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Abstract—Detecting anomalous objects from given data has a broad range of real-world applications. Although there
is a rich number of outlier detection algorithms, most of them involve hidden assumptions and restrictions. This paper
proposes a novel, yet effective outlier learning algorithm that is based on decomposing the full attributes space into
different combinations of subspaces, in which the 3D-vectors, representing the data points per 3D-subspace, are
rotated about the geometric median, using Rodrigues rotation formula, to construct the overall outlying score. The
proposed approach is parameter-free, requires no distribution assumptions and easy to implement. Extensive
experimental study and comparison are conducted on both synthetic and real-world datasets with six popular outlier
detection algorithms, each from different category. The comparison is evaluated based on the precision @s, average
precision, rank power, AUC ROC and time complexity metrics. The results show that the performance of the proposed

method is competitive and promising.

Index Terms—Rotation Based Outliers, Outlier Detection, Data Mining, Multivariate Data.

1 INTRODUCTION

ITH the vast development in emerging tech-
Wnologies such as artificial intelligence, medi-
cal field advancements and IoT, more data has been
available in the market. The latter led to embrace
more data-driven decisions for drawing accurate
conclusions in major industries. Hence, it is of great
interest in a variety of real-world applications to
recognize and isolate data that has abnormal or ex-
ceptional behavior which often manifests interesting
facts, such as in fraud discovery, image processing,
signal analysis, network intrusion, measurement er-
rors detection in data derived from sensors, and
machine learning modeling, to name a few [1]], [2],
(3l [4].

Barnett and Lewis defined an outlier as “an ob-
servation (or subset of observations) which appears
to be inconsistent with the remainder of that set of
data” [5]. In the statistics literature and data mining,
an outlier is also referred to as abnormality, anomaly,
discordant, or deviant [6].

Outlier detection can be defined as the process
of identifying rare and suspicious observations that
differ significantly from the majority of data [6].

Technically, the procedure of detecting outliers
consists of two main steps: 1) giving outlying score
to the data points and 2) determining outliers by
ranking them based on some metrics.

The most common outlier detection models
in the literature can be approximately classified

into statistic-based, distance-based, density-based,
clustering-based, deviation-based, high-dimensional
approaches and recently the machine learning-based
type of methods [1], [4], [6], [7].

Several classical outlier detectors are based on
the sample mean and covariance matrix in general,
but they do not always yield better results, as they
themselves are affected by outliers [§].

In this work, we propose a novel, yet effective
learning algorithm for outlier detection in multivari-
ate data where the number of attributes is greater
than or equal 3. The core work of the proposed
algorithm is that the full attributes space is decom-
posed into different combinations of subspaces in
which the 3D-vectors, representing the data points
per 3D-subspace, are rotated about the geometric
median two times counterclockwise using Rodrigues
rotation formula. The results of the rotation are par-
allelepipeds where their volumes are mathematically
analyzed as cost functions and used to calculate the
Median Absolute Deviations to obtain the outlying
scores for each 3D-subdimension. Subsequently, the
outlying scores of the full space are reconstructed by
taking the average of the outlying scores of all 3D-
subspaces. Finally, all observations are ranked in a
descending order according to their scores and the
top s observations with highest scores are consid-
ered as promising candidates of outliers. It should
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be pointed out that our proposed Rotation-based
Outlier Detection approach — ROD, is parameter-
free, requires no statistical distribution assumptions
and is intuitive in three-dimensional space.

This paper is organized as follows: In section 2]
we briefly review existing literature and research
work. Section [3| demonstrates the proposed algo-
rithm geometrically in 3D, analyses it mathemati-
cally and suggests an optimization approach. Sec-
tion [4 extends the method into higher dimensions.
Section [5| provides a discussion on efficiency after
performing the experimental study on synthetic and
real-world datasets, and Section [f] concludes this
paper and suggests future work.

2 RELATED WORK

Over the years, many outlier detection methods have
been introduced in different research communities.
In this section, we briefly talk about the latest works
since plenty of good survey papers have been pub-
lished in this field (see [6], [7]).

There are different modes of outlier detection
techniques that can be roughly categorized into
supervised, semi-supervised and unsupervised ap-
proaches [6]. Supervised outlier detection requires
pre-labelled data, while semi-supervised needs pre-
classified data but only learns data marked normal.
For the unsupervised methods, the class label of data
is not required which makes it the most popular.

Outlier detection approaches can be roughly clas-
sified into statistic-based, distance-based, density-
based, ensemble-based, machine learning-based
(a.k.a deep learning-based), the high-dimensional
approaches, and so on [1]], [4], [6], [7].

The statistical-based algorithms assume that an
outlier is a point that has a low generation proba-
bility by some distribution in the dataset. However,
this distribution assumption does not always hold
true. Besides, it lacks robustness because mean and
standard deviation are sensitive to extreme values
[9], [10]. Efforts have been put to minimize the
influence of outliers on the methodology such as the
Minimum Covariance Determinant (MCD) estimator
which is one of the first affine equivariant and highly
robust estimators of multivariate data [11].

The general model of the distance-based methods
works by taking the k-Nearest Neighbor distance
of a point as an outlier score. This approach is
distribution-free but assumes that normal data ob-
jects have a certain dense of neighborhood. [12].

The density-based methods work by comparing
the relative density around a point with the den-
sity around its local neighbors. Local Outlier Factor

(LOF) is a very popular density-based technique that
computes the ratio between local density of a point
and the local density of its nearest neighbors. A point
is considered as an outlier if its LOF value is high
[13]. This type is more effective than distance-based
methods, but is not very effective in high dimensions
due to the degradation of the accuracy of the density
estimation process [1f], [6].

