
An experimental testbed to predict the performance
of XACML Policy Decision Points

Bernard Butler, Brendan Jennings, and Dmitri Botvich
FAME, Telecommunications Software & Systems Group (TSSG)

Waterford Institute of Technology
Waterford, Ireland

Email: {bbutler, bjennings, dbotvich}@tssg.org

Abstract—The performance and scalability of access control
systems is a growing concern as organisations deploy ever more
complex communications and content management systems. This
paper describes how an (offline) experimental testbed may be
used to address performance concerns. To begin, timing mea-
surements are collected from a server component incorporating
the Policy Decision Point (PDP) under test, using representative
policies and corresponding requests. Our experiments with two
XACML PDP implementations show that measured request
service times are typically clustered by request type; thus an
algorithm for request cluster identification is presented. Cluster
characterisations are used as inputs to a PDP performance model
for a given policy/request mix and an analytic (queueing) model
is used to estimate the equilibrium server load for different
mixes of request clusters. The analytic performance prediction
model is validated and extended by discrete event simulation of
a PDP subject to additional load. These predictive models enable
network administrators to explore the capacity of the PDP for
different overall loadings (requests per unit time) and profiles
(relative frequencies) of requests.

I. INTRODUCTION

Access control systems apply policies to ensure that Sub-
jects can access Resources if and only if they are entitled to
do so. In the standard architecture [1], access requests are sent
to Policy Execution Points (PEPs), which hand off the access
decision itself to a Policy Decision Point (PDP). The PEP
is largely stateless and so scales outwards easily. However,
the PDP needs to consult a policy set and apply the rules
therein to Permit or Deny each request and so can become a
performance bottleneck. Thus PDP performance is an impor-
tant characteristic of access control requirements in deployed
ICT systems. This observation is especially true in large
and complex organisations, where access decisions depend on
the (rich) context of the access request. Fine-grained access
control enables system administrators to implement security
policies with complex decision boundaries but also leads, in
general, to more complex policy sets, resulting in longer PDP
search times. Fine-grained access control also requires the
PDP to check more access requests within a session. As an
example, in a single session, Subjects may wish to exchange
Resources with media type 1 (voice or plain email) and media
type 2 (email or IM file attachments). Notably, Chinese-Wall
fine-grained access control policies suffer scalability problems;
Cisco colleagues see this in real world deployments. For the
scenarios in our paper, policy characteristics are captured

implicitly in service time measurements. As with any security
deployment, it is necessary to respond rapidly as new threats
arise, so dynamic updates to policies are necessary. This need
to support policy sets that evolve over time makes it more
difficult to use caching and similar strategies to improve PDP
performance and scalability.

By instrumenting the SunXACML open source PDP im-
plementation, we noticed that the execution time of many of
the steps taken by the PDP do not depend on its data (i.e.,
the policy set and incoming requests). The major exception
to this observation is the step where the PDP seeks to match
the request against the policy set. This is a complex search
problem, depending on many factors such as the number
of rules sharing a Target that matches the request, how
deeply nested the policy set is and what rule- and/or policy-
combining algorithm is in force. Rather than trying to build a
(fragile) explicit model for service times, we collect timing
observations and build a simpler model based on request
clusters. The model is sufficiently simple to calculate some
properties analytically; for other properties, we use simulation.
Summarising, this experimental approach operates at the level
of request ensembles rather than individual requests. While
we lose some detailed insight, we gain a flexible model that
can be updated easily (e.g., in respect of clusters of observed
requests).

The testbed can be used for two purposes:

• Comparison
To estimate the effects of an experimental treatment under
controlled experimental conditions, by comparing cases
with or without that treatment. Treatments might include
projected PDP improvements, increased policy set size,
etc.

• Prediction
To estimate a performance metric given a new set of
conditions, e.g., a change in the access request mix, or
rapid changes in request arrival rates.

As seen in Section VII, our analytic and simulation models
can be used for the important objective of PDP performance
prediction. Practical applications include PDP dimensioning
(either pre-deployment or mid-deployment when conditions
change). Resolving PDP performance issues is out of scope
for this paper.

These uses are explored in Sections V and VI, and Sec-
tion VII describes some initial experiments covering both.

