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Chapter 1

Introduction

1.1 A historical time-line of Riordan arrays

Searching for the origins of Riordan arrays, we need to go back at the be-
ginning of Combinatorics, as this new found field is inseparable to this area
of Discrete Mathematics. Combinatorics is the part of Mathematics which is
based on counting, which is one of the fundamentals of the science of Mathe-
matics. This area was developed because of the necessity for a common theory
that will serve the needs for counting, and help in solving problems related to
counting, which arise in pure Mathematics, notably in areas such as Algebra,
Analysis, Topology, and Geometry.
The earliest recorded use of combinatorial skills is dated back to 16th century
BC in Egypt, and centuries later in Ancient Greece. Nevertheless, most his-
torians agree that the most significant work of early combinatorics has been
done in the 9th-13th century AD, in India, China, Persia and the Middle East.
Some of the findings of that time include the Fibonacci numbers, the Binomial
theorem, and an arithmetical triangle that presents the binomial coefficients,
which is known nowadays as Pascal’s Triangle.
A few years later, Leonardo of Pisa and Jordanus de Nemore from Italy, came
in touch with the knowledge of mathematicians from the East, and gradually
the research of Combinatorics spread around Europe. This was the dawn of
a new era in Combinatorics, as European mathematicians decided to work in
this field. In 1666, Gottfried Wilhelm Leibniz was the first who used the term
combinatorial. Blaise Pascal and Pierre de Fermat developed some classical
combinatorial results which were related to the theory of probability, and of
course Leonhard Euler and his famous problem about the seven bridges of
Königsberg (known as Kalinigrand, nowadays), in 1735, which can be consid-
ered as the foundation of graph theory. Euler was also the one who introduced
generating functions in order to solve a problem related to the partition of a
number [1, 2, 105].
During the 19th century, there were even more important contributions in the
field from George Boole who used combinatorial methods in his work, Arthur
Cayley and the development of enumerative graph theory, and James Joseph
Sylvester who introduced the term matrix, in 1850. Later, in the 20th century,
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Paul Erdős contributed extensively in Combinatorics by solving many open
combinatorial problems, and pushed the boundaries further, by inspiring the
new generation of mathematicians. Simultaneously, the discovery of the com-
puter provided the mathematical community with a powerful tool for count-
ing, and gave Combinatorics a great opportunity to grow further through this,
by projecting the research of all these centuries in programming, and by devel-
oping and playing an important role in algorithm design. Fruits of this evo-
lution were the work about the fundamentals of computer science as it was
written by Donald E. Knuth [39], Richard P. Stanley [93], Robert Sedgewick
and Philippe Flajolet [36, 37], and Gian-Carlo Rota as a series of ten papers on
the“Foundations of Combinatorics”.
Riordan arrays came as a combination of Combinatorics, Linear Algebra, Group
Theory and Functional Analysis. The research that led to their discovery,
started at the end of the 1970s, when D.G. Rogers was inspired by Louis
Shapiro’s work in the discovery of a lower triangular matrix that defined an
array generated by its first two columns [77]. In his work, D.G. Rogers tried
to determine a family of triangular arrays with arithmetic properties analo-
gous of the Pascal triangle, which he named Renewal arrays.
Riordan arrays have been researched since the early 1990s and are called after
John Riordan, an American mathematician who was one of the pioneering
researchers in Combinatorics. The first paper entirely based on Riordan arrays
was published under the title “The Riordan Group” by L. Shapiro et al. in 1991
[83]. Shapiro’s paper was based on “Pascal Triangles, Catalan Numbers and
Renewal arrays” by D.G. Rogers [77], and “The Umbral Calculus” by Steven
M. Roman and Gian-Carlo Rota [78], and it is considered the foundation stone
in the formulation of the theory of Riordan arrays. It contained the initial
definition of a Riordan matrix, the way that such matrices can be constructed,
and also what is now called the Fundamental Theorem of Riordan arrays. The
latter defines a multiplication operation between Riordan matrices, and as a
consequence it was shown that the set of these matrices together with this
operation, form a group.
Since then, the research community of Riordan arrays has continued to ex-
pand by scientists all over the world. A recently updated list of related bibli-
ography [88] by Renzo Sprugnoli contains almost 100 references of published
papers from mathematicians from Europe, Asia, Australia, North and South
America, and it constitutes a proof of the high scientific interest of this new
found field. A research group specialising in Riordan arrays and related top-
ics, named the Applied Algebra and Optimization Research Center (AORC)
has been founded at Sunkyunkwan University, South Korea in 2016. More-
over, the first book devoted to Riordan arrays, written by Paul Barry [12], was
published in 2017.
The first international Riordan arrays conference was held as an invited mini
symposium during the International Congress of Mathematicians in Seoul,
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South Korea, in 2014, and since then researchers in the field have been gather-
ing at an annual Riordan arrays symposium. In the following list, we present
all the previous Riordan conferences, and the cities that have hosted them:

• Seoul, South Korea (2014)

• Lecco, Italy (2015)

• Bloomington, USA (2016)

• Madrid, Spain (2017)

• Busan, South Korea (2018)

• Sanya, China (2019)

Applications of Riordan arrays have been found in many areas of computing
such as algorithm analysis [5], error correcting codes [7] and wireless com-
munications [45]. Additionally, Riordan arrays have been used in different
scientific areas beyond the borders of Mathematics as parts of their theory
and techniques have been successfully applied in Molecular Biology for RNA
secondary structure enumeration [66] and also in Chemistry [24].

1.2 Background and Aim of our study

Although the mathematical community that studies Riordan arrays and re-
lated topics has been growing over the last few decades, most of the research
has been focused on the combinatorial properties of those matrices. Only
a handful of papers have investigated the Riordan group and the algebraic
properties of Riordan arrays in general [17, 19, 22, 49, 71, 73, 85].
Our study can be analysed in two main sections, the theoretical approach of
the group structure of Riordan arrays, and the combinatorial behaviour of
those mathematical constructions. Additionally, we have to mention that the
order of those two sections has to be exclusively as above, for the simple rea-
son that our results on the Riordan group determine our further research and
guide us on which path to follow.
One of the main goals of our research is to study the structure of the Riordan
group, to categorise its elements and to characterise possible subsets and sub-
groups of interest. In addition, we study the combinatorial properties of each
significant Riordan subgroup individually, and try to create possible links be-
tween their algebraic structures, both by extending existing research and by
formulating novel contributions in the area of the group theory of Riordan
arrays.
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Computation involving large data structures plays a vital role in the field of
Riordan arrays and in Combinatorics in general. We have been using the sym-
bolic mathematical computation program of Mathematica, to extend our com-
putational abilities and provide us with accurate results. An invaluable online
resource that helps on our research is the On-Line Encyclopedia of Integer Se-
quences (OEIS - oeis.org), which identifies known sequence of integers and
gathers information on results including them.

1.3 Preliminaries

In order to determine a Riordan array, we introduce some special topics and
methods from Analysis, that we are going to use from now on.

1.3.1 Sequences

A sequence is a mapping from the set N of natural numbers into some other
known set of numbers S, such as N, Z, Q, R or C [90]. A sequence is usually
denoted as (an)n∈N or {an|n ∈N}, and for the mapping a, we have that

a : N→ S

where
k 7→ ak,

for k ∈N.
For Riordan arrays, we are going to use a double sequence of integers, where
we define a mapping of the set N×N to the set of integers, as

a : N×N→ Z

where
(n, k) 7→ an,k,

and (n, k) ∈N×N represents the rows and columns of a matrix, respectively
and an,k ∈ Z represents the entry of the matrix in this position. A double
sequence is usually denoted as (an,k)n,k∈N or {an,k|n, k ∈N}.

1.3.2 Formal Power Series

Let C be the field of complex numbers and let z be any indeterminate over C.
A formal power series (fps) in C has the form

f0z0 + f1z1 + f2z2 + f3z3 + · · · =
∞

∑
n=0

fnzn, (1.1)
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where f0, f1, f2, . . . are all complex numbers [90]. The set of fps over a field F

is denoted by F[[z]].
Let F = K[[z]] be the ring of fps, with coefficients in K, where K is the field R

or C, with operations

a(z) + b(z) =
∞

∑
n=0

anzn +
∞

∑
n=0

bnzn

=
∞

∑
n=0

(an + bn)zn

a(z) · b(z) =
∞

∑
n=0

anzn ·
∞

∑
n=0

bnzn

=
∞

∑
n=0

n

∑
k=0

(akbn−k)zn

for the fps

a(z) =
∞

∑
n=0

anzn , and b(z) =
∞

∑
n=0

bnzn.

In Combinatorics, the coefficients f0, f1, f2, ... of the fps (1.1) are mostly used
to count objects, and therefore usually we have fk ∈ N, where k ∈ N, or in
some cases fk ∈ Q+, where k ∈N [90].
Now, suppose that f (z) is an fps such that f (z) ∈ F, then the order of an fps

ord
(

f (z)
)
= k, where k ∈N,

is defined as the lowest index of k for which fk 6= 0. The set of fps of order
k is denoted by Fk [90]. For the multiplicative inverse of an fps, we have the
following theorem.

Theorem 1.3.1. [90] Any fps, f (z), is invertible if and only if f (z) ∈ F0.

A fundamental operation for the theory of Riordan arrays, is the composition
of fps [12]. Let

g(z) =
∞

∑
k=0

gkzk = g0 + g1z + g2z2 + g3z3 + · · · ,

and

f (z) =
∞

∑
k=1

fkzk = f1z + f2z2 + f3z3 + f4z4 + · · ·
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be two fps, where f (z) ∈ F1 and g(z) ∈ F0. Then the composition of g(z) and
f (z) is defined as follows

(g ◦ f )(z) = g
(

f (z)
)
=

∞

∑
k=0

gk
(

f (z)
)k

=
∞

∑
k=0

εkzk,

where
εk = ∑

k∈N0,j
gk f j1 f j2 ... f jn ,

and the sum is over all (k, j) with k ∈N0 and j ∈Nk with

|j| = j1 + j2 + j3 + · · ·+ jk = n.

We also define f̄ as the compositional inverse of f , that is

( f ◦ f̄ )(z) = ( f̄ ◦ f )(z) = z.

To avoid any possible confusion, we simply refer to the multiplicative inverse
as the inverse.
By the definition of the composition of fps, we need to have ord

(
f (z)

)
6= 0,

otherwise for two fps in F0,

g(z) = g0 + g1z + g2z2 + g3z3 + · · · , and
f (z) = f0 + f1z + f2z2 + f3z3 + · · · ,

the composition (g ◦ f )(z) is defined as follows

(g ◦ f )(z) = g
(

f (z)
)

= g0 + g1 f (z) + g2 f 2(z) + g3 f 3(z) + · · ·
= g0 + g1( f0 + · · · ) + g2( f0 + · · · )2 + g3( f0 + · · · )3 + · · ·
= (g0 + g1 f0 + g1 f 2

0 + g2 f 3
0 + · · · ) + modulo(z), (1.2)

and the constant term of eq 1.2 is written as

g0 + g1 f0 + g1 f 2
0 + g2 f 3

0 + · · · =
∞

∑
k=0

gk f k
0 .

Now, if f0 6= 0, and k tends to infinity, the power series contain a coefficient
which is not in the field K. Hence, we need an fps f (z) that does not have a
constant term.
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1.3.3 Ordinary generating functions

As Herbert S. Wilf [102] wrote, “generating functions are a bridge between dis-
crete mathematics and continuous analysis”. An (ordinary) generating func-
tion (gf) is an important means of unifying the treatment of combinatorial
problems [75]. However, the related theory which has been developing, is not
only restricted in Combinatorics. There are a number of analysis problems
which have been tackled using gfs, while as Combinatorics plays an impor-
tant role in computer science, gfs are useful in designing counting algorithms
[36, 81]. By using gfs, we are able to describe an infinite sequence of numbers
in a neat and less complicated way, as we will see later on. This ability of gfs
makes them a powerful tool for solving a variety of counting problems.
Now, suppose that we have a sequence of numbers a0, a1, a2, a3, .... A useful
representation of its gf is a closed form expression. Closed form expressions
are independent of the general number n of arbitrary elements of the sequence
an, n ∈N. So, we get the following definition:

Definition 1.3.1. [90] The (ordinary) generating function (gf) of a sequence an is the
fps

G(z) =
∞

∑
n=0

anzn = a0 + a1z + a2z2 + a3z3 + · · · (1.3)

where an ∈ R.

For that purpose, usually OEIS provides us directly the gf of the sequence, if
this sequence has been studied before.

Example 1.3.2. [102] Suppose that we have the sequence 0, 1, 3, 7, 15, 31, ... [OEIS,
A000225], which corresponds to the power series

G(z) = z + 3z2 + 7z3 + 15z4 + 31z5 + · · · =
∞

∑
n=0

anzn.

Let us try to find G(z). We notice that, the terms of the sequence satisfy the recurrence
relation

an+1 = 2an + 1, (n > 0; a0 = 0). (1.4)

Multiplying the LHS of (1.4) by zn and summing over the values of n, for n ≥ 0, we
get
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∞

∑
n=0

an+1zn = a1 + a2z + a3z2 + · · ·

=
(a0 + a1z + a2z2 + a3z3 + · · · )− a0

z

=
G(z)

z
. (1.5)

Doing the same for the RHS of (1.4), we get

∞

∑
n=0

(2an + 1)zn = 2G(z) +
∞

∑
n=0

zn

= 2G(z) +
1

1− z
, (1.6)

as the
∞
∑

n=0
zn has coefficients correspond to the sequence 1, 1, 1, 1, 1, ... [OEIS, A000012],

and has closed form expression of the geometrical series 1
1−z , which is valid for |z| < 1.

Hence, we get the equation

G(z)
z

= 2G(z) +
1

1− z
,

and solving it for G(z), we have

G(z) =
z

(1− z)(1− 2z)
,

which is the closed form gf of the given sequence.

1.3.4 Exponential generating functions

The exponential function exp(z) = ez, can also be expressed as an exponential
fps as

ez = exp(z)

=
∞

∑
n=0

zn

n!

= 1 +
z
1!

+
z2

2!
+

z3

3!
+ · · ·

More precisely, ez can be written as
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1 + 1 · z
1!

+ 1 · z2

2!
+ 1 · z3

3!
+ · · ·

which, excluding the factorials on the denominator of each term, gives us the
sequence 1, 1, 1, 1, .... Hence, ez is the exponential generating function (egf) of
the sequence of ones [12].
By generalising this concept, we have the exponential function that corre-
sponds to the sequence dn, for n ∈ N, which is the egf of this sequence. This
leads us to the following definition.

Definition 1.3.2. [45] The exponential generating function (egf) g(z), of a sequence
dn is the fps

g(z) =
∞

∑
n=0

dn ·
zn

n!
= d0 ·

z0

0!
+ d1 ·

z
1!

+ d2 ·
z2

2!
+ d3 ·

z3

3!
+ · · · (1.7)

1.3.5 Bivariate generating functions

We can also define generating functions for two variables instead of one. These
types of generating functions are called bivariate (bgf), and are used instead
of the simple ones, on some occasions. The procedure of expansion of a bgf
is quite similar to the case of a simple gf, where the only difference is that
we use one of the variables as a fixed number, and we expand the gf with
respect to the other. As a result, we get a sequence which depends on the
“fixed” variable. Expressing this sequence as a column vector, and extracting
the coefficients of the “fixed” variable, we get an n× n (triangular) matrix.

Example 1.3.3. Suppose that we were given the bivariate gf

f (x, y) =
1

1− 3x− xy

Let us keep the variable y fixed, then f (x, y) is written as 1
1−(y+3)x , which is a geo-

metrical progression with coefficients expanding as

1, y + 3, (y + 3)2, (y + 3)3, (y + 3)4, . . .

Expressing this sequence as a column vector, we get



1
y + 3

(y + 3)2

(y + 3)3

(y + 3)4

...



=




1
y + 3

y2 + 6y + 9
y3 + 9y2 + 27y + 27

y4 + 12y3 + 54y2 + 108y + 81
...






Chapter 1. Introduction 10

Extracting the coefficient matrix from it, we get the following n× n matrix

B =




1 0 0 0 0 · · ·
1 3 0 0 0 · · ·
1 6 9 0 0 · · ·
1 9 27 27 0 · · ·
1 12 54 108 81 · · ·
...

...
...

...
... . . .




As we saw earlier in Example 1.3.2, the gf of the first column is 1
1−x . For

the second column, we notice that all the entries are the sequence of natural
numbers, multiplied by 3, so its gf is

3x
(1− x)(1− x)

.

Similarly, the gf of the third column will be

9x2

(1− x)3 ,

and goes on.

1.3.6 Coefficient extraction

We define an operator [12] to extract the coefficient of each term zk, ∀k ∈ N,
of a power series

f (z) = f0 + f1z + f2z2 + f3z3 + · · ·+ fkzk + · · ·

Therefore, we have the coefficient extraction operator [zn], ∀n ∈N

[zn] : R[[z]]→ R,

[zn] f (z) = [zn]
∞

∑
k=0

fkzk = fn.

Example 1.3.4. The coefficient of the term z2 of the fps z
(1−z)2 , is

[z2]

(
z

(1− z)2

)
= [z2](z + 2z2 + 3z3 + 4z4 + · · · )
= 2

Now, for the fps f (z), g(z) ∈ F and the operator [zn], ∀n ∈ N the following
statements hold [64]
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• [zn]
(
µ f (z) + λg(z)

)
= µ[zn] f (z) + λ[zn]g(z), where µ, λ ∈ K (Linearity)

• [zn]z f (z) = [zn−1] f (z) (Shifting)

• [zn] f ′(z) = (n + 1)[zn+1] f (z) (Differentiation)

• [zn]g(z) f (z) =
n
∑

k=0

(
[zk]g(z)

)
[zn−k] f (z) (Convolution or Vandermonde’s

identity)

• [zn]g
(

f (z)
)
=

∞
∑

k=0

(
[zk]g(z)

)
[zn] f (z)k (Composition)

• [zn] f̄ (z)k = k
n [z

n−k]
(

z
f (z)

)n
(Inversion)

1.4 Orthogonal polynomials

An orthogonal polynomial sequence
(

pn(x)
)

n≥0 [9] is an infinite sequence
of polynomials pn(x) where n ≥ 0, with real coefficients (often integer coeffi-
cients) that are mutually orthogonal on an interval [x0, x1] (where x0 = −∞ is
allowed, as well as x1 = +∞), with respect to a weight function w : [x0, x1]→
R :

x1∫

x0

pn(x)pm(x)w(x)dx = δnm
√

hnhm

where

hn =

x1∫

x0

p2
n(x)w(x)dx.

and

δnm =

{
1, if n = m,
0, if n 6= m.

We assume that w is strictly positive on the interval (x0, x1). The following
theorem shows a “three-term recurrence” which is satisfied by any orthogonal
polynomial sequence.

Theorem 1.4.1. (Favard’s Theorem) [52] Let pn(x)n≥0 be a sequence of monic poly-
nomials, the polynomial pn(x) having degree n = 0, 1, 2, .... Then the sequence
(pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1, with βn 6= 0 for all n ≥ 1, such that the three-term recurrence

pn+1(x) = (anx + bn)pn(x)− cn pn−1(x),

holds, with initial conditions p0(x) = 1 and p1(x) = x− b0.
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The coefficients an, bn and cn are dependent on n but not x. We note that if

pj(x) = xj + k′jx
j−1 + ..., for j = 0, 1, ...

then

an =
kn+1

kn
, bn = an

(
k′n+1
kn+1

− k′n
kn

)
, cn = an

(
kn−1hn

knhn−1

)
.

Since the degree of pn(x) is n, the coefficient array of the polynomials is a
lower triangular (infinite) matrix. In the case of monic orthogonal polynomials
the diagonal elements of this array will all be 1. In this case, we can write the
three-term recurrence as

pn+1(x) = (x− βn)pn(x)− αn pn−1(x), (1.8)

with initial conditions

p0(x) = 1, p1(x) = x− β0.

The moments associated to the orthogonal polynomial sequence are the num-
bers

µn =

x1∫

x0

xnw(x)dx.

Using the terms of the moment sequence (µn)n∈N in ascending order, we cre-
ate a square matrix with constant entries along antidiagonals, as follows

Mn =




µ0 µ1 µ2 · · · µn
µ1 µ2 µ3 · · · µn+1
...

...
...

...
µn µn+1 µn+2 · · · µ2n


 . (1.9)

The following theorem is a criterion for the existence of a sequence of an or-
thogonal polynomial.

Theorem 1.4.2. [23] Let |Mn| be the determinant of the square matrix of moments
Mn, n ∈ N. A necessary and sufficient condition for the existence of an orthogonal
polynomial sequence is

|Mn| =

∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn
µ1 µ2 µ3 · · · µ5
...

...
...

...
µn µn+1 µn+2 · · · µ2n

∣∣∣∣∣∣∣∣∣
6= 0, for n ∈N (1.10)
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1.5 Hankel transforms

The matrix 1.9, and its determinant 1.10 of the previous section, are related to
the theory of Hankel transforms that we discuss in this section, individually.
Now, let (an)n∈N be an integer sequence. The infinite matrix

H =




a0 a1 a2 a3 a4 · · ·
a1 a2 a3 a4 a5 · · ·
a2 a3 a4 a5 a6 · · ·
a3 a4 a5 a6 a7 · · ·
a4 a5 a6 a7 a8 · · ·
...

...
...

...
... . . .




(1.11)

is called the Hankel matrix, with elements hn = ai+j−1. The Hankel matrix Hn
of order n is the upper-left n × n submatrix of H, and hn, the Hankel deter-
minant of order n, is the determinant of the corresponding Hankel matrix of
order n, hn = det(Hn) [53].

Example 1.5.1. Let the sequence 2, 3, 8, 21, 55, 149, 404, 1097, 2981, ... [OEIS-
A004790], the Hankel matrix of order 5 is

H5 =




2 3 8 21 55
3 8 21 55 149
8 21 55 149 404

21 55 149 404 1097
55 149 404 1097 2981




with 5th order Hankel determinant h5 = 385. Calculating the Hankel determinants
of the submatrices H1, H2, H3, H4, we get the numbers 2, 7,−1,−172, respectively.

For the Hankel matrix 1.11, without lost of generality, by taking a0 = 1, and
the fact that H is positive definite, its definition will be as the following.

Definition 1.5.1. [72] The Hankel matrix H = (hnk)n,k≥0 generated by the se-
quence 1, a1, a2, a3, ... is given by

h00 = 1, hnk = an+k for n ≥ 0, k ≥ 0. (1.12)

The sequence (hn)n≥1 = {h1, h2, h3, h4, ...} of Hankel determinants is called
the Hankel transform of the matrix Hn . The Hankel transform of a sequence
an, and its binomial transform are equal, while there is a number of integer
sequences that have been found to have the same Hankel transform. [53].
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1.6 Lattice paths

Some other mathematical objects with significant combinatorial properties are
the lattice paths. Integer sequences are able to express the number of paths on
a plane, according to given restrictions on the allowable steps. Let Z2 be the
2-dimensional integer lattice, and S be a subset of Z2. A lattice path L in Z2

of length k in S is a sequence of points v0, v1, v2, ..., vk ∈ Z2, such that each
consecutive difference vi − vi−1 lies in S [93]. A pair of consecutive points is
called a step of the path. A valuation is a function on the set of possible steps
Z2×Z2. A valuation of a path is the product of the valuations of its steps, and
it will be independent of the x-coordinates of the points. Therefore, we can
represent a path π by the sequence of its y-coordinates (π(0), π(1), . . . , π(n))
[54].
We give the definitions of different types of paths on a plane.

Definition 1.6.1. [99] A Dyck path is a walk from point (0, 0) to point (2n, 0) with
the diagonal steps (1, 1) (a “rise") and (1,−1) (a “fall"), that lies strictly above (but
may touch) the x-axis.

The number of Dyck paths of order n is given by the Catalan number

Cn =
1

n + 1

(
2n
n

)

and the gf

C(z) =
1−
√

1− 4z
2z

i.e.1, 2, 5, 14, 42, 132, ... [OEIS, A000108].

Example 1.6.1. The five Dyck paths for n = 3 are

x

y

x

y

x

y

x

y

x

y

FIGURE 1.1: Dyck paths

Definition 1.6.2. [54] A Motzkin path of length n is a lattice path starting at (0, 0)
and ending at (n, 0) that satisfies the following conditions

1. The elementary steps can be (1, 1), (1, 0) and (1,−1), or north-east(N-E),
east(E) and south-east(S-E), respectively.

2. Steps never descend below the x-axis.
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The number of Motzkin paths of order n is given by the gf of Motzkin numbers

1− z−
√

1− 2z− 3z2

2z2

i.e. 1, 1, 2, 4, 9, 21, 51,... [OEIS, A001006].

Example 1.6.2. The four Motzkin paths for n = 3 are

x

y

x

y

x

y

x

y

FIGURE 1.2: Motzkin paths

We notice that Dyck paths are Motzkin paths without east steps.

Definition 1.6.3. [100] A Schröder path is the lattice path that starts at the point
(0, 0) and ends at the point (2n, 0). It contains no points below the x-axis, and it is
composed only of steps (1, 1), (1,−1), and (2, 0).

The number of Schröder paths Sn is given by Large Schröder numbers and the
gf

G(z) =
1− z−

√
1− 6z + z2

2z
which gives the sequence 1, 2, 6, 22, 90, 394,... [OEIS, A006318].

Example 1.6.3. The six Schröder paths of order n = 2 are

x

y

x

y

x

y

x

y

x

y

x

y

FIGURE 1.3: Schröder paths

We note that Dyck paths are Schröder paths without the step (1, 1).

Additionally, a Schröder path with east step (1, 0) instead of (2, 0), is called a
royal path [100], as it can be pictured by the path of a king from (0, 0) to (n, n)
on a chessboard.
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1.7 Continued fractions

The theory of continued fractions that has been developed is related to many
different areas of Combinatorics. In the current section, we focus on the link
of continuous fractions with orthogonal polynomials, and how they are con-
nected with Hankel transforms [35, 96]. Since the area of continued fractions
is quite broad, we find it convenient to review it in the context of our topic.
Therefore, we present two types of continued fractions as expansions of a for-
mal power series.

Let the fps f (z) =
∞
∑

n=0
anzn. The Jacobi continued fraction expansion (J-

fraction) of f (z) is of the form

1

1− b0z− a1z2

1− b1z− a2z2

1− b2z− a3z2

. . .

,

and the Stieltjes continued fraction expansion (S-fraction) of f (z) is of the
form

a0

1− a1z2

1− a2z2

1− a3z2

. . .

,

where a0, a1, a2, a3, . . . and b0, b1, b2, b3, . . . are sequences of real numbers. Con-
tinued fractions are used to express the gfs of paths, according to the following
theorem.

Theorem 1.7.1. [35] Let
µn = ∑

π∈Mn

υ(π)

where the sum is overMn, the set of Motzkin paths
(
π(0), π(1), . . . , π(n)

)
of length

n. Here π(j) is the level after the jth step, and the valuation of a path is the product of

the valuations of its steps υ =
n
∏
i=1

υi, where
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υi = υ
(
π(i− 1), π(i)

)
=





1, if the ith step rises,
βπ(i−1), if the ith step is horizontal,
απ(i−1), if the ith step falls.

Then the gf of the sequence µn is given by

M(z) =
∞

∑
n=0

µnzn,

which is expanded to the continued fraction

M(z) =
1

1− β0z− α1z2

1− β1z− α2z2

1− β2z− α3z3

. . .

. (1.13)

Now, since Dyck paths are Motzkin paths without the horizonal step, βi’s of
the J-fraction 1.13 will be all 0. So, from Theorem 2.5.2 in [45], we similarly
have that the gf of Dyck paths is expanded to the S-fraction

1

1− α1z2

1− α2z2

1− α3z2

. . .

Finally, the following theorem links the continued fractions to orthogonal poly-
nomials, and Hankel transforms.

Theorem 1.7.2. [52] Let (an)n≥0 be a sequence of numbers with gf g(z) =
∞
∑

k=0
akzk

that is expressed in its J-form, as

∞

∑
k=0

akzk =
a0

1− b0z− c1z2

1− b1z− c2z2

1− b2z− c3z3

. . .

.

Then the Hankel determinant hn of order n of the sequence (an)n≥0 is given by
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hn = an+1
0 cn

1 cn−1
2 · · · c2

n−1cn = an+1
0

n

∏
k=1

cn+1−k
k , (1.14)

where the sequences {cn}n≥1 and {bn}n≥0 are the coefficients in the recurrence rela-
tion

pn(z) = (z− bn)pn−1(z)− cn pn−2(z), n = 1, 2, 3, 4, ... (1.15)

of the family of orthogonal polynomials pn for which an forms the moment sequence.

We observe that eq 1.14 is independent from bn, hence eq 1.15 can also be
satisfied for the case of an S-form continuous fraction. Additionally, we note
that (1.15) from the above Theorem is (1.8) from Section 1.4.
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Chapter 2

Riordan arrays

In this chapter, we make a brief introduction to the area of Riordan arrays, by
presenting the definition of an ordinary proper Riordan array, and the pro-
duction matrix which comes by analysing further the recursive formula of
such array. Additionally, we make a reference to the Exponential and Double
Riordan arrays, emphasising the differences among those different types of
Riordan arrays, and showing some examples.

2.1 Ordinary and proper Riordan arrays

Definition 2.1.1. [83] An Ordinary Riordan array is a lower triangular infinite
matrix R, constructed by two fps

g(z) =
∞

∑
n=0

gnzn, and f (z) =
∞

∑
n=1

fnzn,

where g(z) ∈ F0, f (z) ∈ F1 in such a way that the gf of the kth column is g(z)
(

f (z)
)k,

for all k ≥ 0. We say that R is a Riordan array or Riordan matrix and we write
R =

(
g(z), f (z)

)
.

At this point, we ought to mention that although both of the terms Riordan
array, and Riordan matrix are used to express the same mathematical object
that is presented in Definition 2.1.1, the appropriate term is chosen every time
to emphasise, according to our approach.
Now, using Definition 2.1.1, we present the following examples.

Example 2.1.1. One of the simplest examples of the above construction is the Riordan
matrix which is produced by a modified form of Pascal’s Triangle,
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P =




1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
1 3 3 1 0 0 · · ·
1 4 6 4 1 0 · · ·
1 5 10 10 5 1 · · ·
...

...
...

...
...

... . . .




.

According to the above definition, this matrix is generated by two fps, of which the
first one is invertible. The sequences of numbers of the first two columns of matrix
P are 1, 1, 1, 1, 1, ... [OEIS, A000012] and 0, 1, 2, 3, 4, ... [OEIS, A007953], which
correspond to the coefficients of the polynomials

1 + 1z + 1z2 + 1z3 + 1z4 + · · · =
∞

∑
n=0

zn,

and

0 + 1z + 2z2 + 3z3 + 4z4 + · · · =
∞

∑
n=0

nzn,

respectively. The first polynomial represents a geometric series, hence its gf is 1
1−z ,

while the second gf is z
(1−z)2 , which comes from the multiplication 1

1−z
z

1−z . Similarly,
the third column of the matrix 0, 0, 1, 3, 6, ... [OEIS, A161680] corresponds to the
polynomial

0 + 0z + 1z2 + 3z3 + 6z4 + · · · =
∞

∑
n=0

n(n− 1)
2

zn

and the gf z2

(1−z)3 , and so on.
Hence, by using the gf of each column, it can be represented as

(
1

1− z
,

z
(1− z)2 ,

z2

(1− z)3 ,
z3

(1− z)4 , · · ·
)

,

and the Riordan matrix has the form

P =
(

g(z), f (z)
)
=

(
1

1− z
,

z
1− z

)
.

Now, using the rules of coefficient extraction from subsection 1.3.6, we have that
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[zn]
1

1− z

(
z

1− z

)k
= [zn]

zk

(1− z)k+1

= [zn−k](1− z)−(k+1)

= [zn−k]
∞

∑
j=0

(−(k + 1)
j

)
(−1)jzj

= [zn−k]
∞

∑
j=0

(
k + 1 + j− 1

j

)
(−1)j(−1)jzj

= [zn−k]
∞

∑
j=0

(
k + 1 + j− 1

j

)
(−1)2jzj

=

(
k + 1 + n− k− 1

n− k

)

=

(
n

n− k

)

=

(
n
k

)

Example 2.1.2. The gf of the sequence of Fibonacci numbers 1,1,2,3,5,8,13,21,...
[OEIS, A000045] is f (z) = z

1−z−z2 , using this as the second gf and choosing g(z) =
1, we have the Riordan matrix

F =
(

g(z), f (z)
)

=

(
1,

z
1− z− z2

)

=




1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 2 2 1 0 0 · · ·
0 3 5 3 1 0 · · ·
0 5 10 8 4 1 · · ·
...

...
...

...
...

... . . .




.

Combining Theorem 1.3.1 and Definition 2.1.1, we say that an invertible fps
together with a non-invertible fps generate a Riordan matrix. However, this
condition can be satisfied by a wide range of fps, as a non-invertible fps can be
any possible function f (z) ∈ Fk, where k ∈N∗. As an aftermath, choosing any
non-invertible function f (z), it might affect the triangular form of the matrix,
as we see in the following example.

Example 2.1.3. Let us compare the matrices G = (1 + z, z) and H = (1 + z, z2).
Their matrix forms are as follows.
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G =




1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 0 1 1 0 0 · · ·
0 0 0 1 1 0 · · ·
0 0 0 0 1 1 · · ·
...

...
...

...
...

... . . .




, H =




1 0 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 0 1 0 0 0 · · ·
0 0 1 0 0 0 · · ·
...

...
...

...
...

... . . .




.

We observe that in matrix H, the first non-zero entry in the second column is the
coefficient of the term z2.

Riordan arrays like the matrix H from Example 2.1.3, are called vertically
stretched Riordan arrays [27]. To avoid such problems, we give an extra defi-
nition.

Definition 2.1.2. [103] A proper Riordan array is a matrix R =
(

g(z), f (z)
)
,

where f ′(0) 6= 0.

Riordan matrices which do not satisfy Definition 2.1.2 are called improper. At
this point, we need to mention that we have exclusively limited our results
into Ordinary Proper Riordan arrays, unless otherwise noted.
A typical ordinary proper Riordan matrix is of the form

(
g(z), f (z)

)
=




g0 0 0 0 · · ·
g1 g0 f1 0 0 · · ·
g2 g0 f2 + g1 f1 g0 f 2

1 0 · · ·
g3 g0 f3 + g1 f2 + g2 f1 2g0 f1 f2 + g1 f 2

1 g0 f 3
1 · · ·

...
...

...
... . . .




.

2.1.1 The Production matrix of a Riordan array - A and Z se-
quences

We observe that the entries of a Riordan array follow a recursive formula. Each
of the entries of a Riordan matrix comes as a linear combination of entries of
the previous row.

Example 2.1.4. The entries 1, 5, 10, 10, 5, 1 of the fifth row of Pascal’s Triangle from
Example 2.1.1, are expressed by using the entries 1, 4, 6, 4, 1 of the previous row, fol-
lowing the pattern of Fig. 2.1.
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pn+1,k+1

pn,k pn,k+1

pn+1,k

FIGURE 2.1: Diagram of recursive formula of Pascal’s Triangle

More specifically, we see that each of the entry of Pascal’s Triangle (pn,k)n,k≥0, except
for the initial column, satisfy the recursive formula

pn+1,k+1 = 1 · pn,k + 1 · pn,k+1,

whereas, for the initial column, we have that

pn+1,0 = 1 · pn,0.

