonic sensor has
been shown to be highly accurate.

As a brief practical example, in the case of the cumulative
ratchet counter, if we assume height of 1 cm = 250 kg dry mat-
ter yield per hectare, then 250 kg x 0.768 cm = 192 kg of DMY.
In a simplified gazing allocation regime of ten grazing assign-
ments per year, an underestimation of 192 kg DMY ha* is
multiplied by ten, giving an error of 1920 kg DMY ha . Scal-

ing upwards, across a 50 ha farm, annual underestimation is
50 x 1920=96,000kgDMY ha . If we assume the farm
(50 ha) will grow 14,000 kg DMY ha?, then annual dry matter
production is 700,000 kg ha *. The annual underestimation of
DMY would be 13.71% (i.e. 960,000 <+ 700,000). Contrastingly,
inflation of grass height by 0.18 mm on the same hypothetical
farm and grazing regime, results in an annual overestimated
DMY of 0.32% when using the micro-sonic sensor RPM.

Underestimation of available DMY results in poor alloca-
tion of forage to animal requirements. In essence, the stock-
ing rate could be increased to better utilise the available
grassland and increase overall farm production and profitabil-
ity. In Ireland, for example, one metric tonne of grass has a
monetary feed resource value of €162-267 to dairy farmers
[5,22], depending on milk market prices. Underestimation of
available DMY essentially results in a loss of this forage value
to the overall farm profitability.

The micro-sonic sensor RPM, by utilising on-board GPS
technology, can facilitate digital data capture features not cur-
rently associated with other RPMs, which utilise a cumulative
ratchet counter design. Use of the micro-sonic sensor RPM
would enable the real-time paddock mapping, give fence plot-
ting directions, and direct appropriate grass allocation for the
herd. The integration of the smart device application would
allow for real-time assessment of the palatability of grass
swards by consideration of pre- and post-grazing residuals.

The micro-sonic senor RPM incorporates GPS technology
to aid decision support of grazing area allocation in relation
to animal in-take requirements and available sward HM.
Although the cumulative ratchet counter RPM does not facil-
itate on-board GPS, basic GPS enabled smartphones can be
used to map paddock areas within an integrated Geographic
Information System (GIS) environment. However, while the
GPS enabled RPM did not perform better than the smart-
phone, manual recording of GPS data and the associated
cumulative ratchet scores is a time consuming process.
Automatic capture of geolocation data by the micro-sonic
sensor RPM, communicated through a Bluetooth communi-
cations link to a smart device application, and further pre-
sented in a single data file, represents a highly efficient
method for real-time decision support. Further automated
geo-tagging of ground reference points can facilitate calibra-
tion of herbage evaluation from satellite aerial imagery, and
integrated with within a communication network for the
transmission of data from other in field sensor technology.

The application of any grass height measurement tech-
nique requires the operator to collect a sample size within a
pasture that is sufficient to ensure that the variation in grass
heightand HM is accurately captured. The smart device appli-

able 1 - Mean latitude and longitude recorded by each device in relation to the known georectified sampling point (IRENET]

ontrol station D130, Ordnance Survey Ireland).

Device Mean latitude (+1SD) Georectified latitude Mean longitude (+1SD) Georectified longitude
Grasshopper ~ 52.16265970 (£5.145 x 10°°)  52.16264111 827727091 (+1.327 x 10%)  8.27729278
Smartphone 52.16265204 (+6.827 x 10~°) 52.16264111 8.27726680 (+1.121 x 10~ %) 8.27729278
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cation associated with the micro-sonic sensor RPM, coupled
with the available GPS technology, can facilitate assessment
of intra paddock variations in grass growth and grazing pres-
sure, while inter and intra paddock DMY can be mapped and
assessed to inform future fertiliser applications. Captured
data can subsequently be uploaded to on-line decision sup-
port tools, which can advise on the allocation of grazing areas.
Although manual placement of fences is necessary at present,
there is considerable potential to link the recommended graz-
ing area allocation to fenceless farming (i.e. virtual fencing;
[23]). Therefore, while the cumulative ratchet counter RPM
has been a valuable tool for researchers and practitioners
since its conception, the recently developed micro-sonic sen-
sor RPM represent a significant advancement for grassland
management. As the micro-sonic sensor device relies on algo-
rithms to calculate DMY, rather than an operator performed
manual calculation, the associated smart application can be
directed to make formula corrections for seasonal and regio-
nal HM variation [24]. However, despite the substantial bene-
fits, further research and development is required to
improve application of this device (e.g. incorporation of grass
quality measurement), and integrate the device into smart
farming systems.
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In this article, we present a fog computing technique for real-time activity recognition and localization on-
board wearable Internet of Things(IoT) devices. Our technique makes joint use of two light-weight analytic
methods—Iterative Edge Mining(IEM) and Cooperative Activity Sequence-based Map Matching(CASMM).
IEM is a decision-tree classifier that uses acceleration data to estimate the activity state. The sequence of activ-
ities generated by IEM is analyzed by the CASMM method for identifying the location. The CASMM method
uses cooperation between devices to improve accuracy of classification and then performs map matching to
identify the location. We evaluate the performance of our approach for activity recognition and localization
of animals. The evaluation is performed using real-world acceleration data of cows collected during a pilot
study at a Dairygold-sponsored farm in Kilworth, Ireland. The analysis shows that our approach can achieve
a localization accuracy of up to 99%. In addition, we exploit the location-awareness of devices and present an
event-driven communication approach to transmit data from the IoT devices to the cloud. The delay-tolerant
communication facilitates context-aware sensing and significantly improves energy profile of the devices.
Furthermore, an array-based implementation of IEM is discussed, and resource assessment is performed to
verify its suitability for device-based implementation.
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1 INTRODUCTION

With increase in the number of Internet of Things (IoT) applications, localization of IoT devices—
such as routers, smartphones, and various wearable technology—has gained significant importance
for improving context-awareness and providing Location Based Services (LBS), such as navigation
and target tracking [1]. Traditionally, use of Global Positioning Systems (GPS) has been proposed
for realization of outdoor LBS. GPS-enabled Ceres tags (2], for instance, have been designed for
livestock and farmland management in pursuit of Precision Farming. Besides detecting feeding
rates and rumination for individual cows, these ear tags are used for mobility tracking to detect
boundary breakouts and alert farmers in case of theft or an ambitious animal. Location awareness
can, in turn, be used to control navigation of animals within farms for implementation of virtual
fence [3]. While GPS technology is preferred due to ease of integration with IoT devices, majority of
modern-day IoT solutions are replacing its use, owing to poor accuracy in bad weather conditions
and crowded environments, as well as the energy-hungry nature of GPS receivers that negatively
affects the battery-life of the IoT devices. Alternatively, use of Wireless Sensor Networks (WSN)
has been proposed for localization [4]. The WSN-based techniques perform triangulation using
range-based measures, such as Received Signal Strength (RSS) [5], to estimate the relative dis-
tance of mobile nodes from static, anchor nodes for localization. SmartBow [6], for instance, is an
ear tag that has been designed to monitor mobility and rumination of dairy cows. The system uses
a triangulation algorithm to calculate the x/y/z coordinates of cows with respect to a fixed access
point (wallpoint). Although WSN-based techniques are low power when compared to GPS, they re-
quire the use of either additional infrastructure deployed on the farm or external cloud resources
for data analysis. While the former increases the cost of system deployment and maintenance,
the latter requires accessibility to cloud resources, which is typically limited in remote applica-
tions, such as in dairy farms. Furthermore, the performance and efficiency of these approaches
is often affected by outdoor noise and the need for frequent time synchronization between
devices.

Meanwhile, with advances in the design and computational capabilities of IoT edge devices
(e.g., smartphones and sensors), localization on-board these devices (using data from built-in in-
ertial sensors) has been suggested under the umbrella of Fog Computing [7]. Fog Computing is
a novel paradigm that extends Cloud Computing to the edge of the network and proposes the
use of existing compute and networking resources available at the IoT edge devices for real-time
data analytics. In doing so, it aims at optimizing resource efficiency of the system while improv-
ing responsiveness to alerts through reduced cloud dependency. As such, fog-enabled localization
on edge devices can potentially overcome limitations of the WSN-based approaches discussed
above. Indoor localization on-board user smartphones, for instance, has been discussed in Ref-
erence [8]. The proposed technique detects activity states using inertial data obtained from user
smartphones and performs activity-sequence-based map matching (ASMM) using Hidden Markov
Model (HMM) to identify special points on the map as the user walks around the given topology.
While quite a few smartphone-based localization techniques have been proposed to date (discussed
in detail in Section 2), certain IoT applications designed using the WSN technology lack such
relatively powerful edge devices. Current animal health monitoring systems in dairy farms, for
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instance, consist only of low-power animal-wearable sensor devices, such as Moomonitor [9] and
HerdInsights [10]. These devices borrow principles of Fog Computing and operate autonomously
(without continuous interaction with third-party components, such as gateways/PC or the cloud)
to detect small-scale health or behaviour anomalies. These events are stored locally on the collar
devices and transmitted to end-users in a delay-tolerant manner. Such devices, however, lack loca-
tion awareness, owing to inadequate infrastructure in remote farms. To ensure real-time contextu-
alization of sensor data in similar mobility tracking WSN that are deployed in remote applications,
there is a need to design novel light-weight localization algorithms suitable for implementation
on-board the low-power, resource-constrained sensor devices.

Edge Mining [11] is a Fog Computing approach that proposes implementation of light-weight
data mining tasks on sensor devices. The approach aims at improving real-time responsiveness of
these devices through on-board detection of application-related events. Furthermore, it improves
the energy efficiency of devices through reduced packet transmissions to the cloud. ClassAct, an
instance of Edge Mining, has been proposed for sensor-based activity classification. It is a decision-
tree-based technique that uses acceleration data from wearable inertial sensors to estimate the
user activity state. The activity states can, in turn, be analyzed to determine the location. How-
ever, ClassAct bases its prediction on low-order moments, such as windowed mean and variance
at fixed time intervals. This limits its use in applications where the acceleration signal comprises
of activity states with significant overlap in measurements. As such, while the values may come
from different distributions, they exhibit the same feature values and cannot be distinguished from
each other. To address this limitation, the authors have previously proposed Iterative Edge Mining
(IEM) in Reference [12]. Unlike ClassAct, IEM classifies the activity states based on the histograms
of acceleration measurements across multiple bins. It, thus, captures the distribution of signal and
is particularly useful in scenarios where the overlap in states is significant and the mixture is im-
balanced, i.e., the likelihood of occurrence for a certain activity is significantly higher, compared
to the others. The histogram approach, however, incurs additional costs in calculating and main-
taining the bins and may affect resource efficiency of the approach.