When used in prediction mode, the explicit analytic model
and simulation approaches are complementary and are pre-
sented in Section V . The analytical model is more convenient
but simulation can be used in more scenarios. Section VII
also indicates how each can validate the other, by choosing a
scenario in which both approaches can be applied to the same
data and are shown to produce equivalent results. In particular,
simulation enables powerful analysis of “what if?” scenarios
relating to expected changes in policy sets and/or system
user behaviour—as reflected in changing policy request types
and arrival patterns. Crucially, the simulation experiments are
grounded in actual measurements from real PDPs, thereby
reducing threats to their construct validity [2]. Because of
the extensive instrumentation in the testbed, collecting service
time measurements is much easier than in a “production”
deployment so it can be done more often. Thus we can also
monitor the performance impact of policy changes, by analogy
with the use of Margrave to do (logical) policy change impact
analysis [3].

II. RELATED WORK

There is extensive literature both on policy authoring [4] and
on policy testing [5]. Much of the focus has been on ensuring
that the policy set is maintainable, correct, comprehensive and
consistent [6]. If an access control system is to be “fit for
purpose”, we contend that such requirements are necessary
but not sufficient. One requirement missing from that list is
usability for end users, in which system performance plays a
big rôle.

Measurement-based simulation for performance modelling
and enhancement has a long history. Sometimes it offers the
only practical approach for modelling the behaviour of a
complex system under extreme conditions. In Section I, we
identified the XACML policy search step as being the most
difficult to model. In recent years, researchers have turned their
attention to improving the performance of policy evaluation
in general and that of XACML-encoded policies in particular
[7]. Promising techniques include policy reconfiguration [8],
recoding [9], query rewriting [10], [11] and policy simplifi-
cation using Description Logics [12]. Anecdotally, policy and
rule set size and complexity cause some problems but we have
not investigated this claim directly using our testbed yet. For
a given performance improvement technique, it is difficult to
predict whether the technique brings material benefits in PDP
performance. [13] study (pdp x policy x request) comparisons
using requests serviced per second as a metric, a concern
for clients. By contrast, our policy set is fixed but we vary
many other factors and use server utilisation as the metric,
since this is a concern for server dimensioning. We also
derive an analytical model and perform measurement-based
simulation. This paper builds upon earlier work [14], which
describes comparison experiments using an earlier version of
the testbed. The additional contributions in our present paper
are (1) an improved clustering algorithm and (2) analytical and

simulation models based on service time measurements and
identified clusters, with a new focus on prediction of server
utilisation and hence dimensioning.

III. FRAMEWORK OVERVIEW

In this paper, we study PDP performance by considering
its sensitivity to factors such as request mix, request arrival
rate and PDP implementation. To achieve this aim, we create
a testbed in which each of these factors (and others) can be
controlled independently. We consider access control policies
with the only restriction being that the policies can be specified
in XACML 2.0 (an OASIS standard). The main components
of the testbed are shown in Figure 1, notably

• The client (xtc) produces requests that are subsequently
relayed to the server component (xts). xtc can obtain
its requests from several sources, such as: resampled from
an existing request set (MODE 1 in Figure 1); generated
through analysis of the deployed policy set (MODE 2 in
Figure 1); or via a domain model of the behaviour of
users of the system within which the server is deployed
(MODE 3 in Figure 1).

• The server (xtc) comprises a PDP implementation and
an adapter to handle messages coming from the PEP in
the xtc client. Therefore, as seen by the client, the PDP
is a black box with a standard, simplified API. The main
functionality exposed through that API is 1) read a policy
set and 2) evaluate an access request. The adapter is
responsible for measuring and recording the service time
per request. Usually PEPs act as intermediaries between
clients and PDPs, but in its present form, the testbed PEP
is very simple.

• The analyser component (xta) aggregates and enhances
the raw timing measurements, to provide accurate service
time measurements and derived quantities (such as clus-
ter assignments) with statistical analysis for comparison
experiments.

• The predictor (xtp) is where the explicit analytic model
is implemented together with the discrete event simulator
for more complex scenarios.

Provided the policies and requests are syntactically valid, the
framework applies to any XACML policy set. Moreover, since
we treat the PDP as a black box, it can be extended to other
PDP types, or even to general request/response systems.

