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Abstract—Artificial neural stimulation of a peripheral nerve
can create an in-body data communications channel. We propose
the stimulation of a peripheral nerve using energy-harvesting
arrays of nanodevices, embedded in biocompatible tissue patches.
The resulting extracellular compound action potential (CAP)
pulse can provide a data bit-stream for communicating with an
embedded receiver. Our objective is to determine the maximum
achievable transmission range of a CAP along a nerve and the
maximum sustainable bit rate. We model the generation of a CAP
and then compute the reduction in amplitude and the spreading
of the pulse with propagation distance. The channel capacity is
calculated for on-off keying (OOK) and digital pulse interval
modulation (DPIM). We show that the transmission range de-
pends on the number and diameters of the activated neurons
contributing to the CAP amplitude and width. Our modulation
analysis demonstrates the effects of attenuation, background
noise, the neural refractory period and pulse broadening on
the achievable bit-rate. We show how a maximum OOK bit
rate of 200 bit/s can be sustained over transmission distances
greater than 100 mm. The proposed approach provides a low
bit-rate, unidirectional asynchronous transmission system that
could, for example, deliver simple instructions to an embedded
drug-delivery system.

Index Terms—Action Potentials, Asynchronous Communica-
tion, Channel Capacity, Nanobiotechnology, Neurostimulation.

I. INTRODUCTION

Artificial neural stimulation uses electrical current to stim-
ulate specific parts of the human nervous system. At present
it is used to treat neurological conditions or to enhance neural
connectivity for prosthetics. Stimulation may be delivered
by externally powered electrodes placed on the skin surface
(transcutaneous) or under the skin (subcutaneous) in closer
proximity to muscles or nerves. Transcutaneous electrical
nerve stimulation (TENS) has long been used for pain relief
[1] while external vagus nerve stimulation is currently being
investigated as a treatment for epilepsy, depression [2] and
the inflammation of rheumatoid arthritis [3]. Deep brain stim-
ulation (DBS) deploys embedded electrodes to reach specific
areas of the brain and is used in the treatment of Parkinson’s
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Disease [4]. In all cases the stimulus current is delivered by an
electrode with no other electronic devices on the neural path.

A nerve can also be seen as a communications path trans-
porting information via neurons from the body to the brain and
vice versa. A whole-body communications system using touch
stimuli on a finger as transmitters and brain scan information
as a receiver is described by Hanisch [S]. The maximum
modelled bit-rate is 40 bit/s though the detection system has a
lot of background noise from other brain functions. Individual
neurons transfer stimulus spikes called action potentials (AP)
along neuron bodies ( axons) and across neural interfaces
(synapses). The published research work to date is based on
single neuron analysis to model (i) molecular communications
at the nanoscale between neurons or (ii) data communications
along a single axon. Channel models for single-spike intra-
neuron and inter-neuron communications, based mainly on
experimental knowledge of hippocampal neurons, have been
developed by Malak and Akan [6], Balevi and Akan [7],
Ramezani and Akan [8], Veleti¢ et al [9] and Cacciapuoti et al
[10]. The modeling of a multiple input, single output (MISO)
neural channel is examined in more detail by Ramezani et
al [11] who also consider the effects of a neural degeneratiive
disease on the number of available neurotransmitters. A neuron
channel model using a sub-threshold (non-spiking) stimulus
was proposed by Khodaei and Pierobon [12] [13], though
sub-threshold impulses have a very short range along an axon
[14]. Data communications through the single median giant
axon of the earthworm was modelled by Abbasi et al [15]
who calculated a data throughput based on frequency shift
keying (FSK). Our focus is to model a communications channel
along the nervous system using multiple stimulated neurons to
exploit the higher level of voltage pulse that can be generated.

An embedded transmission device could generate modu-
lated stimulus pulses along a nerve for interpretation by an
embedded receiving device. The information rate will depend
on many factors such as: (i) the number and type of neurons
that are stimulated; (ii) the spread in velocities of the APs; and
(iii) the exact position of the detecting electrodes. The stimulus
pulses should not interfere with the normal working of the
nervous system and should be applied in situations where the
muscle or organ at the nerve extremity was damaged and could
not terminate normal nerve impulses. The receiving module
could provide functionality to overcome such impairment. One
potential application is the delivery of different drug types or
concentrations from a programmable platform to a damaged
organ, such as that described by Huang et al [16].

