

Dynamic Shared Groups within XMPP: An

Investigation of the XMPP Group Model

Leigh Griffin, Eamonn de Leastar and Dmitri Botvich

Telecommunication Software and Systems Group

Waterford Institute of Technology

Waterford, Ireland

{lgriffin, edeleastar, dbotvich}@tssg.org

Abstract— Group communication offers a means for resource

sharing and collaboration, often delivered through diverse

technologies. One of the technologies, Instant Messaging,

traditionally took the role of a facilitating service within such

communities. Driven by a flexible XML based protocol, XMPP,

instant messaging has developed functionality to a point where it

can be considered a standalone group communication medium.

Harnessing the extensible nature of the protocol continues to be a

challenge. Alternative usage scenarios not envisioned by its core

group management models have since emerged. This paper

examines the current XMPP group models and how they can

fulfill the requirements of a modern scenario centered on

dynamic shared groups,

Keywords- Dynamic Group; Group Management; Shared

Group; XMPP

I. INTRODUCTION

Group Communication has developed significantly since
the turn of the century. What emerged from fragmented
technologies, used by a minority of internet users, has evolved
into consolidated applications. Innovations in design, usability
and functionality, have led designers to examine the role that
the group itself plays. This paper focuses on one particular
group communication medium, Instant Messaging (IM), as
characterised by the XMPP protocol, in an emerging context of
interest. With the move towards e-health, the notion of a care
group has emerged as an environment for collaboration,
information exchange and instantaneous communication within
a hospital environment. A care group capable of forming
around each individual patient, with the membership of that
group restricted to the current healthcare professionals involved
with the care and rehabilitation plan of the patient, has many
benefits. As a patient moves through various hospital
departments this group is constantly evolving with new staff
and medical team members taking over the care of the patient.
It is important that a unified view of the group is presented to
all health facilitators who are members, allowing them to
monitor the progress of patients as well as communicate
effectively with peers in their group. With the nature of some
emergencies within a hospital, the establishment of a care
group should not be hindered by administration burdens. As
such, the care group can be described as dynamic, as per the
following definition: Dynamic Groups are groups with a
membership base that is prone to fluctuation. The membership
levels change rapidly and often without notice. The

membership turnover is high with the groups generally being

barrier free, with users joining and leaving at will. This
definition is based on related work in [1] which examined the
usage of Dynamic groups and the scenario is based on previous
work by the authors in [2] and [3]

This paper will profile the group management structures
available to XMPP to realise such a scenario underpinned by
theoretical analysis. This paper is divided up into five sections.
The first is this introduction. Section two examines the
structure and workings of XMPP. Section three outlines the
group management mechanism available within XMPP.
Section four presents dynamic shared groups within XMPP.
The fifth, and final section, represents the future work and the
concluding remarks.

II. XMPP

A. Instant Messaging with XMPP

Instant Messaging has inherent advantages over other text
based delivery platforms. It is almost instantaneous, usually
includes a built-in subscription mechanism and provides an
indication of a users availability and context via presence.
Using Instant Messaging as the communication medium of a
compelling use case was a logical decision, with the eXtensible
Messaging and Presence Protocol (XMPP) the protocol of
choice. XMPP is an open, XML based protocol tailored
specifically to provide extensible instant messaging and
presence information [4][5]. XMPP assumes a client-server
architecture [6], with multiple clients able to connect to an
XMPP server. A client is an entity that establishes an XML
stream with a server, passing along user credentials and when
successful, binds itself to the connecting resource. The stream,
as denoted by the </stream> tag, acts as a container for XML
stanzas which provision for both upstream and downstream
communication. An XML stanza is a discrete semantic unit of
structured information that is sent from one entity to another
over an XML stream. The three stanzas defined are:

• </message> : A stanza to facilitate the transmission of
a message from a sender to a recipient.

• </presence> : Used to broadcast the availability, and
thus willingness to be contacted, of a user to anyone
subscribed.

<iq type='set'>

 <query xmlns='jabber:iq:roster'>

 <item

 jid='contact@example.org'

 subscription='none'

 ask='subscribe'

 name='MyContact'>

 <group>MyBuddies</group>
 </item>

 </query>

</iq>

• <iq> : The Info/Query tag is a request/response
mechanism used for setting and retrieving information.

The streams allow for the delivery of stanzas from client to
client via the server. The servers’ responsibilities include
storing and managing XML data used by the clients and
managing the delivery of XML streams to local clients. The
routing and delivery of streams to foreign clients is possible
through local service policies allowing server to server
federation. Adhering to the key tags and XML semantics
outlined, the entire stream can be viewed as one valid XML
document. This highly structured means of communication
allows for core extensions to be integrated without breaking the
design rules and functionality of the protocol.

