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Abstract

We study integer sequences using methods from the theory of continued fractions, or-
thogonal polynomials and most importantly from the Riordan groups of matrices, the
ordinary Riordan group and the exponential Riordan group. Firstly, we will intro-
duce the Riordan group and their links through orthogonal polynomials to the Stieltjes
matrix. Through the context of Riordan arrays we study the classical orthogonal
polynomials, the Chebyshev polynomials. We use Riordan arrays to calculate determi-
nants of Hankel and Toeplitz-plus-Hankel matrices, extending known results relating
to the Chebyshev polynomials of the third kind to the other members of the family of
Chebyshev polynomials. We then define the form of the Stieltjes matrices of important
subgroups of the Riordan group. In the following few chapters, we develop the well es-
tablished links between orthogonal polynomials, continued fractions and Motzkin paths
through the medium of the Riordan group. Inspired by these links, we extend results
to the  Lukasiewicz paths, and establish relationships between Motzkin, Schröder and
certain  Lukasiewicz paths. We concern ourselves with the Binomial transform of inte-
ger sequences that arise from the study of  Lukasiewicz and Motzkin paths and we also
study the effects of this transform on lattice paths. In the latter chapters, we apply
the Riordan array concept to the study of sequences related to MIMO communica-
tions through integer arrays relating to the Narayana numbers. In the final chapter,
we use the exponential Riordan group to study the historical Euler-Seidel matrix. We
calculate the Hankel transform of many families of sequences encountered throughout.
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Notation

• R The set of real numbers.

• Z The set of integers.

• Z2 The integer lattice.

• Q The set of rational numbers.

• C The set of complex numbers.

• o.g.f . Ordinary generating function.

• e.g.f . Exponential generating function.

• c(x) The generating function of the sequence of Catalan numbers.

• cn The nth Catalan number.

• [xn]f(x) The coefficient of the xn term of the power series f(x).

• 0n The sequence 1, 0, 0, 0, . . . , with o.g.f. 1.

• f̄(x) or Rev(f(x)) The series reversion of the series f(x), where f(0) = 0.

• L A Riordan array.

• L The matrix with Ln,k = Ln+1,k.

• (g, f) An ordinary Riordan array.

• [g, f ] An exponential Riordan array.

• S The Stieltjes matrix.

• Hf The Hankel matrix of the coefficients of the power series f(x) where the (i, j)th

element of the power series ai+j = [xi+j ]f(x).

• L = LS The Stieltjes equation.

• B(n) The Sequence of Bell numbers.

• S(n,k) The Stirling numbers of the second kind.
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• Nm(n,k) The mth Narayana triangle, m = 0, 1, 2.

• (Axxxxxx) A-number. The On-line Encyclopedia of Integer Sequences (OEIS [124])
reference for an integer sequence.

• δ The Kronecker delta, δi,j =

{

1, if i = j
0, if i 6= j

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=Axxxxxx
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5.4 A bijection between certain Lukasiewicz and Motzkin paths . . . . . . . 123



CONTENTS 6

5.5 Lattice paths and exponential generating functions . . . . . . . . . . . 127

5.6 Lattice paths and reciprocal sequences . . . . . . . . . . . . . . . . . . 131

5.7 Bijections between Motzkin paths and constrained  Lukasiewicz paths . 141

6 Hankel decompositions using Riordan arrays 148

6.1 Hankel decompositions with associated tridiagonal Stieltjes matrices . . 149

6.2 Hankel matrices and non-tridiagonal Stieltjes matrices . . . . . . . . . . 159

6.2.1 Binomial transforms . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3 A second Hankel matrix decomposition . . . . . . . . . . . . . . . . . . 178

7 Narayana triangles 190

7.1 The Narayana Triangles and their generating functions . . . . . . . . . 190

7.2 The Narayana Triangles and continued fractions . . . . . . . . . . . . . 193

7.2.1 The Narayana triangle N1 . . . . . . . . . . . . . . . . . . . . . 195

7.2.2 The Narayana triangle N2 . . . . . . . . . . . . . . . . . . . . . 196

7.2.3 The Narayana triangle N3 . . . . . . . . . . . . . . . . . . . . . 197

7.3 Narayana polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8 Wireless communications 201

8.1 MIMO (multi-input multi-output) channels . . . . . . . . . . . . . . . . 202

8.2 The Narayana triangle N2 and MIMO . . . . . . . . . . . . . . . . . . . 207

8.2.1 Calculation of MIMO capacity . . . . . . . . . . . . . . . . . . . 208

8.3 The R Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



CONTENTS 7

9 The Euler-Seidel matrix 215

9.1 The Euler-Seidel matrix and Hankel matrix for moment sequences . . . 217

9.2 Related Hankel matrices and orthogonal polynomials . . . . . . . . . . 229

10 Conclusions and future directions 233

A Appendix 237

A.1 Published articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

A.1.1 Journal of Integer Sequences, Vol. 12 (2009), Article 09.5.3 . . . 237

A.1.2 Journal of Integer Sequences, Vol. 13 (2010), Article 10.9.4 . . . 238

A.1.3 Journal of Integer Sequences, Vol. 13 (2010), Article 10.8.2 . . . 239

A.1.4 Journal of Integer Sequences, Vol. 14 (2011), Article 11.3.8 . . . 240

A.1.5 Journal of Integer Sequences, Vol. 14 (2011), Article 11.8.2 . . . 241

A.2 Submitted articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A.2.1 Cornell University Library, arXiv:1101.2605 . . . . . . . . . . . 242



Chapter 1

Introduction

This thesis is concerned with the connection between Riordan arrays, continued Frac-
tions, orthogonal Polynomials and lattice paths. From the outset, the original ques-
tions proposed related to aspects of the algebraic structure of Hankel, Toeplitz and
Toeplitz-plus-Hankel matrices which are associated with random matrices, and how
such algebraic structure could be exploited to provide a more comprehensive analy-
sis of their behaviour? Matrices which could be associated with certain families of
orthogonal polynomials were of particular interest. We were concerned with how the
presence of algebraic structure was reflected in the properties of these polynomials.
The algebraic structure of interest was that of the Riordan group, named after the
combinatorialist John Riordan. Riordan was an American mathematician who worked
at Bell Labs for most of his working life. He had a strong influence on the develop-
ment of combinatorics. In 1989, The Riordan group, named in his honour, was first
introduced by Shapiro, Getu, Woan and Woodson in a seminal paper [119].

8



CHAPTER 1. INTRODUCTION 9

The Riordan group (exponential Riordan group) is a set of infinite lower
triangular matrices, where each matrix is defined by a pair of generating
functions

g(x) = g0 + g1x + g2x
2 + . . . (g(x) = g0 + g1

x

1!
+ g2

x2

2!
+ . . . ), g0 6= 0

f(x) = f1x + f2x
2 + . . . (f(x) = f1

x

1!
+ f2

x2

2!
+ . . . )

The associated matrix is the matrix whose kth column is generated by

g(x)f(x)k (g(x), f(x)
k

k!
). The matrix corresponding to the pair g, f is de-

noted (g, f)([g, f ]) and is called a (exponential) Riordan array.

Shapiro and colleagues Paul Peart and Wen-Jin Woan at Howard University Washing-
ton, continue to carry out research into Riordan arrays and their applications. Riordan
arrays are also an active area of research in the Universitá di Firenze in Italy, where
Renzo Sprugnoli maintains a bibliography [117] of Riordan arrays research. We will
introduce relevant results relating to the Riordan group in Chapter 2. In Chapter 3 we
classify important subgroups of the Riordan group using the production matrices of the
Riordan arrays. This preliminary classification of subgroups aids work in subsequent
chapters of this thesis.

As previously stated, original questions proposed related to aspects of the algebraic
structure of Hankel, Toeplitz and Toeplitz-plus-Hankel matrices which are associated
with random matrices. This led us to study the work of Estelle Basor and Thorsten
Ehrhardt [18]. Basor and Ehrhardt proved combinatorial identities relating to cer-
tain Hankel and associated Toeplitz-plus-Hankel matrices with a view to studying the
asymptotics of those matrices. Through the algebraic structure of Riordan arrays we
found a novel approach to developing these combinatorial identities. Using Riordan
arrays we extended similar results to the family of Chebyshev polynomials. Part of this
chapter has been submitted for publication [17]. A basis for this study is the Riordan
matrix representation of Chebyshev polynomials. We note that Chebyshev polynomi-
als recur in later chapters of this work, where again their links to Riordan arrays allow
us to find new results. Further research on Riordan arrays and orthogonal polynomi-
als resulted in the classification of Riordan arrays that determine classical orthogonal
polynomials [14].

Further to this, another question originally proposed involved investigating aspects
of random matrices with applications to the theory of communications. This was
with a view to classifying systems that exhibit special algebraic structures and the
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investigation of combinatorial aspects related to these algebraic structures. This work
is detailed in Chapter 8 and published in [13].

In the 1950’s Eugene P. Wigner (1902 - 1995), a Hungarian born physicist who received
the Nobel prize for physics in 1963, detailed the properties of an important set of
random matrices. Wigner used random matrices in an attempt to model the energy
levels of nuclear reactions in quantum physics. It was through the work of Wigner that
combinatorial identities in random matrices first emerged. Wigner’s work gave us one
of the most important results in the field of random matrices, the Wigner semi-circle
law:

Wigner’s semi-circle law states that for an ensemble of N×N real symmetric
matrices with entries chosen from a fixed probability density with mean 0
and variance 1, and finite higher moments. As N → ∞, for all A(in the
ensemble), µA,N(x), the eigenvalue probability distribution, converges to the
semi-circle density

2

π

√
1 − x2.

We note that the density function
√

1 − x2 is the weight function of the Chebyshev
polynomials of the second kind. We will see through the medium of Riordan arrays
how these Chebyshev polynomials relate to the Catalan numbers.
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The Catalan numbers is the sequence of numbers with first few elements
1, 1, 2, 5, 14 . . . , where the nth element, cn of the sequence is defined as

cn =
1

n + 1

(

2n
n

)

=
(2n)!

(n + 1)!n!
n > 0.

which satisfy the recurrence formula

cn+1 =
n
∑

i=1

cicn−i

The generating function for the Catalan numbers, C(x) is defined by

C(x) =
1 −

√
1 − 4x

2x
.

A summary of the properties of the Catalan numbers can be found
at http://www-math.mit.edu/ rstan/ec/catadd.pdf, “The Catalan adden-
dum”, which is maintained by Richard Stanley [136].

Although Wigner does not explicitly name the Catalan numbers in his related pa-
per [159], the Catalan numbers appear implicitly through his method of calculating
the moments by the trace formula

mk =
1

n
E[tr(Ak)].

In studying the trace of the matrix, Wigner eliminates non-relevant terms in the trace
and concentrates on the relevant sequences, which he calls type sequences. It is through
the type sequence that we see the appearance of the Catalan numbers. Wigner denotes
the type sequence, tv. He finds that

tv =

v
∑

k=1

tk−1tv−k

which is the recursive relationship for the Catalan numbers which we see written today
as

cn+1 =

n
∑

i=1

cicn−i.

http://www-math.mit.edu/~rstan/ec/catadd.pdf
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Figure 1.1: A Dyck path

In 1999, Emre Telatar [143], a researcher at Bell Labs, used the distribution associ-
ated to a particular random matrix family to calculate the capacity of multi-antenna
channels. In [13] we calculate the channel capacity of a MIMO channel using Narayana
polynomials which are formed from the Narayana triangle. Calculations in [13] draw
on classical results from random matrix theory, in particular from the work of Vladimir
Marchenko and Leonid Pastur [83].

The (n, k)th Narayana number, Nn,k is defined as

Nn,k =
1

k + 1

(

n
k

)(

n− 1
k

)

.

n
∑

k=0

Nn,k = cn+1

where cn+1 is the (n + 1)th Catalan number.

Further to this, Ioana Dimitriu [47] continued researching Wiger’s eigenvalue distribu-
tion and used this to establish combinatorial links to random matrix theory. Dimitriu
showed that the asymptotically relevant terms in the trace corresponded to Dyck paths.
Inspired by these links we extended our research to lattice paths.

This work on lattice paths was influenced by the far-reaching research carried out
by Xavier Viennot and Phillipe Flajolet. Both Viennot and Flajolet explored links
between orthogonal polynomials, continued fractions and various combinatorial inter-
pretations including lattice paths and integer partitions. Inspired by some of the work
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Figure 1.2: A  Lukasiewicz path

carried out by Viennot [151] and Flajolet [56, 55] and through the medium of Riordan
arrays we established links between orthogonal polynomials, continued fractions and
certain lattice paths. Chapter 5 examines these links between Riordan arrays, their
production matrices and associated lattice paths. A significant new result concerns
 Lukasiewicz paths and Riordan arrays possessing non-tridiagonal Stieltjes matrices.
This allowed us to extend to general Riordan arrays results normally studied in the
context of Riordan arrays with tridiagonal Stieltjes matrices. Riordan arrays having
tridiagonal Stieltjes matrices correspond to Motzkin and Dyck paths. We generalized
this fact to non-tridiagonal Stieltjes matrices in order to study the form of  Lukasiewicz
paths and to classify those paths that relate to general Riordan arrays. In studying
paths relating to both tridiagonal and non-tridiagonal Stieltjes matrices we established
relationships between various Motzkin and  Lukasiewicz paths which resulted in the
following bijections:

• The (2, 2)- Lukasiewicz path and the Schröder paths.

• The (1, 1)-Motzkin paths of length n and the (1, 0)- Lukasiewicz paths of length
n + 2.

• The Motzkin paths of length n with no level step on the x axis and the  Lukasiewicz
paths with no level steps.

Extending on the research presented in Chapter 5, in Chapter 6 we studied a decom-
position of Hankel matrices, using Riordan arrays which related to  Lukasiewicz paths.
Inspired by work carried out by Paul Peart and Wen-Jin Woan [103] we decomposed
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Hankel matrices in terms of Riordan arrays relating to  Lukasiewicz paths. Peart and
Woan decomposed Hankel matrices into Riordan arrays with tridiagonal Stieltjes matri-
ces. To begin, we related the Hankel decompositions from Peart and Woan to continued
fraction expansions, orthogonal polynomials and Motzkin paths. We then studied the
decomposition of Hankel matrices into Riordan arrays which related to non-tridiagonal
Stieltjes matrices and consequently to  Lukasiewicz paths. From this we established a
Riordan array decomposition relating  Lukasiewicz to Motkzin paths. Due to the in-
variance of the Hankel transform under the binomial transform, we studied the form
of certain continued fraction expansions of generating functions arising after applying
the binomial transform. We also explored the use of differential equations to study
 Lukasiewicz paths.

To conclude, and once again inspired by our interest in Hankel matrices, the final area
of research is that of the classical Euler matrices. We detailed the link between these
classical matrices and the Hankel matrices generated from the integer sequences that
form the Euler-Seidel matrix. Chapter 9 is based on a published paper [15], and extends
on these results.



Chapter 2

Preliminaries

In this chapter we review mainly known results related to integer sequences and Ri-
ordan arrays that will be referred to in the rest of the work. In the final section, we
explore links between Motzkin and  Lukasiewicz paths, Riordan arrays and orthogonal
polynomials.

2.1 Integer sequences and generating functions

Formal power series [55] extend algebraic operations on polynomials to infinite series
of the form

g = g(x) =

∞
∑

n=0

anx
n.

Let K(Z,Q,R,C) be a ring of coefficients. The ring of formal power series over K

is denoted by K[[x]] and is the set KN of infinite sequences of elements of K, with
operations

∞
∑

n=0

anx
n +

∞
∑

n=0

bnx
n =

∞
∑

n=0

(an + bn)xn,

∞
∑

n=0

anx
n

∞
∑

n=0

bnx
n =

∑

n

n
∑

k=0

(akbn−k)x
n.

15
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Definition 2.1.1. The ordinary generating function (o.g.f.) of a sequence an is the

formal power series

g(x) =

∞
∑

n=0

anx
n.

Example. The o.g.f. c(x) =
∑∞

n=0Cnx
n of the Catalan numbers Cn = 1

n+1

(

2n
n

)

is

given by

c(x) =
1 −

√
1 − 4x

2x

Definition 2.1.2. The exponential generating function (e.g.f.) of a sequence an is the

formal power series

g(x) =

∞
∑

n=0

an
xn

n!
.

Example. The e.g.f. of the quadruple factorial numbers (2n)!
n!

is given by

1√
1 − 4x

.

Definition 2.1.3. The bivariate generating functions (b.g.f.’s), either ordinary or ex-

ponential of an array an,k are the formal power series in two variables defined by

a(x, y) =
∑

n,k

an,kx
nyk (o.g.f.), (2.1)

=
∑

n,k

an,k
xn

n!
yk (e.g.f.). (2.2)

The Laplace transform allows us to relate an e.g.f. φ of a sequence to the corresponding

o.g.f. g(x). If we consider an e.g.f. φ(p) =
∑∞

k=0 ck
pk

k!
then the Laplace transform of

φ(p) allows us to find the o.g.f.:

F (x) =
1

x
g(

1

x
) =

∞
∑

k=0

ckx
−k−1 =

∞
∑

k=0

ck

∫ ∞

0

pke−px

k!
dp =

∫ ∞

0

e−pxφ(p) dp,

or

g(x) =
1

x

∫ ∞

0

e−p/xφ(p) dp.
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The coefficient of xn is denoted by [xn]g(x), and from the definition of the e.g.f., we
have n![xn]g(x) = [x

n

n!
]g(x). For example [xn] 1√

1−4x
=
(

2n
n

)

, the nth central binomial co-

efficient. Here, we use the operator [xn] to extract the nth coefficient of the power series
g(x) [88]. We adopt the notation 0n = [xn]1 for the sequence 1, 0, 0, 0, . . . (A000007).
The compositional inverse of a power series g =

∑

n=1 anx
n with a1 6= 0 is a series

f =
∑

n=1 bnx
n with b1 6= 0 such that f ◦ g(x) = f(g(x)) =

∑

n≥1 bn(g(x))n = x. We

refer to the inverse of f as the series reversion f̄ . We note that in some texts the series
reversion is referred to by the notation f<−1>. Lagrange inversion [55] provides a simple
method to calculate the coefficients of the series reversion.

Theorem 2.1.1. Lagrange Inversion Theorem [55, Theorem A.2]

Let φ(u) =
∑∞

k=0 φku
k be a power series of C[[u]] with φ0 6= 0. Then, the equation

y = zφ(y) admits a unique solution in C[[u]] whose coefficients are given by

y(z) =

∞
∑

n=1

ynz
n, yn =

1

n
[un−1]φ(u)n.

The Lagrange Inversion Theorem may be written as

[xn]G(f̄(x)) =
1

n
[xn−1]G′(x)

(

x

f(x)

)n

.

The simplest case is that of G(x) = x, in which we get

[xn]f̄(x) =
1

n
[xn−1]

(

x

f(x)

)n

.

Example. We have xc(x) = x(1 − x) and so we have

[xn]xc(x) =
1

n
[xn−1]

(

x

x(1 − x)

)n

=
1

n
[xn−1]

(

1

1 − x

)n

.

Thus,

[xn−1]c(x) =
1

n
[xn−1]

(

1

1 − x

)n

.

Changing n− 1 to n gives us

[xn]c(x) =
1

n + 1
[xn]

(

1

1 − x

)n+1

.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000007
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We thus have

[xn]c(x) =
1

n + 1
[xn]

(

1

1 − x

)n+1

=
1

n + 1

∞
∑

j=0

(−(n + j)

j

)

(−x)j

=
1

n + 1

∞
∑

j=0

(−(n + j) + j − 1

j

)

(−1)j(−x)j

=
1

n + 1

∞
∑

j=0

(

n + j

j

)

xj

=
1

n + 1

(

2n

n

)

.

We now look at [xn]c(x)k. For this, we use G(x) = xk with G′(x) = kxk−1 and apply
the Lagrange Inversion Theorem to

xc(x) = x(1 − x)(x).

Thus we have

[xn](xc(x))k = [xn−k]c(x)k

=
1

n
[xn−1]kxk−1

(

x

x(1 − x)

)n

=
1

n
[xn−1]kxk−1

(

1

1 − x

)n

.

Changing n− k to n gives us

[xn]c(x)k =
1

n + k
[xn+k−1]kxk−1

(

1

1 − x

)n+k

=
k

n + k

nk−1
∑

j=0

[xj ]xk−1[xn+k−1−j]

(

1

1 − x

)n+k

=
k

n + k
[xn+k−1−(k−1)]

(

1

1 − x

)n+k

=
k

n + k
[xn]

(

1

1 − x

)n+k

.



CHAPTER 2. PRELIMINARIES 19

Thus

[xn]c(x)k =
k

n + k
[xn]

(

1

1 − x

)n+k

.

We can simplify this using the Binomial Theorem. We get

[xn]c(x)k =
k

n + k
[xn]

(

1

1 − x

)n+k

=
k

n + k
[xn](1 − x)−(n+k)

=
k

n + k
[xn]

∞
∑

j=0

(−(n + k)

j

)

(−x)j

=
k

n + k
[xn]

∞
∑

j=0

(

n + k + j − 1

j

)

(−1)j(−x)j

=
k

n + k
[xn]

∞
∑

j=0

(

n + k + j − 1

j

)

xj

=
k

n + k

(

n + k + n− 1

n

)

=
k

n + k

(

2n + k − 1

n

)

.

Thus we get

[xn]c(x)k =
k

n + k
[xn]

(

1

1 − x

)n+k

=
k

n + k

(

2n + k − 1

n

)

.

Again, using Lagrange inversion, we have

[xn](xc(x))k =
1

n
k[xn−1]xk−1

(

1

1 − x

)n

.
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Thus

[xn](xc(x))k =
k

n
[xn−1]xk−1

(

1

1 − x

)n

=
k

n
[xn−1−k+1]

(

1

1 − x

)n

=
k

n
[xn−k]

(

1

1 − x

)n

=
k

n
[xn−k]

∞
∑

j=0

(−n

j

)

(−x)j

=
k

n

∞
∑

j=0

(

n + j − 1

j

)

xj

=
k

n

(

n + n− k − 1

n− k

)

=
k

n

(

2n− k − 1

n− k

)

=
k

n

n

2n− k

(

2n− k

n− k

)

=
k

2n− k

(

2n− k

n− k

)

.

Adjusting this term for the case of n = 0, k = 0, we get [70]

[xn](xc(x))k =
k + 0n+k

2n− k + 02n−k

(

2n− k

n− k

)

=
k + 0n+k

2n− k + 02n−k

(

2n− k

n

)

.

By changing x to x2 in the above, we can easily arrive at expressions for [xn]c(x2)k

(this will give us the aerated versions of the sequences above). We prefer to use the
Lagrange Inversion Theorem again.

Our starting point is the observation that

xc(x2) =
x

1 + x2
.

Thus we we have

[xn](xc(x2))k = [xn−k]c(x2)k =
1

n
[xn−1]kxk−1

(

x
1 + x2

x

)n

.
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Thus we have (changing n− k to n)

[xn]c(x2)k =
k

n + k
[xn+k−1]xk−1(1 + x2)n+k

=
k

n + k

n+k−1
∑

j=0

[xj ]xk−1[xn+k−1−j](1 + x2)n+k

=
k

n + k
[xn](1 + x2)n+k

=
k

n + k
[xn]

n+k
∑

j=0

(

n + k

j

)

x2j

=
k

n + k

(

n + k
n
2

)

1 + (−1)n

2
.

Thus we have

[xn]c(x2)k =
k

n + k
[xn](1 + x2)n+k =

k

n + k

(

n + k
n
2

)

1 + (−1)n

2
.

If the product of two power series f and g is 1 then f and g are termed reciprocal
sequences and satisfy the following. For o.g.f.’s we have [161]

Definition 2.1.4. A reciprocal series g(x) =
∑

n=0 anx
n with a0 = 1, of a series

f(x) =
∑

n=0 bnx
n with b0 = 1, is a power series where g(x)f(x) = 1, which can be

calculated as follows

∞
∑

n=0

anx
n = −

∞
∑

n=0

n
∑

i=1

bian−ix
n, a0 = 1 (2.3)

and for e.g.f.’s we have

Definition 2.1.5. A reciprocal series g(x) =
∑

n=0 an
xn

n!
with a0 = 1, of a power series

f(x) =
∑

n=0 bn
xn

n!
with b0 = 1, is a series where g(x)f(x) = 1, and can be calculated

as follows
∞
∑

n=0

an
xn

n!
= −

∞
∑

n=0

n
∑

i=1

(

n

k

)

bian−i
xn

n!
, a0 = 1. (2.4)
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2.2 The Riordan group

Riordan arrays give us an intuitive method of solving combinatorial problems, helping
to build an understanding of many number patterns. They provide an effective method
of proving combinatorial identities and solving numerical puzzles as in [86] rather than
using computer based approaches [87, 141]. Riordan arrays, named after the combina-
torist, John Riordan, 1 were first used in the 1990’s by Shapiro et al [119] as a method
of exploring combinatorial patterns in numbers of Pascal’s triangle. Shapiro saw the
natural extension of Pascal’s triangle due to its shape, to a lower triangular matrix,
making use of matrix representation of transformations on sequences, then using this
to explore patterns in the numbers of Pascal’s triangle. This has become a classical
example of a Riordan array. It was while exploring these extensions of Pascal’s tri-
angle that it was realized that Riordan arrays have a group structure. Along with
using Riordan arrays as a method of proving combinatorial identities [134] they have
also been used in performing combinatorial sum inversions [133, 88]. In the past few
years the idea of extending combinatorial theory to matrices as in Riordan arrays has
been extended to represent succession rules and the ECO method [135] which have
been translated into the notion of Production matrices [36]. Articles such as [37] have
investigated the relationship between production matrices and Riordan arrays. Links
between generating trees and Riordan matrices have also been explored [85].

The Riordan group [118, 131, 115, 134, 121, 35] is a set of infinite lower-triangular
integer matrices, where each matrix is defined by a pair of generating functions g(x) =
∑∞

n=0 gnx
n with g0 = 1 and f(x) =

∑∞
n=1 fnx

n with f1 6= 0 [131]. The associated ma-
trix is the matrix whose i-th column is generated by g(x)f(x)i (the first column being

indexed by 0). This modifies to g(x)f(x)
i

i!
when we are concerned with exponential gen-

erating functions, leading to the exponential Riordan group. The matrix corresponding
to the pair g, f is denoted by (g, f)(or [g, f ] in the exponential case). The group law is
then given by

(g, f) · (h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g◦ f̄), f̄)
where f̄ is the compositional inverse of f(f̄(x)) = f̄(f(x)).

If M is the matrix (g, f), and a = (a0, a1, . . .)
′ is an integer sequence with o.g.f. A

1John Riordan spent much of his life working at Bell Laboratories(Bell Labs). His published

work includes “An Introduction to Combinatorics” published in 1978 and Combinatorial Identities,

published in 1968.
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(x), then the sequence Ma has o.g.f. g(x)A(f(x)). The (infinite) matrix (g, f) can
thus be considered to act on the ring of integer sequences ZN by multiplication, where
a sequence is regarded as a (infinite) column vector. We can extend this action to the
ring of power series Z[[x]] by

(g, f) : A(x) 7→ (g, f) · A(x) = g(x)A(f(x)).

This result is called the fundamental theorem of Riordan arrays(FTRA).

Example. For ordinary generating functions, the so-called binomial matrix B is the

element ( 1
1−x

, x
1−x

) of the Riordan group. It has general element
(

n
k

)

, and hence as an

array coincides with Pascal’s triangle. More generally, Bm is the element ( 1
1−mx

, x
1−mx

)

of the Riordan group, with general term
(

n
k

)

mn−k. It is easy to show that the inverse

B−m of Bm is given by ( 1
1+mx

, x
1+mx

).

Example. For exponential generating functions, the binomial matrix B is the element

[ex, x] of the Riordan group which as above, coincides with Pascal’s triangle. More

generally, Bm is the element [emx, x] of the Riordan group. It is easy to show that the

inverse B−m of Bm is given by [e−mx, x].

Multiplication of a matrix in the Riordan group by the binomial matrix (inverse Bi-
nomial matrix) is what we will refer to as the Binomial transform (inverse Binomial
tranform). In other words, BA will be called the binomial transform of A.

Example. If an has g.f. g(x), then the g.f. of the sequence

bn =

⌊n
2
⌋

∑

k=0

an−2k

is equal to
g(x)

1 − x2
=

(

1

1 − x2
, x

)

· g(x).

The row sums of the matrix (g, f) have g.f.

(g, f) · 1

1 − x
=

g(x)

1 − f(x)
,
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

−→

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 2.1: Pascal’s triangle as a element of the Riordan group

while the diagonal sums of (g, f) (sums of left-to-right diagonals in the north east direc-
tion) have g.f. g(x)/(1−xf(x)). These coincide with the row sums of the “generalized”
Riordan array (g, xf). Thus the Fibonacci numbers Fn+1 are the diagonal sums of the
binomial matrix B given by

(

1
1−x

, x
1−x

)

:























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .























while they are the row sums of the “generalized” or “stretched” (using the nomenclature

of [32] ) Riordan array
(

1
1−x

, x2

1−x

)

:























1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 4 3 0 0 0 . . .
...

...
...

...
...

...
. . .























.
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We often work with “generalized” Riordan arrays, where we relax some of the con-
ditions above. Thus for instance [32] discusses the notion of the “stretched” Riordan
array. In this note, we shall encounter “vertically stretched” arrays of the form (g, h)
where now h0 = h1 = 0 with h2 6= 0. Such arrays are not invertible, but we may ex-
plore their left inversion. In this context, standard Riordan arrays as described above
are called “proper” Riordan arrays. We note for instance that for any proper Riordan
array (g, f), its diagonal sums are just the row sums of the vertically stretched array
(g, xf) and hence have g.f. g/(1 − xf).

Each Riordan array (g(x), f(x)) has bivariate g.f. given by

g(x)

1 − yf(x)
.

For instance, the binomial matrix B has g.f.

1
1−x

1 − y x
1−x

=
1

1 − x(1 + y)
.

Similarly, exponential Riordan arrays [g(x), f(x)] have bivariate e.g.f. given by g(x)eyf(x).

For a sequence a0, a1, a2, . . . with g.f. g(x), the “aeration” of the sequence is the
sequence a0, 0, a1, 0, a2, . . . with interpolated zeros. Its g.f. is g(x2). The sequence
a0, a0, a1, a1, a2, . . . is called the “doubled” sequence. It has g.f. (1 + x)g(x2). The
aeration of a matrix M with general term mi,j is the matrix whose general term is
given by

mr
i+j

2
, i−j

2

1 + (−1)i−j

2
,

where mr
i,j is the i, j-th element of the reversal of M:

mr
i,j = mi,i−j.

In the case of a Riordan array, the row sums of the aeration are equal to the diagonal
sums of the reversal of the original matrix.

Example. The Riordan array (c(x2), xc(x2)) is the aeration of (c(x), xc(x)). Here

c(x) =
1 −

√
1 − 4x

2x
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is the g.f. of the Catalan numbers. The reversal of (c(x), xc(x)) is the matrix with

general element

[k ≤ n + 1]

(

n + k

k

)

n− k + 1

n + 1
,

which begins



































1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 2 2 0 0 0 . . .

1 3 5 5 0 0 . . .

1 4 9 14 14 0 . . .

1 5 14 28 42 42 . . .
...

...
...

...
...

...
. . .



































.

This is the Catalan triangle, A009766. Then (c(x2), xc(x2)) has general element

(

n + 1
n−k
2

)

k + 1

n + 1

(1 + (−1)n−k

2
,

and begins


































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

0 2 0 1 0 0 . . .

2 0 3 0 1 0 . . .

0 5 0 4 0 1 . . .
...

...
...

...
...

...
. . .



































.

This is the “aerated” Catalan triangle, A053121. Note that

(c(x2), xc(x2)) =

(

1

1 + x2
,

x

1 + x2

)−1

.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A009766
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A053121
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We note that the diagonal sums of the reverse of (c(x), xc(x)) coincide with the row

sums of (c(x2), xc(x2)), and are equal to the central binomial coefficients
(

n
⌊n
2
⌋
)

A001405.

2.3 Orthogonal polynomials

Orthogonal polynomials [27, 51, 63, 142, 144, 106] permeate many areas of mathematics
which include algebra, combinatorics, numerical analysis, operator theory and random
matrices. The study of classic orthogonal polynomials dates back to the 18th century.
By an orthogonal polynomial sequence (pn(x))n≥0 we shall understand an infinite se-
quence of polynomials pn(x) where n ≥ 0, with real coefficients (often integer coeffi-
cients) that are mutually orthogonal on an interval [x0, x1] (where x0 = −∞ is allowed,
as well as x1 = ∞), with respect to a weight function w : [x0, x1] → R :

∫ x1

x0

pn(x)pm(x)w(x) dx = δnm
√

hnhm,

where
∫ x1

x0

p2n(x)w(x) dx = hn.

We assume that w is strictly positive on the interval (x0, x1). Referring to Favard’s
theorem [27], every such sequence obeys a so-called “three-term recurrence” :

pn+1(x) = (anx + bn)pn(x) − cnpn−1(x)

for coefficients an, bn and cn that depend on n but not x. We note that if

pj(x) = kjx
j + k′

jx
j−1 + . . . j = 0, 1, . . .

then

an =
kn+1

kn
, bn = an

(

k′
n+1

kn+1

− k′
n

kn

)

, cn = an

(

kn−1hn

knhn−1

)

.

Since the degree of pn(x) is n, the coefficient array of the polynomials is a lower tri-
angular (infinite) matrix. In the case of monic orthogonal polynomials the diagonal
elements of this array will all be 1. In this case, we can write the three-term recurrence
as

pn+1(x) = (x− βn)pn(x) − αnpn−1(x), p0(x) = 1, p1(x) = x− β0.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001405
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The moments associated to the orthogonal polynomial sequence are the numbers

µn =

∫ x1

x0

xnw(x) dx.

Theorem 2.3.1. [27, Theorem 3.1] A necessary and sufficient condition for the exis-

tence of an orthogonal polynomial sequence is

∆n = det(µi+j)
n
i,j≥0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
... . . .

...

µn µn+1 . . . µ2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0, n ≥ 0.

The matrix of moments above is a Hankel matrix, a matrix where the entry µn,k =
µn+k. We will refer to the Hankel transform of a matrix which is the integer sequence
generated by the successive Hankel determinants of a Hankel matrix. We can find
pn(x), αn and βn from a knowledge of these moments. To do this, let ∆n,x be the same
determinant as above, but with the last row replaced by 1, x, x2, . . . thus

∆n,x =

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ0 µ1 . . . µn

µ1 µ2 . . . µn+1
...

... . . .
...

1 x . . . xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then

pn(x) =
∆n,x

∆n−1
.

More generally, we let H

(

u1 . . . uk

v1 . . . vk

)

be the determinant of Hankel type with

(i, j)-th term µui+vj . That is

H

(

u1 . . . uk

v1 . . . vk

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

µu1+v1 µu1+v2 . . . µu1+vk

µu2+v1 µu2+v2 . . . µu2+vk
...

... . . .
...

µuk+v1 µuk+v2 . . . µuk+vk

∣

∣

∣

∣

∣

∣

∣

∣

∣

Let

∆n = H

(

0 1 . . . n
0 1 . . . n

)

, ∆′ = H

(

0 1 . . . n− 1 n
0 1 . . . n− 1 n + 1

)

.
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Then we have

βn =
∆′

n

∆n
− ∆′

n−1

∆n−1
, αn =

∆n−2∆n

∆2
n−1

.

and the coefficient of xn−1 in pn(x) is −(β0 + β1 + β2 + · · · + βn).

Consider the three-term recurrence equation associated to the family of orthogonal
polynomials {pn(x)}n≥0:

pn+1(x) = (x− βn)pn(x) − αnpn−1(x).

Rearranging, this gives us

xpn(x) = αnpn−1(x) + βnpn(x) + pn+1(x),

expanding for the first few n we have

xp0(x) = α0p−1(x) + β0p0(x) + p1(x),

xp1(x) = α1p0(x) + β1p1(x) + p2(x),

xp2(x) = α2p1(x) + β2p2(x) + p3(x),

· · ·
where p−1(x) = 0. Hence we get the following matrix equation

x











p0
p1
p2
...