IV. DATA PREPARATION

The timings obtained via the Adapter capture the total time
spent by the PDP per request a) converting the XACML-
encoded request into the PDP’s internal representation in
memory, b) searching the policy set for matching policies and
c) returning the decision as a XACML-encoded response. A
model based on individual requests would be too fine-grained
and difficult to generalise. However, PDP service times appear
to exhibit clustering behaviour, i.e., their distribution is a
mixture of simpler distributions. The algorithm used to process
the raw service times to provide clustered measurement data
for simulation purposes is presented below.

XTS

XTPXTA

XTC

MODE�2

Observed

XACML�Requests

MODE�1

Universal

PEP

Request

Scheduler

Generated

XACML�Requests

Request

Generator

XACML

Policy�Set

Adapter

PDP

Clustering

Algorithm

Performance

Abstraction

Queueing

Model

Simulator

Performance

Predictions

Measurement

Data

Performance

Measurements

Domain

Model

MODE�3

Fig. 1. The main measurement system and simulator components.

Let t = t(S, P ;R, q) ∈ Ru×q be the set of PDP service
times, where S represents (characteristics of) the PDP server,
P represents the policy set to search, R is the set of requests,
r = |R|, U is the combination of S × P × R experimental
conditions, u = |U | and q is the number of replicate measure-
ments of t, holding conditions S, P,R fixed.

Algorithm Step 1 removes anomalous service times by
choosing the minimum of the replicate service times for each
S × P × R combination of experimental conditions. Step 2
computes the (probability) density of service times for each
S × P combination, based on the r available service times
for that combination. Step 3 inspects the service time density
function for each S×P combination and estimates the number
n of request clusters. Step 4 computes a function of each
service time distribution such that the minima of this function
are candidate cluster centres. Step 5 labels requests according
to their membership of the service time clusters, for each of
the S×P service time distributions. Step 6 estimates the mean
and variance of the Gaussian distribution fitted to service times
of requests in the |S| × |P | × n clusters. Apart from user
intervention in Step 3, it is fully automatic. A more formal
statement of the algorithm can be found in Figure 2.

The mean and variance of each derived cluster can then be
used to simulate the service times of large numbers of requests
belonging to the cluster. This algorithm was implemented in
R [15].

V. ANALYTIC AND SIMULATION MODELS

We recall that the PDP receives requests, consults a policy
set and emits responses. We note from Figure 4 that service
times do not follow a simple distribution, so estimates of
the mean processing time need to take account of request
frequencies. Requests are generated by a stochastic process,
so queueing will occur except in (uninteresting) cases where
request interarrival times are much greater than request service
times.

1: for i=1 to |S| do
2: for j=1 to |P | do
3: Let si and pj be the server and PDP instance,

respectively. Hereafter indexes si and pj are implicit.
4: Let t = t(rk) be the vector of replicate service times

for the request indexed by rk.
5: Compute t(rk) = min(t(rk)) as the service time

obtained by selecting the minimum of the replicate
service times for a particular request rk

6: Compute d(t) as the density function of service times.
7: By inspection of the density plot d(t), choose the

number n of significant density peaks, equivalent to
n the number of request clusters - see Figure 4.

8: Compute f̃(d) = f(t) = d(t)d̈(t) at discrete t values.
The minima of f(t) are indicative cluster centres.

9: Sort f(t), select the first n̂ = n−1 values and lookup
the corresponding centres.

10: Compute the inner cluster endpoints {t(p)c , p =
1, . . . , n̂} by linear interpolation.

11: Assign n cluster intervals [t
(p)
c , t

(p+1)
c]; p = 0, . . . , n̂

where t
(0)
c = 0 and t

(n)
c = ∞.

12: Label each request rk with its cluster index p based
on the interval into which its service time t(rk) fits.

13: Fit a Gaussian to service times in each cluster p.
14: end for
15: end for

Fig. 2. Algorithm to cluster service times

A. Mean Value Analysis

A PDP can be modelled as a queue: requests arrive with
mean arrival rate λ and exit with rate µ. For the queue
length to be bounded, we require ρ < 1, where ρ = λx̄,
where x̄ is the mean service time. In typical deployments, the
arrival process may be nonstationary, e.g., request arrival rates
are greater during working hours. However, in the simplest
case, the arrival process is memoryless and hence the arrival
times have an exponential distribution, as assumed in this
paper. We consider nonstationary entensions to the model
in Section V-C. However, the simplest queueing model is
M/M/1 with FIFO scheduling. Since the measured service
times are known to be clustered, the queue does not satisfy
the assumptions of the M/M/1 model. Instead, we model
the queue as M/G/1, i.e., access requests are generated by
a Markov process (hence arrivals are memoryless), but the
service times are drawn from a “General” distribution. Because
of the presence of request clustering, we choose to model
PDP service times as being drawn from a hyperexponential
distribution (essentially, a weighted sum of exponentials);
see Equation 5. Each exponential term takes its parameters
from a measured request cluster. The weights combining the
exponential distributions depend on the arrival rates of the
different request clusters.