The coefficients of these two formulas, correspond to the sequences 1, 1, 0, 0, 0, 0, 0, ...
and 1, 0, 0, 0, 0, 0, ..., respectively.

Theorem 2.1.5. [30] Let R =
(

g(z), f (z)
)
= (rn,k)n,k≥0 be an infinite lower tri-

angular matrix, where n, k are the numbers of the row and the column of each entry,
respectively and rn,n 6= 0. Then R is a proper Riordan matrix if and only if there exist
unique sequences

α = (α0, α1, α2, α3, ...), α0 6= 0, and ζ = (ζ0, ζ1, ζ2, ζ3, ...)

such that

1. every element in column 0 can be expressed as a linear combination of all the
elements in the preceding row, the coefficients being the element of the sequences
ζ,

rn+1,0 = ζ0 · rn,0 + ζ1 · rn,1 + ζ2 · rn,2 + ζ3 · rn,3 + · · · ;

2. every element rn+1,k+1 not lying in column 0 or row 0, can be expressed as
a linear combination of the elements of the preceding row, starting from the
preceding column, the coefficients being the elements of the sequence α,

rn+1,k+1 = α0 · rn,k + α1 · rn,k+1 + α2 · rn,k+2 + α3 · rn,k+3 + · · · .

Definition 2.1.3. [30] The sequences α and ζ of Theorem 2.1.5 will be called the
A-sequence and the Z-sequence of the Riordan matrix R.

These two sequences give rise to a square matrix which plays a vital role in
the analysis of Riordan arrays.
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Now, we are going to present the concept of an associated matrix which is
generated by the recursive formulas of a Riordan array [29, 30, 31]. Let PB be
an infinite matrix, and r0 be a row vector r0 = (1, 0, 0, ...). We define the row
vector

ri = ri−1 · PB, where i ≥ 1.

Stacking these rows we create another infinite matrix, which we denote by B.
Then PB is called the production matrix of B. More specifically, we have the
following definition.

Definition 2.1.4. [12] Let R =
(

g(z), f (z)
)

be a Riordan array. The production
matrix of this array is defined by

PR = R−1 · R̄, (2.1)

where R̄ denotes that we omit the first row of the array R.

Proposition 2.1.1. [30] Let PR be an infinite production matrix and let R be the
matrix induced by PR. Then R is a Riordan matrix if and only if PR is of the form




ζ0 a0 0 0 0 · · ·
ζ1 a1 a0 0 0 · · ·
ζ2 a2 a1 a0 0 · · ·
ζ3 a3 a2 a1 a0 · · ·
ζ4 a4 a3 a2 a1 · · ·
...

...
...

...
... . . .




,

where the sequences (ζ0, ζ1, ζ2, ...) and (a0, a1, a2, ...) of the first two rows of the ma-
trix PR respectively, are the Z and A sequences of the Riordan matrix R.

Example 2.1.6. [12] We have the Riordan matrix

C =
(
c(z), zc(z)

)
=




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
2 2 1 0 0 · · ·
5 5 3 1 0 · · ·

14 14 9 4 1 · · ·
...

...
...

...
... . . .




,

where

c(z) =
1−
√

1− 4z
2z

is the gf of the Catalan numbers [OEIS, A000108].
By observation, the entries of matrix C follow the rules of Theorem 2.1.5, which give
us the A-sequence 1, 1, 1, 1, .. and the Z-sequence 1, 1, 1, 1, .... Hence, the production
matrix of C will be
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PC =




1 1 0 0 0 0 · · ·
1 1 1 0 0 0 · · ·
1 1 1 1 0 0 · · ·
1 1 1 1 1 0 · · ·
1 1 1 1 1 1 · · ·
...

...
...

...
...

... . . .




which is equal to C−1 · C̄, as




1 1 0 0 0 · · ·
1 1 1 0 0 · · ·
1 1 1 1 0 · · ·
1 1 1 1 1 · · ·
1 1 1 1 1 · · ·
...

...
...

...
... . . .



=




1 0 0 0 0 · · ·
−1 1 0 0 0 · · ·
0 −2 1 0 0 · · ·
0 1 −3 1 0 · · ·
0 0 3 −4 1 · · ·
...

...
...

...
... . . .




.




1 1 0 0 0 · · ·
2 2 1 0 0 · · ·
5 5 3 1 0 · · ·

14 14 9 4 1 · · ·
42 42 28 14 5 · · ·
...

...
...

...
... . . .




.

Alternatively to Definition 2.1.4, we use Ī · R instead of R̄, where Ī stands for
the modified square matrix of the Kronecker symbol

Ī = (δi+1,j)i,j≥0 =




0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
0 0 0 0 0 · · ·
...

...
...

...
... . . .




. (2.2)

Hence, eq 2.1 becomes PR = R−1 · Ī · R .
Additionally, by the definition of the production matrix, the A and Z se-
quences can be written in terms of the gfs of the matrix

(
g(z), f (z)

)
[12] as

A(z) =
z

f̄ (z)
and Z(z) =

1
f̄ (z)

(
1− 1

g
(

f̄ (z)
)
)

. (2.3)

2.1.2 Riordan arrays and orthogonal polynomials

In this subsection we present some well-known results that link Riordan ar-
rays, and orthogonal polynomials.

For pn(z) =
∞
∑

k=0
an,kzk, eq 1.8 becomes

n+1

∑
k=0

an+1,kzk = (z− αn)
n

∑
k=0

an,kzk − βn

n−1

∑
k=0

an−1,kzk
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and,

an+1,k = an,k−1 − αnan,k − βnan−1,k (2.4)

For αn, βn constants, we get a three-term recurrence formula that gives us the
following proposition.

Proposition 2.1.2. [9] Every Riordan array of the form
(

1
1 + rz + sz2 ,

z
1 + rz + sz2

)

is the coefficient array of a family of monic orthogonal polynomials.

For the general case, where αn, βn are not constant, and using the production
matrix of a Riordan array, we have:

Corollary 2.1.7. [9] If L =
(

g(z), f (z)
)

is a Riordan array and its production matrix
P is tri-diagonal, with 



a1 1 0 0 0 0 · · ·
b1 a 1 0 0 0 · · ·
0 b a 1 0 0 · · ·
0 0 b a 1 0 · · ·
0 0 0 b a 1 · · ·
0 0 0 0 b a · · ·
...

...
...

...
...

... . . .




(2.5)

then L−1 is the coefficient array of the family of orthogonal polynomials pn(z), where
p0(z) = 1, p1 = z− a1, and

pn+1(z) = (z− a)pn(z)− bn pn−1(z), for n ≥ 2,

where bn is the sequence 0, b1, b, b, b, ...

This leads us to the following theorem.

Theorem 2.1.8. [9] A Riordan array L =
(

g(z), f (z)
)

is the inverse of the coefficient
array of a family of orthogonal polynomials if and only if its production matrix P is
tri-diagonal.

2.2 Exponential Riordan arrays

Definition 2.2.1. [31] An exponential Riordan array is a lower triangular infinite
matrix E, constructed by two exponential gfs

gε(z) =
∞

∑
n=0

gn
zn

n!
; fε(z) =

∞

∑
n=1

fn
zn

n!
,
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where gε(z) ∈ F0, fε(z) ∈ F1, in such a way that the gf of the kth column of E is

gε(z)
(

fε(z)
)k

k! . We say that E is an exponential Riordan array or matrix and we write

E =
[
gε(z), fε(z)

]
.

The (n, k)th element of an exponential Riordan array, is given by

εn,k =
n!
k!
[zn]gε(z) fε(z)k. (2.6)

A typical exponential Riordan matrix is of the form

[
gε(z), fε(z)

]
=




g0 0 0 0 · · ·
g1 g0 f1 0 0 · · ·

2g2 2g1 f1 + g0 f2 g0 f 2
1 0 · · ·

6g3 3(g1 f2 + g2 f1) + g0 f3 3 f1(g0 f2 + g1 f1) g0 f 3
1 · · ·

...
...

...
... . . .




.

Example 2.2.1. [12] Using the ordinary gfs of Pascal’s triangle to create an exponen-
tial Riordan array, we have that

Tε =

[
1

1− z
,

z
1− z

]
=




1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 4 1 0 0 0 · · ·
6 18 9 1 0 0 · · ·

24 96 72 16 1 0 · · ·
120 600 600 200 25 1 · · ·

...
...

...
...

...
... . . .




,

where each of the entries of the matrix comes from the formula

tn,k =
n!
k!
[zn]

1
1− z

(
z

1− z

)k
.

We note that a relationship between this matrix and its corresponding ordinary Rior-
dan matrix, comes from the following factorization of Tε [12]
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


1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 0 2 0 0 0 · · ·
0 0 0 6 0 0 · · ·
0 0 0 0 24 0 · · ·
0 0 0 0 0 120 · · ·
...

...
...

...
...

... . . .




.




1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
1 3 3 1 0 0 · · ·
1 4 6 4 1 0 · · ·
1 5 10 10 5 1 · · ·
...

...
...

...
...

... . . .




.




1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 0 1

2 0 0 0 · · ·
0 0 0 1

6 0 0 · · ·
0 0 0 0 1

24 0 · · ·
0 0 0 0 0 1

120 · · ·
...

...
...

...
...

... . . .




In Example 2.2.1, we saw how the ordinary gfs that produce the ordinary Rior-
dan matrix of Pascal’s triangle, generate a different exponential Riordan array.
In the following example, we present the exponential gfs that corresponds to
Pascal’s triangle.

Example 2.2.2. Pascal’s Triangle is generated by the exponential Riordan matrix
[ez, z]. Hence,

[ez, z] =




1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
1 3 3 1 0 0 · · ·
1 4 6 4 1 0 · · ·
1 5 10 10 5 1 · · ·
...

...
...

...
...

... . . .




.

The corresponding A and Z sequences of the production matrix of an expo-
nential Riordan array, Aε and Zε respectively, are defined [12] by

Aε(z) = f ′ε
(

f̄ε(z)
)
, and Zε(z) =

g′ε
(

f̄ε(z)
)

gε

(
f̄ε(z)

) , (2.7)

where Aε(z), Zε(z) ∈ F0. We owe it to mention that Aε and Zε can also be
found in bibliography as r(z) and c(z) [31], respectively. The bivariate gf
GP(z, y) of the production matrix of an exponential Riordan array Pε, [12] is
given by

GP(z, y) = ezy(Zε(z) + yAε(z)
)
. (2.8)

In the case of an ordinary Riordan array, we see that its production matrix has
a repeated pattern on its entries, except for the initial column. Although, the
production matrix of an exponential Riordan array is generated similarly, the
pattern of the entries is more complicated because of the definition of Aε, and
the n!

k! factor.
By Definition 2.1.1 for the case of an exponential Riordan array E =

[
gε(z), fε(z)

]
,

we get that
Pε = E−1 · E



Chapter 2. Riordan arrays 29

and the entries of the production matrix Pε = (pn,k)n,k≥0 satisfy the recursive
formula

pn,k =
n!
k!
(ζn−k + kαn−k+1), where ζ−1 = 0 [12, 31].

Hence, the production matrix of an exponential Riordan array is of the form

Pε =




ζ0 α0 0 0 0 0 · · ·
1!ζ1

1!
1!(ζ0 + α1) α0 0 0 0 · · ·

2!ζ2
2!
1!(ζ1 + α2)

2!
2! (ζ0 + 2α1) α0 0 0 · · ·

3!ζ3
3!
1!(ζ2 + α3)

3!
2! (ζ1 + 2α2)

3!
3!(ζ0 + 3α1) α0 0 · · ·

4!ζ4
4!
1!(ζ3 + α4)

4!
2! (ζ2 + 2α3)

4!
3!(ζ1 + 3α2)

4!
4! (ζ0 + 4α1) α0 · · ·

...
...

...
...

...
... . . .




.

Example 2.2.3. The production matrix of the exponential Riordan matrix in Example
2.2.1, is

Pε = T−1
ε .Tε

=




1 0 0 0 0 · · ·
−1 1 0 0 0 · · ·
2 −4 1 0 0 · · ·
−6 18 −9 1 0 · · ·
24 −96 72 −16 1 · · ·
...

...
...

...
... . . .




.




1 1 0 0 0 · · ·
2 4 1 0 0 · · ·
6 18 9 1 0 · · ·

24 96 72 16 1 · · ·
120 600 600 200 25 · · ·

...
...

...
...

... . . .




=




1 1 0 0 0 0 · · ·
1 3 1 0 0 0 · · ·
0 4 5 1 0 0 · · ·
0 0 9 7 1 0 · · ·
0 0 0 16 9 1 · · ·
0 0 0 00 25 11 · · ·
...

...
...

...
...

... . . .




.

Additionally, Corollary 2.1.7 and Theorem 2.1.8 that link the tri-diagonal pro-
duction matrix of an Ordinary Riordan array with a family of orthogonal poly-
nomials, can also be applied for tri-diagonal matrices of Exponential Riordan
arrays with a few alterations in the recurrence formula [9].

2.3 Double Riordan arrays

According to the Definition 2.1.1 of an ordinary Riordan array
(

g(z), f (z)
)
,

the power of the multiplier function determines the entries of each column of
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a Riordan matrix. Now, suppose that g(z) is the gf of the zero column and
we use two multipliers f1(z) and f2(z), instead of one. Those gfs generate a
Riordan matrix, according to the following alternating rule. The gf g(z) f1(z)
generates the second column of the matrix, the gf g(z) f1(z) f2(z) the third one,
the gf g(z) f1(z) f2(z) f1(z) the forth one, and so on.

Definition 2.3.1. [28] Let g(z) = 1+∑∞
k=1 gkzk, and f1(z) = ∑∞

k=0 f1kzk , f2(z) =
∑∞

k=0 f2kzk, where g ∈ F0, f1, f2 ∈ F1 then the double Riordan array (or matrix)
of g(z), f1(z) and f2(z), denoted by

(
g(z); f1(z), f2(z)

)
has column vectors

(
g, g f1, g f1 f2, g f 2

1 f2, g f 2
1 f 2

2 , g f 3
1 f 2

2 , . . .
)

.

The set of all double Riordan matrices is denoted as dR.

According to the column vectors of Definition 2.3.1, a typical double Riordan
matrix is of the form




1 0 0 0 · · ·
g1 f11 0 0 · · ·
g2 f21 + g1 f11 f11 f12 0 · · ·
g3 f31 + g1 f21 + g2 f11 f11 f22 + f21 f12 + g1 f11 f12 f 2

11 f12 · · ·
...

...
...

... . . .




where gk, f1k, and f2k are the coefficients of the gf g, f1 and f2, for k ∈ N,
respectively.

Example 2.3.1. Let g(z) = 1
1−z2 , f1(z) = z

1−z2 and f2(z) = z. These three gfs give
rise to the double Riordan array

D = (g; f1, f2)

=

(
1

1− z2 ;
z

1− z2 , z
)

=

(
1

1− z2 ,
z

(1− z2)2 ,
z2

(1− z2)2 ,
z3

(1− z2)3 ,
z4

(1− z2)3 , ...
)

which is equal to the matrix
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


1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
1 0 1 0 0 0 · · ·
0 2 0 1 0 0 · · ·
1 0 2 0 1 0 · · ·
0 3 0 3 0 1 · · ·
...

...
...

...
...

... . . .




.
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Chapter 3

Algebraic Structures of Riordan
arrays

In this chapter, we present the main results of the Riordan group theory that
our research is based on. This contains properties of the Riordan group, all
known Riordan subgroups, different types of Riordan arrays and some of the
latest results which are related to our research.

3.1 The Ordinary Riordan group

Before we proceed to the definition of the operation of the Riordan group, we
need to refer to a theorem which is known as the Fundamental Theorem of
Riordan arrays (FTRA)[86].

Theorem 3.1.1. (FTRA) [86] Let R =
(

g(z), f (z)
)

be a Riordan matrix and P, Q
are two column vectors, where their gfs are p(z) and q(z), such that

R · P = Q.

This relation holds if and only if the following relation among the gfs is true
(

g(z), f (z)
)
· p(z) = q(z)

⇔ g(z)p
(

f (z)
)

= q(z).

FTRA simply says that the product R · P between a Riordan matrix R and a
vector P = [p0, p1, p2, . . . ]T has generating series g(z)p

(
f (z)

)
, if R =

(
g(z), f (z)

)
,

and p(z) = ∑n≥0 pnzn.
Using FTRA, and the fact that 1

1−z is the gf which has coefficient sequence
of all ones, we have the following relation for the gf of the row sums of a
Riordan matrix [85]

(
g(z), f (z)

) 1
1− z

=
g(z)

1− f (z)
. (3.1)
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Now, the operation · of the Riordan group, combining the gfs of the matrices,
is defined as follows. Suppose that we have two Riordan matrices

Λ =
(

g(z), f (z)
)
, and K =

(
h(z), k(z)

)

then we define the product Λ · K as

Λ · K =
(

g(z), f (z)
)
·
(
h(z), k(z)

)

=
(

g(z)h
(

f (z)
)
, k
(

f (z)
))

.

The product of two Riordan matrices is equal to the ordinary matrix multipli-
cation, since for the Riordan matrices

R1 = [r′n,k] =
(

g(z), f (z)
)

, and R2 = [r′′n,k] =
(
h(z), k(z)

)

we have
R = R1 · R2 =

(
g(z)h

(
f (z)

)
, k
(

f (z)
))

.

Now, for R = [rn,k] we have:

rn,k = [zn]g(z)h
(

f (z)
)
k
(

f (z)
)k

= [zn]g(z) ∑
i≥0

r′′i,k f (z)i

= [zn] ∑
i≥0

r′′i,kg(z) f (z)i

= [zn] ∑
i≥0

r′′i,k ∑
n≥0

r′n,iz
n

= [zn] ∑
n≥0

(
∑
i≥0

r′n,ir
′′
i,k

)
zn

= ∑
i≥0

r′n,ir
′′
i,k

= ∑
i=k

r′n,ir
′′
i,k.

We note that the product is well defined, since the matrices are lower triangu-
lar.
This product can be shown to be associative, with I = (1, z) being the identity
element. i.e.
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I =




1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
... . . .




.

Additionally, the inverse element is given by

(
g(z), f (z)

)−1
=

(
1

g
(

f̄ (z)
) , f̄ (z)

)
,

which leads us to the following definition.

Definition 3.1.1. [83] The set R of all Riordan arrays together with the above oper-
ation, form the Riordan group, 〈R, ·〉.

The order of this group is infinite, while regarding the order of the Riordan
elements, we know that any element with integer entries having finite order
must have order 1 or 2 [84]. The only Riordan element which has order 1 is
the identity, whereas there is more than one element of order 2.

Definition 3.1.2. [49] Let Λ =
(

g(z), f (z)
)

be a Riordan matrix. If Λ ·Λ = I, then
Λ is called an involution. i.e. Riordan elements of order 2 are called involutions.

Example 3.1.2. The element

(1,−z) =




1 0 0 0 0 · · ·
0 −1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 −1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
... . . .




is an involution, as

(1,−z) · (1,−z) =
(
1,−(−z)

)

= (1, z).

Proposition 3.1.1. [50] The Riordan array
(

g(z), f (z)
)

is an involution if and only
if

g(z) =
1

g
(

f̄ (z)
) , and f (z) = f̄ (z).
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We note that the relationship f (z) = f̄ (z) emanates from the Babbage func-
tional equation [3, 4]

f (z)◦k = f (z) ◦ · · · ◦︸ ︷︷ ︸
k−times

f (z) = z (3.2)

for k = 1. So, for the self-compositional inverse function f (z), where f
(

f (z)
)
=

z, we have f (z) = f̄ (z).

Definition 3.1.3. [16] Let K be a Riordan matrix and M = (1,−z). If K ·M is an
involution, then we call K a pseudo-involution. i.e. (K · M)2 = I i.e K · M has
order 2.

Example 3.1.3. The Pascal’s triangle that we described earlier in Example 2.1.1 is a
pseudo-involution as

P ·M =

(
1

1− z
,

z
1− z

)
· (1,−z)

=

(
1

1− z
,− z

1− z

)
,

and

(P ·M)2 =

(
1

1− z
,− z

1− z

)
·
(

1
1− z

,− z
1− z

)

=




1
1− z

1

1 +
z

1− z

,

z
1− z

1 +
z

1− z




= (1, z).

At this point, we need to mention that although the identity element satisfies
the condition I · I = I, we consider it as a trivial case of involution, there-
fore we usually avoid it. Nevertheless, some other authors think of it as an
example of a pseudo-involution [49].

Proposition 3.1.2. [17] A sufficient and necessary condition for a Riordan element
K =

(
g(z), f (z)

)
to be a pseudo-involution is to have

− f
(
− f (z)

)
= z , and g(z) =

1
g
(
− f (z)

) .
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3.2 Ordinary Riordan subgroups

Shortly after the publication of Shapiro’s historical paper, the first few Riordan
subgroups appeared, by choosing the appropriate gfs, according to the rules
of the Riordan multiplication.
In personal discussions with L. Shapiro (October 2017, and June 2018), about
the origins of the known Riordan subgroups, he informed us that the names
of the Associated and the Appell subgroups came from the Umbral Calculus
and possibly from G-C. Rota and S.M. Roman. Furthermore, he notified us
that there was a scientific team led by himself at Howard University, USA.
One of their purposes was to name objects related to this new found field.
Thus, except for the name of Riordan arrays, they also came up with the terms
of Bell, Power-Bell, Hitting-time, Derivative, Checkerboard, Derivative, and
Stochastic subgroups.
In this section, we present all Riordan subgroups that have been defined to
date, together with the A and Z sequences of each subgroup. Whenever it is
possible, we express Z sequences in terms of A sequences. We finally present
a more detailed form of the Stieltjes matrices of (some of) the subgroups. For
the rest of the section, let 1, a1, a2, ... be the A sequence, and 1, g1, g2, ... be the
corresponding sequence of the first generating function of a Riordan matrix(

g(z), f (z)
)
.

3.2.1 The Associated subgroup

One of the simplest forms of Riordan subgroups, is the Associated (or La-
grange) subgroup (Assoc). It contains Riordan elements of the form

(
1, f (z)

)
,

and it is the only Riordan subgroup that contains a constant as a gf. The Asso-
ciated Riordan subgroup is isomorphic to the group of fps under composition
[41], and it is also the stabilizer of (k, 0, 0, . . . )T, ∀k ∈ Z∗, as by applying the
FTRA, we get

(
1, f (z)

)
·




k
0
...
0


 =




k
0
...
0


 .

The A and Z sequences of an Associated matrix [12] are

A(z) =
z

f̄ (z)
, and Z(z) = 0.

The production matrix of any Associated Riordan array is of the form
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PAssoc =




0 1 0 0 · · ·
0 a1 1 0 · · ·
0 a2 a1 1 · · ·
0 a3 a2 a1 · · ·
...

...
...

... . . .




.

3.2.2 The Bell subgroup

The Bell (a.k.a. Renewal or Rogers) subgroup contains Riordan elements of
the form

(
g(z), f (z)

)
, where f (z) = zg(z). Alternatively, Bell elements can be

written as
(

f (z)
z , f (z)

)
. This ability of the Bell subgroup to be presented in two

ways, solely in terms of g(z) or in terms of f (z) functions, will be used later
on. An example of a Riordan element of this subgroup, is Pascal’s Triangle,
for f (z) = z

1−z , or g(z) = 1
1−z .

The A and Z sequences of a Bell matrix [12] are

A(z) =
z

f̄ (z)
, and Z(z) =

A(z)− 1
z

, (3.3)

and its production matrix is

PBell =




a1 1 0 0 · · ·
a2 a1 1 0 · · ·
a3 a2 a1 1 · · ·
a4 a3 a2 a1 · · ·
...

...
...

... . . .




.

Moreover, as an extension of the original subgroup, we have

c-Bell =
{(

f (z)
z

, c f (z)
) ∣∣∣∣c 6= 0

}
, (3.4)

for any distinct value of c [85].

3.2.3 The Appell subgroup

The Appell (or Toeplitz) subgroup contains Riordan elements of the form(
g(z), z

)
. The Appell subgroup (App) is isomorphic to the group of invert-

ible fps under multiplication [41]. This is the only known abelian Riordan
subgroup, and it is also the only Riordan subgroup that is

(
g(z), z

)
/R, i.e.

it is normal in R. By using the latter property, we are allowed to present the
Riordan group as a semi-direct product of the Appell and the Associated sub-
groups [67], as
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(
g(z), f (z)

)
=
(

g(z), z
)
·
(
1, f (z)

)
, (3.5)

and as a semi-direct product of the Appell and the Bell subgroups [16], with
the appropriate form of the Appell subgroup, as

(
g(z), f (z)

)
=

(
zg(z)
f (z)

, z
)
·
(

f (z)
z

, f (z)
)

. (3.6)

Proposition 3.2.1. The Appell subgroup cannot be a stabilizer of any vector.

Proof. Let h(z) ∈ Fk. Applying FTRA to any Riordan element of the Appell
subgroup, we get g(z) = 1, which corresponds to the identity matrix.

The A and Z-sequence of an Appell matrix [12] are

A(z) = 1 , and Z(z) =
g(z)− 1

g(z)z
.

The production matrix of an Appell Riordan array is of the form

PApp =




g1 1 0 0 · · ·
g2 − g2

1 0 1 0 · · ·
g3 − 2g1g2 + g3

1 0 0 1 · · ·
g4 − 2g1g3 − g2

2 + 3g2
1g2 − g4

1 0 0 0 · · ·
...

...
...

... . . .




More Appell subgroups can also be defined, as extensions of the original sub-
group [85],

c-Appell =
{(

g(z), cz
)∣∣c 6= 0

}
. (3.7)

for any distinct value of c.

3.2.4 The Derivative subgroup

The Derivative (or Co-Lagrange) subgroup (Der) contains Riordan elements
of the form

(
f ′(z), f (z)

)
, where f ∈ F1. It is proven that the Derivative, the

Associated and the Bell subgroups are isomorphic [49].
The A and the Z-sequences of a Derivative matrix [12] are

A(z) =
z

f̄ (z)
, and Z(z) =

A(z)− 1
z

+
A′(z)
A(z)

.

The production matrix of a Derivative Riordan array is
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PDer =




2a1 1 0 0 · · ·
3a2 − a2

1 a1 1 0 · · ·
4a3 − 3a1a2 + a3

1 a2 a1 1 · · ·
5a4 − 4a1a3 + 4a2

1a2 − 2a2
2 + a4

1 a3 a2 a1 · · ·
...

...
...

... . . .




.

3.2.5 The Hitting-time subgroup

The Hitting-time subgroup (H-t) contains Riordan elements of the form
(

z f ′(z)
f (z) , f (z)

)
.

It was introduced in 2000 [71], and it became the second subgroup which in-
volves derivatives.
The name of the subgroup came from Stochastic Processes, where a hitting
time is the first time at which a given process "hits" a given subset of the state
space [94].
Every Hitting-time Riordan matrix satisfies a divisibility property, according
to which, every Hitting-time Riordan matrix (mn,k)n,k≥0 satisfies the property

n/kmn,k, whenever 0 < k < n, for k, n ∈N.

It is also proven that the Hitting-time subgroup is isomorphic to the Derivative
subgroup [42].
The A and the Z-sequences of a Hitting-time matrix [12] are

A(z) =
z

f̄ (z)
, and Z(z) = A′(z)

Hence, the production matrix of the Hitting-time subgroup is of the form

PH−t =




a1 1 0 0 · · ·
2a2 a1 1 0 · · ·
3a3 a2 a1 1 · · ·
4a4 a3 a2 a2 · · ·

...
...

...
... . . .




3.2.6 The Checkerboard subgroup

The Checkerboard subgroup (Checkb) contains Riordan elements of the form
(ge(z), fo(z)), where ge is an even function, and fo is an odd function. The
Checkerboard subgroup is the centralizer of M = (1,−z) [49], as

(
ge(z), fo(z)

)
· (1,−z) = (1,−z) ·

(
ge(z), fo(z)

)
.
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A typical element of this Riordan subgroup, follows a “black and white” pat-
tern, as follows




∗ 0 0 0 0 · · ·
0 ∗ 0 0 0 · · ·
∗ 0 ∗ 0 0 · · ·
0 ∗ 0 ∗ 0 · · ·
∗ 0 ∗ 0 ∗ · · ·
...

...
...

...
... . . .




,

where “ ∗ ” represents a non-zero entry. Such arrays are called aerated [28].

Example 3.2.1. The gfs g(z) = 1√
1−4z2 , and f (z) = 1−

√
1−4z2

2z are even and odd
functions, respectively. They generate the Riordan matrix

(
g(z), f (z)

)
=




1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
2 0 1 0 0 · · ·
0 3 0 1 0 · · ·
6 0 4 0 1 · · ·
...

...
...

...
... . . .




.

3.2.7 The Stabilizer subgroup

The Stabilizer subgroup (Stab) [49] contains Riordan elements of the form(
h(z)

h
(

f (z)
) , f (z)

)
. This is the only known subgroup that uses composition on

its gfs . It stabilizes a column vector h(z),
(

g(z), f (z)
)
· h(z) = h(z) (3.8)

and by applying FTRA, we get

g(z) · h
(

f (z)
)
= h(z),

which gives

g(z) =
h(z)

h
(

f (z)
) .

We usually denote the stabilizer of h = h(z), as Sh [43] so that

Sh =
{(

g(z), f (z)
)∣∣(g(z), f (z)

)
· h(z) = h(z)

}
. (3.9)

The A and Z-sequences of a Stabilizer matrix [12] are
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A(z) =
z

f̄ (z)
, and Z(z) =

1
f̄ (z)

(
1− h(z)

h
(

f̄ (z)
)
)

.

The Stabilizer subgroup
(

h(z)

h
(

f (z)
) , f (z)

)
was defined, without providing any

information about the characteristics of the arbitrary function h(z) [49]. For
the two gfs of a Stabilizer Riordan array we need

h(z)
h
(

f (z)
) ∈ F0, and f (z) ∈ F1.

Now, let us take an arbitrary function h(z) ∈ Fk, for k ∈N, such that

h(z) = hkzk + hk+1zk+1 + hk+2zk+2 + · · · ,

and an f (z) ∈ F1, so

f (z) = f1z + f2z2 + f3z3 + f4z4 + · · ·

Then

h
(

f (z)
)
= hk( f1z + f2z2 + · · · )k + hk+1( f1z + f2z2 + · · · )k+1

+ ( f1z + f2z2 + · · · )k+2 + · · ·
= hk f k

1 zk + · · · ∈ Fk.

Hence, we have that h(z)

h
(

f (z)
) is the division of two formal power series in Fk,

thus having a non-zero constant as its first term. We are going to examine the
above observation further in Chapter 7.

3.2.8 The Stochastic subgroup

The Stochastic subgroup (Stoch) contains Riordan elements of the form
(

f (z)−1
z−1 , f (z)

)

[85]. Every Stochastic matrix has row sums equal to one. Alternatively, the
Stochastic subgroup is the stabilizer of the column vector (1, 1, 1, ..)T [85], as

(
f (z)− 1

z− 1
, f (z)

)
·




1
1
...
1


 =

1
1− z

(3.10)

The A and Z-sequences of a Stochastic matrix [12] are
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A(z) =
z

f̄ (z)
, and Z(z) =

A(z)− 1
z− 1

.

The production matrix of the Stochastic subgroup is of the form

PStoch =




0 1 0 0 · · ·
−a1 a1 1 0 · · ·

−a1 − a2 a2 a1 1 · · ·
−a1 − a2 − a3 a3 a2 a1 · · ·

...
...

...
... . . .




.

We notice that the row sums of its production matrix are also equal one. Ad-
ditionally, we observe that the gfs of the production matrix are analogous to
the gfs of the subgroup.
Expanding the stabilizing property (3.10) of the Stochastic subgroups, Riordan
subgroups are defined as a stabilizer Sh, where h(z) = 1

1−kz , for k ∈ Z∗ [43].

Proposition 3.2.2. [43] The set of Riordan arrays

S 1
1−kz

=

{(
k f (z)− 1

kz− 1
, f (z)

) ∣∣∣∣ f (z) ∈ F1

}
,

forms a subgroup.

Proof. Consider

S1 =

(
k f (z)− 1

kz− 1
, f (z)

)
, and S2 =

(
kg(z)− 1

kz− 1
, g(z)

)

as two elements of S 1
1−kz

. We have

S1 · S2 =

(
k f (z)− 1

kz− 1
, f (z)

)
·
(

kg(z)− 1
kz− 1

, g(z)
)

=

(
k f (z)− 1

kz− 1
kg
(

f (z)
)
− 1

k f (z)− 1
, g
(

f (z)
)
)

=

(
kg
(

f (z)
)
− 1

kz− 1
, g
(

f (z)
)
)

This shows closure. The inverse element will be
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(
k f (z)− 1

kz− 1
, f (z)

)−1

=




1
k f
(

f̄ (z)
)
− 1

k f̄ (z)− 1

, f̄ (z)




=

(
k f̄ (z)− 1

kz− 1
, f̄ (z)

)
.

Hence, S 1
1−kz

is a Riordan subgroup.

3.2.9 The Cheon subgroups

The Cheon subgroups contain Riordan elements of the form
(

g(z), z f (zm)
)
,

where g, f ∈ F0 and m ∈N [21], and we denote as

Hm =
{(

g(z), z f (zm)
)∣∣g, f ∈ F0 and m ∈N

}
.

This family of subgroups contains the Checkerboard subgroup, and satisfies
that Hk is a subgroup of Hm if and only if k is a multiple of m [21].
The A-sequence of a Cheon matrix for m ∈N, is

A(z) =
z

z f̄ (zm)

=
1

f̄ (zm)
.

For its Z-sequence we have that

Z(z) =
1

z f̄ (zm)

(
1− 1

g
(
z f̄ (zm)

)
)

=
A(z)

z




1− 1

g

(
z

A(z)

)




,

which can be written as

zZ(z)
A(z)

+
1

g

(
z

A(z)

) = 1.
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3.2.10 The family of Power-Bell subgroups

The Power-Bell subgroups contain Riordan elements of the form
(

g(z), zg(z)r),
where r is a fixed real number [49] for g0 = 1, while for r = 0 and r = 1,
we have the Appell and the Bell subgroups, respectively. The A and the Z-
sequences of a power-Bell matrix are

A(z) =
z

f̄ (z)
, and Z(z) =

A(z)n − 1
zA(z)n−1 .

Since the production matrix of a power-Bell subgroup depends on the value
of its power n, we present the matrices of the cases for n = 2 and n = 3,

((
f (z)

z

)2

, f (z)

)
, and

((
f (z)

z

)3

, f (z)

)
,

as

Ppower−Bell(2) =




2a1 1 0 0 · · ·
2a2 − a2

1 a1 1 0 · · ·
2a3 − 2a1a2 + a3

1 a2 a1 1 · · ·
2a4 − a2

2 + 3a2
1a2 − 2a1a3 − a4

1 a3 a2 a1 · · ·
...

...
...

... . . .




,

and

Ppower−Bell(3) =




3a1 1 0 0 · · ·
3a2 − 3a2

1 a1 1 0 · · ·
4a3

1 + 3a3 − 6a1a2 a2 a1 1 · · ·
−5a1 − 6a1a3 − 12a2

1a2 − 3a2
2 + 3a4 a3 a2 a1 · · ·

...
...

...
... . . .




,

respectively.