To overcome this limitation, in this article, we present an extension of the IEM approach, namely
IEM2.0. The IEM2.0 algorithm replaces the histograms with Moving Windowed Minimum and
Maximum features for analyzing the signal distribution and classification. The adaptation aims at
reducing the program size and number of computations for activity classification, while capturing
changes in the distribution. In addition, we propose a novel localization technique based on IEM2.0
that is suitable for execution on low-power wearable sensor devices. The technique makes joint
use of two light-weight analytic methods—IEM2.0 and Cooperative Activity Sequence-based Map
Matching (CASMM). First, the approach performs acceleration-based activity recognition using
IEM2.0. The sequence of activities generated by IEM2.0 is then analyzed by the CASMM method
to detect the location. CASMM exploits the spatial-temporal coherence of neighboring sensor de-
vices for Cooperative activity-state detection by facilitating exchange of location updates between
devices and extends the ASMM approach proposed in Reference [8] to map the resultant sequence
of activities to a given topology and determine the location. Furthermore, we exploit the location
information of devices and present a context-aware, event-driven communication framework for
data transmission to the cloud. The framework is proposed to improve the energy efficiency of
the devices by reducing unnecessary periodic transmissions. We illustrate the use of our IEM2.0-
CASMM approach for activity recognition and localization of animals in a pasture-based dairy
farm. While IEM2.0 is used for classification of high-level activity states of animals, CASMM is
used to map the sequence of activities to an outdoor road network and estimate the location. The
main contributions of the article can be summarized in the following:
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e Adaptation of the IEM approach proposed in Reference [12], namely IEM2.0, for activity
classification. IEM2.0 is proposed to reduce the number of on-board computations and
improve resource efficiency of devices. It replaces the histogram-based approach with
windowed feature analysis to capture the signal distribution while removing unnecessary
calculations. The mathematical formulation of IEM2.0 is discussed, and its suitability over
ClassAct is demonstrated for naturally occurring mixed Gaussian signals with different
mixture proportions.

e Design of an end-to-end WSN system for IEM2.0-CASMM-based context-aware sensing
and communication. The system performs activity recognition using IEM2.0 and adapts
the existing ASMM technique for cooperative activity sequence-based map matching to
allow on-board localization in outdoor environments. We also present theoretical models
for calculating communication energy cost incurred by the devices and discuss an event-
driven communication framework for optimizing energy consumption of the network.

e An application of our IEM2.0-CASMM approach for high-level activity recognition and lo-
calization of animals in a pasture-based dairy farm. An extensive evaluation has been car-
ried out to analyze the accuracy and energy efficiency of our localization approach using
real-world animal-mobility data collected during a pilot study in Kilworth, Co. Cork, Ire-
land. Moreover, a dedicated memory analysis has been carried out to assess the resource
requirements of IEM-2.0 to verify its suitability for sensor-based execution.

The remainder of this article is structured as follows: In Section 2, we present the related work. In
Section 3, we present our system architecture and discuss the IEM2.0-CASMM-based localization
approach. We also describe our context-aware communication framework. In Section 4, we present
our case study and the implementation of IEM2.0-CASMM in the context of dairy farming. We also
discuss our experimental setup and field study. In Section 5, we present an extensive evaluation
of our approach using real animal-mobility data, followed by a resource assessment of IEM-2.0 in
Section 6. In Section 7, we conclude the article.

2 RELATED WORK

In this section, we review state-of-the-art IoT-based localization and discuss the recent advances
in sensor-based analytics.

2.1 Localization Techniques

Several localization techniques have been proposed, to date, for IoT applications. Traditional IoT-
based systems make use of GPS for outdoor localization due to their high accuracy as well as ease
of integration of GPS receivers with IoT devices. For instance, GPS units have been used for lo-
calization of the elderly for assisted living in Reference [13]. While the approach achieves high
accuracy, the system relies on a remote reasoning system for data analysis and may incur delay in
getting insights due to the intermittent Internet connectivity. Moreover, the use of GPS receivers
coupled with the frequent data transmissions may negatively impact the lifetime of the devices.
Alternatively, the use of cellular systems has been proposed for trajectory tracking. In Reference
[14], for instance, the system uses cellular technology to estimate the coarse location of mobile
devices through signal trilateration. This information is combined with stationary state detection
and HMM-based algorithms to decipher the most probable path. The performance of such a sys-
tem, however, is affected by low sampling frequency and may result in errors ranging to a few
kilometers. A digital map-matching system called SnapNet [15] has been proposed to improve the
location accuracy of cellular-based systems. The system implements an incremental HMM algo-
rithm to account for the noise in the input data and uses digital map hints to enhance the accuracy
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of the estimated road segments. The use of such systems, however, is limited to scenarios with reli-
able cellular networks. In Reference [16], a Wi-Fi-based localization approach has been discussed.
The approach uses commodity Wi-Fi (Intel 5300) to estimate the doppler velocity and angle of
arrival measures for localization purposes and incurs an error as low as 35cm. The performance
of Wi-Fi-based localization systems, however, is usually affected by radio signal noise, making it
unsuitable for outdoor environments.

Alternatively, the use of WSN for localization has also been proposed. In Reference [17], for in-
stance, the authors present a light intensity-based indoor positioning system that performs predic-
tions using RSS measures within WSN. Another study in Reference [5] investigates the feasibility
of RSS-based sensor node localization in well-defined outdoor topology. Such range-based mea-
sures, however, often exhibit a low signal-to-noise ratio, thus affecting the quality of prediction.
An experimental evaluation of WSN-based localization has been carried out in Reference [4]. Al-
ternatively, with advances in embedded sensor technology, the use of Pedestrian Dead Reckoning
(PDR) systems has been proposed for localization purposes. PDR systems use mobility data (e.g.,
acceleration,velocity) from built-in inertial sensors in user wearables/smartphones and calculate
displacement to get the current location. The authors in Reference [18] present a PDR system that
uses 8 Inertial Motion Units (IMU) worn on the body and a force sensor worn under the feet to
capture joint movements for user localization. Another instance of a PDR system has been dis-
cussed in Reference [19]. The system presents a blind localization algorithm that combines data
from built-in inertial and acoustic sensors in user smartphones using a maximum likelihood es-
timator to gauge the location of the smartphone. Standalone PDR systems, however, often accu-
mulate errors due to drift with walking distance over time. To overcome this issue, assisted-PDR
approaches have been proposed. In Reference [20], a PDR system is accompanied by iBeacons and
the Kalman-Filter-based calibration algorithm is used to correct the drift. A PDR-based ASMM
technique has been proposed for indoor localization in Reference [8]. The system performs low-
level activity recognition, such as turning or walking up and down different floors, using built-in
inertial sensors in user smartphones as a user walks to special points, such as corners, elevators,
escalators, and stairs. The sequence of activities is then used to establish the user’s trajectory and,
in turn, mapped to an indoor road network for accurate positioning. The ASMM approach presents
a cost-effective solution for indoor localization, as it requires minimum interaction with external
third-party components.

In this work, we present our [IEM2.0-CASMM-based PDR system for real-time localization. The
approach takes as input acceleration data from built-in inertial sensors in wearable devices and
performs decision-tree-based activity recognition using the IEM2.0 algorithm. As compared to
the existing techniques, IEM2.0 is light-weight and suitable for implementation on-board low-cost
sensor devices. The sequence of activities generated using IEM2.0 is then analyzed by the CASMM
module for localization. CASMM is a cooperative extension of the ASMM approach discussed in
Reference [8]. At first, the approach implements cooperative computing via collective participation
between co-located devices to improve accuracy of classification on individual devices. Next, if a
change in activity state is observed for any device, then ASMM is performed to map the sequence
of activities to a given outdoor topology for localization. While HMM is used to implement ASMM
in Reference [8], we replace this approach with a light-weight window analysis using a threshold
7 to ensure suitability for sensor-based execution. The two techniques are discussed in detail in
Section 3.

2.2 Sensor Analytics

With increase in the number of IoT devices, huge amounts of data is periodically created and
uploaded on the cloud for analysis. Such data abundance (typically referred to as “big data”),
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however, burdens the existing cloud resources and causes latency in getting insights into the data.
Subsequently, the Fog Computing paradigm has been proposed to shift certain intelligence from
the cloud towards the data sources, i.e., the network edge devices [21]. The use of compute and
network capabilities available at these devices would allow localized reduction of data within the
network to not only optimize the use of existing resources but also improve the responsiveness of
the IoT system by reducing dependency on the cloud [22]. As mentioned earlier, while the use of
IoT edge devices (e.g., network switches, smartphones) as fog agents has widely been proposed,
recent studies have further brought down the computations to sensor devices. Owing to improve-
ments in the computational capabilities of sensor devices conventionally limited to sense and send,
the tasks designed for these devices today incorporate certain sophisticated data analytics. For in-
stance, Data Fusion within WSN has been proposed in Reference [23] to reduce redundancy in
overlapping data and improve coverage. Another study in Reference [24] suggests the mapping of
an Artificial Neural Network (ANN) onto WSN for the design of “Smart Furniture.” The authors in
Reference [11] propose Edge Mining techniques to perform data mining on-board sensor devices.
Edge Mining forms the basis of our activity classification approach, IEM2.0, and is discussed in
greater detail below.

Edge Mining [11] is a Fog Computing technique that suggests the implementation of light-
weight data mining tasks on sensor devices. It adopts the principles of the Spanish Inquisition
Protocol (SIP) [25] that proposes transmission of only the unexpected information from the net-
work to a sink (gateway). SIP converts the raw data from sensors into an application relevant state
that is considered significant and reported by the sensor only if it cannot be predicted using the
past estimates. Three instances of Edge Mining have been discussed based on generalized SIP—
Linear SIP (L-SIP), Bare Necessities (BN), and ClassAct. L-SIP defines the application state as the
point-in-time value and the rate of change. BN represents the state as a distribution of data across
non-overlapping bins where each bin defines a possible outcome [26]. ClassAct is a decision-tree-
based classifier. It takes as input raw sensor data and encodes the application state as a probability
distribution over a given set of states. The use of ClassAct has been shown for identification of
low-level activities, such as sitting, standing, and walking, in Reference [27]. While the system
achieves a high classification accuracy, the classification is performed using low-order moments,
such as windowed mean and variance at fixed points in time. This approach inevitably leads to
classification errors while separating signals (time-variant data reflecting a particular behaviour,
such as acceleration while walking and standing) for which measurements have similar mean and
variance though come from different distributions. While the use of higher moments (e.g., skew-
ness and kurtosis) may help in identifying the different states, their calculation is computationally
complex for the sensor devices.

IEM has been previously proposed by the authors in Reference [12] to overcome the limitation of
ClassAct approach. IEM is a decision-tree classifier that is designed as the superimposition of two
Edge Mining algorithms—BN and ClassAct. First, IEM runs the BN algorithm to convert raw sensor
measurements into a distribution across a set of non-overlapping and exhaustive bins, where each
bin represents a range of values that the variable can take. The distribution is smoothed over the
past readings using a decay factor y on account that no sudden changes occur in the activity state.
Next, the percentage change in distribution is estimated. If the change exceeds a threshold ¢, where
0 < ¢ < 1, the distribution for all bins is fed as input to the ClassAct algorithm for activity-state
recognition. By considering the signal distribution as input to the classifier (as opposed to win-
dowed mean and variance), [IEM captures the nature of the signal over time and thereby addresses
the limitation of ClassAct. The performance of IEM has been evaluated for classifying low-level
activities, such as walk and stand in Reference [12]. While IEM is shown to achieve an accuracy
of 95% with very low frequency of computations, the histogram-based implementation (inspired
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Fig. 1. (a) System architecture (b) ClassAct-, IEM-, and |[EM-2.0-based classification.

by the BN algorithm) requires multiple floating-point operations to maintain the bin counts and
distribution. Based on the selection of bins, this may negatively affect the resource efficiency of
the algorithm for sensor-based execution. In this work, we discuss an adaptation of IEM that is
more suited for implementation on sensor devices (Section 3.1) and evaluate its performance for
high-level activity recognition for dairy cows. An array-based implementation of the algorithm is
also discussed in Section 6 to evaluate the resource requirements.