B. Roster Management

The XMPP Communication mechanism as specified in the

XMPP IM document, RFC 3921, [7] outlines the process in

which groups of contacts are managed. A contact list, or

roster, is used to manage a set of users, termed buddies, and to

optionally group them together. The roster is specified in the

roster schema, [8]. Figure 1, shows the schematic view of the

XMPP roster.

Figure 1. XML Schema Design View of the Roster

The “item” element in figure one is a representation of a
roster entry. The attributes within the item store important
information about this contact. The Jabber Identifier (JID), is a
unique means to identify an individual. The syntax is based on
the structure of an email address, with a username associated to
a domain name, which represents their home server. An
optional resource mechanic is associated with a JID, specified
by a slash suffix, allowing multiple simultaneous logins by the
user with the XMPP server able to route the messages
appropriately.

The subscription attribute of the request is used to establish
the type of presence subscription that will exist between the
two entities, the sender and the recipient, or user and contact
respectively. The allowable values for this attribute are:

• None – the user does not want to subscribe to the
contacts presence information and does not wish for
the contact to have a subscription to the users updates

• To – The user wishes to have a subscription to the
updates of the contact but does not offer a reverse
subscription.

• From – the contact will have a subscription to the users
presence updates but the user will not subscribe to the
contacts presence updates

• Both - both the user and the contact are subscribed to
each others presence information

The optional attribute, “ask”, can have the value
“subscribe”, which means that an acknowledgement from the
recipients’ server must be received to verify the connection.
When the ask attribute is present, the presence subscription is
then set to “none”, by default, until the response is received.
The name attribute is an optional nickname to associate with
the roster entry. Presence is an important mechanism for
XMPP and desirable within the scope of the scenario to
advertise the availability of participants as well as provide a
mechanism for service advertisement.

The schema allows for the formation or population of
groups during a subscription request. The group attribute is
used to store the text based name of the group associated with
the roster entry. This group attribute is optional and if it is not
included in a request the contact will still be stored and
rendered in the user client. Users can add new contacts to their
roster through a roster set message. The user can send a request
to another user requesting a friendship link be established. A
sample XML roster set request, to add a new contact to a users
roster and allow it to be rendered in the clients user interface is
shown in figure 2 below.

Figure 2. XML Syntax for a Roster Addition

III. XMPP GROUP MODEL ANALYSIS

Groups within XMPP follow one of two basic models for
the creation and management of groups, with a viable third
developed as a community extension. The approaches could be
described as weakly modeled, as groups within XMPP are used
to logically divide up entities within a user roster and do not
serve any further purpose. Their usage simplifies the roster,
allowing for greater organisation and readability.

A. User Generated Groups: The default model

A user generated group is created by a user from within
their own client. The group is created through a simple
interface on the client device and populated by the creator. This
action prompts a roster set message being sent to the server, as
the group attribute has been updated. This modification occurs
so the client, on future logins, understands what groups to place
roster items in. Some observations about user generated groups
will now be discussed:

• Membership is anonymous:

Users placed into a group are passive participants,
completely unaware they have possessed membership of this

group. The group is thus private and serves no purpose other
then the logical placement of buddies within an end users
client.

• Membership is not enforced or shared

Once a user has authorised a friend request and presence
subscription, they have bi-directional visibility on their IM
clients. Any groups created by either user are not enforced
across the buddy lists and no membership notification occurs.

• A 1:1 relationship exists between users and groups

With user generated groups a buddy can only exist once
and once only. Thus, a buddy can only have membership of
one user generated group at a time on a users roster. Moving a
buddy from one group to another causes them to lose their
existing membership in order to be associated with the new
group.

B. Pub-Sub Generated Groups

The second means of managing and creating groups within
XMPP is a variation of the publish-subscribe (pub-sub) model
as described in XEP-0060 [9]. This extension provides a
framework for subscription nodes and event notification that is
compatible with XMPP. A variety of applications dependent on
event notifications, such as network management systems, can
then benefit from the integration of XMPP. An adapted version
of this model can be implemented server side, allowing an
administrator the capability of creating groups and subscribing
contacts to them. These pre-populated groups can then be
published to end user rosters, effectively bypassing the process
described in section two. Entities, groups and presence
subscriptions can be forced onto end users rosters. This is an
effective way of subscribing users to default groups, with all
editing attributes removed to ensure the group structure
remains intact. Some of the features and results of creating
groups in this manner will now be examined:

• Membership is enforced completely

The end user has no say in their participation of a pub-sub
group and do not have the choice of declining the invitation or
leaving the group at will. The membership is completely
enforced and the group cannot be modified by members who
do not possess server administrator access.

