
An empirical evaluation of a Shim6
implementation

John Ronan and John McLaughlin

Telecommunications Software & Systems Group,
Waterford Institute of Technology,

Cork Road,
Waterford,

Ireland
{jronan,jmclaughlin}@tssg.org

Abstract. Several solutions are proposed to enable scalable multihom-
ing over IPv6. One of these proposals is Shim6, a host-based multihoming
solution based on the modification of the Internet Protocol stack of the
host. This modification adds a layer below the transport protocols but
above the forwarding layer. As this approach makes the modifications to
the network stack transparent, existing applications automatically ben-
efit from Shim6 functionality.
In this paper we investigated aspects of the performance of the LinShim6
implementation from Université Catholique de Louvain. We also outline
our modifications of the LinShim6 implementation to allow external soft-
ware to control the locators used between hosts.

Key words: Shim6, multihoming, ECN

1 Introduction

For a number of years now, the IETF has been working on IPv6, a succes-
sor to IPv4. More recently, work has been done to address the scalability of
the current internet architecture. The Internet Architecture Board (IAB) has
identified several limitations of the current internet architecture[1]. These issues
impact the scalability of inter-domain routing systems, which is reflected in the
growth of Border Gateway Protocol (BGP)[2] routing tables, and also in the
number of routes in the Default Free Zone (DFZ) Routing Information Base
(RIB) processed by BGP routers. Several factors which influence the growth of
BGP routing tables include, multihoming, traffic engineering, IP address allo-
cation policy, and business events, such as large mergers and acquisitions. All
of these factors can lead to an increased number of unique routing prefixes that
cannot be aggregated within the DFZ RIB and hence cause routing table growth.

Several years ago, after examining the multihoming issue[3], the IETF char-
tered the Site Multihoming by IPv6 Intermediation (Shim6) working group to
develop a host-based IPv6 multihoming solution, [4] presents a good overview
of the requirements, constraints, and the process that led to the emergence of

2 John Ronan and John McLaughlin

Shim6 as a multihoming solution. The Shim6 specification documents are now
published[5, 6, 7], and in this paper we report on our experiences with Univer-
sité Catholique de Louvain’s (UCL) publicly available Shim6 implementation
LinShim6[8, 9] for the Linux kernel.

This paper is organised as follows: Section 2 provides a brief description of
the capabilities of Shim6 for the benefit of those readers unfamiliar with the
protocol. Section 3 describes both our overall goal and experiences in creating
a Shim6 testbed. Section 4 presents the baseline performance measurements,
with a brief description of the results. In closing, section 5 discusses the work
presented here within the broader context of the EU FP7 EFIPSANS1 research
project.

2 Shim6 host-based IPv6 multihoming

The Shim6 protocol[6], has been designed to add multihoming capabilities to
IPv6 end-hosts. Potentially, this allows for far more IPv6 enabled sites to protect
their upstream connections, without having to go to the trouble of implementing
BGP peering. This means that entities can retain control within their own site
without incurring the overhead of deploying BGP.

Along with the Shim6 protocol, the IETF Site Multihoming by IPv6 Inter-
mediation (Shim6) working group designed a failure detection and repair mech-
anism, called the REAchability protocol (REAP)[7] which allows hosts to detect
and recover from failures.

Today, in the current (IPv4) Internet, a multihomed site is obliged to have
a network connection with each of its upstream providers, and the site has to
use IP addresses independent from those providers. These addresses come from
what is called Provider Independent or PI address space (as opposed to Provider
Aggregatable (PA) address space).