3 IEM2.0-CASMM FOR ON-BOARD LOCALIZATION

Figure 1(a) illustrates the architecture of our IEM2.0-CASMM-based localization system. As can be
seen, the system operates in two phases—offline training phase on the cloud and online localization
phase at the edge. While the IEM2.0-CASMM model is light-weight and suitable for sensor-based
localization, training the model is a compute-intensive task and is, therefore, carried out offline on
the cloud. In the training phase, at first, historical data is collected from in-built inertial sensors in
wearable devices and analyzed to extract suitable feature(s) for classification. Then, (un)supervised
learning is performed to train and test the IEM2.0 and CASMM models for the given application
scenario. IEM-based classifier (DT) is generated for different values of input parameters. The DT
is used to analyze the acceleration data and identify the activity state. The sequence of activities
generated by IEM is then analyzed by the CASMM method for map-matching-based localization.
CASMM performs cooperative analysis between neighboring devices (considered as a coalition) by
allowing exchange of location updates to improve accuracy of individual predictions and maps the
updated sequence of activities to a given topology for identifying the location. The performance of
CASMM is evaluated for different coalition sizes. Based on the performance evaluation and a given
optimization function (e.g., maximizing location accuracy or minimizing energy consumption) that
is derived from application requirements, the values for input parameters for IEM2.0-CASMM are
fixed (i.e., windowSize, ¢, and coalition size). The optimal performing model is then transferred
onto the sensor devices for on-board analysis. In the online phase, IEM2.0-CASMM is executed
to analyze the periodically sensed acceleration data for real-time activity recognition and local-
ization. The estimated location is combined with data from other sensors (such as temperature,
humidity) to facilitate context-aware sensing and communication. An instance of this architecture
is discussed for localization of dairy cows in Section 4 (depicted in Figure 6). The IEM2.0-CASMM
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model is suitable for implementation on-board animal-wearable devices and allows for real-time
context-aware sensing as the cows move around the farm. We assume prior knowledge of the farm
topology for the CASMM module. Furthermore, as CASMM assumes presence of co-located or co-
herently moving devices for coalition-based cooperation, we consider conventionally milked dairy
cows that move together in a herd between parlour and paddocks. Note, however, the CASMM ap-
proach extends easily to scenarios where devices move independently: for instance, in case of
automatic milking wherein dairy cows may follow different milking cycles, by forming dynamic
coalitions on the move (as discussed in Section 3.2). The calculation of overhead while setting up
coalitions is beyond the scope of this work. In the remainder of this section, we present a detailed
description of the two analytic approaches and our context-aware, event-driven communication
framework.

3.1 Iterative Edge Mining (IEM)

IEM2.0 is an adaptation of the IEM approach, which replaces the histogram-based analysis with
Windowed Minimum and Maximum (winMin, winMax) features for activity-state classification.
The moving window analysis examines the temporal patterns present within the signal and cap-
tures the variability in distribution of values over time. The use of these features ensures sensi-
tivity to minute changes in distribution of sensor measurements while reducing the unnecessary
floating-point operations. This, in turn, improves the efficiency of the algorithm, making it suit-
able for increased range of IoT devices and applications. Here, the window size is an input pa-
rameter that accounts for smoothing over the historical data similar to the decay factor y used in
histogram-based IEM (discussed in Section 2.2). Classification is performed only if the percentage
change in either of the feature values exceeds the threshold ¢, where 0 < ¢ < 1. When it comes to
floating-point operations, IEM-2.0 requires only > and <, as opposed to the floating-point division
and multiplication (e.g., histogram estimation, smoothing) that are additional requirements of the
previously proposed IEM technique. The difference between ClassAct-, IEM-, and IEM-2.0-based
classification is depicted in Figure 1(b). We present the mathematical formulation of IEM2.0 and
illustrate its suitability over ClassAct for normal and mixed Gaussian distributions in the next sec-
tion. We consider these signals owing to the nature of real-world acceleration data collected for
different activity states as seen in this study (see Figure 15).

3.1.1  Gaussian Mixtures and Their Impact on ClassAct Classification. Consider signals S, o/
and S,y for which values are ii.d. and come from a normal Gaussian distribution pj,o,, (x) =
N (x, 1, o?) and a two-component Mixed Gaussian distribution, respectively, where x represents
sensor measurements. The first component of the mixture follows the same normal distribution
as Sporm, while the second component follows a normal distribution with the same variance o
but larger expectation pi; > ;. The samples x are drawn from the first and second components
with probabilities 1 — & and @, respectively, where a < 0.5 (i.e., dominance of the first component).
Accordingly, the distribution of S,,ix values has the probability density function (PDF) expressed
here:

pmix(x, @) = (1= a) - N(x, 1, 0%) + a - N (x, 2, 0%). (1)

Naturally, both S0y m and Sy, ix can be treated as representatives of the same parametric family 7 of
signals, where values come from distributions with PDF specified by the Equation (1) for different
a-values. In a way, a describes the impact of minor component on the overall value distribution.
Figure 2(a) illustrates the effect of a on the signal values and their distribution (generated using
Equation (1)) for yy = 0, yi; = 3, and o = 1. As expected, 7 (0.00) produces the normal signal S, ;.
As a increases, the impact becomes more apparent (e.g., 7 (0.05)) and eventually makes the signal
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bi-modal (e.g., 7 (0.40)).! This directly impacts the precision with which samples of 7 (0.00) (i.e.,
normal distribution) can be separated (e.g., using windowed mean and variance as in ClassAct)
from samples of other, truly Mixed Gaussian elements of ¥ (i.e., @ > 0.00). Fora fixed @ € (0,0.5),
an arbitrary window ¥, (a) of n consecutive samples from 7 () will include exactly n —i and i
values from the major and minor components with probability

P (Fu(a)) =i) = Cp-a'-(1-a)", (2
where 7 is an indicator function that shows the number of values from the minor component of
Fn(a) window. Under the condition 7 (%,(«)) = i, the window can be analyzed as if it consisted

of n independent normal variables. Therefore, conditional PDFs for windowed mean and variance
of these variables equates to

P(E(Fp(@)) = x| I (Fula)) = 1)
P(Var(Fa(a)) =x| I (Fu(@)) =i) = n-X:(n-x,n,(n—i)-pi+i-p),
where X? is a non-central chi-squared distribution. Here, to simplify the formulae, we deliberately
make use of the fact that all of the normal variables are uni-variate with o2 = 1 (see Figure 2).

Subsequently, using Equations (2) and (3), the overall probability function of windowed mean and
variance can be calculated as

n-N(n-x, (n—=i)-py+i-py n-c?),

3)

P(E(Fn(a)) = x) = Z P(E(Fn(a)) = x| I (Fu(a)) = i) - P(L(Fu(a)) = i),
ion @
Z P(Var(Fp(a)) = x| I(Fu(a)) = i) - P(L (Fu(@)) = i).

i=0

P(Var(Fn(a)) = x)

Note, the above equations (Equation (4)) also hold for windowed mean and variance of normal
signals represented by the a-value equal 0.00. These equations particularly help us evaluate the
impact of & on the distributions of windowed mean and variance of various signals from 7 family.
Figures 2(b) and 2(c) show exemplar distributions (generated using Equation (4)) for various win-
dow sizes (i.e., 10 and 20) and a-values (i.e., 0.00, 0.05, 0.40). The histograms for mean and variance
are generated using simulated data. As shown, signals with & = 0.00 and & = 0.05 share majority
of their windowed mean and variance values, which significantly affects separability of the two
cases using traditional ClassAct method. As alpha increases, typical windowed mean and variance
values move further away from those of @ = 0.00 and, hence, increase separability. An increase

!Figure 2(a) demonstrates that a mixture of multiple components that follow normal distributions may not always follow
anormal distribution. The distribution is, in fact, governed by the « factor.
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in window size compresses the distributions along the value axis and also aids the separation. A
similar behaviour is observed if the windowed mean and variance are used jointly, as shown in
Figure 3.

As seen in Figure 2, while a = 0.05 increases the ratio of higher values (i.e., above x = 2), the
increase is not sufficient to warrant a noticeable impact on windowed mean and variance and,
therefore, classification of signals. To overcome this, Iterative Edge Mining [12] is based on his-
togram representation of signal and, therefore, has higher sensitivity to minute changes of signal
distributions. Subject to bin selection, the increase in ratio of higher values will be reflected by the
histograms, thereby improving the classification. This method, however, comes at a cost where
multiple bins need to be continuously maintained and analyzed on-board IoT devices. Accord-
ingly, we discuss an adaptation of IEM that is more suitable for [oT-based execution.

3.1.2  IEM-2.0 for Classification of Mixed-Gaussian Signals. To analyze the predictive capabili-
ties of IEM-2.0, we first evaluate distribution of values for the winMax feature for F (a) Mixed-
Gaussian Signals. For brevity, we omit the winMin feature, since the analysis for it is a mere adapta-
tion of the analysis presented here. Consider the maximum of an arbitrary window %, («). Similar
to Equation (3), under conditions 7 (%, (e)) = i, the Cumulative Distribution Function (CDF) for
winMax equals to:

P(Max(Fy(@)) <= x| I(Fu(@)) = 1) = N(e,p,0%)"" N (x, p3,0%), ©)

where N” denotes a CDF of normal distribution. Accordingly, the overall CDF of 7, (a) is:
P(Max(Fn(a)) < x) = Z P(Max(Fn(a)) < x| Z(Fn(a)) = i) - P(L (Fu(a)) =i). (6)

=0

Now, let us assume that for a particular n > 1 and @ > 0, a decision tree is used to separate se-
quences 7, (a) from %,(0.00), based on a particular m-dimensional feature f that is a function
from R" onto R™. While m = 1 implies Window Mean, Variance, Maximum, and Minimum are
used independently, m = 2 implies they are used jointly. Assume that CDF for the possible feature
values of 7,,(0.00) and 7, («) sequences are known and denoted as P, (9.00) and P, (o), respec-
tively. During the decision-tree analysis, feature values are first derived from the given n signal
values and then subjected to a number of threshold assessments, as specified by the decision tree.
Going back to the example considered in Figure 2, it is fair to assume that the optimal decision
tree will consist of only one node. Sequences for which features exceed the threshold will be clas-
sified as 7, (a), whereas the sequences for which the features are below the threshold will be
classed as 7, (0.00). Subsequently, for a threshold x;,, probabilities of type I and II errors (Pr, Py)
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are equal to:

Pi(xy) = Py a)(xer), )
Prr(xer) = 1- P’F,,(L\.UU)(xlr)~
Therefore, the optimal threshold minimizing the error of both types can be calculated as:
Xorr = Argmin,gn (Max(Pg,(q)(x), 1= Py, @.00(x)))- (8)

As all CDF are continuous, monotonously increasing functions with range between [0,1], it can
be shown that Xppr always exists and that P;(Xpp7) = P11(Xopr). Thus, where 1-dimensional
features (m=1) are concerned, the solution for the problem in Equation (8) can be calculated thusly:

P, (a)(x) = 1 = Pg, (0.00)(x)). (9)

For m > 2, solving Equation (9) will generate a subset X of the original feature space R™. Subse-
quently, the optimization problem can be re-formulated as:

Xopr = Argming Py, (q) (x). (10)

Knowing Xopr allows us to further numerically evaluate probabilities of P; and Pj; errors for
selected features. Figures 4(a) and 4(b) demonstrate results of such evaluation that have been per-
formed using CDF functions for windowed mean, variance, and maximum obtained above (note
that for the first two metrics, we derive PDFs that can be easily transformed into CDFs). The
evaluation was made for the same set of y and o parameters and shows that for windows of
low and moderate sizes winMax and, therefore, IEM-2.0 has a lower error rate (i.e., better predic-
tion capability) than ClassAct. The advantage of the IEM-2.0 is more apparent for lower a-values
(Figure 4(a)) and diminishes as & and/or window-size increase (Figure 4(b)). And, finally, Figure 4(c)
demonstrates this effect when Window Mean and Variance are used jointly. While in this work, we
do not present analytic formulae for joint CDF for Window Mean and Variance; during the analysis,
we interpolate these functions based on results of numeric simulations. As evident, it is particularly
beneficial to use IEM-2.0 for classification of signals whose behaviour closely resembles that of 7,
with lower a values. Note that while the winMax feature of IEM-2.0 has been deliberately used in
this example due to the positive nature of histogram shift (as demonstrated in Section 3.1.1), the
shift in histogram is typically non-stationary and may be positive or negative in nature. Therefore,
in IEM-2.0, we perform classification based on the joint use of (winMin, winMax) features.
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3.2 Cooperative Activity Sequence-Based Map Matching (CASMM)

Once the activity state is identified, the sequence of activities generated by IEM? is analyzed by the
CASMM method for localization. The CASMM method consists of two light-weight computational
tasks—Cooperative activity-state detection and ASMM.

Despite the improved classification accuracy of IEM over ClassAct, certain (Pr, Pjy) errors may
persist, owing to strong overlap between signals, especially, for lower a values. These errors may
further increase in the presence of >2 signals (i.e., more than two activity states). Now, let us
assume that at any given time ¢, a set of devices N (|N|), where each device n € N runs the
IEM algorithm for on-board localization, are located within the same physical area denoted by L;
(Figure 5(a)). The area L; is defined such that all IoT devices within this area exhibit a common
high-level activity state. Therefore, while each node n analyzes individual activity state, it can
be argued that analysis on a single node (referred to as the initializing node (IN)) would suffice
the activity recognition for all N in L;. However, we suggest analysis on all n € N or a subset of
N devices as well as cooperation between the neighboring participating devices for exchange of
activity-state updates to improve accuracy of individual predictions.

We envisage a set of participating devices N’ (IN’| < |N|) nearest to node n (at any given time)
as a coalition that exhibits a common activity state based on the location. Besides the individual
predictions, we propose that each participating device maintains a local copy of the shared network
state. If a change in activity is predicted by any device n € N’ such that the predicted state differs
from the shared network state, then it initiates cooperation with the remaining nodes in N’. We
use an equal-weight majority-voting scheme wherein the shared network state is calculated as
the mode of the predicted state at each device n € N’. If the majority of devices in N’ agree with
change in state, then it implies that device has departed from L; and moved to another area L;, i #
J and, therefore, exhibits a different activity state. Otherwise, it is assumed that the device has
predicted an untimely change in activity state, and the last updated activity state is maintained.
Such cooperation between devices would not only allow detection of misclassified states but also
facilitate the timely detection of state transitions. For instance, as shown in Figure 5(a), cooperation
between devices facilitates correction of within-the-state errors (in L3) and timely detection of

2All mentions of IEM hereafter refer to IEM-2.0 unless specified otherwise.
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change in state as a node moves from L1 — L2. Depending on the vicinity of the node, however,
cooperation may lead to certain errors. As shown in Figure 5(a), a node in L; may assume the
activity state in L4, owing to its closeness to the sensor devices. The ASMM module is used to
identify such errors and improve accuracy of state detection and, thereby, localization.

Once the cooperation is performed, the sequence of activity states is interpreted by the ASMM
module. As mentioned earlier, ASMM is primarily proposed for indoor pedestrian localization [8].
The approach uses activity-related locations (e.g., staircase and corners) within a building as virtual
landmarks to determine user trajectory and location. While a large outdoor environment may lack
such characteristic landmarks, the ASMM approach can be extended to outdoor IoT-based local-
ization, since the high-level activity and mobility of a user are essentially bounded by the outdoor
topology. We, therefore, propose to determine the location of a node by mapping the sequence
of activities along with their corresponding duration to a given outdoor map. Such mapping is
light-weight and suitable for sensor-based implementation. If a change in state is recorded after
cooperation, then the sequence of previously stored activities along with the corresponding dura-
tion is fed as input to the ASMM module. The ASMM module accepts the change in state only if it
is consistent with the topology (i.e., physically feasible) and has been predicted for a continuous
period higher than a given threshold 7. The trajectory of motion and location is then determined.
Otherwise, the change in state is regarded as a classification error, and the user activity state and
location is considered unchanged. For instance, consider that a user (sensor device) in Figure 5(a)
can only move in a clockwise direction from L, — L, — L3 — Ly — Ly, as shown in Figure 5(b).
Given the initial reference point (L;), a node can either remain in the same activity state (and lo-
cation) or move to L,. Therefore, any changes in state corresponding to locations Ly and Ly are
discarded by the ASMM module. Moreover, location is updated to L; only if the corresponding
state is predicted for a duration of 7°. Similar behavior is implemented for all state transitions.
While such an approach may increase the delay in detecting state transitions (depending on the
value of 77), it reduces the incoherent and untimely changes in activity that may be predicted after
cooperation (e.g., error in L, in Figure 5(a)).

Our IEM2.0-CASMM-based localization approach is summarized in Algorithm 1. The algorithm
takes as input acceleration data at time t (acc;), parameters windowSize, ¢, and decision-tree DT
for IEM-based classification, set of nodes N, coalition N/ at time t, threshold 7" and roadMap
for CASMM, and returns two vectors containing the sequence of activities (actVector) and lo-
cations (locVector). First off, the distribution of acc values is estimated using DIST function that
calculates the winMin, winMax features. If the percentage change in either of the features ex-
ceeds the threshold ¢, then DT is used to classify the activity state (state). If the predicted state
differs from the last updated device state (lastUpdatedState) as well as the last stored network
state (lastNetworkState), then the change in activity may suggest a change in the device location.
Subsequently, cooperation between N/ neighboring devices is performed to obtain the majority
voted activity state. If the networkState is not in harmony with the state value, then the change
in activity is considered as a classification error and discarded. Otherwise, if the change in state
persists for a period 7~, then ASMM is performed to validate the change in activity and estimate lo-
cation of the device. If the change in state is inconsistent with the given topology map (roadMap),
then the prediction is discarded and a NULL value is returned. Else, the location of the device is
returned and the activity and location vectors are updated.

3.3 Context-Aware Event-Driven Communication

As mentioned above, the optimal IEM2.0-CASMM model is determined based on the localiza-
tion accuracy as well as an optimization function. The function is designed to meet the appli-
cation requirements of the WSN-system and sets the criterion for selecting values of the input
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ALGORITHM 1: IEM2.0-CASMM-based localization
Input: acc;, windowSize, ¢, DT, N, N/, T, roadMap
Output: actVector, locVector
repeat
Read sensor for acc;
accVector « APPEND(accVector, accy)
(winMin, winMax) « DIST(accVector, windowSize) #Evaluating distribution
if ((|lwinMin — lastUpdatedMin| > ¢ * lastUpdatedMin) V (lwinMax — lastUpdatedMax| >
¢ * lastUpdatedMax))
then
lastUpdatedMin « winMin
lastUpdatedMax «— winMax
state « PREDICT(DT, winMin, winMax) #Classification
if ((state # lastUpdatedState) A (state # lastNetworkState))
then
networkState «— MODE(lastUpdatedState[1 : N/ — 1]) #Cooperation
if (networkState[T —t+1:t] == state[T —t+1:t])
then
location « ASMM(roadMap, actVector, state) #ASMM
if (location #+ NULL)
then
lastUpdatedState « state
lastNetworkState « state
actVector « APPEND(actVector, state)
locVector « APPEND(locV ector, location)
end

end

end
end

until Offload data to gateway

Function DIST (accVector, windowSize)
| return (min(accVector[(t — windowSize + 1) : t]), max(accVector[(t — windowSize + 1) : t]))

parameters. In this work, we consider minimization of the device energy consumption and deter-
mine the appropriate IEM2.0-CASMM model for sensor-based execution.

A vast majority of WSN-based systems are deployed to monitor remote areas that stretch over
several kilometers. As such, communication of data packets from sensor devices to a cloud gateway
is the most energy-intensive task performed by these devices. Continuous packet transmissions
to the gateway can significantly reduce the operational time of these battery-operated devices.
However, most sensor data is not time sensitive enough to maintain continuous real-time Internet
connectivity. Accordingly, we propose a context-aware event-driven communication approach to
transfer data from WSN to the gateway. We exploit the location information of devices obtained
from IEM2.0-CASMM-based analysis and transmit data to the gateway only at the occurrence of a
change in location. The delay-tolerant approach would not only improve energy efficiency of the
devices through reduced packet transmissions but also reduce the operational cost of the system
by eliminating the need for continuous Internet connectivity. As such, accuracy of localization has
a direct impact on the energy consumption of the devices. The energy cost incurred in sending a
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data packet to the cloud can be calculated as shown below [28]:
Ecp = (e +f-d?) - bits. (11)

Ec is the energy consumed by a node for sending a packet containing bits number of bits to the
gateway over a distance d. The variable e denotes the energy cost of transceiver for receiving and
transmitting unit data (hardware dependent) and f3 is a constant [J/bit.m?].

As discussed previously, the CASMM method can help improve accuracy of classification of
IEM (via cooperation between devices) and, in turn, the accuracy of localization. The cooperation
itself, however, incurs a communication overhead in sending and receiving cooperation requests
and location updates. These costs can be estimated using the following equations:

Eco = q,,~((2€+ﬂ-d’2)-bits’-(N'—1)+E,,gg)+(1—q,,)‘((2€+ﬂ-d’2)~bits’),
pn-(e+B-d?) -bits - (N =1)+ (1= py) - (e- bits), 12)
T N

N
Ec = Z(h : Z(E(‘L +ELo) +s¢ Z Eco).
t=1 n=1 n=1

Eco is the energy consumed by node n per cooperation between N’ nodes, d’ is the distance
between the participating devices N’, bits’ represents the number of bits per packet, and Eqgq is
the energy cost for aggregating the location data of N’ nodes. The decision variable g, takes a
value of 1 if the cooperation is initiated by node n and 0 if it receives a request from another node.
ELo is the energy consumed by node n per distribution of location updates among N devices.
The decision variable p, assumes 1 if node n predicts the change in location and disseminates
packets to other nodes and 0 if it receives a packet from another node. Note that the value of
bits" < bits, as the packet sent to the gateway contains accumulated sensor data over time while
the packet sent locally among devices contains just the state information. Moreover, d’ < d, as the
packet sent to gateway is over a longer distance than device-to-device communication. The overall
communication energy consumed by N devices over a planning time horizon 7 then equates to
Ec. The variable r, takes a value 1 if a change in location is predicted at time t and 0 otherwise.
Similarly, the variable s, takes a value of 1 if a cooperation is initiated at time ¢ and 0 otherwise.
We study the effect of windowSize, ¢, and coalition size |[N’| on the energy consumption of the
network in Section 5.