3.2.11 A special family of Riordan subgroups

An important addition to the area of Riordan subgroups was made in 2014,
where a general form of subgroups, presented as a new Riordan family of
subgroups by Ana Luzon et al. [58], by combining the gfs of some of the
subgroups. They first defined the family as
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H[r, s] =

{((
f (z)

z

)r

f ′(z)s, f (z)

)∣∣∣∣∣ f ∈ F1, (r, s) ∈ Z2

}
, (3.11)

and then, by using this notation, they expressed those Riordan subgroups,
according to the powers r and s, as in the following table.

Name of the subgroup H[r, s]
Associated H[0, 0]
Derivative H[0, 1]
Bell H[1, 0]
Hitting-time H[−1, 1]

TABLE 3.1: H-notation of some Riordan subgroups

3.2.12 Other Riordan subgroups

Searching for other Riordan subgroups, we know that the set of the Riordan
pseudo-involutions in general, do not form a subgroup [17], while on the other
hand the set of Riordan involutions can be characterised by general recurrence
formulas by the Theorem of the Riordan Involutions Formula [59]. In addi-
tion, Riordan matrices with 1’s in the main diagonal form a group, according
to the following theorem.

Theorem 3.2.2. [60] The commutator subgroup of R, denoted by [R,R], is formed
by all Riordan matrices with 1’s in the main diagonal. That is

[R,R] =
{(

g(z), f (z)
)∣∣g0 = 1, f1 = 1

}
.

A different notation of Riordan arrays, based on a parametrization which was
first presented in [55], is used as it is more efficient than the classical one, for
the purpose of this research. Suppose that

D =
(

g(z), f (z)
)
= (di,j)i,j≥0

is a Riordan matrix. Then we have
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(
g(z), f (z)

)
= T

(
zg(z)
f (z)

∣∣∣∣∣
z

f (z)

)

=

(
d(z)
h(z)

,
z

h(z)

)

= T
(
d(z)

∣∣h(z)
)
.

The product of this notation is

T
(
d(z)

∣∣h(z)
)
·
(
l(z)

∣∣m(z)
)

= T

(
d(z)l

(
m(z)
h(z)

) ∣∣∣∣∣h(z)m
(

z
h(z)

))

and the inverse is

(
T
(
d(z)

∣∣h(z)
))−1

≡ T−1(d(z)
∣∣h(z)

)
= T


 1

d
(

z
A(z)

)
∣∣∣∣∣A(z)


 .

where A(z) is the A-sequence. So, if T
(
d(z)

∣∣h(z)
)

is an involution, then h(z) =
A(z) [57]. The following propositions provide us Riordan subgroups of invo-
lutions, according to 0 coefficients of h(z) function.

Proposition 3.2.3. [59, 60] If Ω0 =
{

T
(
d(z)

∣∣h(z)
)
∈ R

∣∣h2 = 0
}

, then Ω0 is a
subgroup ofR.

Proposition 3.2.4. [59]

• The set
{

T
(
d(z)

∣∣h(z)
)
∈ R

∣∣h1 = 0
}

is a subgroup (h1 = a1 = 0).

• Given m ≥ 3, m ∈N, the set {T
(
d(z)

∣∣h(z)
)
∈ R

∣∣hm = 0} is not a subgroup.

• Given k ∈ N, k ≥ 1, the set
{

T
(
d(z)

∣∣h(z)
)
∈ R

∣∣h1 = 1 and h1 = h2 =

... = hk = 0
}

is a normal subgroup.

3.3 The Exponential Riordan group

By Definition 2.1.1, an Ordinary Riordan array is constructed by two fps g(z)
and f (z). In other words, every pair of functions that can be written as fps of

the forms
∞
∑

n=0
anzn,

∞
∑

n=1
bnzn, for two sequences an and bn, n ∈ Z, respectively,

and satisfy the restrictions of this definition, allow us to build a Riordan ma-
trix. Those matrices form the Riordan group. In the current section, we present
an analogous definition for those Riordan arrays that are generated by using
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exponential Riordan arrays, and the group made by these matrices that we
presented in Section 2.2, called the exponential Riordan group.
The Fundamental Theorem of Exponential Riordan arrays (FTeRA) is similar
to FTRA 3.1.1 for the egf gε(z), and fε(z).

Theorem 3.3.1. (FTeRA) [12] Let E =
[
gε(z), fε(z)

]
be an exponential Riordan ma-

trix and R, S are two column vectors, where their gfs are A(z) and B(z) respectively,
such that

E · R = S.

This relation holds if and only if the following relation among the gfs is true
[
gε(z), fε(z)

]
· A(z) = B(z)

⇔ gε(z) · A
(

fε(z)
)

= B(z).

Now, since ez is the egf of the coefficient sequence of all ones, the generating
function of the row sums of

[
g(z), f (z)

]
is given by

[
g(z), f (z)

]
· ez = g(z) · e f (z).

Definition 3.3.1. [12] The set of all exponential Riordan arrays
[
gε(z), fε(z)

]
, where

gε(z) ∈ F0 and fε(z) ∈ F1, together with the product

[
gε(z), fε(z)

]
·
[
dε(z), eε(z)

]
=
[

gε(z)dε

(
fε(z)

)
, eε

(
fε(z)

)]

where dε(z) ∈ F0 and eε(z) ∈ F1, define the exponential Riordan group, εR.

3.3.1 Exponential Riordan subgroups

Some types of subgroups of the Ordinary Riordan group are also defined
in the Exponential Riordan group. In the following table we present the Zε

sequences of these exponential Riordan subgroups, together with the Z se-
quences of the ordinary Riordan subgroups to compare their differences.
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Riordan subgroup Ordinary form Exponential form
Associate Z(z) = 0 Zε(z) = 0

Bell Z(z) = A(z)
z − 1

z Zε(z) =
Aε(z)
z + 1

f̄(z)

Power-Bell Z(z) = A(z)
z − 1

zA(z)n−1 Zε(z) =
nAε(z)
z − n

f̄(z)

Derivative Z(z) = A(z)
z − 1

z +
A′(z)
A(z) Zε(z) =

A′ε(z)
Aε(z)

Hitting-time Z(z) = A′(z) Zε(z) =
1

f̄(z)
− Aε(z)

z − A′ε(z)
Aε(z)

Stochastic Z(z) = A(z)−1
z−1 Zε(z) =

Aε
z−1 − 1

f̄(z)−1

Appell Z(z) = g(z)−1
zg(z) , A(z) = 1 Zε(z) =

g′(z)
g(z) , Aε(z) = 1

TABLE 3.2: Z and Zε sequences for Ordinary and Exponential
Riordan subgroups

3.4 The Double Riordan group

In general, the set of double Riordan arrays is not closed under multiplication.
Nevertheless, if we require that g(z) be an even function, and f1(z) and f2(z)
be odd functions we can develop an analog of FTRA for the double Riordan
arrays, and thus obtain a group structure [28].

Theorem 3.4.1. [28] (Fundamental Theorem of Double Riordan arrays) Let

g(z) =
∞

∑
k=0

g2kz2k, f1(z) =
∞

∑
k=0

f1,2k+1z2k+1 and, f2(z) =
∞

∑
k=0

f2,2k+1z2k+1

and A(z), B(z) are two column vectors where

(g; f1, f2) · A = B. (3.12)

• If

A(z) = (a0, 0, a2, 0, a4, ...)T =
∞

∑
k=0

a2kz2k

and,

B(z) = (b0, 0, b2, 0, b4, ...)T =
∞

∑
k=0

b2kz2k,

then eq 3.12 is satisfied if and only if

B(z) = g(z) · A
(√

f1(z) f2(z)
)

.
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• If

A(z) = (0, a1, 0, a3, 0, ...)T =
∞

∑
k=0

a2k+1z2k+1

and,

B(z) = (0, b1, 0, b3, 0, ...)T =
∞

∑
k=0

b2k+1z2k+1,

then eq 3.12 is satisfied if and only if

B(z) = g(z) ·
√

f1(z) f2(z) · A
(√

f1(z) f2(z)
)

.

In addition [28], the row sum Σ(z) of a double Riordan array D =
(

g(z); f1(z), f2(z)
)

is given by the formula

Σ(z) =
g(z)

(
1 + f1(z)

)

1− f1(z) f2(z)
.

A binary operation · analogous to the one of single Riordan arrays is defined
as follows.

Proposition 3.4.1. [28] Let (g; f1, f2) and (G; F1, F2) be elements of dR. Then

(g; f1, f2) · (G; F1, F2) =

(
gG
(√

f1 f2

)
;

√
f1

f2
F1

(√
f1 f2

)
,

√
f2

f1
F2

(√
f1 f2

))
.

This operation can be shown to be associative, while the matrix (1; z, z) is the
double Riordan identity. Let (g; f1, f2) be a double Riordan element and let
h =

√
f1 f2 be the geometric mean of the multiplier functions f1 and f2, where

h̄ is the compositional inverse of h. Then

(g; f1, f2)
−1 =

(
1

g(h̄)
;

zh̄
f1(h̄)

,
zh̄

f2(h̄)

)
,

is the inverse of (g; f1, f2), which leads us to the following definition.

Definition 3.4.1. [28] The set dR together with the operation · form the double
Riordan group, denoted as 〈dR, ·〉.

As we have already mentioned, some of the conditions that need to be satis-
fied in order to define double Riordan arrays is to have g even and f1, f2 odd
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functions. As an aftermath, a typical double Riordan array is aerated as an or-
dinary Checkerboard Riordan matrix, which is also generated by an odd and
an even function. Additionally, if f1 = f2 = f , then there is a mapping

(g; f )→ (g; f , f )

from the Checkerboard Riordan subgroup to dR, which is an isomorphism.
Hence,

Checkb ' dR
In Fig 3.1, we present this relationship between the Riordan group and the
Double Riordan group.

Riordan
Group

Double Riordan
Group

Checkerboard
Subgroup

FIGURE 3.1: The Double Riordan group

We should also mention that the question if there is a subgroup of dR which
is isomorphic to the Riordan group, remains open [28].
Some of the subgroups of dR, based on the Associated, the Appell and the
Bell (in two types) subgroups of the Riordan group are

dAssoc = {(g; f1, f2) ∈ dR : g = 1} = {(1; f1, f2) ∈ dR},
dApp = {(g; f1, f2) ∈ dR : f1 = f2 = z} = {(g; z, z) ∈ dR},

dB1 = {(g; f1, f2) ∈ dR : f1 = zg} = {(g; zg, f2) ∈ dR},
dB2 = {(g; f1, f2) ∈ dR : f2 = zg} = {(g; f1, zg) ∈ dR},

respectively.

Theorem 3.4.2. [28] The double Riordan subgroup dApp is a normal subgroup of
dR, and dR is the semi-direct product of dApp and dAssoc. Hence,

dApp · dAssoc = dR.
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Similarly, a triple Riordan group is defined by the functions g, f1
z , f2

z and f3
z ,

while the geometric mean in this case is h = ( f1 f2 f3)
1
3 . Additionally, for each

positive integer k, and with the appropriate alterations, we define the k-tuple
Riordan group [28].
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Chapter 4

Properties of the Ordinary Riordan
subgroups

In the current chapter, we present our research on the group structure of Ri-
ordan arrays. We show new properties and relations among the Riordan sub-
groups, while we also present new Riordan subgroups as intersections of the
known ones, and a family of Riordan subgroups.

4.1 A class of Riordan arrays - RC6

As we saw earlier in Chapter 4, the Bell subgroup can be written in terms
of only one gf, instead of two. By searching other Riordan subgroups which
behave similarly, we found that six of the known Riordan subgroups can be
exclusively written in terms of the first or the second gf. In the following
table, we present those six subgroups. At this point, we need to mention that
even if the form of the Associated subgroup can not be written in terms of
g(z), we still include it here because of its simplicity. Another observation is
that although the general form in terms of f (z) of the power-Bell subgroup is((

f (z)
z

) 1
r , f (z)

)
, we set the power n = 1

r for the sake of simplicity.
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Name RAs in terms of g(z) RAs in terms of f(z)

Associated -
(
1, f(z)

)

Bell
(
g(z), zg(z)

) (
f(z)
z , f(z)

)

Derivative
(
g(z),

∫
g(z) dz

) (
f ′(z), f(z)

)

Stochastic
(
g(z), g(z)(z − 1) + 1

) (
f(z)−1
z−1 , f(z)

)

Hitting-time
(
g(z), e

∫ g(z)
z dz

) (
zf ′(z)
f(z) , f(z)

)

Power-Bell
(
g(z), zg(z)r

) ((
f(z)
z

)n
, f(z)

)

TABLE 4.1: Class of six subgroups

Hence, these six subgroups that were found to this point, form a class of Ri-
ordan subgroups. Additionally, we prove that there exists a homomorphism
between the Associated and the Stochastic subgroups, which is also a bijec-
tion. More specifically, we prove that.

Proposition 4.1.1. The Associated and the Stochastic Riordan subgroups are isomor-
phic.

Proof. Define

φ :
(
1, f (z)

)
→
(

f (z)− 1
z− 1

, f (z)
)

to be a mapping between the two subgroups, and suppose that
(
1, f (z)

)
, and

(
1, h(z)

)

are two elements of the Associated subgroup. Then we have

φ
((

1, f (z)
)
·
(
1, h(z)

))
= φ

(
1, h
(

f (z)
))

=

(
h
(

f (z)
)
− 1

z− 1
, h
(

f (z)
)
)

=

(
f (z)− 1

z− 1
h
(

f (z)
)
− 1

f (z)− 1
, h
(

f (z)
)
)

=

(
f (z)− 1

z− 1
, f (z)

)
·
(

h(z)− 1
z− 1

, h(z)
)

= φ
(
1, f (z)

)
· φ
(
1, h(z)

)
,

which means that φ is a homomorphism. The mapping φ is also an injection if
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Ker(φ) =
{
(1, z)

∣∣z ∈ C
}

.

So, we have

Ker(φ) =
{(

1, f (z)
)
∈ Associated

∣∣φ
(
1, f (z)

)
= (1, z)

}
,

which leads us to the equation
(

f (z)− 1
z− 1

, f (z)
)

= (1, z),

and to the simultaneous equations

f (z)− 1
z− 1

= 1 ; f (z) = z.

Therefore, the only solution is f (z) = z. Hence, φ is an injection. It is also clear
from the Stochastic entry in the last column of Table 4.1 that φ is onto. Hence,
Assoc ' Stoch.

Hence, by [42] and [49], as we referred to earlier in Section 3.2 and by Propo-
sition 4.1.1, we have the following

Proposition 4.1.2. The Associated, the Bell, the Derivative, the Stochastic, the Hitting-
time, and the Power-Bell subgroups are isomorphic.

Using the general form of each of the Riordan subgroups of the class, in terms
of the multiplier function f , we have the following.

Corollary 4.1.1. Every f ∈ F1 generates a g ∈ F0 function, for every
(

g(z), f (z)
)

Riordan subgroup of the class.

As long as the first gf g(z) of each of the Riordan subgroups of the class de-
pends on the multiplier function f (z), we also have the following.

Corollary 4.1.2. A Riordan element
(

g(z), f (z)
)

of the class is an involution if and
only if f (z) = f̄ (z).

Now, let us denote the set of Riordan matrices of the class as RC6 and the set of
the involutions of the class as I[RC6]. By Corollary 4.1.1, we have that f ∈ F1
characterises an entire Riordan class of subgroups. Hence, a subset of I[RC6],
for a fixed f (z), is denoted by I[RC6( f )]. Obviously, we have that

I[RC6( f )] ⊆ I[RC6] ⊆ RC6 , and
⋃

I[RC6( f )] = I[RC6],

for all f (z) = f̄ (z) ∈ F1.
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Proposition 4.1.3. For a fixed f (z), if

A =
(

g(z), f (z)
)
, and B =

(
h(z), f (z)

)

are two Riordan matrices such that A, B ∈ I[RC6( f )], where g(z) 6= h(z), then

A · B =
(

g(z), f (z)
)
·
(
h(z), f (z)

)
=

(
g(z)
h(z)

, z
)

.

Proof. We have

(
g(z), f (z)

)
·
(
h(z), f (z)

)
=

(
g(z)h

(
f (z)

)
, f
(

f (z)
))

= z
(

g(z)h
(

f (z)
)
, z
)

. (4.1)

The Riordan element
(
h(z), f (z)

)
is an involution in RC6, hence it satisfies the

equation

(
h(z), f (z)

)
·
(
h(z), f (z)

)
=

(
h(z)h

(
f (z)

)
, f
(

f (z)
))

=
(

h(z)h
(

f (z)
)
, z
)

= (1, z).

Hence, we have that
h(z)h

(
f (z)

)
= 1

So,

h
(

f (z)
)
=

1
h(z)

,

and the RHS of eq 4.1 becomes
(

g(z)
h(z) , z

)
.

4.2 A family of RC6 subgroups

Considering the family of subgroups as defined in eq 3.11 in subsection 3.2.11,
which contains five of the subgroups of our class, we extend the definition by
adding one extra parameter, which corresponds to the pth power of the first gf
of the Stochastic group, as follows:

Y[r, s, p] =

{((
f (z)

z

)r (
f ′(z)

)s
(

f (z)− 1
z− 1

)p

, f (z)

)∣∣∣∣∣ f ∈ F1, f1 = 1, (r, s, p) ∈ Q3

}
.

(4.2)
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In order to avoid any possible confusion, we owe to explain the terms that we
are going to use from now on, which are based on this family of subgroups.
So, the Greek letters ρ, σ and π, instead of the Latin r, s and p will be used
for fixed parameters, and the index f will be used to declare the dependence
of the algebraic structure that we are referring to, on a function f (z) ∈ F1.
Hence, we have that

Y[r, s, p] ⊇ Y[ρ, σ, π] ⊇ Yf [ρ, σ, π],

where Y[ρ, σ, π] is a Riordan subgroup, and Yf [ρ, σ, π] is a Riordan element.

Now, every Riordan subgroup of the RC6 class can be written in terms of
Y[r, s, p], as shown in the following table.

Name Y [r, s, p]
Associated Y [0, 0, 0]
Derivative Y [0, 1, 0]
Bell Y [1, 0, 0]
Hitting-time Y [−1, 1, 0]
Stochastic Y [0, 0, 1]
Power-Bell Y [n, 0, 0]

TABLE 4.2: New notation of Riordan subgroups of the RC6 class

Proposition 4.2.1. The Riordan family Y[r, s, p], represents a subgroup of the Rior-
dan group, for each triple (ρ, σ, π) ∈ Q3.

Proof. Let

Yf1 [ρ, σ, π] =

((
f1(z)

z

)ρ (
f ′1(z)

)σ
(

f1(z)− 1
z− 1

)π

, f1(z)

)

and

Yf2 [ρ, σ, π] =

((
f2(z)

z

)ρ (
f ′2(z)

)σ
(

f2(z)− 1
z− 1

)π

, f2(z)

)

be two Riordan elements of Y[ρ, σ, π], where f1, f2 ∈ F1. We have that
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Yf1 [ρ, σ, π] ·Yf2 [ρ, σ, π] =

((
f1(z)

z

)ρ (
f ′1(z)

)σ
(

f1(z)− 1
z− 1

)π

, f1(z)

)

·
((

f2(z)
z

)ρ (
f ′2(z)

)σ
(

f2(z)− 1
z− 1

)π

, f2(z)

)
,

which becomes
((

f2
(

f1(z)
)

z

)ρ (
f ′1(z)

)σ
(

f ′2
(

f1(z)
))σ

(
f2
(

f1(z)
)
− 1

z− 1

)π

, f2
(

f1(z)
)
)

and,
((

f2
(

f1(z)
)

z

)ρ (
d
(

f2
(

f1(z)
)))σ

(
f2
(

f1(z)
)
− 1

z− 1

)π

, f2
(

f1(z)
)
)

,

where d
(

f2
(

f1(z)
))

is the derivative of f2
(

f1(z)
)
. This shows closure.

Now, the inverse of an element Yf [ρ, σ, π] will be

Yf [ρ, σ, π]−1 =

((
f (z)

z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)−1

=


 1(

z
f̄ (z)

)ρ (
f ′
(

f̄ (z)
))σ (

z−1
f̄ (z)−1

)π , f̄ (z)




=

((
f̄ (z)

z

)ρ
(

1
f ′
(

f̄ (z)
)
)σ (

f̄ (z)− 1
z− 1

)π

, f̄ (z)

)
.

Differentiating the equation
f
(

f̄ (z)
)
= z, (4.3)

we get that
f ′
(

f̄ (z)
)

f̄ ′(z) = 1,

and
f̄ ′(z) =

1
f ′
(

f̄ (z)
) (4.4)

So,
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Yf [ρ, σ, π]−1 =

((
f̄ (z)

z

)ρ (
f̄ ′(z)

)σ
(

f̄ (z)− 1
z− 1

)π

, f̄ (z)

)
.

Hence, every Y[ρ, σ, π] for different values of the variables ρ, σ, π is a Riordan
subgroup.

Proposition 4.2.2. All Riordan subgroups Y[ρ, σ, π] for distinct triples (ρ, σ, π) ∈
Q3, where f (z) ∈ F1 is fixed, are isomorphic.

Proof. Let

Y[ρ, σ, π] =

((
f (z)

z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)
, and

Y[ρ′, σ′, π′] =

((
f (z)

z

)ρ′ (
f ′(z)

)σ′
(

f (z)− 1
z− 1

)π′

, f (z)

)

be two arbitrary Riordan subgroups of Y[r, s, p]. We will prove that there is a
mapping between these two subgroups, which is an isomorphism. Now, let ψ
be a mapping between the Associated subgroup, and Y[ρ, σ, π], such that

ψ : Y[0, 0, 0]→ Y[ρ, σ, π].

Suppose that Yf [0, 0, 0], and Yh[0, 0, 0] are two Riordan elements of the Associ-
ated subgroup, for the fixed functions f (z), h(z) ∈ F1. Then we have that

ψ
(

Yf [0, 0, 0] ·Yh[0, 0, 0]
)
= ψ

((
1, f (z)

)
·
(
1, h(z)

))

=

((
h
(

f (z)
)

z

)ρ ((
h
(

f (z)
))′)σ

(
h
(

f (z)
)
− 1

z− 1

)π

, h
(

f (z)
)
)

=

((
f (z)

z

)ρ (
( f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)

·
((

h(z)
z

)ρ (
h′(z)

)σ
(

h(z)− 1
z− 1

)π

, h(z)

)

= ψ
(
1, f (z)

)
· ψ
(
1, h(z)

)

= ψ
(
Yf [0, 0, 0]

)
· ψ
(
Yh[0, 0, 0]

)
.

Hence, ψ is a homomorphism. The homomorphism ψ is also an epimorphism
as
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Im(ψ) =
{

ψ
(
Yf [0, 0, 0]

)∣∣Yf [0, 0, 0] ∈ Y[0, 0, 0]
}

= Y[ρ, σ, π], (4.5)

and it is an injection as

Ker(ψ) =
{

Yf [0, 0, 0]
∣∣ψ
(
Yf [0, 0, 0]

)
= I
}

,

which means that
((

f (z)
z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)
= (1, z). (4.6)

This is true only for f (z) = z. So,

Ker(ψ) = {(1, z) | z ∈ C}.

Hence, ψ is an isomorphism, which means that the Associated subgroup is
isomorphic to the arbitrary subgroup Y[ρ, σ, π] of Y[r, s, p]. Now, using the
inverse mapping of a similar isomorphism from the Associated subgroup to
the arbitrary Riordan subgroup

Y[ρ′, σ′, π′] =

((
f (z)

z

)ρ′ (
f ′(z)

)σ′
(

f (z)− 1
z− 1

)π′

, f (z)

)
,

we get the following commutative diagram.

Y[ρ′, σ′, π′] Y[ρ, σ, π]

Y[0, 0, 0]
ψ′−1

θ

ψ

where ψ′ is defined as

ψ′ : Y[0, 0, 0]→ Y[ρ′, σ′, π′],

and we finally have θ = ψ ◦ ψ′−1. Hence, two arbitrary Riordan subgroups of
Y[r, s, p] are isomorphic.

Using the general form of a Riordan subgroup of Y[r, s, p], we now present the
following results.

Proposition 4.2.3. An arbitrary Riordan element Yf [ρ, σ, π] ∈ Y[r, s, p] is an invo-
lution if and only if f (z) = f̄ (z).
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Proof. Let

Yf [ρ, σ, π] =

((
f (z)

z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)

and f (z) = f̄ (z). Then we have that

Yf [ρ, σ, π] ·Yf [ρ, σ, π] =

((
f (z)

z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)

·
((

f (z)
z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)
.

which becomes
((

f (z)
z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π
(

f
(

f (z)
)

f (z)

)ρ (
f ′
(

f (z)
))σ

(
f
(

f (z)
)
− 1

f (z)− 1

)π

,

f
(

f (z)
)
)

(4.7)
Differentiating the equation

f
(

f (z)
)
= z, (4.8)

we get that
f ′
(

f (z)
)

f ′(z) = 1,

and
f ′
(

f (z)
)
=

1
f ′(z)

(4.9)

Using eq 4.8, and applying eq 4.9 in eq 4.7, the latter becomes
((

f (z)
z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π ( z
f (z)

)ρ ( 1
f ′(z)

)σ ( z− 1
f (z)− 1

)π

, z

)
,

(4.10)
which is equal to (1, z). Hence, Yf [ρ, σ, π] is an involution.
Now, let us assume that Yf [ρ, σ, π] is an involution. So, we have that

Yf [ρ, σ, π] ·Yf [ρ, σ, π] = (1, z),

and the equation
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((
f
(

f (z)
)

z

)ρ ((
f
(

f (z)
))′)σ

(
f
(

f (z)
)
− 1

z− 1

)π

, f
(

f (z)
)
)

= (1, z)

which is satisfied if f (z) = f̄ (z).

Proposition 4.2.4. An element Yf [ρ, σ, π] ∈ Y[r, s, p] is a pseudo-involution if
− f
(
− f (z)

)
= z and π = 0.

Proof. Pseudo-involutions of Y[r, s, p] satisfy the following

Yf [ρ, σ, π] · (1,−z) =

((
f (z)

z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)
· (1,−z)

=

((
f (z)

z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

,− f (z)

)

Now,
(
Yf [ρ, σ, π] · (1,−z)

)
·
(
Yf [ρ, σ, π] · (1,−z)

)
becomes

((
f (z)

z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π
(

f
(
− f (z)

)

− f (z)

)ρ (
f ′
(
− f (z)

))σ

(
f
(
− f (z)

)
− 1

− f (z)− 1

)π

,− f
(
− f (z)

)
)

(4.11)
To show that this is a pseudo-involution, we firstly need

− f
(
− f (z)

)
= z,

and (4.11) becomes
((

f (z)
z

)ρ ( −z
− f (z)

)ρ (
f ′(z)

)σ
(

f ′
(
− f (z)

))σ
(

f (z)− 1
z− 1

)π

( −z− 1
− f (z)− 1

)π

, z

)
,

and ((
f ′(z) f ′

(
− f (z)

))σ
(

(−z− 1)
(

f (z)− 1
)

(
− f (z)− 1

)
(z− 1)

)π

, z

)
. (4.12)

Differentiating the expression f
(
− f (z)

)
= −z, we get
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(
f
(
− f (z)

))′
= (−z)′ ⇒ f ′

(
− f (z)

)
=

1
f ′(z)

Substituting this result to (4.12), we get
((

(z + 1)
(

f (z)− 1
)

(
f (z) + 1

)
(z− 1)

)π

, z

)

Only when f (z) = z, the fraction

(z + 1)
(

f (z)− 1
)

(
f (z) + 1

)
(z− 1)

= 1,

which gives us Yz[ρ, σ, π] = 1, hence π = 0.

4.3 Common Riordan elements in subgroups of the
RC6 class

Returning to RC6, we will now focus on the structure of those six Riordan sub-
groups. Pascal’s triangle is usually referred in the literature as a Riordan ele-
ment of the Bell subgroup [17, 49, 85] and at some other times as an element of
the Hitting-time subgroup [49, 71]. Hence, a natural question to ask is “What
is the relationship between these two Riordan subgroups?” or even more gen-
erally “Under what condition does a Riordan element belong to more than one
subgroup?” As both of the above mentioned subgroups belong to RC6 class,
we started our research on these six Riordan subgroups.
Here we note that the intersection of any collection of subgroups of a given
group will be a subgroup of that group, so if the intersection of any pair of
Riordan subgroups is non-trivial (i.e. contains more than the identity), then
we will have found a non-trivial subgroup of the Riordan group.
One of the earliest of our results was the discovery of a new Riordan subgroup,
the intersection of the Bell and the Hitting-time subgroups. The solution of the
differential equation

f (z)
z

=
z f ′(z)

f (z)
,

yields f (z) = z
1−cz , where c is a constant. Hence, elements that belong in both

subgroups are of the form
(

1
1− cz

,
z

1− cz

)
.
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Definition 4.3.1. The intersection of the Bell and Hitting-time subgroups is given
by the subset

Pc =

{(
1

1− cz
,

z
1− cz

) ∣∣∣∣∣c ∈ R

}
.

Proposition 4.3.1. All elements in the intersection of the Bell and Hitting-time sub-
groups are pseudo-involutions.

Proof. We have
(

1
1− cz

,
z

1− cz

)
· (1,−z) =

(
1

1− cz
,− z

1− cz

)
,

and

(
1

1− cz
,− z

1− cz

)
·
(

1
1− cz

,− z
1− cz

)
=




1
1− cz

1

1 +
cz

1− cz

,

z
1− cz

1 +
cz

1− cz




=

(
1,

z
1− cz + cz

)

= (1, z).

Corollary 4.3.1. The intersection of the Bell and the Hitting-time subgroups contains
only trivial involutions.

Proposition 4.3.2. The subset Pc is an abelian Riordan subgroup.

Proof. We could directly say that the intersection of two subgroups of a group
is itself a subgroup, by Proposition A.1.1 of the appendix. However, we are
going to prove this result by using the operation · and the fact that Pc is a
subset of pseudo-involutions.
Let

a =

(
1

1− c1z
,

z
1− c1z

)
and b =

(
1

1− c2z
,

z
1− c2z

)

be two elements of Pc, where c1, c2 ∈ R. Then
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a · b =

(
1

1− c1z
,

z
1− c1z

)
·
(

1
1− c2z

,
z

1− c2z

)

=




1
1− c1z

1

1− c2
z

1− c1z

,

z
1− c1z

1− c2
z

1− c1z




=

(
1

1− (c1 + c2)z
,

z
1− (c1 + c2)z)

)
. (4.13)

This shows closure.
Now, according to Proposition 4.3.1, a is a pseudo-involution, therefore by
Proposition 2 of [49], we get

a−1 =
(

g(−z),− f (−z)
)
.

So,

a−1 =

(
1

1 + cz
,

z
1 + cz

)
.

Hence, by Lemma A.1.6 in Subsection A.1 of the appendix, Pc is a subgroup.
By (4.13), Pc satisfies commutativity, as a · b = b · a. Hence, Pc is abelian.

This Riordan subgroup was first described as a class of generalized Pascal’s
Triangles [17] and later on, as a larger subset of Riordan matrices [49]. Addi-
tionally, G.-S. Cheon et al. have shown in Lemma 4.1 in [22] that Pc belongs
to a family of cyclic subgroups, which came as an intersection of the family of
power-Bell subgroups and the Hitting-time subgroup. Pc is a special case of
this intersection. While, another reference of this can be found in Proposition 5
of [57], where it is written in its T

(
d(z)

∣∣h(z)
)

form, as presented in Subsection
3.2.12.
Searching for other common Riordan elements that belongs to more than one
subgroup of RC6, we have found three new Riordan subgroups.

Considering the Stochastic and Hitting-time subgroups yields the differential
equation

f (z)− 1
z− 1

=
z f ′(z)

f (z)
,

which gives us the solution f (z) = z
ek+(1−ek)z , where k 6= 0. Thus, the first gf

will be g(z) = ek

ek+(1−ek)z .
Hence, elements of the form
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(
ek

ek + (1− ek)z
,

z
ek + (1− ek)z

)

belong to both subgroups.
We set ek = A. Then, elements of this form can be written as

(
A

A + (1− A)z
,

z
A + (1− A)z

)
,

where A 6= 0, 1. To avoid the A factor in the numerator of the first gf, we have

A
A + (1− A)z

=
1

1 +
1− A

A
z

=
1

1 +

(
1
A
− 1

)
z

.

For 1
A − 1 = c, we have A = 1

1+c . Substituting this for A in the second gf, we
get

z

1
1 + c

+

(
1− 1

1 + c

)
z

= (1 + c)
z

1 + cz
.

Hence, we have the following.

Definition 4.3.2. The intersection of the Stochastic and the Hitting-time subgroups
is given by the subset

Pc,c+1 =

{(
1

1 + cz
, (1 + c)

z
1 + cz

) ∣∣∣∣∣c 6= −1

}
.

Proposition 4.3.3. The set Pc,c+1 is an abelian Riordan subgroup.

Proof. We can easily show closure and its commutative property. It suffices to
show that the inverse element belongs to the Pc,c+1 subset. Now, let

(
1

1 + cz
, (1 + c)

z
1 + cz

)−1

be the inverse element, and suppose that

f (z) = (1 + c)
z

1 + cz
,
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then

( f ◦ f̄ )(z) = z ⇒ f
(

f̄ (z)
)
= z

⇒ (1 + c)
f̄ (z)

1 + c f̄ (z)
= z

⇒ (1 + c) f̄ (z) = z + cz f̄ (z)
⇒ (1 + c− cz) f̄ (z) = z

⇒ f̄ (z) =
z

1 + c− cz
.

By the definition of the inverse, we have:

(
1

1 + cz
, (1 + c)

z
1 + cz

)−1

=




1
1

1 +
cz

1 + c− cz

,
z

1 + c− cz




=




1
1 + c− cz

1 + c

,
z

1 + c− cz




=

(
1 + c

1 + c− cz
,

z
1 + c− cz

)
,

which for 1 + c = A can also be transformed into an element of Pc,c+1.

Proposition 4.3.4. The row sums of a matrix of the Riordan subgroup Pc,c+1 are
equal to one.

Proof. Let
(

1
1+kz , (k + 1) z

1+kz

)
be an arbitrary Riordan matrix of the subgroup

Pc,c+1, for k ∈ Z \ {−1}. Using the formula of eq 3.1, we have

1
1 + kz

1− (k + 1)
z

1 + kz

=

1
1 + kz

1 + kz− kz− z
1 + kz

=
1

1− z
.

Example 4.3.2. For c = 3, we get the Riordan matrix
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P3,4 =

(
1

1 + 3z
,

4z
1 + 3z

)

=




1 0 0 0 0 · · ·
−3 4 0 0 0 · · ·
9 −24 16 0 0 · · ·
−27 108 −144 64 0 · · ·
81 −432 864 −768 256 · · ·
...

...
...

...
... . . .




,

which has row sums equal one.

Proposition 4.3.5. The only element of Pc,c+1, c ∈ Z which is a non-trivial involu-
tion is

(
1

1−2z ,− z
1−2z

)
.

Proof. Let us try first to find any possible involutions in this group. For the ar-
bitrary element

(
1

1+kz , (k + 1) z
1+kz

)
of Pc,c+1, which is an involution, we have

that

(1, z) =

(
1

1 + kz
, (k + 1)

z
1 + kz

)
·
(

1
1 + kz

, (k + 1)
z

1 + kz

)

=




1
1 + kz

1

1 +
k(k + 1)z

1 + kz

,

(k + 1)2z
1 + kz

1 +
k(k + 1)z

1 + kz




=

(
1

1 + k(k + 2)z
, (k + 1)2 z

1 + k(k + 2)z

)
,

has solutions
k = 0, and k = −2.

