
Generalized Stirling numbers, exponential
Riordan arrays and orthogonal polynomials

Aoife Hennessy,
Department of Computing, Mathematics and Physics

Waterford Institute of Technology, Ireland
aoife.hennessy@gmail.com

Paul Barry,
School of Science

Waterford Institute of Technology, Ireland
pbarry@wit.ie

Abstract

We define a generalization of the Stirling numbers of the second kind, which depends
on two parameters. The matrices of integers that result are exponential Riordan arrays.
We explore links to orthogonal polynomials by studying the production matrices of
these Riordan arrays. Generalized Bell numbers are also defined, again depending on
two parameters, and we determine the Hankel transform of these numbers.

1 Introduction

The Stirling numbers of the second kind [13, 17] defined by{
n

k

}
= S(n, k) =

1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n,

are the elements of the exponential Riordan array (see below for more details)

S = [1, ex − 1].

This matrix, A048993, begins

S =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 7 6 1 0 . . .
0 1 15 25 10 1 . . .
...

...
...

...
...

...
. . .


.
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The row sums of this matrix are the well-known Bell numbers [13, 17]

Bell(n) =
n∑

k=0

{
n

k

}
.

By the theory of exponential Riordan arrays, this implies that

Bell(n) = n![xn]ee
x−1,

corresponding to the well-known fact the the Bell numbers have exponential generating
function (e.g.f.) ee

x−1. The elements of the inverse of the matrix S define the (signed)
Stirling numbers of the first kind,

[
n
k

]
[13]. These are thus the elements of the exponential

Riordan array A048894
s = [1, ln(1 + x)].

In this note, we shall define a generalization of the matrix of Stirling numbers, and in so
doing, we obtain a notion of generalized Bell numbers. The generalization depends on two
parameters. We also exhibit these generalized Bell numbers as the moments of families of
orthogonal polynomials (except in the case of the Bell numbers themselves). Links between
orthogonal polynomials [6, 12, 27] and Riordan arrays [23, 26] have been studied in [3, 4].

For an integer sequence an, that is, an element of ZN, the power series f(x) =
∑∞

n=0 anx
n is

called the ordinary generating function or g.f. of the sequence. The n-th term an is thus the
coefficient of xn in this series. As is customary, we can denote this by an = [xn]f(x). For

instance, Fn = [xn] x
1−x−x2 is the n-th Fibonacci number A000045, while Cn = [xn]1−

√
1−4x
2x

is

the n-th Catalan number A000108. The power series g(x) =
∑n

k=0 an
xn

n!
is called the expo-

nential generating function or e.g.f. of the sequence an. In this case we have an = n![xn]g(x).
For instance, the e.g.f. of n! is 1

1−x
. We use the notation 0n = [xn]1 for the sequence

1, 0, 0, 0, . . . , A000007. Thus 0n = [n = 0] = δn,0 =
(
0
n

)
. Here, we have used the Iverson

bracket notation [13], defined by [P ] = 1 if the proposition P is true, and [P ] = 0 if P is
false.

For a power series f(x) =
∑∞

n=0 anx
n with f(0) = 0 we define the reversion or composi-

tional inverse of f to be the power series f<−1>(x) = f̄(x) such that f(f̄(x)) = x.
Many interesting examples of sequences and Riordan arrays can be found in Neil Sloane’s

On-Line Encyclopedia of Integer Sequences (OEIS), [24, 25]. Sequences are frequently re-
ferred to by their OEIS number. For instance, the binomial matrix B (“Pascal’s triangle”)
is A007318.

2 Exponential Riordan arrays

The exponential Riordan group [2, 10, 11] is a set of infinite lower-triangular matrices, where
each matrix is defined by a pair of generating functions g(x) = g0 + g1x + g2x

2 + · · · and
f(x) = f1x+ f2x

2 + · · · where g0 ̸= 0 and f1 ̸= 0. In what follows, we shall assume that

g0 = f1 = 1.
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The associated matrix is the matrix whose i-th column has exponential generating function
g(x)f(x)i/i! (the first column being indexed by 0). The matrix corresponding to the pair
g, f is denoted by [g, f ]. The group law is given by

[g, f ] · [h, l] = [g(h ◦ f), l ◦ f ].

The identity for this law is I = [1, x] and the inverse of [g, f ] is [g, f ]−1 = [1/(g ◦ f̄), f̄ ] where
f̄ is the compositional inverse of f .

If M is the matrix [g, f ], and u = (un)n≥0 is an integer sequence with exponential gener-
ating function U (x), then the sequenceMu has exponential generating function g(x)U(f(x))
[11]. Thus the row sums of the array [g, f ] have exponential generating function given by
g(x)ef(x) since the sequence 1, 1, 1, . . . has exponential generating function ex.

