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We demonstrate that the classical Kramers’ escape problem can be extended to describe a bistable system
under the influence of noise consisting of the superposition of a white Gaussian noise with the same noise
delayed by time �. The distribution of times between two consecutive switches decays piecewise exponentially,
and the switching rates for 0� t�� and �� t�2� are calculated analytically using the Langevin equation.
These rates are different since, for the particles remaining in one well for longer than �, the delayed noise
acquires a nonzero mean value and becomes negatively autocorrelated. To account for these effects we define
an effective potential and an effective diffusion coefficient of the delayed noise.
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The erratic motion of pollen particles floating in water,
observed by Brown in 1827 �1�, has motivated many theo-
retical studies starting from the seminal work of Einstein �2�
and led to the development of stochastic methods �3� that
have applications in a variety of fields including biology,
chemistry, quantum optics, and laser science. Many of the
developments have been achieved within the Markov ap-
proximation which assumes an evolution without memory,
i.e., the evolution of a particle depends only on its current
state. For example, Kramers �4� studied the thermal escape
over a potential barrier U�x� which can be described by a
corresponding Langevin type equation,

ẋ = − U��x� + �2D��t� , �1�

where ��t� is a white Gaussian noise term with ���t���t���
=��t− t��. Kramers showed that the probability density func-
tion of the residence times distribution �distribution of times
between two consecutive switches, RTD� is given by

PRTD�t� = rk exp�− rkt� ,

where rk is the well-known Kramers’ escape rate which in
the low-noise limit D��U is given by

rk =
�U��xmin��U��xmax��

2�
exp	−

�U�x�
D


 . �2�

Here xmin and xmax are the positions of the potential minima
and maxima, respectively, and �U is the potential barrier
height.

However, most dynamical systems encountered in nature
are non-Markovian and as a result the thermal escape over a
potential barrier has been extended to take into account noise
correlations, time-varying external forces, and other memory
effects in bistable potentials �5,6�. In particular, the presence
of exponential correlations as described by the Ornstein-
Uhlenbeck process can be taken into account by adding an
extra dimension to the dynamical system and can be used to
derive an escape rate equivalent to Kramers’ law �7,8�. The
introduction of a periodic driving force can also strongly
alter the qualitative features of the RTD when the Kramers’

time is similar to the period of the time varying force and
leads to stochastic resonance �9–11�. More recently, re-
searchers have considered the stochastic dynamics of time-
delayed dynamical systems. For example, the prototype
equation �12�

ẋ = x − x3 + �x�t − �� + �2D��t� �3�

describes the stochastic evolution of the position x�t� of a
particle trapped in a double well potential U�x�=x4 /4−x2 /2
in the presence of a time delayed force �x�t−�� and of white
Gaussian noise ��t�. By developing an analogy with a two-
state dynamical system, where the switching rate depends on
the location of the particle at t−�, it is possible to calculate
the approximate power spectrum �5� and the probability dis-
tribution of the residence time in one well �13,14�.

In this paper we extend the analysis of the dynamics of a
particle trapped in a bistable potential to include time-
delayed white Gaussian noise. This is modeled via

ẋ = − U��x� +� 2D

1 + 	2 ���t� + 	��t − ��� , �4�

where ��t�, �, and U�x� have the same meaning as in Eq. �3�
and 	 gives the relative strength of the delayed noise term. In
order to calculate the RTD, we consider particles jumping
from one well to the other and find the probability of the
particle jumping back at a time t. For t��, the RTD can be
calculated under the assumption that the noise terms at t and
t−� are uncorrelated. Since the noise caused a particle to
jump at t=0, at t=� the delayed noise will tend to hinder
�assist� a switch in the opposite direction for positive �nega-
tive� feedback, and therefore the RTD exhibits a negative
�positive� peak. In this paper it is shown that for trajectories
which do not switch in a time �, the noise has two distinct
features: �i� a nonzero mean value and �ii� a negative auto-
correlation function �ACF�. Both of these factors change the
escape rate for �� t�2�. The nonzero mean value leads to
an effective potential, V�x�, and thus increases �decreases�
the rate for negative �positive� values of 	. The negative ACF
leads to a lower effective diffusion coefficient of the delayed
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noise and therefore reduces the switching rate.
Noise can propagate along several paths before reaching

the system under study and such noise sources are commonly
encountered in nature and have been recently studied nu-
merically, for example, in �6�. The transport of nanoparticles
in biological �15,16� and artificial channels �17�, as well as
application in gravitational-wave interferometers such as the
VIRGO detector �18�, are just a few typical examples.