For k = 0 we get the identity element, while for k = −2, we get
(

1
1−2z , −z

1−2z

)
.

Proposition 4.3.6. The Riordan subgroup Pc,c+1, c ∈ Z does not contain non-trivial
pseudo-involutions.

Proof. For the arbitrary element
(

1
1+kz , (k + 1) z

1+kz

)
of Pc,c+1, we have

(
1

1 + kz
, (k + 1)

z
1 + kz

)
· (1,−z) =

(
1

1 + kz
,−(k + 1)

z
1 + kz

)
.
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Now,

(
1

1 + kz
,−(k + 1)

z
1 + kz

)
·
(

1
1 + kz

,−(k + 1)
z

1 + kz

)

=




1
1 + kz

1

1− k(k + 1)z
1 + kz

,
(k + 1)2 z

1 + kz

1− (k + 1)
kz

1 + kz




=

(
1

1− k2z
, (k + 1)2 z

1− k2z

)

= (1, z).

that gives the solution k = 0, which is the identity element.

The intersection of the Associated and the Hitting-time subgroups and the
intersection of the Derivative and the Bell subgroups, lead us to the differential
equation

f ′(z)− f (z)
z

= 0

and its solution f (z) = cz, where c is a constant. This forms the subsets

1c = {(1, cz)|c ∈ Z} ; 1c,c = {(c, cz)|c ∈ Z}
respectively, which are Riordan subgroups.

Corollary 4.3.3. The Riordan subgroups 1c and 1c,c are abelian.

Corollary 4.3.4. The only involutions in 1c and 1c,c except for the identity are (1,−z)
and (−1,−z), respectively.

Now, let us focus on the products of the pairs of subgroups, from which 1c and
1c,c originated. The Associated · Hitting-time subgroups and the Derivative ·
Bell subgroups, respectively.

Proposition 4.3.7. Let

A =
(
1, f (z)

)
∈ Yf [0, 0, 0] (Associated subgroup), and

T =

(
z f ′(z)

f (z)
, f (z)

)
∈ Yf [−1, 1, 0] (Hitting-time subgroup) , and

D =
(

f ′(z), f (z)
)
∈ Yf [0, 1, 0] (Derivative subgroup), and

B =

(
f (z)

z
, f (z)

)
∈ Yf [1, 0, 0] (Bell subgroup).

For A, T, D, B ∈ I
(

RC6( f )
)
, for a fixed f (z), we have that
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A · T = B · D =

(
f (z)

z f ′(z)
, z
)

and (4.14)

T · A = D · B =

(
z f ′(z)

f (z)
, z
)

. (4.15)

Proof. Easily shown using Proposition 4.1.3.

Investigating when eqs 4.14 and 4.15 are equal, we get the function

f (z) =
z

1− cz
,

which gives us the Riordan array

C0 = (1− cz, z),

which is neither an involution, nor a pseudo-involution.
Usually, matrices do not satisfy commutativity and Riordan arrays are not an
exception, in general. However, all those new found Riordan subgroups are
abelian. As a result, this discovery partially answers the question about the
existence of other commutative subgroups [49]. Additionally, subgroups such
as 1c and 1c,c, c-extensions of the unit subgroup (1, z), are abelian. Neverthe-
less, commutativity cannot be inherited to any c-extension form of a commu-
tative Riordan subgroup. A counterexample is the Appell subgroup which is
abelian, while its c-Appell extension is not.

4.3.1 The Power-Bell subgroups

The Power-Bell subgroups
((

f (z)
z

)n
, f (z)

)
, represent a whole family of Rior-

dan subgroups, for any n, where n ∈ Z [49] . We denote as Power-Bell (n),
each of these Riordan subgroups which are produced by n. Hence, we have
that

Power-Bell (n) =

{((
f (z)

z

)n

, f (z)

)∣∣∣∣∣n ∈ Z

}
.

These Riordan subgroups are also known as Reciprocal subgroups [12] , while
for the trivial cases of n = 0 and n = 1, it collapses to the Associated and
the Bell subgroups, respectively. Common Riordan elements with other sub-
groups of RC6 can be found in some of the following cases.
The intersections of a subgroup of the form Power-Bell(n) with the Hitting-
time subgroup, lead us to the differential equations
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(
f (z)

z

)n

=
z f ′(z)

f (z)
(4.16)

and to the Riordan subgroup of the general form [22]

Hn,c =

{(
1

1− czn ,
z

n
√

1− czn

) ∣∣∣∣∣n ∈ Z, c ∈ C

}
(4.17)

which contains the cyclic Riordan subgroup [22] generated by the element
(

1
1− zn ,

z
n
√

1− zn

)
, ∀n ∈ Z.

We observe that the term f (z)
z of the LHS of eq 4.16, is also contained in the

RHS. Solving for f ′(z), we get

(
f (z)

z

)n+1

= f ′(z).

Substitute n + 1 = N, we have
(

f (z)
z

)N

= f ′(z), (4.18)

which is the differential equation for the intersection of Power-Bell(n+ 1) and
the Derivative subgroups. Hence, this intersection gives us the Riordan sub-
groups

Dn+1,c =

{(
1

(1− czn)
n+1

n
,

z
n
√

1− czn

) ∣∣∣∣∣n ∈ Z, c ∈ C

}
(4.19)

This observation leads us to the following result.

Corollary 4.3.5. For n ∈ Z, we have that

Dn+1,c =

(
f (z)

z
, z
)
· Hn,c, where f (z) =

z
n
√

1− czn
, (4.20)

Corollary 4.3.5 can also be extended, by using “Power-Derivative” and “Power-
Hitting-time” subgroups, as follows.

Corollary 4.3.6. For m, k ∈ Z, we have the family of Riordan subgroups
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(
1

(1− cz
m
k )

k
m+1

,
z

(1− cz
m
k )

k
m

)
=

(
1

(1− cz
m
k )

k
m

, z

)
·
(

1

1− cz
m
k

,
z

(1− cz
m
k )

k
m

)

We present the new Riordan subgroups of the class in the following diagram.
Dotted lines in the diagram are used for subgroups that do not belong to the
class and their intersections have not been presented yet.

Riordan Group

Y [r, s, p]

Y [0, 0, 0] Y [1, 0, 0] Y [0, 1, 0] Y [0, 0, 1] Y [−1, 1, 0]

1 c 1 c,c Pc

Hn

Pc,c+1

1

... ...

FIGURE 4.1: Diagram of subgroups of the class.

4.4 Relationships of RC6 and other Riordan sub-
groups

4.4.1 Relationships of RC6 with the Appell subgroup

The Riordan group can be expressed as semi-direct products of the Appell
and the Associated subgroups, as shown in eq 3.5, and the Appell and the Bell
subgroups, as shown in eq 3.6. However, there are some alternative ways to
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write the Riordan group as a semi-direct product, using the appropriate form
of the Appell subgroup. Firstly, we observe that the second gf of each element
of the Appell subgroup, z, is the vital factor to do that, as it allows us to be
more flexible on the compositional part of the · operation.
We observe by eq 3.6, that the first gf of this form of Appell arrays is the func-
tion g(z) multiplied by the multiplicative inverse of the first gf of the Bell
arrays.
Now, using the Riordan multiplication for an arbitrary Appell element

(
G(z), z

)

and an arbitrary Riordan element
(
k(z), f (z)

)
, we have that

(
G(z), z

)
·
(
k(z), f (z)

)
=

(
G(z)k(z), f (z)

)
.

In order to have a semi-direct product of the Riordan group, we get

G(z) =
g(z)
k(z)

.

According to Criterion 2 of Definition A.1.16 in Subsection A.1 of the Ap-
pendix, the subgroup {(G(z), z)|G ∈ F0} of the Appell subgroup has to be
normal. However, normality is not an inherited property in subgroups, in
general.

Let K =

{(
g(z)
k(z) , z

) ∣∣∣∣
g(z)
k(z) ∈ F0

}
be a Riordan subgroup of the Appell subgroup

and
(
h(z), z

)
, an arbitrary Riordan element of the Appell subgroup, where

h(z) ∈ F0. Then, we have that

(
h(z), z

)−1
=

(
1

h(z)
, z
)

.

So,

(
h(z), z

)−1 ·
(
G(z), z

)
·
(
h(z), z

)
=

(
1

h(z)
, z
)
·
(

g(z)
k(z)

, z
)
·
(
h(z), z

)

=

(
g(z)

h(z)k(z)
, z
)
·
(
h(z), z

)

=

(
g(z)
k(z)

, z
)

,

which means that
(
h(z), z

)−1 ·
(
G(z), z

)
·
(
h(z), z

)
∈ K.
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Hence, by Definition A.1.14 in Subsection A.1 of the appendix, every sub-
group of the form {(G(z), z)|G ∈ F0} is normal in the Appell subgroup. In
the following table, we present alternative ways to express the Riordan group
as a semi-direct product.

Form of the Appell subgroup n Subgroup(
(z−1)g(z)
f(z)−1 , z

)
Stochastic(

g(z)f(z)
zf ′(z) , z

)
Hitting-time(

g(z)
f ′(z) , z

)
Derivative(

g(z)
(

z
f(z)

)n
, z
)

Power-Bell

TABLE 4.3: Semi-direct products

We note that we are also able to express the Riordan group as a semi-direct
product of the Appell and the Stabilizer subgroups as

(
g(z), f (z)

)
=

(
h
(

f (z)
)

g(z)
h(z)

, z

)
n

(
h(z)

h
(

f (z)
) , f (z)

)
.

The Stabilizer subgroup is not included in the collection of isomorphic sub-
groups, because of the existence of the arbitrary function h(z). Nevertheless
as it can be used in a semi-direct product, by Lemma A.1.12, we get the fol-
lowing corollary.

Corollary 4.4.1. The Stabilizer subgroup is isomorphic to any Riordan subgroup
which are contained in RC6.

The intersections of the Riordan subgroups of each of these semi-direct prod-
ucts are equal to I= {(1, z)}. Moreover, elements of the Appell subgroup
have already appeared earlier in this section. Returning to Proposition 4.1.3
we have the following corollary.

Corollary 4.4.2. Elements of the Appell subgroup can be expressed as products of
involutions of RC6.

4.4.2 Relationships of RC6 with the Checkerboard subgroup

As we have already mentioned the Checkerboard subgroup is contained in
Cheon subgroup [49]. The set of elements

(
ge(z), fo(z)

)
, where ge is an even

and fo is an odd function, is quite broad, so there are elements of other Rior-
dan subgroups that can be expressed in this form. Riordan matrices of RC6 are
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also elements of the Checkerboard subgroup, if and only if f is an odd func-
tion. Nevertheless, this condition is not satisfied in the case of the Stochastic
subgroup, as for

(
g(z), f (z)

)
where g(z) = f (z)−1

z−1 and f is odd, for g(z) 6= 1
we have that

g(−z) =
f (−z)− 1
−z− 1

=
− f (z)− 1
−z− 1

=
−
(

f (z) + 1
)

−(z + 1)

=
f (z) + 1

z + 1
6= g(z).

So, g is not even.

Example 4.4.3. Let f (z) = 1−
√

1−4z2

2z be an odd function, then

g(z) =
f (z)− 1

z− 1

=
1− 2z−

√
1− 4z2

2z(z− 1)

is not even.

Elements of the Appell subgroup, where g is an even function also belong to
the Checkerboard subgroup. While similarly, elements of the Associated sub-
group, where f is an odd function, also belong to the Checkerboard subgroup.
Hence, we have the following proposition.

Proposition 4.4.1. The Checkerboard subgroup can be written as a semi-direct prod-
uct of the subgroups

Ae,z =
{
(ge(z), z)

∣∣ge : even, z ∈ C∗
}

,

A1,o = {(1, fo(z))
∣∣ fo : odd, z ∈ C∗},

which are Riordan subgroups of the Appell and the Associated subgroups, respectively.

Proof. It is clear that we can decompose the Checkerboard subgroups as
(

ge(z), fo(z)
)

=
(

ge(z), z
)
·
(
1, fo(z)

)

= Ae,z · A1,o ,
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and also

Ae,z ∩ A1,o = I.

According to Definition A.1.16 of the Appendix, it suffices to show that Ae,z
is a normal subgroup of the Checkerboard subgroup. Now, let

(
e(z), o(z)

)
be

an arbitrary element of the Checkerboard subgroup, where e(z), and o(z) are
even and odd functions, respectively. Then, the inverse of this element will be

(
e(z), o(z)

)−1
=

(
1

e
(
ō(z)

) , ō(z)

)

So, we have that

(
e(z), o(z)

)−1 · Ae,z ·
(
e(z), o(z)

)
=

(
1

e
(
ō(z)

) , ō(z)

)
·
(

ge(z), z
)
·
(
e(z), o(z)

)

=

(
ge
(
ō(z)

)

e
(
ō(z)

) , ō(z)

)
·
(
e(z), o(z)

)

=

(
ge
(
ō(z)

)

e
(
ō(z)

) e
(
ō(z)

)
, o
(
ō(z)

)
)

=
(

ge
(
ō(z)

)
, z
)

,

and ō(z) has to be an odd function, so ge
(
ō(z)

)
is an even function. Which

means that (
e(z), o(z)

)−1 · Ae,z ·
(
e(z), o(z)

)
∈ Ae,z.

4.4.3 Relationships of RC6 with the Stabilizer subgroup

The first gf of the general form of any element of the Stabilizer subgroup,
h(z)

h
(

f (z)
) contains the arbitrary function h(z). C. Jean-Louis and A. Nkwanta

wrote that the Stochastic Riordan subgroup stabilizes the column vector asso-
ciated with the coefficients of the gf h(z) = 1

z−1 , as according to Theorem 3.1.1,
we have that
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(
g(z), f (z)

)
· 1

z− 1
=

1
z− 1

⇒ g(z)
1

f (z)− 1
=

1
z− 1

⇒ g(z) =
f (z)− 1

z− 1
.

C. Jean-Louis and A. Nkwanta also questioned the existence of other column
vectors which are stabilized by any other Riordan subgroup [49], while T.-
X. He added that not all subgroups are stabilizers [43]. We have found that
five out of six of the subgroups of RC6 are stabilizers, except for the derivative.
In Table 4.4 we present the gf of the column vector which is stabilized by each
subgroup, that is the subgroup that satisfy

Sh = {
(

g(z), f (z)
)∣∣(g(z), f (z)

)
· h(z) = h(z)}.

Sh subgroup h(z) Stabilizer transformation
Associated c, for c ∈ C∗

Bell ± 1
z

Derivative ?
Stochastic ± 1

z−1

Hitting-time ±z
Power-Bell ± 1

zr r 6= 0

TABLE 4.4: Riordan stabilizers of the RC6 class

Returning to the family of Riordan subgroups Y[r, s, p], introduced in eq 4.2.
For the case of s = 0, and by collapsing the s factor which corresponds to the
derivative term, we get the Riordan subfamily

Y[r, 0, p] =

((
f (z)

z

)r ( f (z)− 1
z− 1

)p

, f (z)

)
.

Proposition 4.4.2. The Riordan subfamily Y[r, 0, p] is the stabilizer of columns of
the form 1

zr(1−z)p , where p is even.

Proof. We have
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Y[r, 0, p] · 1
zr(1− z)p =

((
f (z)

z

)r ( f (z)− 1
z− 1

)p

, f (z)

)
· 1

zr(1− z)p

=

(
f (z)

z

)r ( f (z)− 1
z− 1

)p 1
f r(z)

(
1− f (z)

)p

=
1
zr

(
f (z)− 1

z− 1

)p 1(
1− f (z)

)p .

For p = 2k + 1, we have

1
zr

(
f (z)− 1

z− 1

)2k+1 1
(
1− f (z)

)2k+1 = − 1
zr(z− 1)2k+1

6= 1
zr(z− 1)2k+1 .

While, for p = 2k we get

1
zr

(
f (z)− 1

z− 1

)2k 1
(
1− f (z)

)2k =
1

zr(z− 1)2k .

Hence, p has to be even.

A further condition allowing Y[r, s, p] to be a stabilizer of columns of a specific
form, is by constructing a “Power-Hitting-time” subfamily of it.

Proposition 4.4.3. Let Y[r, s, p] be a family of Riordan subgroups. If r = −s, then
the subfamily of Riordan subgroups Y[−s, s, p] is the stabilizer of columns of the form

zs

(z−1)p , where p is even.

Proof. We write 1
(ln z)′ instead of z for technical reasons. So, we have that
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Y[−s, s, p] · 1(
(ln z)′

)s
(1− z)p

=

((
z f ′(z)

f (z)

)s ( f (z)− 1
z− 1

)p

, f (z)

)

· 1(
(ln z)′

)s
(1− z)p

=

(
z f ′(z)

f (z)

)s ( f (z)− 1
z− 1

)p

 1
(

ln
(

f (z)
))′




s

· 1(
1− f (z)

)p

=

(
z f ′(z)

f (z)

)s ( f (z)− 1
z− 1

)p ( f (z)
f ′(z)

)s

· 1(
1− f (z)

)p

=
zs( f (z)− 1

)p

(z− 1)p
(
1− f (z)

)p .

For p = 2k + 1, eq 4.21 will become

zs( f (z)− 1
)2k+1

(z− 1)2k+1
(
1− f (z)

)2k+1 = − zs

(z− 1)2k+1

6= zs

(z− 1)2k+1 .

For p = 2k, we get

zs( f (z)− 1
)2k

(z− 1)2k
(
1− f (z)

)2k =
zs

(z− 1)2k .

Hence, we proved that

Y[−s, s, 2k] · 1(
(lnz)′

)s
(1− z)2k

=
zs

(z− 1)2k .

Example 4.4.4. Let Y[r, 0, p], and Y[−s, s, p] be subfamilies of Y[r, s, p], where (r, s, p) ∈
Z3.
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A. For the case of r = 3, s = 0, and p = 4, we have the Riordan subgroup Y[3, 0, 4] ∈
Y[r, 0, p], and we get

Y[3, 0, 4] · 1
z3(1− z)4 =

1
z3(1− z)4

B. For the case of r = −s, s = 1, and p = 2, we have the Riordan subgroup
Y[−1, 1, 2] ∈ Y[−s, s, p], and we get

Y[−1, 1, 2] · z
(z− 1)2 =

z
(z− 1)2

For elements of the Checkerboard subgroup which can be expressed in a sta-
bilizer form, we have the following proposition.

Proposition 4.4.4. A Stabilizer element
(

h(z)

h
(

f (z)
) , f (z)

)
is contained in the Checker-

board subgroup, if and only if f is an odd function and h is odd or even.

Proof. Suppose that f is an odd function, i.e. f (z) = − f (−z), then we have
two cases.
If h is also odd, we have h(z) = −h(−z). Then for h ◦ f , we have that

h
(

f (z)
)
= h

(
− f (−z)

)
= −h

(
f (−z)

)
.

Hence, h ◦ f is odd and h(z)

h
(

f (z)
) is then even as the quotient of two odd func-

tions.
Similarly, if h is even, then the composition h ◦ f is even and the quotient

h(z)

h
(

f (z)
) is also even. In both cases,

(
h(z)

h
(

f (z)
) , f (z)

)
is contained in the Checker-

board subgroup.

Now, suppose that
(

h(z)

h
(

f (z)
) , f (z)

)
is contained in the Checkerboard subgroup,

it can be easily proven that f has to be an odd function and h has to be an odd
or even function.

Applying Proposition 4.4.4, we present the following example.

Example 4.4.5. Let f (z) = − z
1−z2 , be a function in F1, and h1(z) = 1− z2, h2 =

1− z functions in F0, and h3(z) = 1−
√

1−4z2

2z is a function in F1. It can be easily
shown that f (z), h3(z) are odd functions, h1(z) is an even function, while h2(z) is
neither an odd, nor an even. Using these functions, we generate the Riordan element(

h(z)

h
(

f (z)
) , f (z)

)
. We have three cases:
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•
(

h1(z)

h1

(
f (z)
) , f (z)

)
will be equal to

(
(1−z2)3

(1−z2)−z2 ,− z
1−z2

)
that gives us the Rior-

dan matrix 


1 0 0 0 0 0 0 · · ·
0 −1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
0 −1 0 −1 0 0 0 · · ·
2 0 2 0 1 0 0 · · ·
0 −3 0 −3 0 −1 0 · · ·
5 0 5 0 4 0 1 · · ·
...

...
...

...
...

...
... . . .




(4.21)

•
(

h2(z)

h2

(
f (z)
) , f (z)

)
=
(
(1−z)(1−z2)

1−z−z2 ,− z
1−z2

)
that gives us the Riordan matrix




1 0 0 0 0 0 0 · · ·
0 −1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
1 −1 0 −1 0 0 0 · · ·
1 −1 2 0 1 0 0 · · ·
2 −2 1 −3 0 −1 0 · · ·
3 −3 4 −1 4 0 1 · · ·
...

...
...

...
...

...
... . . .




(4.22)

•
(

h3(z)

h3

(
f (z)
) , f (z)

)
=
( √

1−4z2−1
1−z2−

√
1−6z2+z4 ,− z

1−z2

)
that gives us the Riordan ma-

trix 


−1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
1 0 −1 0 0 0 0 · · ·
0 0 0 1 0 0 0 · · ·
2 0 −1 0 −1 0 0 · · ·
0 −2 0 2 0 1 0 · · ·
7 0 1 0 −3 0 −1 · · ·
...

...
...

...
...

...
... . . .




(4.23)

We observe that the Riordan matrix 4.22 is the only one that does not have a
Checkerboard structure, which confirms Proposition 4.4.4.

Corollary 4.4.6. The intersection of the Stabilizer and Checkerboard subgroups gives
rise to the Riordan subgroup
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Stab ∩ Checkb =

{(
he(z)

he
(

fo(z)
) , fo(z)

) ∣∣∣∣ fo : odd, he : even

}

∪
{(

ho(z)
ho
(

fo(z)
) , fo(z)

) ∣∣∣∣∣ fo : odd, ho : odd

}

= Stab(he, fo) ∪ Stab(ho, fo). (4.24)

We observe that this new-formed subgroup, contrary to other Riordan sub-
groups which came as intersections of already known subgroups, is not abelian.
Nevertheless, eq 4.24 allows us to characterise Riordan subgroups according
to the form of their h function. Hence, we have two main categories of sub-
groups of Stab ∩ Checkb, let us denote them as (he, fo) and (ho, fo).

4.5 Summary

The diagram in Fig 4.2 contains the known Riordan subgroups that we inves-
tigated, and the new Riordan subgroups that we found in this investigation.
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Riordan Group

Cheon

Stabilizer Appell

Checkerboard

Y [0, 0, 0]Y [1, 0, 0] Y [0, 1, 0] Y [0, 0, 1] Y [−1, 1, 0]

Hn,c

H2k,c

(he, fo) (ho, fo)

(1, fo)

(f ′
o, fo) 1 c1 c,c Pc Pc,c+1 (ge, z)

1

((
fo
z

)2k+1

, fo

) ((
fo
z

)2k
, fo

) (
fo
z , fo

) (
zf ′

o

fo
, fo

)

FIGURE 4.2: Diagram of Riordan subgroups.
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Chapter 5

Quasi-involutions

A special kind of Riordan arrays are quasi-involutions, which were first pre-
sented in ’Structural properties of Riordan matrices and extending the ma-
trices’ [21], and were also described in ’The elements of finite order in the
Riordan group over the complex field’ [22] by Cheon et al. The property that
makes them special is the structure of these matrices that differs from the rest
of Riordan arrays, because of the similarity to their inverses. The classifica-
tion of these elements was first made by Cheon et al., where quasi-involutions
are described as essential self-inversing matrices after inserting minus signs
[21]. In the current chapter, we discuss known Riordan quasi-involutions, we
analyse the structure of these matrices, and we present some applications of
quasi-involutions to Riordan arrays generated by Bessel polynomials.
This chapter is dedicated to the memory of Dr Hana Kim, one of the greatest
researchers in the field of Riordan arrays that we had the pleasure to meet in
person. Part of her work on quasi-involutions is presented in this chapter.

5.1 A Riordan quasi-involution

Suppose that we are given the recursive formula

qn+1,k = qn,k−1 + qn−1,k + qn,k+1. (5.1)

Using the same method as Shapiro [86] to find the generating function that we
can get by (5.1), we have that

g(z) f (z)k = zg(z) f (z)k−1 + z2g(z) f (z)k + zg(z) f (z)k+1

= z
(

g(z) f (z)k−1 + g(z) f (z)k+1)+ z2g(z) f (z)k

Dividing both of the sides by g(z) f (z)k−1, we get that

f (z) = z
(
1 + f (z)2)+ z2 f (z)

= z + z f (z)2 + z2 f (z),
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which leads us to the quadratic equation[21]

z f (z)2 + (z2 − 1) f (z) + z = 0, (5.2)

and the solutions

f (z) =
1− z2 ±

√
1− 6z2 + z4

2z
.

Continuing with the solution which yields positive coefficients for the gf, we
have that

f (z) =
1− z2 −

√
1− 6z2 + z4

2z
, (5.3)

which is the gf for the aerated large Schröder numbers [OEIS, A006318]. This
gf is used to generate the Riordan matrix [21]

Q = (qn,k)n,k∈N =

(
f (z)

z
, f (z)

)
=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
2 0 1 0 0 0 0 · · ·
0 4 0 1 0 0 0 · · ·
6 0 6 0 1 0 0 · · ·
0 16 0 8 0 1 0 · · ·
22 0 30 0 10 0 1 · · ·
...

...
...

...
...

...
... . . .




, (5.4)

which is a quasi-involution as the inverse of Q is

Q−1 =

(
f̄ (z)

z
, f̄ (z)

)

=

(
−1− z2 +

√
1 + 6z2 + z4

2z2 ,
−1− z2 +

√
1 + 6z2 + z4

2z

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
−2 0 1 0 0 0 0 · · ·
0 −4 0 1 0 0 0 · · ·
6 0 −6 0 1 0 0 · · ·
0 16 0 −8 0 1 0 · · ·
−22 0 30 0 −10 0 1 · · ·

...
...

...
...

...
...

... . . .




. (5.5)

Following a similar description to the one presented as “recursions or dot di-
agrams” in section 4.1 in [86], we see that the recursive formula 5.1 is satisfied
for the entries of the matrix 5.4. For instance, for the number at the q6,2 entry,
we have the following diagram:
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30

+6

+8+16

00

0 0

0

FIGURE 5.1: Diagram of recursive formula 5.1

We set
f (z)

z
=

1− z2 −
√

1− 6z2 + z4

2z2 = g(z2),

and the Riordan matrix in eq 5.4 is written as

Q =
(

g(z2), zg(z2)
)

=

(
1− z2 −

√
1− 6z2 + z4

2z2 ,
1− z2 −

√
1− 6z2 + z4

2z

)
, (5.6)

and the inverse of the matrix Q is of the form

Q−1 =
(

g(−z2), zg(−z2)
)
. (5.7)

Consequently, we have that this Riordan matrix of a quasi-involution is an
aerated Riordan array and its inverse contains the same entries as the initial
matrix with ± signs on alternating non-zero subdiagonals, as in eq 5.5 [21].
We call this type of quasi-involution, a quasi-involution of level 1. Similarly,
we call quasi-involution of level k the aerated Riordan matrices that follow
the same structure, with a distance between their non zero entries of k steps.

Example 5.1.1. Let

N =




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
3 0 0 1 0 0 0 · · ·
0 6 0 0 1 0 0 · · ·
0 0 9 0 0 1 0 · · ·

18 0 0 12 0 0 1 · · ·
...

...
...

...
...

...
... . . .




be a Riordan matrix. The inverse of N is
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N−1 =




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
−3 0 0 1 0 0 0 · · ·
0 −6 0 0 1 0 0 · · ·
0 0 −9 0 0 1 0 · · ·

18 0 0 −12 0 0 1 · · ·
...

...
...

...
...

...
... . . .




and we say that the Riordan matrix N is a quasi-involution of level 2.

Since we consider a quasi-involution to be a self-inversing matrix after some
sign changes of its entries, we can also think of matrices which are not aerated.
We are going to refer to those matrices as quasi-involutions of level 0. An
example of such matrix is Pascal’s Triangle, as its inverse is

P−1 =

(
1

1 + z
,

z
1 + z

)

=




1 0 0 0 0 0 0 · · ·
−1 1 0 0 0 0 0 · · ·
1 −2 1 0 0 0 0 · · ·
−1 3 −3 1 0 0 0 · · ·
1 −4 6 −4 1 0 0 · · ·
−1 5 −10 10 −5 1 0 · · ·
1 −6 15 −20 15 −6 1 · · ·
...

...
...

...
...

...
... . . .




(5.8)

Additionally, we observe that changing some of the signs of the recursive for-
mula 5.1, as

qn+1,k = −qn,k−1 + qn−1,k − qn,k+1 (5.9)

we get the gf

w(z) =
−1 + z2 +

√
1− 6z2 + z4

2z
which although does not provide us positive coefficients as the gf 5.3 does,
denoting w(z)

z = u(z2), we have the following:

The analogous Bell type Riordan matrix will be
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W =

(
w(z)

z
, w(z)

)
=




−1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
−2 0 −1 0 0 0 0 · · ·
0 4 0 1 0 0 0 · · ·
−6 0 −6 0 −1 0 0 · · ·
0 16 0 8 0 1 0 · · ·
−22 0 −30 0 −10 0 −1 · · ·

...
...

...
...

...
...

... . . .




,

and its inverse is

W−1 =

(
w̄(z)

z
, w̄(z)

)
=




−1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
2 0 −1 0 0 0 0 · · ·
0 −4 0 1 0 0 0 · · ·
−6 0 6 0 −1 0 0 · · ·
0 16 0 −8 0 1 0 · · ·

22 0 −30 0 10 0 −1 · · ·
...

...
...

...
...

...
... . . .




,

where

w̄(z) =
1 + z2 −

√
1 + 6z2 + z4

2z
.

It is clear that the condition 5.7 is also satisfied for W, as
(

w̄(z)
z

, w̄(z)
)
=
(

u(−z2), zu(−z2)
)

. (5.10)

Both Q and W have the same structure since their inverses are the same ma-
trices, with alternating ± signs on their subdiagonals. We also observe that
because of (5.7) and (5.10), the functions f (z) and w(z) of these aerated ma-
trices are odd. Hence, the Riordan matrices Q and W are also Checkerboard
elements. Since these matrices are of the Bell type, by using the same functions
f (z) and w(z), we also create quasi-involutions of other subgroups of RC6, ex-
cept for the case of the Stochastic subgroup, as we referred in subsection 4.4.2.
In the following table, we present these quasi-involutions generated by the
function f (z). One can be lead to analogous conclusions for quasi-involutions
of the function w(z).
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Form of Riordan element Riordan Matrix

QAssoc =
(
1, f(z)

)




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
0 2 0 1 0 0 0 · · ·
0 0 4 0 1 0 0 · · ·
0 6 0 6 0 1 0 · · ·
0 0 16 0 10 0 1 · · ·
...

...
...

...
...

...
...

. . .




QDer =
(
f ′(z), f(z)

)




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
6 0 1 0 0 0 0 · · ·
0 8 0 1 0 0 0 · · ·
30 0 10 0 1 0 0 · · ·
0 48 0 12 0 1 0 · · ·

154 0 70 0 14 0 1 · · ·
...

...
...

...
...

...
...

. . .




QH−t =
(

zf ′(z)
f(z) , f(z)

)




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
4 0 1 0 0 0 0 · · ·
0 6 0 1 0 0 0 · · ·
16 0 8 0 1 0 0 · · ·
0 30 0 10 0 1 0 · · ·
76 0 48 0 12 0 1 · · ·
...

...
...

...
...

...
...

. . .




QPower−Bell(2) =

((
f(z)
z

)2

, f(z)

)




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
4 0 1 0 0 0 0 · · ·
0 6 0 1 0 0 0 · · ·
16 0 8 0 1 0 0 · · ·
0 30 0 10 0 1 0 · · ·
68 0 48 0 12 0 1 · · ·
...

...
...

...
...

...
...

. . .




TABLE 5.1: Riordan quasi-involutions generated by f (z)
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Indicatively, we explicitly present the Hitting-time matrix QH−t and its in-
verse. So, we have that

QH−t =

(
z f ′(z)

f (z)
, f (z)

)

=

(
1− z4 − (1 + z2)

√
1− 6z2 + z4

(1− z2 −
√

1− 6z2 + z4)
√

1− 6z2 + z4
,

1− z2 −
√

1− 6z2 + z4

2z

)

=

(
1 + z2

√
1− 6z2 + z4

,
1− z2 −

√
1− 6z2 + z4

2z

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
4 0 1 0 0 0 0 · · ·
0 6 0 1 0 0 0 · · ·

16 0 8 0 1 0 0 · · ·
0 30 0 10 0 1 0 · · ·

76 0 48 0 12 0 1 · · ·
...

...
...

...
...

...
... . . .




and its inverse

Q−1
H−t =

(
z f̄ ′(z)

f̄ (z)
, f̄ (z)

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
−4 0 1 0 0 0 0 · · ·
0 −6 0 1 0 0 0 · · ·

16 0 −8 0 1 0 0 · · ·
0 30 0 −10 0 1 0 · · ·
−76 0 48 0 −12 0 1 · · ·

...
...

...
...

...
...

... . . .




.

The sequence of the first generating function of QH−t excluding 0’s, is 1, 4, 16,
76, 384, 2004, . . . [OEIS, A241023], which express the central terms of the trian-
gle of the OEIS sequence, A102413, as seen in figure below.
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1
1 1

1 4 1
1 6 6 1

1 8 16 8 1
1 10 30 30 10 1

1 12 48 76 48 12 1

FIGURE 5.2: Triangle pattern of A102413

In Table 5.1, we have examined the case of the quasi-involution of a power-
Bell matrix for n = 2, where again the sequence of the generating function of
its first column, excluding 0’s, counts royal paths in a lattice [OEIS, A006319],
as we defined them in Section 1.6. For the cases of n = 3, and n = 4, we have
the OEIS sequences A006320, and A006321, respectively.

5.2 Riordan subgroups of quasi-involutions

Before we proceed further to the structure of a Riordan quasi-involution, we
consider some already known Riordan subgroups that contain such matrices.
The elements of a family of Riordan subgroups that we have presented earlier
in subsection 4.3.1, that came as intersections of the power-Bell of power n + 1
and the Derivative subgroups, Dn+1,c, and intersections of the power-Bell of
power n and the Hitting-time subgroups, Hn,c are quasi-involutions [22]. Nev-
ertheless, instead of referring to these intersections by two gfs, our approach
focuses on the fact that only one gf is needed for these matrices to be defined.
More precisely, both of the Riordan subgroups of the forms (4.17), (4.19) can
be expressed as {((

f (z)
z

)b

, f (z)

) ∣∣∣∣b ∈ Z

}
(5.11)

where
f (z) =

z
N
√

1− czN
, (5.12)

for N ∈ Z∗, and c ∈ R. From (5.12), we have

f (z)N(1− czN) = zN

⇒ f (z)N = czN f (z)N + zN
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Multiplying this equation by g(z) f (z)k−N, we get

g(z) f (z)k = zNg(z) f (z)k−N + czNg(z) f (z)k

and the recursive formula

an+1,k = an+1−N,k−N + can+1−N,k. (5.13)

Hence, from (5.13), and the function 5.12, we get the following useful corollary.