As an element of the group of exponential Riordan arrays, the binomial matrix B with
(n, k)-th element

(
n
k

)
is given by B = [ex, x]. By the above, the exponential generating

function of its row sums is given by exex = e2x, as expected (since e2x is the e.g.f. of 2n).
Applying the matrix B to a sequence an yields the binomial transform of that sequence,
with general term

n∑
k=0

(
n

k

)
ak

and e.g.f. exg(x) where g(x) is the e.g.f. of an.

Example 1. We consider the exponential Riordan array [ 1
1−x

, x], A094587. This array has
elements 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .


and general term [k ≤ n]n!

k!
, and inverse

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .


,

which is the array [1− x, x]. In particular, we note that the row sums of the inverse, which
begin 1, 0,−1,−2,−3, . . ., (that is, 1 − n), have e.g.f. (1 − x)ex. This sequence is thus
the binomial transform of the sequence with e.g.f. (1 − x) (which is the sequence starting
1,−1, 0, 0, 0, . . .).
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Example 2. We consider the exponential Riordan array L = [1, x
1−x

]. The general term of
this matrix may be calculated as follows:

Tn,k =
n!

k!
[xn]

xk

(1− x)k

=
n!

k!
[xn−k](1− x)−k

=
n!

k!
[xn−k]

∞∑
j=0

(
−k

j

)
(−1)jxj

=
n!

k!
[xn−k]

∞∑
j=0

(
k + j − 1

j

)
xj

=
n!

k!

(
k + n− k − 1

n− k

)
=

n!

k!

(
n− 1

n− k

)
.

Thus its row sums, which have e.g.f. exp
(

x
1−x

)
, have general term

∑n
k=0

n!
k!

(
n−1
n−k

)
. This is

A000262, the ‘number of “sets of lists”: the number of partitions of {1, .., n} into any number
of lists, where a list means an ordered subset’.

We will use the following important result [9, 10, 11] concerning matrices that are pro-
duction matrices for exponential Riordan arrays. We recall that if L is an invertible matrix,
then its production matrix (sometimes called its Stieltjes matrix [19]) is the matrix

PL = L−1L̃,

where L̃ is the matrix L with its first row removed. For an exponential Riordan array L, it
is easy to recapture a knowledge of L from PL.

Proposition 3. [10, Proposition 4.1] [11] Let L = (ln,k)n,k≥0 = [g(x), f(x)] be an exponential
Riordan array and let

c(y) = c0 + c1y + c2y
2 + . . . , r(y) = r0 + r1y + r2y

2 + . . . (1)

be two formal power series such that

r(f(x)) = f ′(x) (2)

c(f(x)) =
g′(x)

g(x)
. (3)

Then

(i) ln+1,0 =
∑
i

i!ciln,i (4)

(ii) ln+1,k = r0ln,k−1 +
1

k!

∑
i≥k

i!(ci−k + kri−k+1)ln,i (5)
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or, assuming ck = 0 for k < 0 and rk = 0 for k < 0,

ln+1,k =
1

k!

∑
i≥k−1

i!(ci−k + kri−k+1)ln,i. (6)

Conversely, starting from the sequences defined by (1), the infinite array (ln,k)n,k≥0 defined
by (6) is an exponential Riordan array.

A consequence of this proposition is that the production matrix P = (pi,j)i,j≥0 for an expo-
nential Riordan array obtained as in the proposition satisfies [10, 11]

pi,j =
i!

j!
(ci−j + jri−j+1) (c−1 = 0).

Furthermore, the bivariate generating function

ϕP (x, y) =
∑
n,k

pn,k
xn

n!
yk

of the matrix P is given by

ϕP (x, y) = exy(c(x) + yr(x)),

where we have
r(x) = f ′(f̄(x)), (7)

and

c(x) =
g′(f̄(x))

g(f̄(x))
. (8)

Example 4. The production matrix of L =
[
1, x

1+x

]
A111596 is given by

0 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 2 −4 1 0 0 . . .
0 0 6 −6 1 0 . . .
0 0 0 12 −8 1 . . .
0 0 0 0 20 −10 . . .
...

...
...

...
...

...
. . .


.