=











β0 1
α1 β1 1

α2 β2 1
. . .





















p0
p1
p2
...











.

Thus the matrix

J =











β0 1
α1 β1 1

α2 β2 1
. . .











represents multiplication by x on the space of polynomials, when we use the family
{pn(x)}n≥0 as a basis.

We have

pn(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 − x 1
α1 β1 − x 1

α2 β2 − x 1
. . .

αn βn − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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that is, pn(x) is the characteristic polynomial of the n-th principal minor of J .

Example. The Chebyshev polynomials of the second kind, pn(x) = sin(n+1)θ
sin θ

, x =

cos θ, are orthogonal polynomials with respect to the weight
√

1 − x2 on the interval

(-1,1). They obey the three term recurrence

pn+1(x) = 2xpn(x) − pn−1(x)

and the associated monic polynomials have the associated infinite tridiagonal matrix

J =



































0 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

0 1 0 1 0 0 . . .

0 0 1 0 1 0 . . .

0 0 0 1 0 1 . . .

0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .



































.

2.4 Continued fractions and the Stieltjes matrix

Two types of continued fraction which can be used to define formal power series are the
Jacobi (J-fraction) continued fraction and the Stieltjes (S-fraction) continued fraction.
The J-fraction expansion for a power series f(x) =

∑∞
n=0 anx

n has the form

1

1 − β0x− α1x
2

1 − β1x− α2x
2

1 − β2x− α3x
2

. . .

, (2.5)
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and S-fraction expansion has the form

∞
∑

n=0

anx
n =

1

1 − α1x
2

1 − α2x
2

1 − α3x
2

. . .

. (2.6)

At this point we note an important result due to Heilermann [76] which relates con-
tinued fractions, as defined above, and orthogonal polynomials which we introduced in
section 2.3.

Theorem 2.4.1. [76, Theorem 11] Let (an)n≥0 be a sequence of numbers with g.f.
∑∞

n=0 anx
n written in the form of

∞
∑

n=0

anx
n =

a0

1 − β0x−
α1x

2

1 − β1x−
α2x

2

. . .

.

Then the Hankel determinant hn of order n of the sequence (an)n≥0 is given by

hn = an0α
n−1
1 αn−2

2 . . . α2
n−1αn = an0

n
∏

k=1

αn−k
k

where the sequences {αn}n≥1 and {βn}n≥0 are the coefficients in the recurrence relation

Pn(x) = (x− βn)Pn−1(x) − αnPn−2(x), n = 1, 2, 3, 4, . . .

of the family of orthogonal polynomials Pn for which an forms the moment sequence.

The Hankel determinant [76] in the theorem above is a determinant of a matrix which
has constant entries along antidiagonals. We previously encountered this matrix form
in section 2.3, as the matrix of moments of orthogonal polynomials. The determinant
has the form

det0≤i,j≤n(ai+j).
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The sequence of these determinants is known as the Hankel transform of an and these
determinants have been well studied due to the connection to both continued fractions
and orthogonal polynomials [12, 33, 78, 109], both links arising from the above theorem.

Now, we introduce another theorem giving a matrix expansion relating to the coeffi-
cients of the J-fraction [156].

Theorem 2.4.2. Stieltjes expansion theorem [156, Theorem 53.1]

The coefficients in the J-fraction

1

β0 + x−
α1

β1 + x−
α2

β2 + x−
α3

. . .

and its power series expansion

P

(

1

x

)

=

∞
∑

p=0

(−1)pcp
xp+1

are connected by the relations

cp+q = ko,pko,q + a1k1,pk1,q + a1a2k2,pk2,q + . . .

where

k0,0 = 1, kr,s = 0 if r > s

and where the kr,s for s ≥ r are given recurrently by the matrix equation
















k0,0 0 0 0 . . .

k0,1 k1,1 0 0 . . .

k0,2 k1,2 k2,2 0 . . .
...

...
...

...
. . .

































β1 1 0 0 . . .

α1 β2 1 0 . . .

0 α2 β3 1 . . .
...

...
...

...
. . .

















=

















k0,1 k1,1 0 0 . . .

k0,2 k1,2 k2,2 0 . . .

k0,3 k1,3 k2,3 k3,3 . . .
...

...
...

...
. . .

















.
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Relating this back to theorem 2.4.1, the link between continued fractions and orthog-
onal polynomials can be seen once again, as we see the appearance of the tridiagonal
matrix relating to orthogonal polynomials, which we introduced in section 2.3. Note
in the theorem above, we obtain the form of the J-fraction in Theorem (2.4.1) if we
replace the variable x by 1

x
and divide by x.

In the context of Riordan arrays, we see the Stieltjes Expansion Theorem in [103],
defined as follows

Definition 2.4.1. Let L = (lnk)n,k≥0 be a lower triangular matrix with li,i = 1 for all

i ≥ 0. The Stieltjes matrix SL associated with L is given by SL = L−1L where L is

obtained from L by deleting the first row of L, that is, the element in the nth row and

kth column of L is given by ln,k = ln+1,k

Using the definition of the Stieltjes matrix above [103] leads to the following theorem
relating the Riordan matrix to a Hankel matrix with a particular decomposition

Theorem 2.4.3. [103, Theorem 1] Let H = (hnk)n,k≥0 be the Hankel matrix generated

by the sequence 1, a1, a2, a3, . . . Assume that H = LDU where

L = (lnk)n,k≥0 =





























1 0 0 0 . . .

l1,0 l1,0 0 0 . . .

l2,0 l2,1 1 0 . . .

l3,0 l3,1 l3,2 1 . . .

l4,0 l4,1 l4,2 l4,3 . . .

. . . . . . . . . . . . . . .





























,

D =























d0 0 0 0 . . .

0 d1 0 0 . . .

0 0 d2 0 . . .

0 0 0 d3 . . .
...

...
...

...
...























, di 6= 0, U = LT
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Then the Stieltjes matrix SL is tridiagonal, with the form




























β0 1 0 0 0

α1 β1 1 0 . . .

0 α2 β2 1 . . .

0 0 α3 β3 . . .

0 0 0 α4 . . .
...

...
...

...
. . .





























,

where

β0 = a1, α1 = d1, βk = lk+1,k − lk,k+1, αk+1 =
dk+1

dk
, k ≥ 0.

Now, we state two other relevant results from this paper, relating to generating func-
tions which satisfy particular Stieltjes matrices. The first result relates to o.g.f.’s.

Theorem 2.4.4. [103, Theorem 2] Let H be the Hankel matrix generating by the

sequence 1, a1, a2, . . . and let H = LDLT. Then SL has the form




























a1 1 0 0 . . .

α1 β 1 0 . . .

0 α β 1 . . .

0 0 α β . . .

0 0 0 α . . .
...

...
...

...
. . .





























,

if and only if the o.g.f. g(x) of the sequence 1, a1, a2, . . . is given by

g(x) =
1

1 − a1x− α1xf

where

f = x(1 + βf + αf 2).
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Peart and Woan [103] offer a proof of this in terms of the nth row of the Riordan
matrix. However the result can be deduced if we refer back to Theorem [76] relating
to J - fractions. Referring to Theorem [76] the Stieltjes matrix above has the related
J-fraction

g(x) =
1

1 − a1x− α1x
2

1 − βx− αx2

. . .

.

Now letting

f(x) =
x

1 − βx− αx2

1 − βx− αx2

. . .

,

we have

g(x) =
1

1 − a1x− α1xf(x)
.

Solving both equations above give us the required result. Similarly for e.g.f.’s we have
the following result

Theorem 2.4.5. [103, Theorem 3] Let H be the Hankel matrix generated by the se-

quence 1, a1, a2, . . . and let H = LDLT . Then SL has the form





























β0 1 0 0 . . .

α1 β1 1 0 . . .

0 α2 β2 1 . . .

0 0 α3 β3 . . .

0 0 0 α4 . . .
...

...
...

...
. . .





























,

if and only if the e.g.f. g(x) of the sequence 1, a1, a2, . . . is given by

g(x) =

∫

(a1 − α1f)dx, g(0) = 1
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where
df

dx
= 1 + βf + αf 2, f(0) = 0.

The proof again in [103] involves looking at the form of the nth column of the Riordan
array. However, intuitively this result can be seen from looking at the form of the
matrix equation L = LS. In the case that L = [g(x), f(x)] is an exponential Riordan
array, we have the following

Proposition 2.4.6. L = d
dx

(L) .

Proof.

d

dx

( ∞
∑

n=0

gn(x)
xn

n!

)

=

∞
∑

n=1

gn(x)
xn−1

(n− 1)!
=

∞
∑

n=0

gn+1(x)
xn

(n)!

Equating the first columns of matrices L and LS we have

d

dx
(g(x)) = β0g(x) + α1g(x)f(x)

and second columns equate to

d

dx
(f(x)) = β1f(x) + α2f(x)2.

which gives us the required result.

The Stieltjes matrix as we have seen above is a tridiagonal infinite matrix which is
associated with orthogonal polynomials. However in the context of the Riordan group,
we are concerned with general polynomials, and therefore have a generalization of the
Stieltjes matrix to the Riordan group. Referred to as a production matrix [36, 37], it
is defined in the following terms.
Let P be an infinite matrix (most often it will have integer entries). Letting r0 be the
row vector

r0 = (1, 0, 0, 0, . . .),

we define ri = ri−1P where i ≥ 1. Stacking these rows leads to another infinite matrix
which we denote by AP. Then P is said to be the production matrix for AP.
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If we let
uT = (1, 0, 0, 0, . . . , 0, . . .)

then we have

AP =











uT

uTP
uTP2

...











and
DAP = APP

where D = (δi,j+1)i,j≥0. In [103, 115] P is called the Stieltjes matrix associated to AP.
The sequence formed by the row sums of AP often has combinatorial significance and
is called the sequence associated to P. Its general term an is given by an = uTPne
where

e =











1
1
1
...











In the context of ordinary Riordan arrays, the production matrix associated to a proper
Riordan array takes on a special form :

Proposition 2.4.7. [37] Let P be an infinite production matrix and let AP be the

matrix induced by P. Then AP is an (ordinary) Riordan matrix if and only if P is of

the form

P =



































ξ0 α0 0 0 0 0 . . .

ξ1 α1 α0 0 0 0 . . .

ξ2 α2 α1 α0 0 0 . . .

ξ3 α3 α2 α1 α0 0 . . .

ξ4 α4 α3 α2 α1 α0 . . .

ξ5 α5 α4 α3 α2 α1 . . .
...

...
...

...
...

...
. . .



































Moreover, columns 0 and 1 of the matrix P are the Z- and A-sequences, respectively,

of the Riordan array AP.
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We now introduce two results [36, 37, 35] concerning matrices that are production
matrices for ordinary and exponential Riordan arrays which help us to recapture a
knowledge of the Riordan array from the Stieltjes (production) matrices.

Proposition 2.4.8. Let P be a Riordan production matrix and let Z(x) and A(x) be

the generating functions of its first two columns, respectively. Then the bivariate g.f.

G(t, x) of the matrix AP induced by P and the g.f. fP (x) of the sequence induced by P

are given by

GP (t, x) =
g(x)

1 − txf(x)
, fP (x) =

g(x)

1 − xf(x)
, (2.7)

where h(x) is determined from the equation

f(x) = A(xf(x)) (2.8)

and g(x) is given by

g(x) =
1

1 − xZ(xf(x))
. (2.9)

As a consequence

A(x) =
x

f̄(x)

and

Z(x) =
1

f̄(x)

(

1 − 1

g(f̄(x))

)

Proposition 2.4.9. [37, Proposition 4.1] [35] Let L = (ln,k)n,k≥0 = [g(x), f(x)] be an

exponential Riordan array and let

c(y) = c0 + c1y + c2y
2 + . . . , r(y) = r0 + r1y + r2y

2 + . . . (2.10)

be two formal power series that that

r(f(x)) = f ′(x) (2.11)

c(f(x)) =
g′(x)

g(x)
. (2.12)
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Then

(i) ln+1,0 =
∑

i

i!ciln,i (2.13)

(ii) ln+1,k = r0ln,k−1 +
1

k!

∑

i≥k

i!(ci−k + kri−k+1)ln,i (2.14)

or, assuming ck = 0 for k < 0 and rk = 0 for k < 0,

ln+1,k =
1

k!

∑

i≥k−1

i!(ci−k + kri−k+1)ln,i. (2.15)

Conversely, starting from the sequences defined by (2.10), the infinite array (ln,k)n,k≥0

defined by (2.15) is an exponential Riordan array.

A consequence of this proposition is that the production matrix P = (pi,j)i,j≥0 for an
exponential Riordan array obtained as in the proposition satisfies [37, 35]

pi,j =
i!

j!
(ci−j + jri−j+1) (c−1 = 0).

Furthermore, the bivariate e.g.f.

φP (t, x) =
∑

n,k

pn,kt
kx

n

n!

of the matrix P is given by

φP (t, x) = etx(c(x) + tr(x)),

where we have
r(x) = f ′(f̄(x)), (2.16)

and

c(x) =
g′(f̄(x))

g(f̄(x))
. (2.17)
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2.5 Lattice paths

A lattice path [79] is a sequence of points in the integer lattice Z2. A pair of consecutive
points is called a step of the path. A valuation is an integer function on the set of
possible steps of Z2 × Z2. A valuation of a path is the product of the valuations of its
steps. We concern ourselves with two types of paths, Motzkin paths and  Lukasiewicz
paths [151], which are defined as follows:

Definition 2.5.1. A Motzkin path [78] π = (π(0), π(1), . . . , π(n)), of length n, is a

lattice path starting at (0, 0) and ending at (n, 0) that satisfies the following conditions

1. The elementary steps can be north-east(N-E), east(E) and south-east(S-E).

2. Steps never go below the x axis.

Example. The four Motzkin paths for n = 3 are

x

y

x

y

x

y

x

y

Motzkin paths are counted by the Motzkin numbers, which have the g.f.

1 − x−
√

1 − 2x− 3x2

2x2
.

Dyck paths are Motzkin paths without the possibility of an East step.

Definition 2.5.2. A  Lukasiewicz path [78] π = (π(0), π(1), . . . , π(n)), of length n, is a

lattice path starting at (0, 0) and ending at (n, 0) that satisfies the following conditions
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1. The elementary steps can be north-east(N-E) and east(E) as those in Motzkin

paths.

2. South-east(S-E) steps from level k can fall to any level above or on the x axis,

and are denoted as αn,k, where n is the length of the south-east step and k is the

level where the step ends.

3. Steps never go below the x axis.

Example. The five  Lukasiewicz paths for n = 3 are

x

y

x

y

x

y

x

y

x

y

Theorem 2.5.1. [79, Theorem 2.3] Let

µn =
∑

π∈M
v(π)

where the sum is over the set of Motzkin paths π = (π(0)....π(n)) of length n. Here

π(j) is the level after the jth step, and the valuation of a path is the product of the

valuations of its steps v(π) =
∏n

i=1 vi where

vi = v(π(i− 1), π(i)) =



















1 if the ith step rises

βπ(i−1) if the ith step is horizontal

απ(i−1) if the ith step falls
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1

level i βπ(i−1)

απ(i−1)

Then the g.f. of the sequence µn is given by

M(x) =
∞
∑

n=0

µnx
n.

A continued fraction expansion of the g.f. is then

M(x) =
1

1 − β0x−
α1x

2

1 − β1x−
α2x

2

1 − β2x−
α3x

2

. . .

.

Example. A counting of a Motzkin path

x

β1

β2
α3

α2

α1

y

v(π) = β1β2α1α2α3
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Similarly for Dyck paths we have

Theorem 2.5.2. Let

µn =
∑

π∈D
v(π)

where the sum is over the set of Dyck paths π = (π(0)....π(n)) of length n. Here π(j) is

the level after the jth step, and the valuation of a path is the product of the valuations

of its steps v(π) =
∏n

i=1 vi where

vi = v(π(i− 1), π(i)) =







1 if the ith step rises

απ(i−1) if the ith step falls

1

level i

απ(i−1)

Then the g.f. of the sequence µn is given by

D(x) =

∞
∑

n=0

µnx
n.

A continued fraction expansion of the g.f. is then

D(x) =
1

1 −
α1x

2

1 −
α2x

2

1 −
α3x

2

. . .

.

Example. A counting of a Dyck path
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x

α3

α2 α2

α1

y

v(π) = α1α
2
2α3

M(x) corresponds to the J-fraction and D(x) corresponds to the S-fraction as in eq.
(2.5) and eq. (2.6) respectively.

Let
µn,k =

∑

π∈Mn,k

v(π)

where Mn,k is the set of Motzkin paths of length n from level 0 to level k, and v(π) is
the valuation of the path as in Theorem 2.5.1. Now, [56] defines vertical polynomials
Vn(x) by

Vn(x) =
n
∑

i=0

µn,ix
i

so we now introduce the following theorem:

Theorem 2.5.3. [151, Chapter 3, Proposition 7] Let {Pn(x)}n≥0 be a set of polyno-

mials satisfying the three term recurrence

Pn(x) = (x− βn)Pn−1(x) − αnPn−2(x) n = 1, 2, 3, 4, . . .

The vertical polynomials {Vn(x)}n≥0 are the inverse of the orthogonal polynomials

{Pn(x)}n≥0.

This means that the matrix P = (pn,k)0≤k≤n is the inverse of the matrix V = (µn,k)0≤k≤n.
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Example.

C(x) =
1

1 − x−
x2

1 − 2x−
x2

1 − 2x−
x2

. . .

.

The first few rows of P are























1 0 0 0 . . .

−1 1 0 0 . . .

1 −3 1 0 . . .

−1 6 −5 1 . . .
...

...
...

...
. . .























which is the Riordan array
(

1

1 + x
,

x

(1 + x)2

)

,

with inverse matrix (µn,k)0≤k≤n























1 0 0 0 . . .

1 1 0 0 . . .

2 3 1 0 . . .

5 9 5 1 . . .
...

...
...

...
. . .























,

which is the Riordan array
(

c(x), c(x) − 1

)

.

To verify that µ3,1 = 9, we sum the weights of the following paths
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x

1·
1· 1

y

x

1· 2· 2

y

x
1· 1· 2

y

x
1· 1· 1

y

x

1· 1· 1

y

Thus we have µ3,1 = 1 + 4 + 2 + 1 + 1 = 9.

We return to a theorem introduced previously [103], in which the Riordan array

L = (ln,k)n,k≥0



















1 0 0 0 0 . . .
l1,0 1 0 0 0 . . .
l2,0 l2,1 1 0 0 . . .
l3,0 l3,1 l3,2 1 0 . . .
l4,0 l4,1 l4,2 l4,3 1 . . .
...

...
...

...
...

. . .



















was shown to satisfy the equations

ln,0 = β0ln−1,0 + α1ln−1,1,

and
ln,k = ln−1,k−1 + βkln−1,k + αkln−1,k+1. (2.18)

We now understand this equation in terms of Motzkin paths.

1. ln−1,k−1 −→ ln,k requires an added north-east(N-E) step at the end of each path
with the path value unchanged as the N-E step is 1.

2. ln−1,k+1 −→ ln,k requires an added south-east(S-E) step at the end of each path,
changing the path value by αk, the value defined in Theorem 2.5.1 for each S-E
step.
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3. ln−1,k −→ ln,k requires an added east(E) step at the end of each path, changing
the path value by βk, the value defined in Theorem 2.5.1 for each E step.

Example. Here we use the Riordan array, ( c(x)−1
x

, xc(x) − 1) to illustrate.

L =





























1 0 0 0 0 . . .

2 1 0 0 0 . . .

5 4 1 0 0 . . .

14 14 6 1 1 . . .

42 48 27 8 1 . . .
...

...
...

...
...

. . .





























.

We calculate l4,1 using eq. (2.18) above, thus

l4,1 = l3,0 + 2l3,1 + l3,2.

We note that the level steps have weight two which can be seen from the continued

fraction expansion of the g.f. of the Catalan numbers which has the form

c(x) − 1

x
=

1

1 − 2x−
x2

1 − 2x−
x2

1 − 2x−
x2

. . .

.

We now count each of the Motzkin paths l3,0, l3,1, l3,2, and adjust each path according to

the steps laid out above. Each adjustment to the lattice path is highlighted in red.

Firstly, the paths below are those of length three and final level zero, l3,0, and an added

N-E step of weight one.
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x

1 ·1 ·2 ·1

y

x

1
·2 ·1 ·1

y

x
2· 1· 1· 1

y

x
2 · 2 · 2

·1

y

We now look at the paths of length three and final level one l3,1, and an added E step

of weight two.

x
2

·1 ·2 ·2
y

x
2 · 2· 1· 2

y

x

1· 2 · 2 ·2
y

x

1 · 1· 1·
2

y

x

1· 1· 1
·2

y

Finally, the paths below are those of length three and final level two, l3,2, and an added

S-E step of weight one.

x

1· 2· 1· 1
y

x

1·
1· 2 ·1

y

x
2·

1 · 1
·1

y

Summing over all paths above gives

l4,1 = l3,0 + 2l3,1 + l3,2 = 14 + 2(14) + 6 = 48.



Chapter 3

Chebyshev Polynomials

In this chapter we introduce the Chebyshev polynomials named after the 19th century
Russian mathematician Pafnuty Chebyshev, which have been studied in detail because
of their relevance in many fields of mathematics. One use of Chebyshev polynomials
is in the field of wireless communication where Chebyshev filters are based on the
Chebyshev polynomials. We note that Chebyshev polynomials have also been used in
the calculation of MIMO systems [71]. MIMO systems are of interest to us in Chapter
8. This chapter is broken down into two sections. In the first section we introduce the
Chebyshev polynomials and the properties of interest to us and show the formation of
the related Riordan arrays through their matrices of coefficients. We summarize these
results in the table in Fig. 3.1. Inspired by Estelle Basor and Torsten Ehrhardt [18]
we extend results relating determinants of Hankel plus Toeplitz matrices and Hankel
matrices relating to the Chebyshev polynomials of the third kind, to the Chebyshev
polynomials of the first and second kind using properties of the polynomials we have
drawn to the readers attention in the first section. Note that we look at the polynomials
in reverse order as the polynomials of the third kind are those from [18], so are a natural
starting point for our study.

49
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3.1 Introduction to Chebyshev polynomials

We begin this section by recalling some facts about the Chebyshev polynomials of the
first, second and third kind [112].

The Chebyshev polynomials of the second kind, Un(x), can be defined by

Un(x) =

⌊n
2
⌋

∑

k=0

(

n− k

k

)

(−1)k(2x)n−2k, (3.1)

or alternatively as

Un(x) =

n
∑

k=0

(

n+k
2

k

)

(−1)
n−k
2

1 + (−1)n−k

2
(2x)k. (3.2)

The g.f. is given by
∞
∑

n=0

Un(x)tn =
1

1 − 2xt + t2
.

The Chebyshev polynomials of the second kind, Un(x), which begin

1, 2x, 4x2 − 1, 8x3 − 4x, 16x4 − 12x2 + 1, 32x5 − 32x3 + 6x, . . .

have coefficient array






















1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
−1 0 4 0 0 0 . . .
0 −4 0 8 0 0 . . .
1 0 −12 0 16 0 . . .
0 6 0 −32 0 32 . . .
...

...
...

...
...

...
. . .























. (A053117)

This is the (generalized) Riordan array
(

1

1 + x2
,

2x

1 + x2

)

.

We note that the coefficient array of the modified Chebyshev polynomials Un(x/2)
which begin

1, x, x2 − 1, x3 − 2x, x4 − 3x2 + 1, . . . ,

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A053117
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is given by






















1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
−1 0 1 0 0 0 . . .
0 −2 0 1 0 0 . . .
1 0 −3 0 1 0 . . .
0 3 0 −4 0 1 . . .
...

...
...

...
...

...
. . .























. (A049310)

This is the Riordan array
(

1

1 + x2
,

x

1 + x2

)

,

with inverse


























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 2 0 1 0 0 . . .
2 0 3 0 1 0 . . .
0 5 0 4 0 1 . . .
5 0 9 0 5 0 . . .
...

...
...

...
...

...
. . .



























, (A053121)

which is the Riordan array
(

c(x2), xc(x2)
)

.

c(x) =
1 −

√
1 − 4x

2x

is the g.f. of the Catalan numbers Cn = 1
n+1

(

2n
n

)

. The Chebyshev polynomials of the
second kind satisfy the recurrence relation,

Un(x) = 2xUn−1(x) − Un−2(x)

and by the change of variable from x to x/2 we have

Un(x/2) = xUn−1(x/2) − Un−2(x/2),

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A049310
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A053121
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for the modified polynomials, with corresponding Stieltjes matrix


























0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 0 1 0 1 0 . . .
0 0 0 1 0 1 . . .
0 0 0 0 1 0 . . .
0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .



























.

The Chebyshev polynomials of the third kind can be defined as

Vn(x) =

⌊n−1
2

⌋
∑

k=0

(−1)k
(

n− 1 − k
k

)

(2x)n−1−2k
(

(−1)⌊
n
2
⌋ − 1

)

with g.f.
∞
∑

k=0

Vn(x)tn =
1 − t

1 − 2xt + t2
.

They relate to the Chebyshev polynomials of the second kind by the equation

Vn(x) = Un(x) − Un−1(x).

The Chebyshev polynomials of the third kind, Vn(x) which begin

1, 2x− 1, 4x2 − 2x− 1, 8x3 − 4x2 − 4x + 1 . . .

have coefficient array


















1 0 0 0 0 0 . . .
−1 2 0 0 0 0 . . .
−1 −2 4 0 0 0 . . .
1 −4 −4 8 0 0 . . .
1 −4 −4 −8 16 0 . . .
...

...
...

...
...

...
. . .



















.

This is the (generalized) Riordan array
(

1 − x

1 + x2
,

2x

1 + x2

)

.
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We note that the coefficient array of the modified Chebyshev polynomials Vn(x/2)
which begin

1, x− 1, x2 − x− 1, x3 − x2 − 2x + 1 . . .

is given by


















1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
−1 −1 1 0 0 0 . . .
1 −2 −1 1 0 0 . . .
1 2 −3 −1 1 0 . . .
...

...
...

...
...

...
. . .



















.

This is the Riordan array
(

1 − x

1 + x2
,

x

1 + x2

)

,

with inverse,






















1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
3 3 1 1 0 0 . . .
6 4 4 1 1 0 . . .
10 10 5 5 1 1 . . .
...

...
...

...
...

...
. . .























, (A061554)

which is the Riordan array
(1 + xc(x2)√

1 − 4x2
, xc(x2)

)

.

The Chebyshev polynomials of the third kind Vn satisfy the recurrence relation,

Vn+1(x) = 2xVn(x) − Vn−1(x),

with corresponding Stieltjes matrix for Vn(x/2), given by


























1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0
...

...
...

...
...

...
. . .



























.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A061554
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Again we note that the Chebyshev polynomials of the fourth kind, Wn(x) are simply the
third polynomials with a change of sign. Related Riordan arrays for these polynomials
can be seen in the table below.

The Chebyshev polynomials of the first kind, Tn(x), are defined by

Tn(x) =
n

2

⌊n
2
⌋

∑

k=0

(

n− k

k

)

(−1)k

n− k
(2x)n−2k (3.3)

for n > 0, and T0(x) = 1. The first few Chebyshev polynomials of the first kind are

1, x, 2x2 − 1, 4x3 − 3x . . .

and have g.f.
∞
∑

n=0

Tn(x)tn =
1 − xt

1 − 2xt + t2
,

They satisfy the recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x).

The situation with the Chebyshev polynomials of the first kind differs slightly, since
while the coefficient array of the polynomials 2Tn(x) − 0n, which begins























1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
−2 0 4 0 0 0 . . .
0 −6 0 8 0 0 . . .
2 0 −16 0 16 0 . . .
0 10 0 −40 0 32 . . .
...

...
...

...
...

...
. . .























,

is a (generalized) Riordan array, namely

(

1 − x2

1 + x2
,

2x

1 + x2

)

,
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that of Tn(x), which begins























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
−1 0 2 0 0 0 . . .
0 −3 0 4 0 0 . . .
1 0 −8 0 8 0 . . .
0 5 0 −20 0 16 . . .
...

...
...

...
...

...
. . .























(A053120)

is not a generalized Riordan array. However the Riordan array

(

1 − x2

1 + x2
,

x

1 + x2

)

which begins






















1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
−2 0 1 0 0 0 . . .
0 −3 0 1 0 0 . . .
2 0 −4 0 1 0 . . .
0 5 0 −5 0 1 . . .
...

...
...

...
...

...
. . .























(A108045)

is the coefficient array for the orthogonal polynomials given by (2 − 0n)Tn(x/2).

We see from the table in Fig. 3.1 that the inverse of the matrix of coefficients of the

Chebyshev polynomials has Riordan array of the form
(

g(x), xc(x2)
)

, with kth column

generated by g(x)(xc(x2))k. For this reason we introduce and prove the next identity
before continuing to the next section.

Proposition 3.1.1.

(xc(x2))m = c(x2)

⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+2 −
⌊m−2

2
⌋

∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+2

(3.4)

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A053120
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A108045
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Chebyshev polynomial Stieltjes matrix Coefficient Inverse coefficient

array array

Tn(x) = 1, x, 2x2 − 1, 4x3 − 3x, . . .

















0 2 0 . . .

1 0 1 . . .

0 1 0 . . .
...

...
...

. . .

















(

1−x2

1+x2 ,
2x

1+x2

)

(2− 0)Tn(x/2) = 1, x, x2 − 2x3 . . .

















0 1 0 . . .

2 0 1 . . .

0 1 0 . . .
...

...
...

. . .

















(

1−x2

1+x2 ,
x

1+x2

) (

1√
1−4x2

, xc(x2)

)

Un(x) = 1, 2x, 4x2 − 1, 8x3 − 4x . . .

















0 1 0 . . .

1 0 1 . . .

0 1 0 . . .
...

...
...

. . .

















(

1
1+x2 ,

x
1+x2

)

(

c(x2), xc(x2)
)

Vn(x) = 1, 2x− 1, 4x2 − 2x− 1 . . .

















1 1 0 . . .

1 0 1 . . .

0 1 0 . . .
...

...
...

. . .

















(

1−x
1+x2 ,

x
1+x2

) (

1+xc(x2)√
1−4x2

, xc(x2)

)

Wn(x) = 1, 2x + 1, 4x2 + 2x− 1 . . .

















−1 1 0 . . .

1 0 1 . . .

0 1 0 . . .
...

...
...

. . .

















(

1+x
1+x2 ,

x
1+x2

)

( √
1−4x2−1√

1−4x2−2x−1
, xc(x2)

)

Figure 3.1: Chebyshev polynomials and related Riordan arrays
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Proof. Firstly, it is clear that the identity holds true for m = 1. We now assume true

for m, and endeavor to prove by induction that

(xc(x2))m+1 = c(x2)

⌊m
2
⌋

∑

k=0

(−1)k
(

m− k

k

)

x2k−m+1 −
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1

(3.5)

Expanding (xc(x2))(xc(x2))m we have

(xc(x2))2
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+2 − xc(x2)

⌊m−2
2

⌋
∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+2

which expands further as

c(x2)

( ⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1 −
⌊m−2

2
⌋

∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+3

)

−
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1.

Now, to sum over possible values of x, we change the summation of

⌊m−2
2

⌋
∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+3,

to become

⌊m
2
⌋−1
∑

k=1

(−1)(k−1)

(

m− k − 1

k − 1

)

x2k−m+1 − (−1)⌊
m
2
⌋
(

m− ⌊m
2
⌋ − 1

⌊m
2
⌋ − 1

)

x2⌊m
2
⌋−m+1.

Now with the above changed summation (xc(x2))m+1 becomes

c(x2)

( ⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1 +

⌊m
2
⌋−1
∑

k=1

(−1)k
(

m− k − 1

k − 1

)

x2k−m+1+

(−1)⌊
m
2
⌋
(

m− ⌊m
2
⌋ − 1

⌊m
2
⌋ − 1

)

x2⌊m
2
⌋−m+1

)

−
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1.
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Next, we will simplify further investigating separately the terms for m even and odd.

For m odd, (xc(x2))m+1 becomes

c(x2)

(

x−m+1+

⌊m
2
⌋−1
∑

k=1

(−1)k
(

m− k

k

)

x2k−m+1+(−1)⌊
m−1

2
⌋
(

m− (⌊m−1
2

⌋) − 1

⌊m−1
2

⌋

)

x2(⌊m−1
2

⌋)−m+1

+(−1)⌊
m
2
⌋
(

m− ⌊m
2
⌋ − 1

⌊m
2
⌋ − 1

)

x2⌊m
2
⌋−m+1

)

−
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1

which simplifies to

c(x2)

( ⌊m
2
⌋−1
∑

k=0

(−1)k
(

m− k

k

)

x2k−m+1 + (−1)
m−1

2

((m−1
2

m−1
2

)

+

( m−1
2

m−1
2

− 1

))

x2m−1
2

−m+1

)

−
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1

thus

(xc(x2))m+1 = c(x2)

( ⌊m
2
⌋−1
∑

k=0

(−1)k
(

m− k

k

)

x2k−m+1 + (−1)
m−1

2

((m+1
2

m−1
2

))

x2m−1
2

−m+1

)

−
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1

= c(x2)

( ⌊m
2
⌋

∑

k=0

(−1)k
(

m− k

k

)

x2k−m+1

)

−
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1.

This gives eq. (3.4). Similarly, for m even, we have (xc(x2))m+1 as

c(x2)

( ⌊m
2
⌋−1
∑

k=0

(−1)k
(

m− k

k

)

x2k−m+1+(−1)⌊
m
2
⌋x2⌊m

2
⌋−m+1

)

−
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1

thus

(xc(x2))m+1 = c(x2)

⌊m
2
⌋

∑

k=0

(−1)k
(

m− k

k

)

x2k−m+1 −
⌊m−1

2
⌋

∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+1

which also gives eq. (3.4), and completes the induction.
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Corollary 3.1.2. For m even

∞
∑

r=1

⌊m−1
2

⌋
∑

k=0

(−1)k
1

2(2r − 1 + m− 2k)

(

m− k − 1

k

)(

2r + m− 2k
2r+m−2k

2

)

x2r (3.6)

and for m odd,

∞
∑

r=1

⌊m−1
2

⌋
∑

k=0

(−1)k
1

2(−2k + m + 2r)

(

m− k − 1

k

)(

2r + m + 1 − 2k
2r+m+1−2k

2

)

x2r+1 (3.7)

Now, we simplify eq. 3.4,

c(x2)

⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m+2 −
⌊m−2

2
⌋

∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+2

= −
∞
∑

n=0

1

1 − 2n

(

2n

n

)

x2n

2

⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m +
1

2

⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m

−
⌊m−2

2
⌋

∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+2

= −
(

1

2

⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m +
∞
∑

n=1

1

1 − 2n

(

2n

n

)

x2n

2

) ⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m

+
1

2

⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m −
⌊m−2

2
⌋

∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+2

=
∞
∑

n=0

1

2(1 + 2n)

(

2n + 2

n + 1

)

x2n+2

⌊m−1
2

⌋
∑

k=0

(−1)k
(

m− k − 1

k

)

x2k−m

−
⌊m−2

2
⌋

∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+2

now we have

1

2xm

⌊m−1
2

⌋
∑

n=0

n
∑

k=0

(−1)k
1

1 + 2n− 2k

(

m− k − 1

k

)(

2n + 2 − 2k

n + 1 − k

)

x2n+2
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+
1

2xm

∞
∑

n=⌊m+1
2

⌋

⌊m−1
2

⌋
∑

k=0

(−1)k
1

1 + 2n− 2k

(

m− k − 1

k

)(

2n + 2 − 2k

n + 1 − k

)

x2n+2

−
⌊m−2

2
⌋

∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+2

For m > 1

1

2xm

⌊m−1
2

⌋
∑

n=0

n
∑

k=0

(−1)k
1

1 + 2n− 2k

(

m− k − 1

k

)(

2n + 2 − 2k

n + 1 − k

)

x2n+2

=

⌊m−2
2

⌋
∑

k=0

(−1)k
(

m− k − 2

k

)

x2k−m+2

Now for m > 1, we have

(xc(x2))m =
1

2

∞
∑

n=⌊m+1
2

⌋

⌊m−1
2

⌋
∑

k=0

(−1)k
1

1 + 2n− 2k

(

m− k − 1

k

)(

2n + 2 − 2k

n + 1 − k

)

x2n+2−m

(3.8)
Extracting odd and even terms gives the required result.