The PDP utilisation, (equivalently: mean load on the server

at equilibrium) is

ρ = λx̄, where ρ < 1 for the queue to remain bounded (1)

By definition, the coefficient of variation Cb of the service
time distribution with density function b(x) is defined by

C2
b

def
=

σ2
b

x̄2
(2)

where

x̄ ≡ E{X} =

∫ ∞

0

xb(x) dx

σ2
b ≡ E{X2} − (E{X})2 =

∫ ∞

0

x2b(x) dx− x̄2. (3)

The Pollaczek-Khinchin mean-value formula for queue
length at departure instants [16, Eq 5.63]

q̄ = ρ+ ρ2
(1 + C2

b)

2(1− ρ)
, (4)

is an explicit formula in terms of the quantities defined in
Equations 1 and 2.

For hyperexponentially-distributed service times, the service
density function is

b(x)
def
=

p∑
i=1

αi µie
−µix, where

p∑
i=1

αi ≡ 1 ≡
∫ ∞

0

b(x)dx

(5)
Substituting Equation 5 into Equation 3 gives

x̄ =

p∑
i=1

αi

µi

σ2
b =

p∑
i=1

2αi

µ2
i

. (6)

Note that µi and 1
µi

are the mean service rate and mean service
time, respectively for cluster i. We can substitute Equation 6
in Equation 2 and hence in Equation 4 to obtain q̄.

Therefore, given p request clusters, with measurements of
the mean service time per request cluster µi, we can compute
expected queue lengths q̄ for different request cluster mixes
αi, i = 1, 2, . . . , p.

We can also compute the mean queue waiting time using
[16, 5.70]

W = ρ
(1 + C2

b)

2(1− ρ)
x̄ (7)

B. Service times and arrival rates

We note that the arrival rate of each cluster-serving compo-
nent is the product αiλ of

• the relative frequency of requests belonging to that clus-
ter: αi

• the global arrival rate, ignoring cluster membership: λ
Because of the way αi is defined,

λ ≡
k∑

i=1

αiλ =
k∑

i=1

λi. (8)

The user needs to specify the (per-cluster) mean interarrival
times 1

λi
and the measurement-derived mean service times 1

x̄i

of the discrete event simulation. The mean service time is
estimated by computing the weighted mean of the individual
cluster service means. In practice, αi would be found by
characterising and hence calibrating actual access request
traffic.

Using the cluster assignments C(ri) = j (ri being the ith

request type and C being the function mapping ri into cluster
index j) from the measurements above, we can

1) Compute the mean service time x̄ using Equation 6
2) Estimate the capacity (the maximum arrival rate λ such

that the queue length remains acceptable (ρ < R
where R < 1) of the PDP server used to generate the
measurement data above for a given mean service time.

C. Extending the model: steady state plus overload

Because the request arrivals (both baseline and overload)
are generated by a (memoryless) Markov process, overload
requests can be modelled separately from baseline requests.
That is,

ρ = ρ(base) + ρ(overload) (9)

where, in general terms, the utilisation

ρ(�) = λ(�)x̄(�) (10)

and the general service mean

x̄(�) =

n∑
j=1

α
(�)
j x̄j (11)

Let λ(overload) = γλ(base) where γ is the overload factor;
then

x̄(base) =

n∑
j=1

α
(base)
j x̄j

x̄(overload) =

n∑
j=1

α
(overload)
j x̄j (12)

So

ρ(base) = λ(base)
n∑

j=1

α(base)x̄j as before;

ρ(overload) = γλ(base)
n∑

j=1

α
(overload)
j x̄j (13)

The base arrival rate can be computed from the base
utilisation and base service times:

λ(base) =
ρ(base)∑n

j=1 α
(base)x̄j

(14)

Note that the free parameters in Equation 13 are γ and
{α(overload)

j , j = 1, . . . , n}; all other parameters are either
measured directly or computable from measurements.