With Shim6 however, multihoming functionality is made available to the end
host using Provider Aggregatable addresses — removing the need to involve BGP
or any other protocol. At present, the default IPv6 address selection algorithm
[10] defines how the address pair for a communication session is selected, this
address pair does not change for the duration of the session. Shim6 offers the
ability to change the address pair used (and thus the path) during the session,
transparent to the application. The Shim6 approach uses routable IP addresses
(locators) as the identifiers visible to the transport layer. This also provides the
facility to change the locator pair in use should REAP detect that the currently
used pair of addresses (or interfaces) between two communication nodes has
failed. REAP will search for a working pair of locators and pick another working
pair (if available) when this occurs[7]. This change is performed at the network
layer, which means that applications and transport protocols do not need any
changes to benefit from this new capability.
1 Exposing the Features in IP version Six protocols that can be exploited/extended

for the purposes of designing/building Autonomic Networks and Services

An empirical evaluation of a Shim6 implementation 3

3 Testbed

Our primary goal in this work was to get a baseline performance metric for an
existing Shim6 implementation, and then to integrate Shim6 into the overall
EFIPSANS architecture[11]. While Shim6 is already somewhat autonomous, in
that it can detect and recover from link failures, we augmented LinShim6 with
functionality to allow third party code to directly inform the Shim6 implemen-
tation which locators it should use. This facility could be used in the case of
a scheduled downtime, for example. As a proof-of-concept for the EFIPSANS
project, to demonstrate monitoring functionality, we developed a small daemon
coupled with a Linux Netfilter[12] module to detect congestion or loss in a net-
work through the Explicit Congestion Notification (ECN)[13] mechanism. This
information could then be acted upon by third-party code to instruct LinShim6
to change the locator set in use, based on congestion detected and other variables
such as, network load, jitter, delay etc.

3.1 Shim6 testbed

Fig. 1: Shim6 testbed in TSSG

This testbed (figure 1) was set up to replicate the scenario in “Performance
Analysis of REAchability Protocol for IPv6 Multihoming”[14]. We installed and
configured the UCL Shim6 implementation, LinShim6, and proceeded to gener-
ate a set of results in order to ascertain what differences (if any) were present
in the behaviour of this implementation versus the simulated results available
in[14]. The testbed consisted of:

– Two Dual PII blade servers, each with 3 Network Interface Cards
– One Juniper M10i running JunOS

From our initial work on constructing this testbed, a number of issues arose.
Initially we uncovered various bugs in the LinShim6 implementation, that be-
came apparent due to our deployment being on real hardware. This led to much

4 John Ronan and John McLaughlin

work being done both by ourselves and Sébastien Barré, the LinShim6 author,
to diagnose and fix these issues.

When deploying the testbed, it quickly became clear that the authors in[14]
did not use any routing protocols in the simulation. As our testbed was deployed
on real equipment we felt that is was important to be as realistic as possible so
we used the Open Shortest Path First (OSPF)[15] protocol on the inter virtual-
router links2. Obviously this meant that OSPF was able to recover from any
single link failure by itself. Consequently, in order that a path failure could be
simulated, the link between Cloud 2 and Cloud 3, was manually disabled, thus
restricting the available redundant paths between the two hosts.

When generating traffic, we originated all sessions from 2003::1 to 2001::1
through Cloud 1 and Cloud 2. Then, to simulate failure, at a certain point in
time, the link between Cloud 1 and Cloud 2 is disabled, this failure is detected
by REAP, and, after path exploration, the session should continue between the
locator pair of 2004::1 and 2002::1.

The tests performed involved the TCP[16, 17, 13] and UDP[18] protocols. For
TCP tests, we evaluated the TCP behaviour using the FTP[19] protocol. The
traffic used to evaluate the UDP behaviour corresponded, as close as possible
to a Voice over IP (VoIP) application using a G.729[20] codec both with a uni-
directional and bi-directional packet flow. To emulate G.729 the Iperf[21] tool
was configured to generate 8 kilobits of data per second (50 packets per second,
20 bytes per packet).

The Round Trip Time (RTT) in both paths was configured to be identical.
The Netem tool[22] was used to implement a normal distribution with a mean
of 80ms and a 20ms variance. The “failure” event occured at a random interval
between 75 and 125 seconds after the test run commences. All test runs were
terminated 60 seconds after the “failure” event. These choices were dictated by
those used in[14].