3.2 Toeplitz-plus-Hankel matrices and the family of

Chebyshev polynomials

We extend results from [18], relating determinants of Hankel matrices to determinants
of Toeplitz-plus-Hankel matrices, to the family of Chebyshev polynomials using Rior-
dan arrays. Firstly, we take this opportunity to present the relevant result from [18].
We observe the relationship between the Toeplitz-plus-Hankel matrices, Hankel matri-
ces and the matrix of the inverse of the coefficients of the Chebyshev polynomials of
the third kind. We provide an alternative proof of this result through the medium of
Riordan arrays. We then extend these results to Toeplitz-plus-Hankel matrices relating
to the first and second Chebyshev polynomials.
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3.2.1 Chebyshev polynomials of the third kind

Theorem 3.2.1. [18, Proposition 2.1] Let {an}∞n=−∞ be a sequence of complex numbers

such that an = a−n and let {bn}∞n=1 be a sequence defined by

bn =
n−1
∑

k=0

(

n− 1

k

)

(a1−n+2k + a2−n+2k). (3.9)

Define the one-sided infinite matrices

A = (aj−k + aj+k+1)
∞
j,k=0 B = (bj+k+1)

∞
j,k=0

and the upper triangular one-sided infinite matrix

D =

















ξ(0, 0) ξ(1, 1) ξ(2, 2) . . .

ξ(1, 0) ξ(2, 1) . . .

ξ(2, 0) . . .
. . .

















where ξ(n, k) =
(

n
⌊n−k

2
⌋
)

. Then B = DTAD.

We note that DT = L is the Riordan array

L =

(

1 + xc(x2)√
1 − 4x2

, xc(x2)

)

and
(1 + xc(x2)√

1 − 4x2
, xc(x2)

)−1

=
( 1 − x

1 + x2
,

x

1 + x2

)

.

Referring back to the table in Fig. (3.1) we see that the Riordan array above is the
Riordan array of the inverse of the coefficients of the Chebyshev polynomials of the
third kind.

This result is the preliminary result in [18] showing the relationship between certain
symmetric Toeplitz-plus-Hankel matrices and Hankel matrices. This preliminary result
leads to the following result connecting determinants of these matrices.
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Theorem 3.2.2. [18, Theorem 2.2] Let {an}∞n=−∞ and {bn}∞n=1 fulfill the assumptions

of the previous proposition. For N ≥ 1 define the matrices

AN = (aj−k + aj+k+1)
N−1
j,k=0, BN = (bj+k+1)

N−1
j,k=0

Then detAN = detBN .

With the aid of Riordan arrays, we define a transformation B. We then show that this
transformation is equivalent to the transformation bn =

∑

k=0

(

n
k

)

(a|n−2k| + a|n−2k+1|).

The g.f. of the central binomial coefficients
(

n
⌊n
2
⌋
)

is given by

1 + (xc(x2))2

1 − xc(x2)
=

√
1 − 4x2 + 2x− 1

2x(1 − 2x)
.

We can show that the coefficient array of the orthogonal polynomials with weight
√
4−x2

2−x

is the matrix
(

1 − x

1 + x2
,

x

1 + x2

)

.

We have
(

1 − x

1 + x2
,

x

1 + x2

)−1

=

(

1 + (xc(x2))2

1 − xc(x2)
, xc(x2)

)

:= L,

with general term
(

n
n−k
2

)

.

Then the LDU decomposition of the Hankel matrix H = H( n

⌊n
2 ⌋)

for
(

n
⌊n
2
⌋
)

is given by

H = L · I · Lt = LLt,

where the diagonal matrix is the identity since the Hankel transform of
(

n
⌊n
2
⌋
)

is all 1’s.

Now we have the following identity of Riordan arrays

(

1

1 + x
, x

)

·
(

1 − x2

1 + x2
,

x

1 + x2

)

=

(

1 − x

1 + x2
,

x

1 + x2

)

.
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Thus

L =

(

1 − x

1 + x2
,

x

1 + x2

)−1

=

(

1 − x2

1 + x2
,

x

1 + x2

)−1

·
(

1

1 + x
, x

)−1

=

(

1 − x2

1 + x2
,

x

1 + x2

)−1

· (1 + x, x) ,

where
(

1 − x2

1 + x2
,

x

1 + x2

)−1

is the matrix with general term

(

n
n−k
2

)

1 + (−1)n−k

2
.

Thus we have

H =

(

1 − x2

1 + x2
,

x

1 + x2

)−1

· (1 + x, x) · (1 + x, x)t
(

(

1 − x2

1 + x2
,

x

1 + x2

)−1
)t

,

where
(1 + x, x) · (1 + x, x)t

is the matrix






















1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
0 1 2 1 0 0 . . .
0 0 1 2 1 0 . . .
0 0 0 1 2 1 . . .
0 0 0 0 1 2 . . .
...

...
...

...
...

...
. . .























.

We now form the matrix

B = L · (1 + x, x)t =

(

1 − x2

1 + x2
,

x

1 + x2

)−1

· (1 + x, x) · (1 + x, x)t .
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This matrix begins

B =























1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
2 3 2 1 0 0 . . .
3 6 4 2 1 0 . . .
6 10 8 5 2 1 . . .
10 20 15 10 6 2 . . .
...

...
...

...
...

...
. . .























.

We note that the matrix B is the matrix formed from expanding eq. (3.9), that is



















b1
b2
b3
b4
b5
...



















=























1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
2 3 2 1 0 0 . . .
3 6 4 2 1 0 . . .
6 10 8 5 2 1 . . .
10 20 15 10 6 2 . . .
...

...
...

...
...

...
. . .









































a0
a1
a2
a3
a4
...



















.

We can regard this as the Riordan array

(

1 − x

(1 + x)(1 + x2)
,

x

1 + x2

)−1

=

(

(1 + 2x)c(x2)√
1 − 4x2

, xc(x2)

)

,

with a column with elements
(

n
⌊n
2
⌋
)

prepended. Alternatively, we can regard it as a

“beheaded” version of the Riordan array

(

1 − x

1 + x
,

x

1 + x2

)−1

=

(

1 + 2x√
1 − 4x2

, xc(x2)

)

,

where the first column terms are divided by 2.

By definition, we have

H( n
⌊n
2 ⌋)

= B ·
(

(

1 − x2

1 + x2
,

x

1 + x2

)−1
)t

= B · (c(x2), xc(x2))t.
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We can derive an expression for the general term of B in the following manner. De-
compose (1 + x, x) · (1 + x, x)t as the sum of two matrices:























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 1 1 0 . . .
0 0 0 0 1 1 . . .
...

...
...

...
...

...
. . .























+























0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 1 1 0 . . .
0 0 0 0 1 1 . . .
0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .























,

which is (1 + x, x) and a shifted version of (1 + x, x). To obtain B we multiply by
(

1−x2

1+x2 ,
x

1+x2

)

. This gives us

B =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
3 3 1 1 0 0 . . .
6 4 4 1 1 0 . . .
10 10 5 5 1 1 . . .
...

...
...

...
...

...
. . .























+























0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 2 1 1 0 0 . . .
0 3 3 1 1 0 . . .
0 6 4 4 1 1 . . .
0 10 10 5 5 1 . . .
...

...
...

...
...

...
. . .























,

where the first member of the sum is the Riordan array
(

1 − x2

1 + x2
,

x

1 + x2

)−1

· (1 + x, x) =

(

1 − x2

(1 + x)(1 + x2)
,

x

1 + x2

)−1

.

This matrix has general term
(

n
⌊n−k

2
⌋
)

, and hence B has general term

(

n

⌊n−k
2
⌋

)

+

(

n

⌊n−k+1
2

⌋

)

− 0k ·
(

n

⌊n
2
⌋

)

.

Thus the B transform of an is given by

n+1
∑

k=0

((

n

⌊n−k
2
⌋

)

+

(

n

⌊n−k+1
2

⌋

)

− 0k ·
(

n

⌊n
2
⌋

))

ak

which can also be written as

n+1
∑

k=0

((

n

⌊n−k
2
⌋

)

(1 − 0k) +

(

n

⌊n−k+1
2

⌋

))

ak
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since 0k ·
(

n
⌊n
2
⌋
)

= 0k ·
(

n
⌊n−k

2
⌋
)

. We can also write this as

n+1
∑

k=0

((

n

⌊k−1
2
⌋

)

(1 − 0n−k+1) +

(

n

⌊k
2
⌋

))

an−k+1

If we now extend an to negative n by a−n = an, we see that this last expression is

equivalent to
n
∑

k=0

(

n

k

)

(an−2k + an−2k+1).

We now extend the results above to the first and second Chebyshev polynomials. We
note that as seen in the table in Fig. (3.1) the third and fourth polynomials differ only
in signs and as the relating Toeplitz-plus-Hankel and Hankel matrices also only differ
in signs we will not extend results relating to the fourth Chebyshev polynomials.

3.2.2 Chebyshev polynomials of the second kind

Proposition 3.2.3. Let {an}∞n=−∞ be a sequence of complex numbers such that an =

a−n and let {bn}∞n=1 be a sequence defined by

bn =

n−1
∑

k=0

(

n− 1

k

)

(a1−n+2k − a3−n+2k). (3.10)

Define the one-sided infinite matrices

A = (aj−k − aj+k+2)
∞
j,k=0 B = (bj+k+1)

∞
j,k=0
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and the Riordan matrix

L =









































1 0 0 0 0 0 0 . . .

0 1 0 0 0 0 0 . . .

1 0 1 0 0 0 0 . . .

0 2 0 1 0 0 0 . . .

2 0 3 0 1 0 0 . . .

0 5 0 4 0 1 0 . . .

5 0 9 0 5 0 1 . . .
...

...
...

...
...

...
...

. . .









































=
(

c(x2), xc(x2)
)

.

Then B = LALT .

Proof. We have
( 1

1 + x2
,

x

1 + x2

)−1

=
(

c(x2), xc(x2)
)

:= L,

and we note from the table in Fig. (3.1) that L is the inverse of the matrix of coefficients

of the Chebyshev polynomials of the second kind and has general term

k + 1

n + 1

(

n + 1
n−k
2

)

(1 + (−1)n−k)

2

c(x2) is the generating function of the sequence of aerated Catalan numbers

1, 0, 1, 0, 2, 0, 5, 0, 14, . . .

which can by represented by

Cn
2

1 + (−1)n

2
=

1

2π

∫ 2

−2

xn
√

4 − x2 dx.

The LDU decomposition of the Hankel matrix H = H( 1
n+1(n+1

n
2

) (1+(−1)n)
2

) is given by

H = L · I · Lt = LLt,
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where the diagonal matrix is the identity since the Hankel transform of 1
n+1

(

n+1
n
2

) (1+(−1)n)
2

is all 1’s. Now we have the following identity of Riordan arrays
(

1

1 − x2
, x

)

·
(

1 − x2

1 + x2
,

x

1 + x2

)

=

(

1

1 + x2
,

x

1 + x2

)

.

Thus

L =

(

1

1 + x2
,

x

1 + x2

)−1

=

(

1 − x2

1 + x2
,

x

1 + x2

)−1

·
(

1

1 − x2
, x

)−1

=

(

1 − x2

1 + x2
,

x

1 + x2

)−1

·
(

1 − x2, x
)

,

where
(

1 − x2

1 + x2
,

x

1 + x2

)−1

is the matrix with general term
(

n
n+k
2

)

1 + (−1)n−k

2
.

Thus we have

H =

(

1 − x2

1 + x2
,

x

1 + x2

)−1

·
(

1 − x2, x
)

·
(

1 − x2, x
)t

(

(

1 − x2

1 + x2
,

x

1 + x2

)−1
)t

,

where
(

1 − x2, x
)

·
(

1 − x2, x
)t

is the matrix


































1 0 −1 0 0 0 . . .

0 1 0 −1 0 0 . . .

−1 0 2 0 −1 0 . . .

0 −1 0 2 0 −1 . . .

0 0 −1 0 2 0 . . .

0 0 0 −1 0 2 . . .
...

...
...

...
...

...
. . .



































.
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We now form the matrix

B = L ·
(

1 − x2, x
)

=

(

1

1 + x2
,

x

1 + x2

)−1

·
(

1 − x2, x
)

·
(

1 − x2, x
)t
.

Let us look at the first few rows of the matrices forming the decomposition



































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

0 2 0 1 0 0 . . .

2 0 3 0 1 0 . . .

0 5 0 4 0 1 . . .
...

...
...

...
...

...
. . .





































































1 0 −1 0 0 0 . . .

0 1 0 −1 0 0 . . .

0 0 1 0 −1 0 . . .

0 0 0 1 0 −1 . . .

0 0 0 0 1 0 . . .

0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .



































.

The matrix B begins

B =



































1 0 −1 0 0 0 . . .

0 1 0 −1 0 0 . . .

1 0 0 0 −1 0 . . .

0 2 0 −1 0 −1 . . .

2 0 1 0 −2 0 . . .

0 5 0 −1 0 −3 . . .
...

...
...

...
...

...
. . .



































.
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We note that the matrix B is the matrix formed from expanding eq. (3.10), that is





























b1

b2

b3

b4

b5
...





























=



































1 0 −1 0 0 0 . . .

0 1 0 −1 0 0 . . .

1 0 0 0 −1 0 . . .

0 2 0 −1 0 −1 . . .

2 0 1 0 −2 0 . . .

0 5 0 −1 0 −3 . . .
...

...
...

...
...

...
. . .































































a0

a1

a2

a3

a4
...





























.

We can derive an expression for the general term of B in the following manner. De-

compose (1 − x2, x) · (1 − x2, x)t as the sum of two matrices:



































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

−1 0 1 0 0 0 . . .

0 −1 0 1 0 0 . . .

0 0 −1 0 1 0 . . .

0 0 0 −1 0 1 . . .
...

...
...

...
...

...
. . .



































−



































0 0 1 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 −1 0 1 0 . . .

0 0 0 −1 0 1 . . .

0 0 0 0 −1 0 . . .

0 0 0 0 0 −1 . . .
...

...
...

...
...

...
. . .



































,

which is (1 − x2, x) and a shifted version of (1 − x2, x). To obtain B we multiply by
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(

1−x2

1+x2 ,
x

1+x2

)

. This gives us

B =



































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

0 2 0 1 0 0 . . .

2 0 3 0 1 0 . . .

0 5 0 4 0 1 . . .
...

...
...

...
...

...
. . .



































−



































0 0 1 0 0 0 . . .

0 0 0 1 0 0 . . .

0 0 1 0 1 0 . . .

0 0 0 2 0 1 . . .

0 0 2 0 3 0 . . .

0 0 0 5 0 4 . . .
...

...
...

...
...

...
. . .



































,

where the first member of the sum is the Riordan array
(

1 − x2

1 + x2
,

x

1 + x2

)−1

· (1 − x2, x) =

(

1

1 + x2
,

x

1 + x2

)−1

.

This matrix has general term k+1
n+1

(

n+1
n−k
2

) (1+(−1)n−k)
2

, and hence B has general term

k + 1

n + 1

(

n + 1
n−k
2

)

(1 + (−1)n−k)

2
−k − 1

n + 1

(

n + 1
n−k+2

2

)

(1 + (−1)n−k)

2
+0k· 1

n + 1

(

n + 1
n
2

)

(1 + (−1)n)

2
.

Thus the B transform of an is given by

n+1
∑

k=0

(

k + 1

n + 1

(

n + 1
n−k
2

)

(1 + (−1)n−k)

2
− k − 1

n + 1

(

n + 1
n−k+2

2

)

(1 + (−1)n−k)

2

)

ak

+

n+1
∑

k=0

(

0k · 1

n + 1

(

n + 1
n
2

)

(1 + (−1)n)

2

)

ak,

which by a change of summation we rewrite as

⌊n
2
⌋

∑

k=0

(

n− 2k + 1

n + 1

(

n + 1

k

)

(an−2k − an−2k+2) + 0n−2k+2 · 1

n + 1

(

n + 1
n
2

)

(1 + (−1)n)

2
an−2k+2

)

.

Now, as n− 2k + 2 6= 0 for any k we have

⌊n
2
⌋

∑

k=0

n− 2k + 1

n + 1

(

n + 1

k

)

(an−2k − an−2k+2).
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If we now extend an to negative n by a−n = an, we see that this last expression is

equivalent to
n
∑

k=0

(

n

k

)

(an−2k − an−2k+2).

Corollary 3.2.4. Let {an}∞n=−∞ and {bn}∞n=1 fulfill the assumptions of the previous

proposition. For N ≥ 1 define the matrices

AN = (aj−k − aj+k+2)
N−1
j,k=0, BN = (bj+k+1)

N−1
j,k=0

Then detAN = detBN .

Proof. From proposition 3.2.3 we now have the decomposition for the N × N sec-

tion of the infinite matrix decomposition satisfying BN = LNANLN
T and as L =

(

c(x2), xc(x2)
)

, which is a matrix with all ones on the diagonal we have det BN =

det AN.

3.2.3 Chebyshev polynomials of the first kind

Proposition 3.2.5. Let {an}∞n=−∞ be a sequence of complex numbers such that an =

a−n and let {bn}∞n=1 be a sequence defined by

bn =

n−1
∑

k=0

(

n− 1

k

)

a1−n+2k. (3.11)

Define the one-sided infinite matrices

A = (ai−j + ai+j)
∞
j,k=0 B = (bj+k+1)

∞
j,k=0
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and the Riordan matrix

L =

(

1
√

(1 − 4x2)
, xc(x2)

)

which begins

L =





























1 0 0 0 0 . . .

0 1 0 0 0 . . .

2 0 1 0 0 . . .

0 3 0 1 0 . . .

6 0 4 0 1 . . .
...

...
...

...
...

. . .





























.

Then B = LD1AD1L
T , where D1 is the diagonal matrix

D1 =





























1√
2

0 0 0 0 . . .

0
√

2 0 0 0 . . .

0 0
√

2 0 0 . . .

0 0 0
√

2 0 . . .

0 0 0 0
√

2 . . .
...

...
...

...
...

. . .





























.

Proof. We have
(

1 − x2

1 + x2
,

x

1 + x2

)−1

=

(

1
√

(1 − 4x2)
, xc(x2)

)

:= L,

and we note from the table in Fig. (3.1) that L is the inverse of the matrix of coefficients

of the Chebyshev polynomials of the first kind and has general term
(

n
n−k
2

)

(1 + (−1)n−k)

2

The LDU decomposition of the Hankel matrix H = H(
(n
n
2
) (1+(−1)n)

2

) is given by

H = L · D · Lt = LDLt,
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where D is the diagonal matrix

D =





























1 0 0 0 0 . . .

0 2 0 0 0 . . .

0 0 2 0 0 . . .

0 0 0 2 0 . . .

0 0 0 0 2 . . .
...

...
...

...
...

. . .





























.

We note that D1 · D1 = D, except for the (0, 0)th entry where an adjustment is made

to allow for the entries in the first row and first column of the Hankel matrix A. In

the first row and column of A where ai−j = ai+j the first row has entries 2ai and the

first column has entries 2aj . The (0, 0)th entry of D1 ·D1 is 1
2

to allow for this doubling

factor. Now we have the following identity of Riordan arrays

(

1 − x2, x
)

·
(

1

1 + x2
,

x

1 + x2

)

=

(

1 − x2

1 + x2
,

x

1 + x2

)

.

Thus

L =

(

1 − x2

1 + x2
,

x

1 + x2

)−1

=

(

1

1 + x2
,

x

1 + x2

)−1

·
(

1 − x2, x
)−1

=

(

1

1 + x2
,

x

1 + x2

)−1

·
(

1

1 − x2
, x

)

,

where
(

1

1 + x2
,

x

1 + x2

)−1

is the matrix with general term

k + 1

n + 1

(

n + 1
n−k
2

)

1 + (−1)n−k

2
.
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Thus we have

H =

(

1

1 + x2
,

x

1 + x2

)−1

·
(

1

1 − x2
, x

)

· D ·
(

1

1 − x2
, x

)t
(

(

1

1 + x2
,

x

1 + x2

)−1
)t

,

where
(

1

1 − x2
, x

)

· D ·
(

1

1 − x2
, x

)t

is the matrix


































1 0 1 0 1 0 . . .

0 2 0 2 0 2 . . .

1 0 3 0 3 0 . . .

0 2 0 4 0 4 . . .

1 0 3 0 5 0 . . .

0 2 0 4 0 6 . . .
...

...
...

...
...

...
. . .



































.

We now form the matrix

B = L ·
(

1

1 − x2
, x

)

=

(

1

1 + x2
,

x

1 + x2

)−1

·
(

1

1 − x2
, x

)

· D.

Let us look at the first few rows of the matrices forming the decomposition



































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

0 2 0 1 0 0 . . .

2 0 3 0 1 0 . . .

0 5 0 4 0 1 . . .
...

...
...

...
...

...
. . .





































































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

0 1 0 1 0 0 . . .

1 0 1 0 1 0 . . .

0 1 0 1 0 1 . . .
...

...
...

...
...

...
. . .





































































1 0 0 0 0 0 . . .

0 2 0 0 0 0 . . .

0 0 2 0 0 0 . . .

0 0 0 2 0 0 . . .

0 0 0 0 2 0 . . .

0 0 0 0 0 2 . . .
...

...
...

...
...

...
. . .



































.
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The matrix B begins

B =



































1 0 0 0 0 0 . . .

0 2 0 0 0 0 . . .

2 0 2 0 0 0 . . .

0 6 0 2 0 0 . . .

6 0 8 0 2 0 . . .

0 20 0 10 0 2 . . .
...

...
...

...
...

...
. . .



































.

We note that the matrix B is the matrix formed from expanding eq. (3.11), that is





























b1

b2

b3

b4

b5
...





























=



































1 0 0 0 0 0 . . .

0 2 0 0 0 0 . . .

2 0 2 0 0 0 . . .

0 6 0 2 0 0 . . .

6 0 8 0 2 0 . . .

0 20 0 10 0 2 . . .
...

...
...

...
...

...
. . .































































a1

a2

a3

a4

a5
...





























.

We can derive an expression for the general term of B in the following manner. De-

compose ( 1
1−x2 , x) · D as the sum of two matrices:



































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

0 1 0 1 0 0 . . .

1 0 1 0 1 0 . . .

0 1 0 1 0 1 . . .
...

...
...

...
...

...
. . .



































+



































0 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

0 0 1 0 0 0 . . .

0 1 0 1 0 0 . . .

0 0 1 0 1 0 . . .

0 1 0 1 0 1 . . .
...

...
...

...
...

...
. . .



































,
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which is ( 1
1−x2 , x) and a shifted version of ( 1

1−x2 , x). To obtain B we multiply by
(

1
1+x2 ,

x
1+x2

)−1
. This gives us

B =



































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

2 0 1 0 0 0 . . .

0 3 0 1 0 0 . . .

6 0 4 0 1 0 . . .

0 10 0 5 0 1 . . .
...

...
...

...
...

...
. . .



































+



































0 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

0 0 1 0 0 0 . . .

0 3 0 1 0 0 . . .

0 0 4 0 1 0 . . .

0 10 0 5 0 1 . . .
...

...
...

...
...

...
. . .



































,

where the first member of the sum is the Riordan array

(

1

1 + x2
,

x

1 + x2

)−1

·
(

1

1 − x2
, x

)

=

(

1 − x2

1 + x2
,

x

1 + x2

)−1

.

This matrix has general term
(

n
n−k
2

)

(1+(−1)n−k)
2

, and hence B has general term

(

n
n−k
2

)

(1 + (−1)n−k)

2
+

(

n
n−k
2

)

(1 + (−1)n−k)

2
− 0k ·

(

n
n−k
2

)

(1 + (−1)n−k)

2
.

Thus the B transform of an is given by

⌊n
2
⌋

∑

k=0

((

n
n−k
2

)

(1 + (−1)n−k)

2
+

(

n
n−k
2

)

(1 + (−1)n−k)

2
− 0k ·

(

n
n−k
2

)

(1 + (−1)n−k)

2

)

ak.

A change of summation gives

⌊n
2
⌋

∑

k=0

((

n

k

)

+

(

n

k

)

− 0n−2k ·
(

n

k

))

an−2k.

If we now extend an to negative n by a−n = an, we see that this last expression is

equivalent to eq. (3.11), that is

n
∑

k=0

(

n

k

)

(a2k−n).
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Corollary 3.2.6. Let {an}∞n=−∞ and {bn}∞n=1 fulfill the assumptions of the previous

proposition. For N ≥ 1 define the matrices

AN = (aj−k + aj+k)N−1
j,k=0, BN = (bj+k+1)

N−1
j,k=0

Then det AN = 2N−2det BN .

Proof. From proposition 3.2.5 we now have the decomposition for the N × N section

of the infinite matrix decomposition satisfying BN = LN(D1)NAN(D1)NLT
N and as

L =

(

1
√

(1 − 4x2)
, xc(x2)

)

,

which is a matrix with all ones on the diagonal, and

det (D1)N =
√

2
N−2

we have

det BN =
√

2
N−2

det AN

√
2
N−2

= 2N−2det AN .



Chapter 4

Properties of subgroups of the

Riordan group

In this chapter we look at the form of Stieltjes matrices of certain subgroups of the
Riordan group. The subgroups we concern ourselves with in this section [120] are

• The Appell subgroup,

– Ordinary Appell subgroup:
(

g(x), x
)

– Exponential Appell subgroup:
[

g(x), x
]

• The Asssociated subgroup,

– Ordinary Asssociated subgroup:
(

1, g(x)
)

– Exponential Asssociated subgroup:
[

1, g(x)
]

• The Bell subgroup

– Ordinary Bell subgroup:

(

g(x)

x
, g(x)

)

– Exponential Bell subgroup:

[

d
dx

g(x), g(x)

]

=
[

h(x),
∫

h(x)
]

79
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• Hitting-time subgroup

– Ordinary Hitting-time subgroup:

(

x d
dx

g(x)

g(x)
, g(x)

)

4.1 The Appell subgroup

4.1.1 The ordinary Appell subgroup

Riordan arrays in the Appell subgroup have the form (g(x), x) with inverse
(

1
g(x)

, x
)

and they satisfy the group law as

(g(x), x) · (f(x), x) = (g(x)f(x), x).

We recall from [37] that given a Riordan array A = (g(x), f(x)), its Stieltjes (produc-
tion) matrix P will be of the form

P =























ξ0 α0 0 0 0 0 . . .
ξ1 α1 α0 0 0 0 . . .
ξ2 α2 α1 α0 0 0 . . .
ξ3 α3 α2 α1 α0 0 . . .
ξ4 α4 α3 α2 α1 α0 . . .
ξ5 α5 α4 α3 α2 α1 . . .
...

...
...

...
...

...
. . .























where
A(x) =

x

f̄(x)
,

and

Z(x) =
1

f̄(x)

(

1 − 1

g(f̄(x))

)

,

where A(x) is the g.f. of α0, α1, . . . and Z(x) is the g.f. of the first column of P , that
is, of ξ0, ξ1, . . ..
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Proposition 4.1.1. Let A = (g(x), x) be a member of the Appell subgroup of the

Riordan group. Then its Stieltjes (production) matrix P is given by

P =



































ξ0 1 0 0 0 0 . . .

ξ1 0 1 0 0 0 . . .

ξ2 0 0 1 0 0 . . .

ξ3 0 0 0 1 0 . . .

ξ4 0 0 0 0 1 . . .

ξ5 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .



































where

A(x) = x and Z(x) =
1

x

(

1 − 1

g(x)

)

. (4.1)

Proof. We have f(x) = x and hence f̄(x) = x̄ = x. Thus

A(x) =
x

f̄(x)
=

x

x
= 1.

Also

Z(x) =
1

f̄(x)

(

1 − 1

g(f̄(x))

)

=
1

x

(

1 − 1

g(x)

)

.

Corollary 4.1.2. Let P be the Stieltjes matrix of the Appell group element (g(x), x).

Then

[xn]Z(x) =

n
∑

k=0

[xk]
1

g(x)
[xn−k+1]g(x),

where Z(x) is the g.f. of the first column of P .
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Proof. By the above, we have

Z(x) =
1

x

(

1 − 1

g(x)

)

=
1

g(x)

g(x) − 1

x
.

Hence

[xn]Z(x) = [xn]
1

g(x)

g(x) − 1

x

=
n
∑

k=0

[xk]
1

g(x)
[xn−k]

g(x) − 1

x

=
n
∑

k=0

[xk]
1

g(x)
[xn−k+1](g(x) − 1)

=

n
∑

k=0

[xk]
1

g(x)
([xn−k+1]g(x) − 0n−k+1)

=

n
∑

k=0

[xk]
1

g(x)
[xn−k+1]g(x),

since there is a contribution from 0n−k+1 only when k = n + 1.

Corollary 4.1.3. The tridiagonal Stieltjes matrices corresponding to Riordan arrays

from the ordinary Appell subgroup have generating functions

A(x) = 1, Z(x) = β + αx

Proof. Riordan arrays from the Appell subgroup with corresponding tridiagonal ma-

trices have the form
(

1

1 − βx− αx2
, x

)

with inverse

(1 − βx− αx2, x).

Applying eq. (4.1) gives the result.
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Example. The Riordan array L from the Appell subgroup with

g(x) =
1

1 − x−
x2

1 − x−
2x2

1 − x−
3x2

1 − x− 4x2
. . .

where g(x) is the g.f. for the Young tableaux numbers. L satisfies the matrix equation

LS = L where the first few rows expand as



































1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

2 1 1 0 0 0 . . .

4 2 1 1 0 0 . . .

10 4 2 1 1 0 . . .

26 10 4 2 1 1 . . .
...

...
...

...
...

...
. . .





































































1 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

1 0 0 1 0 0 . . .

3 0 0 0 1 0 . . .

7 0 0 0 0 1 . . .

23 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .



































=



































1 1 0 0 0 0 . . .

2 1 1 0 0 0 . . .

4 2 1 1 0 0 . . .

10 4 2 1 1 0 . . .

26 10 4 2 1 1 . . .

76 26 10 4 2 1 . . .
...

...
...

...
...

...
. . . .



































Z(x) generates the sequence which counts the number of indecomposable involutions of

length n [124](A140456).

Example. The Riordan array L from the Appell subgroup with

g(x) =
1

1 − x−
x2

1 − 2x−
2x2

1 − 3x−
3x2

1 − 4x− 4x2
. . .

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A140456
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where g(x) is the g.f. for the Bell numbers. L satisfies the matrix equation LS = L

where the first few rows expand as



































1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

2 1 1 0 0 0 . . .

5 2 1 1 0 0 . . .

15 5 2 1 1 0 . . .

52 15 5 2 1 1 . . .
...

...
...

...
...

...
. . .





































































1 1 0 0 0 0 . . .

1 0 1 0 0 0 . . .

1 0 0 1 0 0 . . .

2 0 0 0 1 0 . . .

6 0 0 0 0 1 . . .

22 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .



































=



































1 1 0 0 0 0 . . .

2 1 1 0 0 0 . . .

5 2 1 1 0 0 . . .

15 5 2 1 1 0 . . .

52 15 5 2 1 1 . . .

203 52 15 5 2 1 . . .
...

...
...

...
...

...
. . . .



































Here Z(x) generates the sequence which counts the number of set partitions of n which

do not have a proper subset of parts with a union equal to a subset(number of irreducible

set partitions of size n) [124] (A074664).

4.1.2 Exponential Appell subgroup

We now consider the exponential Appell subgroup, comprised of arrays of the form

[g(x), x].

We recall that for an exponential Riordan array [g(x), f(x)], its Stieltjes (production)
matrix will have bivariate g.f.

exy(c(x) + r(x)y), (4.2)

where

c(x) =
g′(f̄(x))

g(f̄(x))
,

and
r(x) = f ′(f̄(x)).

For the exponential Appell subgroup, we then have

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A074664


CHAPTER 4. PROPERTIES OF SUBGROUPS OF THE RIORDAN GROUP 85

Proposition 4.1.4. Let A = [g(x), x] be a member of the exponential Appell subgroup

of the exponential Riordan group. Then its Stieltjes (production) matrix P will have

bivariate g.f.

exy
(

g′(x)

g(x)
+ y

)

.

Proof. We have f(x) = x and hence f̄(x) = x and f ′(x) = 1. Thus r(x) = 1. Also, we

have

c(x) =
g′(f̄(x))

g(f̄(x))
=

g′(x)

g(x)
.

The result follows from eq. (4.2) .

Corollary 4.1.5. The e.g.f. of the first column of P is given by

g′(x)

g(x)
=

d

dx
ln(g(x)). (4.3)

We note that for k ≤ n, the (n, k)-th element of P is given by
(

n

k

)

ξn−k,

where the elements of the first column are

ξ0, ξ1, ξ2, . . . .

Corollary 4.1.6. The n-th element of the first column of P is given by

n!

n
∑

k=0

[xk]
1

g(x)
[xn−k+1]g(x).

Proof. The first column of P has e.g.f. given by g′(x)
g(x)

, thus its n-th element is given by

n![xn]g
′(x)
g(x)

. Now

[xn]
g′(x)

g(x)
=

n
∑

k=0

[xk]
1

g(x)
[xn−k]g′(x)

=
n
∑

k=0

[xk]
1

g(x)
[xn−k+1]g(x).
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Corollary 4.1.7. Exponential Riordan arrays in the Appell subgroup with a corre-

sponding tridiagonal Stieltes matrices have the form

[e(βx+αx2/2), x] (4.4)

with inverse [e−(βx+αx2/2), x].

Proof. From eq. (4.3) we have

g(x)c(x) =
d

dx
g(x).

Expanding for Riordan arrays with corresponding tridiagonal Stieltjes matrices we then

have

g(x)(β + αx) =
d

dx
g(x).

Solving the differential equation gives

g(x) = e(βx+αx2/2).

The related Stieltjes matrix has first few entries



































β 1 0 0 0 0 . . .

α β 1 0 0 0 . . .

0 2α β 1 0 0 . . .

0 0 3α β 1 0 . . .

0 0 0 4α β 1 . . .

0 0 0 0 5α β . . .
...

...
...

...
...

...
. . .



































.
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We note that with α = 1, β = 0 the Riordan array

[ex
2

, x] =

[ ∞
∑

n=0

x2n

n!
, x

]

,

and [ex
2
, x]−1 = [e−x2

, x]. The binomial transform of the Riordan array [eαx
2
, x] can

be easily shown to be [eαx
2+x, x] and the βth binomial transform is the Riordan array

[eαx
2+βx, x] giving the Riordan array form as in eq. (4.4)

As we have seen in the previous section, the Stieltjes matrix of Riordan arrays of
the form [eαx

2
, x] is tridiagonal. Let us look at the form of the nth column through

expanding the equation S = L−1L.

Proof. The Stieltjes matrix S = L−1L. Expanding for L = [eαx
2
, x] we have

L = [eαx
2

, x], L−1 = [e−αx2

, x], L =
d

dx
[eαx

2

, x].

thus we have

L−1L = e−αx2 d

dx

(

eαx
2 xn

n!

)

= e−αx2

(

eαx
2 xn−1

(n− 1)!
+ 2αxeαx

2 xn

n!

)

=
xn−1

n− 1!
+ 2α

xn+1

n!

=
xn−1

(n− 1)!
+ 2α(n + 1)

xn+1

(n + 1)!

Example. Let us look at the Stieltjes matrix of the Riordan array [e2x
2
, x]. From the

above, the nth column has the form

e−2x2 d

dx

(

e2x
2 xn

n!

)

=
xn−1

(n− 1)!
+ 4(n + 1)

xn+1

(n + 1)!
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which in matrix notation is




























1 0 0 0 . . .

0 1 0 0 . . .

−4 0 1 0 . . .

0 −12 0 1 . . .

48 0 −24 0 . . .
...

...
...

...
. . .

























































0 1 0 0 . . .

4 0 1 0 . . .

0 12 0 1 . . .