The general idea of the ensemble-based ap-
proaches is to use meta-algorithms in which their
outputs are combined and used for outlier analy-
sis. Many techniques have been proposed, includ-
ing Feature bagging [14] and Isolation Forest [15].
The Feature Bagging framework consolidates results
from several outlier detection algorithms where each
detector randomly selects a subset of the original fea-
tures. Whereas the Isolation Forest (iForest) builds
an ensemble of trees and identifies an outlier as
an instance that has short path length on the trees
(i.e. easily partitioned). However, iForest fails to
detect local outliers when several clusters of normal
instances exist in the dataset; that is because normal
clusters of similar density mask local outliers so they
become less susceptible to isolation [16].

The Angle-Based Outlier Degree (ABOD) is a
popular, robust and parameter-free algorithm for
high-dimensional data [17]. It measures the vari-
ance of the angle spectrum of the data points
weighted by the corresponding distances. Yet, it is
not distribution-free and it has a very high computa-
tional cost O(n?). For a better performance, Pham
and Pagh in 2012 proposed a fast approximation
algorithm called FastVOA [18], that has a near-
linear complexity and based on random sampling
for mining top s outliers.

Moreover, since outliers may be visible only in
subspaces of the original data space, Kriegel in 2009
created a Subspace Outlier Degree (SOD) model
which assumes that a set of nearest neighbors of
an outlier has a lower-dimensional projection with
small variance [19]. Like most of kNN-based algo-
rithms, choosing appropriate number £ is a very
important factor that affects SOD performance [20].

Into the bargain, several deep learning-based
approaches have been proposed to solve outlier
detection problems [21]. Fully connected AutoEn-
coder is a neural network that works by varying
on the connectivity architecture randomly where it
uses reconstruction error as an outlier score [22].
AutoEncoder is capable of avoiding overfitting and
achieving robustness because of its ensemble-centric
approach. However, it suffers from a high time com-
plexity that is found in neural networks in general
[22].
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3 OUTLIER DETECTION WITH VECTOR RoO-
TATION
3.1 Motivation

In view of the fact that the volume of a paral-
lelepiped is the product of the base area and the
height, three non-collinear vectors @, band ¢ € IR3
can form parallelepiped in which @ and b constitute
the base. Hence the volume can be defined as:

volume = |(@ x b) - €| "
= (lla@|[|B]] sin ) - [|€]| |cos ]

where v = /(d, b) and 0 is the angle between ¢ and
the height h as shown in Fig.[L

If we draw a diagonal line, from the origin of the
three vectors to the upper-right corner as shown in
Fig. [} One can imagine that vectors b and  were
resulted from rotating @ two times counterclockwise
about that diagonal line by some angles ¢’ # 0’5 >
0. Intuitively, the volume of the parallelepiped will
be proportional to ||@|| and the angle between @ and
the rotation-axis.

Furthermore, it is well-known that the geomet-
ric median, which can be found to generalize the
median by using the appropriate L1 estimator, is
insensitive to outliers since it is not skewed so much
by extremely large or small values [23].

Although computing the geometric median is a
computationally challenging task when d > 2 [23],
Vardi and Zhang [24] published a modified version
of Weiszfeld algorithm to find the geometric median
y of a set of points S = {zy, ..., ,,} € IRY, that
is extremely simple to program and has very quick
convergence:

nw\*t = , n(y)
y—T(y) = ( - @) T(y) + min (1, @)y
2)
where:
{;ﬂ Hy—:czH} =, Hy—sz
"(y) = 1B )], ZJ e

if y=zp, k=1,....m
0 otherwise

In words, y € IRY is the geometric median only
if it is a fixed point and r(y) < n(y), where n(y)
is a weight variable at y that equals to: either 1)
n(k): the number of data vectors in S that are found

Fig. 1: Example of parallelepiped, generated by three
vectors d, band ¢

to have zero Euclidean distance to y during the
iterative process, then T'(y) is a weighted average
of S; or 2) zero if n(k) = 0, then T'(y) = T'(y) as in
Weiszfeld algorithm. It should be pointed out that y
is unique whenever the points are not collinear and
it is equivariant for Euclidean similarity transforma-
tions, including translation, rotation and reflection.

3.2 Rotation-based Outlier Detection (ROD)

Theorem 1. Let D = {v1,v5,...,v,,} € IR? be a
collection of vectors representing the data points
of a three-dimensional dataset. If m € IR? is
the unit vector of the geometric median of D,
that is describing an axis of rotation; it can be
proved that V& € D independent from 7, the
signed volume of the parallelepiped formed by
rotating ¥ two times around 7, according to
the right hand rule, by two consecutive angles
01 < 6y € (0,2m), using Rodrigues rotation
formula, can be approximated to (hence correlated
to) a cost function, given by (see appendix [A):

f(@,7) = [|7]* (cos v siny?) 3)

Eq.[B|describes the differences among the vectors
in the dataset with regard to their magnitudes
and the angle v = /(7, m) that reflects the degree
of deviation from 7. We will denote (cos ~y sin v?)

as f(v), and f(¥,v) as rod(v) interchangeably
from now onwards.

From f(v) and Fig. one can observe the following
properties:

1) Since f(v) is periodic over [0, 27}, it is more
convenient to confine the study over [0, 7]
because the trigonometric function calcu-
lates only for the smallest angle between ¥
and m.