To run the tests, scripts were written to automate every run. For each value
of Tsend from 1 to 15, 45 test runs were completed. This gave a total of 675 test
runs. This was done for each of TCP (the FTP protocol), bidirectional UDP,
and unidirectional UDP. Giving over 2000 total runs or over 4000 unique log
files.

3.2 Explicit Congestion Notification

Congestion is a perpetual problem in networks and can have a detrimental effect
on user experience in situations where a high QoS is required (video streaming,
VOIP etc). The Explicit Congestion Notification (ECN) protocol provides a
means to detect congestion in IPv4 and IPv6 networks. Although it has been
standardised for over a decade, it has suffered from slow uptake. This appears
to be as a result of packet loss from intermediate routers rigidly enforcing earlier
RFCs, and hence dropping packets as “invalid”.
2 OSPF is used internally in our site, and was a logical choice.

An empirical evaluation of a Shim6 implementation 5

Briefly, when two endpoints have negotiated use of ECN, the sender of data
packets will mark the outgoing packets with an ECN code point (2 bits in the
IPv6 Traffic Class octet). An intermediate router approaching the point of con-
gestion which comes across one of these packets will update it to signal that it is
about to become congested, by setting the Congestion Encountered (CE) code
point. Upon receipt of such a packet, the receiver will notify the sender via the
ECN Echo (ECE) bit in the TCP header of the next TCP ACK, that the data
packet experienced congestion. The sender then will take steps to “back-off” in
an attempt to alleviate the congestion problem. Also, when an ECN-Capable
TCP sender reduces its congestion window for any reason, the TCP sender sets
the CWR bit in the TCP header of the first new data packet sent after the
window reduction. This means there are two indicators available for use to use
as congestion (or loss) indicators.

In order to facilitate some control over the chosen Shim6 network pair, we
have extended the LinShim6 user space daemon shim6d with a “put” command.
This command allows one to request Shim6 to use a specific locator pair at any
time. However, the selected pair is still subject to the normal Shim6 rules in that
if it should fail for whatever reason, Shim6 will automatically start the process to
select a valid locator pair. For the EFIPSANS project, we have added function-
ality to LinShim6 to use the information presented by the ECN implementation
when congestion (or loss) is detected and this information could potentially be
used to migrate any affected Shim6 sessions to a clear path. The decision to
migrate could be based on information such as prior knowledge of clear paths or
other knowledge that could be supplied to the host from another service[23, 24].

The code consists of a Netfilter module and a user space daemon. The Net-
filter module intercepts any ECE or CWR marked packets for the user space
daemon to examine. If the daemon determines that the packet is, indeed of
interest. The daemon will output the source and destination addresses of the ef-
fected stream via a network socket such that a listening application could make
decisions based on this data. The output from the network socket is shown in
listing 1.
labadmin@sam :˜ $ t e l n e t l o c a l h o s t 2223
Trying : : 1 . . .
Connected to l o c a l h o s t .
Escape charac t e r i s ’ ˆ] ’ .
<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<ecn s r c=” 2 0 0 1 : 7 7 0 : 2 0 : 4 : : 2 ” dest=” 2001 : 7 70 : 2 0 : e : : 2 ” congested=” true ”/>
<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<ecn s r c=” 2 0 0 1 : 7 7 0 : 2 0 : 4 : : 3 ” dest=” 2001 : 7 70 : 2 0 : e : : 2 ” congested=” true ”/>

Listing 1: Output from network socket

4 Results

4.1 LinShim6

As mentioned already, our Shim6 testbed was set up to replicate the scenario
depicted in[14]. In that paper the metric the authors used was “Application

6 John Ronan and John McLaughlin

Recovery Time”. This is defined as the difference in time between the last packet
arriving through the old locator set (addresses), and the first packet arriving
through the new one, after the the path between the locator set has failed.
This metric accurately measures the time taken to recover from a path failure
when there is a continuous flow of traffic. The same metric was used for our
measurements.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

U
D

P
R

ec
ov

er
y

Ti
m

e
(s

ec
on

ds
)

Tsend Values (TKA=Tsend/3) seconds

UDP Unidirectional
UDP Bidirectional

Fig. 2: UDP Recovery Time

UDP behaviour Figure 2 shows both bidirectional and unidirectional UDP
recovery times. Two traffic profiles have been emulated. The Iperf network test-
ing tool was used to generate a bidirectional UDP stream (VoIP conversation)
and a unidirectional UDP stream (audio stream), with similar characteristics.
Comparison with [14] reveals a marked similarity in results.