48 0 24 0 . . .

0 240 0 40 . . .
...

...
...

...
. . .





























=





























0 1 0 0 . . .

4 0 1 0 . . .

0 8 0 1 . . .

0 0 12 0 . . .

0 0 0 16 . . .
...

...
...

...
. . .





























.

Proposition 4.1.8. The Stieltjes matrix of successive Binomial transforms of [e−αx2
, x]

has nth column
xn−1

(n− 1)!
+ β

xn

n!
+ 2α(n + 1)

xn+1

n!
.

Proof.

e−αx2+βx d

dx

(

eαx
2+βxx

n

n!

)

= e−αx2+βx

(

eαx
2+βx xn−1

(n− 1)!
+ 2αxeαx

2+βxx
n

n!
+ βeαx

2+βxx
n

n!

)

=
xn−1

(n− 1)!
+ β

xn

n!
+ 2α(n + 1)

xn+1

n!
.

Example. Once again with α = 1/2, the nth column of the Stieltjes matrix correspond-

ing to the βth binomial transform of the Riordan array [e
−x2

2 , x] is

e−βx−x2

2
d

dx

(

eβx+
x2

2
xn

n!

)

= e−βx−x2

2

(

e
x2

2
+βxxn+1

n!
+

e
x2

2
+βxβxn

n!
+

e
x2

2
+βxxn−1

(n− 1)!

)

=
xn+1

n!
+

βxn

n!
+

xn−1

(n− 1)!

=
xn−1

(n− 1)!
+

βxn

n!
+

(n + 1)xn+1

(n + 1)!
.
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Thus L−1L is the tridiagonal matrix

S =





























β 1 0 0 0 0

1 β 1 0 0 0

0 2 β 1 0 0

0 0 3 β 1 0

0 0 0 4 β 1

0 0 0 0 5
. . .





























.

Example.

eβx+
x2

2 =

∞
∑

n=0

βxn

n!

∞
∑

m=0

x2m

2mm!
.

With β = 0 we have

L =

[ ∞
∑

n=0

x2n

2nn!
, x

]

=





























1 0 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

0 3 0 1 0 0

3 0 6 0 1 0

0 3 0 10 0 1





























, (A001147)

L−1 =

[ ∞
∑

n=0

x2n

2nn!
, x

]−1

=

[ ∞
∑

n=0

(−1)n
x2n

2nn!
, x

]

=





























1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 −3 0 1 0 0

3 0 −6 0 1 0

0 3 0 −10 0 1





























.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=(A001147)
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4.2 The associated subgroup

4.2.1 Ordinary associated subgroup

Riordan arrays (1, xg(x)) form the associated subgroup. They satisfy the group law
where

(1, xg(x))(1, xf(x)) = (1, xf(xg(x)))

and have inverse Riordan arrays of the form (1, xg(x)).

Proposition 4.2.1. Let A = (1, xg(x)) be a member of the associated subgroup of the

Riordan group. Then its Stieltjes (production) matrix P is given by

P =



































0 α0 0 0 0 0 . . .

0 α1 α0 0 0 0 . . .

0 α2 α1 α0 0 0 . . .

0 α3 α2 α1 α0 0 . . .

0 α4 α3 α2 α1 α0 . . .

0 α5 α4 α3 α2 α1 . . .
...

...
...

...
...

...
. . .



































where

A(x) =
x

xg(x)
and Z(x) = 0. (4.5)

Proof. From [36] we have

A(x) =
x

f̄(x)
=

x

xg(x)
.

Also

Z(x) =
1

f̄(x)

(

1 − 1

g(f̄(x))

)

=
1

xg(x)

(

1 − 1

1

)

= 0.
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Corollary 4.2.2. Tridiagonal Stieltjes matrices relating to Riordan arrays from the

ordinary associated subgroup have generating functions

A(x) = 1 + βx + αx2, Z(x) = 0.

Proof. Riordan arrays from the Appell subgroup with corresponding tridiagonal ma-

trices have the form
(

1,
x

1 − βx− αx(xg(x))

)

so
x

xg(x)
= 1 + βx + αx2.

Applying eq. (4.5) gives the result.

Example.



































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

0 2 2 1 0 0 . . .

0 5 5 3 1 0 . . .

0 15 14 9 4 1 . . .
...

...
...

...
...

...
. . .





































































0 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

0 1 1 1 0 0 . . .

0 1 1 1 1 0 . . .

0 2 1 1 1 1 . . .

0 6 2 1 1 1 . . .
...

...
...

...
...

...
. . .



































=



































0 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

0 2 2 1 0 0 . . .

0 5 5 3 1 0 . . .

0 15 14 9 4 1 . . .

0 52 44 28 14 5 . . .
...

...
...

...
...

...
. . .



































.

The sequence A(x) counts the number of connected partitions of n (A099947) [124].

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A099947
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Example.









































1 0 0 0 0 0 . . .

0 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

0 2 2 1 0 0 . . .

0 4 5 3 1 0 . . .

0 10 12 9 4 1 . . .

0 26 32 25 14 1 . . .
...

...
...

...
...

...
. . .

















































































0 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

0 1 1 1 0 0 . . .

0 0 1 1 1 0 . . .

0 1 0 1 1 1 . . .

0 0 1 0 1 1 . . .

0 4 0 1 0 1 . . .
...

...
...

...
...

...
. . .









































=



































0 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

0 2 2 1 0 0 . . .

0 4 5 3 1 0 . . .

0 10 12 9 4 1 . . .

0 26 32 25 14 5 . . .
...

...
...

...
...

...
. . . ,



































.

The sequence A(x) counts the number of irreducible diagrams with 2n nodes (A172395) [124].

4.2.2 Exponential associated subgroup

Proposition 4.2.3. Let A = [1, f(x)] be a member of the exponential associated sub-

group of the exponential Riordan group. Then its Stieltjes (production) matrix P will

have bivariate g.f.

exy
(

f ′(f̄(x))y
)

.

Proof. We have g(x) = 1 and hence c(x) = 0. Also, we have

r(x) = f ′(f̄(x)).

The result follows from eq. (4.2).

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A172395
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The first few rows of tridiagonal Stieltjes matrices in this subgroup expand as























0 1 0 0 0 0 . . .
0 β 1 0 0 0 . . .
0 α 2β 1 0 0 . . .
0 0 3α 3β 1 0 . . .
0 0 0 6α 4β 1 . . .
0 0 0 0 10α 5β . . .
...

...
...

...
...

...
. . .























with general element

a(n,n) =
nan−1,n−1

n− 1
, a(n+1,n) =

(n + 1)(an,n−1)

n− 1
.

By expanding the second column of the matrix equation LS = L we see that generating
functions from the associated subgroup with tridiagonal Stieltjes matrices satisfy the
differential equation

d

dx
g(x) = 1 + βg(x) +

αg(x)2

2
.

Solving the ordinary differential equation gives

g(x) = −
−b +

√
b2 − 2ctanh

(

1
2
x
√
b2 − 2c− Arctanh

(

b√
b2−2c

))

c
.

Example. We take a member of the associated subgroup, [1, g(x)] where the related

Stieltjes matrix has first few rows



































0 1 0 0 0 0 . . .

0 1 1 0 0 0 . . .

0 1 2 1 0 0 . . .

0 0 3 3 1 0 . . .

0 0 0 6 4 1 . . .

0 0 0 0 10 5 . . .
...

...
...

...
...

...
. . .



































.
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Expanding the first column of the matrix equation L̄ = LS, the e.g.f. of the related

Riordan matrix of the associated subgroup satisfies the equation

d

dx
g(x) = 1 + g(x) + g(x)2/2.

Solving gives

xg(x) = −1 + tan

(

x

2
+

π

4

)

.

Expanding for the first few terms we have 1, 1, 2, 5, 16, 61 . . . (A000111).

Example. Again, we take a member of the associated subgroup where g(x) is an e.g.f.

and the related Stieltjes matrix has first few rows



































0 1 0 0 0 0 . . .

0 0 1 0 0 0 . . .

0 1 0 1 0 0 . . .

0 0 3 0 1 0 . . .

0 0 0 6 0 1 . . .

0 0 0 0 10 0 . . .
...

...
...

...
...

...
. . .



































.

Expanding the first column of the matrix equation L̄ = LS, the e.g.f. of the related

Riordan matrix of the associated subgroup satisfies the equation

d

dx
g(x) = 1 + g(x)2/2,

and solving gives

xg(x) =
√

2tan
( x√

2

)

.

Expanding for the first few terms we have 1, 1, 4, 34, 496, . . . which is the aerated se-

quence of reduced tangent numbers(A002105).

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000111
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002105


CHAPTER 4. PROPERTIES OF SUBGROUPS OF THE RIORDAN GROUP 95

4.3 The Bell subgroup

4.3.1 Ordinary Bell subgroup

Elements of the Bell subgroup have the form (g(x), xg(x)) and satisfy the group law as

(g(x), xg(x)) · (f(x), xf(x)) =

(

g(x)f(xg(x)), xf(xg(x))

)

.

The Bell subgroup decomposes into the associated and Appell subgroups as

(g(x), xg(x)) = (g(x), x) · (1, xg(x)).

Now, before we continue we introduce the following proposition which we will be of use
to us in the section below.

Proposition 4.3.1.
x

g(xg(x))
= xg(x) (4.6)

Proof.

(g(x), xg(x))(1, x) = (g(x), xg(x))

so we have

(1, x) = (g(x), xg(x))−1
(

g(x), xg(x)
)

=

(

1

g(xg(x))
, xg(x)

)

(g(x), xg(x))

=

(

1

g(xg(x))
g(xg(x)), xg(x)g(xg(x))

)

= (1, xg(x)g(xg(x)))

so

xg(x) =
x

g(xg(x))
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Proposition 4.3.2. Let A = (g(x), xg(x)) be a member of the Bell subgroup of the

Riordan group. Then its Stieltjes (production) matrix P is given by

P =



































ξ0 α0 0 0 0 0 . . .

ξ1 α1 α0 0 0 0 . . .

ξ2 α2 α1 α0 0 0 . . .

ξ3 α3 α2 α1 α0 0 . . .

ξ4 α4 α3 α2 α1 α0 . . .

ξ5 α5 α4 α3 α2 α1 . . .
...

...
...

...
...

...
. . .



































where

A(x) =
x

xg(x)
and Z(x) =

1

xg(x)
− 1. (4.7)

Proof. We have f(x) = xg(x) and hence f̄(x) = xg(x). Thus

A(x) =
x

xg(x)
.

Also

Z(x) =
1

xg(x)

(

1 − 1

g(xg(x))

)

=
1

xg(x)

(

1 − xg(x)

x

)

=
1

xg(x)
− 1

x
.

Corollary 4.3.3. The tridiagonal Stieltjes matrices corresponding to Riordan arrays

from the ordinary Bell subgroup have generating functions

A(x) = 1 + βx + αx2, Z(x) = β + αx
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Proof. Riordan arrays from the Bell subgroup with corresponding tridiagonal matrices

have the form
(

1

1 − βx− αx2g(x)
,

x

1 − βx− αx2g(x)

)

with

(

1

1 − βx− αx2g(x)
,

x

1 − βx− αx2g(x)

)−1

=

(

1

1 + βx + αx2
,

x

1 + βx + αx2

)

.

Thus

xg(x) =
x

1 + βx + αx2
.

Applying eq. (4.7) gives the result.

4.3.2 Exponential Bell subgroup

For the exponential Bell subgroup we have Riordan arrays of the form [g(x),
∫

g(x)],
or alternatively [ d

dx
h(x), h(x)].

Proposition 4.3.4. Let A = [g(x),
∫

g(x)] be a member of the exponential Bell sub-

group of the exponential Riordan group. Then its Stieltjes (production) matrix P will

have bivariate g.f.

exy

(

g′(
∫

g(x))

g(
∫

g(x))
+ g(

∫

g(x))y

)

.

Proof.

c(x) =
g′(
∫

g(x))

g(
∫

g(x))
,

and

r(x) = f ′(f̄(x)) = g(

∫

g(x)).

The result follows from eq. (4.2).
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Now once again, we look at the form of the related tridiagonal Stieltjes matrices by
equating columns of LS = L, and we get the related tridiagonal Stieltjes matrices with
first few elements



















γ 1 0 0 0 . . .
δ β 1 0 0 . . .
0 α 2β − γ 1 0 . . .
0 0 3α− 3δ 3β − 2γ 1 . . .
0 0 0 2(3α− 4δ) 4β − 3γ . . .
...

...
...

...
...

. . .



















,

with (n, n)th and (n, n− 1)th entries

ann =
nan−1,n−1 − γ

n− 1
, an+1,n =

(n + 1)(an,n−1 − δ)

(n− 1)
.

Expanding the first column of the equation LS = L we have the equation

γg(x) + δ

∫

g(x) dx =
d

dx
g(x) (4.8)

Let us look at an example.

Example. With γ, δ equal to one we have the e.g.f. of the form

1

1 − sin x

with the sequence of coefficients having first few terms 1, 1, 2, 5, 16, 61 . . . which is the

sequence of the Euler numbers(A000111) and also counts the number of alternating

permutations on n letters. We have

S =





























1 1 0 0 0 . . .

1 2 1 0 0 . . .

0 3 3 1 0 . . .

0 0 6 4 1 . . .

0 0 0 10 5 . . .
...

...
...

...
...

. . .





























.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000111
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Example. With γ = 1, δ = 3 we have the e.g.f. of the form

3
(√

3cos
(

√
3x
2

)

− sin
(

√
3x
2

)

)2

with the sequence of coefficients having first few terms 11, 3, 9, 39 . . . . This is the se-

quence (A080635) which counts the number of permutations on n letters without double

falls and without initial falls. We have

S =





























1 1 0 0 0 . . .

2 2 1 0 0 . . .

0 6 3 1 0 . . .

0 0 12 4 1 . . .

0 0 0 20 5 . . .
...

...
...

...
...

. . .





























.

4.4 The Hitting time subgroup

4.4.1 Ordinary Hitting time subgroup

The hitting-time subgroup [26] of the Riordan group is comprised of matrices of the
form

(

xh′(x)

h(x)
, h(x)

)

.

We have the following Stieltjes matrix characterization of the hitting-time subgroup.

Proposition 4.4.1. For a Riordan array (g(x), f(x)) to be an element of the hitting-

time subgroup, it is necessary and sufficient that

Z(x) = A′(x).

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A080635
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Proof. We show first that the condition is necessary. Thus let

A = (g(x), f(x)) =

(

xh′(x)

h(x)
, h(x)

)

.

Then

A(x) =
x

f̄(x)
=

x

h̄(x)
.

Thus

h̄(x) =
x

A(x)

and
1

h̄(x)
=

A(x)

x
.

Now

Z(x) =
1

h̄(x)

(

1 − 1

g(h̄(x))

)

=
1

h̄(x)



1 − 1
h̄(x)h′(h̄(x))

h(h̄(x))





=
1

h̄(x)

(

1 − x

h̄(x)h′(h̄(x))

)

=
1

h̄(x)

(

1 − A(x)

h′(h̄(x))

)

=
A(x)

x

(

1 − A(x)

h′(h̄(x))

)

.

Now differentiating the identity h(f̄(x)) = x with respect to x gives

h′(h̄(x))(h̄)′(x) = 1

and so

h′(h̄(x)) =
1

(h̄)′(x)
.

Now since

h̄(x) =
x

A(x)
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we have

(h̄)′(x) =
A(x) − xA′(x)

A(x)2
,

and so we get

Z(x) =
A(x)

x

(

1 −A(x)
A(x) − xA′(x)

A(x)2

)

=
A(x)

x
− A(x)2

x

A(x) − xA′(x)

A(x)2

=
A(x)

x
− A(x)

x
+

xA′(x)

x

= A′(x).

Thus let

Z(x) = A′(x),

where

f̄(x) =
x

A(x)
or A(x) =

x

f̄(x)
.

Now

Z(x) =
1

f̄(x)

(

1 − 1

g(f̄(x))

)

.

Thus

g(f̄(x)) =
1

1 − f̄(x)Z(x)

and hence

g(x) =
1

1 − xZ(f(x))
.
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From this we infer that

g(x) =
1

1 − xZ(f(x))

=
1

1 − xA′(f(x))

=
1

1 − x f̄(f(x))−f(x)(f̄ )′(f(x))

f̄(f(x))2

=
1

1 − xx−f(x)(f̄ )′(f(x))
x2

=
1

1 − 1 + f(x)(f̄ )′(f(x))
x

=
x

f(x)(f̄)′(f(x))

=
xf ′(f̄(f(x)))

f(x)

=
xf ′(x)

f(x)
.

Corollary 4.4.2. Riordan arrays with tridiagonal Stieltjes matrices which are elements

of the hitting time subgroup have the form

(

1

1 − βx− 2αg(x)
,

x

1 − βx− αg(x)

)

.

Proof. Let

g(x) =
x

1 − βx− αg(x)
= −1 − αx−

√

x2(α2 − 4β) − 2αx + 1

2βx

so
xg′(x)

g(x)
=

1
√

x2(α2 − 4βx) − 2αx + 1
=

x

1 − βx− 2αg(x)
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Example.

S =





























1 1 0 0 . . .

2 1 1 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .

0 0 0 1 . . .
...

...
...

...
. . .





























The related Riordan array has the form

(f(x), g(x)) =

(

1

1 − x− 2xg(x)
,

x

1 − x− xg(x)

)

.



Chapter 5

Lattice paths and Riordan arrays

In this chapter we will study the well-known Motzkin and  Lukasiewicz paths. Motzkin
paths have well established links to orthogonal polynomials; as we have seen in [56],
the entries of the tridiagonal Stieltjes matrix represent the weights of the possible steps
in the Motzkin paths. We begin this chapter by introducing lattice paths, particularly
Motzkin and  Lukasiewicz paths which we study through the medium of Riordan arrays.
We give a constructive proof of how Riordan arrays with non-tridiagonal Stieltjes ma-
trices relate to  Lukasiewicz paths. We then develop these paths through the medium
of Riordan arrays.

Let us recall the definition of a lattice path which we introduced in section 2.5. A
lattice path [79] is a sequence of points in the integer lattice Z2. A pair of consecutive
points is called a step of the path. A valuation is a function on the set of possible steps
of Z2 × Z2. A valuation of a path is the product of the valuations of its steps. We
concern ourselves with two types of paths, Motzkin paths and  Lukasiewicz paths [151],
which are defined as follows

Definition 5.0.1. A Motzkin path [78] π = (π(0), π(1), . . . , π(n)), of length n, is a

lattice path starting at (0, 0) and ending at (n, 0) that satisfies the following conditions

1. The elementary steps can be north-east(N-E), east(E) and south-east(S-E).

104
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2. Steps never go below the x axis.

Dyck paths are Motzkin paths without the possibility of an East(E) step.

Definition 5.0.2. A  Lukasiewicz path [78] π = (π(0), π(1), . . . , π(n)), of length n, is a

lattice path starting at (0, 0) and ending at (n, 0) that satisfies the following conditions

1. The elementary steps can be north-east(N-E) and east(E) as those in Motzkin

paths.

2. South-east(S-E) steps from level k can fall to any level above or on the x axis,

and are denoted as αn,k, where n is the length of the south-east step and k is the

level where the step ends.

3. Steps never go below the x axis.

Finally, we introduce the Schröder paths, as we will encounter these paths at a later
stage

Definition 5.0.3. A Schröder path π = (π(0), π(1), . . . , π(2n)), of semilength n, is a

lattice path starting at (0, 0) and ending at (2n, 0) that satisfies the following conditions

1. The elementary steps can be north-east(N-E), east(E) and south-east(S-E) with

easterly steps begin twice the length of the north-easterly and south-easterly steps.

2. Steps never go below the x axis.

5.1 Motzkin, Schröder and  Lukasiewicz paths

Firstly, let us illustrate the construction of the (n+ 1)th row of the Riordan array. The
(m,n)th entry of the Riordan array is lm,n where m is the length of the path and n is
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the height of the final position of the last step. In [56], we see that the entries of the
tridiagonal Stieltjes matrix represent the weights of the possible steps in the Motzkin
paths. From the 0th column calculated from the Stieltjes equation L = LS, as

ln+1,0 = ln,0β0,0 + ln,1α1,0

so clearly, ln+1,0 is calculated from ln,0 with a level step at the zero level, and ln,1, with
an added south-east step, α1,0 so for m > 0,

ln+1,m = ln,m−1 + ln,mβm,m + ln,m+1αm+1,m. (5.1)

From (5.1) we see the paths contributing to ln+1,m are as follows

• Paths of length n finishing at level m− 1(ln,m−1), adding one N-E step of weight
1.

• Paths of length n finishing at level m(ln,m), adding one E step of weight βm,m.

• Paths of length n finishing at level m + 1(ln,m+1), adding one S-E step of weight
αm+1,m.

Now, consider a Riordan array with non-tridiagonl Stieltjes matrix,























β0,0 1 0 0 0 0 . . .
α1,0 β1,1 1 0 0 0 . . .
α2,0 α2,1 β2,2 1 0 0 . . .
α3,0 α3,1 α3,2 β3,3 1 0 . . .
α4,0 α4,1 α4,2 α4,3 β4,4 1 . . .
α5,0 α5,1 α5,2 α5,3 α5,4 β5,5 . . .

...
...

...
...

...
...

. . .























. (5.2)

Here we have the possibility of any length of south-easterly step, so for the 0th column
we have

ln+1,0 = ln,0β0,0 + ln,1α1,0 + ln,2α2,0 + · · · + ln,nαn,0,

and for any m we have

ln+1,m = ln,m−1 + ln,mβm,m + ln,m+1αm+1,m + ln,m+2αm+2,m + · · · + ln,nαn,m. (5.3)

From (5.3) we see the paths contributing to the lthn+1,m  Lukasiewicz path are as follows
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• Paths of length n finishing at level m− 1(ln,m−1), adding one N-E step of weight
1.

• Paths of length n finishing at level m(ln,m), adding one E step βm,m.

• Paths of length n finishing at level m + 1(ln,m+1), adding an αm+1,m  Lukasiewicz
step.

• Paths of length n finishing at level m + 1(ln,m+2), adding an αm+2,m  Lukasiewicz
step.

...

• Paths of length n finishing at level m+ 1(ln,n), adding an αn,m  Lukasiewicz step.

Note that in this chapter we adopt the following notation for our Motzkin and  Lukasiewicz
paths. (α, β)-Motzkin path and (α, β)- Lukasiewicz paths can be viewed as coloured
Motzkin/ Lukasiewicz paths in the sense that there are β colours for each level step and
α colours for each down step.

5.1.1 The binomial transform of lattice paths

The Binomial transform of generating functions has been of interest to us in previous
chapters. We now look at the effect of the binomial transform of a Riordan array in
terms of steps of Motzkin paths. Let us first look at Dyck paths, which have no level
steps and then introduce the level steps via the Binomial transform.

The sequence that counts Dyck paths has g.f.

g(x) =
1 −

√

(1 − 4αx2)

2αx2
.

The general Riordan array corresponding to Dyck paths has the form

(

1 −
√

(1 − 4αx2)

2αx2
,
1 −

√

(1 − 4αx2)

2αx

)

.
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When α = 1, this is the sequence of aerated Catalan numbers. The g.f. of the Dyck
paths has continued fraction expansion

1

1 − αx2

1 − αx2

1 − αx2

. . .

.

Now, the βth binomial transform matrix has first few rows



















1 0 0 0 . . .
β 1 0 0 . . .
β2 2β 1 0 . . .
β3 3β2 3β 1 . . .
β4 4β3 6β2 4β . . .
...

...
...

...
. . .



















=

(

1

1 − βx
,

x

1 − βx

)

.

Calculating the binomial transform of (g(x), xg(x)) we have

(

1

1 − βx
,

x

1 − βx

)(

1 −
√

(1 − 4αx2)

2αx2
,

1 −
√

(1 − 4αx2)

2αx

)

resulting in the Riordan array with first column having the g.f.

1 −
√

(1 − 4α
(

x
1−βx

)2
)

2α
(

x
1−βx

)2 ,

which has continued fraction expansion,

1

1 − βx− αx2

1 − βx− αx2

1 − βx− αx2

. . .

.

From the continued fraction expansion we have seen in [56], the binomial transform
has introduced the level steps in the Motzkin paths.
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Now, let us look at the contribution of the binomial matrix to each path in our Riordan
array. Let,

L =



















a0,0 0 0 0 . . .
a1,0 a1,1 0 0 . . .
a2,0 a2,1 a2,2 0 . . .
a3,0 a3,1 a3,2 a3,3 . . .
a4,0 a4,1 a4,2 a4,3 . . .

...
...

...
...

. . .



















.

Let us now look at the paths in the Riordan array after multiplication by the Binomial
matrix,























1 0 0 0 . . .
β 1 0 0 . . .
β2 2β 1 0 . . .
β3 3β2 3β 1 . . .
β4 4β3 6β2 4β . . .
β5 5β4 10β3 10β2 . . .
...

...
...

...
. . .













































a0,0 0 0 0 0 . . .
a1,0 a1,1 0 0 0 . . .
a2,0 a2,1 a2,2 0 0 . . .
a3,0 a3,1 a3,2 a3,3 0 . . .
a4,0 a4,1 a4,2 a4,3 a4,4 . . .
a5,0 a5,1 a5,2 a5,3 a5,4 . . .

...
...

...
...

...
. . .























.

We denote the elements in the Binomial transformed Riordan array, bl. We investigate
the contribution to one such element, bl5,0. From the matrix multiplication above we
have

bl5,0 =

(

5

5

)

β5a0,m +

(

5

4

)

β4a1,m +

(

5

3

)

β3a2,m +

(

5

2

)

β3a3,m +

(

5

1

)

βa4,m +

(

5

0

)

βa5,m

We can now see the effect of the binomial transform on each of the level steps that
contribute to the new step bl5,0 :

•
(

5
5

)

β5a0,0, is the Dyck path of length 0, with a choice of 1 place for the 5 level
steps,

(

5

5

)

=

(

1

1

)(

4

4

)

,

with no choice of length of level paths as we are filling one position only.

• Now for
(

5
4

)

β4a1,0, is the Dyck path of length 1, with a choice of 2 places for 4
level steps, and choice for arranging the level steps giving,

(

5

4

)

=

(

2

1

)(

3

3

)

+

(

2

2

)(

3

2

)

.
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• Now for
(

5
3

)

β3a2,0, the path is length 2 with a choice of 3 places for 3 level steps,
and choice for arranging the level steps giving,

(

5

3

)

=

(

3

1

)(

2

2

)

+

(

3

2

)(

2

1

)

+

(

3

2

)(

2

0

)

.

• Now for
(

5
2

)

β2a3,0, the path is length 3 with a choice of 4 places for 2 level steps,
and choice for arranging the level steps giving

(

5

2

)

=

(

4

1

)(

1

1

)

+

(

4

2

)(

1

0

)

.

• Now for
(

5
1

)

βa4,0, the path is length 4 with a choice of 5 places for 1 level steps,

(

5

1

)

=

(

5

1

)(

0

0

)

.

We illustrate the effect of the binomial transform in the table below. The red dots
represent the Motzkin path an,m where n is the path length and m is the level of the
last step. Note that as the paths may take on different forms, depending on m, the
dots represent each of the N-E or S-E steps.
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a0,m
(

1
1

)

a1,m
(

2
1

)

(

2
2

)(

3
1

)

a2,m
(

3
1

)

(

3
2

)(

2
1

)

(

3
3

)

a3,m
(

4
1

)

(

4
2

)

a4,m
(

5
1

)

Now, for any lattice path step and the binomial transform we have

(

n

m

)

βman−m =

min(m,n−m+1)
∑

q=1

(

n−m + 1

q

)(

m− 1

m− q

)

βman−m

• For the path an−m we have n−m + 1 choices of positions for the m level steps,
with m ≤ n.

• Now, we can choose q of these n−m + 1 positions to place the m level steps.
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• If we choose q of the n−m+ 1 positions to place the level steps, we now need to
choose the number of level steps to put at each of the q positions.

Example. Let us look at the binomial transform of the step l5,0 of the Dyck paths,

which are counted by the aerated Catalan numbers. We have the following equation

bl5,0 =

(

5

5

)

β5a0,m +

(

5

4

)

β4a1,m +

(

5

3

)

β3a2,m +

(

5

2

)

β3a3,m +

(

5

1

)

βa4,m +

(

5

0

)

βa5,m.

Since we count only paths of even length given that for Dyck paths since level steps are

not permitted, we have

bl5,0 =

(

5

5

)

β5a0,m +

(

5

3

)

β3

(

5

3

)

β3a2,m +

(

5

1

)

βa4,m.

We now illustrate each of the components of bl5,0.
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a0,m = 1

(

1
1

)

a2,m

(

3
1

)

(

3
2

)(

2
1

)

(

3
3

)

a4,m

(

5
1

)
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In the section above, we used Motzkin paths to illustrate the Binomial transform,
however the Binomial transform of the  Lukasiewicz paths follows the same construc-
tion. Thus from the construction of the Binomial transform above, we conclude that
if a bijection exists between a Motzkin path and a  Lukasiewicz path, the bijection is
preserved under the binomial transform.

5.2 Some interesting  Lukasiewicz paths

In this section we concern ourselves with  Lukasiewicz paths where the S-E steps are
restricted. We begin with the following proposition concerning  Lukasiewicz paths with
S-E steps which all have the same weight attached.

Proposition 5.2.1.  Lukasiewicz paths with steps weighted



































β 1 0 0 0 0 . . .

α β 1 0 0 0 . . .

α α β 1 0 0 . . .

α α α β 1 0 . . .

α α α α β 1 . . .

α α α α α β . . .
...

...
...

...
...

...
. . .



































(5.4)

have o.g.f.

g(x) =
1 + x(1 − β) −

√

((β + 1)x− 1)2 − 4αx2

2x(1 − βx + αx)
. (5.5)

Proof. From the Stieltjes equation we have the following

g(x) + βxg(x)2 + αx2g(x)3 + αx3g(x)4 + · · · = g(x)2
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so

g(x) = 1 + βxg(x) + α(xg(x))2(1 + xg(x) + (xg(x))2 + . . . )

= 1 + βxg(x) +
α(xg(x))2

1 − xg(x)

and solving for g(x) we have

g(x) =
1 + x(1 − β) −

√

((β + 1)x− 1)2 − 4αx2

2x(1 − βx + αx)
.

Now, we look at two particular  Lukasiewicz paths, where the possible S-E steps have
the same weight.

5.2.1  Lukasiewicz paths with no odd south-east steps

Let us look at the  Lukasiewicz paths that have no odd south-east steps so we have
related Stieltjes steps























β0,0 1 0 0 0 0 . . .
0 β1,1 1 0 0 0 . . .

α2,0 0 β2,2 1 0 0 . . .
0 α3,1 0 α3,3 1 0 . . .

α4,0 0 α4,2 0 β4,4 1 . . .
0 α5,1 0 α5,3 0 β5,5 . . .
...

...
...

...
...

...
. . .























, (5.6)

and from the Stieltjes equation we have

βf(x) + α2,0x
2(f(x))3 + α4,0x

4(f(x))5 + · · · =
f(x) − 1

x
.

Rearranging gives

1 + βxf(x) + α2,0x
3(f(x))3 + α4,0x

5(f(x))5 + · · · = f(x).
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Now, let y = xf(x),

1 + βy + αy3 + αy5 + · · · =
y

x
.

Solving we have

1 + βy + αy3(1 + y2 + . . . ) =
y

x

x(1 − y2)(1 + βy) + xαy3 = y(1 − y2)

x + xβy − xy2 − xβy3 + xαy3 = y − y3.

Solving for x we have

x + xβy − xy2 − xβy3 + xαy3 = y − y3

x =
y − y3

1 + βy − y2 + y3(α− β)
.

and
y3(xα− xβ + 1) − xy2 + y(xβ − 1) + x = 0.

Solving for y, the first few terms of the g.f. expansion are

x + βx2 + β2x3 + . . .

Example. For the (1, 1)- Lukasiewicz paths of the form above we have the g.f.

x

3
−

2
√
x2 − 3x + 3 sin

( arcsin
x(2x2 − 9x− 18)

2(x2 − 3x + 3)3/2

3

)

3

of the sequence 1, 1, 1, 2, 5, . . . (A101785). The paths corresponding to length 4 are illus-

trated below.

x

y

x

y

x

y
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x

y

x

y

According to [124], (A101785) also counts the number of ordered trees with n edges in

which every non-leaf vertex has an odd number of children. The corresponding Riordan

array is
(

1 − x2

1 + x− x2
,
x(1 − x2)

1 + x− x2

)−1

.

5.2.2  Lukasiewicz paths with no even south-east steps

Let us look at the  Lukasiewicz Paths that have no even south-east steps so we have
related Stieltjes steps























β0,0 1 0 0 0 0 . . .
α1,0 β1,1 1 0 0 0 . . .
0 α2,1 β2,2 1 0 0 . . .

α3,0 0 α3,2 β3,3 1 0 . . .
0 α4,1 0 α4,3 β4,4 1 . . .

α5,0 0 α5,2 0 α5,4 β5,5 . . .
...

...
...

...
...

...
. . .























. (5.7)

and again from the Stieltjes equation we have

βf(x) + α1,0x(f(x))2 + α3,0x
3(f(x))4 + · · · =

f(x) − 1

x
.

Rearranging we have

1 + βxf(x) + αx2(f(x))2 + α4,0x
4(f(x))4 + · · · = f(x).

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A101785
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Let y = xf(x), then

1 + βy + αy2 + αy4 + · · · =
y

x
.

Solving we have

1 + βy + αy2(1 + y2 + . . . ) =
y

x

x(1 − y2)(1 + βy) + xαy2 = y(1 − y2)

x + xβy − xy2 − xβy3 + xαy2 = y − y3

and solving for x we have

x =
y − y3

1 + βy + y2(α− 1) − βy3

and
x + y(xβ − 1) + xy2(α− 1) + y3(1 − xβ) = 0.

Solving for y above we obtain the first few terms of the g.f. expansion as

x + βx2 + x3(α + β2) + βx4(3α + β2) + . . . .

The corresponding Riordan array is
(

1 − x2

1 + x− x2
,
x(1 − x2)

1 + x− x2

)−1

.

Example. The (1, 1)- Lukasiewicz paths of the form above have g.f.

2
√

3 sin

( arcsin
3
√

3x

2|x− 1|
3

)

3

of the sequence with first few terms 1, 1, 2, 4, 10, 26, 73, . . .(A049130). We illustrate the

paths of length 4 below.

x

y

x

y

x

y

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A049130
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x

y

x

y

x

y

x

y

x

y

x

y

x

y

5.3 A (β, β)- Lukasiewicz path

From (5.5) above, if α = β we have the g.f.

xg(x) =
1 + x(1 − β) −

√

((β − 1)x)2 − 2x(β + 1)

2
.

Let us look at an interesting example.

Example. The (2, 2)- Lukasiewicz paths have g.f.

xg(x) =
1 − x−

√
x2 − 6x + 1

2
,
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which is the g.f. of the sequence with first few terms 1, 2, 6, 22, . . . (A006318). The

corresponding paths for n = 3 are shown below.

x

v1v2v3 = 4

y

x

v1v2v3 = 4

y

x

v1v2v3 = 8

y

x

v1v2v3 = 4

y

x

v1v2v3 = 2

y

The above example leads us to the next section where we provide a bijection between
certain  Lukasiewicz paths and Schröder paths.

5.3.1 A bijection between the (2,2)- Lukasiewicz and Schröder

paths

In this section we give a constructive proof of a bijection between the (2,2)- Lukasiewicz
paths and the Schröder paths. Firstly we introduce the different steps possible in the
(2,2)- Lukasiewicz paths and the Schröder paths. u is the the N-E step (1, 1), and d the
S-E step (1,−1), in both the  Lukasiewicz and the Schröder paths. E steps possible are
b = (1, 0) in the  Lukasiewicz paths and b+ = (2, 0) in the Schröder paths. We denote b1
and b2 the two choice of colours for the E steps in the  Lukasiewicz paths.  Lukasiewicz
steps are denoted ln = (1,−n). We denote d1 and d2 the two choice of colours for the

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006318
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S-E steps in the  Lukasiewicz paths, and similarly ln1 and ln2 the choice of  Lukasiewicz
steps.