Corollary 5.2.1. Let A = (an,k)n,k∈N be a Riordan array of the form
((

f (z)
z

)b

, f (z)

)
, where f (z) =

z

(1− czN)
1
N

(5.14)

for fixed b, c, N, where b ∈ Z,c ∈ R, and N ∈ Z∗. Then A is a quasi-involution of
level N − 1 and the entries of this Riordan matrix satisfy the recursive formula

an+1,k = an+1−N,k−N + can+1−N,k. (5.15)

From (5.11), and for the case of b = 1, we get a family of Riordan subgroups
of the Bell type,

{(
1

N
√

1− czN
,

z
N
√

1− czN

) ∣∣∣∣c ∈ Z, N ∈N∗
}

.

We present some examples of Bell quasi-involutions of different levels.

Example 5.2.2. For N = 2, and c = 5 we get the gf f (z) = z

(1−5z2)
1
2

which gives

rise to the Riordan array T, where

T =

(
1

(1− 5z2)
1
2

,
z

(1− 5z2)
1
2

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
5
2 0 1 0 0 0 0 · · ·
0 5 0 1 0 0 0 · · ·
75
8 0 15

2 0 1 0 0 · · ·
0 25 0 10 0 1 0 · · ·

625
16 0 375

8 0 25
2 0 1 · · ·

...
...

...
...

...
...

... . . .




. (5.16)
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This matrix is self-inversing by alternating signs on its subdiagonals, as its inverse is

T−1 =

(
1

(1+5z2)
1
2

, z

(1+5z2)
1
2

)
, and its entries (except for the first column) satisfy the

recursive formula

an+1,k = an−1,k−2 + 5an−1,k (5.17)

Example 5.2.3. Following the same procedure for the case of N = 3 (quasi-involutions
of level 2), c = 9, and the gf

f (z) =
z

3
√

1− 9z3
,

we get the recursive formula

an+1,k = an−2,k−3 + 9an−2,k. (5.18)

which satisfies the Riordan matrix of Example 5.1.1. Hence,

S =

(
1

3
√

1− 9z3
,

z
3
√

1− 9z3

)
.

The diagram of the linear combination 5.18 of the entries of the matrix S is
shown in Fig 5.3.

0

∗

∗0

00

∗ 0

0

an−2,k−3 0 0

·c

an−2,k

0

0

an+1,k

FIGURE 5.3: Diagram of recursive formula 5.18.

Since the function f (z) = z
N√1−czN

can generate quasi-involutions of different

levels for every N ∈N, by setting h(zN) = f (z)
z , we generalise eqs 5.6, 5.7 to

(
h(zN), zh(zN)

)−1
=
(
h(−zN), zh(−zN)

)
(5.19)
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for its Bell form quasi-involution of level N − 1.

Additionally, as the gf f (z) = z
N√1−czN

resulted from the intersection of more
than two Riordan subgroups, the same gf gives rise to quasi-involutions of
other Riordan subgroups of the class RC6, which are generated by one gf, as
we saw earlier in Section 4.1. We also observe that the power-Bell forms of the
Derivative and the Hitting-time subgroups depend on the parameter N ∈ N,
since

f ′(z) =
(

z
N
√

1− czN

)′
=

1
( N
√

1− czN
)N+1

=

(
f (z)

z

)N+1

(5.20)

So, for the gf f (z) = z
N√1−czN

we have the following table:

Name Form power b ∈ Z

Associated

((
f(z)
z

)0
, f(z)

)
0

Bell

((
f(z)
z

)1
, f(z)

)
1

Hitting-time

((
f(z)
z

)N
, f(z)

)
N

Derivative

((
f(z)
z

)N+1

, f(z)

)
N+1

Power-Bell(n)

((
f(z)
z

)n
, f(z)

)
n

TABLE 5.2: Riordan elements of subgroups of RC6 as powers of
the Power-Bell subgroup

For the case of the Stochastic subgroup, we have that

f (z)− 1
z− 1

=
z− N
√

1− czN

(z− 1) N
√

1− czN
, (5.21)

which cannot be written in a Power-Bell form, and consequently it cannot
generate a quasi-involution for N ∈N.
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5.3 Compressions of quasi-involutions

T.-X. He introduced the compression of a double Riordan array [44], accord-
ing to which an aerated matrix can be transformed into a non-aerated matrix,
by minimizing the powers of the variable that appears in the gfs of a Riordan
array. Nevertheless, the compression of an aerated Riordan array is not neces-
sarily a Riordan array. We present two examples of compressions of Riordan
matrices.

Example 5.3.1. [44] The compression of the double Riordan array

F =

(
1

1− z2 ; z,
z

1− z2

)
=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
1 0 1 0 0 0 0 · · ·
0 1 0 1 0 0 0 · · ·
1 0 2 0 1 0 0 · · ·
0 1 0 2 0 1 0 · · ·
1 0 3 0 3 0 1 · · ·
...

...
...

...
...

...
... . . .




is the matrix

F∗ =




1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 1 1 0 0 0 · · ·
1 1 2 1 0 0 · · ·
1 1 3 2 1 0 · · ·
1 1 4 3 3 1 · · ·
...

...
...

...
...

... . . .




.

This matrix cannot be expressed as a Riordan array, as from the gf of the its first
column 1

1−z , and the multiplier function z that gives the second column, we cannot
generate the remainder of the matrix.

Example 5.3.2. The compression of the aerated Riordan matrix,
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K =

(
1√

1− 4z2
,

1−
√

1− 4z2

2z

)

=




1 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
2 0 1 0 0 0 0 0 0 · · ·
0 3 0 1 0 0 0 0 0 · · ·
6 0 4 0 1 0 0 0 0 · · ·
0 10 0 5 0 1 0 0 0 · · ·

20 0 15 0 6 0 1 0 0 · · ·
0 35 0 21 0 7 0 1 0 · · ·

70 0 56 0 28 0 8 0 1 · · ·
0 126 0 84 0 36 0 9 0 · · ·

252 0 210 0 120 0 45 0 10 · · ·
0 462 0 330 0 165 0 55 0 · · ·

924 0 792 0 495 0 220 0 66 · · ·
...

...
...

...
...

...
...

...
... . . .




,

is the Riordan matrix

K∗ =

(
1√

1− 4z
,

1−
√

1− 4z
2

)

=




1 0 0 0 0 0 0 · · ·
2 1 0 0 0 0 0 · · ·
6 3 1 0 0 0 0 · · ·

20 10 4 1 0 0 0 · · ·
70 35 15 5 1 0 0 · · ·

252 126 56 21 6 1 0 · · ·
924 462 210 84 28 7 1 · · ·

...
...

...
...

...
...

... . . .




,

where the sequence of the first column 1, 2, 6, 20, 70, 252, 924, ... represents the central
binomial coefficients [OEIS, A000984].

We note that neither F, or K of the previous examples are quasi-involutions.
Similarly, the compression of the Riordan quasi-involution 5.4, will be
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Q∗ =

(
1− z−

√
1− 6z + z2

2z
,

1− z−
√

1− 6z + z2

2

)
(5.22)

=




1 0 0 0 0 0 0 · · ·
2 1 0 0 0 0 0 · · ·
6 4 1 0 0 0 0 · · ·

22 16 6 1 0 0 0 · · ·
90 68 30 8 1 0 0 · · ·

394 304 146 48 10 1 0 · · ·
1806 1412 714 264 70 12 1 · · ·

...
...

...
...

...
...

... . . .




.

Now, for its inverse (Q∗)−1 , we observe that although the sign of the entries is
alternated on the subdiagonals, this matrix does not follow the same structure,
as

(Q∗)−1 =

(
1− z
1 + z

,
z(1− z)

1 + z

)

=




1 0 0 0 0 0 0 · · ·
−2 1 0 0 0 0 0 · · ·
2 −4 1 0 0 0 0 · · ·
−2 8 −6 1 0 0 0 · · ·
2 −12 18 −8 1 0 0 · · ·
−2 16 −38 32 −10 1 0 · · ·
2 −20 66 −88 50 −12 1 · · ·
...

...
...

...
...

...
... . . .




,

Hence, Q∗ is not a quasi-involution.
Compressions of Riordan matrices which are generated by functions of the
form f (z) = z

N√1−czN
are defined similarly, but they are not quasi-involutions

in general. A compression of such a matrix remains a quasi-involution if
N = 2k, where k ∈ N∗. In this case, we minimize the power of the variable
and the order of the root, from 2k to k, simultaneously. We note that following
this method, although we preserve the quasi-involution property of the initial
matrix, the entries of the compressed matrix will not remain the same. There-
fore, we name this matrix as quasi-compression of Q. We have the following
example.

Example 5.3.3. For N = 4 and c = 16, let f (z) = z
4√1−16z4

be the function that
gives rise to the Riordan matrix D of the Bell form,
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D =

(
f (z)

z
, f (z)

)
=

(
1

4
√

1− 16z4
,

z
4
√

1− 16z4

)

=




1 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 · · ·
4 0 0 0 1 0 0 0 0 · · ·
0 8 0 0 0 1 0 0 0 · · ·
0 0 12 0 0 0 1 0 0 · · ·
0 0 0 16 0 0 0 1 0 · · ·

40 0 0 0 20 0 0 0 1 · · ·
0 96 0 0 0 24 0 0 0 · · ·
...

...
...

...
...

...
...

...
... . . .




which is a quasi-involution. Its quasi-compression is

D∗ =

(
1√

1− 16z2
,

z√
1− 16z2

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
8 0 1 0 0 0 0 · · ·
0 16 0 1 0 0 0 · · ·

96 0 24 0 1 0 0 · · ·
0 256 0 32 0 1 0 · · ·

1, 280 0 480 0 40 0 1 · · ·
...

...
...

...
...

...
... . . .




,

and the inverse of D∗,

(D∗)−1 =

(
1√

1 + 16z2
,

z√
1 + 16z2

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
−8 0 1 0 0 0 0 · · ·
0 −16 0 1 0 0 0 · · ·
96 0 −24 0 1 0 0 · · ·
0 256 0 −32 0 1 0 · · ·

−1, 280 0 480 0 −40 0 1 · · ·
...

...
...

...
...

...
... . . .




.
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Summarising the above, we present the next proposition that relates quasi-
involutions and their quasi-compressions.

Proposition 5.3.1. Let Q2k, k ∈N be a Riordan quasi-involution of the form

Q2k =

(
1

2k
√

1− cz2k
,

z
2k
√

1− cz2k

)
,

and
Qk =

(
1

k
√

1− czk
,

z
k
√

1− czk

)

be its quasi-compression. For these two quasi-involutions, there exists a Riordan ma-
trix W, such that

Q2k = W ·Qk (5.23)

where W =

(
1

k
√√

1−cz2k+czk
, z

k
√√

1−cz2k+czk

)
.

Proof. Let W =
(

g(z), f (z)
)
, so eq 5.23 becomes

(
1

2k
√

1− cz2k
,

z
2k
√

1− cz2k

)
=

(
g(z), f (z)

)
·
(

1
k
√

1− czk
,

z
k
√

1− czk

)

and,

(
1

2k
√

1− cz2k
,

z
2k
√

1− cz2k

)
=


 g(z)

k
√

1− c f (z)k
,

f (z)
k
√

1− c f (z)k




Solving for f (z), we get

f (z) =
z

k
√√

1− cz2k + czk
, (5.24)

and
g(z) =

1
k
√√

1− cz2k + czk
, (5.25)

so W is written as a Bell type Riordan matrix,

W =
(

g(z), f (z)
)
=

(
f (z)

z
, f (z)

)

We note that the matrix W of Proposition 5.3.1 is not a quasi-involution. Since
W allows us to transition between quasi-involutions, we name it as a quasi-
transitional matrix. Eq 5.23 is written as
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(
1

2k
√

1− cz2k
,

z
2k
√

1− cz2k

)
=

(
1

k
√√

1− cz2k + czk
,

z
k
√√

1− cz2k + czk

)

·
(

1
k
√

1− czk
,

z
k
√

1− czk

)

(5.26)

Example 5.3.4. For the Riordan quasi-involution of level 3 in Example 5.3.3, we have
that

D = W1 · D∗

which becomes

(
1

4
√

1− 16z4
,

z
4
√

1− 16z4

)
=

(
1√√

1− 16z4 + 16z2
,

z√√
1− 16z4 + 16z2

)

·
(

1√
1− 16z2

,
z√

1− 16z2

)
.

(5.27)
The Riordan array W1 generates the aerated matrix




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
−8 0 1 0 0 0 0 · · ·
0 −16 0 1 0 0 0 · · ·

100 0 −24 0 1 0 0 · · ·
0 264 0 −32 0 1 0 · · ·

−1, 376 0 492 0 −40 0 1 · · ·
...

...
...

...
...

...
... . . .




Now, in case k is also an even number, the same process of “quasi-compres-
sing" of Qk is repeated. While, Qk cannot be factorised further, if k is odd.
Hence, we have the next proposition.

Proposition 5.3.2. Let Q2nλ =

(
1

2nλ
√

1−cz2nλ
, z

2nλ
√

1−cz2nλ

)
, be a Riordan quasi-

involution of level 2nλ− 1 where n ∈ N∗, and λ an odd integer. Then Q2nλ is equal
to

n

∏
i=1


 1

2n−iλ
√√

1− cz2n+1−iλ + cz2n−iλ

,
z

2n−iλ
√√

1− cz2n+1−iλ + cz2n−iλ


 ·Qλ

(5.28)
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Proof. For Q2nλ, we have

Q2nλ =

(
1

2n−1λ
√√

1− cz2nλ + cz2n−1λ
,

z
2n−1λ
√√

1− cz2nλ + cz2n−1λ

)
·Q2n−1λ

(5.29)
Similarly, Q2n−1λ can be analysed as

 1

2n−2λ
√√

1− cz2n−1λ + cz2n−2λ

,
z

2n−2λ
√√

1− cz2n−1λ + cz2n−2λ


 ·Q2n−2λ,

(5.30)
and so on, until we get

Q2λ =

(
1

λ
√√

1− cz2λ + czλ
,

z
λ
√√

1− cz2λ + czλ

)
·Qλ (5.31)

Hence, substituting each of (5.30),(5.31) to the previous quasi-involution, we
get eq 5.28.

Example 5.3.5. Continuing the process described in Proposition 5.3.2, for Example
5.3.4, we factorise the matrix D∗ as

D∗ = W2 · D∗(2) (5.32)

where
D∗(2) =

(
1

1− 16z
,

z
1− 16z

)
,

is the quasi-compression of the quasi-compression D∗, and

W2 =

(
1√

1− 16z2 + 16z
,

z√
1− 16z2 + 16z

)
.

From Example 5.3.3, we also have that D = W1 · D∗, hence

D = W1 ·W2 · D∗(2). (5.33)

Example 5.3.6. For the Riordan quasi-involution Q176, we have that 24 · 11 = 176,
so

Q176 =
4

∏
i=1

Wi ·Q11.

For other quasi-involutions which are elements of other Riordan subgroups,
since they are expressed as powers of the Bell subgroup, we get the following
corollary.
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Corollary 5.3.7. Riordan quasi-involution of the forms

Q2k =

((
1

2k
√

1− cz2k

)b0

,
z

2k
√

1− cz2k

)
,

and

Qk =

((
1

k
√

1− czk

)b0

,
z

k
√

1− czk

)

where b0 ∈ Z, satisfy the equation

Q2k = W ·Qk

if W =

((
1

k
√√

1−cz2k+czk

)b0

, z
k
√√

1−cz2k+czk

)
.

In the case where the matrix is based on the quasi-compression of Q2k, with
different power-Bell form, we have the next proposition.

Proposition 5.3.3. Let

Q2k =

((
1

2k
√

1− cz2k

)b0

,
z

2k
√

1− cz2k

)
,

and

Qk =

((
1

k
√

1− czk

)b1

,
z

k
√

1− czk

)

be two Riordan quasi-involutions, where b0 6= b1, then their quasi-transitional matrix
will be

W =




(
2k
√

1− cz2k
)b1−b0

(
k
√√

1− cz2k + czk
)b1

,
z

k
√√

1− cz2k + czk




Proof. Let W =
(

g(z), f (z)
)

be the quasi-transitional matrix of Q2k and Qk.
The function f (z) can be easily found as before, while the function g(z) needs
to satisfy

g(z)




1

k

√
1− c

zk
√

1− cz2k + czk




b1

=

(
1

2k
√

1− cz2k

)b0

, (5.34)

which gives us



Chapter 5. Quasi-involutions 102

g(z) =

(
2k
√

1− cz2k
)b1−b0

(
k
√√

1− cz2k + czk
)b1

.

Example 5.3.8. Let S be a Riordan quasi-involution, such that

S =

(
1

6
√

1− 12z6
,

z
6
√

1− 12z6

)

=




1 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 · · ·
0 0 0 0 0 1 0 0 0 · · ·
2 0 0 0 0 0 1 0 0 · · ·
0 4 0 0 0 0 0 1 0 · · ·
0 0 6 0 0 0 0 0 1 · · ·
0 0 0 8 0 0 0 0 0 · · ·
0 0 0 0 10 0 0 0 0 · · ·
0 0 0 0 0 12 0 0 0 · · ·
14 0 0 0 0 0 14 0 0 · · ·
...

...
...

...
...

...
...

...
... . . .




The quasi-compression of S is

S∗ =

(
1

3
√

1− 12z3
,

z
3
√

1− 12z3

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
4 0 0 1 0 0 0 · · ·
0 8 0 0 1 0 0 · · ·
0 0 12 0 0 1 0 · · ·

32 0 0 16 0 0 1 · · ·
...

...
...

...
...

...
... . . .




,

and we have the Power-Bell(2) type of S∗,
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S∗(2) =

((
1

3
√

1− 12z3

)2

,
z

3
√

1− 12z3

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
8 0 0 1 0 0 0 · · ·
0 12 0 0 1 0 0 · · ·
0 0 16 0 0 1 0 · · ·

80 0 0 20 0 0 1 · · ·
...

...
...

...
...

...
... . . .




.

According to Proposition 5.3.3, the quasi-transitional matrix W will be

W =

(
( 6
√

1− 12z6)

(
3
√√

1− 12z6 + 12z3)2
,

z
3
√√

12z6 + 12z3

)

=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
−8 0 0 1 0 0 0 · · ·
0 −12 0 0 1 0 0 · · ·
0 0 −16 0 0 1 0 · · ·
82 0 0 −20 0 0 1 · · ·
...

...
...

...
...

...
... . . .




we can easily check that S = W · S∗(2).

5.3.1 Hankel transforms of the generating function 1√
1−4pz2

The gf of the central binomial coefficients (2n
n ) [OEIS - A000984], 1√

1−4z
, is ex-

pressed as [8]

1√
1− 4z

=
1

1− 2z− 2z2

1− 2z− z2

1− 2z− z2

1− 2z− z2

1− . . .

. (5.35)
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By Theorem 1.7.2, we have that the Hankel transform of the corresponding in-
teger sequence of this function 1, 2, 6, 20, 70, 252, 924, 3, 432, . . . [OEIS - A000984],
is expressed as powers of 2. This is one of the seven sequences that have been
found with the same Hankel transform [50]. In Example 5.3.2, g(z) = 1√

1−4z2

is the gf of the aeration of the central binomial numbers (2n
n ) , since 1√

1−4z2 may
be represented as an S-fraction [7]

1√
1− 4z2

=
1

1− 2z2

1− z2

1− z2

1− z2

1− . . .

(5.36)

We observe that the Hankel transform of (5.36) is the same as its compression
5.35.
Generating functions of the form 1√

1−4pz2
can also be expressed as

1√
1− 4pz2

=
1

1− 2pz2

1− pz2

1− pz2

1− pz2

1− . . .
Again, for the Hankel determinant hn as it is defined in Theorem 1.7.2, we
have that

hn = 1n+1 (2p)n pn−1 · · · p2p = 2n
n

∏
k=1

pn+1−k, (5.37)

which corresponds to the sequence 1, 2p, 4p3, 8p6, 16p10, . . . .

Example 5.3.9. For p = 2 we have the function 1√
1−8z2 , which is written as

1√
1− 8z2

=
1

1− 4z2

1− 2z2

1− 2z2

1− 2z2

1− . . .
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and its Hankel transform is given by the formula

hn = 2n
n

∏
k=1

2n+1−k = {1, 22, 25, 29, . . . }

5.4 Exponential quasi-involutions and Bessel poly-
nomials

Returning to Section 5.2, we see that an ordinary quasi-involution does not
always contain integer entries, in general. Now, instead of taking an ordinary
Riordan array, we use the same generating functions as Example 5.2.2 to an
Exponential Riordan matrix, Tε. This matrix will be

Tε =

[
1

(1− 5z2)
1
2

,
z

(1− 5z2)
1
2

]

=




1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
5 0 1 0 0 0 0 0 · · ·
0 30 0 1 0 0 0 0 · · ·

225 0 90 0 1 0 0 0 · · ·
0 3, 000 0 200 0 1 0 0 · · ·

28, 125 0 16, 875 0 375 0 1 0 · · ·
0 630, 000 0 63, 000 0 630 0 1 · · ·

6, 890, 625 0 5, 512, 500 0 183, 750 0 980 0 · · ·
...

...
...

...
...

...
...

... . . .




.

Subsequently, the structure of a quasi-involution is preserved by its exponen-
tial manipulation of the ordinary Riordan array, but the difference is that Tε

contains solely integer entries.
Especially, for the exponential matrices which are produced by the quasi-
involutions of Riordan subgroups that we presented in Section 5.2, we have
the following proposition.

Proposition 5.4.1. Let Q =

((
f (z)

z

)b
, f (z)

)
be an ordinary Riordan quasi-involution,

where f (z) = z

(1−czN)
1
N

, b ∈ Z, c ∈ R, N ∈ Z∗, and the exponential Riordan quasi-

involution eQ =

[(
fε(z)

z

)b
, fε(z)

]
, using the equivalent of the ordinary function f

in an exponential form. For the A and Aε sequences of Q and eQ, respectively, we
have
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Aε(z) = A(z)N+1 (5.38)

Proof. From eqs 2.7 and 5.20, we get

Aε(z) =

(
fε

(
f̄ε(z)

)

f̄ε(z)

)N+1

=

(
z

f̄ε(z)

)N+1

Hence, (5.38) is proven.

Example 5.4.1. For the case of the generalised Pascal’s Triangle Pc =
(

1
1−cz , z

1−cz

)
,

where c ∈ R, we have that A(z) = 1 + cz, while the A-sequence of the exponential
array eQc =

[
1

1−cz , z
1−cz

]
, is Aε(z) = A(z)2 = (1 + cz)2.

5.4.1 Bessel polynomials

By exploring properties of quasi-involutions, we found a connection between
a certain family of quasi-involutions and the generalized Bessel polynomi-
als. We present Riordan arrays generated by Bessel polynomials and com-
pressions of quasi-involutions which are related to them.
The Bessel polynomials, named after the German mathematician, astronomer
and physicist Friedrich Wilhelm Bessel (1784-1846), are a class of orthogonal
polynomials yn(x) that although they have been mentioned and studied be-
fore, they were firstly presented in 1948 [51]. These polynomials come as the
solutions of the second-order differential equation

x2y′′n(x) + 2(x + 1)y′n(x) = n(n + 1)yn(x) (5.39)

where n ∈N, and satisfy the initial condition yn(0) = 1. The general solution
of (5.39) is given by the formula

yn(x) =
n

∑
k=0

(n + k)!
2kk!(n− k)!

xk (5.40)

The coefficients of the terms of these polynomials are known as Bessel coeffi-
cients. We present the two kinds of Bessel numbers.
The coefficient of the term xn−k in the (n− 1)-th Bessel polynomials yn−1(x)
denoted by a(n, k), is called the signless Bessel number of the first kind. We
set

b(n, k) = (−1)n−ka(n, k) (5.41)
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and we call b(n, k), the Bessel number of the first kind. So, for the number
b(n, k) we have

b(n, k) =

{
(−1)n−k (2n−k−1)!

2n−k(k−1)!(n−k)! , if 1 ≤ k ≤ n,
0, if 1 ≤ n < k.

(5.42)

By convention, we put a(0, k) = b(0, k) = δ0,k. [48] Now, since the number bn,k
depends on the parameters n and k, we define the Bessel matrix of the first
kind to be the infinite lower-triangular matrix b [104], such that

b =




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 −1 1 0 0 0 0 · · ·
0 3 −3 1 0 0 0 · · ·
0 −15 15 −6 1 0 0 · · ·
0 105 −105 45 −10 1 0 · · ·
0 −945 945 −420 105 −15 1 · · ·
...

...
...

...
...

...
... . . .




(5.43)

whose (n, k)-th entry is equal to b(n, k).

The Bessel number of the second kind B(n, k), is defined to be the number of
partitions of [n] = {1, 2, 3, . . . , n} into k non-empty blocks of size 1 or 2 [48],
and it is given by

B(n, k) =

{
n!

2n−k(2k−n)!(n−k)! , if dn
2 e ≤ k ≤ n,

0, otherwise.
(5.44)

We define the Bessel matrix of the second kind to be the infinite lower-triangular
matrix B, such that

B =




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 · · ·
0 0 3 1 0 0 0 · · ·
0 0 3 6 1 0 0 · · ·
0 0 0 15 10 1 0 · · ·
0 0 0 15 45 15 1 · · ·
...

...
...

...
...

...
... . . .




. (5.45)

The matrices 5.43, and 5.45 can be expressed using exponential Riordan ar-
rays. More specifically, we have that
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b = [1,
√

1 + 2z− 1] , and B =

[
1, z +

z2

2

]
(5.46)

Now, if f (z) =
√

1 + 2z− 1, its compositional inverse will be f̄ (z) = z + z2

2 ,
which means that the matrix b is the inverse of matrix B [104].
Except for the Bessel polynomials, we also define the Reverse Bessel poly-
nomials [104] as the class of orthogonal polynomials gn(x) that satisfy the
second-order differential equation

xg′′n(x)− 2(x + n)g′n(x) + 2ngn(x) = 0 (5.47)

where n ∈N, and the general solution of (5.47) is given by the formula

gn(x) =
n

∑
k=0

(n + k)!
2kk!(n− k)!

xn−k. (5.48)

The reason for the name of these polynomials, comes from the fact that their
coefficients are the same as the Bessel polynomials, but in reverse order.

Example 5.4.2. The fourth-degree Bessel polynomial is

y4(x) = 105x4 + 105x3 + 45x2 + 10x + 1,

while the fourth-degree reverse Bessel is

g4(x) = x4 + 10x3 + 45x2 + 105x + 105.

This form of Bessel polynomials has applications in an area of electronics,
known as Filter Design. In signal processing, operators named as filters are
used in order to remove unwanted components and improve the signal of
transmission. These operators can be designed by known polynomial se-
quences. Especially, the operators which are constructed by using reverse
Bessel polynomials, are known as Bessel Filters [62, 91].
The Reverse Bessel polynomials have coefficient array given by the exponen-
tial Riordan array
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[
1√

1− 2z
, 1−

√
1− 2z

]
=




1 0 0 0 0 0 0 · · ·
1 1 0 0 0 0 0 · · ·
3 3 1 0 0 0 0 · · ·
15 15 6 1 0 0 0 · · ·

105 105 45 10 1 0 0 · · ·
945 945 420 105 15 1 0 · · ·

10, 395 10, 395 4, 725 1, 260 210 21 1 · · ·
...

...
...

...
...

...
... . . .




,

(5.49)

which is an element of the exponential Derivative subgroup, as for f (z) =
1−
√

1− 2z, it is expressed as [ f ′(z), f (z)].
Generalising the concept of the matrix of eq 5.49, we define the r-Bessel poly-
nomials to be the polynomials with coefficient array given by the exponential
Riordan array

Br =

[
1

(1− rz)
r−1

r
, 1− (1− rz)

1
r

]
. (5.50)

Example 5.4.3. For r = 3, we have the exponential Riordan matrix

B3 =

[
1

(1− 3z)
2
3

, 1− (1− 3z)
1
3

]

=




1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
10 6 1 0 0 0 · · ·
80 52 12 1 0 0 · · ·

880 600 160 20 1 0 · · ·
12, 320 8, 680 2, 520 380 30 1 · · ·

...
...

...
...

...
... . . .




The sequence of the first gf of the matrix B3, 1, 2, 10, 80, 880, 12, 320, . . . corresponds
to the triple factorial numbers (OEIS,A008544), which are given by the formula
n−1
∏

k=0
(3k + 2).

Now, let us have a look on a general form of the exponential Riordan quasi-
involution, constructed by the gfs of the ordinary Riordan quasi-involution
5.14, parameterised by r, for c = r and b = r− 1. So, we have the exponential
Riordan array



Chapter 5. Quasi-involutions 110

eQr =

[(
fε(z)

z

)r−1

, fε(z)

]

=

[
1

(1− rzr)
r−1

r
,

z

(1− rzr)
1
r

]
, (5.51)

We take the compression of fε(z),

f ∗ε (z) =
z

(1− rz)
1
r

and we now form the function

Fr(z) = 1− z
f ∗(z)

= 1− (1− rz)
1
r . (5.52)

Then we have the exponential Riordan array
[
F′r(z), Fr(z)

]
= Br. (5.53)

Proposition 5.4.2. A Riordan matrix Br can be analysed as an expression of f ∗ε (z),
as

Br =

[(
f ∗ε (z)

z

)r

, z
]
·
[

z
f ∗ε (z)

, 1− z
f ∗ε (z)

]
. (5.54)

Proof. The derivative of Fr(z) is written as

F′r(z) =
(

1
1− rz

) r−1
r

, (5.55)

which is equal to
(

f ∗ε (z)
z

)r−1
, so (5.53) will be

Br =

[(
f ∗ε (z)

z

)r−1

, 1−
(

f ∗ε (z)
z

)−1
]

(5.56)

By eq 5.52, we get that Fr(z) ∈ F1, and (1− rz)
1
r ∈ F0, for every possible value

of r. That means that these functions can be used to generate a Riordan array.
So, we factorise the RHS of (5.56) to the RHS of (5.54).

5.4.2 The production matrix of the r-Bessel polynomial matrix

To find the Aε and Zε sequences of the r-Bessel polynomial matrix
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Br =
[
F′r(z), Fr(z)

]
,

we are going to need F̄z(z). From eq 5.52, we have

z = 1−
(
1− rF̄r(z)

) 1
r

⇒ 1− rF̄r(z) = (1− z)r

⇒ F̄r(z) =
1
r
(
1− (1− z)r). (5.57)

Hence, from eqs 2.7, the Aε-sequence is

Aε(z) = F′r
(

F̄r(z)
)
= (1− z)1−r, (5.58)

and the Zε-sequence is given by the formula

Zε(z) =

(
F′r
(

F̄r(z)
))′

F′r
(

F̄r(z)
)

which can also written as

Zε(z) =

(
Aε(z)

)′

Aε(z)

=
(r− 1)(1− z)−r

(1− z)1−r

=
r− 1
1− z

. (5.59)

Proposition 5.4.3. The production matrix of Br is given by the exponential Riordan
array [

1
(1− z)r−1 , z

]

with its first row removed.

Proof. We recall that the production matrix of the matrix Br is defined as

PBr = B−1
r · Br,

where Br denotes the matrix Br with its top row removed. We also recall from
(2.8), the bivariate generating function of the production matrix of an expo-
nential Riordan array,

ezy(Zε(z) + yAε(z)
)
.
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So, for Br, and eqs 5.58 and 5.59, the production matrix PBr = B−1
r · Br of the

r-Bessel polynomial matrix is generated by

ezy
(

r− 1
(1− z)r +

y
(1− z)r−1

)
.

The generating function of
[

1
(1−z)r−1 , z

]
is given by ezy

(1−z)r−1 , and hence

PBr =

[
1

(1− z)r−1 , z
]

.

Example 5.4.4. For r = 4, we have the Riordan matrix B4,

B4 =

[
1

(1− 4z)3/4 , 1− (1− 4z)1/4
]

=




1 0 0 0 0 0 · · ·
3 1 0 0 0 0 · · ·

21 9 1 0 0 0 · · ·
231 111 18 1 0 0 · · ·

3, 465 1, 785 345 30 1 0 · · ·
65, 835 35, 595 7, 650 825 45 1 · · ·

...
...

...
...

...
... . . .




,

where its production matrix will be

PB4 =




3 1 0 0 0 0 · · ·
12 6 1 0 0 0 · · ·
60 36 9 1 0 0 · · ·

360 240 72 12 1 0 · · ·
2, 520 1, 800 600 120 15 1 · · ·

20, 160 15, 120 5, 400 1, 200 180 18 · · ·
...

...
...

...
...

... . . .




.

The exponential Riordan array
[

1
(1−z)3 , z

]
generates the matrix
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


1 0 0 0 0 0 · · ·
3 1 0 0 0 0 · · ·

12 6 1 0 0 0 · · ·
60 36 9 1 0 0 · · ·

360 240 72 12 1 0 · · ·
2, 520 1, 800 600 120 15 1 · · ·

20, 160 15, 120 5, 400 1, 200 180 18 · · ·
...

...
...

...
...

... . . .




,

which gives us the production matrix of PB4 , by removing its first row.
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Chapter 6

Almost-Riordan arrays

An almost-Riordan array expands the concept of a Riordan array, by adding
one or more extra columns on the left of a Riordan matrix. This addition has
some effects on the algebraic structure of the new matrices, as we will see in
this chapter. We first present the definition, the properties and past work on
almost-Riordan arrays [11], and then we expand the existing theory to almost-
Riordan matrices that contain k extra columns, for k ∈ N∗. In the final part of
the chapter, we present algebraic properties of the almost-Riordan groups and
subgroups, and we discuss elements of the almost-Riordan group of signifi-
cant meaning such as involutions, pseudo-involutions and quasi-involutions.

6.1 Introduction to the almost-Riordan group

Definition 6.1.1. [11] An almost-Riordan array is an ordered triple
(
a(z)|g(z), f (z)

)
,

where

a(z) =
∞

∑
n=0

anzn, a0 6= 0,

g(z) =
∞

∑
n=0

gnzn, g0 6= 0,

f (z) =
∞

∑
n=0

fnzn, f0 = 0, f1 6= 0

in such a way that the matrix which is generated by the array produced by a(z), g(z)
and f (z), has column vectors

(
a(z), zg(z), zg(z) f (z), zg(z) f (z)2, zg(z) f (z)3, ...

)
. (6.1)

The set of almost-Riordan arrays is denoted as αR.
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We notice that a(z), g(z) ∈ F0, therefore to achieve this lower triangular ar-
rangement, the gf g(z) needs to be multiplied by z to shift all the entries of
the second column of the almost-Riordan matrix. Similarly, the gf of the next
column will be zg(z) f (z), and so on. Hence, for the gfs of (6.1), we have that

a(z) ∈ F0, and zg(z) f (z)k−1 ∈ Fk, for k ∈N∗ (6.2)

A typical almost-Riordan matrix is of the form



a0 0 0 0 0 · · ·
a1 g0 0 0 0 · · ·
a2 g1 g0 f1 0 0 · · ·
a3 g2 g0 f2 + g1 f1 g0 f 2

1 0 · · ·
a4 g3 g0 f3 + g1 f2 + g2 f1 2g0 f1 f2 + g1 f 2

1 g0 f 3
1 · · ·

...
...

...
...

... . . .




.