TCP behaviour TCP has several characteristics that UDP does not, such
as reliability and congestion control. The authors used the FTP protocol to
reliably generate high-bandwidth traffic. Also, as the LinShim6 implementation
is capable of resetting TCPs retransmission timeout (RTO), we also performed
this test. Figure 3 shows TCP recovery times for TCP both with and without
the retransmission timers reset. Figure 4 compares bidirectional UDP and TCP.
As can be seen from figure 3 and figure 4. The results obtained validates the
proposals in §4.2 of [14]. In this work, the authors proposed that after a new
path is chosen for a communication, that the TCP retransmission timer value
should be reset. They argue that this is both more efficient and more appropriate
as the timer values are dependent on the path in use now, not previously. Their
simulation results showed that the relation between the TCP recovery time and
Tsend was was linear, and the the modified TCP behaviour was also very similar
to that of UDP.

An empirical evaluation of a Shim6 implementation 7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16

TC
P

Re
co

ve
ry

 T
im

e
(s

ec
on

ds
)

Tsend Values (TKA=Tsend/3) seconds

TCP with RTO Reset
TCP without RTO Reset

Fig. 3: TCP Recovery Time

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

R
ec

ov
er

y
Ti

m
e

(s
ec

on
ds

)

Tsend Values (TKA=Tsend/3) seconds

TCP (reseting retransmittion timeout
UDP Bidirectional

TCP (normal operation)

Fig. 4: Here we can see that for TCP with RTO reset enabled, the behaviour is
almost identical to that of bi-directional UDP. While unmodified TCP behaviour
is clearly visible, showing the staircase like graph.

4.2 Comments on ECN

We were unable to successfully enable IPv6 ECN in the router equipment in
our testbed. It appears that none of our routers (several Cisco, Juniper, Linux,
FreeBSD) supported full IPv6 ECN functionality. However, we were able to test
that our code functioned correctly. We were able to generate packet loss, and
thus detect when the TCP sender set the CWR bit of the TCP header, as shown
listing 2.

Consequently, we are confident that should we get to work with an IPv6
capable, ECN enabled router that we will be able to detect congestion and feed
that information up to a management entity.

8 John Ronan and John McLaughlin

root@sam :˜/ s r c /tmp/ecnd# ./ ecnd
[S igna l] Creat ing s i g n a l hand le r s
[[ECN Queue]] Binding n fne t l i nk queue as nf queue handler for AF INET6
[[ECN Queue]] Binding this socket to queue ’ 0 ’
[C l i en t] (c l i e n t socket handle=5)
[ECN Monitor : parse ()]
(seq =916108003 , ack seq =−1562873524) CWR = 1 , ECE=0, SYN=0, ACK=1
[Process] Added path :
(s r c=’ 2 0 0 1 : 7 7 0 : 2 0 : 8 4 : : 2 ’ ,
des t=’ 2 0 0 1 : 7 7 0 : 2 0 : 8 4 : 2 5 0 : c 2 f f : f e07 :92 db :) ECN=Yes
[ECN Monitor : parse ()]
(seq =575124451 , ack seq =−1562873524) CWR = 1 , ECE=0, SYN=0, ACK=1
[ECN Monitor : parse ()]
(seq=−234932923, ack seq =−1011743955) CWR = 1 , ECE=0, SYN=0, ACK=1

Listing 2: Output from ecnd daemon

5 Conclusion

This paper presents details of work done in evaluating Université Catholique de
Louvain’s (UCL) publicly available Shim6 implementation. Its performance in
our test network was compared against prior work, where the the behaviour of
the Shim6 was simulated. The actual results obtained compare favorably with
the simulation results. We then proceeded to implement a feedback mechanism
based on the the Explicit Congestion Notification (ECN) protocol. This could
allow for the re-balancing of traffic between hosts on clear (not experiencing
congestion) paths should the hosts desire this functionality. Or indeed, in our
case just act as a mechanism for reporting network congestion or loss to an
EFIPSANS Managed Entity, which, monitors network performance.