��������	

��������

���������

�
	

�

� �

��������	

��������

���������

�
	

�

�
�

	

�

�������� ��������

�

Fig. 3. Decomposing the simulation request token producers and consumers
into cluster-specific components.

D. Simulation

While the explicit analytical model is attractive and conve-
nient for sensitivity analysis and other uses, it is not sufficient:

• explicit formulae are unknown for quantities such as the
queue length variance

• known formulae evaluate mean values only, reflecting
long-term queue evolution not transient effects

• if an explicit service time distribution model is not
available, explicit formulae will not exist.

To overcome these limitations, we developed a simulation
model. Following the explicit model, we model the XACML
PDP as a single processor, serving a single queue and employ-
ing a FIFO (First-In-First-Out) queueing discipline. Arriving
XACML requests are placed at the tail of the queue and served
in order of arrival. For the M/Hk/1 queue corresponding to our
analytic model, we view the simulated PDP as comprising
k disjoint components, each associated with a single request
cluster. Request tokens are produced by k Markov processes
representing the k clusters of requests. The token generation
rate of each Markov process becomes the interarrival rate of
the queue for the appropriate PDP cluster-specific component.
By this device, we decouple request token generation and
consumption into separate per-cluster streams; see Figure 3.

VI. FRAMEWORK DEPLOYMENT

The policy set used in all trials described in this paper is
the ‘continue-a’ set referenced in [3] and obtained as part
of the Xengine PDP source distribution. The policies govern
submission of papers to a notional conference. The policy set
was loaded into each PDP policy repository. Four hundred
representative requests (two hundred from each of the ‘single’
and ‘multi22’ request sets from [3]) were issued against the
server and the timings were recorded in a text file. This process
was repeated 100 times (with the order of the requests being
randomised in each replication) on a server instance (hosting
the xts component) that was otherwise idle, to minimise the

host pdp Request Group

bear
SunXACML single

multi22

Enterprise XACML single
multi22

inisherk
SunXACML single

multi22

Enterprise XACML single
multi22

TABLE I
MAIN EXPERIMENTAL CONDITIONS FOR THE TRIALS

effect of anomalous timings (if a background process started,
say).

Balanced full factorial trials were run as indicated in Table I.

Each host runs a recently patched Ubuntu 10.04 operating
system. They have identical versions of applications such as
Java, R etc. The same testbed source code is deployed on
each. Both use dual-core 64-bit Intel processors. They differ
in that ’bear’ has a 32-bit operating system rather than a 64-
bit operating system as on ’inisherk’. They also have different
motherboards and memory configuration. ’inisherk’ is about
two years newer than ’bear’ and hence might be expected to
have generally lower service times, however we cannot assume
that all requests will be subject to the same speedup factor and
hence that cluster membership will be identical irrespective of
the host.

The two PDP implementations are representative of differ-
ent design goals. SunXACML was designed as a reference
implementation, Enterprise XACML as a more practical im-
plementation, with its developers specifically claiming good
performance [17]. They were developed independently and
hence might be expected to exhibit different service time
clustering behaviour.

The XACML structural differences between the ‘single’ and
‘multi22’ request groups are not the focus of this paper, rather
the fact that their service times might be expected to cluster
differently.

The 16 cases in Table I summarise a more detailed experi-
ment in which there are 100 replicate measurements on each
of the 200 request types in the specified request group.

Each arrival weight αj depends on the arrival rate of
requests in cluster j relative to requests from all clusters.
Ideally αj would be computed by observing the frequency
of requests in an actual deployment. For the purpose of this
scenario, we assume request types have identical arrival rates,
in which case αj is the relative size of cluster j.

The simulation model uses the OPNETTMsimulation envi-
ronment. OPNET simulations are time-based, so the user needs
to specify the mean request interarrival time (1λ , the mean
service time per request (1µ) and the simulation duration T .
OPNET’s Discrete Event Simulator produces and consumes
“requests” (more correctly, standard tokens) and records the
queueing statistics requested by the user. OPNET request
tokens are tagged by cluster ID and directed to a simulated

Service times f or 'single' request set
on host 'bear' using 'SunXacmlPDP'

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 T

ot
al

 H
is

to
gr

am
 A

re
a

=
 1

)

0.002 0.003 0.004

0
50

0
10

00
15

00

Fig. 4. Distribution of measured request service times on ‘bear’ using
SunXACML.

server that handles one request at a time with the mean service
time depending on the cluster ID tag, consistent with Figure 3.