2) f( ) = 0 whenever v € {0,%
we have three cases:

, 5,m}; and here
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cosy (siny)?

6.6 05 1o 15 2.0 25 30

Angle ¥ (rad.)

Fig. 2: ;‘(7) Graph

*
e y=f(y)=0onlyifv=m,
*
o =%, f(y)=0onlyifd Lm,
*

e andy=m, f(y) =0onlyif 7| m.

3) It reaches its maximum value =~ 0.385 and
minimum value ~ — 0.385 at the turning
points of the graph. We will name these
angles the threshold angles a; and ap respec-

tively (see appendix [B).
* *

4) f(y € [0,Z]) = —f(v € [%,7]) which
provides uniqueness to the values by apply-
ing more emphasis on the points that are
not in the same hyperplane with 77 (i.e. the
orientation of the parallelepiped).

3.3 ROD Optimization

In this section, we propose an optimization approach
for the proposed algorithm.

3.3.1 Deviation Proportionality

Lemma 1. Since f(y) & 7 over (a1, 3| U (ag,7].
Scaling down the angles to (0, a1] U (5, az] shall
reserve a proper deviation proportionality of the

data vectors. (see appendix |[C).

3.3.2 \Vectors Linearity

Lemma 2. Subtracting the geometric median from
every vector in the dataset shall unmask the
rotation cost of any vector with suspicious
small magnitude, that is also collinear with an-
other vector that has normal to high magnitude,
without ruining the relative positional relations
among the data points. (see appendix D).

3.4 Rotation Outlier Score

In order to isolate ROD costs that appear to be incon-
sistent with the remainder of other costs, we chose

the Median Absolute Deviation about the median for
its robustness and efficiency properties [25]:

MAD = median{|z; — Z|}
 0.6745(z; — &) 4
Mi = MAD

where 7 is the median of the dataset and M; is the ith
outlierness score of each point. In order to make the
estimator consistent, the constant 0.6745, introduced
by Iglewicz and Hoaglin in [26]], is needed since for
any normal-like distribution, M; would converge to
1as E(MAD) = 0.6745¢ for large dataset.

4 ROD IN HIGHER DIMENSIONS
4.1 Motive

Some of the important motives for finding outliers
in subspaces of the original features space can be
summarized under the following points:

e In complex manifolds, complex outliers that
are hidden in subspaces would be missed
[27], [28].

o Data might be generated by different mech-
anisms per dimension (or subset of dimen-
sions), thus different views of data can re-
veal outliers that were not seen in the full
attributes space [29].

e In high dimensional space, true outliers
might be masked due to the curse of di-
mensionality, where data points spread too
thin as the dimensions increase, making data
extremely noisy [30]. Besides, the concept
of neighbourhood becomes meaningless [31];
and approaches that are based on finding
the relative contrast between distances of the
data points become unreliable [32].

4.2 Methodology

Proposition 1. Given a dataset D C R2xd (n sam-
ples and d > 3 features), ROD can be utilized in
the 3D-subspaces {Uj;, ..., Uy} that are resulted
from decomposing the full attributes space V'
into sets of different combinations of subspaces
{sier | si = {U; | j € [J]}}, then for every
data sample, the overall outlying score of V' is
constructed by combining the ROD scores per
3D-subspace. (see appendix D)

Algorithm [I| shows the detailed steps of applying
ROD for multivariate dataset where the number of
features > 3.

Remark 1: Dataset features with high magnitude
would dominate the algorithm since the ROD cost is
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Algorithm 1 ROD

1: Input: The data collection D C R4, and the
number of outlier candidates s ;
: Output: The s desired outliers ;
: procedure
Scale D using Eq.
Initialize A as a list to contain all 3D-scores;
for each U; € (g) subsets of attributes, U; C
IR11><3 do

AL N

7: Initialize I" as a list to contain all angles;
8: Find m = geometric median using Eq.
9: for each observation as a vector ¥ € U;
do .
10: Subtract ¥ from 17 to obtain v’;
11: Calculate the_'magnitude of v/;
12: Find v = /(v',m) and add it to T;
13: Scale all angles in I" according to3.3.T}
14: Solve for Eq. 3| using scaled angles in T’;
15: Find the score per sample using Eq. 4
16: Scale outlying scores using Eq. [6}
17: Add scaled scores of current U; to A;

18:  Find A = average(AT) per row (at axis 0);
19: Sort scores of A in descending order and
return top s observations as desired outliers;

correlated to the vector magnitude per sample. Con-
sequently, M AD; would vary noticeably, masking
some of the 3D-subspace scores. To solve this, we
scale the data according to the quantile range which
is robust to outliers:

P Q1 ()
e Qs(x) — Qu(x)

where z; is the ith sample and @1 (z) and Q3(x) are
the first and third quantiles of the dataset.

Remark 2: Similar to the first remark, limiting
MAD:; over a predefined numerical range corrects
false weights, assigned by the average function,
to each 3D-score. For example, suppose we have
two samples, each has two 3D-scores as follows:
s1 = {2,4}, s2 = {3,1} = average(s1) >
average(sz), yet both have similar number of out-
liers per their 3D-subspaces as described in Lemma
[l To solve this, we squish the results over [0, 1]
using:

©)

1
Tij =
new 1 + e—Tij

(6)

where z;; is the M AD; of the ith sample and jth
3D-subspace.