Ero

4 EXPERIMENTAL DESIGN

In this section, we present an application of our IEM2.0-CASMM system for animal localization
in dairy farms. We describe our application scenario and discuss the implementation of IEM2.0-
CASMM on-board animal-wearable sensor devices, followed by the design of our WSN-based pro-
totype and the pilot study.

4.1 Animal Activity Monitoring and Localization

Real-time activity monitoring and localization of livestock is strongly advocated for on-farm LBS,
such as behavior analysis, virtual fencing, and feed management under the umbrella of Precision
Dairy Farming. Today, animal-wearable sensors are widely used to facilitate continuous moni-
toring of the physiological state of the cows for early diagnosis and treatment of diseases [29].
Enriching the results of health monitoring with animal-mobility data will allow for better under-
standing of animal behavior and well-being [30]. Combined analysis of both physiological and
behavioral data with respect to location of the animal has been shown to provide vital insights
into the farm processes and help improve their overall efficiency [31].
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Fig. 6. IEM2.0-CASMM-based animal localization in dairy farms.

4.1.1  Application Scenario. Figure 6 depicts our application scenario. Our WSN system consists
of animal-wearable sensor devices and a cloud gateway and allows for location-aware data collec-
tion for livestock management. The animal wearable is an extensible sensor device that consists
of sensors to monitor the physiological state as well as the mobility of cows. We propose the im-
plementation of IEM on-board the collar devices to predict the activity state of cows as they move
around a farm. Furthermore, device-to-device communication is proposed to allow cooperation
between the cows and perform ASMM to estimate the location as they predict changes in activity
state. A gateway node is installed within the farm (hosted inside the parlour in Figure 6) to collect
location-enriched data from sensor devices and upload it onto the cloud for future analysis. Since a
typical farm spans across a large area and the majority of the data relating to the farm processes is
delay-tolerant, we adopt the event-driven communication approach discussed in Section 3.3. Ac-
cordingly, sensor data combined with location information is stored locally on the collar devices as
cows move around the farm, and the data is transmitted to the gateway once a change in location
is predicted. This eliminates the need for continuous Internet connectivity within a farm, which
is particularly important in rural deployments. Whereas the existing animal-wearable technolo-
gies such as RumiWatch [32] also follow a delay-tolerant communication approach, sensor data is
transmitted to the cloud every 15 minutes, as the devices incorporate very little intelligence and
rely on external (e.g., cloud-based) analysis for localization and behavior modelling. Implementa-
tion of IEM2.0-CASMM is expected to reduce the frequency of packet transmissions and improve
the energy efficiency of the device operation. Moreover, real-time localization on-board collar de-
vices could potentially allow timely detection of behavior anomalies in cows that may be indicative
of stress and other health-related issues. Our WSN-based approach, thus, lays the foundation for
future smart livestock farming.

4.1.2  IEM2.0-CASMM Approach for Animal Localization. In Reference [12], we evaluate the
performance of IEM (histogram-based approach) for classification of low-level activities, such as
standing and walking. Since the mobility of a cow is random, identification of such low-level ac-
tivities is unnecessary and irrelevant for localization. Rather, we model our IEM (v. 2.0) classifier
to predict the coarse location of cows—parlour (M), paddock (P), and transit between parlour and
paddocks (T) within a farm, as shown in Figure 6. These locations span the entire farm topology
and correspond to the three primary activities performed by a cow—milking, grazing, strolling
around a farm, respectively.® The IEM-based classification, thus, helps identify the high-level ac-
tivity state and location of cows.

*Note, we identify the entire yard as parlour, since the primary activity associated with cows within a yard is milking.
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Fig. 7. Behavioural state transitions using ASMM.

Furthermore, as cows move in a herd, we exploit their spatial-temporal coherence for CASMM.
Consider a herd of size N such that all cows n € N are equipped with a collar device and move
together from one state to another. As such, a single cow or subset of N cows can suffice localization
for the entire herd. We envisage the set of participating devices N’ € N within a herd to form a
coalition that exhibits a common high-level activity based on location of the herd at any given
time. If any device n € N’ predicts a change in the activity state that differs from the network
state, then it initiates cooperation between the participating devices to allow exchange of state
information. Based on majority voting, the device updates its prediction and performs ASMM if
required. Any change in location is disseminated to all N devices. The cooperation, thus, ensures
a consistent activity state across the herd and is expected to reduce classification errors as cows
replicate low-level mobility patterns from one activity state to another. For instance, CASMM may
help fix errors in prediction when the classifier identifies a transit state while cows walk to a water
trough within a paddock, owing to the similarity in behavior.

In Reference [8], while the route chosen by a user is unknown, the ASMM approach is used to
establish the user’s trajectory based on low-level activities, as the user follows a fixed mobility
pattern on each route. On the contrary, in a dairy-farming scenario, the cows follow designated
routes between the parlour and the paddocks due to the restricted topology of the farm. However,
as mentioned above, they perform random low-level activities (e.g., walking, standing, and sitting)
while moving along these routes and grazing within the paddocks. However, the cows follow a
fixed sequence of the high-level activities (e.g., milking, transit, and grazing). The cows are brought
into the parlour for milking. Once milked, they transit through the pathways to a paddock. After
grazing, the cows leave the paddock and transit back through the same path to the parlour, and so
on. Accordingly, we propose an adaptation of the ASMM approach to estimate the animal location
based on the sequence of these high-level activities generated by IEM, as shown in Figure 7. The
monitoring of cows commences at the milking parlour, location My, on day 1. At My, the cows can
either remain within the parlour or enter into the pathways, i.e., transit state T,. Therefore, any
state changes to paddock predicted after cooperation can be ignored. If a change in state to transit
is predicted for a continuous period of 7~ (denoted as T,..T; in Figure 7), then it is considered
feasible and the location is changed to Ty. At Ty, the cows can either remain in transit state (i.e.,
stroll along the pathways) or enter into the paddocks. Any state changes to parlour can, therefore,
be ignored. Moreover, continuous change in state to paddock denoted by P, ..P, is accepted and
location is changed to P,. Similar logic is followed to change location from P, to Ty as cows return to
the parlour (M) for milking and so on. Since the farmers follow a specific sequence of paddocks to
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(a) (b) (©)

Fig. 8. (a) and (b) Animal-wearable collar devices (c) Cloud gateway.

Table 1. Implementation Details

Device type Characteristic
Components CM5000 mote [33], MPU9255 Inertial Motion Unit (IMU) [34]
. Memory 48KB program flash and 1MB non-volatile flash for data storage
Collar device -
Battery 2xAA batteries
Operating system TinyOS [35]
Gateway device Components CM5000 mote, Raspberry Pi (v. 2B) [36], Wi-Fi dongle

be grazed, the state transitions along with the sequence numbers 1..n detected by IEM2.0-CASMM
can be used to determine which paddock the cows must be headed to after milking. Based on the
selection of paddock, the pathway can be determined and the time elapsed in transit state can be
used to estimate the exact location along the pathway.

4.2 Field Experiment

Asmentioned earlier, our WSN prototype consists of two types of devices—wearable collar devices
and a cloud gateway, as shown in Figure 8. The design details of the two devices are given in Table 1.
While collar devices are responsible for data collection and on-board analysis of animal health and
mobility, the role of gateway is to collect sensor data from the collar devices (via mote-to-mote
communication) and upload it onto the cloud for future analysis. We deployed our prototype in a
Dairygold-sponsored farm located in Kilworth, Co. Cork, Ireland (Latitude: 52.168096, Longitude:
-8.24206) (Figure 9(a)). The farm is operated by TEAGASC, the Agriculture and Food Development
Authority of Ireland. The experiment was conducted on 5 Holstein Friesian cows (using five collar
devices) selected randomly from a herd of 46 cows over a period of five days in June 2017. For the
purpose of this study, we programmed the collar devices for collecting raw acceleration data of
cows at a frequency of 1Hz for a 10h duration per day (in accordance with the daytime milking
cycle). The data was used to examine the behaviour of cows within the milking parlour, transit, and
paddock and build the IEM2.0-CASMM model to evaluate its performance in a real-life scenario.
A LELY collar is used to place the device around a cow’s neck, as shown in Figure 8(b). An
additional weight is attached to the collars to keep the device stable. The ideal orientation of the
accelerometer axes is as follows: y-axis towards the front of the cow, z-axis was out on the side,
and x-axis was downwards. The cows follow a fixed milking cycle, as shown in Figure 9(b). They
are brought into the yard for milking in the morning. Once the milking is complete, cows exit
the parlour and proceed to the waiting area, as shown in Figure 10(a). Once the entire herd is
milked, the cows are released towards the paddocks (Figure 10(b)). Figure 10(c) shows two of the
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Fig. 10. Dairy cows during the pilot study (a) In yard (b) In transit (c) In paddock.

experimental cows inside a paddock. A single paddock is assigned to the herd per day. During the
experiment, the herd was taken to paddock NA7 on days 1 and 2, NAS5 on day 3, and NA3 on days 4
and 5 (earmarked in Figure 9(a)). In the evening, the cows are brought back into the yard for
milking. For this study, the gateway node was hosted inside the milking parlour, and data from
the devices was transmitted to the gateway once the cows enter the parlour in the evening. The
time corresponding to changes in location (parlour — transit — paddock — transit — parlour)
is recorded using manual observations for annotating the data with ground-truth locations, i.e.,
parlour, transit, and paddock. These observations are made by qualified TEAGASC technicians
who handle the herd for ensuring animal safety. Since we study high-level localization of animals,
the use of these timestamps along with start and end time of experiment suffice the labelling
of raw acceleration data. In addition, the system time corresponding to the receipt of the first
data packet from each node is maintained at the gateway. The recorded time is compared with
clock on collar device to assess drift in clock speed, as discussed in Section 5.1. For the purpose
of CASMM, a simple topology map is required that illustrates the relative position of parlour and
different paddocks with respect to each other. In this study, we obtained an existing map of the
Dairygold farm depicting the various paddocks (designed by Grasstec, as shown in Figure 9(a))
from TEAGASC.
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Fig. 11. Clock drift incurred by a collar device over time.

5 EVALUATION

In this section, we evaluate the performance of our IEM2.0-CASMM approach using the animal-
mobility data collected during our pilot study described in Section 4.2. We discuss our data
exploration and feature selection approaches used for IEM-based classification, followed by the
supervised learning and performance analysis of IEM2.0-CASMM for different values of input
parameters. All analysis is performed using R programming,.