• Overloaded Rosters

The creation of a pub-sub group which has roster sharing
enabled causes all members of that group to replicate the
groups structure on their roster. This means the addition of the
groups population onto the end users roster. The complications
arising from such a scenario are the enforced subscriptions,
potentially generating a large amount of additional presence
updates. As it stands, the authors of [4] identify presence as
accounting for “90% of XMPP traffic, with the majority of it
being redundant broadcasts”. Generating additional presence
broadcasts is thus an expensive side effect of enforcing
memberships.

• Administrative Interaction required

To create a pub-sub group administrative access to the
XMPP server is required. The creation and management of the
groups needs to be performed by an administrator due to the
modifications required to end users rosters

C. Community Extension: Roster Item Exchange

A third means to distribute groups within XMPP,
developed by a community inspired extension called Roster
Item Exchange (RIE), is outlined in XEP-0144 [10]. This work
came directly from the communities recognition that shared
groups should have a place within XMPP [11]. This extension
provides a mechanism for a user to share elements of their
roster with another user, recommending additions, deletions
and modification for use primarily in shared groups. The roster
items sent can range from individual entries, whereby a single
contact is shared to sharing a roster group or indeed an entire
roster. The extension allows a recommendation of which group
the roster item should be placed.

IV. DYNAMIC SHARED GROUPS WITHIN XMPP

It is clear that user generated groups are not a viable model
for distributing groups in a dynamic nature. Similarly the pub-
sub generated groups require administrative interaction on the
server side to guarantee the groups are distributed. Additionally
the pub-sub method results in severely overloaded rosters,
creating an N squared scalability problem as more users are
added. Roster Item Exchange is the only practical means for
distributing dynamic membership updates in a shared manner
within XMPP, but RIE as a means of distributing dynamic
shared groups is flawed. The extension remains in draft format
and its authors acknowledge that the requirements set forth by
the community for shared groups and synchornisation of
rosters are not provisioned for completely within this extension
but will be addressed as future work. The extension is currently
not optimized for group management and group member
distribution. For groups of size N, an RIE request must be sent
to N-1 accounts, containing recommendations for N-1 changes
to be made. The changes sent are purely recommendations,
which are free to be rejected by the recipient of the RIE
request. If the recommendation is accepted, a standard
friendship request is issued by the recipient to the
recommended entity. This request in turn can be denied. The
requests sent are potentially blind, as no notification is returned
to the originator of the request if the Info Query mechanism is
not utilised. With two possible points of failure, the extension
is not stable enough to guarantee a shared and unified roster
view across group participants. Additionally, from a usability
point of view the acceptance of RIE requests can be
cumbersome on client devices if a batch mode option for
accept / deny is not implemented.

A number of guarantees are also required to ensure that the
groups would be distributed accordingly through RIE.
Simultaneous RIE requests should not be allowed in order to
preserve the integrity of the group structure. Two RIE requests
from different sources have the potential to create different
interpretations of the group structure. RIE, by design, does not
include a presence subscription when adding a new user to a
group. When adding a new user it could not be assumed that

the intended account to be recommended to other users already
had a presence relationship with the RIE recipients. As such, an
additional subscription packet, would have to be sent, as
presence is one of the desirable features of using IM for such a
scenario. This additional packet greatly increases the traffic
profile of RIE as the presence packet will need to be sent from
the originating client. Server side processing will drop any
presence subscription packets for a designated recipient if a
presence relationship already exists which limits the cascading
effect somewhat. Using this model, rosters would also require
an auto accept enabled for presence and RIE subscriptions,
something which the RIE specification strongly advises against
due to legitimate security concerns. It would be possible for a
Denial of Service attack to occur by pushing through a large
volume of RIE requests that conflict in a short amount of time.
Security concerns aside, if this feature was turned off it would
be possible for individual recipients to simply reject the RIE
request and therefore not have a shared group view. RIE
deletion recommendations are also a legitimate concern,
particularly if the auto accept is enabled server side. It would
be possible to wipe someone's roster through RIE requests if a
user with malicious intentions so desired.