TABLE 1: Brief Description of Experimental Data

Dataset Observations  Attributes  Outliers
SMTP 95156 3 30
Banknote 1372 4 610
Thyroid 7200 6 534
Diabetes 768 8 268
Shuttle 49097 9 3511
Seismic 2584 11 170
Digits 6870 16 156
Cardio 1655 21 176
WBC 378 30 21

5 EXPERIMENTAL STUDY

This section reports the experimental details and its
results that have been conducted on the proposed
algorithm to evaluate its efficiency and effectiveness.

5.1 Experimental Settings
5.1.1 Experimental Data

Two series of comparisons were carried out on two
artificial datasets and 9 popular real-world datasets
in which all of them have been used previously in
the literature of outlier detection. Table [l summa-
rizes an overview about the datasets information
including the name of dataset, the number of ob-
servations, the number of attributes and the number
of true outliers. All datasets have been downloaded
from ODDﬂ which can be found on our repository
along with the code used in this papelﬂ

One can see from this table that datasets vary in
their sizes, dimensions and the quantity of outliers,
which covers a wide range of cases for this study.

Furthermore, all datasets represent classification
problems in which ODDS considers the rare class
as outlier denoted as ”1”, whereas the remaining
classes as normal observations denoted as ”0”.

5.1.2 Evaluation Metrics

To make comprehensive comparison, we em-
braced five different performance evaluation met-
rics, namely: Precision @s [4]], Average Precision [33],
Rank Power [6], Area under the ROC Curve [34], and
Time Complexity.

Precision @s is extensively used in learning algo-
rithm evaluation. It is the ratio of correctly predicted
observations as outlier to the total number of outlier
candidates:

Pr= k (7)
s

where k is the number of true outliers found within

s outliers candidates.

1. http://odds.cs.stonybrook.edu/
2. https:/ /codeocean.com/capsule /2686787 / tree
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Average Precision (AP), on the other hand, sum-
marizes a precision-recall curve as the weighted
mean of precisions achieved at all possible thresh-
olds:

AP = Z (Rn — Rn_l)P’I"n (8)

n

where Pr,, and R,, are the precision and recall at the
nth threshold, respectively.

Rank Power is an effective metric to evaluate
how algorithm is ranking the outliers within the
candidate ones. An outlier detection algorithm is
considered more competent if it ranks true outliers
in the top of the list of outlier candidates:

k(k+1)

i=1

RP =
)

where £k is the number of true outliers found within
s outliers candidates, and R(z;) is the rank of the ith
true outlier x;.

The AUC ROC tells how much an outlier detector
is capable of distinguishing between outliers and
inliers. ROC is a probability curve and AUC repre-
sents a summary statistic of the ROC curve, thus the
higher the AUC the better the algorithm on average.

Time complexity reflects the computational com-
plexity and describes the time an algorithm takes to
finish execution. It shows the efficiency of the outlier
detector on big data.

5.1.3 Comparing Algorithms

To make a challenging contest, ROD was com-
pared with six popular outliers detection algorithms,
each from different category. Moreover, we even
increased the challenge and tuned the parameters of
the other algorithms on each dataset, to make them
achieve the highest precision possible, against the
favor of ROD. However, in real-life scenarios, the
default parameters values suggested in the literature
are often used. The outlier detection algorithms are:
the Statistic-based MCD [11], the Density-based LOF
[13], the Angle-based ABOD [17], the Ensembles-
based IForest [15], the Subspace-based SOD [19], and
the Neural-Network-based AutoEncoder [22].

The experiments were conducted under the pop-
ular PyOD framework [35], which implements state-
of-the-art outliers detection algorithms. The experi-
ments were carried out on Intel Core i7-8750H with
CPU clock rate 2.20 GHz and 16 GB RAM.

Or N W s w oo

(b)

Fig. 3: (a) Synthetic data 1. (b) Synthetic data 2.

5.2 Experimental Results and Discussion
5.2.1 Synthetic Data

Two synthetic datasets were used to test the capa-
bility of ROD algorithm in different scenarios. Each
dataset consists of 500 observations in which 6 of
them are outliers. The first dataset involves two
different statistical distributions where inliers come
from Gaussian distribution and outliers come from
Uniform distribution. On the other hand, the second
dataset consists of 3 clusters that differ in size and
density; this dataset involves the low density pattern
problem and global outliers, which are considered as
difficult tasks for outliers detection algorithms [36].
This data is generated using the appropriate off-the-
shelf data generation functions provided by PyOD.

After applying the proposed method, all outliers
were identified by ROD and ranked on the top of
the list. The results are provided in Fig. [3| where the
triangles refer to the outliers and the accompanied
numbers indicate their ranks in the list.

5.2.2 Real-World Data

In this comparison, we first tuned the parameters
of the other algorithms and used those that gave the
highest precision on each dataset. Table 2] reports the
precision (%) of outliers identification accomplished
by the comparing algorithms @ top s (s=20, 50
and 100 respectively), in addition to the Average
Precision (AP). Since the competition is intense, we
considered the top two algorithms indicated by the
bold type.
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TABLE 2: Precision(%) of the Outliers Detection Algorithms on the Experimental Data