Denote Ln the set of (2, 2)- Lukasiewicz paths of length n and S2n the set of Schröder
paths of length 2n. Now, we construct a map φ : Ln → S2n. Given a (2, 2)- Lukasiewicz
path P of length n we can obtain a lattice path φ(P ) of length 2n by the following
procedure,

1. u remains unchanged

2. Replace b1 with b+, and b2 with a ud step.

3. Replace d1 with b+d, and d2 with a udd step.

4. Replace ln1 with b+dn, and ln2 with udn+1

Conversely, we can obtain the (2, 2)- Lukasiewicz paths of length n from the Schröder
paths of length 2n by the following procedure,

1. u remains unchanged

2. Replace b+ with b1 and ud with a b2 step.

3. Replace b+d with d1, and udd with a d2 step.

4. Replace b+dn with ln1 , and udn+1 with ln2 .

Let us look at the paths for n = 4
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b2 b1 b1 udb+b+ b1 b2 b1 b+udb+

b1 b1 b2
b+b+ud b2 b2 b1 ududb+

b2 b1 b2
udb+ud b1 b2 b2

b+udud

b2 b2 b2
ududud b1 b1 b1 b+b+b+

d1 b1 ub+db+
d2 b1 uuddb+

d1 b2
ub+dud d2 b2

uuddud

b1
d1 b+ub+d b1

d2 b+uudd

b2
d1 udub+d b2

d2 ududdd

b1 d1 ub+b+d
b1 d2 ub+udd

b2 d1 uudb+d
b2 d2 uududd

l1
uub+dd

l2
uuuddd
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5.4 A bijection between certain Lukasiewicz and

Motzkin paths

The g.f. of interest here is that of the inverse binomial transform of the Catalan
numbers, also known as the Motzkin sums [124]. The tridiagonal Stieltjes matrix
corresponding to the Motzkin sums, which count the Motzkin paths of length n with
no horizontal steps at level 0 has the form















0 1 0 0 . . .
1 1 1 0 . . .
0 1 1 1 . . .
0 0 1 1 . . .
...

...
...

. . .















,

the first column of the related Riordan array having g.f. in continued fraction form of

1

1 − x2

1 − x− x2

1 − x− x2

. . .

(A005043).

The Stieltjes matrix corresponding to the  Lukasiewicz steps has first few entries















0 1 0 0 . . .
1 0 1 0 . . .
1 1 0 1 . . .
1 1 1 0 . . .
...

...
...

. . .















,

with the first column of the related Riordan array satisfying the equation

(g(x))2(x + x2) − g(x)(1 + x) + 1 = 0.

Solving the equation above gives

g(x) =

√
3x− 1

√
−x− 1 + x + 1

2x(x + 1)
,

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005043
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which again counts the sequence of Motzkin paths (A005043).

Here we give a constructive proof of a bijection between the (1,0)- Lukasiewicz paths
and the Motzkin paths, without the possibility of a level steps on the x axis. Again, we
recall that u represents N-E step (1, 1), d the S-E step (1,−1). E steps are b = (1, 0)
and  Lukasiewicz steps are ln = (1,−n),

Denote Mn the set of Motzkin paths of length n with no level steps on the x-axis and Ln

the set of (1, 0)- Lukasiewicz paths of length n. Now, we construct a map φ : Mn → Ln.
Given a (1, 1)-Motzkin path P of length n with no level steps on the x-axis, we can
obtain a lattice path φ(P ) of length n by the following procedure,

1. We move along the path until we find the first S-E(d) step, we then move to the
step before the S-E step.

• If this is a ud step move onto the next S-E step

• if this is a bd step, it now becomes ul ( . . . ubbbbudbubbduddd · · · → . . . ubbbbudbubuluddd . . .
).

2. Now, we move to the next step left of the ul,

• if this is ud step we stop and move onto the next S-E step( . . . ubbbbudbuduluddd · · · →
. . . ubbbbudbuuduluddd . . . ).

• If this is a b step bul becomes uul2( . . . ubbbbudbubuluddd · · · → . . . ubbbbudbuuul2uddd . . .
).

• If the step is a u, we now have uul giving N-E and a  Lukasiewicz step in suc-
cession of the same length. Since these are the same length we now proceed
to the next S-E step. ( . . . ubbbbudbuuuludddd · · · → . . . ubbbbudbuuuludddd . . .
).

3. Repeat 1 and 2 until their are no remaining E steps.

Conversely, we can obtain the (1, 1)-Motzkin paths of length n with no level steps on
the x-axis from the (1, 0)- Lukasiewicz paths of length n by the following procedure,

1. Start at the right most l or d step. If the next step to the left of this is u, stop
and move on to the next l or d step.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005043
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2. If the next step is a d step, starting with the right most u step, we find the cor-
responding u step at the level of the d step. We now leave both these unchanged
and move to the next left d or l step.

3. If the next step is a step ln, starting with the u step at the corresponding level,
we count n+ 1 corresponding u steps, ignoring any ud steps between the u steps.
The un+1ln step now becomes ubnd.

4. We move onto the next d or l step and repeat. Repeat until all l steps have been
removed.

Let us illustrate the moves in two paths below

. . . ubbbudbudbdud · · · → . . . ubbbudbudulud · · · → . . . ubbbuduudul2ud · · · →
. . . ubbuuduudul3ud · · · → . . . ubuuuduudul4ud · · · → . . . uuuuuduudul5ud . . .

l

l2
l3

l4
l5

Conversely we have

uuuuuduudul5ud · · · → . . . ubbbudbudbdud . . .

l5
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. . . ubbuuubudbdddd · · · ↔ . . . ubbuuubudulddd · · · ↔ . . . ubbuuuuudul2ddd · · · ↔
. . . ubbuuuuudul2ddd · · · ↔ . . . ubuuuuuudul2ddl · · · ↔ . . . uuuuuuuudul2ddl2 . . .

l

l2 l2

l2

l2

l2
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Example. We look at the paths for n = 3

ubbd
uuul2

udud udud

uudd uudd

We look at the paths for n = 4

Example.

ubbbd

uuuul3

udubd
uduul

ubdud uulud uubdd uuuld

ubudd
uuudl

uudbd
uudul

5.5 Lattice paths and exponential generating func-

tions

In this section we study certain paths that are enumerated by e.g.f.’s. Firstly, we
introduce the following proposition

Proposition 5.5.1.  Lukasiewicz paths with level and north east steps of all the same

weight which are enumerated by e.g.f.’s satisfy the ordinary differential equation

d

dx
f(x) = f(x)(αex + β − α). (5.8)
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Proof. We begin by looking at exponential Riordan arrays of the form L = [f(x), x].

Expanding the first column of the matrix equation L = LS where

L =



































β0,0 1 0 0 0 0 . . .

α1,0 β1,1 1 0 0 0 . . .

α2,0 α2,1 β2,2 1 0 0 . . .

α3,0 α3,1 α3,2 β3,3 1 0 . . .

α4,0 α4,1 α4,2 α4,3 β4,4 1 . . .

α5,0 α5,1 α5,2 α5,3 α5,4 β5,5 . . .
...

...
...

...
...

...
. . .



































, (5.9)

we have

d

dx
f(x) = β0,0f(x) + α1,0f(x)x + α2,0f(x)

x2

2!
+ α3,0f(x)

x3

3!
+ . . .

= f(x)(β0,0 + α1,0x + α2,0
x2

2!
+ α3,0

x3

3!
+ . . . ).

Now let α(x) = β0,0 + α1,0x + α2,0

x2

2!
+ α3,0

x3

3!
+ · · · =

∑∞
n=0 αn,0

xn

n!
, α0,0 = β0,0

d

dx
f(x) = f(x)α(x).

If α = α1,0 = α2,0 . . . , β0,0 = β, then

d

dx
f(x) = f(x)β + f(x)(αx + α

x2

2!
+ α

x3

3!
+ . . . )

= f(x)β + αf(x)(ex − 1)

= f(x)(αex + β − α).



CHAPTER 5. LATTICE PATHS AND RIORDAN ARRAYS 129

Example.  Lukasiewicz paths enumerated by e.g.f.’s with no level step satisfy the ODE

f(x)(−α + αex) =
d

dx
f(x).

Solving for f(x) we get the e.g.f. of the sequence with first few terms which expand as

1, α, α, (3α2 + α), (10α2 + α), (15α3 + 25α2 + α), . . . (A000296).

Corollary 5.5.2.  Lukasiewicz paths with α, β = 1 are enumerated by the e.g.f. of the

Bell numbers

Proof. Solving the differential equation

d

dx
f(x) = f(x)(αex + β − α),

results in e.g.f.’s of the form

eαe
x−α+βx−αx.

For α, β = 1 we have

f(x) = ee
x−1

which is the e.g.f. of the Bell numbers.

Now, we expand eαe
x−α+βx−αx to study the  Lukasiewicz steps which are enumerated by

the Bell numbers, the first few terms in the series expand as

1 + βx + (α + β2)
x2

2!
+ (3αβ + α + β3)

x3

3!
+ (3α2 + 6αβ2 + 4αβ + α + β4)

x4

4!
+

(15α2β + 10α2 + 10αβ3 + 10αβ2 + 5αβ + α + β5)
x5

5!
+

(15α3 + 45α2β2 + 60α2β + 25α2 + 15αβ4 + 20αβ3 + 15αβ2 + 6αβ + α + β6)
x6

6!
+ . . .

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000296
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The corresponding Stieltjes matrix related to the  Lukasiewicz path expansion of the
Bell numbers begins



















β 1 0 0 0 . . .
α β 1 0 0 . . .
α 2α β 1 0 . . .
α 3α 3α β 1 . . .
α 4α 6α 4α β . . .
...

...
...

...
...

. . .



















.

The related Riordan array has the form

[eα(e
βx−1)+x(β−α), x].

We note that

n![xn]eα(e
βx−1)+x(β−α) =

n
∑

k=0

n!

k!

k
∑

i=0

1

i!

i
∑

j=0

(−1)j
(

i
j

)

(i− j)kαi(β − α)n−k

(n− k)!
.

We see from the above that we now have a Stieljtes matrix of  Lukasiewicz steps that
also enumerates the Bell numbers. We note that we have previously encountered the
Bell numbers in the form of the continued fraction expansion [56]

1

1 − βx− αx2

1 − 2βx− 2αx2

1 − 3βx− 3αx2

1 − 4βx− 4αx2

. . .

.

The first few terms of this power series expands as

1 + βx + (α + β2)x2 + (4αβ + β3)x3 + (3α2 + 11αβ2 + β4)x4+

(25α2β + 26αβ3 + β5)x5 + (15α3 + 130α2β2 + 57αβ4 + β6)x6+

(210α3β + 546α2β3 + 120αβ5 + β7)x7 . . .
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The related tridiagonal Stieltjes matrix has first few rows






















β 1 0 0 0 . . .
α 2β 1 0 0 . . .
0 2α 3β 1 0 . . .
0 0 3α 4β 1 . . .
0 0 0 4α 5β . . .
0 0 0 0 5α . . .
...

...
...

...
. . .























,

and related Riordan array has the form

[

e
α

β2 (e
βx−1)+x

(

β2−α

β

)

,
eβx − 1

β

]

.

We note that

n![xn]e
α

β2 (e
βx−1)+x

(

β2−α

β

)

=
n
∑

k=0

n!

k!

k
∑

i=0

1

i!

i
∑

j=0

(−1)j
(

i
j

)

(β(i− j))k( α
β2 )i
(

β − α
β

)(n−k)

(n− k)!
.

From the above we see that a bijection between the  Lukasiewicz and Motzkin paths
that enumerate the Bell numbers exists.

5.6 Lattice paths and reciprocal sequences

In this section we will look at lattice paths that relate to certain set partitions. Before
we proceed we take this opportunity to define set partitions and the subsets of set
partitions that will be of interest to us in this chapter. In [56], Flajolet shows a
bijection between weighted lattice paths and set partitions both counted by the Bell
numbers. We use this bijection to study the subsets of partitions which relate to certain
paths.

Definition 5.6.1. [81] Let X be a set. A set partition of X is a collection P on

nonempty, pairwise disjoint subsets of X whose union is X. Each element of P is called

a block of the partition. The cardinality of P (which may be infinite) is called the number

of blocks of the partition.
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For example if X = {1, 2, 3, 4, 5, 6, 7, 8}, then P = {1, 6}{3, 4}{2, 5, 7, 8}.

Definition 5.6.2. [81] Let S(n, k) be the number of set partitions of {1, 2, . . . , n} into

exactly k blocks. S(n, k) is called a Stirling number of the second kind. Let B(n) be the

total number of set partitions of {1, 2, . . . , n}. The sequence B(n) is called the sequence

of Bell numbers.

Before we proceed we note that some generating functions which we will encounter
in the chapter below, and that we have previously encountered in Chapter 4, count
certain subsets of set partitions, so we take this opportunity to define the partitions
that will be of interest to us here.

Definition 5.6.3. [80] A partition of [n] = {1, 2, . . . , n} is called connected if no

proper subinterval of [n] is a union of blocks (sometimes referred to as irreducible dia-

grams).

Definition 5.6.4. [80] irreducible partition are partitions which cannot be “factored”

into sub partitions, i.e. partitions of [n] for which 1 and n are in the same connected

component.

connected irreducible

Figure 5.1: A representation of partitions [80]

In the section below we study paths related to g.f.’s of the form

z(x) =
1

x

(

1 − 1

g(x)

)

. (5.10)

As this relates closely to the reciprocal sequence of the g.f. g(x), we will refer to
the sequence z(x) as the adjusted reciprocal sequence throughout this chapter. Let us
recall the definition of reciprocal function from [162] which we will use to calculate the
adjusted reciprocal sequence.
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Definition 5.6.5. A reciprocal series g(x) =
∑

n=0 anx
n with a0 = 1, of a series

f(x) =
∑

n=0 bnx
n with b0 = 1, is a power series where g(x)f(x) = 1, which can be

calculated as follows

∞
∑

n=0

anx
n = −

∞
∑

n=0

n
∑

i=1

bian−ix
n, a0 = 1 (5.11)

Using the definition above, we can calculate the paths corresponding to the adjusted
reciprocal sequence. As we are interested in studying subsets of partitions relating
to paths, we will begin by studying the Bell numbers which count all possible set
partitions. We start by taking the continued fraction expansion of the “ weighted” Bell
numbers where we can distinguish the weights for the steps at each level

1

1 − βx− αx2

1 − 2γx− 2δx2

1 − 3ωx− 3ǫx2

. . .

Now, expanding the first few members of the sequence relating to the g.f. above, we
have

1, β, β2+α, β3+βα+αβ+2γα, β4+β2α+βαβ+αβ2+2βγα+2γαβ+α2+4γ2α+2δα.

Let us look at the corresponding paths
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β

α + β2

β3 + 2γα + αβ + βα

β4 + β2α + βαβ + αβ2 + 2βγα + 2γαβ + α2 + 4γ2α + 2δα

We note that the reciprocal sequence is calculated recursively, so we now proceed
by using the paths above to calculate the paths of the adjusted reciprocal sequence
recursively. Let us expand the first few paths of this recursive procedure. Firstly
expanding (5.11) for the first few elements we have

• a1x = −(b1a0)x,

– a1 consists of the paths of b1.

• a2x
2 = −(b1a1 + b2a0)x

2,

– a2 consists of the paths of b2 which can not be formed from the union of
paths b1a1 = b21.

• a3x
3 = −(b1a2 + b2a1 + b3a0)x

3,

– a3 consists of the paths of b3 which can not be formed from the union of
paths of b1a2 = b1(b2 − b21) and b2a1 = b2b1.

• a4x
4 = −(b1a3 + b2a2 + b3a1 + b4a0)x

4,

– a4 consists of the paths of b4 which can not be formed from the union of
paths of b1a3 = b1(b3 − b1(b2 − b21)), b2a2 = b2(b2 − b21),b3b1.



CHAPTER 5. LATTICE PATHS AND RIORDAN ARRAYS 135

and so on until

– an consists of the paths of bn which can not be formed from the union of
paths of b1an−1, b2an−2 and so on until bn−1a1. That is, an consists of the
paths in bn that can not be constructed by some union of paths from b0 → bn.

Now replacing the weighted lattice path steps in the expansion above we have first few
terms

a1 = −
{

b1a0
}

= −β

a2 = −
{

b1a1 + b2a0
}

= −
{

− ββ + (β2 + α)
}

= −α

a3 = −
{

b1a2 + b2a1 + b3a0
}

= −
{

− βα− β3 − αβ + β3 + βα + αβ + 2γα
}

= −
{

2γα
}

a4 = −
{

b1a3 + b2a2 + b3a1 + b4a0
}

= −
{

−
(

(β(β3 + 2γα)) + (β2 + α)α + (β3 + βα + αβ + 2γα)β

)

+

(

β4 + β2α + βαβ + αβ2 + 2βγα + 2γαβ + α2 + 4γ2α + 2δα

)}

= −{4γ2α + 2δα}

so we can describe the first few terms of the adjusted reciprocal sequence in terms of
weights of lattice paths as

β, α, 2γα, 4γ2α + 2δα . . .

with corresponding paths below, which are the paths for each n which cannot be formed
by a union of paths from 0 → n

β α 2γα 4γ2α + 2δα

Now, similarly, for partitions corresponding to these paths, since no union of paths
creates these paths, no subsets of these partitions exists. That is, we are counting the
number of set partitions of n which do not have a proper subset of parts with a union
equal to a subset 1, 2, ..., j with j < n. Now, let us look at some sequences of interest.

Example. Let g(x) be the g.f. for the Bell numbers, so we have the adjusted reciprocal

sequence

z(x) =
1

x
(1 − 1

g(x)
),
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with first few elements 1, 1, 2, 6, 22, 92, 426, 2146, . . .(A074664). This sequence counts

the number of set partitions of n which do not have a proper subset of parts with a

union equal to a subset 1, 2, ..., j with j < n. Fig. (5.2) shows the first few paths and

corresponding partitions

Example. We consider the Young Tableaux numbers, which count all the partitions

for each n which have less than two element in each partition. The g.f. of the Young

Tableaux numbers has a continued fraction expansion of the form

1

1 − x−
x2

1 − x−
2x2

1 − x−
3x2

1 − x− 4x2
. . .

.

We look at the adjusted reciprocal sequence for the Young Tableaux. The first few coef-

ficients of z(x) expand as 1, 1, 1, 3, 7, 23, 71, 255, . . .(A140456), so this sequence counts

the number of set partitions of n, considering only sets of partitions of size less than or

equal to two, which do not have a proper subset of parts with a union equal to a subset

1, 2, ..., j with j < n. Fig. (5.3) shows the first few paths and corresponding partitions.

Example. We consider the Bessel numbers, which count the number of non-overlapping

partitions. The Bessel numbers have a continued fraction expansion of the form

1

1 − x−
x2

1 − 2x−
x2

1 − 3x−
x2

1 − 4x− x2
. . .

.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A074664
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A140456
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{1} {1 2}

{1 3}{2} , {1 2 3}

{1 4}{2}{3},{1 2 3 4},

{1 2 4}{3},{1 3 4}{2}
{1 3}{2 4},

{1 4}{2 3}

{ 1 5}{2}{3}{4},

{ 1 3 5}{2}{4},

{ 1 2 5}{3}{4},{ 1 2 3

5}{4},

{ 1 4 5}{2}{3},{1 2 3 4 5},

{ 1 3 4 5}{2},{ 1 2 4 5}{3}.

{1 5}{2 4}{3},

{1 4}{2 3 5},

{1 5}{2 3 4},

{1 3 5}{2 4}
{1 4}{2 5}{3},

{1 3 4}{2 5}
{1 3}{2 5}{4},

{1 5}{2 3}{4}
{1 3}{ 2 4 5},

{ 1 4 5}{2 3}

{1 4}{2}{3 5} ,

{1 5}{2}{3 4}
{3 4}{1 2 5},

{3 5}{1 2 4}

Figure 5.2: Paths and partitions corresponding to the adjusted reciprocal sequence of

the Bell numbers
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{1} {1 2}

{1 3}{2}

{1 4}{2}{3},
{1 3}{2 4},

{1 4}{2 3}

{ 1 5}{2}{3}{4},
{1 5}{2 4}{3},

{1 4}{2 5}{3},

{1 3}{2 5}{4},

{1 5}{2 3}{4}
{1 4}{2}{3 5} ,

{1 5}{2}{3 4}

Figure 5.3: Paths and partitions corresponding to the adjusted reciprocal sequence of

the Young numbers
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{1} {1 2}

{1 3}{2} , {1 2 3}

{1 4}{2}{3},

{1 2 4}{3},

{1 3 4}{2},{1 2 3 4}
{1 4}{2 3}

{ 1 5}{2}{3}{4},

{ 1 3 5}{2}{4},

{ 1 2 5}{3}{4},{ 1 2 3

5}{4},

{ 1 4 5}{2}{3},{1 2 3 4 5},

{ 1 3 4 5}{2},{ 1 2 4 5}{3}.

{1 5}{2 4}{3},

{1 5}{2 3 4},

{1 3 5}{2 4}

{1 5}{2 3}{4}
{ 1 4 5}{2 3}

{1 5}{2}{3 4}
{3 4}{1 2 5},

Figure 5.4: Paths and partitions corresponding to the adjusted reciprocal sequence of

the Bessel numbers

Then the adjusted reciprocal sequence z(x) for the Bessel numbers has first few co-

efficients of z(x) given by 1, 1, 2, 5, 15, 51, 189, 748, 3128, 13731 . . .(A153197), so this

sequence counts the number of set partitions of n, only considering sets of non - over-

lapping partitions, which do not have a proper subset of parts with a union equal to

a subset 1, 2, ..., j with j < n. Fig. (5.4) shows the first few paths and corresponding

partitions.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A153197
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{1 2}

{1 3}{2 4},

{1 4}{2 3}

Figure 5.5: Paths and partitions corresponding to the adjusted reciprocal sequence of

the double factorial numbers

Example. Our last example is the double factorial numbers, which count all partitions

for each n which have only an even number of elements in each partition. The double

factorial numbers have a continued fraction expansion of the form

1

1 −
x2

1 −
2x2

1 −
3x2

1 − 4x2
. . .

.

We look at the adjusted reciprocal sequence for the double factorial numbers. The first

few coefficients of z(x) expand as 1, 0, 1, 0, 2, 0, 10, 0, 74, 0, 706 . . .Aerated (A000698),

so this sequence counts the number of set partitions of n, considering only sets of even

partitions, which do not have a proper subset of parts with a union equal to a subset

1, 2, ..., j with j < n. Fig. (5.5) shows the first few paths and corresponding partitions.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000698
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5.7 Bijections between Motzkin paths and constrained

 Lukasiewicz paths

In section 5.6 we have looked at the adjusted reciprocal sequence relating to Motzkin
paths. Let us now look at the adjusted reciprocal sequence for the  Lukasiewicz paths.
From section 5.2 we have the following continued fraction expansion for  Lukasiewicz
paths with all  Lukasiewicz steps of weight α and level steps of weight β,

1

1 + x(1 − β) +
x(x(β − α) − 1)

1 + x(1 − β) +
x(x(β − α) − 1)

. . .

Similarly, as for the Motzkin paths shown in section 5.6, the adjusted reciprocal sequence
counts the  Lukasiewicz paths that do not return to the x axis. Looking at one such
example of these paths, with β = 0 and α = 1 we have the

g(x) =
1

1 + x(1) +
x(x(−1) − 1)

1 + x(1) +
x(x(−1) − 1)

. . .

so the adjusted reciprocal sequence

z(x) =
1

x
(1 − 1

g(x)
)

is the sequence of Motzkin numbers (A001006).

From above, we introduce the following bijection between the (1, 1)-Motzkin paths of
length n and the (1, 0)- Lukasiewicz paths of length n + 2 which do not return to the
x-axis until the final step.

Before we give the bijection, let us look at the paths corresponding to n = 1, 2, 3 and
4. For n = 1 we have the following path

b
uul

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001006
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For n = 2 we have the following two paths

bb

uuul2

ud uudd

For n = 3 we have the following four paths

bbb

uuul2

udb
uudl

ubd
uuld

bud
uudul

For n = 4 we have the following nine paths

ubbd uuuul2d bubd
uuuull

ubdb
uuulul

uudd uuuddd

udud uududd bbud
uuuudl2

udbb

uuduul2

budb

uuudul2

bbbb

uuuuul4
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Denote Mn the set of (1, 1)-Motzkin paths of length n and Ln+2 the set of (1, 0)-
 Lukasiewicz paths of length n + 2. Now, we construct a map φ : Mn → Ln+2. Given a
(1, 1)-Motzkin path P of length n we can obtain a lattice path φ(P ) of length n+ 2 by
the following procedure,

1. Firstly, before the first step of the (1, 1)-Motzkin path add a N-E step u, and at
the end of the (1, 1)-Motzkin path, add a step S-E step, d. We now have a path
of length n + 2 which does not return to the x-axis.

2. All ud steps remain unchanged

3. For each E step b find the corresponding d step at that level, the E step b becomes
a N-E step and the d step becomes l. If there is another E step at the same level,
leaving the ud steps between them unchanged, this becomes a u step and the l
becomes l2

4. Repeat the last step until there are no E steps in the path. In general, if we have
r E steps at the same level, ignoring all ud steps, the r E steps become u steps
and the corresponding  Lukasiewicz step becomes lr+1

Conversely, we can obtain the (1, 1)-Motzkin paths of length n from the (1, 0)- Lukasiewicz
paths of length n + 2 by the following procedure,

1. For each  Lukasiewicz step, lr of length r, find the corresponding r + 1 N-E steps,
u, ignoring all ud steps. The first u step remains the same, change the following
r N-E steps to E steps, b. The lr step now becomes a N-E step d.

2. Remove the first u and last d step to create the (1, 1)-Motzkin path of length n.

Example. . . . ubbduubudbdbbd · · · ↔ . . . uuuul2uubudbdbbdd . . .

↔ . . . uuuul2uubudbdbbdd · · · ↔ . . . uuuul2uuuudul2bbdd · · · ↔ . . . uuuul2uuuudul2bbdd . . .



CHAPTER 5. LATTICE PATHS AND RIORDAN ARRAYS 144

We note that as the binomial transform preserves the bijection, so following from above
we can show a similar bijection between the paths of length n counted by the Catalan
numbers and the (1, 1)- Lukasiewicz paths of length n+ 2 which do not return to the x-
axis until the final step. The paths counted by the Catalan numbers are (1, 2)-Motzkin
paths. Let us denote the two choices for the level step as b1 and b2.

Let us look at the paths corresponding to n = 1 and 2. For n = 1 we have the following
paths

b1
uul

b2
ubd

For n = 2 we have the following two paths

ud uudd

(b1b1), (b2b2), (b2b2), (b1b2)

uuul2

ubbd
ubul uubl
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To show the bijection between the (1, 2)-Motzkin paths and the (1, 1)- Lukasiewicz
paths, we have the following procedure:

Denote Cn the set of (1, 2)-Motzkin paths of length n, where the level steps have two
choices namely, b1 and b2, and Wn+2 the set of  Lukasiewicz paths of length n+2, which
do not return to the x-axis until the last step. Now, we construct a map φ : Cn → Wn+2.
Given a path P of length n we can obtain a lattice path φ(P ) of length n + 2 by the
following procedure,

1. Firstly, before the first step of the (1, 2)-Motzkin path add a N-E step u, and at
the end of the (1, 2)-Motzkin path, add a step S-E step, d. We now have a path
of length n + 2 which does not return to the x axis.

2. All ud steps remain unchanged

3. For each E step b1 find the corresponding d step at that level, the E step b1
becomes a N-E step and the d step becomes l. If there is another E step at the
same level, leaving the ud steps between them unchanged, this becomes a u step
and the l becomes l2. E steps b2 remain unchanged

4. Repeat the last step until there are no E steps b1 remaining in the path.

Conversely, we can obtain the (1, 2)-Motzkin paths of length n from the (1, 1)- Lukasiewicz
paths of length n + 2 by the following procedure,

1. For each  Lukasiewicz step, lr of length r, find the corresponding r + 1 N-E steps
u, ignoring all ud steps. The first u step remains the same, change the following
r N-E steps to E steps, b. The lr step now becomes a N-E step d.

2. b2 steps remain unchanged, as do ud steps.

3. Remove the first u and last d step to create the (1, 2)-Motzkin paths of length n.

Example.

gives the eight paths
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. . . ub1b1duub1uddd · · · ↔ . . . uuuul2uuuudldd . . .

. . . ub1b1duub2uddd · · · ↔ . . . uuuul2uubudddd . . .

. . . ub1b2duub1uddd · · · ↔ . . . uuubluuuudldd . . .

. . . ub2b1duub1uddd · · · ↔ . . . uubuluuuudldd . . .

. . . ub2b2duub1uddd · · · ↔ . . . uubbduuuudldd . . .

. . . ub2b1duub2uddd · · · ↔ . . . uubuluubudddd . . .

. . . ub1b2duub2uddd · · · ↔ . . . uuubluubudddd . . .
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. . . ub2b2duub2uddd · · · ↔ . . . uubbduubudddd . . .



Chapter 6

Hankel decompositions using

Riordan arrays

This chapter is inspired by Peart and Woan [103], who studied Hankel matrices using
a Riordan array decomposition, where the Riordan array has an associated tridiagonal
Stieltjes matrices. As we saw in the last chapter, these Riordan arrays relate to Motzkin
paths. In this chapter, we study these Hankel matrices, decomposing them in an
alternative manner, where the related Riordan array in the decomposition has a non-
tridiagonal Stieltjes matrix. The Stieltjes matrices are those that relate to  Lukasiewicz
paths. In the previous chapter we studied  Lukasiewicz paths. In eq. (5.5) from
proposition 5.2.1 we showed that  Lukasiewicz paths with steps weighted























β 1 0 0 0 0 . . .
α β 1 0 0 0 . . .
α α β 1 0 0 . . .
α α α β 1 0 . . .
α α α α β 1 . . .
α α α α α β . . .
...

...
...

...
...

...
. . .























(6.1)

have o.g.f.

xg(x) =
1 + x(1 − β) −

√

((β + 1)x− 1)2 − 4αx2

2(1 − βx + αx)
.

148
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In this chapter we look at Hankel matrix decompositions involving Riordan arrays
with generating functions of this form. From studying this alternative decomposition
we study the relationship between Motzkin and  Lukasiewicz paths through the medium
of Riordan arrays.

In the first section we will introduce and develop on results relating to Riordan arrays
of g.f.’s of the form in [103]. We then introduce results relating to Hankel matrices
decompomposed into Riordan arrays relating to certain  Lukasiewicz paths. As the
Hankel transform is invariant under the Binomial transform, we concern ourselves with
g.f.’s of the Binomial transform of certain functions. Finally, before we leave this
chapter we look at a second decomposition of a Hankel matrix. Generating functions
relating to Hankel matrices in this section are unrelated to paths, and are simply
inspired by earlier work in the chapter.

6.1 Hankel decompositions with associated tridiag-

onal Stieltjes matrices

Firstly, let us recall some relevant results relating to Hankel matrices of the form studied
in [103].

Theorem 6.1.1. [103, Theorem 1] Let H = (ank)n,k≥0 be the Hankel matrix generated

by the sequence 1, a1, a2, a3, . . . Assume that H = LDU where

L = (lnk)n,k≥0 =





























1 0 0 0 . . .

l1,0 1 0 0 . . .

l2,0 l2,1 1 0 . . .

l3,0 l3,1 l3,2 1 . . .

l4,0 l4,1 l4,2 l4,3 . . .
...

...
...

...
. . .





























,



CHAPTER 6. HANKEL DECOMPOSITIONS USING RIORDAN ARRAYS 150

D =























d0 0 0 0 . . .

0 d1 0 0 . . .

0 0 d2 0 . . .

0 0 0 d3 . . .
...

...
...

...
...























, di 6= 0, U = LT .

Then the Stieltjes matrix SL is tridiagonal, with the form



































β0 1 0 0 0 0 0

α1 β1 1 0 0 0 0

0 α2 β1 1 0 0 0

0 0 α2 β1 1 0 0

0 0 0 α2 β1 1 0

0 0 0 0 α2 β1 1
...

...
...

...
...

...
. . .



































,

where

β0 = a1, α1 = d1, βk = lk+1,k − lk,k+1, αk =
dk+1

dk
, k ≥ 1.

Following from this result, theorems 2.4.4 and 2.4.5 which we introduced in section 2.4
define the Riordan arrays that satisfy theorem 6.1.1. Here, for o.g.f.’s, drawing from
the continued fraction expansion of the related g.f.’s we offer the following proof,

Proposition 6.1.2. If the Stieltjes matrix S has the form

S =























β0 1 0 0 0 . . .

α1 β1 1 0 0 . . .

0 α2 β1 1 0 . . .

0 0 α2 β1 1 . . .
...

...
...

...
...

. . .






















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then the related Riordan array (g(x), xf(x)) has the form
(

1

1 − β0x− α1x(xf(x))
,

x

1 − β1x− α2x(xf(x))

)

(6.2)

where

xf(x) =
−(β1x− 1) −

√

(β1x− 1)2 − 4α2x2

2α2x
. (6.3)

Proof. Let g(x) =
∑∞

n=0 anxn, with a0 = 1. A continued fraction expansion relating to

the Stieltjes matrix S above has the form [76]

g(x) =
1

1 − β0x−
α1x

2

1 − β1x−
α2x

2

1 − β1x− α2x2

...

=
1

1 − β0x− α1x(xf(x))
,

where xf(x) is

xf(x) =
x

1 − β1x−
α2x

2

1 − β1x−
α2x

2

1 − β1x− α2x2

...

=
1

1 − β1x− α2x(xf(x))
.

Solving for xf(x) gives

xf(x) =
−(β1x− 1) −

√

(β1x− 1)2 − 4α1x2

2α1x

resulting in eq. (6.3).

Note that if β1 = β0 and α1 = α2 we obtain the Riordan array

(g(x), xg(x)) =

(

1

1 − β0x− α1x(xg(x))
,

x

1 − β0x− α1x(xg(x))

)

.
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From [76], the Hankel determinant hn of order n of an = [xn]g(x) is

hn = an0α
n−1
1 αn−2

2 . . . α2
n−1αn−1.

From the form of the continued fraction expansion of g.f.’s satisfying theorem 6.1.1,
the Hankel determinant hn of order n of an = [xn]g(x), when the Riordan array L
satisfying theorem 6.1.1 has the form (g(x), xf(x)), with a0 = 1, is

hn = an0α
n−1
1 αn−2

2 . . . α2
2αn−1 = αn−1

1 α
∑n−2

i=i
i

2 = αn−1
1 α

n2−3n+2
2

2 ,

and when the Riordan array L satisfying theorem 6.1.1 has the form (g(x), xg(x)), the
Hankel determinant is,

hn = an0α
n−1
1 αn−2

2 . . . α2
2αn−1 = α

∑n−1
i=i i

1 = α
n2−n

2 .

In this chapter we concern ourselves with the Binomial transform of certain functions.
We take this opportunity to present the following result.

Proposition 6.1.3. Let LDLT = H, with H a Hankel matrix, D a diagonal matrix

and L be a Riordan matrix (g(x),f(x))([(g(x),f(x)]) with related Stieltjes matrix S, so

that L−1L = S. Then, the Riordan array related to the binomial transform of the Hankel

matrix H has Stieltjes matrix S + I.

Proof. The Binomial transform of H in matrix form is QHQT where

Q =























1 0 0 0 0 . . .

1 1 0 0 0 . . .

1 2 1 0 0 . . .

1 3 3 1 0 . . .
...

...
...

...
. . .























=

(

1

1 − x
,

1

1 − x

)

= [ex, x].

Now if LLT = H we have the binomial transform of H

QHQT = QLLTQT

= QL(QL)T
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The Stieltjes matrix S of the Riordan array L satisfies the equation L−1L = S. Thus

we wish to show that the Riordan array QL satisfies the equation

(QL)−1QL = L−1Q−1QL = I + S. (6.4)

Firstly we show that

Q−1QL = L + L.