VII. EXPERIMENTAL RESULTS

A. Measured service times and clustering

Figure 4 shows how service times are distributed for a
given PDP-data combination. Plots like this alerted us to the
presence of service time clustering. Referring to Figure 4,
visual inspection suggests the number of clusters n is 8 and
the relative spacing tolerance is 0.05.

Figure 5a shows the clusters found by the algorithm de-
scribed in Section IV when applied to the data in Figure 4.
Clearly the clustering algorithm finds the main features in the
service time data, though the cluster boundaries are not easily
defined. For comparison, Figure 5b shows the equivalent clus-
ters when Enterprise XACML is used instead of SunXACML
PDP. In this case there are only 3 clusters, with most requests
being assigned to the first cluster. The plots for cases using
‘inisherk’ instead of ‘bear’ and ‘multi22’ instead of ‘single’
are qualitatively similar to the Figures shown, indicating that
the gross features (e.g., number of clusters and their sizes)
of the service time distribution are determined by the PDP
implementation.

B. Case study 1: Comparison

Given the experimental setup from Section VI and corre-
sponding measurements from the testbed, namely

• the decision made by the PDP (‘decision’)
• request type (1 to 200, ‘ind’)
• the service time
• the cluster index

0.001 0.002 0.003 0.004 0.005

0
50

0
10

00
15

00

Service time inter vals define request c luster s for 'single'
 request set on host 'bear' using 'SunXacmlPDP'

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 T

ot
al

 H
is

to
gr

am
 A

re
a

=
 1

)

(a) Using SunXACML

0.0014 0.0016 0.0018 0.0020 0.0022 0.0024

0
10

00
0

20
00

0
30

00
0

40
00

0

Service time inter vals define request c luster s for 'single'
 request set on host 'bear' using 'EnterpriseXacmlPDP'

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 T

ot
al

 H
is

to
gr

am
 A

re
a

=
 1

)

(b) Using Enterprise XACML

Fig. 5. Clustering SunXACML and EnterpriseXACML request service times.

we can perform an Analysis of Variance to determine the
contributions of factors and their interactions to the overall
variance, see Table II. We note that all the identified factors,
and their interactions, are very significant, except for the
interaction between ‘host’ and ‘reqGrp’.

Given this evidence that the ANOVA model appears sig-
nificant, we proceed to an Analysis of Means. Reviewing
Tables III and IV, ‘inisherk’ outperforms ‘bear’ and Enterprise
XACML outperforms SunXACML, respectively.

Mean Sq F value Pr(>F) Code
host 2.8e-04 1910.4194 0 ***
pdp 4.2e-05 282.7925 0 ***
reqGrp 1.9e-06 13.2025 0.0002898 ***
decision 4.6e-05 313.5133 0 ***
ind 5.5e-07 3.7399 0 ***
host:pdp 5.9e-06 40.2613 2.999e-10 ***
host:reqGrp 5.3e-08 0.3609 0.5480907
pdp:reqGrp 2.9e-05 195.0376 0 ***
host:pdp:reqGrp 2.7e-06 18.5428 1.778e-05 ***
Residuals 1.5e-07

TABLE II
ANALYSIS OF VARIANCE RELATING (MEASURED) SERVICE TIMES TO

EXPERIMENTAL FACTORS.

bear inisherk
1.8e-03 9.5e-04

rep 800 800

TABLE III
COMPARISON OF SERVICE TIMES FOR HOSTS ‘BEAR’ AND ‘INISHERK’.

Table V indicates that service times for ‘multi22’ requests
are slightly less than those for ‘single’ requests, but more
detailed study (i.e., white box testing) would be needed to
discover why this might be true.

Interestingly, service mean times differ greatly by decision,
with ‘NotApplicable’ decisions taking longer to make. This
suggests that (some) PDPs might “fall through” to that deci-
sion only if other decisions are not available. It also suggests
that there is a strong case for keeping policy sets up to date
to avoid such (long service time) edge cases.