In previous work we modelled how ultrasound could pro-
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vide wireless energy to embedded nanowire-based devices [17]
and how arrays of theses nanodevices could selectively stimu-
late fascicles in peripheral nerves [18]. The nanodevice array
is embedded into a polymer-based patch of bio-compatible
tissue [19], placed against a nerve’s outer layer (Epineurium)
and harvests its energy from ultrasound waves that are emitted
by a portable external source. The harvested ultrasound energy
is converted by the piezoelectric nanowires and releases an
electronic pulse that stimulates nerve fascicles through an
electrode. The pulse then is transmitted along a peripheral
nerve and detected at the remote end by a receiver. The
stimulated part of the nerve should be at a shallow depth under
the skin to allow for maximum power harvesting. In this paper
we propose the novel use of energy-harvesting nanodevice
arrays as neural data transmitters and develop a novel channel
model for a peripheral nerve. The receiver can be at a deeper
level in the body, possibly encased by muscle and/or obscured
by bone. In order to dimension such a transmission system we
need to know:

« maximum number of pulses per second that a nerve can
support;

« amplitude and attenuation of the pulse to determine the
pulse range and intensity;

« level of noise or distortion in the nerve;

« modulation that is suited to the natural signaling proper-
ties of the nerve.

These values and parameters allow us to calculate the resulting
bit rate at different distances from the stimulus point. The main
contributions of our work are as follows:

e Modelling the generation and propagation of an ex-
tracellular Compound Action Potential (CAP) along a
peripheral nerve subject to constraints imposed by neural
biology.

« Evaluating two different modulation methods, on-off key-
ing (OOK) and digital pulse interval modulation (DPIM),
that could be applied.

o Showing how a bit rate of 200 bit/s can be generated
and sustained for distances over 100 mm despite pulse
attenuation and broadening from the underlying neural
channel.

The article is organised as follows: our modelling of neuron
activation and action-potential generation is described in §II;
the model of a compound action potential in §1II; the channel
model in §IV; modulation and protocols in §V and our
conclusions are presented in §VI.

II. NEURON ACTIVATION

The resting potential of a neuron, based on an ionic across
the neural membrane, is approximately -70 mV. If a stimulus
raises this potential above -55 mV (e.g., by applying a pulse
of magnitude 15 mV or greater) then the neuron activates [14].
The potential across the membrane rapidly increases to about
30 mV (a total increase of 100 mV from rest) and an action
potential (AP) then propagates down the neuron’s axon and
transfers across a synapse to another neuron or a muscle cell.
The first neuron then returns to the rest state. The following
are key parameters in the neuron activation process:

TABLE I: Axon Types and Parameters

Axon Type  Myelin  Diameter  Velocity =~ Chronaxie
(pm) (m/s) (ps)

Aa Yes 13-20 80-120 50-100

ApB Yes 6-12 35-75 120

Ad Yes 1-5 10-35 170

B Yes 3 3-15 200

C No 0.2-1.5 0.5-2.0 400

e The AP cycle duration from activation to completion
(typically 5 ms) is called the Refractory Period (T..y)
and a second stimulus applied during this interval will not
result in another action potential. The refractory period
also ensures that an AP can only travel in one direction as
the neuron will be de-activated in the opposite direction.

o The Intracellular Action Potential (IAP) is specifically
the trans-membrane voltage measured from the inside of
the neuron to the outside across the neural membrane and
will have a maximum value of approximately 30 mV.

o The extracellular action potential or Single Fibre Action
Potential (SFAP) is measured on the outside of the neu-
ron with respect to the surrounding extracellular medium
and will be much smaller in magnitude (nanovolts) than
the IAP.

+ The Compound Action Potential (CAP) is the algebraic
sum of multiple SFAPs arising from the same external
stimulus. The magnitude will depend on how many
neurons are simultaneously activated.

A. Activation Parameters

The level of current needed to artificially stimulate a neuron
will depend on the excitability of the neuron, the electrode-
neuron distance and the stimulus duration [20]. Larger di-
ameter neural axons are more excitable and require lower
stimulus energy than smaller diameters. Such larger axons
have an insulating sheath of myelin and are classed as Aa,
AfB, A6 and B [21]. The lowest possible stimulus current of an
axon is called the rheobase. The chronaxie is the minimum
time required for a stimulus current twice the value of the
rheobase to stimulate a neuron [20]. Diameters, AP velocity
and chronaxie value for different types of neural axons are
summarised in Table I [21]. The velocity of the AP is greater
in larger diameter, myelinated axons. Non-myelinated axons,
classed as C, have the smallest diameters and the lowest AP
velocities. The source current intensity for stimulation must be
increased as the distance between the stimulating electrode and
the neurons increases. Computed values for electrode voltage
and stimulus current for a range of neuron depths are shown
in Table II [18] for neurons with a chronaxie of 100 us. The
greater the depth of penetration, the more fascicles can be
reached and the more neurons can be activated.

B. Intracellular and Extracellular Action Potential

An empirical IAP model devised by Nandedkar and Stalberg
[22] was based on an earlier version by Rosenfalck [23]. This
model can be expressed in the space domain and the time
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TABLE II: Stimulus voltage and current for neurons with a
chronaxie of 100 us at a range of depths.