For o.g.f.’s we have

(

1

1 + x
,

x

1 + x

)(

1

1 − x
,

x

1 − x

)

(g(x), f(x)) =

(

1

1 + x
,

x

1 + x

)(

1

1 − x
g(

x

1 − x
), f(

x

1 − x
)

)

.

The first column of the “beheaded” Riordan array above is

1
1−x

g
(

x
1−x

)

− 1

x

and the nth column
1

1−x
g
(

x
1−x

)

f
(

x
1−x

)n

x
.

Now, left multiplication of the matrix Q−1 gives the resulting first column

1

1 + x

1
1− x

1+x

g(x) − 1

x
1+x

=
g(x) − 1

x
+ g(x)

and nth column

1

1 + x

1
1− x

1+x

g(x)f(x)n

x
1+x

=
g(x)f(x)n

x
+ g(x)f(x)n.

These columns form the matrix L + L. Similarly, for e.g.f.’s we have

[e−x, x]
d

dx
[exg(x), f(x)].
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Expanding the first column gives

[e−x, x]
d

dx
(exg(x)) = [e−x, x](ex

d

dx
g(x) + exg(x)) =

d

dx
g(x) + g(x),

and for the nth column we have

[e−x, x]

(

ex
d

dx

(

g(x)
f(x)n

n!

)

+ exg(x)
f(x)n

n!

)

=
d

dx

(

g(x)
f(x)n

n!

)

+ g(x)
f(x)n

n!
.

These columns form the matrix L + L.

Now we have shown for both e.g.f.’s and o.g.f.’s that

Q−1QL = L + L.

Pre-multiplying by the matrix L−1 gives eq. (6.4).

Corollary 6.1.4.

L−1(QnL)−1QnL = nI + S.

Similarly to above, we can show that

(QnL)−1QnL = nL + L̄,

with the binomial Riordan array

Qn =

(

1

1 − nx
,

1

1 − nx

)

for o.g.f.’s and [enx, x] for e.g.f.’s.

The Hankel matrices formed from the series f(x) listed in the table below decompose
according to Theorem 6.1.1. That is, H = LDL. For the power series in the table
below, D is the diagonal matrix and L is the Riordan array (f(x), xf(x)).
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Power series A-number

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
2k

)

0n−2kxn
1 −

√
1 − 4x2

2x2

Aerated (A126120)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
2k

)

xn
(1 − x) −

√

(1 − x)2 − 4x2

2x2

(A001006)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
2k

)

2n−2kxn
(1 − 2x) −

√

(1 − 2x)2 − 4x2

2x2

(A000108)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
2k

)

3n−2kxn
(1 − 3x) −

√

(1 − 3x)2 − 4x2

2x2

(A000108)

...
...

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
2k

)

hn−2kxn
(1 − hx) −

√

(1 − hx)2 − 4x2

2x2

In table above, when h = 0 we have the sequence

∞
∑

n=0

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

n

2k

)

0n−2kxn,

which has a non zero term when n = 2k. Thus we have
∞
∑

n=0

1

n/2 + 1

(

n

n/2

)

xn =
∞
∑

n=0

1

n + 1

(

2n

n

)

x2n,

the sequence of aerated Catalan numbers. We now offer the following proof by induc-
tion.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A126120
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001006
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
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Proposition 6.1.5. The binomial transform of the sequence

∞
∑

n=0

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

n

2k

)

hn−2kxn

is the sequence
∞
∑

n=0

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

n

2k

)

(h + 1)n−2kxn

Proof. We assume true for n and by induction we prove true for n+ 1, that is we prove

the following,

n
∑

r=0

(

n

r

) ⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

r

2k

)

hr−2k =

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

n

2k

)

(h + 1)n−2k

=

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

n

2k

) n−2k
∑

m=0

(

n− 2k

m

)

hm.

Firstly, when n = 0,

0
∑

r=0

(

0

r

) ⌊ 0
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

r

2k

)

hr−2k =

⌊ 0
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

0

2k

) 0−2k
∑

m=0

(

0 − 2k

m

)

hm = 1.

By a change of variable

n
∑

r=0

(

n

r

) ⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

r

2k

)

hr−2k =

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

) n−2k
∑

m=0

(

n

2k + m

)(

2k + m

2k

)

hm.
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By the cross product of Binomial coefficients we have

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

) n−2k
∑

m=0

(

n

2k + m

)(

2k + m

2k

)

hm =

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

) n−2k
∑

m=0

(

n

2k

)(

n− 2k

m

)

hm

=

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

n

2k

) n−2k
∑

m=0

(

n− 2k

m

)

hm

=

⌊n
2
⌋

∑

k=0

1

k + 1

(

2k

k

)(

n

2k

)

(h + 1)n−2k.

Riordan arrays formed from the power series f(x) in the table below, once again sat-
isfy the decomposition LDLT = H. For the power series in the table below, D is the
diagonal matrix where the nth element of D, Dn,n is mn, for some m > 0 and L is the
Riordan array (f(x), xf(x)).
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Power series A-number

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
2k

)

0n−2k2kxn
1 −

√
1 − 8x2

4x2

Aerated (A052701)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
2k

)

1n−2k2kxn
(1 − x) −

√

(1 − x)2 − 8x2

4x2

(A025235)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
2k

)

2n−2k2kxn
(1 − 2x) −

√

(1 − 2x)2 − 8x2

4x2

(A071356)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
n−2k

)

3n−2k2kxn
(1 − 3x) −

√

(1 − 3x)2 − 8x2

4x2

(A001002)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
n−2k

)

0n−2k3kxn
1 −

√
1 − 12x2

6x2

Aerated (A005159)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
n−2k

)

3kxn
(1 − x) −

√

(1 − x)2 − 12x2

6x2

(A025237)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
n−2k

)

2n−2k3kxn
(1 − 2x) −

√

(1 − 2x)2 − 12x2

6x2

(A122871)

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
n−2k

)

3n−2k3kxn
(1 − 3x) −

√

(1 − 3x)2 − 12x2

6x2

(A107264)
...

...

∑∞
n=0

∑⌊n
2
⌋

k=0
1

k+1

(

2k
k

)(

n
n−2k

)

hn−2kmkxn
(1 − hx) −

√

(1 − hx)2 − 4mx2

2mx2

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A052701
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A025235
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A071356
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001002
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005159
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A025237
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A122871
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A107264
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6.2 Hankel matrices and non-tridiagonal Stieltjes

matrices

Now, as shown in the last section, we looked at Hankel matrices which decomposed into
L1DL1

T , where the Riordan array L1 has an associated tridiagonal Stieltjes matrix.
Here, we decompose the Hankel matrix Hf (x), where L = (f(x), xf(x)), into

LB · D · (LB)T (6.5)

where the Riordan array, L1 from the previous section has been decomposed further
into the product of two Riordan arrays, the second array being defined throughout this
section as the matrix B, which is the “shifted” Binomial matrix with the first column
0n. The first few rows have the form

B =



















1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 1 1 0 0 . . .
0 1 2 1 0 . . .
0 1 3 3 1 . . .
...

...
...

...
...

. . .



















=

(

1,
x

1 − x

)

. (6.6)

The generating function of the first column of the Riordan array L, f(x), is the gen-
erating function in eq. (5.5) with α = β = β0. That is, f(x) is the g.f. for  Lukasiewicz
paths with east(E) and south-easterly(S-E) steps of the same weight, thus the related
Stieltjes matrix has the form























β0 1 0 0 0 0 . . .
β0 β0 1 0 0 0 . . .
β0 β0 β0 1 0 0 . . .
β0 β0 β0 β0 1 0 . . .
β0 β0 β0 β0 β0 1 . . .
β0 β0 β0 β0 β0 β0 . . .
...

...
...

...
...

...
. . .























. (6.7)

Thus Hf is the Hankel matrix where an = [xn]f(x), to which we associate the g.f.
f(x) =

∑∞
n=0 anx

n where

f(x) =
1

(1 − (β0 − 1)x) − xf(x)

=
1 − (β0 − 1)x−

√

(1 − (β0 − 1)x)2 − 4x

2x
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and f(x) satisfies the equation

xf(x)2 − f(x)(1 − (β0 − 1)x) + 1 = 0.

L is the Riordan array (f(x), xf(x)) and D is the diagonal matrix

D =



















1 0 0 0 0 . . .
0 β0 0 0 0 . . .
0 0 β2

0 0 0 . . .
0 0 0 β3

0 0 . . .
0 0 0 0 β4

0 . . .
...

...
...

...
...

. . .



















.

Proposition 6.2.1.

Hf(x) = LB · D · LBT . (6.8)

where

f(x) =
1 − (β0 − 1)x−

√

(1 − (β0 − 1)x)2 − 4x

2x
,

with

B =

(

1,
x

1 − x

)

and D is the diagonal matrix with Dn,n = βn
0 .

Proof. Let the Riordan arrays L = (f(x), xf(x)) and LB = (f(x), xf1(x)). Thus

LB = L

(

1,
x

1 − x

)

=

(

1 − (β0 − 1)x−
√

(1 − (β0 − 1)x)2 − 4x

2x
,

1 − (1 + β0)x−
√

(1 − (β0 − 1)x)2 − 4x

2β0x

)

= (1 + β0xf1(x), xf1(x)),

with

xf1(x) =
1 − (1 + β0)x−

√

(1 − (β0 − 1)x)2 − 4x

2β0x
,



CHAPTER 6. HANKEL DECOMPOSITIONS USING RIORDAN ARRAYS 161

which satisfies the equation

β0x(xf1(x))2 + (xf1(x))(x(1 + β0) − 1) + x = 0.

Now, we can rewrite LB as
(

1

1 − β0x− β0x(xf1(x))
,

x

1 − (β0 + 1)x− β0x(xf1(x))

)

.

This satisfies Theorem 6.1.1 with associated Stieltjes matrix

SLB =























β0 1 0 0 . . .

β0 β0 + 1 1 0 . . .

0 β0 β0 + 1 1 . . .

0 0 β0 β0 + 1 . . .
...

...
...

. . .























,

thus eq. (6.8) is also satisfied.

Corollary 6.2.2. The nth Hankel transform of an = [xn]f(x) where Hf satisfies eq.

(6.8) is β
n(n+1)

2
0 .

Investigating the form of the Hankel matrix formed from the sequence of coefficients
of the series reversion of

xf(x) =
1 − (β0 − 1)x−

√

(1 − (β0 − 1)x)2 − 4x

2
,

we let

xg(x) = Rev(xf(x)) =
x(1 − x)

1 + (β0 − 1)x

and find for the form of the Hankel matrix Hg, that we have the decomposition

Hg = L−1M · D · (L−1M)T (6.9)

where M is the matrix with first column 0n and second column with g.f.

xf(x) =
1 − (1 + β0)x−

√

(1 − (β0 − 1)x)2 − 4x

2β0x
.
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All other columns are zero.

Now, let us look at some examples of g.f.’s that satisfy Theorem 6.8 above.

Example. Let L = (f(x), xf(x)), where

f(x) =
1

1 − xf(x)
,

is the g.f. of the sequence of Catalan numbers (A000108 ). Two continued fraction

forms of the g.f. of the Catalan numbers are

f(x) =
1

1 −
x

1 −
x

1 −
x

. . .

=
1

1 − x−
x2

1 − 2x−
x2

1 − 2x−
x2

. . .

.

Now, we have Hf = LB · (LB)T , the first few rows of this matrix equation expand as























1 0 0 0 . . .

1 1 0 0 . . .

2 2 1 0 . . .

5 5 3 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 1 0 . . .

0 1 2 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 1 0 . . .

0 1 2 1 . . .
...

...
...

. . .























T 





















1 0 0 0 . . .

1 1 0 0 . . .

2 2 1 0 . . .

5 5 3 1 . . .
...

...
...

. . .























T

.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108 
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The associated Stieltjes matrices of L and LB are

SL =























1 1 0 0 . . .

1 1 1 0 . . .

1 1 1 1 . . .

1 1 1 1 . . .
...

...
...

. . .























,

which are the  Lukasiewicz paths with weight of one for all E and S-E steps, and

SLB =























1 1 0 0 . . .

1 2 1 0 . . .

0 1 2 1 . . .

0 0 1 2 . . .
...

...
...

. . .























which are the Motzkin paths with weight of one for all S-E steps and weight of two for

all E steps, except the x-axis E step, which has weight one.

We note that L−1 = (g(x), xg(x)) =
(

1 − x, x(1 − x)
)

and Hg = L−1M · D · (L−1M)T

expands as























1 0 0 . . .

−1 1 0 . . .

0 −2 1 . . .

0 1 −3 . . .
...

...
. . .













































1 0 0 . . .

0 1 0 . . .

0 2 0 . . .

0 5 0 . . .
...

...
. . .













































1 0 0 . . .

0 −1 0 . . .

0 0 −1 . . .

0 0 0 . . .
...

...
. . .













































1 0 0 . . .

0 1 0 . . .

0 2 0 . . .

0 5 0 . . .
...

...
. . .























T 





















1 0 0 . . .

−1 1 0 . . .

0 −2 1 . . .

0 1 −3 . . .
...

...
. . .























T

.

Example. Let L = (f(x), xf(x)) where f(x) satisfies the equation

f(x)2x− f(x)(1 − x) + 1 = 0,
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with

f(x) =
1 − x−

√
x2 − 6x + 1

2x
,

which is the g.f. of the sequence of the large Schröder numbers,(A006318). Two forms

of the continued fraction expansion of f(x) are given by

f(x) =
1

1 − x−
x

1 − x−
x

1 − x−
x

. . .

=
1

1 − 2x−
2x2

1 − 3x−
2x2

1 − 3x−
2x2

. . .

.

Now, Hf = LB · D · (LB)T , which expands as























1 0 0 0 . . .

2 1 0 0 . . .

6 4 1 0 . . .

22 16 6 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 1 0 . . .

0 1 2 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 2 0 0 . . .

0 0 4 0 . . .

0 0 0 8 . . .
...

...
...

...
. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 1 0 . . .

0 1 2 1 . . .
...

...
...

. . .























T 





















1 0 0 0 . . .

2 1 0 0 . . .

6 4 1 0 . . .

22 16 6 1 . . .
...

...
...

. . .























T

.

The associated Stieltjes matrices of L and LB are,

SL =























2 1 0 0 0 . . .

2 2 1 0 0 . . .

2 2 2 1 0 . . .

2 2 2 2 1 . . .
...

...
...

...
. . .























,

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006318


CHAPTER 6. HANKEL DECOMPOSITIONS USING RIORDAN ARRAYS 165

which are the  Lukasiewicz paths with weight of two for all E and S-E steps, and

SLB =























2 1 0 0 . . .

2 3 1 0 . . .

0 2 3 1 . . .

0 0 2 3 . . .
...

...
...

. . .























,

which are the Motzkin paths with weight of two for all S-E steps and weight of three for

all E steps, except the x-axis E step which has weight two.

We note that L−1 = (g(x), xg(x)) =

(

1−x
1+x

, x(1−x)
1+x

)

. Hg = L−1M ·D · (L−1M)T expands

as























1 0 0 . . .

−2 1 0 . . .

2 −4 1 . . .

−2 8 −6 . . .
...

...
. . .













































1 0 0 . . .

0 1 0 . . .

0 3 0 . . .

0 11 0 . . .
...

...
. . .













































1 0 0 . . .

0 −2 0 . . .

0 0 −2 . . .

0 0 0 . . .
...

...
. . .













































1 0 0 . . .

0 1 0 . . .

0 3 0 . . .

0 11 0 . . .
...

...
. . .























T 





















1 0 0 . . .

−2 1 0 . . .

2 −4 1 . . .

−2 8 −6 . . .
...

...
. . .























T

.

Example. Let L = (f(x), xf(x)), where f(x) satisfies the equation

f(x)2x− f(x)(1 − 2x) + 1 = 0

with

f(x) =
1 − 2x−

√
4x2 − 8x + 1

2x
,

which is the g.f. of the sequence of planar rooted trees with n nodes and tricolored end
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nodes (A047891). Two continued fraction expansions of the g.f. have the form,

f(x) =
1

1 − 2x−
x

1 − 2x−
x

1 − 2x−
x

. . .

=
1

1 − 3x−
3x2

1 − 4x−
3x2

1 − 4x−
3x2

. . .

.

We have Hf = LB · D · (LB)T which expands as






















1 0 0 0 . . .

3 1 0 0 . . .

12 6 1 0 . . .

57 33 9 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 1 0 . . .

0 1 2 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 3 0 0 . . .

0 0 9 0 . . .

0 0 0 27 . . .
...

...
...

...
. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 1 0 . . .

0 1 2 1 . . .
...

...
...

. . .























T 





















1 0 0 0 . . .

3 1 0 0 . . .

12 6 1 0 . . .

57 33 9 1 . . .
...

...
...

. . .























T

.

The associated Stieltjes matrices of L and LB are

SL =























3 1 0 0 0 . . .

3 3 1 0 0 . . .

3 3 3 1 0 . . .

3 3 3 3 1 . . .
...

...
...

...
. . .























,

which are the  Lukasiewicz paths with weight three for all E and S-E steps, and

SLB =























3 1 0 0 . . .

3 4 1 0 . . .

0 3 4 1 . . .

0 0 3 4 . . .
...

...
...

. . .























http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A047891
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which are the Motzkin paths with weight of three for all S-E steps and weight of four

for all E steps, except the x-axis E step which has weight three.

We note that L−1 = (g(x), xg(x)) =

(

1−x
1+2x

, x(1−x)
1+2x

)

. Hg = L−1M·D·(L−1M)T expands

as






















1 0 0 . . .

−3 1 0 . . .

6 −6 1 . . .

−12 21 −9 . . .
...

...
. . .













































1 0 0 . . .

0 1 0 . . .

0 2 0 . . .

0 4 0 . . .
...

...
. . .













































1 0 0 . . .

0 −3 0 . . .

0 0 −3 . . .

0 0 0 . . .
...

...
. . .













































1 0 0 . . .

0 1 0 . . .

0 2 0 . . .

0 4 0 . . .
...

...
. . .























T 





















1 0 0 . . .

−3 1 0 . . .

6 −6 1 . . .

−12 21 −9 . . .
...

...
. . .























T

.

Corollary 6.2.3. A bijection exists between  Lukasiewicz paths with weight α for all E

and S-E steps, where the first few elements of the associated Stieltjes matrix expand as






















α 1 0 0 0 . . .

α α 1 0 0 . . .

α α α 1 0 . . .

α α α α 1 . . .
...

...
...

...
. . .























and Motzkin paths with weight of α for all S-E steps and weight of α+1 for all E steps,

except the x-axis E step which has weight α. The first few elements of the associated

Stieltjes expand as






















α 1 0 0 . . .

α α + 1 1 0 . . .

0 α α + 1 1 . . .

0 0 α α + 1 . . .
...

...
...

. . .























.

Proof. Proof follows from eq. (6.8).
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We now turn our attention to Riordan arrays L = (g(x), xf(x)) with g(x) 6= f(x) and
we introduce the following proposition. In terms of paths, we will now look at paths
where the weights of the steps returning to the x-axis, or level steps on the x-axis differ
from the other possible steps of the paths considered.

Proposition 6.2.4.

Hg(x) = LB · D · LBT ,

where the Riordan array

L = (g(x), xf(x)) =

(

1

1 − (β0 − α0

β1
)x− α0

β1
xf(x)

,
x

(1 − (β1 − 1)x) − xf(x)

)

(6.10)

with

xf(x) =
1 − (β1 − 1)x−

√

(1 − (β1 − 1)x)2 − 4x

2
,

and L has the associated Stieltjes matrix

SL =























β0 1 0 0 . . .

α0 β1 1 0 . . .

α0 β1 β1 1 . . .

α0 β1 β1 β1 . . .
...

...
...

. . .























.

We note that following the notation of the Stieltjes matrix above, S-E steps returning
to the axis have the same weight, α0 with E steps on the x-axis having weight β0. All
other S-E and E steps have weight β1.

Proof. Now for LB = (g(x), xf1(x)), with L = (g(x), xf(x)) we have the Riordan array

L

(

1,
x

1 − x

)

=

(

1

1 − (β0 − α0

β1
)x− α0

β1
xf(x)

,
1 − (1 + β1)x−

√

(1 − (β1 − 1)x)2 − 4x

2β1

)

.

As xf1(x) =
1−(1+β1)x−

√
(1−(β1−1)x)2−4x

2β1
we can rewrite LB as

(

1

1 − β0x− α0x2f1(x)
, xf1(x)

)

,
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which has associated Stieltjes matrix

SLB =























β0 1 0 0 . . .

α0 β1 + 1 1 0 . . .

0 β1 β1 + 1 1 . . .

0 0 β1 β1 + 1 . . .
...

...
...

. . .























.

We can rewrite

LB =

(

1

1 − β0x− α0x(xf1(x))
,

x

1 − (β1 + 1)x− β1x(xf1(x))

)

.

The Riordan array above satisfies Theorem 6.1.1, thus

Hg(x) = LB · D · LBT .

Example. We consider the g.f. with continued fraction expansion

1

1 − x−
2x

1 −
x

1 −
x

. . .

,

which is the g.f. of the sequence (A026671).

The associated Stieltjes matrices of L and LB are

SL =























3 1 0 0 . . .

2 1 1 0 . . .

2 1 1 1 . . .

2 1 1 1 . . .
...

...
...

. . .























,

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A026671
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which are the  Lukasiewicz paths with weight of one for all E and S-E steps except those

returning to the x-axis, when the E step has weight three and the S-E steps have weight

two, and

SLB =























3 1 0 0 . . .

2 2 1 0 . . .

0 1 2 1 . . .

0 0 1 2 . . .
...

...
...

. . .























which are the Motzkin paths with weight of one for all S-E steps and weight of two for

all E steps, except the x-axis E step which has weight three and the S-E step returning

to the x-axis has weight of two.

6.2.1 Binomial transforms

Now, as the Hankel transform is invariant under the Binomial transform [78], we are
interested in the form of the Binomial transform of the generating functions above.
Firstly let us look at generating functions of the form in eq. (6.8), that satisfy the
equation

xf(x)2 − f(x)(1 − (β1 − 1)x) + 1 = 0.

We have the following proposition

Proposition 6.2.5. An o.g.f. which satisfies

x(1 − βx)f(x)2 − f(x)(1 − (β1 − 1 + β)x) + 1 = 0 (6.11)
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with continued fraction expansion of f(x)

f(x) =
1

1 − (β1 − 1 + β)x−
x(1 − βx)

1 − (β1 − 1 + β)x−
x(1 − βx)

1 − (β1 − 1 + β)x−
x(1 − βx)

. . .

has related Stieltjes matrix






















β + β1 1 0 0 . . .

β1 β + β1 1 0 . . .

β1 β1 β + β1 1 . . .

β1 β1 β1 β + β1 . . .
...

...
...

. . .























.

Proof. Applying proposition 2.4.8 to the Riordan array (f(x), xf(x)), where xf(x) is

xf(x) =
x

1 − (β1 − 1 + β)x− (1 − βx)xf(x)
,

gives the required result.

Corollary 6.2.6. The βth binomial transform of the Riordan array (fβ(x), xfβ(x))

with f(x) satisfying

xf(x)2 − f(x)(1 − (β1 − 1)x) + 1 = 0

satisfies

x(1 − βx)fβ(x)2 − fβ(x)(1 − (β1 − 1 + β)x) + 1.

Example. For β1 = 2 we have

xf(x)2 − f(x)(1 − x) + 1 = 0
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with

f(x) =
x− 1 +

√
x2 − 6x + 1

−2x
.

The g.f. f(x) has a continued fraction expansion

1

(1 − x) −
x

(1 − x) −
x

(1 − x) −
x

. . .

,

which is the g.f. for the sequence of the large Schröeder numbers (A006318). The

Hankel matrix decomposes as























1 0 0 0 . . .

2 1 0 0 . . .

6 4 1 0 . . .

22 16 6 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 1 0 . . .

0 1 2 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 2 0 0 . . .

0 0 4 0 . . .

0 0 0 8 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 1 0 . . .

0 1 2 1 . . .
...

...
...

. . .























T 





















1 0 0 0 . . .

2 1 0 0 . . .

6 4 1 0 . . .

22 16 6 1 . . .
...

...
...

. . .























T

so hn = 2
n(n+1)

2 is the nth Hankel transform with first few elements

1, 2, 8, 64, 1024, . . . (A006125).

Now, the binomial transform, (g1(x), xf1(x)), with β = 1 satisfies,

x(1 − x)f1(x)2 − f1(x)(1 − 2x) + 1 = 0

with

f1(x) =
2x− 1 +

√
8x2 − 8x + 1

2x(x− 1)
,

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006318
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006125
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and f1(x) has a continued fraction expansion

1

(1 − 2x) −
x(1 − x)

(1 − 2x) −
x(1 − x)

(1 − 2x) −
x(1 − x)

. . .

,

which is the g.f. for the sequence (A174347).

Now we look at g.f.’s of the form where g(x) 6= f(x), and the Riordan array L =
(

g(x), xf(x)
)

has

g(x) =
1

1 − (β + β1)x− x(1 − βx)f(x)
, f(x) =

1

1 − (β + β0)x− x(1 − βx)f(x)
.

In terms of paths, all E and S-E steps have the same weighting, except for that of the
E step on the x-axis.

The associated Stieltjes matrix has the form















β + β1 1 0 0 . . .
β0 β + β0 1 0 . . .
β0 β0 β + β0 1 . . .
β0 β0 β0 β + β0 . . .
...

...
...

. . .















.

The g.f. of g1(x), the g.f. of the first row of the Riordan array after multiplication of
the Binomial array, has a continued fraction expansion

1

1 − (β + β1 − 1)x− x(1 − βx)

1 − (β0 − 1 + β)x− x(1 − βx)

1 − (β0 − 1 + β)x− x(1 − βx)

. . .

.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A174347
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We note that

L−1 =

(

x2(β0 − β1) − x(β0 − β1 − 1) − 1

x2β − x(β + β0) − 1
,

x(x− 1)

βx2 − x(β + β0) − 1

)

.

Let us look at some examples of Riordan arrays of the above form.

Example. For β0 = 0, β1 = 2 with β = 0, 1, 2 ,

g(x) =
1

1 − 2x− xf(x)

and g(x) has a continued fraction expansion

1

1 − 2x−
x

1 −
x

1 − x . . .

.

The coefficients of the related power series form the sequence (A001700). Note that for

L = (g(x), xf(x)) then

L−1 = (2x2 − 3x + 1, x(1 − x)).

The Binomial transform of g(x) is

g1(x) =
1

1 − 3x− x(1 − x)f(x)

and g1(x) has a continued fraction expansion

1

1 − 3x−
x(1 − x)

1 − x−
x(1 − x)

1 − x− x(1 − x) . . .

.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001700
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The coefficients of the related power series form the sequence (A026378). If L1 =

(g1(x), xf1(x)) then the Riordan array

L1
−1 =

(−(2x2 − 3x + 1)

x2 − x− 1
,
x(x− 1)

x2 − x− 1

)

.

Rev(xf1(x)) are the alternating signed Fibonacci numbers. The second Binomial trans-

form (g2(x), xf2(x)), with β = 2, has

g2(x) =
1

1 − 4x− x(1 − 2x)f(x)
,

and g2(x) has a continued fraction expansion

1

1 − 4x−
(1 − 2x)x

1 − 2x−
(1 − 2x)x

1 − 2x− x(1 − 2x) . . .

.

The coefficients of the related power series form the sequence (A005573).

L2
−1 = ((g2(x), xf2(x)))−1 =

(−(2x2 − 3x + 1)

2x2 − 2x− 1
,

x(x− 1)

2x2 − 2x− 1

)

where Rev(xf2(x)) is the sequence A028859. In general, the related Stieltjes matrices

for each of the β values above is























2 + β 1 0 0 . . .

1 1 + β 1 0 . . .

1 1 1 + β 1 . . .

1 1 1 1 + β . . .
...

...
...

. . .























,

where the related  Lukasiewicz paths have weight one for all the S-E steps, and weight

β for all E steps, except those E steps on the x-axis, where they have weight β + 2.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A026378
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005573
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A028859
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Now finally we turn our attention to the binomial transforms of g.f.’s of the form in
eq. (6.12) where g(x) 6= f(x), and the Riordan array L =

(

g(x), xf(x)
)

has the form

(

1

1 − (β0 − α0

β1
)x− α0

β1
xf(x)

,
x

(1 − (β1 − 1)x) − xf(x)

)

.

Here, we have the binomial transform

(

1

1 − (β0 − α0

β1
+ β)x− α0

β1
(1 − β)xf(x)

,
x

(1 − (β1 − 1)x) − x(1 − β)f(x)

)

.

Example. We look at the first binomial transform of the g.f.

1

1 − x−
2x

1 −
x

1 −
x

. . .

,

which is the g.f. for the sequence(A026671). The associated Stieltjes matrix is























3 1 0 0 . . .

2 1 1 0 . . .

2 1 1 1 . . .

2 1 1 1 . . .
...

...
...

. . .























,

with related  Lukasiewicz paths with E and S-E steps all of weight one except for E steps

on the x-axis having weight three and S-E steps returning to the x-axis having weight

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A026671
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two. We have a continued fraction expansion for the binomial transform

1

1 − 2x−
2x(1 − x)

1 − x−
x(1 − x)

1 − x−
x(1 − x)

. . .

,

which is the g.f. of the sequence (A026671), with corresponding Stieltjes matrix























4 1 0 0 . . .

2 2 1 0 . . .

2 1 2 1 . . .

2 1 1 2 . . .
...

...
...

. . .























,

which has the same steps as the Stieltjes above, excepts for an increase of the weight of

one for each of the level steps.

As we noted in section 5.1.1 where we constructed the binomial transform of a Motzkin
path, a bijection between a Motzkin and  Lukasiewicz path is preserved under the
binomial transform. We refer the reader to section 5.4, where we have constructed one
such bijection satisfying the g.f.’s from this section, where the related Stieltjes matrices
have the form

SL =















0 1 0 0 . . .
1 0 1 0 . . .
1 1 0 1 . . .
1 1 1 0 . . .
...

...
...

. . .















,

which are the  Lukasiewicz paths with weight of one for all S-E steps and no E steps

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A026671


CHAPTER 6. HANKEL DECOMPOSITIONS USING RIORDAN ARRAYS 178

permitted, and

SLB =















0 1 0 0 . . .
1 1 1 0 . . .
0 1 1 1 . . .
0 0 1 1 . . .
...

...
...

. . .















,

which are the Motzkin paths with weight of one for all steps except no E steps permitted
on the x-axis. We note that this is the inverse binomial transform of the g.f. from
example 6.2.

6.3 A second Hankel matrix decomposition

Finally before we leave this chapter we naturally lead ourselves to consider a similar
decomposition as in eq. (6.8), where we look at the Riordan array decomposition
involving the inverse of the “shifted binomial” matrix B, as defined in the last section.
This inspires the last section in this chapter. We note that we do not consider related
lattice paths in this last section as the form of the Stieltjes matrix does not correspond
to any paths that we have previously encountered. Once again, we will also look at the
binomial transforms of Riordan arrays satisfying our new Riordan array decomposition,
and again we will consider the form of their associated Stieltjes matrices.

We now introduce the following decomposition of a Hankel matrix Hg :

Hg = L−1M · D · (L−1M)T , (6.12)

where the Hankel matrix Hg is the matrix where an = [xn]g(x) and L is the Riordan
array (g(x), xg(x)), where

g(x) =
(1 + nx)

1 + (2n + β)x + (n2 + βn + 1)x2
, (6.13)

with β > 0, D a diagonal matrix, and M the matrix with first column 0n and second
column equal to Rev(xg(x)), where

Rev(xg(x)) = xf(x) =
x

1 − (2n + β)x + (n− (n2 + βn + 1)x)xf(x)
(6.14)

=

√

x2(β2 − 4) − 2xβ + 1 + x(β + 2n) − 1

2(n− x(βn + n2 + 1))
. (6.15)
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We will see in the examples below that the Hankel matrix Hf , with an = [xn]f(x)

where f(x) is the g.f. of the series reversion of g(x), decomposes into LB−m · LB−mT
,

for some m, where L = (f(x), xf(x)) and B = (1, 1
1+x

), so so we have the following,

(f(x), xf(x))

(

1,
x

1 + nx

)

=

(

1,
x

1 + nx

)

=

(

f(x),
xf(x)

1 + n(xf(x))

)

.

Now xf(x)
1+n(xf(x))

simplifies to

1 − βx−
√

x2(β2 − 4) − 2xβ + 1

2x
,

giving the Riordan array (g(x), xf(x)):

(

√

x2(β2 − 4 − 2xβ + 1) + x(β + 2n) − 1

2(n− x(βn + n2 + 1))
,

1 − βx−
√

x2(β2 − 4) − 2xβ + 1

2x

)

which is the Riordan array

(

1

1 − (β + n)x− x(xf(x))
, xf(x)

)

,

which has a corresponding tridiagonal Stieltjes matrices.

Let us look at some examples. Note that as the g.f.’s of the Riordan arrays depend on
two variables, we will use the notation L = Ln,β for the rest of this section.

Example. For β = 1, MDM has the form























1 0 0 0 . . .

0 1 0 0 . . .

0 1 0 0 . . .

0 2 0 0 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 −1 0 0 . . .

0 0 −1 0 . . .

0 0 0 −1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 1 0 0 . . .

0 2 0 0 . . .
...

...
...

. . .























T
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The second column of M is the g.f. for the sequence of the Motzkin numbers. Now,

β = 1, we have Ln,0, let us now look at the Riordan arrays generated when n = 0, 1 and

2.

For n = 0 we have,

L−1
n,0 =

(

1

1 + x + x2
,

x

1 + x + x2

)

with first few rows of the Riordan array

L−1
n,0 =























1 0 0 0 . . .

−1 1 0 0 . . .

0 −2 1 0 . . .

1 1 −3 1 . . .
...

...
...

. . .























,

and associated Stieltjes matrix

S
L
−1
n,0

=























−1 1 0 0 . . .

−1 −1 1 0 . . .

−2 −1 −1 1 . . .

−4 −2 −1 −1 . . .
...

...
...

. . .























.

Ln,0 = (f(x), xf(x)), where

xf(x) =
x

1 − x− x(xf(x))
,

which is the g.f. of the sequence of Motzkin numbers (A001006 ). The first few rows

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001006 
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of the Riordan array expand as

Ln,0 =























1 0 0 0 . . .

1 1 0 0 . . .

2 2 1 0 . . .

4 5 3 1 . . .
...

...
...

. . .























,

with associated Stieltjes matrix

SLn,0 =























1 1 0 0 . . .

1 1 1 0 . . .

0 1 1 1 . . .

0 0 1 1 . . .
...

...
...

. . .























.

We note that (Ln,0) · (LT
n,0) = H.

For n = 1 we have

L−1
n,1 =

(

1 + x

1 + 3x + 3x2
,

x(1 + x)

1 + 3x + 3x2

)

,

with first few rows of the Riordan array

L−1
n,1 =























1 0 0 0 . . .

−2 1 0 0 . . .

3 −4 1 0 . . .

−3 10 −6 1 . . .
...

...
...

. . .























,
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with associated Stieltjes matrix

S
L
−1
n,1

=























−2 1 0 0 . . .

−1 −2 1 0 . . .

−2 −1 −2 1 . . .

−4 −2 −1 −2 . . .
...

...
...

. . .























.

Ln,1 = (f(x), xf(x)), where

xf(x) =
x

1 − 3x + (xf(x))(1 − 3x)
,

which is the g.f. of the sequence of numbers of directed animals of size n (A005773),

with first few rows of the Riordan array

Ln,1 =























1 0 0 0 . . .

2 1 0 0 . . .

5 4 1 0 . . .

13 14 6 1 . . .
...

...
...

. . .























,

and associated Stieltjes matrix,

SLn,1 =























2 1 0 0 . . .

1 2 1 0 . . .

−1 1 2 1 . . .

1 −1 1 2 . . .
...

...
...

. . .























.

We note that Ln,1(B
−1) · (Ln,1(B

−1))T = Hf . The first few rows of Ln,1(B
−1) expand

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005773
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as,






















1 0 0 0 . . .

2 1 0 0 . . .

5 4 1 0 . . .