We present the 2-level interaction results in Tables VII,
VIII and IX. Generally they confirm the overall main effects
analysis above, but there is one anomalous result in that the
mean service time for Enterprise XACML on ‘inisherk’ is
greater than it is on ‘bear’.

Summarising, collecting measurements from a balanced
full factorial design such as this can provide insight into
PDP performance because the researcher is able to control
experimental conditions in the testbed.

SunXacmlPDP EnterpriseXacmlPDP
1.5e-03 1.2e-03

rep 800 800

TABLE IV
COMPARISON OF SERVICE TIMES FOR PDPS ‘SUNXACMLPDP’ AND

‘ENTERPRISEXACMLPDP’.

single multi22
1.4e-03 1.3e-03

rep 800 800

TABLE V
COMPARISON OF SERVICE TIMES FOR REQUEST GROUPS ‘SINGLE’ AND

‘MULTI22’.

Deny NotApplicable Permit
1.3e-03 2.1e-03 1.1e-03

rep 1244 136 220

TABLE VI
COMPARISON OF SERVICE TIMES FOR DECISIONS ’DENY’ AND

’NOTAPPLICABLE’ AND ’PERMIT’.

PDP
SunXacmlPDP EnterpriseXacmlPDP

host bear 2.01e-03 1.56e-03
inisherk 1.05e-03 8.40e-04

TABLE VII
COMPARISON OF SERVICE TIMES FOR PDP:HOST INTERACTIONS.

C. Case study 2: Prediction

In this scenario, we model the case where the PDP has
reached a steady state (ρ = 0.5 is a constant), then 25%
of request types suddenly have triple (3×) their arrival rate,
which is maintained over a prolonged period and then returns
to its previous ρ = 0.5 level. Thus λ(overload) = 0.25(3 −
1)λ(base) = 0.5λ(base), so the overload factor is γ = 0.5.
While this is an idealised scenario, it might represent a
situation where there is a sudden rise in access control requests
on the hour as project groups attempt to initiate group chat
sessions across a matrix-structured organisation.

To make the scenario more concrete, we need to choose
how the additional requests are distributed across the clusters.
We consider two such request distributions: low where the
extra requests are skewed towards lower service times hence
the lower clusters, and high where they are skewed in the
opposite direction. For the free parameters in the model, we
choose

α
(overload:lo)
j =

n− j + 1∑n
i=1 i

α
(overload:hi)
j =

j∑n
i=1 i

(15)

Substituting Equations 14 and 15 in Equation 13 gives the
required explicit expression for the overload process contribu-
tions ρ(overload:lo) and ρ(overload:hi).

Request Group
single multi22

host bear 1.83e-03 1.75e-03
inisherk 9.70e-04 9.20e-04

TABLE VIII
COMPARISON OF SERVICE TIMES FOR REQUEST GROUP:HOST

INTERACTIONS.

Request Group
single multi22

host SunXacmlPDP 1.70e-03 1.36e-03
EnterpriseXacmlPDP 1.10e-03 1.30e-03

TABLE IX
COMPARISON OF SERVICE TIMES FOR REQUEST GROUP:PDP

INTERACTIONS.

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

seconds

Lo
ad

 fa
ct

or
 (

rh
o)

Fig. 6. Comparing server utilisation for 2 different overload request profiles.
Unfavourable (mostly high service time) overload requests: max(ρ) > 0.8.
Favourable (mostly low service time) overload requests: max(ρ) < 0.8.

The OPNET simulation model can also be extended to
include overload arrival profiles equivalent to Equations 13.
Note that the simulation (points) and explicit results (lines) in
Figure 6 agree well and that the distribution of overload re-
quests affects the overall load experienced by the PDP. Equiv-
alent plots for Enterprise XACML showed smaller differences
between the favourable and unfavourable overload request
profiles, due to that PDP’s different clustering behaviour.

VIII. SUMMARY AND FUTURE WORK

We identified the performance bottleneck in XACML-based
access control systems and built a measurement testbed to
perform quantitative performance and scalability experiments.
We collected timing measurements for a given policy set
and associated requests and clustered the service times to
create both a higher level analytical model and a more robust
discrete event simulation. We considered two scenarios: 1)
comparing two PDPs, studying the influence of the experi-
mental conditions and 2) using the measurement clusters to
predict performance for different overload conditions. Good
agreement between analytic and simulated approaches was
found, validating both approaches.