V. FUTURE WORK AND CONCLUSION

The deployment of dynamic shared groups within XMPP,
while possible, has too many assumptions associated with it
and no formal management provisioned. A working
implementation is possible with clever programming and a
community willing to stick rigidly to the guidelines, but a long
term, scalable management solution would allow XMPP evolve
group based applications in a controlled manner. The
management of groups within XMPP currently does not
provision for modern scenarios, such as the example in section
1 of this paper. The group management structure is dated but
serves faithfully the original purpose of XMPP. It is our belief
that the management of groups is important enough to be
abstracted away from XMPP, to provide more control for
group management and formation. Our future work proposes
an experimental architecture to manage groups external to
XMPP, facilitated by the extensible nature of the protocol and
managed through network based policies. The use of policies to
control and manage the formation of the groups will be an
important milestone. With the Policy Engine already developed
as previous work [12], the focus can shift to the usability and
functionality of the management policies rather then their
implementation. A proposed route would take the notion of a
JID, and evolve that concept to a Group ID, or GID for short. A
GID would be used to hold a reference to a Group which would
reside on a group server and would structurally take the same
format as a JID address:
group_name@group_server_domain. From a scalability and
management point of view, an approach such as this would
allow XMPP evolve into a group management and service
platform. A complementing group management extension,
would transition the medium into the realm of service group
management, allowing semantically rich services tailored at
different group styles to evolve. Other group styles, such as
Ad-hoc [13], are also under consideration for investigation, as
group formation profiles would need to be developed from

existing classifications to understand the impact that they
would have on the underlying infrastructure.

This paper outlined a use case involving the novel use of
existing group communication architectures to better provision
for the care of patients in a hospital scenario. XMPP, a viable
communication protocol, and group communication medium in
its own right, had strong credentials for realising this scenario
and was presented for consideration. An investigation into the
group management structures offered by XMPP was performed
with a formal investigation carried out on the capabilities of the
existing group management structures. The results were
presented showing that XMPP is desirable and indeed viable
for this scenario but the successful sharing and management of
a dynamic group environment is beyond the scope and
capabilities which the protocol was designed for. A compelling
plan for abstracting the group management responsibilities
from XMPP and entrusting them to a separate entity was also
proposed as future work.

ACKNOWLEDGMENT

The authors would like to acknowledge funding support

from the Irish HEA PRTLI Cycle 4 FutureComm

(http://futurecomm.tssg.org) programme.

REFERENCES

[1] Hallberg, J., Norberg, M., Kristiansson, J., Synnes, K., Nugent, C.
Creating Dynamic Groups using Context-awareness. 6th International
Conference on Mobile and Ubiquitous multimedia, 2007.

[2] Smedberg, A.. Enabling Cross-Usage of Public Health Systems – A
Holistic Approach to Ask the Expert Sstems and Online Communities,
Proceedings of the Second Annual Conference on Digital Society, 2008.

[3] Storni, C., Bannon, L. Reassembling HealthCare: toward a patient-
centric approach, Proceedings of the Healthcare Informatics Society of
Ireland, 14th Annual Conference, 2009.

[4] Saint-André, Peter, Kevin Smith, and Remko Tronçon. XMPP: the
Definitive Guide : Building Real-time Applications with Jabber
Technologies. Farnham: O'Reilly, 2009.

[5] XMPP Standards Foundation [online]. Available from http://xmpp.org
Accessed on 10-SEP-2010

[6] Fielding, R.. 2000. Architectural Styles and the Design of Network-
based Software Architectures. Thesis(PhD). Univeristy of California.

[7] Saint-Andre, P., 2004. RFC 3921 XMPP: IM [online] Available from
http://www.ietf.org/rfc/rfc3920.txt Accessed on 10-SEP-2010

[8] XMPP Roster Schema Document [online] Available from
http://xmpp.org/schemas/roster.xsd Accessed on 10-SEP-2010

[9] Millard, P., Saint-Andre, P., Meijer, R., 2010. XEP-0060: Publish
Subscribe [online] Available from http://xmpp.org/extensions/xep-
0060.html Accessed on 10-SEP-2010

[10] Saint-Andre, P., 2005. XEP-0144: Roster Item Exchange [online].
Available from http://xmpp.org/extensions/xep-0144.html Accessed on
10-SEP-2010

[11] Saint-Andre, P., 2004. XEP-0140: Shared Groups [online]. Available
from http://xmpp.org/extensions/xep-0140.html Accessed on 10-SEP-
2010.

[12] Foley et al, “Service Group Management facilitated by DSL driven
Policies in embedded Middleware” International Symposium on
Computers and Communications, 2010.

[13] Minder, D., Grau, A., Marron, P. On group formation for self-adaptation
n pervasive systems. 1st international conference on Autonomic
computing and communication systems, 2007.