13 14 6 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 −1 1 0 . . .

0 1 −2 1 . . .
...

...
...

. . .























=























1 0 0 0 . . .

2 1 0 0 . . .

5 3 1 0 . . .

13 9 4 1 . . .
...

...
...

. . .























,

with associated Stieltjes matrix,

SLn,1(B−1) =























2 1 0 0 . . .

1 1 1 0 . . .

0 1 1 1 . . .

0 0 1 1 . . .
...

...
...

. . .























.

Finally, for n = 2 we have

L−1
n,2 =

(

1 + 2x

1 + 5x + 7x2
,

x(1 + 2x)

1 + 5x + 7x2

)

,

with first few rows of the Riordan array

L−1
n,2 =























1 0 0 0 . . .

−3 1 0 0 . . .

8 −6 1 0 . . .

−19 25 −9 1 . . .
...

...
...

. . .























,
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and associated Stieltjes matrix,

SL−1
n,2

=























−3 1 0 0 . . .

−1 −3 1 0 . . .

−2 −1 −3 1 . . .

−4 −2 −1 −3 . . .
...

...
...

. . .























.

Ln,2 = (f(x), xf(x)), where

xf(x) =
x

1 − 5x + (xf(x))(2 − 7x)
,

which is the g.f. for the sequence (A059738). The Riordan array has first few rows

Ln,2 =























1 0 0 0 . . .

3 1 0 0 . . .

10 6 1 0 . . .

34 29 9 1 . . .
...

...
...

. . .























,

and associated Stieltjes matrix,

SLn,2 =























3 1 0 0 . . .

1 3 1 0 . . .

−2 1 3 1 . . .

4 −2 1 3 . . .
...

...
...

. . .























.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A059738
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We have Ln,2(B
−2) · (Ln,2(B

−2))T = Hf

Ln,2(B
−2) =























1 0 0 0 . . .

3 1 0 0 . . .

10 6 1 0 . . .

34 29 9 1 . . .
...

...
...

. . .













































1 0 0 0 . . .

0 1 0 0 . . .

0 −1 1 0 . . .

0 1 −2 1 . . .
...

...
...

. . .























2

=























1 0 0 0 . . .

3 1 0 0 . . .

10 4 1 0 . . .

34 15 5 1 . . .
...

...
...

. . .























,

with associated Stieltjes matrix,

SLn,2B
−2 =























3 1 0 0 . . .

1 1 1 0 . . .

0 1 1 1 . . .

0 0 1 1 . . .
...

...
...

. . .























.

Now, we have seen some examples above of Stieltjes matrices related to generating
functions of the form in eq. (6.15). From eq. (4.7) in proposition 4.3.2 we saw that
the rows of the Stieltjes matrix corresponding to the Riordan array (g(x), xg(x)) of the
Bell subgroup have the form

A(x) =
x

xg(x)
and Z(x) =

1

xg(x)
− 1

x
.

Using this result, we have the following

Corollary 6.3.1. The Stieltjes matrix of the Riordan array (f(x), xf(x)) where

xf(x) =
x

1 − (2n + β)x + (n− (n2 + βn + 1)x)f(x)

is formed by the power series

A(x) = 1 + (β + n)x + x2
∞
∑

m=0

(−n)mxm+2
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and

Z(x) = (β + n)x + x2

∞
∑

m=0

(−n)mxm+2

Proof. The rows of the Stieltjes matrix corresponding to the Riordan array (f(x), xf(x))

of the Bell subgroup have the form

A(x) =
x

xf(x)
and Z(x) =

1

xf(x)
− 1

x
.

From eq. (6.13) we have the series reversion of xf(x)

rev(xf(x)) = xg(x) =
(1 + nx)x

(1 + (2n + β)x + (n2 + βn + 1)x2)
.

We have

A(x) =
(1 + (2n + β)x + (n2 + βn + 1)x2)

(1 + nx)
= 1 + (β + n)x + x2

∞
∑

m=0

(−n)mxm+2,

and

Z(x) =
(1 + (2n + β)x + (n2 + βn + 1)x2)

(1 + nx)x
− 1

x
= (β + n)x + x2

∞
∑

m=0

(−n)mxm+2

Now, we note that the g.f. from eq. (6.12)

g(x) =
(1 + nx)

1 + (2n + β)x + (n2 + βn + 1)x2

can be rewritten in the form

1

1 + (n + β)x + x2

1+nx

.

In the table in Fig. (6.3) below we see that for each β, the functions

g(x) =
(1 + nx)

1 + (2n + β)x + (n2 + βn + 1)x2



CHAPTER 6. HANKEL DECOMPOSITIONS USING RIORDAN ARRAYS 187

are successive inverse transforms for increasing n and for the series reversion,

Rev(xg(x)) = xf(x) =
x

1 − (2n + β)x + (n− (n2 + βn + 1)x)xf(x)

=

√

x2(b2 − 4) − 2xb + 1 + x(b + 2n) − 1

2(n− x(βn + n2 + 1))

for each value of n the functions xf(x) are successive binomial transforms for increasing
values of β. This leads us to the final proposition in this chapter:

Proposition 6.3.2. The inverse binomial transform of

g(x) =
(1 + nx)

1 + (2n + β)x + (n2 + βn + 1)x2
=

1

1 + (n + β)x + x2

1+nx

,

is
1

1 + (n + 1 + β)x +
x2

1 + (n + 1)x

,

and the binomial tranform of

Rev(xg(x)) = xf(x) =
x

1 − (2n + β)x + (n− (n2 + βn + 1)x)xf(x)

is
x

1 − (2n + (β + 1))x + (n− (n2 + (β + 1)n + 1)x)xf(x)

Proof. Using Riordan arrays we proceed by showing that left multiplication of g(x) by
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the inverse of the Binomial Riordan array gives the required g.f. That is

(

1

1 + x
,

x

1 + x

)

1

1 + (n + β)x +
x2

1 + nx

=
1

1 + x

1

1 + (n + β)
(

x
1+x

)

+

(

x
1+x

)2

1 + n
(

x
1+x

)

=
1

1 + x

1 +
nx

1 + x

1 +
nx

1 + x
+

x(n + β)

1 + x
+

nx2(n + β)

(1 + x)2
+

x

(1 + x)2

=
1 + x(1 + n)

1 + x(1 + n) + (1 + x(1 + n))(n + 1 + β)x + x2

=
1

1 + (n + 1 + β)x +
x2

1 + (n + 1)x

.

For the series reversion f(x), we have

(

1

1 − x
,

x

1 − x

)

√

x2(β2 − 4) − 2xβ + 1 + x(β + 2n) − 1

2(n− x(βn + n2 + 1))

=
1

1 − x

√

(

x
1−x

)2

(β2 − 4) − 2( x
1−x

)β + 1 + ( x
1−x

)(β + 2n) − 1

2( x
1−x

)(n− ( x
1−x

)(βn + n2 + 1))

=

√

x2(β2 − 4) − 2(x(1 − x))β + (1 − x)2 + x(β + 2n) − (1 − x)

2x(n(1 − x) − x(βn + n2 + 1))

=

√

x2((β + 1)2 − 4) − 2x(β + 1) + 1 + x((β + 1) + 2n) − 1

2(n− x(βn + n2 + 1))
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β n = −1 n = 0 n = 1

1 g(x) =
1

1 +
x2

1− x

g(x) =
1

1 + x+ x2

1

1 + 2x+
x2

1 + x

1, 0,−1,−1, 0, 1, 1, . . . 1,−1, 0, 1,−1, 0, 1,−1, . . . 1,−2, 3,−3, 9, . . .

f(x) =
1

1 + x+ (−1− x)f(x)
f(x) =

1

1− x− xf(x)
f(x) =

1

1− 3x+ (1− 3x)f(x)

1, 0, 1, 1, 3, 6, 15, . . . (A005043) 1, 1, 2, 4, 9, 21, . . . (A001006) 1, 2, 5, 13, 35, 96, . . . (A005773)

2 g(x) =
1

1 + 1x+
x2

1− x

g(x) =
1

1 + 2x+ x2
g(x) =

1

1 + 3x+
x2

1 + x

1,−1, 0, 0, 0, . . . 1,−2, 3,−4, 5, . . . 1,−3, 8,−20 . . .

f(x) =
1

1− f(x)
f(x) =

1

1− 2x− xf(x)
f(x) =

1

1− 4x+ (1− 4x)f(x)

1, 1, 2, 5, 14, 42, . . . (A000108) 1, 2, 5, 14, 42, . . . (A000108) 1, 3, 10, 35, 126, . . . (A001700)

3 g(x) =
1

1 + 2x+
x2

1− x

g(x) =
1

1 + 3x+ x2
g(x) =

1

1 + 4x+
x2

1 + x

1,−2, 3,−5, 8,−13, 21, . . . 1,−3, 8,−21, 55,−144, . . . 1,−4, 15,−55, 200, . . .

f(x) =
1

1− x+ (−1 + x)f(x)
f(x) =

1

1− 3x− xf(x)
f(x) =

1

1− 5x+ (1− 5x)f(x)

1, 2, 5, 15, 51, 188, . . . (A007317) 1, 3, 10, 36, . . . (A002212) 1, 4, 17, 75, 339, . . . (A026378)

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005043
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001006
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005773
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001700
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A007317
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002212
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A026378


Chapter 7

Narayana triangles

The Narayana numbers, which are closely related to the ubiquitous Catalan numbers,
have an important and growing literature. Their applications are varied. In the next
chapter we will look at the mathematics of one application in the area of MIMO
(multiple input, multiple output) wireless communication. For our purposes, it is
useful to distinguish between three different “Narayana triangles” and their associated
“Narayana polynomials”. These triangles are documented separately in The On-line
Encyclopedia of Integer Sequences [124] along with other variants. We are interested in
the Hankel transform [78, 76] of a number of integer sequences that we shall encounter.
Other areas where Narayana polynomials and their generalizations find applications
include associahedra [23, 57, 105] and secondary RNA structures [43].

7.1 The Narayana Triangles and their generating

functions

In this section, we define four separate though related “Narayana triangles”, and we
describe their (bivariate) generating functions.

190
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According to [166], the number triangle with general term

N0(n, k) =
1

n + 0n

(

n

k

)(

n

k + 1

)

(7.1)

has g.f. φ0(x, y) which satisfies the equation

xyφ2
0 + (x + xy − 1)φ0 + x = 0.

Solving for φ0(x, y) yields

φ0(x, y) =
1 − x(1 + y) −

√

1 − 2x(1 + y) + x2(1 − y)2

2xy
. (7.2)

This triangle begins

N0 =























0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
...

...
...

...
...

...
. . .























.

The triangle N1 with general term

N1(n, k) = 0n+k +
1

n + 0n

(

n

k

)(

n

k + 1

)

(7.3)

which begins

N1 =























1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
...

...
...

...
...

...
. . .























clearly has the g.f.

φ1(x, y) = 1 + φ0(x, y) =
1 − x(1 − y) −

√

1 − 2x(1 + y) + x2(1 − y)2

2xy
. (7.4)
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The triangle N2 with general term

N2(n, k) = [k ≤ n]N1(n, n− k) = 0n+k +
1

n + 0nk

(

n

k

)(

n

k − 1

)

(7.5)

begins

N2 =























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .























.

This triangle has the g.f.

φ2(x, y) = 1 + yφ0(x, y) =
1 + x(1 − y) −

√

1 − 2x(1 + y) + x2(1 − y)2

2x
. (7.6)

Finally the “Pascal-like” variant N3 with general term

N3(n, k) = N0(n + 1, k) =
1

n + 1

(

n + 1

k

)(

n + 1

k + 1

)

(7.7)

which begins

N3 =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .























has the g.f.

φ3(x, y) =
φ0(x, y)

x
=

1 − x(1 + y) −
√

1 − 2x(1 + y) + x2(1 − y)2

2x2y
. (7.8)

Using the generating functions above, we can relate the Narayana triangles to the
process of reverting sequences. We start by calculating the reversion of the expression

x(1 − xy)

1 − x(y − 1)
,
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considered as a function in x, with parameter y. This amounts to solving the equation

u(1 − uy)

1 − u(y − 1)
= x

for the unknown u. We obtain
u = xφ1(x, y).

Thus we have

φ1(x, y) =
1

x
Rev

x(1 − xy)

1 − x(y − 1)
. (7.9)

In like manner, we obtain

φ2(x, y) =
1

x
Rev

x(1 − x)

1 − x(1 − y)
(7.10)

and

φ3(x, y) =
1

x
Rev

x

1 + (1 + y)x + yx2
. (7.11)

7.2 The Narayana Triangles and continued fractions

In this section, we develop continued fraction versions for each of the generating func-
tions φ1, φ2, φ3.

It is easy to see that φ1(x, y) obeys the equation [21]

xyφ2
1 − (xy − x + 1)φ1 + 1 = 0. (7.12)

Thus
φ1(1 − x− xyφ1) = 1 − xyφ1

and thus

φ1 =
1 − xyφ1

1 − xyφ1 − x

=
1

1 − x
1−xyφ1

.
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We thus obtain the result that φ1(x, y) can be expressed as the continued fraction

φ1(x, y) =
1

1 − x

1 − xy

1 − x

1 − xy

1 − · · ·

. (7.13)

Similarly for φ2(x, y), we have

xφ2
2 − (1 + x− xy)φ2 + 1 = 0 (7.14)

from which we deduce
φ2(1 − xφ2 − xy) = 1 − xφ2

and hence

φ2 =
1 − xφ2

1 − xφ2 − xy

=
1

1 − xy
1−xφ2

.

Thus we obtain the result that φ2(x, y) can be expressed as the continued fraction

φ2(x, y) =
1

1 − xy

1 − x

1 − xy

1 − x

1 − · · ·

. (7.15)

In order to find an expression for φ3, we first note that

φ3 =
φ1 − 1

x
⇒ φ1 = 1 + xφ3.

Substituting into eq. (7.12) and simplifying, we find that

φ3(1 − xy − x2yφ3) = 1 + xφ3 (7.16)
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and hence

φ3 =
1 + xφ3

1 − xy(1 + xφ3)

=
1

−xy + 1
1+xφ3

=
1

−xy + 1
φ1

.

But
1

φ1
= 1 − x

1 − xy

1 − x

1 − · · ·

.

Hence we obtain that

φ3(x, y) =
1

1 − xy − x

1 − xy

1 − x

1 − · · ·

. (7.17)

We summarize the foregoing results in the next three sections, along with some other
relevant information concerning the three Narayana triangles N1, N2 and N3. The
Narayana triangles are not Riordan arrays.

7.2.1 The Narayana triangle N1

We have

N1 =























1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
...

...
...

...
...

...
. . .






















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with the g.f. [21]

φ1(x, y) =
1

1 − x

1 − xy

1 − x

1 − xy

1 − · · ·
and

φ1(x, y) =
1

x
Rev

x(1 − xy)

1 − (y − 1)x
,

or

φ1(x, y) =
1

1 − x− x2y

1 − x(1 + y) − x2y

1 − x(1 + y) − x2y

1 − · · ·

. (7.18)

In closed form, the g.f. can be expressed as

1 − (1 − y)x−
√

1 − 2x(1 + y) + (1 − y)2x2

2xy
.

We have

N(n, k) = 0n+k +
1

n + 0n

(

n

k

)(

n

k + 1

)

.

This triangle is A131198.

7.2.2 The Narayana triangle N2

We have

N2 =























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .























http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A131198
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with the g.f.

φ2(x, y) =
1

1 − xy

1 − x

1 − xy

1 − x

1 − xy

1 − · · ·
or

φ2(x, y) =
1

1 − xy − x2y

1 − x(1 + y) − x2y

1 − x(1 + y) − x2y

1 − · · ·

. (7.19)

In closed form the g.f. is [42]

1 + (1 − y)x−
√

1 − 2x(1 + y) + (1 − y)2x2

2x
.

It has general term

0n+k +
1

n + 0nk

(

n

k

)(

n

k − 1

)

which corresponds to

[xn+1yk]Rev
x(1 − x)

1 − (1 − y)x
.

7.2.3 The Narayana triangle N3

We have

N3 =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .






















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with the g.f.

φ3(x, y) =
1

1 − xy − x

1 − xy

1 − x

1 − · · ·
or

φ3(x, y) =
1

1 − x(1 + y) − x2y

1 − x(1 + y) − x2y

1 − x(1 + y) − x2y

1 − · · ·

. (7.20)

In closed form its g.f. is

1 − x(1 + y) −
√

1 − 2x(1 + y) + (1 − y)2x2

2x2y

and its general term is

Ñ(n, k) =
1

n + 1

(

n + 1

k

)(

n + 1

k + 1

)

= [xn+1yk]Rev
x

1 + (1 + y)x + yx2
.

This is (A090181).

7.3 Narayana polynomials

To each of the above triangles, there is a family of “Narayana” polynomials [137, 139],
where the triangles take on the role of coefficient arrays. Thus we get the polynomials

N1,n(y) =

n
∑

k=0

N1(n, k)yk

N2,n(y) =

n
∑

k=0

N2(n, k)yk

N3,n(y) =
n
∑

k=0

N3(n, k)yk.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A090181
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Thus we have

N1,n(y) = [xn+1]Rev
x(1 − xy)

1 − (y − 1)x

N2,n(y) = [xn+1]Rev
x(1 − x)

1 − (1 − y)x

N3,n(y) = [xn+1]Rev
x

1 + (1 + y)x + yx2
.

Values of these polynomials are often of significant combinatorial interest. Sample
values for these polynomials are tabulated below.

y N1,0(y),N1,1(y),N1,2(y), . . . A-number
1 1, 1, 2, 5, 14, 42, . . . (A000108)
2 1, 1, 3, 11, 45, 197 . . . (A001003)
3 1, 1, 4, 19, 100, 562, . . . (A007564)
4 1, 1, 5, 29, 185, 1257, . . . (A059231)

y N2,0(y),N2,1(y),N2,2(y), . . . A-number
1 1, 1, 2, 5, 14, 42, . . . (A000108)
2 1, 2, 6, 22, 90, 394, . . . (A006318)
3 1, 3, 12, 57, 300, 1686, . . . (A047891)
4 1, 4, 20, 116, 740, 5028, . . . (A082298)

y N3,0(y),N3,1(y),N3,2(y), . . . A-number
1 1, 2, 5, 14, 42, 132, . . . (A000108(n+1))

2 1, 3, 11, 45, 197, 903, . . . (A001003(n+1))

3 1, 4, 19, 100, 562, 3304, . . . (A007564(n+1))

4 1, 5, 29, 185, 1257, 8925, . . . (A059231(n+1))

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001003
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A007564
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A059231
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006318
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A047891
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A082298
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108(n+1)
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001003(n+1)
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A007564(n+1)
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A059231(n+1)
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We can derive a moment representation for these polynomials using the generating
functions above and the Stieltjes transform. We obtain the following :

N1,n(y) =
y − 1

y
0n +

1

2π

∫ y+2
√
y+1

y−2
√
y+1

xn

√

−x2 + 2x(1 + y) − (1 − y)2

2y
dx,

N2,n(y) =
1

2π

∫ y+2
√
y+1

y−2
√
y+1

xn

√

−x2 + 2x(1 + y) − (1 − y)2

x
dx,

N3,n(y) =
1

2π

∫ y+2
√
y+1

y−2
√
y+1

xn

√

−x2 + 2x(1 + y) − (1 − y)2

y
dx.

We can exhibit these families of polynomials as the first columns of three related
Riordan arrays. Thus

N1,n(y) is given by the first column of

(

1

1 + x
,

x

(1 + x)(1 + yx)

)−1

,

N2,n(y) is given by the first column of

(

1

1 + yx
,

x

(1 + x)(1 + yx)

)−1

N3,n(y) is given by the first column of

(

1

(1 + x)(1 + yx)
,

x

(1 + x)(1 + yx)

)−1

.



Chapter 8

Wireless communications

In the first section of this chapter we introduce MIMO channels. Over the past decade
random matrices have been studied in the calculation of channel capacity in wireless
communications systems. MIMO (multi-input multi-output) channels are channels
which offer an increase in capacity compared to single - input single output channels.
Due to the ever increasing popularity of wireless communications and the increased
desire for efficient use of bandwidth MIMO systems have become an important research
area over the past 10 years.

In the second section of this chapter we see links to previous chapters in this document,
specifically that relating to the Narayana polynomials. The role of the Catalan numbers
and more recently the Narayana polynomials in the elucidation of the behaviour of
certain families of random matrices, along with applications to areas such as MIMO
wireless communication, is one such application. See for instance [46, 47, 65, 94, 95,
123, 146]. The final section is inspired by MIMO applications in [94] and [146] and
calls on results introduced in the last chapter.

The foundation for digital communications was established by Claude Shannon in
1948 [114]. Shannon’s pioneering work gave some fundamental results among which is
his channel capacity theorem [114],

Definition 8.0.1. For any information rate R, less than the channel capacity C, it is

201
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possible to send information at a rate C with error less than some pre-assigned measure

ǫ where C is defined to be

C = W log
(

1 +
P

N

)

(8.1)

for an additive white Gaussian noise (AWGN) channel, where W is the bandwidth and

P/N is the signal to noise ratio (SNR).

8.1 MIMO (multi-input multi-output) channels

In wireless communications, antenna arrays allow a significant increase in the infor-
mation rate per communication link. This increases information without additional
bandwidth and allows for more bits per second to be transmitted. The first applica-
tions of MIMO were in line-of-sight microwave links, an application of radio in the
1970’s, devised due to a need for more efficient bandwidth utilization. It was in the
1990’s that pioneering work on MIMO systems was completed in Bell Labs in New Jer-
sey where it was proved that with multipath transmission, the capacity and spectral
efficiency of a MIMO system could be increased indefinitely. Emre Telatar, one of the
researchers at Bell Labs, published a paper in 1998 regarding capacity calculations for
multi-antenna channels [143]. This paper remains one of the most referenced works in
this area today. In 2000, Ralf Muller published a paper entitled random matrix The-
ory [94], which explains the theory behind random matrices and why it can be used in
calculations for MIMO systems. In 2001, Muller also published a paper [94] which uses
random matrix results to calculate the Signal to Noise Error for the MIMO system.
Verdu and Tulino published a book in 2004 entitled Random Matrix Theory and Wire-
less Communications [148], in which they give an overview of the classical results in
random matrix theory along with looking closely at its application in the world of wire-
less communications, at applications in both single and multiple antenna receivers for
code division multiple access(CDMA) systems. CDMA is a wideband system where the
interference is as close as possible to white Gaussian noise [145], an assumption which
helps simplify calculations of the channel matrix. More recently, Khan and Henegan
have combined results from random matrix theory with Grassman variables to calcu-
late MIMO channel capacities. Relevant more recent work (2008) involves inverting
the MIMO channel [94] which involves transmit processing, rather than receive process-
ing [98]. We refer the reader to Ralf Muller’s most recent(2011) MIMO publication [96].
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Figure 8.1: Wireless communication system

The basic model of MIMO is

y = Hx + n

where y = [y1, y2, y3, . . . , yK ], with yr denoting the signal received at the rth termi-
nal, x = [x1, x2, . . . , xN ], xm the zero mean Gaussian signal transmitted and n =
[n1, n2, n3, . . . , nK ] is white noise and H ∈ CN×K is the channel matrix

H =











h1,1 h1,2 . . . h1,K

h2,1 h2,2 . . . h2,K
...

...
...

...
hN,1 hN,2 . . . hN,K











.

N and K take on different roles depending on the channel access method used and
whether it is a single user or multi-user channel. If the channel is a single user narrow
band channel, N and K represent the number of antennas at the transmitter and
receiver respectively. In the DS - CDMA (Direct sequence - Code division multiple
access) channel, which assigns codes to users to allow multiple use of the channel at
the same time, K is the number of users and N the spread gain. These are the simpler
channels for calculations with H, as in these cases H has independent and identically
distributed entries (i.i.d), which is not the case with other access channels [148]. The
capacity of a CDMA MIMO system is
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CMIMO =
1

N
log2 det(IT + HH∗)

=
1

N

N
∑

i=1

log(1 + (SNR)λi(HH∗))

=

∫ ∞

0

log(1 + (SNR)x)dFN
HH∗(x)).

The integration is with respect to the distribution function of the eigenvalues of the
matrix HH∗. We recall the following result about the cumulative distribution function
of the eigenvalues of a random matrix H :

Theorem 1. Let H be a N×K random matrix, f be a function mapping H to a N×N

matrix f(H), and ℓf (H) be the set containing the eigenvalues of f(H). Then, under

some weak conditions on the random entries of H and the function f(), the eigenvalue

distribution

FH(x) ,
1

N
|{λ ∈ ℓf(H) : λ < x}|

converges in probability to a fixed non random distribution as N,K → ∞, but N/K →
β < ∞.

Calculating the cumulative distribution of these matrices is straightforward for the
more simple matrix models, however become significantly harder to calculate with more
complicated matrices. Work carried out by Marčenko and Pastur yielded a number of
results which help simplify calculations of the distribution of the channel matrix.

Definition 8.1.1. The empirical cumulative distribution function of the eigenvalues (or

empirical distribution) of an n × n Hermitian matrix A, denoted by F n
A, is defined

as [148]

F n
A =

1

n

n
∑

i=1

1{λi(A) ≤ x}

where λ1(A), . . . , λn(A) are the eigenvalues of A and {.} is the indicator function.
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Theorem 8.1.1. Consider an N ×K matrix H whose entries are zero mean complex

random variables with variance 1
N

. As K,N → ∞ with N
K

→ β, the empirical dis-

tribution of HHT converges almost surely to a non random limiting distribution with

density

fβ(x) =

(

1 − 1

β

)+

σ(x) +

√

(x− a)+(b− x)+

2πβx

where

a = (1 −
√

β)2 b = (1 +
√

β)2.

Here, (1− 1
β
)+ denotes max{0, 1− 1

β
}. Marčenko and Pastur used the Stieltjes transform

to simplify their calculations. Before we look at this result we define the Stieltjes
transform,

Definition 8.1.2. For all non real z, the Stieltjes transform of the probability measure

FH() is given by

GR(z) =

∫

1

λ− z
dFR(λ) = E[

1

R − z
] =

−1

z

∞
∑

k=0

E[Rk]

zk

where FR(λ) is the eigenvalue distribution function of the random matrix R,

whose importance consists in the calculation of the statistical moments according to a
series expansion

GR(z−1)

−z
=

∞
∑

k=0

mkz
k.

Marčenko and Pastur also gave the following important result using the Stieltjes trans-
form, which enables capacity calculations for a more complex channel matrix,

Theorem 8.1.2. Given a matrix of the form R = N+HPH∗ with R ∈ CR×R composed

of Hermitian N ∈ CR×R,H ∈ CR×T and P ∈ CT×T . As N → ∞, R converges to a

distribution function of N. Letting GR(z) denote the Stieltjes transform of R, and
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GN(z) the Stieltjes transform of N, the equation is given by

GR(z) =

∫

1

x− z
fR(x)dx = GN

(

z − β

∫

xfP(x)

1 + xGR(z)
dx
)

.

The formation of the matrix in MIMO allows the use of this result so we can proceed
to solve as follows. The Stieltjes transform of P = IT and N = 0R×R can be calculated
as

GN(z) = −1

z
, GP(z) = − 1

1 − z

and

GR(z) = GN

(

z − β

∫

xfPm(x)

1 + xGR(z)
dx

)

=
1

z − β
∫ xfP(x)

1+xGR(z)
dx

so we have

− 1

GR(z)
= z − β

∫

xfP(x)

1 + xGR(z)
dx

= z − β/(1 + GR(z)).

As fP (x) = δ(x− 1) we get the quadratic equation

(1 + z)GR(z)2 + (β − z − 2)GR(z) − 1 = 0.

Solving gives,

GR(z) = −1

2
+

β − 1

2z
+

√

(1 − β)2

4z2
+

1

4
− β + 1

2z
. (8.2)

We note that

gR(z) =
GR(z−1)

−z
=

1 + (1 − β)z −
√

1 − 2z(1 + β) + (1 − β)2z2

2z
.
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8.2 The Narayana triangle N2 and MIMO

From eq. (8.2) we have

Gβ(z) = −1

2
+

β − 1

2z
+

√

(1 − β)2

4z2
+

1

4
− 1 + β

2z
.

We recall, in terms of wireless transmission,

β =
T

R

where we have T transmit antennas and R receive antennas. In this section it can be
treated as a parameter. Again we recall from the last section that the function

gβ(x) = −1

x
Gβ(

1

x
)

which satisfies

gβ(x) =
1 + (1 − β)x−

√

1 − 2x(1 + β) + (1 − β)2x2

2x

and generates the sequence

1, β, β(β + 1), β(β2 + 3β + 1), β(β3 + 6β2 + 6β + 1), . . .

In other words, gβ(x) is the g.f. of the sequence

a(β)n =
n
∑

k=0

N2(n, k)βk.

We recall from section 7.2.2 that

N2(n, k) = 0n+k +
1

n + 0nk

(

n

k

)(

n

k − 1

)

are the Narayana numbers, which form the array

N2 =























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .






















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Thus
gβ(x) = φ2(x, β).

We have the following moment representation:

a(β)n =
1

2π

∫ 1+β+2
√
β

1+β−2
√
β

xn

√

−x2 + 2x(1 + β) − (1 − β)2

x
dx

=
1

2π

∫ (1+
√
β)2

(1−
√
β)2

xn

√

((1 −√
β)2 − x)(x− (1 +

√
β)2)

x
dx

=

√
β

π

∫ (1+
√
β)2

(1−
√
β)2

xn

√

1 −
(

1+β−x
2
√
β

)2

x
dx

=

√
β

π

∫ (1+
√
β)2

(1−
√
β)2

xn
wU

(

1+β−x
2
√
β

)

x
dx

where wU(x) =
√

1 − x2 is the weight function for the Chebyshev polynomials of the
second kind.

8.2.1 Calculation of MIMO capacity

We follow [65] to derive an expression for MIMO capacity in a special case. Thus we
assume we have R receive antennas and T transmit antennas, modeled by

r = Hs + n

where r is the receive signal vector, s is the source signal vector, n is an additive white
Gaussian noise (AWGN) vector, which is a realization of a complex normal distribution
N(0, σ2IR), and the channel is represented by the complex matrix H ∈ CR×T . We have
the eigenvalue decomposition

HHH =
1

T
QΛQH .

We assume T < R. Then the capacity of the uncorrelated MIMO channels is given
by [94]
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CMIMO =
1

R
log2 det(IT + HH(σ2IR)−1H)

=
1

R
log2 det(IT +

1

σ2
HHH)

=
1

R
log2 det(IT +

1

σ2

1

T
QΛQH)

=
1

R
log2 det(IT +

1

σ2T
Λ)

=
T

R

1

T

T
∑

i=1

log2(1 +
1

σ2T
λi)

=
β

ln 2

1

T

T
∑

i=1

ln(1 +
1

σ2T
λi)

where we have set

β =
T

R
.

Now

ln(1 + x) = ln(1 + x0) +

N
∑

k=1

(−1)k−1 (x− x0)
k

k(1 + x0)k
, |x− x0| < 1

= ln(1 + x0) +

N
∑

k=1

(−1)k−1

k(1 + x0)k

k
∑

j=0

(

k

j

)

xj(−1)k−jxk−j
0

= ln(1 + x0) +
n
∑

k=1

k
∑

j=0

(

k

j

)

(−1)j−1 xk−j
0

k(1 + x0)k
xj

=
N
∑

k=0

pkx
k,
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where it is appropriate to take x0 = 1
σ2 . We thus obtain

CMIMO =
β

ln 2

1

T

T
∑

i=1

N
∑

k=0

pk

(

λi

σ2T

)k

=
β

ln 2

N
∑

k=0

pk
(σ2T )k

(

1

T

T
∑

i=1

λk
i

)

=
β

ln 2

N
∑

k=0

pk
(σ2T )k

mk

=
β

ln 2

N
∑

k=0

pk
(σ2T )k

k
∑

j=0

N2(k, j)β
j.

Thus

CMIMO =
β

ln 2

N
∑

k=0

pk
(σ2T )k

[xk+1]Revx

[

x(1 − x)

1 − (1 − β)x

]

. (8.3)

We note from eq. (10.1) that xgβ(x) is the series reversion of the function

x(1 − x)

1 + (β − 1)x
.

This simple form leads us to investigate the nature of the coefficient array of the
orthogonal polynomials P

(β)
n (x) associated to the weight function

w(x) =
1

2π

√

−x2 + 2x(1 + β) − (1 − β)2

x
=

1

2π

√

4β − (x− 1 − β)2

x
dx

for which the elements

a(β)n =
n
∑

k=0

N2(n, k)βk

are the moments. Put otherwise, these are the family of orthogonal polynomials as-
sociated to the Narayana polynomials N2,n. These polynomials can be expressed in

terms of the Hankel determinants associated to the sequence a
(β)
n . We find that the
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coefficient array of the polynomials P
(β)
n (x) is given by the Riordan array

(

1

1 + βx
,

x

1 + (1 + β)x + βx2

)

whose inverse is given by

L =

(

gβ(x),
gβ(x) − 1

β

)

.

The Jacobi-Stieltjes array [37, 103] for L is found to be























β 1 0 0 0 0 . . .
β β + 1 1 0 0 0 . . .
0 β β + 1 1 0 0 . . .
0 0 β β + 1 1 0 . . .
0 0 0 β β + 1 1 . . .
0 0 0 0 β β + 1 . . .
...

...
...

...
...

...
. . .























indicating that the Hankel transform of the sequence a
(β)
n is β(n+1

2 ), and that

gβ(x) =
1

1 − βx− βx2

1 − (β + 1)x− βx2

1 − (β + 1)x− βx2

1 − · · ·

.

We note that the coefficient array L−1 can be factorized as follows:

L−1 =

(

1

1 + βx
,

x

1 + (1 + β)x + βx2

)

=

(

1,
x

1 + x

)(

1 − x

1 + (β − 1)x
,

x(1 − x)

1 + (β − 1)x

)

.

(8.4)

Hence

L =

(

1 − x

1 + (β − 1)x
,

x(1 − x)

1 + (β − 1)x

)−1(

1,
x

1 + x

)−1

= (gβ(x), xgβ(x)) ·
(

1,
x

1 − x

)

.
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The general term of the matrix
(

1 − x

1 + (β − 1)x
,

x(1 − x)

1 + (β − 1)x

)−1

= (gβ(x), xgβ(x))

is given by

k + 1

n + 1

n−k
∑

j=0

(

n + 1

k + j + 1

)(

n + j

j

)

(β−1)n−k−j =
n−k
∑

j=0

k + 1

k + j + 1

(

n

k + j

)(

n + j

j

)

(β−1)n−k−j.

For instance, when β = 1, which is the case of the matrix (1 − x, x(1 − x))−1, we get
the expression

k + 1

n + 1

(

2n− k

n− k

)

for the general term. Now the general term of the matrix
(

1, 1
1−x

)

is given by

(

n− 1

k − 1

)

+ 0n(−1)k.