Neuron Depth

Electrode Voltage

Stimulus Current

(mm) (mV) (mA)
0.5 150.5 0.057
1 204 0.077
1.5 293 0.11
2 419 0.158
2.5 580 0.219
3 777 0.293
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Fig. 1: Time-based intracellular action potential (IAP) model
for a myelinated neuron.

domain to generate the shape and magnitude of the IAP based
on experimental values. The space domain version is expressed
across a distance z while the time domain version uses the
transform z = vt where v is the velocity of the IAP and ¢ is
the time parameter. Three shaping parameters are used: « for
the rising part of the IAP, 5 for the exponential reduction and
v for the resting potential. The empirical formula for the time
domain IAP, ¢;,,(t), may be written as:

Diap(t) = at’e™? — (D
The time-based version produces an IAP that has a duration
appropriate for a range of cellular tissue including neurons of
different types. This formula was originally devised for muscle
fibre with a= 49152 mV/ms®, 5 = 8/ms, v =90 mV and
a velocity of 4 m.s~!. We modify the shape of the time-
based version to match the experimental shape of a myelinated
neuron IAP by: i) changing the resting potential, vy, to -70
mV, ii) setting the value of a= 36864 mV/ms® to generate a
peak voltage of 30 mV and iii) retaining the value of 3. Our
modified empirical equation is:

Biap(t) = 36864t3e 8 — 70 )

A plotted example of our modelled IAP for a myelinated
neuron is shown in Fig. 1. We will use this time-based IAP
model in our calculation of the extracellular single fibre action
potential (SFAP).
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Fig. 2: Schematic view of the stimulating and detection of
single fibre action potentials (SFAPs) along a single neuron.

The calculation of potential at a point in a conducting
extracellular medium arising from a travelling current source is
based on the principles of volume conduction [24]. The SFAP
is computed from a convolution of (i) a source excitation and
(i) a weighting function based on the exact position of the
detecting electrode along the fibre. If we model a single neuron
as a long thin cylinder then we can define the direction of prop-
agation of an SFAP as along the z axis and the initial excitation
point as (0,0, 0). The detection point for the SFAP is outside
the fibre at location (xg, Yo, z0) in the extracellular domain as
shown in Fig. 2. The extracellular potential at this point will
vary with the radial distance from the propagating source of
excitation [14]. The radial distance will vary specifically with
the longitudinal propagation distance and can be expressed as
r(z) once the detection point is a fixed perpendicular distance
p (in the xy plane) from the fibre. The potential at a specific
time can be expressed as an integration of the contributions
of all transmembrane current sources of length dz. Two types
of model have been developed for SFAPs: monopole models
based on transmembrane current (second derivative of the IAP)
and dipole models based on dipole moment (first derivative
of the TAP). Monopole models were developed by Plonsey
[25] and Nandedkar and Stalberg [22] and a dipole model
was developed by Dimitrova et al [26]. These were analysed
by Falces et al [27] who noted that the dipole model gave
better results at boundaries and was more consistent with
experimental data. We will use a dipole model in our derivation
of the SFAP and our formulation is based on the equation
derived by Falces [27]. The extracellular potential at time £,
¢e(t), for a neuron of radius a can be modelled as the output
signal of a linear system and computed as the convolution of
two time dependent functions:

! 1

pu(t) = L0 it)  Tr@
© do,v Ot ot
The intracellular conductivity is o;, , the extracellular con-
ductivity is o, and the conduction velocity is v. The radial
distance, r,(t), can be expressed as:

ro(t) = V(20 — vt)? 4 p? )

This distance will be at minimum when the IAP reaches the
longitudinal distance (zp) of the electrode from the source.
The SFAP conduction velocity, v, is also proportional to the
diameter of a neuron, d(= 2a), and can be expressed as:

v = hd

3)

®)
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(a) SFAPs for a 4.5 pym diameter neuron
and 9.5 pm diameter neuron at electrode
perpendicular distances of 2 mm and 6 mm.
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(b) SFAP amplitude (positive peak) plotted against a
range of neuron diameters for two different detection
electrode perpendicular distances.

Fig. 3: Variation of SFAP amplitude with neuron diameter and
detection electrode perpendicular distance at a fixed longitu-
dinal distance of 100 mm.

The constant of proportionality, h, is approximately 6 for
myelinated neurons when the velocity is expressed in m/s
(or mm/ms) and the diameter is expressed in pum [28]. We
fix the value of extracellular conductivity, o, at 0.3 S/m and
the intracellular conductivity, o;, at 1 S/m [29]. Our modelled
example of SFAPs for myelinated neurons of two different
diameters is shown in Fig. 3a. The duration of the SFAP is the
same in each case (approximately 2.55 ms) but the time taken
to reach the detection point is longer for the lower diameter
(and lower velocity) neuron. The recorded SFAPs are tri-phasic
with both positive and negative peaks. The amplitudes of the
SFAP peaks depend not only on the relative positions of the
source and detecting electrode but also on the conductivity
ratio between the intracellular medium and the extracellular
medium, as shown in (3). The relationship between SFAP
amplitude (for positive/negative peaks) and neuron diameter
is approximately linear for the range of diameters that we
are studying [28] and is shown for the larger positive peak in
Fig. 3b. The highest frequency for generating SFAPs is limited
by the refractory period (up to 5 ms) and will be approximately
200 pulses/sec.