5.1 Data Exploration and Feature Selection

Prior to training the IEM classifier, we analyze the acceleration data for necessary pre-processing
and feature extraction. First off, we annotate the raw data with location (i.e., parlour, transit, and
paddock) using the recorded timestamps. A positive clock skew is observed on comparing time of
transmission of the first packet on the sensor devices with the corresponding system time (recorded
by the Raspberry Pi). That is, the devices associate with the gateway node prior to expiration of
the 10h duration. This is because a skew of 24ms per second has been noted for TelosB devices
[37], owing to the software implementation of device clock in TinyOS. Furthermore, this value is
affected by environmental factors, such as temperature, humidity, and vibration. The theoretical
and observed drift is illustrated in Figure 11. As can be seen, the observed drift maps closely to
the theory but is slightly less than the expected values. A skew of roughly 14min is incurred over
the 10h period and must be accounted for to correctly annotate the acceleration readings. We also
calculate the per-second drift for different time duration, as shown in Figure 11. Whereas the value
increases initially, it stabilizes for longer duration. We model the linear dependency between the
drift and the time duration using the Im function in R, as shown below. We then calculate the value
of drift until each state transition and label the data accordingly:

drift (min) = =0.158 + 0.023 * duration (min).

Next, we examine the raw data for outliers. Figure 12(a) shows the acceleration of a cow in the
plane of movement after removal of the outliers. As can be seen, distribution of values in each
state (i.e., parlour, paddock, and transit) varies across the five days. This is due to environmental
factors, such as weather conditions and the quality of grass in the paddocks that affect behavior
of the cow. We recalibrate the acceleration data to reduce the effect of the environment on the
performance of the classifier. As evident from Figure 12(a), there is a significant overlap in the ac-
celeration measurements of the three states. Figures 12(b) and 12(c) illustrate the windowed mean
and variance of z-axis acceleration for all states. We use the Spearman’s Correlation Coefficient
to measure the correlation between the mean and standard deviation of parlour and transit, and
parlour and paddock data along the y and z axis, i.e., plane of movement. The test suggests a
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Fig. 12. (a) Acceleration of a cow during different activity states in the y-zplane (b) Windowed mean of acc,
(c) Windowed variance of acc, at windowSize = 60.
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Fig. 13. Linear dependence between mean & std dev. of (a) parlour & transit (b) parlour & paddock values.

moderate correlation between the states. Accordingly, we derive the linear dependency between
mean and standard deviation of y and z-axis acceleration in the parlour and transit and paddock
data across the entire dataset, as shown in Figure 13. The mean of parlour is then set to zero, and
the linear models are used to recalibrate the data for all three states.

Thereafter, we direct our attention to feature selection for classification. We use the Receiver
Operating Characteristic (ROC) criterion to test the diagnostic ability of x-axis acceleration (acc,),
y-axis acceleration (acc,), z-axis acceleration (acc;), and net acceleration (,/acc + acc:fl + acc?) for
different cut-off values. Since we have a multiclass problem, we carry out a pairwise comparison
(one state vs. all other states). While the acc, and net acceleration do not capture clear distinction
between the three states, acc, and acc; achieve a reasonable quality of separation for all nodes,
as shown in Figure 14. The area under curve for the z-axis is greater than the y-axis for all nodes,
thereby suggesting a better classification performance. Accordingly, we base our IEM implemen-
tation on feature values derived from acc, measurements. The z-axis reflects horizontal movement
of a cow’s neck. The difference in behaviour between the states is potentially caused by the move-
ment of cows as they graze within the paddocks and eat fodder during milking. Figure 15 provides
further insights into the acceleration data from paddock and transit states across the entire dataset.
While Figure 15(a) shows prevalence of two-component Gaussian mixtures with lower « values
for windowed measurements in the paddock state, Figure 15(b) illustrates the similarity between
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Fig. 15. Mixture effect in animal-mobility data at windowSize = 60 (a) Ratio of two-component mixtures
within paddock state (b) Mixture fitting of transit and two-component paddock values.

parameters of major components of those two mixtures and one-component mixtures (a = 0.00)
prevalent during transit. The dominance of major component in the mixture and the significant
overlap between the measurements highlights the need to use IEM-2.0 rather than ClassAct for
animal-activity classification. Accordingly, we use winMin, winMax features for classification and
study the performance of the IEM2.0-CASMM approach for different values of input parameters.

5.2 Supervised Learning

Once the classification features are selected, we train and test the IEM2.0-CASMM model for dif-
ferent sets of parameter values. We start by analyzing the effect of windowSize and ¢ on the per-
formance of IEM, followed by the effect of coalition size on the performance of CASMM.

The accuracy of IEM is primarily governed by the input parameters windowSize and ¢. The
window size affects the calculation of min and max values and, thus, characterizes the signal dis-
tribution. While a small window may not capture the local min and max in close vicinity, a large
window will increase the impact of historical data and may miss the small fluctuations that re-
flect actual state changes. As a result, increase in window size may cause a reduction in within-
the-state classification errors at the expense of increasing cross-state errors around state transi-
tions. To analyze the effect of windowSize, we train the IEM classifier DT for each device across
three window sizes: 10s, 30s, 60s. First, we calculate the winMin and winMax pairs for each trace
per window size. Next, we combine the data files from all five days per device and windowSize,
and generate training sets using stratified sampling. Each training set consists of 10% of the total
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samples with an equal number of parlour, paddock, and transit measurements. This is done to en-
sure that the classifiers are fairly trained for all three states and the dominance of paddock data
does not conceal the behavior in other states. Thus, we generate three training sets corresponding
to the three window sizes for each of the five nodes. The sampled data is then fed to the 5.0
classifier to build the decision trees. We assign ¢ = 0 and study the effect of window size on the
classification accuracy. The performance is evaluated per data trace (file) for all five days using
appropriate DT (per device and windowSize). A value of 0 for ¢ allows us to evaluate the classifier
for all possible distributions for a given windowSize. The training process is iterated ten times, i.e.,
10 DT are generated for each node and window size, for performance validation.

Next, we introduce the ¢ parameter and study its effect on the performance of IEM. The value
of ¢ controls the frequency of classification. Whereas a small ¢ will feed even the slightest changes
in distribution to the classifier, a large ¢ value will accommodate significant changes in the distri-
bution without presuming change in the activity state. Accordingly, while a large ¢ may improve
the energy profile of the system through reduced classifications, it may increase the errors due
to delay in detecting state transitions. Moreover, an error within the state persists longer due to
infrequent classifications. We evaluate the impact of ¢ on the number of classifications as well
as the classification accuracy across three values: 0.2, 0.4, 0.6, which correspond to 20%, 40%, and
60% change in distribution of the signal, using the DT trained above. While winMin and winMax
are calculated per acc, reading, classification is performed only if the difference between the up-
dated values and the previous estimates exceeds ¢. The cows are considered to be in the same
activity state as the last identified state until the next classification. Furthermore, as we adopt an
event-driven communication approach, we study the effect of windowSize and ¢ on total number
of packet transmissions to the cloud by the network (Pcr) and resultant Ec prior to applying the
CASMM.

Finally, we evaluate the performance of CASMM for localization. As discussed in Section 3.2, we
use an equal-weight majority voting scheme for cooperative activity-state detection. Accordingly,
we estimate the shared activity state per day and per ¢ for window size 60s for different coalitions.
The performance of cooperation varies with the coalition size, i.e., the number of participating
devices. Since we have a total of five nodes, we analyze the effect of cooperation on accuracy
of state detection for four different coalition sizes—N’ = 2/3/4/5. Moreover, we study its impact
on Pcp, total number of packet transmissions within the network for collaboration (Prp) and
dissemination of updates (Pro), and the resultant communication energies (Ecr, Eco, Ero, and
E¢). Once the appropriate coalition size is selected, we evaluate the performance of ASMM for
localization. The effect of ASMM is governed by the threshold parameter 7. To set the value of
T, we evaluate the distribution of the errors within each state. We use the eighth decile value as
the threshold for each state. We then implement ASMM (as shown in Figure 7) each time a change
in state is observed after cooperation. We assess the effect of ASMM on accuracy of localization,
Pep, and E for different &.

5.2.1 Effect of Window Size. To test the performance of IEM for different window sizes, we
predict the activity state for each (winMin, winMax) pair across the entire dataset using the ap-
propriate DT. The error in classification is calculated by comparing the predicted states against
the observed states for each activity as well as net trace per data file for all days. This evaluation
is repeated over ten iterations using the 10 DT models generated above. Figure 16 illustrates the
classification errors for all traces over the ten iterations. The errors per activity state are shown in
Figure 16(a). An overall reduction in error of each state is observed with an increase in the window
size from 10s to 60s. While a median error of 11% is incurred for transit states at windowSize = 10,
the value reduces to 3% and 1.5% at windowSize = 30 and windowSize = 60, respectively. Similarly,
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Fig. 16. Effect of windowSize on (a) Classification error per activity state (b) Net classification error.

the median errors for paddock and parlour states reduce from 32% and 24.3% at windowSize = 10
to 16.8% and 5.9% at windowSize = 30, and 8.6% and 3.1% at windowSize = 60, respectively. This
is because a small time window is too narrow to correctly capture the local min and max values.
As such, the calculated distribution of the signal misses the short-lived fluctuations in the vicinity
and, in turn, affects the classification accuracy. While the median errors are low for transit and
parlour at windowSize = 60, the median error for paddock states is slightly high with error for
certain traces as high as 31.7%. On examining the traces, we observe that most of these errors are
caused by misclassifications within an activity state, as opposed to misclassifications due to delay
in detecting state transitions. This is because the classifier is unable to separate certain instances
of stationary behavior and long walks within the paddocks (e.g., if a cow walks to and from a water
trough located in one corner of the paddock) with the mobility patterns that are mainly observed
in parlour and transit activity states, respectively. Figure 16(b) depicts the net error (all three states)
for all traces. A median error of 30.2% is incurred at windowSize = 10, and the value decreases to
15.5% and 8.1% with increase in the window size to 30s and 60s, respectively. Furthermore, as is
seen, the net error closely resembles the error in paddock as they constitute majority of the data
points in any trace. The results suggest that while a windowSize = 10 is too narrow to capture the
activity state of animals, a windowSize = 60 (i.e., 60 sensor readings) is capable of identifying the
behavior with an accuracy over 90%. A window of 60s implies a set of 60 readings, as we collect
data with a very low frequency of 1Hz. However, a window size of 10s presents the lower boundary
of our analysis wherein classification is performed based on ten readings. It represents an extreme
case and has been included in the analysis to illustrate the scope of our technique. The analysis
shows that, despite a small set of readings, our technique can correctly classify 70% of the obser-
vations. However, the use of larger window sizes (i.e., 30s and 60s) is preferred for further analysis
and CASMM-based localization. Since typical activity classifiers use high-frequency inertial data
(usually 10Hz), we believe that our approach would work well with the commercially available
activity trackers for the different window sizes.

5.2.2  Effect of Epsilon. As mentioned above, the value of ¢ controls the frequency of classifica-
tion. It sets the threshold for change that is acceptable in the distribution of signal assuming the
same activity state. We study the effect of ¢ on the frequency and accuracy of classification for
all three window sizes. A summary of the analysis results is shown in Table 2. As expected, the
number of classifications (computations) as percentage of the total number of readings per trace
reduce with increase in the ¢ value for a constant window size. The median value of reduction
percent increases from 77.5% at € = 0.2 to 89% at ¢ = 0.6 for windowSize = 10; that is, only 11%

ACM Transactions on Sensor Networks, Vol. 15, No. 2, Article 23. Publication date: March 2019.