We use the notation
(
a(z)

∣∣g(z), f (z)
)

to discriminate the almost-Riordan ar-
rays from other Riordan arrays that demand more than two gfs to be defined,
such as the Double Riordan arrays, where we use the notation

(
G(z); f1(z), f2(z)

)
,

as presented in Chapters 1 and 2. The main difference between these two types
of Riordan array is their matrix generation.

Example 6.1.1. Let

a(z) =
1

1− 2z2 , g(z) =
1

1− z
, f (z) =

z
1− z

.

The matrix

(
1

1− 2z2

∣∣∣∣
1

1− z
,

z
1− z

)
=




1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
2 1 1 0 0 0 · · ·
0 1 2 1 0 0 · · ·
4 1 3 3 1 0 · · ·
0 1 4 6 4 1 · · ·
...

...
...

...
...

... . . .




is an almost-Riordan matrix.

The analogous Fundamental Theorem of almost-Riordan arrays, (FTa-RA) is
given in the following proposition.

Proposition 6.1.1. (FTa-RA) [11] Let
(
a(z)

∣∣g(z), f (z)
)

be an almost-Riordan array,
and h(z) ∈ F0 be a power series. Then

(
a(z)

∣∣g(z), f (z)
)
· h(z) = h0a(z) + zg(z)h̃

(
f (z)

)
, (6.3)
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where

h̃(z) =
h(z)− h0

z
. (6.4)

The product · of two almost-Riordan matrices is defined as follows.

Proposition 6.1.2. [11] Let
(
a(z)|g(z), f (z)

)
and

(
b(z)|u(z), v(z)

)
be two ele-

ments of αR. Then

(
a(z)

∣∣g(z), f (z)
)
·
(
b(z)

∣∣u(z), v(z)
)
=

((
a(z)

∣∣g(z), f (z)
)
· b(z)

∣∣∣g(z)u
(

f (z)
)
, v
(

f (z)
))

.
(6.5)

Eq 6.5 can be analysed further, using eq 6.3 for the first column. So we have
that
(
a(z)

∣∣g(z), f (z)
)
·
(
b(z)

∣∣u(z), v(z)
)
=(

b0a(z) + zg(z)
b
(

f (z)
)
− b0

f (z)

∣∣∣∣g(z)u
(

f (z)
)
, v
(

f (z)
)
)

.

Now, for the almost-Riordan arrays
(
a(z)

∣∣g(z), f (z)
)
,
(
b(z)

∣∣u(z), v(z)
)
, and(

c(z)
∣∣h(z), t(z)

)
, we have that

((
a(z)

∣∣g(z), f (z)
)
·
(
b(z)

∣∣u(z), v(z)
))
·
(
c(z)

∣∣h(z), t(z)
)

is equal to
((

a(z)
∣∣g(z), f (z)

)
· b(z)

∣∣∣g(z)u
(

f (z)
)
, v
(

f (z)
))
·
(
c(z)

∣∣h(z), t(z)
)
,

according to eq 6.5, and then for the second almost-Riordan product, we have
(((

a(z)
∣∣g(z), f (z)

)
· b(z)

∣∣∣g(z)u
(

f (z)
)
, v
(

f (z)
))
· c(z)

∣∣∣∣

g(z)u
(

f (z)
)
h
(

v
(

f (z)
))

, t
(

v
(

f (z)
)))

(6.6)
Similarly, for

(
a(z)

∣∣g(z), f (z)
)
·
((

b(z)
∣∣u(z), v(z)

)
·
(
c(z)

∣∣h(z), t(z)
))

,

we get
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(
a(z)

∣∣g(z), f (z)
)
·
((

b(z)
∣∣u(z), v(z)

)
· c(z)

∣∣∣u(z)h
(
v(z)

)
, t
(
v(z)

))
,

which becomes
((

a(z)
∣∣g(z), f (z)

)
·
(
b(z)

∣∣u(z), v(z)
)
· c(z)

∣∣∣∣g(z)u
(

f (z)
)
h
(

v
(

f (z)
))

,

t
(

v
(

f (z)
)))

.

This is equal to eq 6.6, so the operation · is associative. Additionally, the
element (1|1, z) is the almost-Riordan identity matrix, and the inverse of an
almost-Riordan array

(
a(z)

∣∣g(z), f (z)
)

[11] is an almost-Riordan array of the
form

(
a(z)

∣∣g(z), f (z)
)−1

=

(
a?(z)

∣∣∣∣
1

g
(

f̄ (z)
) , f̄ (z)

)
,

where

a?(z) =

(
1
∣∣∣∣−

1
g
(

f̄ (z)
) , f̄ (z)

)
a(z).

Hence, we have the following definition.

Definition 6.1.2. [11] The set αR together with the operation · define the almost-
Riordan group, denoted as 〈αR, ·〉.
The Riordan group R is in fact a subgroup of the almost-Riordan group [11].
While, for appropriate forms of the gfs of other subgroups of αR, we have that
subgroups of αR are isomorphic toR [11]. More specifically, we have that

R '
(

g(z)
∣∣∣∣g(z)

f (z)
z

, f (z)
)
'
(

1
∣∣∣g(z), f (z)

)
.

A subgroup of αR which is analogous to the Appell subgroup of R can be
defined as αN = {

(
a(z)

∣∣1, z
)
; a(z) ∈ F0} and it contains almost Riordan ele-

ments of the form



a0 0 0 0 0 0 · · ·
a1 1 0 0 0 0 · · ·
a3 0 1 0 0 0 · · ·
a4 0 0 1 0 0 · · ·
a5 0 0 0 1 0 · · ·
a6 0 0 0 0 1 · · ·
...

...
...

...
...

... . . .




,
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where a0, a1, a2, a3, ... are coefficients of the polynomial a(z) ∈ F0 [11].

Proposition 6.1.3. [11] Let αR be the group of almost-Riordan arrays, then

αN = {
(
a(z)

∣∣1, z
)
; a(z) ∈ F0}

is a normal subgroup of αR.

Now, by the First Isomorphism Theorem A.1.14, as defined in subsection A.1.2
of Appendix A, we have the following proposition.

Proposition 6.1.4. [11] Since αN = {
(
a(z)

∣∣1, z
)
; a(z) ∈ F0} is a normal subgroup

of the group of almost-Riordan arrays αR, and R be the group of Ordinary Riordan
arrays. Then

αR/αN ' R.

The production matrix of an almost-Riordan array is given by the following
proposition.

Proposition 6.1.5. [11] The production matrix of the almost-Riordan array(
a(z)

∣∣g(z), f (z)
)

is generated by three gfs:

ω(z) =
(
a(z)

∣∣g(z), f (z)
)−1 ã(z) , for the first column,

Z(z) =
(
a(z)

∣∣g(z), f (z)
)−1g(z) , for the second column,

A(z) =
z

f̄ (z)
, for the subsequent columns.

Example 6.1.2. The production matrix of the almost-Riordan array
(

1
1− 2z2

∣∣∣∣
1

1− z
,

z
1− z

)

in Example 6.1.1, is the matrix where the gf of its first column is

ω(z) =

(
1− 2(z + 1)2z2

1 + 2z

∣∣∣∣
1

1 + z
,

z
1 + z

)
· 2z

1− 2z2

=
2z

1 + 2z− z2 ,

which gives the sequence 0, 2,−4, 10,−24, 58,−140, 338,−816, 1970, ...
(OEIS, A163271),

Z(z) =

(
1− 2(z + 1)2z2

1 + 2z

∣∣∣∣
1

1 + z
,

z
1 + z

)
· 1

1− z

=
(1 + z)(1 + 2z− 3z2 − 2z3)

1 + 2z− z2 ,
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the gf of the second column, which corresponds to the sequence 1, 1,−2, 0,−4, 8,
−20, 48,−116, 280,−676, ..., and the gf for the rest of the columns

A(z) =
z(
z

1− z

)

= 1 + z.



0 1 1 0 0 0 · · ·
2 1 1 1 0 0 · · ·
−4 −2 0 1 1 0 · · ·
10 0 0 0 1 1 · · ·
−24 −4 0 0 0 1 · · ·
58 8 0 0 0 0 · · ·
−140 −20 0 0 0 0 · · ·

...
...

...
...

...
... . . .




.

Adding two columns instead of one on the left of a Riordan matrix, we define
the set of almost-almost-Riordan arrays or almost-Riordan arrays of level 2 or
αR(2), in the sense that

R = αR(0) and αR = αR(1),

which means that αR(1) corresponds to almost-Riordan matrices that are ex-
pressed by a triad of gfs

(
a(z)

∣∣g(z), f (z)
)
, and αR(2) corresponds to almost-

Riordan matrices that are expressed by a quartet of gfs
(
a(z), b(z)

∣∣g(z), f (z)
)
,

where a(z), b(z), g(z) ∈ F0, and f (z) ∈ F1. Hence, for the gfs of the almost-
Riordan array of order 2,

(
a(z), b(z)

∣∣g(z), f (z)
)

we have that

a(z) ∈ F0, zb(z) ∈ F1, z2g(z) f (z)k−2 ∈ Fk, for k ∈N∗ \ {1}, (6.7)

which generates the matrix




a0 0 0 0 0 0 · · ·
a1 b0 0 0 0 0 · · ·
a2 b1 g0 0 0 0 · · ·
a3 b2 g1 g0 f1 0 0 · · ·
a4 b3 g2 g0 f2 + g1 f1 g0 f 2

1 0 · · ·
a5 b4 g3 g0 f3 + g1 f2 + g2 f1 2g0 f1 f2 + g1 f 2

1 g0 f 3
1 · · ·

...
...

...
...

...
... . . .




.
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Example 6.1.3. Let

a(z) =
1

1− 3z− z2 , b(z) = 1, g(z) =
1

1− z
, f (z) =

(1− 2z)z
1− z− z2 ,

where a(z) generates the sequence 1, 3, 10, 33, 109, 360, ... [OEIS, A006190], and
f (z) generates the sequence of Lucas numbers (beginning with 1) 1, 3, 4, 7, 11, 18,
29, 47, ... [OEIS, A000204].
Then the matrix

(
1

1− 3z− z2 , 1
∣∣∣∣

1
1− z

,
(1− 2z)z
1− z− z2

)
=




1 0 0 0 0 0 0 0 · · ·
3 1 0 0 0 0 0 0 · · ·

10 0 1 0 0 0 0 0 · · ·
33 0 1 1 0 0 0 0 · · ·

109 0 1 6 1 0 0 0 · · ·
360 0 1 23 9 1 0 0 · · ·

1, 189 0 1 82 45 12 1 0 · · ·
3, 927 0 1 280 182 76 15 1 · · ·

...
...

...
...

...
...

...
... . . .




,

is an almost-Riordan matrix of level 2.

Now, for the analogous binary operation for αR(2), we first define the Fun-
damental Theorem for almost-Riordan arrays of level 2, (FTa-RA(2)).

Proposition 6.1.6. (FTa-RA(2)) [11] Let
(
a(z), b(z)

∣∣g(z), f (z)
)

be an almost-Riordan

array of level 2, and the power series h(z) =
∞
∑

n=0
hnzn. Then

(
a(z), b(z)

∣∣g(z), f (z)
)
· h(z) = h0a(z) + h1zb(z) + z2g(z) ˜̃h

(
f (z)

)
, (6.8)

where
˜̃h(z) =

h(z)− h0 − h1z
z2 . (6.9)

This leads us to the operation · of αR(2), which is defined as follows:

Proposition 6.1.7. [11] Let

A =
(
a(z), b(z)

∣∣g(z), f (z)
)
, and B =

(
h(z), k(z)

∣∣u(z), v(z)
)
,

be two elements of αR(2), then the product A · B is equal to
((

a(z), b(z)
∣∣g(z), f (z)

)
· h(z),

(
b(z)

∣∣g(z), f (z)
)
· k(z)
∣∣∣g(z)u

(
f (z)

)
, v
(

f (z)
))

.
(6.10)
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Applying FTa-RA(2), FTa-RA and FTRA to the first three gfs in (6.10) respec-
tively, we get that

A · B =
(

h0a(z) + h1zb(z) + z2g(z) ˜̃h
(

f (z)
)
, k0b(z) + zg(z)k̃

(
f (z)

)
∣∣∣
(

g(z), u(z)
)

f (z), v
(

f (z)
))

.
(6.11)

The identity element of the set αR(2) is (1, 1|1, z), while the inverse of an
element

(
a(z), b(z)

∣∣g(z), f (z)
)

of αR(2) [11], is defined as

(
a(z), b(z)

∣∣g(z), f (z)
)−1

=

(
a??(z), b?(z)

∣∣∣∣
1

g
(

f̄ (z)
) , f̄ (z)

)
, (6.12)

where

b?(z) =
(
1
∣∣− g(z), f (z)

)−1b(z)

=

(
1
∣∣∣∣−

1
g
(

f̄ (z)
) , f̄ (z)

)
b(z), (6.13)

and

a??(z) =
(
1,−b(z)

∣∣− g(z), f (z)
)−1a(z)

=

(
1,−b?(z)

∣∣∣∣−
1

g
(

f̄ (z)
) , f̄ (z)

)
a(z). (6.14)

Hence, we have the following definition.

Definition 6.1.3. [11] The set αR(2) together with the operation · define the almost-
Riordan group of level 2, denoted as 〈αR(2), ·〉.

Additionally, a normal subgroup of αR(2) is

αN (2) =
{(

a(z), b(z)
∣∣1, z

)
; a(z), b(z) ∈ F0

}
,

which can also be used for the isomorphism [11]

αR(2)/αN (2) ' αR(0) = R.

In next sections, we present our work in almost-Riordan arrays, starting with
the general case of almost-Riordan arrays with k extra columns, for k ∈N.
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6.2 Almost-Riordan arrays of level k

For αR(k), we have almost-Riordan arrays of level k, of the form
(

a(z), b(z), c(z), . . . , w(z)︸ ︷︷ ︸
k gfs

∣∣∣g(z), f (z)
)

, (6.15)

where k ∈N, a(z), b(z), ..., w(z), g(z) ∈ F0, and f (z) ∈ F1.

If a(z) = b(z) = · · · = w(z) = 1, g(z) ∈ F0 and f (z) ∈ F1, the almost-Riordan
array is called trivial.

Example 6.2.1. Let

a(z) =
1

1− 3z2 , b(z) = 1 + 2z2, c(z) = 1,

g(z) =
1− z + z2 −

√
1− 2z− z2 − 2z3 + z4

2z2 , f (z) = z,

where g(z) is the gf of Generalized Catalan numbers, which is also known as the RNA
generating function, and it gives rise to the sequence 1, 1, 1, 2, 4, 8, 17, 37, ... [OEIS,
A004148].
Then the array

(
1

1− 3z2 , 1 + 2z2, 1
∣∣∣∣
1− z + z2 −

√
1− 2z− z2 − 2z3 + z4

2z2 , z

)

gives rise to the matrix



1 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
3 0 1 0 0 0 0 0 0 · · ·
0 2 0 1 0 0 0 0 0 · · ·
9 0 0 1 1 0 0 0 0 · · ·
0 0 0 1 1 1 0 0 0 · · ·
27 0 0 2 1 1 1 0 0 · · ·
0 0 0 4 2 1 1 1 0 · · ·
81 0 0 8 4 2 1 1 0 · · ·
...

...
...

...
...

...
...

...
... . . .




,

which is an almost-Riordan matrix of level 3.

We first present the Fundamental Theorem of almost-Riordan arrays of level
k (FTa-RA(k)), for k ∈N.

Proposition 6.2.1. (FTa-RA(k)) Let
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αR(k) =
(

a0(z), a1(z), a2(z), . . . , ak−1(z)
∣∣∣g(z), f (z)

)

be an almost-Riordan array of level k, where

ak =
∞

∑
i=0

aikzi ∈ F0, for k ∈N

and h(z) =
∞
∑

n=0
hnzn ∈ F0 be a power series, then

αR(k) · h(z) =
k

∑
n=1

hn−1an−1(z)zn−1 + g(z)
(

z
f (z)

)k

(
h
(

f (z)
)
−

k

∑
n=1

hn−1 f (z)n−1

)
.

(6.16)

Proof. First, we have that

αR(k) · h(z) =
(

a0(z), a1(z), a2(z), . . . , ak−1(z)
∣∣∣g(z), f (z)

)
· h(z)

=
(
a0(z), a1(z)z, . . . , ak−1(z)zk−1, g(z)zk, . . .

)
·




h0
h1
h2
...

hk−1
hk
...
...




= h0a0(z) + h1a1(z)z + · · ·+ hk−1ak−1(z)zk−1 + hkg(z)zk

+ hk+1g(z)zk f (z) + · · ·
= h0a0(z) + h1a1(z)z + · · ·+ hk−1ak−1(z)zk−1 + g(z)zk(hk+

+ hk+1 f (z) + · · · )

(6.17)

Now, as

h( f (z)) =
∞

∑
k=0

hk f (z)k,

we have that

h
(

f (z)
)
− h0 − h1 f (z)− · · · − hk−1 f (z)k−1 = hk f (z)k + hk+1 f (z)k+1 + · · ·
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which becomes

h
(

f (z)
)
− h0 − h1 f (z)− · · · − hk−1 f (z)k−1

f (z)k = hk + hk+1 f (z) + · · · (6.18)

Substituting (6.18) to (6.17), we get (6.16).

In line with eqs 6.4 and 6.9 , we rewrite (6.16) as

αR(k) · h(z) =
k

∑
n=1

hn−1an−1(z)zn−1 + zkg(z)h̃(k)
(

f (z)
)

(6.19)

where

h̃(k)(z) =
h
(

f (z)
)
−

k
∑

n=1
hn−1 f (z)n−1

f (z)k (6.20)

To find the row sum of an almost-Riordan matrix of level k, we need to split the
matrix in two parts, the “almost” and the “Riordan”, as in the matrix below.




a00 0 · · · 0 0 0 0 0 · · ·
a10 a11 · · · 0 0 0 0 0 · · ·
a20 a21

. . . 0 0 0 0 0 · · ·
a30 a31

. . . akk 0 0 0 0 · · ·
a40 a41

. . . a(k+1)k g0 0 0 0 · · ·
a50 a51

. . . a(k+2)k g1 g0f1 0 0 · · ·
a60 a61

. . . a(k+3)k g2 g0f2 + g1f1 g0f
2
1 0 · · ·

a70 a71 · · · a(k+4)k g3 g0f3 + g1f2 + g2f1 2g0f1f2 + g1f
2
1 g0f

3
1 · · ·

...
...

...
...

...
...

...
...

. . .




.

For the Riordan submatrix, we use the same formula as for the case of the Or-
dinary Riordan arrays (3.1), where g(z) is shifted k positions down. Whereas,
for the first k + 1 rows, we have

k

∑
i=0

ajizi = aj0 + aj1z + aj2z2 + · · ·+ ajkzk
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Hence the row sum formula of almost Riordan arrays of level k is

k

∑
i=0

ajizi +
g(z)zk

1− f (z)
(6.21)

The product of two almost-Riordan arrays of level k, where k ∈N

αA =
(
a0(z), a1(z), · · · , ak−1(z)

∣∣g(z), f (z)
)
,

and
αB =

(
b0(z), b1(z), · · · , bk−1(z)

∣∣u(z), v(z)
)

is

αA · αB =
(
a0(z), · · · , ak−1(z)

∣∣g(z), f (z)
)

·
(
b0(z), b1(z), · · · , bk−1(z)

∣∣u(z), v(z)
)

which is equal to
((

a0(z), . . . , ak−1(z)
∣∣g(z), f (z)

)
· b0(z), . . . ,

(
ak−2(z), ak−1(z)

∣∣g(z), f (z)
)

· bk−2(z),
(
ak−1(z)

∣∣g(z), f (z)
)
· bk−1(z)

∣∣∣∣

g(z)u
(

f (z)
)
, v
(

f (z)
))

Now, for the power series of the k-th row

ak(z) = a0k + a1kz + a2kz2 + · · · =
∞

∑
j=0

ajkzj,

and

bk(z) = b0k + b1kz + b2kz2 + · · · =
∞

∑
j=0

bjkzj,

where k ∈N, we have that

αA · αB =

( k

∑
n=1

b0(n−1)an−1(z)zn−1 + zkg(z)b̃0
(

f (z)
)
, . . . ,

b0(k−1)ak−1(z) + zg(z)b̃k−1
(

f (z)
)∣∣∣∣g(z)u

(
f (z)

)
, v
(

f (z)
))

.

(6.22)
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We note that the first term of the RHS of eq 6.22 expresses the almost part of
the matrix and the second part of it, expresses the part of the Riordan matrix.
That leads us to the following proposition:

Proposition 6.2.2. The set of almost-Riordan matrices with k extra columns

αR(k) =
{(

a0(z), a1(z), . . . , ak−1(z)
∣∣g(z), f (z)

)∣∣∣ai, g ∈ F0, f ∈ F1

}
,

forms a Riordan group, for every k ∈N.

Proof. Obviously, for the case of k = 0, we have the Riordan group and for the
cases of k = 1 and k = 2, we have the almost-Riordan groups of level 1 and 2,
respectively.
For the general case of the set αR(k), we know that it is close under the almost-
Riordan multiplication as we proved in eq 6.22. So, it suffices to show that for
the inverse of an almost-Riordan array of level k, we have that

(
aR(k)

)−1 ∈ αR(k) (6.23)

Now, let aT =
(
a(z), b(z), c(z)

∣∣g(z), f (z)
)

be an almost-Riordan array of αR(3),
then

(aT)−1 =
(
a(z), b(z), c(z)

∣∣g(z), f (z)
)−1

=

(
a∗∗∗(z), b∗∗(z), c∗(z)

∣∣∣∣
1

g
(

f̄ (z)
) , f̄ (z)

)−1

,

by adding a new column in eq (13) in [11]. Where

a∗∗∗(z) = a0 − a1zb∗∗(z)− a2z2c∗(z)− z3

g
(

f̄ (z)
) ã(3)

(
f̄ (z)

)

and

ã(3)(z) =
a(z)− a0 − a1z− a2z2

z3 (6.24)

Iterating the process, we have that

(
aR(k)

)−1
=

(
a0(z), a1(z), . . . , ak−1(z)

∣∣g(z), f (z)
)−1

=

(
a∗(k)0 (z), a∗(k−1)

1 (z), . . . , a∗k−1(z)
∣∣∣∣

1
g
(

f̄ (z)
) , f̄ (z)

)
, (6.25)

where

a∗(n)p (z) = a0p −
n−1

∑
i=1

aip zia∗(n−i)
i (z)− zn

g
(

f̄ (z)
) ã(n)p

(
f̄ (z)

)
,
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and

ã(n)(z) =
a(z)−∑n−1

i=0 aizi

zn

for p, n ∈N.

6.2.1 Product of almost-Riordan arrays of different level

In section 6.2, we defined the product for almost-Riordan arrays of level k 6= 0.
A modified form of this product is also presented in the following theorem,
for almost-Riordan arrays of different level.

Theorem 6.2.2. Let αK(n), and αL(m) be two almost-Riordan arrays of level n, and
m, respectively, where n 6= m. The product αK(n) · αL(m) is defined as

αK(n) · αL(m) = αR(p),

where p = max{n, m}.

Proof. Suppose that m < n, and let

αK(n) =
(
a0(z), a1(z), . . . . . . , an−1(z)

∣∣g(z), f (z)
)
,

and
αL(m) =

(
b0(z), b1(z), . . . , bm−1(z)

∣∣u(z), v(z)
)
,

where

ak(z) =
∞

∑
j=0

ajkzj, and bk(z) =
∞

∑
j=0

bjkzj,

for k ∈N. Now, we expand αL(m) as
(

b0, b1, . . . , bm−1, u,
uv
z

,
uv2

z2 , . . . ,
uvn−m−1

zn−m−1 ,
uvn−m

zn−m︸ ︷︷ ︸
(n−m)terms

∣∣∣∣∣
uvn−m+1

zn−m+1 , v

)

(6.26)

and let U(z) = uvn−m+1

zn−m+1 . Hence, we get that αK(n) · αL(m) is equal to

(
a0(z), a1(z), . . . , an−1(z)

∣∣g(z), f (z)
)
·
(

b0(z), b1(z), . . . ,
u(z)v(z)n−m

zn−m

∣∣∣∣∣U(z), v(z)

)
,

and
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((
a0(z), a1(z), . . . , an−1(z)

∣∣∣g(z), f (z)
)
· b0(z), . . . ,

(
an−2(z), an−1(z)

∣∣∣g(z), f (z)
)
· u(z)v(z)n−m−1

zn−m−1 ,
(

an−1(z)
∣∣∣g(z), f (z)

)
· u(z)v(z)n−m

zn−m∣∣∣∣∣g(z)U
(

f (z)
)
, v
(

f (z)
)
)

,

(6.27)
which becomes an almost-Riordan array of level n, αR(n). It can be similarly
shown for the case of m > n. We get that

αK(n) · αL(m) = αR(m). (6.28)

Hence in both cases, we have that

αK(n) · αL(m) = αR
(
max{n, m}

)
.

6.3 Factorization of a Riordan matrix to almost-Riordan
matrices

We have earlier presented factorizations of Riordan matrices such as semi-
direct products of the Riordan group in Chapters 3 and 4, and decompositions
of Riordan quasi-involutions to their quasi-compressions in Chapter 5. In the
current section, we show another method of factorizing a Riordan matrix, us-
ing almost-Riordan matrices.
Let the Riordan matrix R =

(
g(z), f (z)

)
, where

g(z) = g0 + g1z + g2z2 + · · · , and f (z) = f1z + f2z2 + f3z3 + · · ·

then R is analysed as
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(
g(z), f (z)

)
=




g0 0 0 0 · · ·
g1 g0 f1 0 0 · · ·
g2 g0 f2 + g1 f1 g0 f 2

1 0 · · ·
g3 g0 f3 + g1 f2 + g2 f1 2g0 f1 f2 + g1 f 2

1 g0 f 3
1 · · ·

...
...

...
... . . .




.

(6.29)
We observe that all columns were composed by coefficients of both gfs, ex-
cept for the initial one which solely contains coefficients of the first gf, in an
ascending order. If we exclude the first row and the first column of the matrix,
we get

(
g(z), f (z)

)
=




g0 0 0 0 · · ·
g1 g0 f1 0 0 · · ·
g2 g0 f2 + g1 f1 g0 f 2

1 0 · · ·
g3 g0 f3 + g1 f2 + g2 f1 2g0 f1 f2 + g1 f 2

1 g0 f 3
1 · · ·

...
...

...
... . . .




=

[
g0 ~0

G(z)
(

g(z) f (z)
z , f (z)

)
]

(6.30)

where G(z) = g(z)− g0 = g1z + g2z2 + · · · , and~0 = (0, 0, 0, 0, . . .).
Now, the internal submatrix of (6.30), is analysed further as

(
g(z) f (z)

z
, f (z)

)
=

(
f (z)

z
, z
)
·
(

g(z), f (z)
)
, (6.31)

and it follows that every Riordan matrix 6.29 can be factorised by

(
g(z), f (z)

)
=

[
g0 ~0

G(z)
(

f (z)
z , z

)
]
·
[

1 ~0
~0 (g(z), f (z))

]
. (6.32)

By induction, we have that

(
g(z), f (z)

)
= ∏

k≥0

(
Ik ⊕

[
g0 ~0T

G(z)
(

f (z)/z, z
)
])

,

which is analysed as
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


g0 0 0 0 · · ·
g1 f1 0 0 · · ·
g2 f2 f1 0 · · ·
g3 f3 f2 f1 · · ·
...

...
...

... . . .



·




1 0 0 0 · · ·
0 g0 0 0 · · ·
0 g1 f1 0 · · ·
0 g2 f2 f1 · · ·
...

...
...

... . . .



·




1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 g0 0 · · ·
0 0 g1 f1 · · ·
...

...
...

... . . .



· . . .

(6.33)
For the inverse of a Riordan array, we have by eq 6.32

(
g(z), f (z)

)−1
=

([
g0 ~0

G(z)
(

f (z)
z , z

)
]
·
[

1 ~0
~0 (g(z), f (z))

])−1

which is written as

(
g(z), f (z)

)−1
=
[
I1 ⊕

(
g(z), f (z)

)−1] ·
[

g0 ~0T

G(z)
(

f (z)
z , z

)
]−1

where [
g0 ~0T

G(z)
(

f (z)/z, z
)
]−1

=

[
1/g0 ~0T

~̂g
(

z/ f (z), z
)
]

with the vector ~̂g corresponding to the generating function

ĝ(z) =
g0 − g(z)

g0
f (z) (6.34)

and z
f (z) = ∑n≥0 dnzn is determined by d0 = 1

f1
and for n ≥ 1, and by Wron-

ski’s formula (page 18 of [46]), we have

dn =
(−1)n

f n+1
1

det




f2 f1 0 · · · 0
f3 f2 f1 · · · 0
...

... . . . . . . 0
fn fn−1 · · · f2 f1

fn+1 fn · · · f3 f2




n×n

.

The matrices of the RHS of eq 6.33 are not Riordan arrays. Nevertheless, they
can be written as almost-Riordan arrays, where the gf of the first column of the
internal matrix of each of those arrays is f (z)

z . Hence, we have that a Riordan
array can be decomposed to an infinite product of almost-Riordan arrays of
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different levels, as

(
g(z), f (z)

)
=

(
g(z)

∣∣∣∣
f (z)

z
, z
)(

1, g(z)
∣∣∣∣

f (z)
z

, z
)(

1, 1, g(z)
∣∣∣∣

f (z)
z

, z
)
· · ·

where, the product for almost-Riordan arrays of different levels is defined in
Theorem 6.2.2. So, we have the following theorem:

Theorem 6.3.1. Every Riordan matrix is factorised by infinitely many almost-Riordan
matrices as

(
g(z), f (z)

)
=

∞

∏
k=0


1, . . . , 1︸ ︷︷ ︸

k terms

, g(z)

∣∣∣∣∣
f (z)

z
, z


 .

Example 6.3.2. Let K =
(

1
1−2z−z2 , 1−

√
1−4z2

2z

)
so we have

K =




1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
5 2 1 0 0 0 · · ·

12 6 2 1 0 0 · · ·
29 14 7 2 1 0 · · ·
70 36 16 8 2 1 · · ·
...

...
...

...
...

... . . .




. (6.35)

Writing the gfs of K as power-series, we get

1
1− 2z− z2 = 1 + 2z + 5z2 + 12z3 + 29z4 + 70z5 + · · ·

1−
√

1− 4z2

2z
= z + z3 + 2z5 + 5z7 + 14z9 + 42z11 + · · ·

that correspond to the sequence of Pell numbers 1,2,5,12,29,70,. . . (OEIS, A000129),
and the aerated Catalan numbers 1,1,2,5,14, . . . (OEIS, A000108), respectively.
Hence, according to Theorem 6.3.1, the matrix K is factorised as




1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
5 0 1 0 0 0 · · ·

12 1 0 1 0 0 · · ·
29 0 1 0 1 0 · · ·
70 2 0 1 0 1 · · ·
...

...
...

...
...

... . . .




·




1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 2 1 0 0 0 · · ·
0 5 0 1 0 0 · · ·
0 12 1 0 1 0 · · ·
0 29 0 1 0 1 · · ·
...

...
...

...
...

... . . .




·




1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 0 1 0 0 0 · · ·
0 0 2 1 0 0 · · ·
0 0 5 0 1 0 · · ·
0 0 12 1 0 1 · · ·
...

...
...

...
...

... . . .




· . . .
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6.4 Involutions in the group of almost Riordan ar-
rays

Searching for involutions among the almost Riordan matrices, let the almost-
Riordan array

(
a(z)

∣∣g(z), f (z)
)

be an involution, so it needs to satisfy

(
a(z)

∣∣g(z), f (z)
)
·
(
a(z)

∣∣g(z), f (z)
)
= (1|1, z)

which becomes
((

a(z)
∣∣g(z), f (z)

)
· a(z)

∣∣∣g(z)g
(

f (z)
)
, f
(

f (z)
))

= (1|1, z). (6.36)

The same conditions as in the definition of involutions (3.1.2) for Ordinary
Riordan arrays, are satisfied for the internal generating functions g(z) and
f (z) of eq 6.36, while for the first column, we have that

(
a(z)

∣∣g(z), f (z)
)
· a(z) = a0a(z) + zg(z)

a
(

f (z)
)
− a0

f (z)

= a0a(z) +
zg(z)a

(
f (z)

)

f (z)
− a0zg(z)

f (z)

= a0

(
a(z)− zg(z)

f (z)

)
+

zg(z)a
(

f (z)
)

f (z)
, (6.37)

which for an involution is equal to 1. According to the definition of an almost-
Riordan array, the gf of the initial column a(z) ∈ F0, while g(z) ∈ F0, and
f (z) ∈ F1.

Proposition 6.4.1. If
(

g(z), f (z)
)

is an involution in R, then
(
1
∣∣g(z), f (z)

)
is an

involution in αR(1).

Proof. We have a(z) = 1 and thus

a0

(
a(z)− zg(z)

f (z)

)
+

zg(z)a
(

f (z)
)

f (z)
= 1− zg(z)

f (z)
+

zg(z)
f (z)

= 1,

as required.

Proposition 6.4.2. Let
(

g(z), f (z)
)

be an ordinary Riordan involution, then the

almost-Riordan array
(
a(z)

∣∣g(z), f (z)
)

is also an involution if a(z) = zg(z)
f (z) .
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Proof. By choosing a(z) = zg(z)
f (z) , we get a power series in F0, and eq 6.37 be-

comes

a0

(
a(z)− zg(z)

f (z)

)
+

zg(z)a
(

f (z)
)

f (z)
=

zg(z)a
(

f (z)
)

f (z)

=

zg(z)
f (z)g

(
f (z)

)

f
(

f (z)
)

f (z)

= zg(z)
g
(

f (z)
)

f
(

f (z)
) (6.38)

Now, since
(

g(z), f (z)
)

is an involution, we have that
(

g(z), f (z)
)
·
(

g(z), f (z)
)
= (1, z)

and (
g(z), f (z)

)
·
(

g(z), f (z)
)
=
(

g(z)g
(

f (z)
)
, f
(

f (z)
))

,

which leads us to the conditions

g(z) =
1

g
(

f (z)
) , and f

(
f (z)

)
= z (6.39)

Applying the conditions 6.39 to eq 6.38, we have that this (6.38) is equal to 1
as required.

We note that in the general case, the almost Riordan array
(

zg(z)
f (z)

∣∣∣∣g(z), f (z)
)

is in fact a Riordan array. It coincides with the Riordan array
(

zg(z)
f (z) , f (z)

)
.

Generalizing, we get the following proposition for
(

zn

f (z)n g(z), f (z)
)

.

Proposition 6.4.3. If
(

g(z), f (z)
)

is an involution inR, then so is
(

zn

f (z)n g(z), f (z)
)

,
for n ∈N.

Proof. Let
(

g(z), f (z)
)

be an involution. For the Riordan array
(
G(z), f (z)

)
,

where G(z) = zn

f (z)n g(z), it can be easily shown that

G
(

f (z)
)
=

1
G(z)

.
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We also note that the Riordan array
(

zn

f (z)n g(z), f (z)
)

, for a fixed n ∈ N

can be written as an almost-Riordan array as
(

zn

f (z)n g(z)
∣∣∣∣ zn

f (z)n−1 g(z), f (z)
)

.