We are also interested in testing our work across the Internet itself and
gaining more relevant information as to the behaviour of Shim6 in larger de-
ployments.

Acknowledgements

This work was partly funded by the European Commission via the 7th Frame-
work Programme Integrated Project EFIPSANS (grant no. 215549). Many
thanks to Sébastien Barré, the LinShim6 author, for his assistance and swift
response to innumerable questions.

References

1. D. Meyer, L. Zhang, and K. Fall. Report from the IAB Workshop on Routing and
Addressing. RFC 4984 (Informational), September 2007.

2. Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC
4271 (Draft Standard), January 2006.

3. G. Huston. Architectural Approaches to Multi-homing for IPv6. RFC 4177 (In-
formational), September 2005.

An empirical evaluation of a Shim6 implementation 9

4. C. de Launois and M. Bagnulo. The paths towards IPv6 multihoming. IEEE

Communications Surveys and Tutorials, 8(2), 2006.
5. M. Bagnulo. Hash-Based Addresses (HBA). RFC 5535 (Proposed Standard), June

2009.
6. E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim Protocol for

IPv6. RFC 5533 (Proposed Standard), June 2009.
7. J. Arkko and I. van Beijnum. Failure Detection and Locator Pair Exploration

Protocol for IPv6 Multihoming. RFC 5534 (Proposed Standard), June 2009.
8. S. Barré. Linshim6 - implementation of the shim6 protocol. Technical report,

Université catholique de Louvain, Feb 2008.
9. S. Barré and O. Bonaventure. Shim6 implementation report : Linshim6. Internet

draft, draft-barre-shim6-impl-03.txt, work in progress, September 2009.
10. R. Draves. Default Address Selection for Internet Protocol version 6 (IPv6). RFC

3484 (Proposed Standard), February 2003.
11. Nikolay Tcholtchev, Monika Grajzer, and Bruno Vidalenc. Towards a unified ar-

chitecture for resilience, survivability and autonomic fault-management for self-
managing networks. In 2nd Workshop on Monitoring, Adaptation and Beyond

(MONA+), Stockholm, Sweden, November 23-24th 2009.
12. The Netfilter Project. Netfilter - firewalling, nat and packet mangling for linux.

http://www.netfilter.org.
13. K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion

Notification (ECN) to IP. RFC 3168 (Proposed Standard), September 2001.
14. A. de la Oliva, M. Bagnulo, A. Garcia-Martinez, and I. Soto. Performance Analysis

of the REAchability Protocol for IPv6 Multihoming. In Conference on Next Gener-

ation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN 2007), Sept
2007.

15. J. Moy. OSPF Standardization Report. RFC 2329 (Informational), April 1998.
16. J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.

Updated by RFCs 1122, 3168.
17. R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122

(Standard), October 1989. Updated by RFCs 1349, 4379.
18. J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.
19. J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), October

1985. Updated by RFCs 2228, 2640, 2773, 3659.
20. International Telecommunication Union. G.729, 2007. http://www.itu.int/rec/

T-REC-G.729/e.
21. National Laboratory for Applied Network Research. Iperf. http://iperf.

sourceforge.net/.
22. Stephen Hemminger. Network emulator. http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem.
23. Damien Saucez, Benoit Donnet, and Olivier Bonaventure. Idips : Isp-driven in-

formed path selection. IETF Draft, February 2008.
24. Olivier Bonaventure, Damien Saucez, and Benoit Donnet. The case for an informed

path selection service. IETF Draft, February 2008.