III. COMPOUND ACTION POTENTIAL

An SFAP for a single neuron is difficult to detect because
of its low amplitude and the possibility of interference from
other neurons. However, a stimulus pulse of sufficient strength
will trigger multiple SFAPs in one or more fascicles. The
SFAPs will sum algebraically to give a compound action
potential (CAP) which is easier to detect by an extracellular
receiver because of the higher summed voltage although the
peak voltage may still be of the order of microvolts or low
millivolts.

A. CAP Simulation

We model CAP measurement over multiple neurons in a
similar way to that shown for a single neuron in Fig. 2.
The peripheral nerves that we are considering (sural, median,
radial) are elliptical or circular in cross-section with average
radii ranging from 1.7 mm (median) to 1.5 mm (sural). The
minimum perpendicular detection distance occurs when the
detecting electrode is on, or very close to, the surface of the
nerve. The neurons are at varying distances from the detection
point with corresponding differences in SFAP amplitudes.
Wijesinghe et al, [30] show the average distance of neurons
from the centre of the nerve can bet set at a value of 0.66 of
the nerve radius without loss of accuracy in CAP calculation.
We adapt this model with the neurons concentrated at the
centre of the nerve and the detecting electrode set at slightly
greater than the typical peripheral nerve radius. A minimum
perpendicular detection distance of 2 mm ensures that the
nerve dimensions and neuron distances are properly accounted
for in simulating multiple SFAPs without overestimating the
magnitude of the resulting CAP. The duration (width in time)
of a CAP will depend on what fraction of the neurons in the
fascicles are stimulated and the velocity of propagation of the
SFAPs. Schoonhoven et al [31] used a volume conduction and
convolution model, similar to the one we described in §II-B, to
compute SFAPs and then combined these mathematically into
a CAP. Models for CAPs were also developed by Wijesinghe
et al, [30] based on similar principles. The general formulation
states that a CAP at a time ¢ and distance [ from the stimulating
electrode may be expressed as:

N
CAP(t,1) =Y ¢ej(t — 7j30;) (6)
j=1

There are N active fibres in total in the nerve and ¢.; is the
SFAP of the jth neuron. The conduction velocity is v; and is
usually constant for a given neuron. The arrival time of the
stimulus at the detection point, 7;, is derived from the distance
and the SFAP velocity :

T = " )
If the neurons are of different diameter then the SFAPs
will have different velocities and the CAP at distance [ will
show spreading from the variation in SFAP arrival times.
The CAP amplitude will reduce with longitudinal distance
because the underlying multi-speed SFAP bi-phasic peaks will
progressively start to cancel each other out [30] giving a
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Fig. 4: Spread of arrival times of SFAPs in ms/mm for varying
neuron diameters. The dispersion in ms/gm/mm is also shown.

reduced summation. A plot of propagation times for SFAPs
over a range of diameters (and hence velocities) is shown in
Fig. 4 for a distance of one mm. We compute the dispersion,
D, as the rate of change of propagation time ¢ with respect
to neuron diameter d and distance z at any given point as
follows: 1 dt

 zdd ®
Dispersion is expressed per unit length as ms/pm/mm. Each
neuron diameter has its own value of dispersion but it is
possible to use a single value of dispersion over a narrow
range of diameters to simplify calculation of pulse spread. This
spreading in time of a CAP is analogous to the dispersion
that occurs in an optical fibre when a propagating optical
pulse contains a range of wavelengths [32] that travel at
slightly different velocities. A nerve or fascicle with a greater
proportion of smaller diameter neurons and lower conduction
velocities will generate a CAP with a lower amplitude and with
greater spreading over distance than a fascicle with a greater
proportion of larger diameter neurons. We can illustrate this by
modelling a nerve with a total of 10,000 neurons, similar to the
sural nerve model used by Stegeman et al [33]. A peripheral
nerve of this type has multiple fascicles with a bimodal spread
of neural diameters around 4.5 pym and 9.5pm.