Dataset Tops MCD LOF ABOD IForest SOD  AutoEnc ROD
20 0.0 65.0 0.0 0.0 15.0 65.0 65.0
SMTP 50 0.0 40.0 0.0 0.0 6.0 40.0 34.0
100 0.0 20.0 0.0 0.0 3.0 20.0 20.0
AP 0.50  33.63 0.07 0.42 7.19 35.54 51.04
20 100.0  35.0 0.0 85.0 20.0 100.0 100.0
Banknote 50 90.0 54.0 18.0 76.0 32.0 86.0 94.0
100 72.0 54.0 27.0 77.0 32.0 81.0 82.0
AP 56.57 4797  38.68 51.90 4298 57.34 60.72
20 95.0 75.0 40.0 60.0 25.0 60.0 75.0
Thyroid 50 86.0 58.0 72.0 58.0 30.0 52.0 74.0
100 81.0 47.0 75.0 60.0 33.0 44.0 65.0
AP 50.46 2520 18.16 3157  21.20 19.16 35.17
20 60.0 40.0 60.0 65.0 45.0 45.0 55.0
Diabetes 50 56.0 34.0 58.0 52.0 48.0 54.0 62.0
100 46.0 28.0 51.0 57.0 47.0 50.0 62.0
AP 4879 3431 4514 50.88  42.22 44.23 51.47
20 60.0 50.0 30.0 100.0 55.0 45.0 95.0
Shuttle 50 50.0 68.0 46.0 98.0 50.0 54.0 98.0
100 53.0 56.0 53.0 98.0 48.0 56.0 99.0
AP 84.11 11.64 1755 97.89 1155 91.54 96.04
20 10.0 5.0 20.0 30.0 30.0 5.0 15.0
Seismic 50 12.0 8.0 18.0 22.0 20.0 12.0 24.0
100 19.0 11.0 21.0 18.0 17.0 16.0 25.0
AP 1268  8.18 15.49 1474 1345 12.68 16.8
20 0.0 20.0 30.0 50.0 35.0 10.0 75.0
Digits 50 12.0 12.0 16.0 42.0 18.0 34.0 52.0
100 10.0 8.0 9.0 45.0 9.0 36.0 45.0
AP 6.92 4.56 5.53 32.88 7.42 22.12 34.74
20 40.0 20.0 50.0 100.0 65.0 90.0 100.0
Cardio 50 58.0 26.0 48.0 84.0 56.0 68.0 72.0
100 51.0 23.0 36.0 57.0 44.0 60.0 62.0
AP 35.68 1329  21.50 5836  29.51 62.24 63.38
20 45.0 20.0 30.0 60.0 45.0 50.0 55.0
WBC 50 28.0 16.0 32.0 34.0 32.0 28.0 32.0
100 18.0 12.0 21.0 21.0 18.0 17.0 17.0
AP 4407 1596  32.84 59.03  42.13 50.12 55.32

From the experimental results, one can observe
that ROD has predominant precision. Our method
achieved the best performance in both AP and @s on
six datasets and ranked the second best algorithm on
the three remaining datasets.

It should be pointed out that the other 6 com-
paring algorithms showed inconsistency in the AP
results. The AP results varied noticeably except for
ROD which always ranked among the best two. This
reflects the overall capability of ROD not to label as
true outlier a sample that is negative and to find the
true outlying samples. In other words, the ROD was
a better model in ordering the predictions without
considering any specific decision threshold, which is
useful when true outliers ratio is imbalanced (i.e. too
high or too low).

Table [3| shows the rank power of the top s = 50
achieved by the outliers detection algorithms on the
experimental data using Eq.[9} Value 1.0 denotes the

best possible result and means the method ranked all
outliers on top of the list. One can observe that like
the criterion of precision, ROD outperformed most
of the other comparing algorithms on all datasets
except Seismic and WBC where ROD ranked the
third, yet very close to the top two.

For more comprehensive comparison and in or-
der to average the performance of the outlier detec-
tion methods, one should take into account the True
Positive Rate and False Positive Rate at different
thresholds, which what AUC-ROC metric does.

Fig. @] presents the varieties of the area under the
curve of the comparing algorithms on the datasets.
One can see that ROD had the largest area under the
curve on three datasets and the second largest on
the remaining datasets except for SMTP where the
performance was relatively poor due to the features
insignificance. For e.g.,, ROD ranked the first on
Digits, with AUC = 0.95, and the second, but very
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TABLE 3: Rank Power (s = 50) of the Outliers Detection Algorithms on the Experimental Data

Dataset MCD LOF ABOD [IForest SOD  AutoEnc ROD
SMTP 0.0 0.50 0.0 0.0 0.42 0.57 0.53
Banknote 0.97 0.46 0.13 0.82 0.26 0.95 0.99
Thyroid 0.91 0.65 0.60 0.63 0.28 0.54 0.75
Diabetes 0.57 0.39 0.54 0.56 0.49 0.52 0.60
Shuttle 0.53 0.60 0.40 0.99 0.48 0.52 0.96
Seismic 0.11 0.07 0.21 0.22 0.28 0.11 0.21
Digits 0.10 0.19 0.29 0.45 0.36 0.25 0.70
Cardio 0.50 0.26 0.52 0.91 0.66 0.77 0.86
WBC 0.48 0.20 0.31 0.54 0.39 0.54 0.50

close to the first, with AUC = 0.99, on Shuttle. In
addition to ROD, IForest, MCD and AutoEncoder
were competitive algorithms; for e.g. AutoEncoder
did well on many datasets, that is because of the
reconstruction technique which applies error mea-
sures, resulting in good representation on whole
data. One the other hand, one can see the influ-
ence of the curse of dimensionality on LOF where

the concept of neighbourhood becomes meaningless.
The LOF performance decreased as the dimensions
of the datasets increased. On average, ROD showed
high sensitivity to outliers compared to the others.
Table [ records the elapsed time the comparing
outlier detectors took to fit the data. One can observe
that ROD ranked the second fastest on Banknote
dataset, and the third fastest on three datasets,