For the Riordan family of subgroups which are solely defined by their second
gf f (z), Y[r, s, p], we only need the condition f (z) = f̄ (z), as the g(z) function
depends on f (z) . Hence, we notice that if

υ f [ρ, σ, π] =

((
f (z)

z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)
)

is a Riordan involution, then the almost-Riordan array
((

f (z)
z

)ρ−1 (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π ∣∣∣∣
(

f (z)
z

)ρ (
f ′(z)

)σ
(

f (z)− 1
z− 1

)π

, f (z)

)

is also an involution.

Example 6.4.1. Let f (z) = − z
1+z , so υ f [1, 1, 1] has the form

(
f (z)

z f ′(z) f (z)−1
z−1 , f (z)

)
,

which corresponds to the matrix

(
1 + 2z

(1 + z)4(1− z)
,− z

1 + z

)
=




1 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
1 −3 −3 −1 0 0 0 0
−4 2 6 4 1 0 0 0
10 2 −8 −10 −5 −1 0 0
−18 −12 6 18 15 6 1 0
30 30 6 −24 −33 −21 −7 −1




,

which is an involution, as f (z) = f̄ (z). Now, the almost-Riordan matrix which
contains υ f [1, 1, 1] is also an involution and has the form

(
f ′(z)

f (z)− 1
z− 1

∣∣∣∣
f (z)

z
f ′(z)

f (z)− 1
z− 1

, f (z)
)
=

(
1 + 2z

(1 + z)3(1− z)
,− z

1 + z

)

which is equal to the matrix
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


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0
2 1 2 1 0 0 0 0
−3 1 −3 −3 −1 0 0 0
6 −4 2 6 4 1 0 0
−8 10 2 −8 −10 −5 −1 0
12 −18 −12 6 18 15 6 1




6.5 Pseudo-involutions in the almost-Riordan group

6.5.1 Pseudo-involutions in the group of almost-Riordan ar-
rays of first order

Almost-Riordan arrays can also form pseudo-involutions under specific con-
ditions. We recall the definition of a pseudo-involution for a Riordan ar-
ray R =

(
g(z), f (z)

)
, is (R · M)2 = I, where M = (1,−z). As we pre-

sented in Chapter 2, Pascal’s Triangle is a known pseudo-involution. Now,
if the initial column (1, 1, 1, 1, 1, 1, ...)T of this Riordan matrix is replaced by
(1, r, r, r, r, r, ...)T, we get

Ar =




1 0 0 0 0 0 · · ·
r 1 0 0 0 0 · · ·
r 2 1 0 0 0 · · ·
r 3 3 1 0 0 · · ·
r 4 6 4 1 0 · · ·
r 5 10 10 5 1 · · ·
...

...
...

...
...

... . . .




.

which is not a Riordan matrix, for r 6= 1. However, this matrix can be ex-
pressed as an almost-Riordan matrix.

Proposition 6.5.1. The almost-Riordan array

Ar =

(
1 + z(r− 1)

1− z

∣∣∣∣
1

(1− z)2 ,
z

1− z

)

for r ∈ Z− {1}, is a pseudo-involution in the almost-Riordan group.

Proof. Since the Riordan part of this matrix comes from Pascal’s Triangle, the
columns of the “interior” matrix satisfy the conditions for a pseudo-involution.
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Now, the inverse of Pascal’s triangle is the Riordan array

P−1 =

(
1

1 + z
,

z
1 + z

)

=




1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·
1 −2 1 0 0 0 · · ·
−1 3 −3 1 0 0 · · ·
1 −4 6 −4 1 0 · · ·
−1 5 −10 10 −5 1 · · ·

...
...

...
...

...
... . . .




.

Hence, it suffices to show that the first column of the inverse of Ar needs to be
(1,−r, r,−r, r,−r, ...)T, which has gf 1− r

1+z . After all these observations, we
have
(

1 + z(r− 1)
1− z

∣∣∣∣∣
1

(1− z)2 ,
z

1− z

)−1

=

((
1 + z(r− 1)

1− z

)∗ ∣∣∣∣∣
1

(1 + z)2 ,
z

1 + z

)
,

where

(
1 + z(r− 1)

1− z

)∗
=

(
1
∣∣∣∣−

1
(1− z)2 ,

z
1− z

)−1

· 1 + z(r− 1)
1− z

=

(
1
∣∣∣∣−

1
(1 + z)2 ,

z
1 + z

)
· 1 + z(r− 1)

1− z

= 1 + z
(
− 1
(1 + z)2

)
· r

1− z
1 + z

= 1− z
(1 + z)2 ·

r(1 + z)
1 + z− z

= 1− rz
1 + z

.

Working similarly for the case of the general Pascal’s Triangle
(

1
1−cz , z

1−cz

)
, for

c ∈ Z, we add an extra parameter and we get the following proposition:

Proposition 6.5.2. The almost-Riordan array

Ap
r =

(
1 + pz(r− 1)

1− pz

∣∣∣∣
1

(1− pz)2 ,
z

1− pz

)
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is a pseudo-involution in the almost-Riordan group αR(1).
Proof. We are going to show that the first column of the inverse of Ap

r is given
by (1,−rp, rp2,−rp3, ...), with gf 1− prz

1+pz . So, we have that

(
1 + pz(r− 1)

1− pz

∣∣∣∣
1

(1− pz)2 ,
z

1− pz

)−1

=

((
1 + pz(r− 1)

1− pz

)∗ ∣∣∣∣∣
1

(1 + pz)2 ,
z

1 + pz

)

(6.40)
where,

(
1 + pz(r− 1)

1− pz

)∗
=

(
1
∣∣∣∣−

1
(1− pz)2 ,

z
1− pz

)−1

· 1 + pz(r− 1)
1− pz

=

(
1
∣∣∣∣−

1
(1 + pz)2 ,

z
1 + pz

)
· 1 + pz(r− 1)

1− pz

= 1 + z
(

1
(1 + pz)2

)
· pr

1− p
z

1 + pz

= 1− z
(1 + pz)2 ·

pr(1 + pz)
1 + pz− pz

= 1− prz
1 + pz

.

Now, we are going to prove that these pseudo-involutions form a Riordan
subgroup.
For r, s 6= 1, and p, q ∈ Z, we have that Ap

r · Aq
s is equal to

(
1 + pz(r− 1)

1− pz

∣∣∣∣
1

(1− pz)2 ,
z

1− pz

)
·
(

1 + qz(s− 1)
1− qz

∣∣∣∣
1

(1− qz)2 ,
z

1− qz

)
,

applying almost-Riordan multiplication, we get



(

1 + pz(r− 1)
1− pz

∣∣∣∣
1

(1− pz)2 ,
z

1− pz

)
· 1 + qz(s− 1)

1− qz

∣∣∣∣∣

1
(1− pz)2 ·

1
(

1− q
z

1− pz

)2 ,

z
1− pz

1− q
z

1− pz



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which simplifies to

((
1 + pz(r− 1)

1− pz

∣∣∣∣
1

(1− pz)2 ,
z

1− pz

)
· 1 + qz(s− 1)

1− qz

∣∣∣∣∣
1

(1− (p + q)z)2 ,

z
1− (p + q)z

) (6.41)

For the first column of this array, we have that
(

1 + pz(r− 1)
1− pz

∣∣∣∣
1

(1− pz)2 ,
z

1− pz

)
· 1 + qz(s− 1)

1− qz

is equal to

1 + p(r− 1)z
1− pz

+ z
1

(1− pz)2

1 + q
z

1− pz
(s− 1)

1− z
1− pz

− 1

z
1− pz

,

which simplifies to

1 +
prz

1− pz
+

z
(1− pz)2

qsz
1− pz

1− pz− qz
1− pz

z
1− pz

and finally,
1 +

prz
1− pz

+ sq
z

(1− pz)(1− (p + q)z)
.

So, eq 6.41 becomes
(

1 +
prz

1− pz
+ sq

z
(1− pz)(1− (p + q)z)

∣∣∣∣∣
1

(1− (p + q)z)2 ,
z

1− (p + q)z

)

(6.42)
Since we proved that the set of almost-Riordan arrays Ap

r are closed under the
almost-multiplication (6.5), and their inverse are of the same form (6.40), they
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form an almost-Riordan subgroup. More specifically, we have the following
corollary:

Corollary 6.5.1. For r 6= 1, the almost-Riordan array

Ar =

(
1 + z(r− 1)

1− z

∣∣∣∣
1

(1− z)2 ,
z

1− z

)

generates a subgroup of pseudo-involutions in αR(1).

Comparing the Riordan subgroup

Pc =

{(
1

1− cz
,

z
1− cz

)
, c ∈ Z

}

which is generated by Pascal’s Triangle, with the almost-Riordan subgroup,
generated by Ar

Ap
r =

{(
1 + pz(r− 1)

1− pz

∣∣∣∣
1

(1− pz)2 ,
z

1− pz

)
; r 6= 1, p ∈ Z

}

we see that although both of them solely contain pseudo-involutions, the only
subgroup which is abelian is Pc. For Ap

r and by eq 6.42, we get

Ap
r · Aq

s 6= Aq
s · Ap

r .

We also note that if
(

g(z), f (z)
)

is a pseudo-involution, then the trivial almost-
Riordan array

(
1
∣∣g(z), f (z)

)
is a pseudo-involution in the group of almost-

Riordan arrays. Decomposing the almost-Riordan array Ar, we have




1 0 0 0 0 0 · · ·
r 1 0 0 0 0 · · ·
r 2 1 0 0 0 · · ·
r 3 3 1 0 0 · · ·
r 4 6 4 1 0 · · ·
r 5 10 10 5 1 · · ·
...

...
...

...
...

... . . .




=




1 0 0 0 0 0 · · ·
r 1 0 0 0 0 · · ·
r 0 1 0 0 0 · · ·
r 0 0 1 0 0 · · ·
r 0 0 0 1 0 · · ·
r 0 0 0 0 1 · · ·
...

...
...

...
...

... . . .




·




1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 2 1 0 0 0 · · ·
0 3 3 1 0 0 · · ·
0 4 6 4 1 0 · · ·
0 5 10 10 5 1 · · ·
...

...
...

...
...

... . . .




where
(

1
∣∣∣∣ 1
(1−z)2 , z

1−z

)
is a pseudo-involution.
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6.5.2 Pseudo-involutions in the group of almost-Riordan ar-
rays of the second order

For the case of almost-Riordan arrays of level 2, we define an almost-Riordan
element of αR(2) by using once again Pascal’s Triangle for the Riordan part of
the matrices, while the same F0 function is used for the first two columns. So,
we have

(
1 + z
1− z

,
1 + z
1− z

∣∣∣∣
1

(1− z)2 ,
z

1− z

)
.

The corresponding matrix M is then defined by

Mn,k = [zn]zk 1 + z
1− z

, k < 2;

Mn,k = [zn]
zk

(1− z)k , k > 2.

Thus the matrix M is



1 0 0 0 0 0 0 · · ·
2 1 0 0 0 0 0 · · ·
2 2 1 0 0 0 0 · · ·
2 2 2 1 0 0 0 · · ·
2 2 3 3 1 0 0 · · ·
2 2 4 6 4 1 0 · · ·
2 2 5 10 10 5 1 · · ·
...

...
...

...
...

...
... . . .




,

and its inverse is



1 0 0 0 0 0 0 · · ·
−2 1 0 0 0 0 0 · · ·
2 −2 1 0 0 0 0 · · ·
−2 2 −2 1 0 0 0 · · ·
2 −2 3 −3 1 0 0 · · ·
−2 2 −4 6 −4 1 0 · · ·
2 −2 5 −10 10 −5 1 · · ·
...

...
...

...
...

...
... . . .




.

Proposition 6.5.3. The element
(

1+z
1−z , 1+z

1−z

∣∣∣∣ 1
(1−z)2 , z

1−z

)
∈ αR(2) is a pseudo-involution.

Proof. We have



Chapter 6. Almost-Riordan arrays 141

b∗(z) =
(

1
∣∣∣∣−

1
(1− z)2 ,

z
1− z

)−1

· 1 + z
1− z

=

(
1
∣∣∣∣− (1 + z)2,

z
1 + z

)
· 1 + z

1− z

= 1− z
(1 + z)2

2
1− z

1+z

= 1− 2
1 + z

=
1− z
1 + z

,

which expands to give 1,−2, 2,−2, . . . .
We then obtain that

a∗∗(z) =
(

1,−1− z
1 + z

∣∣∣∣−
1

(1 + z)2 ,
z

1 + z

)
· 1 + z

1− z

= 1− 2z
1− z
1 + z

− z2

(1 + z)2
2(1 + z)
1 + z− z

=
1− z
1 + z

.

It is possible to extend this result to higher orders. For instance, we can con-
sider the almost Riordan array of third order defined by

(
1 + z
1− z

,
1 + z
1− z

,
1 + z
1− z

∣∣∣∣
1

(1− z)2 ,
z

1− z

)
.

The corresponding matrix is defined by

Mn,k = [zn]zk 1 + z
1− z

, k < 3;

Mn,k = [zn]
zk

(1− z)k−1 , k ≥ 3,
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and we have that

M =




1 0 0 0 0 0 0 0 · · ·
2 1 0 0 0 0 0 0 · · ·
2 2 1 0 0 0 0 0 · · ·
2 2 2 1 0 0 0 0 · · ·
2 2 2 2 1 0 0 0 · · ·
2 2 2 3 3 1 0 0 · · ·
2 2 2 4 6 4 1 0 · · ·
2 2 2 5 10 10 5 1 · · ·
...

...
...

...
...

...
...

... . . .




.

The inverse of this matrix is



1 0 0 0 0 0 0 0 · · ·
−2 1 0 0 0 0 0 0 · · ·
2 −2 1 0 0 0 0 0 · · ·
−2 2 −2 1 0 0 0 0 · · ·
2 −2 2 −2 1 0 0 0 · · ·
−2 2 −2 3 −3 1 0 0 · · ·
2 −2 2 −4 6 −4 1 0 · · ·
−2 2 −2 5 −10 10 −5 1 · · ·

...
...

...
...

...
...

...
... . . .




.

6.6 Quasi-involutions in the almost-Riordan group

In this section, we are going to demonstrate how to build quasi-involutions in
the almost-Riordan group, by using known quasi-involutions from the Rior-
dan group. For that purpose, we are going to use two different approaches.
First, by adjoining an extra column on the left of the matrix, as we have al-
ready applied in previous sections of the chapter, and then by replacing its
initial column.

6.6.1 Adding a new column

By eq 5.23, we get that

W = Q2k ·Q−1
k (6.43)

which gives us

(
F(z)

z
, F(z)

)
=

(
f (z)

z
, f (z)

)
·
(

f ∗(z)
z

, f ∗(z)
)−1

(6.44)
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where F(z) = z
k
√√

1−cz2k+czk
, f (z) = z

2k√1−cz2k
, and f ∗(z) = z

k√1−czk
.

Now, by adding a column on each of the arrays on the RHS of eq 6.44, we
have:

(
A(z)

∣∣∣∣
1

2k
√

1− cz2k
,

z
2k
√

1− cz2k

)
·
(

a(z)
∣∣∣∣

1
k
√

1 + czk
,

z
k
√

1 + czk

)
(6.45)

where A, a ∈ F0, and their quasi-transitional matrix becomes

(
A(z) + a

(
f (z)

)
+ 1
∣∣∣∣

1
k
√√

1− cz2k + czk
,

z
k
√√

1− cz2k + czk

)
(6.46)

We note that A(z) needs to be a (2k− 1)- aerated, and a(z) a (k− 1)- aerated
fps, as we see on the following example.

Example 6.6.1. Let the Riordan quasi-involution

Y =

(
1√

1− 8z2
,

z√
1− 8z2

)
=




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
4 0 1 0 0 0 0 · · ·
0 8 0 1 0 0 0 · · ·

24 0 12 0 1 0 0 · · ·
0 64 0 16 0 1 0 · · ·

160 0 120 0 20 0 1 · · ·
...

...
...

...
...

...
... . . .




,

and let

σY =

(
K(z)

∣∣∣∣
1√

1− 8z2
,

z√
1− 8z2

)
=




1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
A 0 1 0 0 0 0 0 · · ·
0 4 0 1 0 0 0 0 · · ·
B 0 8 0 1 0 0 0 · · ·
0 24 0 12 0 1 0 0 · · ·
Γ 0 64 0 16 0 1 0 · · ·
0 160 0 120 0 20 0 1 · · ·
...

...
...

...
...

...
...

... . . .




,

be the same matrix with the extra column

1, 0, A, 0, B, 0, Γ, 0, ∆, 0, E, 0, Z, 0, H, 0, Θ, 0, I.. (6.47)
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on the left.
We need σY · (σY)−1 = I, where

(σY)−1 =




1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
−A 0 1 0 0 0 0 0 · · ·

0 −4 0 1 0 0 0 0 · · ·
B 0 −8 0 1 0 0 0 · · ·
0 24 0 −12 0 1 0 0 · · ·
−Γ 0 64 0 −16 0 1 0 · · ·
0 −160 0 120 0 −20 0 1 · · ·
...

...
...

...
...

...
...

... . . .




which leads us to the equations
B = 4A

∆ = 4(3Γ− 7A)

Z = 4(5E− 320Γ− 3, 904A)

...

Hence, the sequence 6.47 is expressed as the fps

K(z) = 1+ Az2 + 4Az4 +Γz6 + 4(3Γ− 7A)z8 +Ez10 + 4(5E− 320Γ− 3, 904A)z12 + · · · ,
(6.48)

and we say that the almost-Riordan array

σY =

(
K(z)

∣∣∣∣∣
1√

1− 8z2
,

z√
1− 8z2

)
(6.49)

is a quasi-involution in αR(1).
For the quasi-compression of σY, we take the Pascal-like array

σY∗ =

(
k(z)

∣∣∣∣∣
1

1− 8z
,

z
1− 8z

)
, (6.50)

where
k(z) = 1 + αz + 4αz2 + γz3 + (12γ + 22α)z4 + · · · .

The fps K(z) and k(z) are used in (6.46) to link these two quasi-involutions through
eq 5.23.



Chapter 6. Almost-Riordan arrays 145

6.6.2 Replacing a column

We also define quasi-involutions in αR, by replacing the first column of a
given quasi-involution. Again, we have the quasi-involution of the form

(
f (z)

z
, f (z)

)
=

(
1

2k
√

1− cz2k
,

z
2k
√

1− cz2k

)
. (6.51)

Since the Riordan array structure of the matrix that we are going to construct,

starts from the second column, its gf will be f (z)2

z , while the multiplier function
remains the same. So, we have

U2k =

(
B(z)

∣∣∣∣
f (z)

z
f (z), f (z)

)
=

(
B(z)

∣∣∣∣
z

k
√

1− cz2k
,

z
2k
√

1− cz2k

)
, (6.52)

and

U−1
k =

(
b(z)

∣∣∣∣∣
z

k
√
(1 + czk)2

,
z

k
√

1 + czk

)
, (6.53)

the inverse of the almost-Riordan matrix which is constructed by its quasi-
compression. So, their quasi-transitional matrix W = U2k ·U−1

k is

B(z) + z f (z)

k−1
2

(
b
(√

f (z)
z

)
− 1

) ∣∣∣∣∣
z f (z)

k
√
(
√

1− cz2k + czk)2
,

z
k
√√

1− cz2k + czk




(6.54)

Example 6.6.2. Using the same Riordan quasi-involution as in Example 6.6.1, we
have the almost-Riordan array

τY =

(
Λ(z)

∣∣∣∣
z

1− 8z2 ,
z√

1− 8z2

)
=




1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
A 0 1 0 0 0 0 0 · · ·
0 8 0 1 0 0 0 0 · · ·
B 0 12 0 1 0 0 0 · · ·
0 64 0 16 0 1 0 0 · · ·
C 0 120 0 20 0 1 0 · · ·
0 512 0 192 0 24 0 1 · · ·
...

...
...

...
...

...
...

... . . .




,

and working similarly we get that

Λ(z) = 1 + Az + 6Az2 + Cz3 + (280A + 14C)z4 + · · ·

Additionally, the quasi-compression of τY is
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τY∗ =
(

λ(z)
∣∣∣∣

z
(1− 8z)2 ,

z√
1− 8z

)
, (6.55)

where λ(z) = 1 + az + 8az2 + cz3 + (512a− 16c)z4 + · · · .

We note that for the appropriate values of the parameters A, B, C, D, . . . and
a, b, c, d, . . . of the almost-Riordan arrays with a replaced column, these matri-
ces are equal to their equivalent quasi-involutions of the Riordan group.
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Chapter 7

Eigenvalues and Eigenvectors of
Riordan matrices

In previous chapters, we mostly approach Riordan arrays via their generating
functions. Nevertheless, we should not ignore the fact that these mathemati-
cal objects are also expressed as matrices. Analysing further the structure of
the Stabilizer subgroup, we have developed a part of the Linear Algebra of
Riordan matrices. More specifically, the study of the Stabilizer subgroup led
us to a link between the eigenvalues of a Riordan array and the characteristic
of the compositional function of this subgroup, information about the forms
of the eigenvalues, and the existence of eigenvectors of a Riordan array.

The context of this chapter is part of our common work with G-S. Cheon and
M.M. Cohen, under the title “The Linear Algebra of Proper Riordan arrays”
(See Appendix C).

7.1 The Stabilizer subgroup as an Eigenvector sub-
group

In [12], the Stabilizer subgroup is described as a family of Riordan subgroups,
named the Eigenvector subgroups, for any function h(z) ∈ F0. Let

~h =




h0
h1
h2
...




be the column vector of eq 3.8, this is also the eigenvector that corresponds to
the eigenvalue of the Riordan matrix that equals one, as from its first gf we
have

h(z)
h
(

f (z)
) = g(z)⇒

(
g(z), f (z)

)
· h(z) = 1 · h(z).
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More generally, we have the following lemma:

Lemma 7.1.1. Let A =
(

g(z), f (z)
)

be a Riordan matrix and the gf of~h is h(z) =
h0 + h1z + · · · , then~h is an eigenvector with eigenvalue λ if and only if

g(z) · h
(

f (z)
)
= λ · h(z).

Proof. It can be easily derived from FTRA and the definition of an eigenvector,
since

A · h(z) =
(

g(z), f (z)
)
· h(z)

= g(z) · h
(

f (z)
)

= λ · h(z). (7.1)

As we presented in subsection 3.2.7, the first gf of a Stabilizer Riordan matrix
is always an expression that contains a constant term, and this result does not
depend on the order of the fps h(z). That means that the characteristic of an
eigenvector can also be different than 0, under restrictions. Now, suppose that
in Lemma 7.1.1, we have the column vector

h(z) = hkzk + hk+1zk+1 + hk+2zk+2 + ...⇒~h =




0
...
0
hk

hk+1
hk+2

...




where hk 6= 0, k ∈ N. We are going to examine under which conditions, ~h
is an eigenvector of A with eigenvalue λ. We note that an eigenvalue can be
any complex number, nevertheless in the case of Riordan arrays, we limit this
range of the available values, according to the next proposition.

Proposition 7.1.1. Let A =
(

g(z), f (z)
)

be a Riordan matrix, where g(z) ∈ F0,
and f (z) ∈ F1. If

h(z) = hkzk + hk+1zk+1 + hk+2zk+2 + · · · ,

with k ∈N and hk 6= 0, and if~h is an eigenvector of A with eigenvalue λ, then

λ = g0 · f k
1 . (7.2)
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Proof. From (7.1), we get A ·~h = λ ·~h, so

λ · h(z) = g(z) · h
(

f (z)
)

= (g0 + g1z + · · · )
(

hk( f1z + f2z2 + · · · )k + hk+1( f1z + f2z2 + · · · )k+1 + · · ·
)

which can be written as

λhkzk + λhk+1zk+1 + · · · = (g0hk f k
1 )z

k + · · · (7.3)

where by the first term of both sides of eq 7.3, we get

λhk = g0hk f k
1 ,

and since hk 6= 0, we prove eq 7.2.

Before we proceed, and since we proved that h(z) ∈ Fk, where k ∈ N, we
discriminate the eigenvalues of a Riordan matrix as follows: An eigenvector
~h = (h0, h1, h2, . . . )T of the Riordan matrix

(
g(z), f (z)

)
is an eigenvector of

level k if and only if ~h = (0, . . . , 0, hk, hk+1, . . . , )T, with hk 6= 0. While, an
eigenvector of level zero (h0 6= 0) is called a primary eigenvector.
Additionally, we call the set that contains one eigenvector at each level k ≥ 0,
{~h0, ~h1, . . . , ~hk, . . . } as a full set of eigenvectors. We note that this is not a basis
of the vector space of all infinite sequences in F.

7.1.1 Eigenvectors - Eigenvalues of Riordan Matrix Powers

It is known from Linear Algebra that if λ is an eigenvalue of a matrix A, then
λN is the eigenvalue of the matrix AN. Now, suppose that we have a Riordan
matrix A =

(
g(z), f (z)

)
, where~h ∈ Fk is an eigenvector of A, with eigenvalue

λ, then for every N ∈N, we have

AN~h = λN~h
⇐⇒ AN~h = (g0 f k

1 )
N~h (by Proposition 7.1.1)

⇐⇒ AN~h = gN
0 f kN

1
~h

We also have that

A2 = A · A
=

(
g(z)g

(
f (z)

)
, f
(

f (z)
))

,

and
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A3 = A2 · A
=

(
g(z)g

(
f (z)

)
g
(

f
(

f (z)
))

, f
(

f
(

f (z)
)))

,

and by induction, we get

AN =

(
N−1

∏
i=0

g
(

f ◦(i)(z)
)
, f ◦(N)(z)

)
,

where
f ◦(N)(z) =

(
f ( f ( f (· · · f (z)))

)
︸ ︷︷ ︸

N− times

.

We note that f ◦(0)(z), f ◦(1)(z) are z, and f (z), respectively. Hence,

ANh(z) =
N−1

∏
i=0

g
(

f ◦(i)(z)
)
h
(

f ◦(N)(z)
)
,

which means that

N−1

∏
i=0

g
(

f ◦(i)(z)
)
h
(

f ◦(N)(z)
)
= gN

0 f kN
1 h(z)

which is also written as

1
gN

0 f kN
1

N−1

∏
i=0

g
(

f ◦(i)(z)
)
=

h(z)
h
(

f ◦(N)(z)
) (7.4)

For N = 1, the eq 7.4 provides us a different interpretation of the first gener-

ating function of Stabilizer elements
(

h(z)

h
(

f (z)
) , f (z)

)
.

7.2 Existence and non-Existence of Eigenvectors

In this section we present the conditions under which a eigenvector of a Ri-
ordan array exists. Firstly, by the Babbage equation 3.2 and for a fps f (z),
we denote k as the compositional order of f (z). Now, we present a classic
theorem as a lemma about fps of finite and infinite compositional order.

Lemma 7.2.1. [25, 80] Let f (z) = f1z + f2z2 + · · · be a fps , with f1 6= 0.

(a) If f (z) has finite compositional order n then f1 has multiplicative order n in F\{0}
and (highly nontrivial) there exists a formal series θ(z) ∈ F1 where
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(
θ ◦ f ◦ θ

)
(z) = f1z. (7.5)

(b) If f1 has infinite multiplicative order then f (z) is of infinite compositional order
and, (again nontrivial), there exists a formal series φ(z) ∈ F1 where

(
φ ◦ f ◦ φ

)
(z) = f1z. (7.6)

In eqs 7.5 and 7.6, we set `(z) = f1z, and we also consider f (z) to be conjugate
(A.1.13) to its linear part `(z): f (z) ∼`(z).
Corollary 7.2.2. If f (z) has infinite compositional order, with f1 of finite multiplica-
tive order, then f (z) cannot be conjugate to `(z).

Proof. Since conjugacy is an equivalence relation and the compositional order
of `(z) equals the multiplicative order of f1, an f (z) of infinite compositional
order cannot be conjugate to `(z) of finite compositional order.

7.2.1 The existence of a full set of eigenvectors for a Riordan
matrix

The following theorem answers the question about the existence of a full set
of eigenvectors of a Riordan matrix.

Theorem 7.2.3. Let A =
(

g(z), f (z)
)

be a Riordan matrix that has a primary eigen-
vector~h with gf h(z) ∈ F0, and if there exists θ(z) ∈ F1 such that

(θ ◦ f ◦ θ)(z) = f1 · z = `(z),

then the set of columns

{h(z)θ(z)k}∞
k=0 of

(
h(z), θ(z)

)
∈ R

form a full set of eigenvectors for
(

g(z), f (z)
)
.

Proof. By Lemma 7.1.1 and the Fundamental Theorem of Riordan arrays, the
matrix A =

(
g(z), f (z)

)
multiplies the kth column ~hk of the matrix

(
h(z), θ(z)

)
,

which has generating function h(z)
(
θ(z)

)k, then we have that

(
g(z), f (z)

)
·
(

h(z)
(
θ(z)

)k
)

= g(z)
(

h
(

f (z)
)

︸ ︷︷ ︸
g0h(z)

(
θ( f (z))

)k
)

= g0h(z)
(
`
(
θ(z)

))k

= g0h(z)
(

f1θ(z)
)k

= g0 f k
1 · h(z)

(
θ(z)

)k
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Thus ~hk is an eigenvector of
(

g(z), f (z)
)

with eigenvalue g0 f k
1 .

Now, if f1 is of infinite order then there exists unique eigenvectors at each
level, according to the next theorem.

Theorem 7.2.4. Suppose that f n
1 6= 1 for all n ∈ N, then for every k ≥ 0, the

Riordan matrix A =
(

g(z), f (z)
)

has a unique eigenvector of the form

~h =
(

0, 0, . . . 0︸ ︷︷ ︸
(k− 1) terms

, hk = 1, hk+1, hk+2, . . .
)T.

Proof. Let A ·~h = λ ·~h, so




g0 0 0 0 0 0 · · ·
g1 g0 f1 0 0 0 0 · · ·
g2 a2,1 g0 f 2

1 0 0 0 · · ·
...

...
... . . . 0 0 · · ·

...
...

...
... . . . 0 · · ·

gk ak,1 ak,2 · · · ak,k−1 g0 f k
1 · · ·

...
...

...
...

...
... . . .




·




h0
...

hk−1
hk

hk+1
hk+2

...




= λ ·




h0
...

hk−1
hk

hk+1
hk+2

...




If ~h is of level k then necessarily h0 = · · · = hk−1 = 0, the eigenvalue is
λ = g0 f k

1 by Proposition 7.1.1, and we may set hk = 1. If h1, . . . , hn−1 have
been determined for n > k then, since f n

1 6= 1 for all n ∈N, the product of the
nth row and the vector~h gives

gnh0 + an,1h1 + · · ·+ an,n−1hn−1 + g0 f n
1 hn = g0 f k

1 hn,

and
gnh0 + an,1h1 + · · ·+ an,n−1hn−1 + g0 f k

1 ( f n−k
1 − 1)hn = 0

and we may solve uniquely for hn, proving the theorem.

Corollary 7.2.5. 1. If f1 has infinite order then there exists an eigenvector at each
level k ≥ 0 for the matrix

(
g(z), f (z)

)
.

2. If
(

g(z), f (z)
)

has finite order in R then there exists an eigenvector at each
level k ≥ 0 for the matrix

(
g(z), f (z)

)
.

Proof. 1. It follows from the existence of a primary eigenvector as proved
in Theorem 7.2.4 and from the existence of θ(z) given by Lemma 7.2.1.

2. It is proven in [26], where a general formula for all eigenvectors is also
given. It is proven that the fact that

(
g(z), f (z)

)
has finite order implies
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the existence of a primary eigenvector and also that f (z) has finite com-
positional order (hence that θ(z), which conjugates f (z) to f1z, exists).

The following proposition shows that the existence of a full set of eigenvec-
tors will follow from the existence of just a primary eigenvector and one non-
primary eigenvector. To prove this, we are going to use the following theorem.

Theorem 7.2.6. [65] Let A(z) = 1 + a1z + a2z2 + a3z3 + · · · and n ∈ N, then
there exists a unique series of the form B(z) = 1 + b1z + b2z2 + · · · such that

(
B(z)

)n
= A(z).

We denote B(z) =
(

A(z)
) 1

n .

Proposition 7.2.1. Suppose that
(

g(z), f (z)
)
∈ R has a primary eigenvector ~h

given by h(z) and another eigenvector, given by v(z) = vkzk + · · · , with vk 6= 0
and k > 0. Then there exists a formal power series θ(z) = z + a2z2 + a3z3 + · · · ,
such that

(
θ ◦ f ◦ θ

)
(z) = f1z (and thus, by Theorem 7.2.3, there exists a full set of

eigenvectors given by h(z)θ(z)k).

Proof. As scalar multiples of eigenvectors are also eigenvectors, we may as-
sume that h0 = 1 and vk = 1. Since h(z) and v(z) are eigenvectors of

(
g(z), f (z)

)
,

we have
(

g(z), f (z)
)
· h(z) = g(z) · h

(
f (z)

)
= g0h(z).

(
g(z), f (z)

)
· v(z) = g(z) · v

(
f (z)

)
= g0 f k

1 v(z).

Since h0 6= 0, h(z) and h
(

f (z)
)

have multiplicative inverses. Thus the above
equations give

g(z) = g0
h(z)

h
(

f (z)
)

⇒ g0
h(z)

h
(

f (z)
)v
(

f (z)
)

= g0 f k
1 v(z)

⇒ v
(

f (z)
)

h
(

f (z)
) = f k

1
v(z)
h(z)

.

We define a(z) = v(z)
h(z) , so that we have

a
(

f (z)
)
= f k

1 a(z).

We may write 1
h(z) =

1
1+H(z) =

(
1− H(z) + H(z)2 − · · ·

)
. Thus
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a(z) =
v(z)
h(z)

=
(

zk + vk+1zk+1 + · · ·
)(

1− H(z) + H(z)2 − · · ·
)

= zk
(

1 + vk+1z + · · ·
)(

1− H(z) + H(z)2 − · · ·
)

= zk
(

1 + b1z + b2z2 + · · ·
)

=
(

z
(
1 + b1z + b2z2 + · · ·

) 1
k
)k

By Theorem 7.2.6, there exists a unique kth root of (1+ b1z+ b2z2 + · · · ) which
has the form (1 + c1z + · · · ).
Hence, we have that

(
z
(
1 + b1z + b2z2 + · · ·

) 1
k
)k

=
(
θ(z)

)k, where θ(z) is of

the form θ(z) = z + a2z2 + a3z3 + · · · .
Therefore

a
(

f (z)
)

= f k
1 a(z)

⇒
(

θ
(

f (z)
))k

= f k
1

(
θ(z)

)k

⇒ θ
(

f (z)
)

= αθ(z),

where αk = f k
1 .

But, θ(z) = z + a2z2 + a3z3 + · · · implies that

(
αz + αa2z2 + · · ·

)
= αθ(z)

= θ
(

f (z)
)

= f (z) + a2 f (z)2 + · · ·
= f1z + · · ·

Therefore α = f1. Letting `(z) = f1z we have

θ
(

f (z)
)

= f1 · θ(z)
⇒
(
θ ◦ f

)
(z) =

(
` ◦ θ

)
(z)

⇒
(
θ ◦ f ◦ θ

)
(z) = `(z) = f1 · z.
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7.2.2 Riordan arrays with primary but no higher level eigen-
values

In the next theorem, we present a case where a Riordan array does not have
eigenvectors of level k > 0.

Theorem 7.2.7. Let the fps f (z), h(z) ∈ F1, where f1 has finite order, f (z) has
infinite compositional order, and h0 = 1. Suppose that g(z) ∈ F0 such that

g(z) = g0 ·
h(z)

h
(

f (z)
) . (7.7)

Then
(

g(z), f (z)
)

has a primary eigenvector given by h(z) but no eigenvectors of
level greater than zero.