We use this distribution to generate three different CAPs:
(i) a bimodal CAP from all the neuron diameters, (ii) a single
mode CAP from the distribution of lower speed neurons with
smaller diameters and (iii) a single mode CAP from the higher
speed neurons with larger diameters. The resulting CAPs
are generated by summing all the calculated SFAPs and are
shown in Fig. 5. We fix the perpendicular distance of the
detection electrode at 2 mm. A single mode CAP can be
generated from higher velocity SFAPs if the stimulus pulse
intensity and duration are set to stimulate larger diameter
neurons in a fascicle. A more intense and longer duration
stimulus pulse will stimulate both larger and smaller diameter
neurons creating a bimodal CAP with higher velocity and
lower velocity SFAPs. The bimodal CAP shows that the larger
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Fig. 5: Bimodal CAP of nerve and single mode CAPs of
fascicles with mean diameters 4.5 pm (6000 neurons) and 9.5
pm (4000 neurons) measured at a longitudinal distance of 100
mm.

diameter neurons dominate even though numerically there are
more neurons of lower diameter. The change in amplitude
(positive and negative peaks) and duration (spread) of a CAP
will be important parameters in assessing the use of CAPs as
pulses for data transmission.

B. CAP Data Pulses

A data transmission system requires a data source, transmis-
sion channel and a receiver. In our model an external source
will convert data into coded ultrasound stimulus pulses for
transmission to an embedded nanodevice patch [18]. The patch
will stimulate fascicles in a nerve and create a corresponding
stream of coded CAPs. A receiver at the distant end must
detect these CAPs, record them and interpret them using some
decoding algorithm. We will use the positive peak of a single
mode CAP as a measure of the amplitude of a pulse. This peak
will decline with distance and the CAP will broaden. We now
define an equivalent data pulse format primarily to simplify
our computations while retaining all the attributes of a CAP.

o We model the CAPs using Gaussian Pulses to replicate
the attributes of CAPs (decreasing amplitude, increasing
width) as they propagate along a nerve without contra-
vening the limit set by the refractory period.

« The Amplitude is based on a mean neuron diameter d
and a standard deviation in diameter o .

o The Width of the Gaussian pulse in time is a standard
deviation based on the spread of propagation velocities
of the constituent SFAPs.

o The Symbol Rate of the nerve can be calculated within
the constraints of the refractory period and the inter-
symbol interference (ISI) caused by pulse spreading.

o The maximum possible Shannon Capacity of the nerve
is computed from the symbol rate and the signal-to-
noise ratio (SNR) of the nerve. The actual capacity will
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depend on constraints like the refractory period and the
modulation method.

We evaluate our neural transmission system by modelling two
single mode CAPs as Gaussian pulses. The amplitude is based
on the average of a number of summations of SFAP positive
peaks for (i) 6000 neurons with a mean diameter, of 4.5 yum
and a standard deviation in diameter of 1 pm and (ii) 4000
neurons with a mean diameter of 9.5 um and a standard
deviation in diameter of 1 pm. The equation for our Gaussian
pulse voltage with respect to time, V (), is as follows:

—(t—pcap)?
V(t) = Apaze  2ocar” )]
The peak amplitude of the Gaussian pulse CAP (from the
summed SFAPs) at the point of measurement is the positive
peak A,,... The time (in ms) at which the peak amplitude
is detected at the fixed detection point provides the mean,
fcap, Of the modelled pulse. The width of a CAP in time
has a minimum value set by the width of the underlying
SFAPs (2.55 ms). Our equivalent Gaussian pulse replicates this
minimum value with a core standard deviation of one-sixth of
this width (0.425 ms). The total standard deviation in time of
the modelled CAP, o), is calculated from two components:
(i) a core standard deviation of o = 0.425ms added to (ii)
the broadening due to dispersion calculated from the standard
deviation of the underlying diameters (and hence velocities) at
any time t. We can calculate the pulse broadening, AP, over
a length 2z due to dispersion as follows:
AP = Djoqz (10)
The dispersion of the mean diameter is D (see $III) and the
standard deviation of the diameter range is o4. The modelled
CAP Gaussian pulse will then have a total standard deviation
(in ms) as follows:

Ocap = AP + 0y
= Dgo4z + 09
= Dgogz +0.425

(1)

This ensures that the width of the modelled Gaussian pulse,
a combination of the underlying CAP width plus the broad-
ening due to dispersion, is comparable to the width of the
corresponding simulated CAP. Examples of CAPs modelled
as a Gaussian pulses are shown in Fig 6. The peak amplitude,
A(z), over a range of propagation distances for a fascicle with
k neurons can be averaged over a number of simulations and
modelled by an empirical exponential function as follows:

Ap(2) = Gre 7 (12)
The empirical parameters GG, and «ay, will have values that
depend on the mean neuron diameter, the standard deviation
of the diameters and the number of neurons in the fascicle.
The reduction in amplitude and the increase in spread of our
modelled CAPs as the detection distance increases is shown
in Fig. 7. We now examine how a stimulated stream of CAPs
can be used for data communications.
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(b) Gaussian CAP pulse showing amplitude reduction
and pulse spreading at time intervals of 1 ms, 6 ms and
11 ms.