Hence the general term of L is given by

n
∑

j=0

n−j
∑

i=0

j + 1

i + j + 1

(

n

i + j

)(

n + i

i

)

(β − 1)n−j−i(

(

j − 1

k − 1

)

+ 0j(−1)k). (8.5)

It is interesting to note that

L−1 =

(

1 + x

(1 + x)(1 + βx)
,

x

(1 + x)(1 + βx)

)

. (8.6)

We can use the factorization in eq. (8.4) to express the orthogonal polynomials P
(β)
n (x)

in terms of the Chebyshev polynomials of the second kind Un(x). Thus we recognize
that the Riordan array

(

1

1 + (β + 1)x + βx2
,

x

1 + (1 + β)x + βx2

)

is the coefficient array of the modified Chebyshev polynomials of the second kind
β

n
2Un(x−(β+1)

2
√
β

). Hence by the factorization in eq. (8.4) we obtain

P (β)
n (x) = β

n
2Un(

x− (β + 1)

2
√
β

) + β
n−1
2 Un−1(

x− (β + 1)

2
√
β

). (8.7)
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8.3 The R Transform

Along with the Stieltjes transform, another transform which has been shown to simplify
calculations in random matrix theory is the R transform. The R transform, in relation
to the Stieltjes transform can be defined as follows

Definition 8.3.1. Given P (x), some probability distribution, with Stieltjes transform

G(s) =

∫

dP (x)

x− s

then the R transform of P (X) is

R(w) = G−1(−w) − 1

w

Example. The R transform of the Marčenko and Pastur law is

R(w) =
1

1 − αw

Looking at an example [95], let P (x) be a probability distribution with

GX−1(s) =

∫

dPX(x)
1
x
− s

existing for some complex s with Im(s) > 0

GX−1

(

1

s

)

= −s(1 + sGX(s))

Let s = G−1
X (−w), so we find

GX−1

(

1

G−1
X (−w)

)

= −G−1
X (−w)(1 − wG−1

X (−w))

(

1

G−1
X (−w)

)

= G−1
X−1

(

−G−1
X (−w)(1 − wG−1

X (−w))
)
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Using the above definition we have the following

1

RX(w) + 1
w

= RX−1

(

− wRX(w)

(

RX(w) +
1

w

))

− 1

wRX(w)
(

RX(w) + 1
w

)

and

1

RX(w)
= RX−1

(

− RX(w)

(

1 + wRX(w)

))

as we have seen previously, for a K×N random matrix H with i.i.d. entries of variance
1/N , R

HH
T (w) = 1

1−αw
letting X−1 = HHT , so

R−1
HH

T (w) = 1 + αR−1
HH

T (w)

(

1 + wR−1
HH

T (w)

)

Solving gives

R(w) =
1 − α−

√

(1 − α)2 − 4αw

2αw

Note that R(w) is the series reversion of the bivariate g.f.,

∞
∑

n=0

Tn(y)αn =
αy2

αy − y + 1

where the first few components of the sequence Rn(y) are,

T0(y) = y, T1(y) = y(1− y), T2(y) = y(1−2y+ y2), T3(y) = y(1−3y+ 3y2− y3).

This is the bivariate g.f. of the Riordan array,

L = L−1 =



















1 0 0 0 0 . . .
1 −1 0 0 0 . . .
1 −2 1 0 0 . . .
1 −3 3 −1 0 . . .
1 −4 6 −4 1 . . .
...

...
...

...
...

. . .



















=

(

1

1 − y
,

y

y − 1

)

.



Chapter 9

The Euler-Seidel matrix

The Euler-Seidel matrix [39, 40, 41, 49, 91] of a sequence (an)n≥0, which we will de-
note by E = Ea, is defined to be the rectangular array (an,k)n,k≥0 determined by the
recurrence a0,k = ak (k ≥ 0) and

an,k = an−1,k + an−1,k+1 (n ≥ 1, k ≥ 0). (9.1)

The sequence (a0,k), the first row of the matrix, is usually called the initial sequence,
while the sequence (an,0), first column of the matrix, is called the final sequence. They
are related by the binomial transform (or Euler transform, after Euler, who first proved
this [53]). We recall that the binomial transform of a sequence an has general term
bn =

∑n
k=0

(

n
k

)

ak. Thus the first row and column of the matrix are determined from
eq. (9.1) as follows:

an,0 =
n
∑

k=0

(

n

k

)

a0,k, (9.2)

a0,n =

n
∑

k=0

(

n

k

)

(−1)n−kak,0. (9.3)

In general, we have

an,k =
n
∑

i=0

(

n

i

)

a0,i+k =
n
∑

i=0

(

n

i

)

ai+k. (9.4)

215
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Example. We take a0,n = an = Cn = 1
n+1

(

2n
n

)

, the Catalan numbers. Thus the initial

sequence, or first row, is the Catalan numbers, while the final sequence, or first column,

will be the binomial transform of the Catalan numbers. We obtain the following matrix:



































1 1 2 5 14 42 . . .

2 3 7 19 56 174 . . .

5 10 26 75 230 735 . . .

15 36 101 305 965 3155 . . .

51 137 406 1270 4120 13726 . . .

188 543 1676 5390 17846 60398 . . .
...

...
...

...
...

...
. . .



































.

We now remark that the Catalan numbers Cn, (A000108) have the following moment

representation:

Cn =
1

2π

∫ 4

0

xn

√

x(4 − x)

x
dx. (9.5)

Many of the sequences we will discuss have a moment representation of the form

an =

∫

R

xndµa

for a suitable measure dµa.

Example. The aerated Catalan numbers. We have seen (see eq. (9.5)) that the

Catalan numbers are a moment sequence. Similarly, the aerated Catalan numbers

1, 0, 1, 0, 2, 0, 5, 0, 14, . . .

can by represented by

Cn
2

1 + (−1)n

2
=

1

2π

∫ 2

−2

xn
√

4 − x2 dx.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
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Example. The factorial numbers n!.

We have the well-known integral representation of n!, (A000142)

n! =

∫ ∞

0

xne−x dx.

Example. The aerated double factorials.

We recall that the double factorials (A001147) are given by

(2n− 1)!! =

n
∏

k=1

(2k − 1) =
(2n)!

n! 2n
.

The aerated double factorials, which begin

1, 0, 3, 0, 5, 0, 15, 0, 105, 0, 945, . . .

have integral representation
1√
2π

∫ ∞

−∞
xn e−

x2

2 dx.

The aerated double factorial numbers have e.g.f. e
x2

2 .

9.1 The Euler-Seidel matrix and Hankel matrix for

moment sequences

We recall that for a sequence (an)n≥0, its Hankel matrix is the matrix H = Ha with
general term an+k. Note that if an has o.g.f. A(x) then the bivariate g.f. of Ha is given
by

xA(x) − yA(y)

x− y
.

If an has an e.g.f. G(x), then the n-th row (and n-th column) of Ha has e.g.f. given by

dn

dxn
G(x).

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000142
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001147
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Example. We have seen that the aerated double factorial numbers have e.g.f. e
x2

2 .

Thus the n-th row of the Hankel matrix associated to them has e.g.f.

dn

dxn
e

x2

2 = e
x2

2

⌊n
2
⌋

∑

k=0

(

n

2

)

(2k − 1)!!xn−2k.

Note that if

an =

∫

xndµa

then

an+k =

∫

xn+kdµa =

∫

xnxkdµa.

We recall that the binomial matrix is the matrix B with general term
(

n
k

)

. The binomial
transform of a sequence an is the sequence with general term

bn =

n
∑

k=0

(

n

k

)

ak.

In this case, the sequence bn has o.g.f. given by

1

1 − x
A

(

x

1 − x

)

.

The sequence (bn)n≥0 can be viewed as

B · (an)t.

Note that we have

bn =

n
∑

k=0

(

n

k

)

ak

=
n
∑

k=0

(

n

k

)
∫

xk dµa

=

∫ n
∑

k=0

(

n

k

)

xk dµa

=

∫

(1 + x)n dµa.

In similar fashion, we have

an =

∫

(x− 1)n dµb.



CHAPTER 9. THE EULER-SEIDEL MATRIX 219

Proposition 9.1.1. We have

Ea = BHa. (9.6)

Proof. We have

BHa =

((

n

k

))

· (an+k) .

The result follows from eq. (9.4).

We now let

bn =

n
∑

k=0

(

n

k

)

ak,

the binomial transform of an. We are interested in the product B−1Hb.

Example. Taking bn =
∑n

k=0

(

n
k

)

Ck (A0007317), the binomial transform of the Cata-

lan numbers Cn, we obtain

Hb =



































1 2 5 15 51 188 . . .

2 5 15 51 188 731 . . .

5 15 51 188 731 2950 . . .

15 51 188 731 2950 12235 . . .

51 188 731 2950 12235 51822 . . .

188 731 2950 12235 51822 223191 . . .
...

...
...

...
...

...
. . .



































.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A0007317
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Multiplying by B−1, we obtain

B−1Hb =



































1 2 5 15 51 188 . . .

1 3 10 36 137 543 . . .

2 7 26 101 406 1676 . . .

5 19 75 305 1270 5390 . . .

14 56 230 965 4120 17846 . . .

42 174 735 3155 13726 60398 . . .
...

...
...

...
...

...
. . .



































,

which is the transpose of the Euler-Seidel matrix for Cn.

This result is general. In order to prove this, we will use the follow lemma.

Lemma 9.1.2.

xn(1 + x)k =
k
∑

i=0

(

k

i

)

xi+n =
n
∑

j=0

(−1)n−j

(

n

j

) j+k
∑

i=0

(

j + k

i

)

xi. (9.7)

Proof. Since (1 + x)k =
∑k

i=0

(

k
i

)

xi by the binomial theorem, we immediately have

xn(1 + x)k = xn

k
∑

i=0

(

k

i

)

xi =

k
∑

i=0

(

k

i

)

xi+n.

But also, we have

n
∑

j=0

(−1)n−j

(

n

j

) j+k
∑

i=0

(

j + k

i

)

xi =

n
∑

j=0

(−1)n−j

(

n

j

)

(1 + x)j+k

= (1 + x)k
n
∑

j=0

(−1)n−j

(

n

j

)

(1 + x)j

= (1 + x)kxn.
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Proposition 9.1.3. The Euler-Seidel matrix of the sequence (an)n≥0 is equal to the

transpose of the matrix given by B−1Hb, where Hb is the Hankel matrix of the binomial

transform

bn =
n
∑

k=0

(

n

k

)

ak

of the initial sequence an. That is,

Et
a = B−1Hb. (9.8)

Proof. The general element of

B−1H =

(

(−1)n−k

(

n

k

))

· (bn+k)

is given by
n
∑

j=0

(−1)n−j

(

n

j

)

bj+k.

Now

n
∑

j=0

(−1)n−j

(

n

j

)

bj+k =
n
∑

j=0

(−1)n−j

(

n

j

) j+k
∑

i=0

(

j + k

i

)

ai.

Proposition 9.1.4.

n
∑

j=0

(−1)n−j

(

n

j

) j+k
∑

i=0

(

j + k

i

)

ai =

k
∑

i=0

(

k

i

)

ai+n. (9.9)

Proof. Expanding 9.9, if k ≤ n − 2 we have (If k > n − 2, the middle term below

disappears)

n
∑

j=0

(−1)n−j

(

n

j

)( k
∑

i=0

(

j + k

i

)

ai +
n−1
∑

i=k+1

(

j + k

i

)

ai +
n+k
∑

i=n

(

j + k

i

)

ai

)

.
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Now, we endeavor to prove 9.9, by showing

n
∑

j=0

(−1)n−j

(

n

j

) k
∑

i=0

(

j + k

i

)

ai = 0 (9.10)

n
∑

j=0

(−1)n−j

(

n

j

) n−1
∑

i=k+1

(

j + k

i

)

ai = 0 (9.11)

n
∑

j=0

(−1)n−j

(

n

j

) n+k
∑

i=n

(

j + k

i

)

ai =

k
∑

i=0

(

k

i

)

ai+n (9.12)

By a change of summation eq. (9.10) becomes

k
∑

i=0

n
∑

j=0

(−1)n−j

(

n

j

)(

j + k

i

)

ai =
k
∑

i=0

n
∑

j=0

(−1)j
(

n

n− j

)(

n− j + k

i

)

ai

=
k
∑

i=0

n
∑

j=0

(−1)j
(

n

j

)(

n− j + k

i

)

ai.

Using Vandermonde’s identity and a further change of summation we have

k
∑

i=0

n
∑

j=0

(−1)j
(

n

j

)(

n− j + k

i

)

ai =
k
∑

i=0

n
∑

j=0

(−1)j
(

n

j

) i
∑

r=0

(

n− j

r

)(

k

i− r

)

ai

=
k
∑

i=0

i
∑

r=0

(

k

i− r

)

ai

n
∑

j=0

(−1)j
(

n

j

)(

n− j

r

)

=
k
∑

i=0

i
∑

r=0

(

k

i− r

)

ai

n
∑

j=0

(−1)j
(

n

n− j

)(

n− j

r

)

.
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Now, by the cross product of binomial coefficients we have

=

k
∑

i=0

i
∑

r=0

(

k

i− r

)

ai

n
∑

j=0

(−1)j
(

n

n− j

)(

n− j

r

)

=

k
∑

i=0

i
∑

r=0

(

k

i− r

)

ai

n
∑

j=0

(−1)j
(

n

r

)(

n− r

n− j − r

)

=

k
∑

i=0

i
∑

r=0

(

k

i− r

)(

n

r

)

ai

n
∑

j=0

(−1)j
(

n− r

j

)

=

k
∑

i=0

i
∑

r=0

(

k

i− r

)(

n

r

)

ai

n−r
∑

j=0

(−1)j
(

n− r

j

)

.

Now as
∑n−r

j=0 (−1)j
(

n−r
j

)

= 0, eq. (9.10) is satisfied. Now, with a change of summation

eq. (9.11) becomes

n
∑

j=0

(−1)n−j

(

n

j

) n−1
∑

i=k+1

(

j + k

i

)

ai =

n
∑

j=0

(−1)n−j

(

n

j

) n−k−2
∑

i=0

(

j + k

i + k + 1

)

ai+k+1

=

n−k−2
∑

i=0

n
∑

j=0

(−1)n−j

(

n

j

)(

k + j

k + i + 1

)

ai+k+1.

Expanding using Vandermonde’s identity and a further change of summation gives

=
n−k−2
∑

i=0

n
∑

j=0

(−1)n−j

(

n

j

) k+i+1
∑

r=0

(

k

r

)(

j

k + i + 1 − r

)

ak+i+1

=
n−k−2
∑

i=0

k+i+1
∑

r=0

(

k

r

) n
∑

j=0

(−1)n−j

(

n

j

)(

j

k + i + 1 − r

)

ak+i+1

=
n−k−2
∑

i=0

ak+i+1

k+i+1
∑

r=0

(

k

r

) n
∑

j=0

(−1)n−j

(

n

j

)(

j

k + i + 1 − r

)

.

Now, by the cross product of binomial coefficients we have

=

n−k−2
∑

i=0

ak+i+1

k+i+1
∑

r=0

(

k

r

) n
∑

j=0

(−1)n−j

(

n

k + i + 1 − r

)(

n− (k + i + 1 − r)

j − (k + i + 1 − r)

)

=

n−k−2
∑

i=0

ak+i+1

k+i+1
∑

r=0

(

k

r

)(

n

k + i + 1 − r

) n
∑

j=0

(−1)n−j

(

n− (k + i + 1 − r)

n− j

)

.
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Now r ≤ i so we have

n
∑

j=0

(−1)n−j

(

n− (k + i + 1 − r)

n− j

)

=
k+i+1−r
∑

j=0

(−1)n−j

(

n− (k + i + 1 − r)

n− j

)

= 0,

so eq. (9.11) is satisfied. Lastly, eq. (9.12) with a summation change becomes

n
∑

j=0

(−1)n−j

(

n

j

) k
∑

i=0

(

j + k

i + n

)

ai+n =

k
∑

i=0

n
∑

j=0

(−1)n−j

(

n

j

)(

j + k

i + n

)

ai+n.

Expanding with Vandermonde’s identity and a further change of summation gives

=

k
∑

i=0

n
∑

j=0

(−1)n−j

(

n

j

) i+n
∑

r=0

(

j

r

)(

k

i + n− r

)

ai+n

=

k
∑

i=0

i+n
∑

r=0

(

k

i + n− r

)

ai+n

n
∑

j=0

(−1)n−j

(

n

j

)(

j

r

)

.

=

k
∑

i=0

i+n
∑

r=0

(

k

i + n− r

)

ai+n

n
∑

j=0

(−1)n−j

(

n

r

)(

n− r

j − r

)

.

Now
n
∑

j=0

(−1)n−j

(

n− r

n− j

)

=







0 if 0 ≤ r < n

1 if r = n

so
k
∑

i=0

i+n
∑

r=0

(

k

i + n− r

)

ai+n

n
∑

j=0

(−1)n−j

(

n

r

)(

n− r

j − r

)

=

k
∑

i=0

(

k

i

)

ai+n.

Eq. (9.12) is satisfied.

The result follows from eq. (9.4).

Corollary 9.1.5. The nth row of Ea, for an e.g.f. A(x) is

ex
dn

dx
(A(x)) .
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Proof. Using the fact that Ea = BHa where Ha is the Hankel matrix of the first column

of the Euler Seidel matrix Ea, for an e.g.f. A(x), the columns of the Euler Seidel matrix

have the form

[ex, x]
d

dx
(A(x))

and using the fundamental theorem of Riordan arrays the nth column have the g.f.

ex
dn

dx
(A(x)) .

Example. The aerated double factorial numbers which have the e.g.f. e
x2

2 have first

few rows of Ea,



































1 0 0 0 0 . . .

1 1 0 0 0 . . .

1 2 1 0 0 . . .

1 3 3 1 0 . . .

1 4 6 4 1 . . .

1 5 10 10 5 . . .
...

...
...

...
...

. . .





































































1 0 1 0 3 . . .

0 1 0 3 0 . . .

1 0 3 0 15 . . .

0 3 0 15 0 . . .

3 0 15 0 105 . . .

0 15 0 105 0 . . .
...

...
...

...
...

. . .



































=



































1 0 1 0 3 . . .

1 1 1 3 3 . . .

2 2 4 6 18 . . .

4 6 10 24 48 . . .

10 16 34 72 198 . . .

26 50 106 270 678 . . .
...

...
...

...
...

. . .



































So the nth column of Ea is

[ex, x]
dn

dx

(

e
x2

2

)

= ex
dn

dx

(

e
x2

2

)

.

The nth derivative of dn

dx

(

e
x2

2

)

as we have seen in proposition 9.13 can be expressed as

e
x2

2

⌊n
2
⌋

∑

r=0

(

n

n− 2r

)

(2r − 1)!!xn−2r.
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Thus the columns of Ea have the form

ex
dn

dx

(

e
x2

2

)

= exe
x2

2

⌊n
2
⌋

∑

r=0

(

n

n− 2r

)

(2r − 1)!!xn−2r

= e
x2

2
+x

⌊n
2
⌋

∑

r=0

(

n

n− 2r

)

(2r − 1)!!xn−2r.

Since e
x2

2
+x is the e.g.f. of the Young Tableaux numbers, A000085 we have

ex
dn

dx

(

e
x2

2

)

= e
x2

2
+x

⌊n
2
⌋

∑

r=0

(

n

n− 2r

)

(2r − 1)!!xn−2r

=
∞
∑

n=0

Yn
xn

n

⌊n
2
⌋

∑

r=0

(

n

n− 2r

)

(2r − 1)!!xn−2r.

We generalize this result to the e.g.f. eαx
2
. As the nth row of a Hankel matrix generated

from the e.g.f. eαx
2

is the nth derivative of eαx
2

we introduce the following proposition.

Proposition 9.1.6.

dn+1

dxn+1

(

eαx
2
)

=
d

dx



eαx
2

⌊n
2
⌋

∑

r=0

(2α)n−r
(

n
n−2r

)

(2r)!

r!2r
xn−2r



 = eαx
2

⌊n+1
2

⌋
∑

r=0

(2α)n+1−r
(

n+1
n+1−2r

)

(2r)!

r!2r
xn+1−2r.

(9.13)

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000085
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Proof. Firstly, let us illustrate the expansion of the e.g.f. for the first few values of n

d

dx

(

eαx
2
)

= eαx
2

(2αx)

= eαx
2

(

2α

(

1

1

)

x

)

d2

dx

(

eαx
2
)

= eαx
2

(4α2x2 + 2α)

= eαx
2

(

22α2

(

2

2

)

x2 + 2α

(

2

0

))

d3

dx

(

eαx
2
)

= eαx
2

(8α3x3 + 12α2x)

= eαx
2

(

23α3

(

3

3

)

x3 + 22α2

(

3

1

)

x

)

d4

dx

(

eαx
2
)

= eαx
2

(16α4x4 + 48α3x2 + 12α2)

= eαx
2

(

24α4

(

4

4

)

x4 + 23α3

(

4

2

)

x2 + 22α23

(

4

0

))

d5

dx

(

eαx
2
)

= eαx
2

(eαx
2

(32α5x5 + 160α4x3 + 120α3x)

= eαx
2

(

25α5

(

5

5

)

x5 + 24α4

(

5

3

)

x3 + 23α33

(

5

1

)

x

)

.

Expanding

d

dx



eαx
2

⌊n
2
⌋

∑

r=0

(2α)n−r
(

n
n−2r

)

(2r)!

r!2r
xn−2r





we have

eαx
2

xn−1(2α)nn!

{ ⌊n
2
⌋

∑

r=0

α−r+12−2r+1x−2r+2

r!(n− 2r)!
−

⌊n
2
⌋

∑

r=0

α−r2−2r+1x−2r

(r − 1)!(n− 2r)!
+

⌊n
2
⌋

∑

r=0

nα−r2−2rx−2r

r!(n− 2r)!

}

,

and gathering similar terms we have

emx2

xn−1(2α)nn!

{

2αx2

n!
+

⌊n
2
⌋

∑

r=1

α−r+12−2r+1x−2r+2(n + 1)

r!(n− 2r + 1)!
+

2−2⌊n
2
⌋α⌊n

2
⌋+nx⌊n

2
⌋+n−1n!

⌊n
2
⌋!(n− 2(⌊n

2
⌋) + 1)!

}
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which summarizes to

= eαx
2

⌊n+1
2

⌋
∑

r=0

(2α)n+1−r
(

n+1
n+1−2r

)

(2r)!

r!2r
xn+1−2r.

We are interested in characterising the main diagonal of the Euler-Seidel matrix of an,
which by the above is the same as the main diagonal of B−1Hb, where H is the Hankel
matrix of bn, the binomial transform of an.

Note that the diagonal is given by

an,n =

n
∑

i=0

(

n

i

)

an+i.

Example. We have seen that the diagonal of the Euler-Seidel matrix for the Catalan

numbers Cn begins

1, 3, 26, 305, 4120, 60398, 934064, . . .

By the above, the general term of this sequence is

dn =
n
∑

i=0

(

n

i

)

Cn+i.

Now consider the moment representation of the Catalan numbers given by

Cn =

∫

xndµ =
1

2π

∫ 4

0

xn

√

x(4 − x)

x
dx.

We claim that

dn =

∫

(x(1 + x))ndµ =
1

2π

∫ 4

0

(x(1 + x))n
√

x(4 − x)

x
dx.
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This follows from the result above, or directly, since
∫

(x(1 + x))ndµ = =

∫

(x + x2)ndµ

=

∫ n
∑

i=0

(

n

i

)

x2ixn−idµ

=

n
∑

i=0

(

n

i

)
∫

xn+idµ

=
n
∑

i=0

(

n

i

)

Cn+i.

Note that by the change of variable y = x(1 + x) we obtain in this case the alternative
moment representation for dn given by

dn =
1

2π

∫ 20

0

yn
√

2(1 +
√

1 + 4y)
√

5
√

1 + 4y − 2y − 5

4y
√

1 + 4y
dy.

The above method of proof is easily generalised. Thus we have

Proposition 9.1.7. Let an be a sequence which can be represented as the sequence of

moments of a measure:

an =

∫

xndµa.

Then the elements dn of the main diagonal of the Euler-Seidel matrix have moment

representation given by

dn =

∫

(x(1 + x))ndµa.

9.2 Related Hankel matrices and orthogonal poly-

nomials

From the last section, we have
Ea = BHa
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and
Et

a = B−1Hb

where bn is the binomial transform of an. The second equation shows us that

Ea = (B−1Hb)
t

= Ht
b(B

−1)t

= Hb(B
t)−1,

since Hb is symmetric. Thus we obtain

BHa = Hb(B
t)−1,

which implies that
Hb = BHaB

t. (9.14)

Since det(B) = 1, we deduce once again that the Hankel transform of bn is equal to that
of an. We can also use this result to relate the LDU decomposition of Hb [103, 164]
to that of Ha. Thus we have

Hb = BHaB
t

= B · LaDaL
t
a · Bt

= (BLa)Da(BLa)
t.

One consequence of this is that the coefficient triangle of the polynomials orthogonal
with respect to dµb is given by

L−1
a B−1,

where L−1
a is the coefficient array of the polynomials orthogonal with respect to dµa.

Example. We take the example of the Catalan numbers an = Cn and their binomial

transform bn =
∑n

k=0Ck. It is well known that the Hankel transform of Cn is the all

1’s sequence, which implies that Da is the identity matrix. Thus in this case,

Ha = LaLa
t

where

La = LCn
= (c(x), xc(x)2) (A039599)

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A039599


CHAPTER 9. THE EULER-SEIDEL MATRIX 231

with

L−1
a =

(

1

1 + x
,

x

(1 + x)2

)

(A129818)

with general term (−1)n−k
(

n+k
2k

)

, where we have used the notation of Riordan arrays.

The polynomials

Pn(x) =

n
∑

k=0

(−1)n−k

(

n + k

2k

)

xk

are thus a family of polynomials orthogonal on [0, 4] with respect to the density function

1
2π

√
x(4−x)

x
[157]. It is known that the bivariate g.f. of the inverse of the n-th principal

minor of Ha is given by the Christoffel-Darboux quotient

Pn+1(x)Pn(y) − Pn+1(y)Pn(x)

x− y
.

We deduce that the orthogonal polynomials defined by bn have coefficient matrix

L−1
b = L−1

a B−1

=

(

1

1 + x
,

x

(1 + x)2

)

·
(

1

1 + x
,

x

1 + x

)

=

(

1 + x

1 + 3x + x2
,

x

1 + 3x + x2

)

.

It turns out that these polynomials Qn(x) are given simply by

Qn(x) = Pn(x− 1).

Thus H−1
b has n-th principal minor generated by

Qn+1(x)Qn(y) −Qn+1(y)Qn(x)

x− y
.

In similar manner, we can deduce that the Euler-Seidel matrix Ea = ECn
is such that

the n-th principal minor of E−1
a is generated by

Pn+1(x)Pn(y − 1) − Pn+1(y − 1)Pn(x)

x− y
=

Pn+1(x)Qn(y) −Qn+1(y)Pn(x)

x− y
.

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A129818
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Example. For the aerated double factorials, we have

Ha = LaDaL
t
a

where

La = [e
x2

2 , x], Da = diag(n!).

The associated orthogonal polynomials (which are scaled Hermite polynomials) have

coefficient matrix

L−1
a = [e−

x2

2 , x],

and we have

Pn(x) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

(2k − 1)!!(−1)kxn−2k,

or equivalently,

Pn(x) =

n
∑

k=0

Bessel∗
(

n + k

2
, k

)

(−1)
n−k
2

1 + (−1)n−k

2
xk,

where

Bessel∗(n, k) =
(2n− k)!

k!(n− k)!2n−k
=

(

n + k

2k

)

(2k − 1)!!,

(see [9]). With

Qn(x) = Pn(x− 1)

we again have that the Euler-Seidel matrix Ea is such the n-th principal minor of E−1
a

is generated by

Pn+1(x)Pn(y − 1) − Pn+1(y − 1)Pn(x)

x− y
=

Pn+1(x)Qn(y) −Qn+1(y)Pn(x)

x− y
.



Chapter 10

Conclusions and future directions

Riordan arrays and orthogonal polynomials have been areas of particular interest
throughout this study. In Chapter 3 we focused on algebraic structures in Hankel
matrices and Hankel-plus-Toeplitz matrices relating to classical orthogonal polynomi-
als, in particular the Chebyshev polynomials. Future work involves extending our
research to establish links between such algebraic structures and other classical and
semi-classical orthogonal polynomials.

Continuing our emphasis on links between Riordan arrays and orthogonal polynomials,
we have studied elements of an important property of OPS’s, the three-term recurrence
relation. Specifically, we have studied the coefficients of the recurrence relations, related
paths, and continued fraction expansions, all in the context of associated Riordan
arrays. In future work we can extend this focus on the coefficients to study how
the existence of recursive relations between these coefficients can be linked to the
corresponding Riordan arrays. Another area of possible exploration is the link between
the “ladder operator” [25] approach and the Riordan array approach.

Riordan arrays and lattice paths have also been of interest in this thesis. We have been
especially interested in lattice paths corresponding to Riordan arrays that are related to
orthogonal polynomials and how the structure of these paths relate to general Riordan
arrays. In [14] we have shown that Riordan arrays of the form

(

1 − λx− µx2

1 + rx + sx2
,

x

1 + rx + sx2

)

233
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Figure 10.1: A Dyck path of weight s3(µ + s)rs(µ + s)

are the coefficient arrays of orthogonal polynomials. The related Stieltjes matrix has
the form















λ + r 1 0 0 . . .
µ + s r 1 0 . . .

0 s r 1 . . .
0 0 s r . . .
...

...
...

. . .















.

The corresponding Motzkin paths have weighting λ + r for level steps on the x axis,
µ+ s for S-E steps returning to the x axis, and all other S-E steps of weight s and level
steps of weight r. Fig. (10.1) shows an example of one such path.

We have shown that the Hankel matrix generated from the sequence formed from the
first column of the inverse of the Riordan array above, can de decomposed in such a
way to yield a Riordan array with related non-tridiagonal Stieljtes matrix of the form















λ + r 1 0 0 . . .
µ + s r − 1 1 0 . . .
µ + s s r − 1 1 . . .
µ + s s s r − 1 . . .

...
...

...
. . .















.
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We have shown that this matrix relates to  Lukasiewicz paths of weighting λ + r for
level steps on the x axis, µ + s for S-E  Lukasiewicz steps returning to the x axis, and
all other S-E  Lukasiewicz steps of weight s and level steps of weight r − 1.

We exhibited a bijection between these two types of Motkzin and  Lukasiewicz paths.
Below we show the associated weights for both  Lukasiewicz and Motzkin paths for a
path of length 4.

(µ + s)2 = (µ + s)2 s(µ + s) = s(µ + s)

(µ + s)(λ + r)2 = (µ + s)(λ + r)2 (λ + r)(µ + s)(λ + r) = (λ + r)(µ + s)(λ + r)

(λ + r)2(µ + s) = (λ + r)2(µ + s) (λ + r)4 = (λ + r)4

r2(µ + s) = (r − 1)2(µ + s) + (r − 1)(µ + s) + (r − 1)(µ + s) + (µ + s)

r(µ + s)(λ + r) = (r − 1)(µ + s)(λ + r) + (µ + s)(λ + r)

(λ + r)(µ + s)(r) = (λ + r)(r − 1)(µ + s) + (λ + r)(µ + s)

Riordan arrays relating to the paths above are ordinary Riordan arrays. Some of
the above work extended to exponential Riordan arrays. Future work could involve
establishing bijections between Motkin and  Lukasiewicz paths relating to exponential
Riordan arrays.

Recent work carried out by Dan Drake [45] shows bijections between weighted Dyck
paths and Schröder paths. Drake also studied bijections between matchings and certain
paths. In a similar manner, we can explore the possibilities of extending our combi-
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natorial interpretations to matchings and to study bijections arising between these
matchings and  Lukasiewicz paths. We may also seek to extend our work on Riordan
arrays to other combinatorial interpretations, noting that Viennot and Flajolet stud-
ied many forms of combinatorial interpretations relating to orthogonal polynomials.
Recent work in this field has been carried out by Louis Shapiro who has studied tree
structures relating to Riordan arrays [120].

As with the bijections proved in this thesis, we can continue to explore similar bijec-
tions in the area of restricted paths. Such paths have been shown to model polymer
absorbtion [108].

Using continued fractions expansions, expressions have been derived for q-orthogonal
polynomials related to restricted Dyck paths. We can explore the possibility, using the
links we have established between Motzkin paths relating to orthogonal polynomials
and corresponding  Lukasiewicz paths, of extending this to q-orthogonal polynomials.

Finally, we distinguished between three different “Narayana triangles” and their as-
sociated “Narayana polynomials”and applied these polynomials in the area of MIMO
(multiple input, multiple output) wireless communication. We expressed the channel
capacity for a MIMO channel using one of the Narayana polynomials. This gave us the
following result:

CMIMO =
β

ln 2

N
∑

k=0

pk
(σ2T )k

[xk+1]Revx

[

x(1 − x)

1 − (1 − β)x

]

. (10.1)

In calculating the channel capacity, the Stieltjes transform was used. Extending on
this work, we looked at the use of other transforms, such as the R [95] transform to
establish similar results. We hope to develop on this work.
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A.1 Published articles

A.1.1 Journal of Integer Sequences, Vol. 12 (2009), Article

09.5.3

Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms

Abstract: We examine a set of special Riordan arrays, their inverses and associated
Hankel transforms.

P. Barry and A. Hennessy, Notes on a Family of Riordan Arrays and Associated Integer
Hankel transforms, J. Integer Seq. ON. ISSN 1530-7638, Vol. 12, (2009), Article 09.05.3.
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A.1.2 Journal of Integer Sequences, Vol. 13 (2010), Article

10.9.4

Meixner − Type Results for Riordan Arrays and Associated Integer Sequence

Abstract: We determine which (ordinary) Riordan arrays are the coefficient arrays of
a family of orthogonal polynomials. In so doing, we are led to introduce a family of
polynomials, which includes the Boubaker polynomials, and a scaled version of the
Chebyshev polynomials, using the techniques of Riordan arrays. We classify these
polynomials in terms of the Chebyshev polynomials of the first and second kinds. We
also examine the Hankel transforms of sequences associated with the inverse of the
polynomial coefficient arrays, including the associated moment sequences.

P. Barry and A. Hennessy, Meixner-type results for Riordan arrays and associated
integer sequences, J. Integer Seq. ON. ISSN 1530-7638, Vol. 13, (2010), Article 10.9.4.

http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Barry5/barry96s.pdf
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A.1.3 Journal of Integer Sequences, Vol. 13 (2010), Article

10.8.2

The Euler − Seidel Matrix, Hankel Matrices and Moment Sequences

Abstract: We study the Euler-Seidel matrix of certain integer sequences, using the
binomial transform and Hankel matrices. For moment sequences, we give an integral
representation of the Euler-Seidel matrix. Links are drawn to Riordan arrays, orthog-
onal polynomials, and Christoffel-Darboux expressions.

P. Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment
Sequences, J. Integer Seq. ON. ISSN 1530-7638, Vol. 13, (2010), Article 10.8.2.

http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Barry2/barry94r.html
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A.1.4 Journal of Integer Sequences, Vol. 14 (2011), Article

11.3.8

A Note on Narayana Triangles and Related Polynomials, Riordan Arrays,
and MIMO Capacity Calculations

Abstract: We study the Narayana triangles and related families of polynomials. We
link this study to Riordan arrays and Hankel transforms arising from a special case of
capacity calculation related to MIMO communication systems. A link is established
between a channel capacity calculation and a series reversion.

P. Barry, A Hennessy, A note on Narayana triangles and related polynomials, Riordan
arrays, and MIMO capacity calculations, J. Integer Seq. ON. ISSN 1530-7638, Vol.
14 (2011), Article 11.3.8.

http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Barry2/barry126.html


APPENDIX A. APPENDIX 241

A.1.5 Journal of Integer Sequences, Vol. 14 (2011), Article

11.8.2

Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal
Polynomials.

Abstract: We define a generalization of the Stirling numbers of the second kind, which
depends on two parameters. The matrices of integers that result are exponential Ri-
ordan arrays. We explore links to orthogonal polynomials by studying the production
matrices of these Riordan arrays. Generalized Bell numbers are also defined, again de-
pending on two parameters, and we determine the Hankel transform of these numbers.

A. Hennessy, P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays,
and Orthogonal Polynomials, J. Integer Seq. ON. ISSN 1530-7638, Vol. 14 (2011),
Article 11.8.2.

http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Barry6/barry161.html
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A.2 Submitted articles

A.2.1 Cornell University Library, arXiv:1101.2605

Riordan arrays and the LDU decomposition of symmetric Toeplitz plus Hankel
matrices

(Submitted on 13 Jan 2011)

Abstract: We examine a result of Basor and Ehrhardt concerning Hankel and Toeplitz
plus Hankel matrices, within the context of the Riordan group of lower-triangular
matrices. This allows us to determine the LDU decomposition of certain symmetric
Toeplitz plus Hankel matrices. We also determine the generating functions and Hankel
transforms of associated sequences.

P. Barry and A. Hennessy, Riordan arrays and the LDU decomposition of symmetric
Toeplitz-plus-Hankel matrices, published electronically at:
http://arxiv.org/abs/1101.2605, 2011.

http://arxiv.org/abs/1101.2605
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