202



Leveraging Fog Analytics for Context-Aware Sensing in Cooperative WSN 23:25

Table 2. Performance Summary of IEM (without Collaboration) for & # 0

Window = 10s Window = 30s Window = 60s
Metric £=0.2 ¢=04 £=0.6|e=0.2 ¢=04 ¢=0.6|e=0.2 =04 ¢£=0.6
Comp reduction (%) 77.5 85.0 89.0 92.1 95.0 96.2 96.2 97.5 98.2
T 11.9 12.0 12.0 44 6.1 7.0 2.5 3.4 7.5
Error (%) P | 319 32.5 32.5 17.2 18.6 19.1 9.7 115 124
M| 271 27.6 28.9 9.0 12.6 13 7.6 113 14.1
Py -P1 8,438 6,350 4,963 2,693 1,835 1,355 998 643 450
Net Ecy, (J) - P1 1.31 0.98 0.77 0.42 0.28 0.21 0.15 0.10 0.07
Net Ero (J) - P1 0.70e™* 0.53e™ 041e73 | 0.22¢™* 0.15¢™* 0.11e7 | 0.08¢™* 0.05¢™* 0.04¢7*
Peyp -P5 7,577 5715 4,503 2,451 1,701 1,244 957 619 432
Net Ec (]) - P5 1.17 0.89 0.70 0.38 0.26 0.19 0.15 0.09 0.07
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Fig. 17. Effect of ¢ on reduction of IEM classifications for windowSize (a) 10s (b) 30s (c) 60s.

of the data traces are classified if a change in signal distribution >60% is considered significant
for classification. A similar trend in reduction percentage is observed for window sizes 30s and
60s. Moreover, the value of reduction is higher for larger window sizes, as the smoothing in data is
increased such that the small fluctuations in the signal are concealed, resulting in fewer changes in
the distribution that exceed the threshold. Figure 17 illustrates the trend in computation reduction
for different values of ¢ and windowSize. The reduction in classification not only improves the
memory usage by storing fewer readings in the flash but can also improve energy profile of the
devices. This could, in turn, result in an increase in the operational time of the wearable devices.
Next, we examine the effect of ¢ on the classification accuracy of the three activity states: transit
(T), paddock (P), and parlour (M), for the three window sizes. We calculate error as the percentage
of misclassified states per trace across all ten iterations, as shown in Figure 18. For a small window
of 10s, the value of ¢ has very little impact on the classification accuracy. The median error of
transit, for instance, increases from 11.9% at ¢ = 0.2 to 12% at ¢ = 0.4 and ¢ = 0.6, as shown in
Figure 18(a); that is, an approximate increase of 1%, compared to the resultant error at ¢ = 0 (see
Figure 16(a)). We associate the small changes in the median errors with the nature of smoothing
in the data. For a small window, the smoothing is very low, such that the slightest change in the
distribution exceeds the threshold value. As such, a small ¢ filters out the redundant data (see
Figure 17) and maintains the quality of the results. The effect of ¢ is more prominent for larger
window sizes (30s and 60s) due to increased smoothing, as shown in Figures 18(b) and 18(c). An
increase in error is observed with increase in the value of ¢. Moreover, the change in error with
¢ value is greater, compared to the change in errors for windowSize = 10. However, an overall
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reduction in the error values is observed for all states with increase in the windowSize as local
min and max in the signals are accurately captured.

As mentioned earlier, the accuracy of IEM affects the frequency of packet transmissions to the
cloud and, in turn, the communication cost incurred by the sensor nodes. We assume that each
node sends a single packet to the cloud per state change. The energy cost incurred by each node
in sending one packet to the cloud (Ecp) is calculated in Equation (11). For our analysis, we set the
constants e = 50x107°J and f = 107" ]/bit - m? [28],d = 120m (maximum radio range of CM5000
motes for outdoor), and bits = 800 (maximum payload of 802.15.4 packets). Ideally, it suffices to run
the IEM algorithm on one node (IN) to localize a given herd within the farm (denoted as scenario
P1 in Table 2). Each time the IN predicts a change in its activity state, it assumes the same change
in state across the entire herd and forwards the location update to the remaining nodes within
the herd. All nodes then transmit their sensor data along with the location information to the
cloud gateway. The energy cost incurred by each node due to the local communication between
nodes (Epp) is calculated in Equation (12). We set d = 20m (usual maximum distance between
neighboring cows within a herd) and bits’ = 1 (payload required for sending location update). We
calculate the total number of packets sent by all nodes to the cloud (Pcr) per day and resultant
net Ecp and Ep values for the network by considering each node as IN for different values of
windowSize and ¢. Since each node has a different prediction accuracy, the value of P, and net
energies also varies. The median values for all nodes over ten iterations are listed in Table 2.

Despite the increase in classification error, the value of Pry reduces with increase in the
value of ¢ for a fixed window size (Figure 19(a)). This is attributed to the significant drop in the
number of classifications at higher ¢ values that results in fewer predictions and, in turn, a lesser
number of state changes. Note, however, the errorin classificationis higher, owing to the prolonged
effect of a misclassified state and delay in detecting state changes. The value of Pcy, further reduces
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Fig. 20. Effect of windowSize and ¢ on (a) Pcr, (b) Ec for scenario P5.

with increase in windowSize, owing to better smoothing in the signal that reduces within-the-
state misclassifications and thereby prevents untimely state-change predictions. A similar trend is
observed in the values of resultant communication energies Ecr, and Ero with changes in the input
parameters, as shown in Figures 19(b) and 19(c). Whereas E¢; = 1.31] for windowSize = 10 and
¢ = 0.2, it reduces to 0.77] with increase in ¢ to 0.6, and further reduces to 0.07] with increase in the
value of windowSize to 60s. Similarly, E;o = 0.70e~* for windowSize = 10 and ¢ = 0.2, and reduces
to 0.41e~? with increase in ¢ to 0.6, and further to 0.04e~* for windowSize = 60 and ¢ = 0.6. As is
evident, the energy cost incurred by the local communications is significantly lower, compared to
energy spent in the long-range communication to the cloud gateway. The network communication
energy, in this case, is calculated as the summation of net E¢-; and E; . Furthermore, we consider
the scenario where each node runs the IEM algorithm and predicts its activity state in isolation
(denoted as scenario P5 in Table 2). That is, the nodes do not communicate locally with each other
and directly send data packets to the cloud at the occurrence of individual state changes. We cal-
culate the total packets sent by all five nodes to the cloud per day (Pcp) and resultant energy cost
Ecy for different values of windowSize and ¢ over ten iterations (as illustrated in Figure 20). The
value of Py and, thereby, Ec, follows the same trend with increasing windowSize and ¢ values
as P1. Moreover, the median values for Pcy and net Ecy, in P5 are lower than the corresponding
values in P1, as shown in Table 2. This is because, whereas in P5 the packet transmissions are
governed by a node’s own accuracy, transmissions in P1 are guided by the accuracy of one node.
As a result, the number of packets increase across all nodes if the IN has poor accuracy.

5.2.3 Effect of Coalition Size. As discussed above, the performance of CASMM is primarily
governed by the coalition size. Given that our pilot study includes five nodes, we consider four
possible scenarios based on the coalition sizes 2,3,4, and 5 and evaluate the performance for each
coalition group shown in Table 3 for a fixed windowSize = 60. N’ = 2, for instance, represents the
scenario where two of the five nodes form a coalition and participate in the analysis. We study
the effect of coalition size on classification accuracy, net packet transmissions for cooperation
(Pco), local communication (Pp) and cloud communication (Pcy), and the resultant energy Ec
that comprises of Ecy, Ero, and Eco. The median values for the above metrics across traces for all
ten iterations are summarized in Table 4.

We calculate the classification error for each state, considering the network as a whole by com-
paring the shared network state with the observed states. The error values are affected by both
coalition size and selection of nodes (as participating nodes have different accuracy), as depicted
in Figure 21. As can be seen, the error varies for a particular value of N’ (owing to the selection
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Table 3. Coalition Groups
N =2 N =3 N =4 N =5
{N2,N3} {N2,N3,N4} {N2,N3N4,N5} {N2,N3 N4,N5N6}
{N2,N4} {N2,N3,N5} {N2,N3N4,No6}
{N2,N5} {N2,N3,N6} {N2,N3N5N6}
{N2,N6} {N2,N4N5} {N2,N4,N5N6}
{N3,N4} {N2)N4 N6} {N3,N4,N5N6}
{N3,N5} {N2,N5N6}
{N3,N6} {N3,N4N5}
{N4,N5} {N3,N4,N6}
{N4,N6}  {N3,N5N6}
{N5,N6} {N4,N5N6}
Table 4. Performance Summary of IEM (with Collaboration) for windowSize = 60
N' =2 N' =3 N' =4 N' =5
Metric £=02¢=04¢=06|6=02e=04e=0.6[e6=02¢=04¢=0.66=0.2¢=0.4¢=0.6
8.1 11.0 19.8 1.7 2.6 6.1 1.7 2.7 7.3 1.0 1.2 5.0
Error(%) P 120 139 141 3.1 3.8 4.3 2.4 3.1 3.6 1.0 15 1.6
M 2.2 34 4.7 29 4.3 6.1 1.5 1.7 2.9 1.3 1.8 4.1
Pco 325 211 149 | 728 486 342 | 1361 900 636 | 2,118 1,386 974
Packets Pro 966 620 432 | 392 288 212 | 364 276 196 176 164 118
Per 1,240 795 553 510 385 280 463 350 255 235 220 150
ELo+Ecol017e7 0.11e7 0.08¢7%|0.19¢72 0.13¢7* 0.10e7[0.33e7 0.22¢7% 0.15¢7[0.46¢7* 0.31e7% 0.21¢7*
Energy (J) Ecr 0.19 0.12 0.09 0.08 0.06 0.04 0.07 0.05 0.04 0.04 0.03 0.02
Ec 0.19 0.12 0.09 0.08 0.06 0.04 0.07 0.05 0.04 0.04 0.03 0.02
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Fig. 21. Effect of coalition size on classification error for (a) Transit (b) Paddock (c) Parlour states at

windowSize = 60.

of nodes) and decreases with increase in N’ from 2 to 5. This decrease in error is achieved, as
classification errors of a node with low accuracy are masked by the accurate classification of other
nodes via majority voting. Moreover, the error values are lower when compared to Table 2, with
the exception of N’ = 2, wherein majority implies the vote of one node against the other. As ex-
pected, the errors increase with increase in the ¢ value due to reduced frequency of classification.
For N’ = 5, the cooperation achieves an accuracy >98% for all three states at ¢ = 0.2 and >95%
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at ¢ = 0.6, with a corresponding reduction in classifications by 96.2% and 98.2%, respectively (see
Table 2). Although it is feasible to further reduce the number of computations by increasing the
¢ value, it will adversely affect the system accuracy. The values of the input parameters should,
therefore, be chosen such that they balance the trade-off between the number of classifications
and accuracy to meet the application requirements.