Fig. 6: Gaussian pulses modelled on a CAP generated from
4000 neurons with a mean diameter of 9.5um and standard
deviation of 1 pum

IV. NEURAL DATA CHANNEL

We model CAPs as symbols to convey information in bits.
The capacity of the system is determined by (i) the symbol
rate (symbols per second), (ii) the number of different symbols
and (iii) the number of bits that each symbol represents. The
maximum possible symbol rate is limited to 200/s by the total
refractory period, 7).z, if a normal level of stimulus is used
(see §II). Pulse spreading increases the probability of inter-
symbol interference (ISI) and is countered by reducing the
symbol rate. The basic symbol rate for any Gaussian pulse is
calculated using a peak-to-peak time difference at the point of
detection of approximately four times the standard deviation
(40cqp). If we compare T;..y with 40.,, we get the following
expressions for symbol rate Scqp:

1
S('a =m0 Tr
“ Tref of = 4Ucap
13)
Sca ~ 77Tre < (
P cap ! 4Ucap

The symbol rate will be in symbols/s if o, is expressed in
seconds. By substituting (11) we can calculate the effect of
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Fig. 7: Gaussian pulse model of CAPs showing decrease in
amplitude and increase in pulse spread with distance and time.

pulse spreading on the symbol rate:
1
————— Thef <
4(Dgoqz + 00) f
1
4(Dgo4z +0.425)

Scap ~ 4
Ocap

(14)

~
~

The symbol rate crossover points from T;.cy to 404, for our
modelled CAPs are shown in Fig. 8. The symbol rate itself
does not define the channel capacity as the presence of noise
in a channel will dictate the number of symbols, M, and
the number of bits per symbol (logs M) that the channel can
support.

A. Channel Capacity

We assume our multi-neuron path has average white Gaus-
sian noise (AWGN) with root mean square (rms) values in the
range 5 puV to 10 pV [34] [35]. This is in accordance with
models for neural noise based on experimental microneuro-
graphic measurements of normal (as opposed to stimulated)
CAPs [36] [37]. Some models for single neuron AP generation
also assume Gaussian noise [7] though others propose the
addition of some non-Gaussian frequency-dependent noise
[38] to provide more accuracy in single-spike capacity and
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Fig. 8: Symbol rates for a CAP of 6000 neurons with a mean
diameter of 4.5 pum and a CAP of 4000 neurons with a mean
diameter of 9.6 um. The symbol rate drops at the point where
the inter-pulse interval exceeds the refractory period.

sorting models. Amplitude reduction of the CAP with distance,
z, will lower the signal-to-noise ratio (SNVR) and hence reduce
maximum channel capacity. The SNR is derived from the noise
level rms o,, and the amplitude of the CAP A(z) (12) as
follows:

A(z)°

on?
(Gre™=)? (1

2

SNR(z) =

On
The SNR is a simple ratio but it can also be expressed in
decibels (dB) as follows:

(erf‘;"“z)%

n

SNRyp(z) = 10logio( (16)

The SNR decreases with both distance, as a result of amplitude
reduction, and with increasing noise level. The maximum
possible capacity, C bit/s, of a noisy channel with bandwidth

U is given by Shannon’s formula [39]:
C =Ulogs(1+ SNR) 17)

In this case the bandwidth will be the symbol rate, Scqp,
divided by 2 [40]. Substituting (13), (14) and (15) we get

1 (Gre™r7)?
l 1+ —
2Tref 092( * 0n2 )’
1
if Tref 2>
if f 4Ucap
1 (er—akz)Q
» - l 1 52
Ccap(z) 4(D30'd2’ +O425) 092( + 0-n2 )a
1
if Trer <
f ! 40'(:ap
(18)
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Fig. 9: Capacity plots for (a) CAP of 6000 neurons with a
mean diameter of 4.5 ym and (b) a CAP of 4000 neurons
with a mean diameter of 9.5 pm.

The equations shows that the channel capacity for a nerve
or fascicle at any given distance z from the stimulus point
depends on:
o the refractory period of the neurons, T}..y;
o the number of neurons k£ and the mean diameter
(determining the CAP amplitude);
« the background neural noise level (c,,;)
o the spread of neuron diameters around the mean value
(ca);
o the dispersion of the mean neuron diameter (D).
This theoretical capacity will be greater than or equal to the
refractory pulse limit of 200/s as long as the SNR is greater
than or equal to 3 (4.77 dB). The Shannon calculation gives
the maximum possible bit rate with noise, as shown in Fig. 9,
but does not define the type of modulation (number of different
symbols and bits per symbol) that would be needed to achieve
these bit rates. The number of symbols, M, will depend on
the SNR as follows:

M =/(1+5SNR)
qu)

On

19)

The higher the SNR, the greater the channel capacity but more
symbols must be created to achieve that capacity. The number

of bits per symbol, b, is:

bs = loga(M)
(20)

1 ez 2
Jlions 1+ )
If there is a limit on the number of symbols that can be
employed, there will be a consequent limit on the number of
bits per symbol and the result will be a reduced capacity. We
now examine what data modulation methods can be applied
to these intermittent baseband CAP pulses to compute the
attainable bit rate.