A system with time-delayed noise can be realized experi-
mentally using a vertical cavity surface emitting laser
�VCSEL� that exhibits polarization switching as the injection
current is varied. Around this switching point, a small
amount of electrical noise is sufficient to induce random po-
larization switching which follows Kramers’ law �19�. Such
an experiment has been used by several authors to study the
dynamics of bistable dynamical systems under the influence
of noise and period forcing where stochastic resonance can
be observed �20,21�, or noise and delay to describe a Kram-
ers’ law with memory �14�. In this latter experiment, one
polarization component of the laser output is added to the
device injection current after some delay. This situation has
also been shown to exhibit excitability �22�. In the experi-
ment considered here, a similar VCSEL was operated in a
polarization unstable region and electrical noise was super-
imposed onto the low noise dc bias. The output from a noise
generator was split and propagated along electrical lines of
differing length before being added to the injection current of
the VCSEL, thereby introducing a time delay into the sys-
tem. The noise level of the function generator was fixed and
the delayed noise level controlled using an electrical attenu-
ator in the longer electrical line. The polarization resolved
output was analyzed on a digital oscilloscope and the resi-
dence time distribution was calculated.

Figure 1�a� shows the experimentally obtained RTD in
one polarization state of the VCSEL at different levels of
electrical noise injection with a delay time of �=0.2 
s. In
the absence of delayed noise, the RTD displays an exponen-
tial decay as predicted by Kramers’ theory. When the delayed
noise is introduced into the system, the RTD begins to devi-
ate from Kramers’ law while still remaining piecewise expo-
nentially decaying. Such behavior can also be observed by
integrating Eq. �4� with D being increased with 	 in order to
keep the term �2D / �1+	2� constant, which is the case in the
experiment. Figure 1�b� shows a typical RTD from the simu-
lation of Eq. �4� exhibiting similar features to those observed
experimentally for the case of negative feedback.

For 	�0 and � sufficiently long, the RTD displays a
piecewise exponential decay with rates r1 for 0� t�� and r2
for �� t�2�. The escape rate r1 can be calculated assuming
that the noise terms at t and t−� in Eq. �4� are uncorrelated.
Since the variance of uncorrelated terms is given by the sum
of the separate variances 2D / �1+	2� and 2D	2 / �1+	2�, the
resulting diffusion coefficient is equal to D �3� and the prob-
lem reduces to Kramers’ with the escape rate

r1 =
1

��2
exp	−

1

4D

 . �5�

For smaller � the corresponding rate was calculated numeri-
cally in �6� and reaches the limit of r1 as � increases.

We now calculate the escape rate r2, not considered in �6�,
by reducing to a Kramers’ type problem, defining an effec-
tive potential of the system and an effective diffusion coef-
ficient of the delayed noise for �� t�2�.

In order to calculate the effective potential, consider the
ensemble of all trajectories, x�t�, and remove trajectories
once they reach some threshold position, xth. For definiteness
it is assumed that the initial position, x�0�, is to the left of the
threshold, i.e., x�0��xth. Those trajectories which remain in
the well up to time � along with the associated noise terms
are collectively referred to as the *-ensemble. The term ��t�
in the *-ensemble has a negative mean value for 0� t��,
which is constant apart from the small regions near t=0 and
�, where it differs due to the fact that there has been a switch
at t=0. This negative mean value appears because the trajec-
tories whose noise has positive mean value are more likely to
reach xth �switch� in a time �, thus being excluded from the
*-ensemble. The nonzero mean value affects the switching

rate r2 by changing the effective potential of the system
when the noise term ��t� comes back in a time � as ��t−��. It
is possible to calculate the mean value of ��t� over the
*-ensemble, using the discrete time approximation to Eq.

�4�.
Numerically Eq. �4� is integrated using a discrete time

step �t as
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FIG. 1. �a� Experimental RTD with �circles� and without �dots�
the delayed noise. �b� Numerical RTD calculated using Eq. �4� with
	=0 and D=0.15 �dashed curve� and 	=−0.34 and D=0.167 �solid
curve�. The thin gray lines are included to show the difference in
the escape rates before and after � in the presence of delayed noise.
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xn+1 = xn − U��xn��t +� 2D�t

1 + 	2 ��n + 	�n−N� , �6�

where �n is a sequence of normally distributed random num-
bers of mean zero and variance one and N=� /�t is the num-
ber of discrete time steps which corresponds to the delay
time �. In the numerical approximation, the *-ensemble is
made up of sequences xn

* �with all xn
*�xth�, �n

*, and �n−N
*

which are related via Eq. �6�.
Assuming that the time � is sufficiently long ���1/r1�,

the system enters a quasistationary state, as for the Kramers’
escape problem. The probability density which solves the
associated Fokker-Planck equation

�P

�t
=

�

�x
�U�P� + D

�2P

�x2 , �7�

with an absorbing boundary condition, P�xth , t�=0, is ap-
proximately given by

P�x,t� � e−r1t��x� , �8�

where ��x� is the eigenfunction to the eigenvalue r1, for
sufficiently small D �3�. This can be interpreted as the slow
escape of particles from the well at a rate r1, but with the
remaining particles in the well distributed according to the

probability density ��x�. In this quasistationary state, �xn
*�

= �xn+1
* � and therefore averaging the *-ensemble across Eq.