Smtp Banknote Thyroid
10 1.0 — ROD (area = 0.59) w0 ———
I | —— MCD (area = 0.58)
¥ —— LOF (area = 0.53)
— AutoEncoder (area = 0.57)
08 0.8{ — iForest (area = 0.52) 08
50D (area = 0.51)
4 —— ABOD (area = 0.44)
06 06 06
04 04 04
— ROD (area = 0.83) —— ROD (area = 0.86)
—— MCD (area = 0.95) —— MCD (area = 0.92)
02 —— LOF (area = 0.86) 02 02 — LOF (area = 0.71)
AutoEncoder (area = 0.82) AutoEncoder (area = 0.67)
—— iForest (area = 0.91) —— iForest (area = 0.83)
50D (area = 0.74) 50D (area = 0.78)
00 —— ABOD (area = 0.78) 0.0 00 —— ABOD (area = 0.78)
0o 02 o 06 08 10 00 02 04 o6 o8 10 00 02 o4 o6 o8 10
Diabetes Shuttle Seismic

08 08

06

06

04 04

—— ROD (area = 0.67)
—— MCD (area = 0.68)

02 —— LOF (area = 0.49)

50D (area = 0.57)
0.0

—— ABOD (area = 0.60)

AutoEncoder (area = 0.60)
—— iForest (area = 0.69)

—— ROD (area = 0.99)
—— MCD (area = 0.99)
—— LOF (area = 0.56)
AutoEncoder (area = 0.99)
—— iForest (area = 1.00)
0D (area = 0.58)
—— ABOD (area = 0.71)

02

00

—— ROD (area = 0.73)
—— MCD (area = 0.65)
—— LOF (area = 0.57)
AutoEncoder (area = 0.69)
—— iForest (area = 0.72)
50D (area = 0.68)
—— ABOD (area = 0.74)

Digits

04 06 08

Cardio

08

06

04

—— ROD (area = 0.95)
—— MCD (area = 0.83)

02 —— LOF (area = 0.54)

50D (area = 0.67)
0.0

—— ABOD (area = 0.65)

AutoEncoder (area = 0.94)
—— iForest (area = 0.95)

—— ROD (area = 0.95)
—— MCD (area = 0.78)
—— LOF (area = 0.51)
AutoEncoder (area = 0.95)
—— iForest (area = 0.93)
SOD (area = 0.67)
—— ABOD (area = 0.61)

08

06

04

02

00

—— ROD (area = 0.92)
—— MCD (area = 0.92)
—— LOF (area = 0.77)
AutoEncoder (area = 0.88)
—— iForest (area = 0.95)
50D (area = 0.90)
—— ABOD (area = 0.93)

04 06 08

Fig. 4: AUC of the outlier detection algorithms on datasets
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TABLE 4: Time Cost (in seconds) of the Outlier Detection Algorithms on the Experimental Data

Dataset MCD LOF ABOD [IForest SOD AutoEnc  ROD
SMTP 22.38 2.97 12.37 2.04 4215.06 220.83 4.20
Banknote 0.46 0.005 8.73 0.12 0.98 3.98 0.11
Thyroid 1.32 0.20 0.96 0.46 21.63 16.76 1.52
Diabetes 0.44 0.004 0.61 0.14 0.33 291 0.59
Shuttle 16.33 3.91 171.61 1.24 1117.6 109.02 9.02
Seismic 0.37 0.03 0.39 0.14 2.90 7.18 3.89
Digits 5.05 0.33 1.10 0.48 27.12 16.37 64.67
Cardio 0.99 0.15 2.00 0.21 1.81 4.83 22.22
WBC 0.11 0.01 0.15 0.10 0.09 2.23 42.93

namely: SMTP, Thyroid and Shuttle. However, ROD
time complexity is more sensitive to the num-
ber of features than the number of samples. ROD
shows relatively poor performance as the dimen-
sions increase due to its time complexity O(NC),
where N = number of samples, and C =
W d = number of attributes. On the
other hand, the time complexity of algorithms like
SOD, AutoEncoder and ABOD are much more sensi-
tive to the number of samples as shown in the table,
e.g. SMTP and Shuttle. It should be pointed out
that ROD running time is parameter-independent,
unlike ABOD, SOD, and AutoEncoder which ranked
the worst on big datasets. Finally, selecting limited
number of features randomly might sound appro-
priate way to overcome ROD high complexity in
very high dimensions. However, this would break
the symmetry explained in Lemma [/| and might
lead to lower precision. One solution, for future
work, would be selecting certain combinations of
subspaces of interest that most provide information
about the outlying objects in 3D-dimensions.

6 CONCLUSION

This paper proposes a new outlier learning method
for multivariate data, called ROD, that is parameter-
free and has no distribution assumptions. The core
work of ROD is to decompose the full attributes
space into different combinations of subspaces, then
the 3D-vectors, representing data points per 3D-
subspace, are rotated about the geometric median
two times counterclockwise using Rodrigues rota-
tion formula. The results of the rotations are paral-
lelepipeds where their volumes are mathematically
analyzed as cost functions. Subsequently, ROD costs
are used to calculate the MAD to obtain outlierness
scores. Consequently, the 3D-scores are combined
to construct the overall full-space outlying scores.
The observations with high scores are promising
candidates of outliers.