V. MODULATION METHODS AND COMMUNICATIONS
PROTOCOLS

The amplitude of a CAP will depend on the number of
neurons that are activated and is subject to statistical variation.
It would be difficult to encode information using stepped
amplitude levels so pulse amplitude modulation (PAM) is not
considered. The width of a CAP is also subject to some
statistical variation and cannot be varied systematically at
source so we do not consider pulse width modulation (PWM).
Although a CAP has both positive and negative peaks, these
are produced simultaneously and it is not possible to use
the positive peak to represent a logic “1” and a negative
peak to represent a logic “0” . Consequently the encoding
will be unipolar using the presence or absence of a pulse to
encode information. Two different encoding methods are now
discussed.

o Digital Pulse Interval Modulation (DPIM) uses timed
intervals between pulses as symbols in order to transmit
a data value. The inter-pulse interval is sub-divided into
timeslots and the value (in bits) is determined by the
number of timeslots. The detection point must correctly
calculate the number of timeslots between pulses in order
to avoid data errors.

o On-off Keying (OOK) would send a voltage pulse to
represent a binary “1” and no pulse (for the same time
duration as one pulse) to represent a binary “0”. This
represents two symbols (M = 2) with one bit per symbol.
There are two variants: (i) unipolar non-return to zero
(NRZ) where 1 and 0 are of similar duration and unipolar
(ii) return to zero (RTZ) where each positive pulse (1)
returns to a zero level for part of the timed duration.

A. Modulated Bit Rate

DPIM has been proposed as a coding system for optical
wireless (non-fibre based) communications by Ghassemlooy et
al [41] who compare DPIM throughput, efficiency and error
performance with both OOK and pulse position modulation
(PPM). Versions of DPIM for super-slow bacterial molecular
communications have been proposed by Krishnaswamy et al
[42] (Time Elapse Communication or TEC) and Barros et al
[43] (Dynamic Time-Slot Configuration with Silent Communi-
cation). MacKay and McCulloch [44] explored the throughput
that could be achieved in a single neuron using OOK and
DPIM and we base our CAP DPIM calculations on their work.
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TABLE III: DPIM parameters.

Tref At Tmaxz  Symbols  Bits/symbol  Bits/s  Achievable
(ms) (ms)  (ms)

5 5 30 4 2 133 Yes

5 2.5 25 6 2.58 206 No

5 1.66  21.66 7 2.8 258 No

5 125 20 8 3 300 No

In our variant of DPIM coding, one information symbol is
represented by a CAP pulse plus the time interval until the
next CAP (T§). A maximum and minimum duration is set on
this inter-pulse interval (T},44, Tmin) and it is then sub-divided
into timeslots of a set length (At). The number of symbols,

M will be:

Tmaz - Tmln

At

The symbol size n will vary with T and will range between

1 and M timeslots. The mean value of T, if all M values

are used equally frequently, will be %(Tmax + Tnin) and the
average symbol rate, Sg.4, Will be:
2

Tmaz + Tmzn .

M= 2y

Savg = (22)
The number of bits per symbol will be logs (M ). The minimum
value, Trn4r, is the total refractory period, T..y. We choose
the timeslot length At as the minimum time to distinguish
between two consecutive modelled Gaussian pulses (40qp).
Substituting from (11) and (21) we calculate the average bit
rate, Bgyg, in the absence of noise using the average symbol
rate and the number of bits per symbol:

2 I (Tmam - Tmzn )
o
Tmam + Tmin 92 At

2 Tmaw - Tref
g ) @3)
)

Ba'ug =

Tmaz + Tref
Tmax - Tref

4(Dgoqz + 0.425)

= 2 loga(
Tmax + T'r'ef 92
The optimum value of T},,,. is found by iteration once values
are assigned to T}y and At. The values are shown in Table III.
The parameter At (ms) increases in value with distance and
the number of bits per symbol drops. If we assume binary
coding then the number of symbols must be a power of 2
and the number of bits per symbol must be an integer. The
only achievable value within the limits set by our model is
4 symbols at 2 bits per symbol as shown in Table III. This
results in an average bit rate of 133 bit/s, inferior even to
the 200 bit/s refractory limit ceiling. Consequently, we do not
consider DPIM suitable for neural data transmission in our
model. Instead we will examine in more detail the performance
of OOK.