Proof. By definition, we have that
(

g(z), f (z)
)
· h(z) = g(z) · h

(
f (z)

)
= g0 · h(z),

so h(z) gives a primary eigenvector of
(

g(z), f (z)
)
. On the other hand, if there

existed a higher level eigenvector v(z) then by Proposition 7.2.1, f (z) would
be conjugate to the linear function `(z) = f1z. Thus the compositional order
of f (z) would equal the compositional order of `(z), which has compositional
order equal to the finite multiplicative order of f1. This contradicts our as-
sumption on f (z).

7.2.3 Riordan arrays with no primary eigenvectors

Eq 7.1 can be stated equivalently as

(An − λIn) ·~h = 0, (7.8)

where In is the n× n identity matrix. Hence, we have that

An − λIn =




g0 − λ 0 0 0 0 0 · · ·
g1 g0 f1 − λ 0 0 0 0 · · ·
g2 a2,1 g0 f 2

1 − λ 0 0 0 · · ·
...

...
... . . . 0 0 · · ·

...
...

...
... . . . 0 · · ·

gk ak,1 ak,2 · · · ak,k−1 g0 f k
1 − λ · · ·

...
...

...
...

...
... . . .




So, eq (7.8) becomes
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


g0 − λ 0 0 0 0 0 · · ·
g1 g0 f1 − λ 0 0 0 0 · · ·
g2 a2,1 g0 f 2

1 − λ 0 0 0 · · ·
...

...
... . . . 0 0 · · ·

...
...

...
... . . . 0 · · ·

gk ak,1 ak,2 · · · ak,k−1 g0 f k
1 − λ · · ·

...
...

...
...

...
... . . .




·




h0
...

hk−1
hk

hk+1
...
...




= 0

(7.9)

Theorem 7.2.8. Let A =
(

g(z), f (z)
)

be a proper Riordan matrix given by

g(z) = g0 + grzr + · · · , and f (z) = f1z + fszs + · · ·

where gr 6= 0 and fs 6= 0. If one of the following holds then
(

g(z), f (z)
)

does not have
an eigenvector of the form (h0, h1, h2, . . .)T, h0 6= 0 corresponding to the eigenvalue
g0.

(i) f1 = 1 and 1 ≤ r < s.

(ii) f1 = −1, r = 1, g2 6= 0 and f2 = g1/g0.

(iii) f1 = −1, r = 2, r < s.

(iv) f1 = −1, r ≥ 3 is odd, r < s and gr+1 6= 0.

(v) f1 = −1, r ≥ 4 is even, r ≤ s.

Proof. • ( Case 1: f1 = 1 and 1 ≤ r < s) Let f (z) = z + f2z2 + f3z3 + · · · .
Since f1 = 1, it is obvious that if g1 6= 0 then eq 7.9 has no solution for
any s > 1. For r ≥ 2, let RT

i = (ai0, ai1, . . .) denote the ith row vector of
A− g0 I in eq 7.9 where i = 0, 1, . . .. Assume that f2 = · · · = fr−1 = 0.
Since

ark = [zr]g(z) f (z)k = [zr](g0 + grzr + · · · )(z + frzr + · · · )k, k ≥ 0

we obtain RT
r = (gr, g0 fr, 0, . . .). From RT

r h = 0 we have

grh0 + g0 frh1 = 0.

Since g0 6= 0 and grh0 6= 0 it follows that if fr = 0 then the linear system
7.9 has no solution. In conclusion, if g(z) = g0 + grzr + · · · with gr 6= 0
and f (z) = z + f2z + · · · with f2 = · · · = fr = 0, i.e., 1 ≤ r < s then(

g(z), f (z)
)

has no eigenvector.
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• ( Case 2: f1 = −1, r = 1) Let f (z) = −z + f2z2 + f3z3 + · · · . Let r = 1,
i.e. g1 6= 0. Since

a2k = [z2](g0 + g1z + g2z2 + · · · )(−z + f2z2 + · · · )k, k ≥ 0

we obtain RT
2 = (g2, g0 f2− g1, 0, . . .) from eq 7.9. It follows from RT

2 h = 0
that

g2h0 + (g0 f2 − g1)h1 = 0.

Thus if g2 6= 0 and f2 = g1/g0 then eq 7.9 has no solution.

• ( Case 3: f1 = −1, r = 2)If r = 2, i.e. g1 = 0 and g2 6= 0, the above
equation gives us that (7.9) has no solution for the case f2 = 0.

• ( Case 4: f1 = −1, r = 3) Now let r ≥ 3 be odd. Since g0 6= 0, g1 = 0 and
f1 = −1 we obtain RT

1 = (0,−2g0, 0, . . .). Hence we have h1 = 0 from
RT

1 h = 0. Assume that f2 = · · · = fr = 0. Since

[zr+1]g(z) f (z)k = [zr+1](g0 + grzr + gr+1zr+1 + · · · )(−z+ fr+1zr+1 + · · · )k,

where k ≥ 0 and the (r+ 1)th diagonal entry of A− g0 I is zero, we obtain

RT
r+1 = (gr+1,−gr + g0 fr+1, 0, . . .).

From RT
r+1h = 0 with h1 = 0 we obtain h0gr+1 = 0 where h0 6= 0.

Hence if gr+1 6= 0 then eq 7.9 has no solution. In conclusion, if g(z) =
g0 + grzr + gr+1zr+1 + · · · for an odd r ≥ 3 where g0, gr, gr+1 are nonzero,
and f2 = · · · = fr = 0 i.e. r < s then

(
g(z), f (z)

)
has no eigenvector.

• (Case 5: f1 = −1, and r ≥ 4 is even) Finally, let r ≥ 4 be even. In a
similar way, we obtain h1 = 0. Assume that f2 = · · · = fr−1 = 0. Since

[zr]g(z)F(z)k = [zr](g0 + grzr + · · · )(−z + frzr + · · · )k,

where k ≥ 0 and the rth diagonal entry of A − g0 I is zero, we obtain
RT

r = (gr, g0 fr, 0, . . .). From RT
r h = 0 with h1 = 0 we obtain h0gr = 0

where h0 6= 0. Since gr 6= 0 the linear system 7.9 has no solution. In
conclusion, if g(z) = g0 + grzr + · · · for an even r ≥ 4 where g0, gr are
nonzero, and f2 = · · · = fr−1 = 0 i.e. r ≤ s then

(
g(z), f (z)

)
has no

eigenvector.
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Chapter 8

Conclusions and further directions

Riordan subgroups and their properties have been the guide of our study. In
Chapter 4, working on the structure of the Riordan group, we have defined
a class of Riordan subgroups which hold similar properties, we determined
their relationships with other subgroups, while we also generalised a part of
our results to the family of Riordan subgroups Y[r, s, p]. Since, most of our
work is related, but not limited to the algebraic structures of the Ordinary
Proper Riordan arrays a possible direction will be to generalise our findings
into other kinds of Riordan arrays, explore the behaviour of Riordan sets and
subgroups and eventually expand the theoretical part of Riordan Group the-
ory. Additionally, an area that might be worth studying is the combinations of
different types of Riordan arrays that can lead us to new groups, e.g. almost-
exponential Riordan arrays or k-tuple aR(n), as a combination of kth level
Riordan, and nth level almost-Riordan arrays.

In Chapter 5, we have studied quasi-involutions, a special type of Riordan ar-
rays, partially analysing their structure by defining quasi-compressions and
linking quasi-involutions of different levels. In addition, we expressed Rior-
dan arrays generated by Bessel polynomials, by compressions of exponential
quasi-involutions. Since, we have presented two general generating functions
that give Riordan quasi-involutions, the study of different functions that are
able to generate similar matrices and the characterization of quasi-involutions
could be a part of our future work in this field. Our endeavours to analyse
a lower triangular matrix, with all ones diagonal that it is self-inverse as a
quasi-involution, lead us to the following figure.
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1

a1,0

a2,0

a3,0

a4,0

a5,0

1

a2,1

a3,1

a4,1

a5,1

1

a3,2

a4,2

a5,2

a4,3

a5,3 a5,4

1

1

1

FIGURE 8.1: Structure of a self-inverse matrix

In the Fig 8.1, starting from the second subdiagonal, we represent the entries
according to the subdiagonal to which they belong. Hence, we have entries of
an even subdiagonal in a box, and entries of an odd subdiagonal in a colourful
circle. Making pairs of entries above and on the right of any box or circle, ac-
cording to the edges of the lines of the digram (dashed and dotted lines for the
even subdiagonals, and green and red for the odd ones), we present the fol-
lowing non-linear recursive formulas for the entries of the matrix (an,k)n,k∈N.

• if n− k = 2λ, λ ∈N∗, then

an,k =
1
2

n

∑
i=k+1

(−1)n+ian,iai,k
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• if n − k = 2λ + 1, λ ∈ N∗, then for the entries of the same row and
column of an,k

n

∑
i=k+1

(−1)n+ian,iai,k = 0

Our work on almost-Riordan arrays in Chapter 6 has extended the already ex-
isting theory to almost-Riordan arrays with n extra columns. We have shown
that every Riordan array can be factorised to trivial-like almost-Riordan ar-
rays of different levels, while our study on involutions, pseudo-involutions,
and quasi-involutions of almost-Riordan groups has led us to further links to
the main Riordan group. The algebraic perspectives of almost-Riordan arrays
is also a possible direction of our future research. Using the results of our
findings one could go further into the theory of almost-Riordan arrays into
the combinatorial behaviour of these mathematical objects.

By a simple observation on the structure of the Stabilizer subgroup, we have
presented a study in the eigenvalues and eigenvectors of a Riordan matrix, in
Chapter 7. There is more related work in progress which will be presented in
due time.

Open problems and conjectures

During our study in the area of Riordan arrays, we found some intriguing
questions. Some of them are still under investigation, while others may not
have a clear answer. We list them in this subsection as open problems.

• Not all Riordan subgroups are stabilizers. (T-X. He et al, 2017).
Is there any stabilizer transformation for the derivative subgroup?

Equivalently, does the equation
∫

h(z)dz =
∫

h( f (z))d f have a non-
trivial solution for f ∈H1?

• Is there any Riordan subgroup without any non-trivial involutions and/or
pseudo-involutions?

• Any almost-Riordan subgroups characterized by their extra column(s)?

• Could we factorize a Riordan array by using double (or k-tuple) Riordan
arrays?

• The Riordan subgroup of the Generalised Pascal’s Triangle,
Pc =

(
1

1−cz , z
1−cz

)
is cyclic. Is there any other significant cyclic subgroup

in the Riordan Group?
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• Could we construct a semi-direct product for the Riordan group, with-
out using the Appell subgroup? Equivalently, is there any other normal
Riordan subgroup, except for the Appell which can be used for that pur-
pose?

• In examples 5.2.2 and 5.2.3, we observe that although both of the matri-
ces are quasi-involutions, the entries of each matrix are not necessarily
integers. Even if we limit the range of the parameter c to the set of inte-
gers, we still have an,k ∈ Q.

Conjecture 8.0.1. The Riordan quasi-involution of level N − 1,

G =

(
1

(1− czN)
1
N

,
z

(1− czN)
1
N

)

contains integer entries if and only if c = N2λ, for λ ∈N∗

• By the almost-Riordan arrays, we have the following

Conjecture 8.0.2. Almost-Riordan involutions where the extra column is not
trivial, are Riordan arrays.
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Appendix A

Group Theory

A.1 Group - Ring Theory

As our research is inseparably connected with the algebraic structure of the Ri-
ordan group, we introduce some basic definitions of Group theory, followed
by some advanced theories that we will use in the sections that follow. More-
over, as the main objects of our research are matrices, we will focus on the
applied group theory on infinite matrices and we will present examples of
matrix groups, whenever we need to emphasise a specific part of the theory.

A.1.1 Groups

Definition A.1.1. [38] A group 〈G, ∗〉 is a set G closed under a binary operation ∗,
such that the following axioms are satisfied
A1 : for all a, b, c ∈ G, we have

(a ∗ b) ∗ c = a ∗ (b ∗ c), associativity of ∗

A2 : there is an element e in G, which is usually denoted by 1, such that for all z ∈ G,

e ∗ z = z ∗ e = z, identity element e for ∗

A3 : corresponding to each a ∈ G, there is an element a′ in G, which is usually
denoted by a−1, such that

a ∗ a′ = a′ ∗ a = e, inverse a′ of a.

We usually symbolise a group, with the name of its set, G.

Example A.1.1. The set of integers together with addition, 〈Z,+〉 form a group.
However, the set of all positive integers, Z+ is not a group, as there is no identity
element for + in Z+.

Example A.1.2. The general linear group of matrices of degree n over R,

GLn(R) = {A ∈Mn×n(R)|detA 6= 0}
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is the set of n× n invertible matrices, together with the operation of ordinary matrix
multiplication is a group.

A measure that describes the size of a group comes from the definition below.

Definition A.1.2. [38] If G is a group, with finitely many elements, then the order,
|G|, of G is the number of elements in G.

Definition A.1.3. [14] If g is an element of a group G, then the least positive integer
m that gm = 1, where gm = g ∗ g ∗ g... ∗ g (m-times), is called the order of the
element g in G.

Example A.1.3. The order of the group U4 = {1,−1, i,−i} of fourth roots of unity
under multiplication, is |U4| = 4. While, the order of the element−1, is 2 as (−1)2 =
1.

Definition A.1.4. [38] A group G is called abelian, if its binary operation ∗ is
commutative. i.e.

∀a, b ∈ G : a ∗ b = b ∗ a.

Example A.1.4. The set Mm×n(R) of all m× n matrices under matrix addition is
an abelian group.

Definition A.1.5. [38] If a subset H of a group G is closed under the binary oper-
ation of G and if H with the induced operation from G is itself a group, then H is a
subgroup of G, denoted as

H ≤ G or H < G, if H 6= G.

Example A.1.5. Invertible matrices of GLn(R) have to satisfy the condition detA 6=
0 for every A ∈ Mn×n(R). Let Q be a subset of GLn consisting of those matrices
with detA = 1. Then Q is a group and we have that Q 6 GLn.

We use the following lemma to show when a subset of a group is a subgroup.

Lemma A.1.6. [38] Let H be a non-empty set of the group 〈G, ∗〉. Then H is a
subgroup of G if and only if for every a, b ∈ H, we have that a ∗ b ∈ H and a−1 ∈ H.

Definition A.1.6. [38] If G is a group and a ∈ G, then

〈a〉 = {an|n ∈ Z}

is a subgroup of G and it is called the cyclic subgroup of G which is generated by a.
Also, given a group G and an element g in G, if

〈g〉 = {gn|n ∈ Z}

then g is called generator of G and the group G = 〈g〉 is cyclic.
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If the cyclic subgroup 〈a〉 of G is finite, then the order of the element a is the
order |〈a〉| of this cyclic subgroup.

Example A.1.7. Let M2×2(n) be the group of 2× 2 matrices such that

M2×2(n) =

{
M(n) =

[
1 n
0 1

] ∣∣∣∣∣ n ∈N∗
}

.

Then, M2×2(n) is cyclic and the matrix M(1) =
[

1 1
0 1

]
is a generator of M2×2(n),

as
M2(1) = M(1)M(1) =

[
1 1
0 1

] [
1 1
0 1

]
=

[
1 2
0 1

]
= M(2),

M3(1) = M(1)M(1)M(1) =
[

1 1
0 1

] [
1 1
0 1

] [
1 1
0 1

]
=

[
1 3
0 1

]
= M(3)

and in general

Mn(1) =
[

1 n
0 1

]
= M(n).

Definition A.1.7. [38] Let X be a set, G a group and e the identity element of G. An
action of G on X is a map

∗ : G× X → X

such that

1. ex = x, for all x ∈ X,

2. (g1g2)(x) = g1(g2x), for all x ∈ X and all g1, g2 ∈ G.

Under these conditions X is called a G-set.

By action of a group G on a set or on an element, we have the following defini-
tions of subgroups of G. A particular form of a group is given by a semi-direct
product. Nevertheless, before we present the definition of it, we introduce the
concepts of a centralizer and the set product of two subgroups.

Definition A.1.8. [38] Let G be a group and α be a fixed element of G, then the
centralizer of an element α is denoted as the set of elements of G which commute
with α,

CG(α) = {g ∈ G|αg = gα}
and it is a subgroup of G.

Example A.1.8. Suppose that we define a set of 2× 2 matrices

T2×2 =

{
T =

[
a b
c d

] ∣∣∣∣∣det T 6= 0 and a, b, c, d ∈ R

}
,
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and the element N =

[
0 1
1 0

]
∈ T2×2. The centralizer of the element N is the set

CT2×2(N) =

{
T ∈ T2×2

∣∣∣∣∣

[
a b
c d

] [
0 1
1 0

]
=

[
0 1
1 0

] [
a b
c d

]}
,

which gives us the relations a = d and b = c. Hence,

CT2×2(N) =

{
T =

[
a b
b a

] ∣∣∣∣∣a
2 − b2 6= 0 and a, b ∈ R

}
.

Similarly, we define a centralizer of a subset (or a subgroup).

Definition A.1.9. [47] Let S be a subset of the group G and let H be a subgroup of
G. Then the centralizer of a subset S in H, denoted by CH(S) is

CH(S) = {h ∈ H|hs = sh, ∀s ∈ S} ,

and it is a subgroup of G.

Definition A.1.10. [32] Let Ω be a set and G a group, then for ω ∈ Ω and g ∈ G,
the subset

GΩ = {g ∈ G|ωg = ω} ,

where the operation is a group action, is called the stabilizer of ω in G and it is a
subgroup of G.

Example A.1.9. Let

J2×2 =

{
J =

[
a b
c d

] ∣∣∣∣∣detJ 6= 0 and a, b, c, d ∈ R

}
,

be a set of 2 × 2 matrices and L = {
[
2 1

]
}, a set with one 1 × 2 matrix. The

stabilizer of L in J2×2 is the set

J2×2L =

{
J ∈ J2×2

∣∣∣∣∣
[
2 1

] [a b
c d

]
=
[
2 1

]
}

,

which gives us the relations d = 1− 2b and c = 2(1− a). Hence,

J2×2L =

{
J =

[
a b

2(1− a) 1− 2b

] ∣∣∣∣∣detJ 6= 0 and a, b ∈ R

}
,
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and finally,

J2×2L =

{
J =

[
a b

2(1− a) 1− 2b

] ∣∣∣∣∣a 6= 2b, where a, b ∈ R

}
.

Another proposition that will be used quite often, is the following.

Proposition A.1.1. [38] Let H and K be subgroups of G, then

H ∩ K = {z|z ∈ H and z ∈ K}
is a subgroup of G.

Definition A.1.11. [47] Let G be a group and A, B be subgroups of G. The set
product AB of A and B is defined as

AB = {ab|a ∈ A, b ∈ B} .

However, because a set product is not always a subgroup of G, we have the
following lemma.

Lemma A.1.10. [47] Let G be a group and A, B be subgroups of G. The set product
AB is a subgroup of G if and only if AB = BA.

If the group G can be expressed as G = AB, where A and B are subgroups of
G, then we say that G is the product of the subgroups A and B, while we also
refer to G as a factorised group.
Before, we proceed further to isomorphisms between groups, we need to de-
fine the concept of a coset.

Definition A.1.12. [13] Let G be a group and H a subgroup of G. Then a right
coset of H in G is a subset of the form

Hg = {hg|h ∈ H}

for some g in G. We define a left coset of H in G to be a subset of the form

gH = {gh|h ∈ H}.

These two different kinds of cosets, are equal if and only if the following
proposition is satisfied. Then, we simply refer to them as cosets.

Proposition A.1.2. [13] αH = Hα for all α ∈ G if and only if α−1hα ∈ H for all
h ∈ H and all α ∈ G.

Definition A.1.13. [101] Let a and x be two elements of a group G. For an element
b which is a similarity transformation of a, b = x−1ax, we say that a and b are
conjugate with respect to x.
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Since the conjugacy is an equivalence relation [6], for conjugate elements a, b,
we write a ∼ b, and they have the following properties:

1. Every element is conjugate with itself.

2. If a is conjugate with b with respect to x, then b is conjugate to a with
respect to x.

3. If a is conjugate with b and c, then b and c are conjugate with each other.

Example A.1.11. [6] Two complex conjugates z = a + ib and z̄ = a − ib, where
a, b ∈ R and, b 6= 0 are also conjugate according to Definition A.1.13.

Definition A.1.14. [13] A subgroup H of a group G is normal in G if g−1hg ∈ H,
for all g ∈ G and all h ∈ H. We write H / G.

We have already presented examples of a normal subgroup. More specifically,
in Definition A.1.9, if S is an abelian subgroup, then S is normal in C(S) [13].

Proposition A.1.3. [13] Every subgroup of an abelian group is normal.

Definition A.1.15. [13] Let G be a group and N / G, then the set of right cosets of
N in G, is called the quotient group (factor group) of G by N and it is denoted by
G/N.

Now, we are able to present the formal definition of a semi-direct product.

Definition A.1.16. [47] The group G is the semi-direct product, or split extension,
of the subgroup N by the subgroup K if the following criteria are satisfied

1. G = NK.

2. N E G (N is a normal subgroup of G).

3. N ∩ K = e.

We note that criterion 3 implies that the factorisation g = nk, where n ∈ N and
k ∈ K is unique. Nevertheless, the semi-direct products are not, in general,
uniquely defined up to isomorphism 1.

A.1.2 Group Homomorphisms

We define mappings between the elements of two sets. A group is also a set,
as it consists of elements. Hence, we are able to define a mapping between
two groups.

1for the definition of the isomorphism, see next subsection.
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Definition A.1.17. [38] A map φ of a group 〈G, ∗〉 into a group 〈G′,×〉 is a homo-
morphism

φ : G → G′

if the homomorphism property

φ(a ∗ b) = φ(a)× φ(b)

holds for all a, b ∈ G.

Definition A.1.18. [38] Let
φ : G → G′

be a homomorphism of groups, where e is the identity of G and e′ is the identity of G′.
The subgroup

φ−1({e′}) = {z ∈ G|φ(z) = e′} (A.1)

is the kernel of φ, denoted by Ker(φ).

Definition A.1.19. [38] Let φ be a mapping of a set G to a set G′, and let A ⊆ G
and B ⊆ G′. The image φ(A) of A in G′ under φ, is the set {φ(α)|α ∈ A}.

Definition A.1.20. [13, 38] A homomorphism φ : G → G′ is an one-to-one map-
ping, if φ(g1) = φ(g2) implies g1 = g2, for g1, g2 ∈ G. i.e. distinct elements of
G have distinct images in G′ (under φ). i.e. Ker (φ) = {e}. Then φ is called a
monomorphism.

Definition A.1.21. [13] A homomorphism φ : G → G′ is an onto mapping, if for
every element g′ in G′ there is at least one element g ∈ G for which φ(g) = g′. i.e.
Im (φ) = G′. Then φ is called an epimorphism.

Definition A.1.22. [38] An isomorphism φ : G → G′ is a one-to-one and onto
homomorphism, which is denoted as G ' G′.

The following lemma can be used in order to establish isomorphisms between
the non-normal subgroups which are used in Definition A.1.16 of Subsection
A.1.1.

Lemma A.1.12. [47] Let G be a group and suppose that H, K and N are subgroups
of G such that

1. G is the semi-direct product of N by H, and

2. G is the semi-direct product of N by K.

Then, H ' K.
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Theorem A.1.13. [13] The mapping v : G → G/N defined by v(g) = Ng is a
homomorphism of G onto G/N, and it is called the natural homomorphism of G onto
its factor group G/N.

We now define the converse of Theorem A.1.13.

Theorem A.1.14. (First Isomorphism Theorem) [13] If θ : G → H is a homo-
morphism of a group G into a group H, then N = ker (θ) is a normal subgroup of
G, and η : θ(G) → G/N defines an isomorphism of θ(G) onto G/N, such that
η(θ(g)) = Ng.

According to Theorems A.1.13 and A.1.14, we have the following diagram.

G
θ //

v
!!

H

η

��

G/N

FIGURE A.1: First Isomorphism Theorem.

Theorem A.1.15. (Second Isomorphism Theorem) [13]
Let N / G, and let H be a subgroup of G. Then H ∩ N / H, HN is a subgroup of G,
and

H
/
(H ∩ N) ' HN

/
N.

A.1.3 Rings, Integral Domains and Fields

In this subsection, we introduce more complex algebraic structures, which are
defined by using two binary operations instead of one.

Definition A.1.23. [38] A ring 〈R,+, ∗〉 together with two binary operations + and
∗, which we usually call addition and multiplication, respectively, defined on R such
that following axioms are satisfied
R1 : 〈R,+〉 is an abelian group.
R2 : Multiplication is associative.
R3 : For all a, b, c ∈ R, the left distributive law

a ∗ (b + c) = (a ∗ b) + (a ∗ c), and
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the right distributive law

(a + b) ∗ c = (a ∗ c) + (b ∗ c)

hold.

From now on, we simply write R to refer to a ring 〈R,+, ∗〉.

Definition A.1.24. [38] A ring in which the multiplication is commutative is called
a commutative ring.

a ∗ b = b ∗ a, ∀a, b ∈ R.

Definition A.1.25. [38] A ring with a multiplicative identity element, e, is called a
unitary ring.

e ∗ a = a, ∀a ∈ R.

Definition A.1.26. [38] An integral domain is a commutative ring with identity,
in which there are no non-trivial zero divisors.

a ∗ b = 0⇒ a = 0 or b = 0, ∀a, b ∈ R.

Definition A.1.27. [38] A field is an integral domain such that every non-zero ele-
ment has a multiplicative inverse.

∃a−1 such that a ∗ a−1 = 1, ∀a ∈ R.

Gathering all of the above algebraic structures, we show the relations among
them by the following diagram.

COMMUTATIVE
RINGS

UNITARY
RINGS

INTEGRAL
DOMAINS

FIELDS

FIGURE A.2: Venn diagram of some algebraic structures [38].
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Appendix B

Symbolic Code in Mathematica

B.1 Ordinary Riordan arrays

The symbolic mathematical computation program of Mathematica has been
proven to be a powerful and useful tool, which extends our capability as re-
searchers to gain time, to increase our intuition and to find results quicker.
More specific, it has been often used to generate Riordan arrays, by using gen-
erating functions as inputs. For that purpose, we name the Riordan matrix as
R and we create the code

R =Table[SeriesCoefficient[(...)(...)k, {x, 0, n}], {n, 0, 10}, {k, 0, 10}]
//MatrixForm

where the desirable generating functions are inputted on the positions (...)
and (...)k, while the numbers 0 and 10, denote the numbers of n rows and k
columns that we wish to be appeared. The enumeration of both rows and
columns ought to start from 0, while as we are expecting to get a square ma-
trix, the upper limit of rows and columns needs to be the same number.
Using this matrix, we can easily found the production matrix PR by writing
the relation (2.1) as

Inverse[R[[1; ; 9, 1; ; 9]]].R[[2; ; 10, 1; ; 9]] // MatrixForm

Now, let us apply these codes on an example of a Riordan array to generate
the Riordan matrix.

Example B.1.1. Let R =
(

1
1−2x−x2 , x

1−x

)
be a Riordan array. Hence, we have

R =Table[SeriesCoefficient[( 1
1−2x−x2 )(

x
1−x )

k, {x, 0, n}], {n, 0, 8}, {k, 0, 8}]
//MatrixForm

which gives us the matrix
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


1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 3 1 0 0 0 0 0 0
4 6 4 1 0 0 0 0 0
5 10 10 5 1 0 0 0 0
6 15 20 15 6 1 0 0 0
7 21 35 35 21 7 1 0 0
8 28 56 70 56 28 8 1 0
9 36 84 126 126 84 36 9 1




.

Nevertheless, Mathematica does not allow us to calculate the inverse of a matrix which
starts from 0, as it cannot be recognised as the number of a column or a row of R.
Therefore, we have to change the enumeration of R, starting from 1. Additionally, the
matrix R̄ will be R with the top row removed, so we need the rows 2− 9, according to
the current enumeration. Hence, we write

Inverse[R[[1; ; 8, 1; ; 8]]].R[[2; ; 9, 1; ; 8]] // MatrixForm

which outputs the production matrix of R



2 1 0 0 0 0 0 0 0
−1 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
−1 0 0 1 1 0 0 0 0
1 0 0 0 1 1 0 0 0
−1 0 0 0 0 1 1 0 0
1 0 0 0 0 0 1 1 0
−1 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1




.

B.2 Exponential Riordan arrays

The way to represent an exponential Riordan matrix in Mathematica, is quite
similar to the Ordinary Riordan array, except for the multiplication of the
number n!

k! , as

εR =Table[n!
k!SeriesCoefficient[(...)(...)

k, {x, 0, n}], {n, 0, 10}, {k, 0, 10}]
//MatrixForm

The production matrix of an exponential Riordan array can be found similarly
to the case of an Ordinary one.

Example B.2.1. By using the same gfs as in Ex. B.1.1, we have the following code.
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εR =Table[n!
k!SeriesCoefficient[(

1
1−2x−x2 )(

x
1−x )

k, {x, 0, n}], {n, 0, 6},
{k, 0, 6}] //MatrixForm,

which gives us the exponential Riordan matrix



1 0 0 0 0 0 0
2 1 0 0 0 0 0

10 6 1 1 0 0 0
72 48 12 1 0 0 0
696 480 144 20 1 0 0

8, 400 5, 880 1, 920 340 30 1 0
121, 680 85, 680 29, 160 5, 880 690 42 1




.

B.3 Double Riordan arrays

In the case of double Riordan arrays, the code that we have created is slightly
different as we need to find a way to describe the powers of the multiplier
functions for each of the columns. For that purpose, we need the floor function
bxc, and the ceiling function dxe.

Table[SeriesCoefficient[(...) (...)Floor[ k+1
2 ] (...)Ceiling[ k−1

2 ], {x, 0, n}],
{n, 0, 11}, {k, 0, 11}] // MatrixForm

While, the production matrix of a Double Riordan array can also be found
similarly to the case of an Ordinary one. We give an example of the above
code.

Example B.3.1. For the double Riordan array D =
(

1
1−x2 , x

1−x2 , x
)

, we write

D =Table[SeriesCoefficient[
(

1
1−x2

) (
x

1−x2

)Floor[ k+1
2 ]

xCeiling[ k−1
2 ], {x, 0, n}],

{n, 0, 11}, {k, 0, 11}] // MatrixForm

and we get the matrix



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 2 0 1 0 0 0 0 0 0 0 0
1 0 2 0 1 0 0 0 0 0 0 0
0 3 0 3 0 1 0 0 0 0 0 0
1 0 3 0 3 0 1 0 0 0 0 0
0 4 0 6 0 4 0 1 0 0 0 0
1 0 4 0 6 0 4 0 1 0 0 0
0 5 0 10 0 10 0 5 0 1 0 0
1 0 5 0 10 0 10 0 5 0 1 0
0 6 0 15 0 20 0 15 0 6 0 1




.
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B.4 Almost-Riordan arrays

The following codes for the case of almost-Riordan arrays were created by

P. Barry. Here is an example for the almost-Riordan matrix
(

1
1−2z3

∣∣∣∣ 1
1−z , z

1−z

)
.

Table[Table[I f [k == 0, SeriesCoe f f icient[1/(1− 2x3), x, 0, n],

SeriesCoe f f icient[1/(1− x)(x/(1− x))k−1, {x, 0, n− 1}]], {k, 0, 8}], {n, 0, 8}]
//MatrixForm

which outputs the matrix



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0
0 1 3 3 1 0 0 0 0
0 1 4 6 4 1 0 0 0
4 1 5 10 10 5 1 0 0
0 1 6 15 20 15 6 1 0
0 1 7 21 35 35 21 7 1




.

The above code can be also generalised for the case of almost-Riordan arrays
of level k > 1. Let us use the same example by adding 2 extra columns instead

of 1. So, for the almost-Riordan matrix
(

1
1−2z3 , z−1

z+1

∣∣∣∣ 1
1−z , z

1−z

)
, we write

Table[Table[I f [k == 0, SeriesCoe f f icient[1/(1− 2x3), x, 0, n],

I f [k == 1, SeriesCoe f f icient[x(x− 1)/(x + 1), x, 0, n],

SeriesCoe f f icient[1/(1− x)(x/(1− x))k−2, {x, 0, n− 2}]], {k, 0, 8}], {n, 0, 8}]
//MatrixForm

that gives the matrix



1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 −2 1 0 0 0 0 0 0
2 −2 1 1 0 0 0 0 0
0 −2 1 2 1 0 0 0 0
0 −2 1 3 3 1 0 0 0
4 −2 1 4 6 4 1 0 0
0 −2 1 5 10 10 5 1 0
0 −2 1 6 15 20 15 6 1




.



175

Appendix C

Published, submitted and on
progress articles

C.1 Algebraic properties of Riordan subgroups

P. Barry, A. Hennessy, N. Pantelidis (2020), Journal of Algebraic Combina-
torics, DOI: 10.1007/s10801-020-00953- 4.

Abstract: We present properties of the group structure of Riordan arrays.We
examine similar properties among known Riordan subgroups, and from this,
we define Y[r, s, p], a family of Riordan arrays. We generalise conditions for
involutions, and pseudo-involutions of Y[r, s, p], and we present stabilizers of
this family. We find abelian subgroups as intersections of Riordan subgroups,
and show some alternative semi-direct products of the Riordan group.

Keywords: Riordan subgroup, involution, pseudo-involution, semi-direct prod-
uct, isomorphism, stabilizer.
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C.2 On pseudo-involutions, involutions and quasi-
involutions in the group of almost Riordan ar-
rays

P. Barry and N. Pantelidis, (2019), available electronically at: arXiv:1901.
03734

Abstract: The group of almost Riordan arrays contains the group of Riordan
arrays as a subgroup. In this note, we exhibit examples of pseudo-involutions,
involutions and quasi-involutions in the group of almost Riordan arrays.

Keywords: Almost-Riordan array, involution, pseudo-involution, quasi-involution.

arXiv:1901.03734
arXiv:1901.03734
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C.3 The Linear Algebra of Proper Riordan Arrays

G-S. Cheon, M.M. Cohen, N. Pantelidis, , unpublished manuscript.

Abstract: Suppose that
(

g(x), F(x)
)

is an element of the Riordan groupR over
a field F of characteristic 0, with associated matrix (“proper Riordan array"),
A = A(g(x), F(x)). We give basic factorization theorems and diagonalization
theorems for A(g(x), F(x)). Then, we do a complete analysis of the existence
of eigenvectors of Riordan arrays of infinite order. Finally we determine, given
the vector ~h, the set λ−Stab(~h) consisting of those A = A(g(x), F(x)) ∈ R
such that A~h = λ ·~h.

Keywords: Riordan group, Riordan array, formal series of infinite order, con-
jugation, eigenvectors, stabilizers.
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C.4 Quasi-involutions of the Riordan group

P. Barry, A. Hennessy, N. Pantelidis, unpublished manuscript.

Abstract: A quasi-involution is a self-inverse Riordan matrix that its inverse
contains the same entries with ± sign on alternating subdiagonals. We anal-
yse the structure of these matrices and we link them to Riordan arrays which
are generated by Bessel polynomials.

Keywords: Quasi-involution, Bessel polynomials, Hankel transforms, Rior-
dan group, continuous fractions, paths.
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