We performed a comprehensive comparison with
six popular outlier detection methods, each from
different category, on both synthetic and real-world
datasets. The experimental results show that the pro-
posed approach is promising, and its performance
ranked the first at many aspects. Since ROD studies
(j) 3D-subspaces, the full attributes space is very
well explored but at the cost of time complexity. In
our future work, we will attempt to utilize ROD on
limited number of 3D-subspaces of interest to speed
up its running time without affecting its precision.

APPENDIX A

PROOF OF THEOREM[]

Lemma 3. Starting with Rodrigues rotation formula
for a vector ¥ € IR3 around a rotation-axis m, the

rotated vector ¥, is given by (vector notations
omitted):

Vpot = v €080 +(mxv)sin @+ m(m-v)(1—cosf)

(10)
where 6 is the angle between v and m.
Let: v,.ot = Rv :
R=1+4 (sin)M + (1 — cos @) M? (11)

where [ is the 3 x 3 identity matrix and M is the
cross-product matrix of m:

0 —m; My
m, 0 —My
—My My 0

Proof 1. Let v € D be a non-zero vector independent
from m. Also, let v/ and v” be the two rotated
vectors of v around m by 6; < 6, € (0,27)
respectively according to the right hand rule, that
is:

v = Ryv

v = Rov
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Because v is independent from m; vectors v, v’
and v” will always form a three-dimensional
parallelepiped which its signed volume is given

by:

volume =v - (v xv") =v - (Riv x Rav) (12)

Using [T1]in T2}
volume = v - [ (v + (sinby) Mo
+ (1 — cos 0;) M?v)
X (v + (sinf2) Mv
+ (1 — cos fz) M?v)]
Applying the distributive property of cross-
product over addition and Ptolemy’s identities:

volume =
v - [v X v + v X (sinfy) Mo
+ v x (1 = cos O3) M*v + (sin@l)MU
X v + (sinfy)Mv x (sinf2) M
+ (sinf1)Mv x (1 — cos fy) M?v
+ (1 —cosf)M?v x v
+ (1 = cos 1) M?v x (sin fy) Mv
+

1 —cosby)M?v x (1 — cos )M v}

[ (sinfy — sin6q)v X Mo
+ (cos By — cosfy)v x M>v
+ [sinf; — sin By + (cos 6y sin 0a)
— (sinf; cosB2)|Mv x MQ’U]
=v - {(sinﬁg —sinf)v x (Mv)
+ (cosfy — cosby)v x (M?v)
+ [Sil’l 01 — sin 92 + sin(Gg — 01)]
(Mv) x (M%)}
volume = [sin @y — sin 6y + sin(fa — 61)]
v+ [(Mv) x (M?v)]
Since M = m x v, using the vector triple product
property:
volume = [sin#; — sin 03 + sin(6z — 61)]
v [(m xv) x ((m-v)m—v)]
= [sin§; — sin Oy + sin(fy — 61)]
ve[(m-v)[(m X v) x m]

— (m xv) xv]

Since the scalar triple product is unchanged un-
der a circular shift of its three operands:

volume = [sin @y — sin 6y + sin(fa — 61)]

(m - v)m x v]®
Applying Lagrange’s identity:

volume = [sin 6y — sin @y + sin(fz — 61)]
(m - v)(|[o]|* = (m - v)?)

Let v = Z(m, ¥), we know that:

(13)

— —

m-v

— —

cos(y) = = -7 = cos(v) - [|m|[| 7]

iyl

= wvolume = [sin @ — sin by + sin(fy — 61)]
[v][?(cos v — cos+?)
By ignoring the constant [sinf; — sinfy +
sin(fy — 01)] # 0, the resulted volume can be
approximated to (and hence correlated to) a cost
function, given by:
volume ~ f(7,7) = ||v||*(cosy — cosv*)

= [[v]|*(cos ysin~?)

APPENDIX B
CALCULATION OF THRESHOLD ANGLES
)
o f
oy

= —siny® 4 2siny cos y?

= siny(2cosy? — siny?)
siny? = 2cosy? = tanfy2 =2
= v = arctan(+ 1.4142)

) maz. at 0.955 rad.
| min. at 2.186rad.

APPENDIX C

DEVIATION PROPORTIONALITY

Letv; = [1,2,3], 03 = [1,3,2], v3 = [-3,2,1] € R?,
and 1 is the geometric median. Let y;, vz, 3 be
/(v1,m) = 0.265, £(v3, m) = 0.157, L(v3,m) =

1.13 rad. res ectlvel .

Although [Jv1]] = |Jvz]| = |Jvs|| = 3.741 and

* * *

f(v3) < f(72) < f(m), yet it can be easily noted
that v3 deviates the most.

*
That is because 7 > v3 > a; where f(7y) ¢ v over
(Ckh %] U (0[2,71'].
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One solution to reserve a proper deviation
proportionality, is to scale angles into the following
intervals:

° (0,0[l] lfOS’YS

APPENDIX D
VECTORS LINEARITY

Fig. 5: (a) Vectors Linearity use-case . (b) Parallelo-
gram formed after centering v} around m

Consider Fig. [f(a) where we have four vectors:
v = [1,2,3], v2 = [3,1,2], v3 = [2,1,3], v =
[0.4,0.8,1.2] € IR3; i is the geometric median, and
leil] # lleall # llesll # lleall > O represent the
Euclidean distances to 1 respectively.

Let v1, 72,73, 74 be Z(v1,m) = 0.322, / (v, m) =
0.374, Z(v3,m) = 0.087, £(vi,m) = 0.322 rad. re-
spectively. Although |[V4|| = 1.49 < [[Vi]| = [[Va]| =
[|[V3|| = 3.741, the ROD cost of v; is masked. That is
because v; and v} are collinear, and therefore share
same angle. This is also applicable for any vector
with suspicious small magnitude and relatively nor-
mal deviation from 7. .