�6� and given that ��n−N
* �=	��n

*� for 0� t�� �23�, we obtain

��n
*� = �U��xn

*��� �t

2D�1 + 	2�
.

It is worthwhile to note that ��n
*� neither depends on n nor on

�. This nonzero mean noise in the *-ensemble implies that
particles remaining trapped in the well for a time t
� expe-
rience an effective potential V�x� given by

V�x� = U�x� − x
	

1 + 	2 �U��x*�� , �9�

where the constant tilt of the potential can be calculated for
the quasistationary distribution by

�U��x*�� =

�
−�

xth

U��x���x�dx

�
−�

xth

��x�dx

. �10�

The value of �U��xn
*�� can be calculated from the Fokker-

Planck equation and the boundary condition ��xth�=0. To
see this, insert the quasistationary probability distribution
function Eq. �8� into Eq. �7� to obtain

− r1��x� = �U��x���x��� + D���x� .

Integrating over the range �−� ,x� and rearranging yields

U��x���x� = − r1�
−�

x

��y�dy − D���x� .

Further integrating over the range �−� ,xth� and using the
boundary condition ��xth�=0, we obtain

�
−�

xth

U��x���x�dx = − r1�
−�

xth

�xth − x���x�dx . �11�
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FIG. 2. �a� The ACF approaches the white noise limit as 	
increases. The parameters are D=0.15, �=100, and xth=0.5. The
ACF does not depend on �. �b� Values of A found from simulation
together with the expression A=A0 /1+	2 with A0�0.1788 and �
�1 for parameters D=0.15, �=100, and xth=0.5.
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FIG. 3. Comparison of theoretical �curves� and numerically cal-
culated �symbols� escape rates r1 �triangles� and r2 �circles�. The
numerical data are for D=0.15, �=100, and xth=0.5. For the nu-
merical simulations the value of xth=0.5 is used to match r1 from
simulation with the theoretical r1 for D=0.15.
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For low levels of the noise, it is expected that most tra-
jectories will be found close to the minimum of the potential
and so the approximation

�x*� =

�
−�

xth

x��x�dx

�
−�

xth

��x�dx

� xmin �12�

is valid up to terms of order D. Combining Eqs. �10�–�12�
gives

�U��x*�� � − r1�xth − xmin� . �13�

Using Eqs. �9� and �13� the potential barrier height of
V�x� for the case of a quartic bistable potential U�x� is

�V �
1

4
+ r1�1 + xth�

	

1 + 	2 . �14�

Next, in order to calculate the effective diffusion coeffi-
cient, consider the effect of the negative ACF of the noise
term ��t� in the *-ensemble. This negative ACF appears be-
cause the trajectories whose noise exhibits positive ACF are
more likely to cause a switch and are therefore filtered from
the *-ensemble.

A typical ACF as a function of lag T is shown in Fig. 2�a�.
This function can be approximated as

��*�T��*�0�� = ��T� − Ae−�T.

The value of A is found to depend on 	 as

A�	� = A0/�1 + 	2�

as shown in Fig. 2�b�. The value of � remains constant as the
value of 	 varies.

Taking half the integral of the ACF over all lags we can
define the diffusion correction coefficient k for the colored
noise �*�t� as

k =
1

2
�

−�

�

��*�T��*�0��dT =
1

2
−

A0

2��1 + 	2�
.

Finally, consider Eq. �4� for �� t�2� and substitute the
effective noise �2k��t� for ��t−�� together with the effective
potential V�x� for U�x�. This gives

ẋ = − V��x� +� 2D

1 + 	2 ���t� + 	�2k��t�� ,

where ��t� and ��t� are two uncorrelated white Gaussian
noise terms with mean zero and variance one, and V�x� is
defined by Eq. �9�. This reduces to

ẋ = − V��x� +�2D	1 −
	2A0

��1 + 	2�2
��t� . �15�

Equation �15� is an effective Kramers’ type model, equiva-
lent to Eq. �4� for �� t�2�. From this the escape rate r2,
using Eqs. �2� and �14�, reads

r2 =
1

��2
exp
−

1

4
+ r1�1 + xth�

	

1 + 	2

D	1 −
A0	2

��1 + 	2�2
 � . �16�

As can be seen in Fig. 3 the theoretical values for r1 and r2
are in excellent agreement with the values obtained from
numerical simulations. The rate r2 has extrema at 	= ±1 and
approaches r1 in the limit of large positive or negative 	.

Also, it is worthwhile to note that the RTD may exhibit
changes of escape rate at any multiples of �, similar to those
reported in �12�, using Eq. �3�. To describe these effects, one
could extend the analysis presented here for the case t
2�.

In conclusion, we have extended the classical Kramers’
problem to account for the addition of a time delayed Gauss-
ian white noise term. By analyzing the problem in two dif-
ferent regimes, we have derived analytical expressions for
the two different switching rates. Such analysis could be ex-
tended to account for a superposition of any number of de-
layed noise terms.
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