The OOK bit rate is the same as the symbol rate and is a
maximum of 200 bits/s. This rate can be sustained until either
(1) the SNR drops below 3 or (ii) pulse broadening changes the
symbol rate. The crossover point for pulse broadening has been
illustrated in Fig 8. The reduction in OOK bit rate caused by
a falling SNR is plotted in Fig. 10. Our results show that CAP
amplitude reduction and SNR have a much greater effect on
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Fig. 10: OOK bit rates for (a) CAP of 6000 neurons with a
mean diameter of 4.5 ym and (b) a CAP of 4000 neurons with
a mean diameter of 9.5 pm.

reducing the OOK 200 bit/s transmission distance than pulse
broadening (Fig. 10).

The OOK bit error rate (BER) measures the probability
of data detection errors occurring according as the SNR
decreases. The equation for OOK BER is based on the
complementary error function or erfc [45], the probability that
a “0” is detected instead of a “1” or vice versa. The total
probability of bit error is calculated by applying the erfc to
the derivation of SNR from (15) as follows:

2
BER = l(er c) A2)
2 o
(24)
1
= L(erfe)

The OOK bit error rate (BER) for noise levels of 5 ©V and 10
1V is shown in Fig. 11. The plot shows how BER increases
as the SNR decreases.

B. Channel Data-level Communications Protocol

The modelled neural CAP communications channel is serial,
unidirectional, low bit rate and therefore suitable for asyn-
chronous transmission, where the sender and receiver have
separate clocks. Asynchronous data link messages usually
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levels of 5 'V and10 pV.

have a start bit, a character coded as pulses (typically 8 bits),
an optional parity bit and finally a stop bit. The send and
receive clocks are both based on the expected bit rate and can
differ by up to 5% without mis-interpreting the last bit of a
ten-bit sequence. One low bit rate protocol in current use is
the unidirectional, asynchronous X10 protocol for addressing
and sending commands to simple electrical appliances (e.g.
lights) over in-house power lines [46]. The highest possible
transmission rate is 50 bits/s. The protocol transmits a four bit
start-code (1 1 1 0), a four bit “house code” device address
followed by a “unit code” (five bits ending in “0”) or a device
command (five bits ending in “1” ). All messages in X10
are transmitted twice to guarantee delivery as there is no
acknowledgement possible from the receiver.

A similar low bit rate protocol could be used for commu-
nicating with an embedded neural receiving device. The front
end of such a receiver would be a cuff electrode that would
detect the CAP pulses [47]. The receiver itself could be, for
example, an implantable CMOS drug delivery device, like that
described by Huang et al [16]. Their drug delivery system
amplifies and decodes wireless OOK signals in order to deter-
mine a specific drug reservoir location and then releases the
drug by heating and melting the reservoir cap. Our CAP OOK
transmission system could activate a similar embedded drug
delivery unit with multiple drugs or multiple concentrations of
the same drug.

VI. CONCLUSIONS

We have described and modelled a neural serial communi-
cations channel that uses compound action potentials (CAPs)
as data pulses to communicate with a receiver placed further
along the nerve. The maximum achievable range between
transmitter and receiver depends critically on the on the num-
ber and diameters of the activated neurons (contributing to the
CAP amplitude and width) and the level of background neural
noise. It would be possible to improve on the transmission
range by increasing the intensity of the applied stimulus and

creating a CAP of higher amplitude, assuming that not all
available neurons of larger diameter had been activated. If
all larger diameter neurons have been activated then any
further increase in the applied stimulus intensity will trigger
smaller diameter, lower velocity neurons resulting in a greater
broadening of the CAP without necessarily increasing the
amplitude (as shown previously in Fig 5).

We examined the two modulation methods of OOK and
DPIM and concluded that OOK was the only feasible method
given the timing constraints imposed by the neural channel on
the DPIM inter-pulse interval. The OOK bit rate is limited by
the refractory period of the neurons and results in a maximum
data rate of 200 bits/s. Transmission ranges of over 100 mm at
this rate can be achieved at higher levels of SNR. Preliminary
calibration of the transmission array would be necessary in
order to estimate the CAP width and intensity (amplitude) at
different points along the nerve before the placement of the
receiving module. The calibration would provide the operating
parameters needed to determine the achievable range of the
maximum bit rate.

We have given the example of how an embedded drug-
delivery system could be activated and programmed by CAP
data pulses. There is also the possibility of sending OOK
pulses along the vagus nerve, a nerve that is accessible at the
neck and is one of the cranial nerves that routes directly to the
brain rather than via the spinal cord. Our neural transmission
system could send commands to an embedded programmable
neural prosthesis in the brain to help mitigate impaired brain
functions. Ideally the implanted device should have a long-life
biocompatible power harvesting system that does not depend
on external ultrasound or EM wireless powering. We propose
the use of a glucose-based biofuel cell for powering the
implant similar to that described by Rapoport et al [48]. These
scenarios will be the subject of further study.
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