Furthermore, in spite of the fact that ||vy|| is the

shortest, its Euclidean distance to 1 is conspicuously
the longest: ||é1||= 2.0 > ||é3]|> |lé1]]> ||€a]]-
Geometrically speaking, since m is affine equiv-
ariant, subtracting 77t from every vector shall not
ruin the relative positional relations among the data
points nor with 1.
Consider Fig. [p(b) where we focused from a different
viewing angle on the previous example to show the
change in the relationship with 17 after centering v
around .

Let ¢4 be /(€1,m), B4 be L(€4,01), v4', €3’ and
~4' be the new vector, the new vector that represents
the Euclidean distance to 7 and the new angle
L(v4',m), after centering v3 around 7 respectively.
Based on the facts that ¢, o ||V, ]| always holds true,
and the diagonals of parallelogram divide it into
four triangles of equal area, we have:

V' =v+Bs = ca=m—(ya+Ps)=7m—v
ter €[0,2] = weE, ] = w ot

Using the law of cosines, and for any vector in the
dataset, one can write: ¢ = arccos ( , where:

= [[772]| — |9 cos
VITIP + [ = 2]l ] cos y

And by exploiting the relationships between
trigonometric functions and their inverse, we can

*
find the relationship between f(+') and the original
||7]] as follows:

}(7’) = cos(m — arccos(C)) sin(r — arccos(¢))?
= — cos(arccos(()) sin(arccos(¢))”
= (V1= =¢" ¢
= }(7') < 0 whenever 1 > (¢ >0

72|
S

= [l — [|7] cosy >0 = > ||l

(14)

*

We conclude from Egq. that the sign of f(v/)
is related to the ratio between |[m| and ||,
normalized by cos<y. As a result, centering the
vectors around 7 unmasks vectors with suspicious
small magnitudes by sorting them into two groups
— Negatives and Positives. The above analysis
can be generalized mathematically as follows:
VieD v =79-—m =

17l = llet],

CO:i

*
fFO) <0if ol << [lml,
*

FO) >0 f [[o) >> [lm]

Y o |97 =
and cosvy > 0,

*

f(¥)>04if cosy<0
APPENDIX E
PRoOOF oF PRoPoOSITION[]]
Lemma 4. Let U = {u,...um} be a finite vector

subspace. If 4; = [a1,...,aq | d > 3] € U :

supp(t;) = {j € [d] | a; # 0} = 3, then

rod(;) = rod(u}) : uf = [a; | j € [3],a; # 0.
Proof: from vectors theory, a basis of non-zero vector
subspace U is a linearly independent subset of U
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that spans U. Accordingly, the zero basis vector does
not exist for U, as it does not satisfy the linear
independence and the spanning properties, making
dim(U) = 3.

Lemma 5. If rod() is anomalous, @ = [ay, as, ag] #
0, then  is anomalous in at least one of its three
dimensions.

Proof: One can see from Eq. [13] that since 171 is at
fixed point, == (m - ) , ||7]|? are correlated to

Lemma 6. A finite vector space V over IR? | d > 3 can
be decomposed into different combinations of
subspaces where each decomposition set s; C S
contains different combination of subspaces U;;
that describes V' uniquely. Hence, there exist
W subspaces of dim(U;;) = 3.

Proof: By the definition of direct sum:

V= @ Uj < V:U1+...+Uj : Ulﬁ...ﬂUj =
j€J

{0}; and since dim(U;) € [d—1], 35 = {sijcr | si =

{hhe..eU;}} =3 (g) subspaces - U;; = R?.

Lemma 7. The number of occurrences of each dimen-
sion in the resulted 3D-subspace components of
the full-dimensional space is equiprobable and
has balanced weight (i.e. importance) over all
dimensions.

Proof: By symmetry, choosing combinations of 3
dimensions from d, each chosen dimension will have
the same probability of occurrence = %(g) and the
importance of the selection of each dimension is

evenly balanced. Given a dataset:

a1 a2 a3 Qa4 3vd
3%
D= lax a2 a3 ay | CIR
as31 Q32 a3z Qg4

as a toy example where ¥, U2, U3 are the first,
second and third rows in D respectively and the bold
element refers to an outlier at that dimension in the
given vector. By lemmas E] and @ one can construct
the following 3D views and weight ratios:

3D Views U1 Vs Us Weights
a11 a21 a31
View 1 ai a2 aso 0:1:0
a13 a23 a33
a11 a21 a31
View 2 ai az2 aso 0:1:1
| @14 | @24 | | A34 |
a1 a21 a31
View 3 ais a3 ass 0:0:1
| 314 | 24 | 034 |
a12 az2 a32
View 4 ais a3 ass 0:1:1
| 314 a24 | @34
4D View 0:3:3

One can observe that the weights are also propor-
tional to the number of outliers in all dimensions
per data observation. However, this is not the case
for arbitrary (i.e. naive) random selection, where the
outlier per some dimension would gain more views
leading to unbalanced weights overall.

Based on the Motive in [£.1] and the Lemmas [4]
6| and [7, considering remarks in we extend
ROD into higher dimensions by decomposing the
full attributes space into different combinations of
subspaces, then applying ROD only on the collected
3D subspaces. Subsequently, we construct an overall
outlying score by averaging the ROD 3D-subspaces
scores per data sample.
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