Next, we consider the impact of N” on Pro, Pro, and Pcy. The values depict net packet trans-
missions for the network of five nodes, as shown in Figure 22. We observe an increase in the value
of Pco with an increase in the value of N’ (Figure 22(a)). This is due to an increase in the number
of participating nodes that are polled during cooperation. On the contrary, a decrease in the values
of P;p and P¢y is observed with increase in N’ (Figures 22(b) and 22(c)), owing to the improved
accuracy. For a fixed N’, the values of Pco, Pro, and Pcy decrease with increase in the ¢ value,
due to reduced number of classifications on each node. Moreover, the packet transmissions are
lower, compared to P1 and P5 scenarios discussed earlier, with the exception of N’ = 2, which has
lower accuracy. Similar trends are observed in the resultant communication energies, as shown in
Figure 23. Figure 23(a) illustrates the net energy cost for local communication between devices,
i.e, net Eco + ELo. While an increase in Eco and decrease in Ero is expected with increase in
N’, we observe a net increase in the local communication energy due to higher impact of Ec¢ (as
Pco > Ppo). On the contrary, a drop in Eq is observed with increase in N’, owing to improved
accuracy and fewer packet transmissions to the cloud (Figure 23(b)). The net communication en-
ergy (Ec) is then calculated using Equation (11) and depicted in Figure 23(c). Since the magnitude
of local communication cost is significantly lower when compared to the cost for cloud communi-
cation, the value of Ec mimics the value of Ec;. Moreover, the value decreases with increase in the
coalition size N’, thereby improving the network efficiency. Similar to the packet transmissions,
the energy costs further decrease with increase in the ¢ value.
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Fig. 24. Effect of ASMM on (a) Localization error (b) Pcy. (c) Net E; for windowSize = 60 and N’ = 5.

While the cooperation significantly improves the classification accuracy, the number of state
transitions detected by the system (resulting into Prp) is quite high. As such, our pilot study incor-
porates four state changes (My — Ty — Py — T; — M,) and should result into exactly four packet
transmissions to the cloud. This implies that our system detects untimely state changes (within-
the-state errors) that are short-lived (suggested by high accuracy) but occur frequently (suggested
by value of Pcr). We expect the ASMM approach to address such errors by mapping the sequence
of activities to the farm topology and reducing the within-the-state errors. We consider the coali-
tion groups for N’ = 5 for the analysis, as they allow highest accuracy of classification along with
minimum Ec. As mentioned above, we use the eight decile value based on the distribution of errors
to calculate threshold 7~ for each state (depicted as T;, P, and M,, in Figure 7). ASMM accepts a
change in state detected by the cooperation only if it is consistent with the topology (follows the
state transition diagram) and continues for a period assigned by 7. Figure 24 shows the effect of
ASMM on the location accuracy, Pcy, and Ecp.* As can be seen, the accuracy for all three states
does not alter significantly (Figure 24(a)) and closely resembles the values achieved after coopera-
tion (see Figure 21). Note that the localization accuracy is calculated in terms of percentage, as we
consider high-level localization of cows in three discrete regions. On the contrary, the median of
number of packets transmitted to the cloud reduces remarkably to 20, i.e., 4 packets per node as
desired (Figure 24(b)). That is, ASMM eliminates all the untimely state transitions. Resultantly, it
leads to a significant drop in the value of Ec-;. As shown in Figure 24(c), the value of E¢; drops to
less than 10%, compared to Figure 23(b), i.e., a reduction of 90%. The error in classification can be
explained by early or delayed detection of state changes, owing to the use of 7~ parameter.

6 DISCUSSION AND FUTURE WORK

In the previous section, we evaluated the performance of the IEM2.0-CASMM model for different
values of the input parameter. The analysis shows that while the stand-alone IEM classifier can
achieve areasonable level of accuracy (>90% for windowSize = 60 and ¢ = 0.2) for all three activity
states along with very low frequency of classifications (a reduction of >96% for windowSize = 60
and ¢ = 0.2), it results in a considerable number of unnecessary and expensive packet transmis-
sions to the cloud. The CASMM method improves the accuracy of IEM-based classification (~99%
for N’ =5, windowSize = 60, and ¢ = 0.2) through cooperation between devices with very low
overhead energy costs of the order of 107 and facilitates accurate localization via ASMM. The
ASMM eliminates the unnecessary packet transmissions to the cloud, thereby improving the over-
all energy efficiency of the WSN operation by 90%. The analysis, thus, confirms the suitability of

4 ASMM has no effect on the local communication between the devices.
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Fig. 25. (a) Effect of windowSize on the size of DT (b) Array-based implementation of DT.

using the IEM2.0-CASMM approach for activity recognition and localization of the cows. In this
section, we assess the feasibility of implementing the IEM classifier DT on-board the sensor de-
vices. We discuss an array-based implementation of the IEM algorithm and present a memory
analysis for the same. In comparison to DT, implementation of CASMM only requires a few vari-
ables, such as N’, state vector, and 7 to be maintained by the device. In addition, we evaluate
the energy cost associated with the DT -based classification (Epr) for different values of the input
parameters. Last, we present the proposed future work.

6.1 Memory Analysis

Figure 25(a) shows the effect of windowSize on the size of DT in terms of number of leaf nodes. As
can be seen, the number of nodes increase as we move from windowSize 10 to 20s and follows a
downward trend thereafter with further increase in the windowSize. Accordingly, while a median
value of ~700 is obtained for windowSize = 30, it decreases to 580 for windowSize = 60. However,
the number of leaf nodes is as high as 850 nodes for certain cases with windowSize = 20/30. We
use this upper case to calculate the memory requirements for [EM-based DT and verify its feasibil-
ity for sensor-based execution. We present an array-based implementation of a DT with 850 leaf
nodes, as shown in Figure 25(b). We require four arrays of length 850 each. The first array holds
the cut-off values used at the decision nodes in DT to split the data into two subsets. As mentioned
in Section 4.2, the range of the acceleration values of cows is —2g to +2g. We scale down the mea-
surements such that they range between —1g and +1g. The cut-off values can then be represented
as 0.int and would require 2 bytes per reading; that is, a total of 850 * 2 bytes is required for the
first array. The second array is used to store flags that indicate whether the cut-off value sets a
constraint on the windowed min or max. Each flag requires 1 bit, adding up to 850 * 1/8 bytes. The
third and the fourth arrays provide link to the child nodes—left child and right child. If the child
is a leaf, a label “P” for paddock, “T” for transit, or “M” for parlour is assigned to the appropriate
index variable. Otherwise, the variable contains an offset value for the pointer to the first array for
subsequent decisions along the DT. Each entry in both arrays requires 1 byte to store the value
and totals to 850 * 1 # 2 bytes for both arrays. The net memory required for the IEM implementa-
tion, thus, equals 3.4KB (1KB = 1024bytes). The CM5000 mote used in our prototype, for instance,
features a program flash memory of 48KB. This analysis, thus, validates the suitability of IEM for
on-board implementation on the resource-constrained sensor devices. Furthermore, the generic
nature of the implementation suggests that IEM can also be incorporated in the commercially
available wearable sensor devices such as RumiWatch [32] and SmartBow [6].
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Fig. 26. (a) Energy consumption per operation [41] (b) Effect of windowSize and ¢ on Epr.

6.2 Computation Energy Cost

While we discuss the optimization of network communication cost in Section 5, it is important to
evaluate the energy consumed by on-board analysis to ensure that it does not significantly impact
the sensing and communication tasks. The conventional approach to evaluate the power consump-
tion involves periodic measurement of remaining battery level on physical hardware, as presented
in Reference [38]. Although this approach provides accurate analysis, it has several limitations,
including potential hardware and human failures, complexity and size of WSN, as well as inherent
dynamism of the environment. Alternatively, the use of modelling has been proposed to evaluate
the power consumption of WSN applications. In Reference [39], for instance, the authors use Col-
ored Petri Nets (CPN) tools to automatically generate consumption models for given NesC [40]
(programming language used in TinyOS) operators, structures and functions to, in turn, estimate
the energy cost of an entire application. While this approach may have slightly less accuracy, it
provides flexibility and agility to evaluate energy consumption in complex application scenarios
in a timely and cost-effective manner. We, therefore, adopt the approach presented in Reference
[39] for calculating the energy cost associated with DT-based classification.

Using the CPN tools, DT -based classification can be modelled as a sequence of relational oper-
ations, i.e., > comparisons. The power consumption for each classification can, thus, be calculated
as the product of the total number of operations to traverse the DT (N, ) and energy consumed per
operation (E,). The value of N,, is governed by the tree size and is typically calculated as the log
base 2 of the total number of nodes in a tree (see Figure 25(a)). To estimate E,,, the CPN models dis-
cussed for NesC operators in Reference [39] make use of an auxiliary function, namely addEnergy.
The function is assumed to follow a normal distribution and generates a random value for each
instruction’s power consumption using given energy mean and variance values. The values of
mean and variance are specific to each operator and have been estimated using measurements.
We obtain these values for relational and assignment operations from a Github repository [41], as
shown in Figure 26(a). The net energy for classification (Epr) per node is then calculated using
the following equation:

Epr = (Nop : Eup) * Netasss

where N_j4s is total number of classifications on a given node. The value of N, can be calcu-
lated as the percent readings that are classified from each trace (see Figure 17). Figure 26(b) illus-
trates the effect of windowSize and ¢ on Epr. As expected, the energy consumption decreases with
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increase in values of both window size and ¢, owing to fewer classifications. Furthermore, the value
of Epr is of the order of 107%] for different values of the input parameters. For a windowSize = 60,
the median value of Epr is below 0.0005, thus, validating the suitability of IEM (v. 2.0) for sensor-
based execution.

6.3 Future Work

In this work, we present proof-of-concept for our WSN-based localization approach. In the future,
we intend to deploy the trained IEM2.0-CASMM model on wearable sensor devices to test the
approach in real time. Moreover, we wish to address the scalability of our approach across a larger
set of devices. We also plan to assess the impact of CASMM on the response time of the system.
Since the initiating node in a coalition waits for a response from all the participating devices before
making a decision, a large coalition size may lead to an increase in response time. In this case, a
deadline by which all responses must be received may be used to meet the application response
time requirements. A trade-off between the quality of result and application deadline should, thus,
be considered. Furthermore, since accuracy of individual nodes affects the combined performance
of a coalition, we wish to study the effect of selection of nodes for forming a coalition. In addition,
we wish to design handover of the analysis to other nodes in the vicinity as the energy level of
participating nodes depletes below a given threshold.

7 CONCLUSION

In this article, we show the suitability of using the IEM-2.0 approach for classifying Mixed Gauss-
ian signals (especially with unequal distributions) and analyze the performance of our IEM2.0-
CASMM-based localization approach for animal-activity recognition and localization in dairy
farms. The performance evaluation is based on real-world mobility data of cows and shows that
the IEM2.0-CASMM approach can achieve a localization accuracy of 99% with very low frequency
of classifications. With such high accuracy of localization, a location-aware event-driven com-
munication approach is used to transfer sensor data to the cloud. Such an approach consumes
energy of the order 10~ and significantly improves the energy efficiency of the WSN operation.
Furthermore, memory analysis for the approach shows that it requires only 3.4KB of the program
flash and is suitable for implementation on wearable sensor devices. On-board implementation of
IEM2.0-CASMM on animal wearables would allow uninterrupted context-aware sensing in Coop-
erative WSN, as cows move around a farm despite the lack of continuous Internet connectivity.
This, in turn, would facilitate real-time LBS within the farm as well as early detection of behavior
anomalies that may indicate health-related issues. As IEM is applicable for classification of generic
Mixed Gaussian signals, our approach can be extended to different WSN applications.
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