In future work, we wish to extend the testbed to introduce
stochastic request arrivals (at present, requests arrive on a
deterministic schedule). The resulting emulation data will
facilitate comparison with the simulation results. We also
wish to incorporate more realistic policy sets, request types
and request arrival schedules and thereby to investigate more
compelling scenarios.

ACKNOWLEDGMENTS

The authors acknowledge the contribution of Keith Griffin
and Ger Lawlor, Cisco Systems Inc., who helped clarify the
requirements for XACML server performance. The research
was funded by the Science Foundation Ireland “FAME” SRC,
grant 08/SRC/I1403 and by the EU FP7 Objective 1.4 Inte-
grated Project ANIKETOS, ref FP7-257930.

REFERENCES

[1] T. Moses. (2005, February) eXtensible Access Control Markup
Language TC v2.0 (XACML). OASIS. [Online]. Available: http://docs.
oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf

[2] D. Thakkar, A. E. Hassan, G. Hamann, and P. Flora, “A framework for
measurement based performance modeling,” in WOSP ’08: Proceedings
of the 7th international workshop on Software and performance. New
York, NY, USA: ACM, 2008, pp. 55–66.

[3] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies,” in
ICSE ’05: Proceedings of the 27th international conference on Software
engineering. New York, NY, USA: ACM, 2005, pp. 196–205.

[4] S. Davy, B. Jennings, and J. Strassner, “The policy continuum-Policy
authoring and conflict analysis,” Comput. Commun., vol. 31, no. 13, pp.
2981–2995, 2008.

[5] E. Martin, T. Xie, and T. Yu, “Defining and measuring policy coverage
in testing access control policies,” in Proc. 8th International Conference
on Information and Communications Security, 2006, pp. 139–158.

[6] V. C. Hu, E. Martin, J. Hwang, and T. Xie, “Conformance Checking
of Access Control Policies Specified in XACML,” in COMPSAC ’07:
Proceedings of the 31st Annual International Computer Software and
Applications Conference. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 275–280.

[7] S. Marouf, M. Shehab, A. Squicciarini, and S. Sundareswaran, “Statistics
& Clustering Based Framework for Efficient XACML Policy Evalu-
ation,” in POLICY ’09: Proceedings of the 2009 IEEE International
Symposium on Policies for Distributed Systems and Networks. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 118–125.

[8] P. L. Miseldine, “Automated XACML policy reconfiguration for
evaluation optimisation,” in SESS ’08: Proceedings of the fourth
international workshop on Software Engineering for Secure Systems.
Leipzig, Germany: ACM, 2008, pp. 1–8.

[9] A. X. Liu, F. Chen, J. Hwang, and T. Xie, “Xengine: a fast and scalable
XACML policy evaluation engine,” in Proceedings of the 2008 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems. New York, NY, USA: ACM, 2008, pp. 265–276.

[10] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query
rewriting techniques for fine-grained access control,” in SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM, 2004, pp. 551–562.

[11] H. Hamed and E. Al-Shaer, “Dynamic rule-ordering optimization for
high-speed firewall filtering,” in ASIACCS ’06: Proceedings of the
2006 ACM Symposium on Information, computer and communications
security. New York, NY, USA: ACM, 2006, pp. 332–342.

[12] V. Kolovski, J. Hendler, and B. Parsia, “Analyzing web access control
policies,” in WWW ’07: Proceedings of the 16th international conference
on World Wide Web. New York, NY, USA: ACM, 2007, pp. 677–686.

[13] F. Turkmen and B. Crispo, “Performance evaluation of XACML PDP
implementations,” in SWS ’08: Proceedings of the 2008 ACM workshop
on Secure web services. New York, NY, USA: ACM, 2008, pp. 37–44.

[14] B. Butler, B. Jennings, and D. Botivch, “XACML Policy Performance
Evaluation Using a Flexible Load Testing Framework,” in Proc. 17th
ACM Conference on Computer and Communications Security (CCS
2010). ACM, 2010, pp. 648–650, short paper.

[15] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2006, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[16] L. Kleinrock, Queueing Systems, Volume 1: Theory. Wiley-Interscience,
1975.

[17] Z. Wang. (2010, February) Enterprise Java XACML.
http://code.google.com/p/enterprise-java-xacml/wiki/DevelopmentPlan.
Last accessed 2010-04-19.