The row sums of L have e.g.f. exp
(

x
1+x

)
, and start 1, 1,−1, 1, 1,−19, 151, . . .. This is

A111884. The form of the production matrix above follows since we have g(x) = 1 and
so g′(x) = 0, implying that c(x) = 0, and f(x) = x

1+x
which gives us f̄(x) = x

1−x
and

f ′(x) = 1
(1+x)2

. Thus f ′(f̄(x)) = r(x) = (1− x)2. Hence the bivariate generating function of

P is exy(1− x)2y, as required.
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Example 5. In this example, we calculate the production matrix of the Stirling matrix of the
second kind, S = [1, ex−1]. We have f(x) = ex−1 and hence f ′(x) = ex and f̄(x) = ln(1+x).
In addition, g(x) = 1 implies that g′(x) = 0. Thus r(x) = f ′(f̄(x)) = exp(ln(1 + x)) = 1+ x
while c(x) = 0. It follows that the generating function of the production matrix of S is
simply exy(1 + x)y. Thus we get the matrix

PS =



0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 2 1 0 0 . . .
0 0 0 3 1 0 . . .
0 0 0 0 4 1 . . .
0 0 0 0 0 5 . . .
...

...
...

...
...

...
. . .


.

We have the following important link between exponential Riordan arrays and orthogonal
polynomials.

Theorem 6. [3, Theorem 25] An exponential Riordan array L = [g(x), f(x)] is the inverse
of the coefficient array of a family of orthogonal polynomials if and only if its production
matrix P = SL is tri-diagonal.

This theorem has the following corollary.

Corollary 7. [3, Corollary 27] Let L = [g(x), f(x)] be an exponential Riordan array with tri-
diagonal production matrix SL. Then the moments µn of the associated family of orthogonal
polynomials are given by the terms of the first column of L.

This implies [14] that g(x) has the continued fraction [28] expansion of the form

g(x) =
1

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

,

where the associated family of orthogonal polynomials Pn(x) obeys the three-term recurrence

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x).

The Hankel transform [16] of a sequence an is the sequence of determinants hn = |ai+j|0≤i,j≤n−1.
If an has a generating function with a continued fraction expansion as above (with a0 = 1),
then [14, 15] its Hankel transform is given by

hn = βn−1
1 βn−2

2 · · · βn−1 =
n∏

k=1

βn−k
k . (9)

Examples of the calculation of Hankel transforms can be found in [8, 22].
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3 Generalized Stirling and Bell numbers

In this section, we shall be interested in the power series

g(x;α, β) = eα(e
x−1)−(α−β)x.

We will associate two exponential Riordan arrays with g(x;α, β) in a natural way, and
calculate their production matrices, thus throwing light on their structure. In each case,
g(x;α, β) will be the first element in the pair defining the Riordan arrays, and thus the
sequence with n-th term

n![xn]g(x;α, β) = n![xn]eα(e
x−1)−(α−β)x

will be the first column in both cases. We can describe this sequence in terms of the Stirling
numbers of the second kind as follows:

Proposition 8.

n![xn]eα(e
x−1)−(α−β)x =

n∑
k=0

(
n

k

) k∑
i=0

{
k

i

}
αi(β − α)n−k. (10)

Proof. We have

n![xn]eα(e
x−1)−(α−β)x = n!

n∑
k=0

[xk]eα(e
x−1)[xn−k]e(β−α)x

= n!
n∑

k=0

1

k!

k∑
i=0

{
k

i

}
αi (β − α)n−k

(n− k)!

=
n∑

k=0

(
n

k

) k∑
i=0

{
k

i

}
αi(β − α)n−k.

Note that we have used the identity

[xn]u(x)v(x) =
n∑

k=0

[xk]u(x)[xn−k]v(x)

in the above calculation. We now define

Bell(n;α, β) =
n∑

k=0

(
n

k

) k∑
i=0

{
k

i

}
αi(β − α)n−k

to be the generalized (α, β)-Bell numbers. We have

Bell(n; 1, 1) = Bell(n).
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Re-interpreting equation (10) in terms of the binomial transform, we see that Bell(n;α, β)
represents the (β − α)-th binomial transform of the Bell polynomial

∑n
k=0

{
n
k

}
αk.

In a similar fashion we define the (α, β)-Stirling numbers of the second kind to be the
elements of the lower-triangular invertible matrix given by the exponential Riordan array

S(α, β) = [g(x;α, β), ex − 1] = [eα(e
x−1)−(α−β)x, ex − 1].

We have
S = S(0, 0).

Proposition 9. The general term of the (α, β)-Stirling matrix S(α, β) is given by{
n

k

}
(α,β)

=
n∑

i=0

(
n

i

){
n− i

k

} i∑
l=0

(
i

l

) l∑
j=0

{
l

j

}
αj(β − α)i−l.

Proof. The general (n, k)-th term of the exponential Riordan array S(α, β) is given by

n!

k!
[xn]g(x;α, β)(ex − 1)k =

n!

k!

n∑
i=0

[xi]g(x;α, β)[xn−i](ex − 1)k

=
n!

k!

n∑
i=0

1

i!

i∑
l=0

(
i

l

) l∑
j=0

{
l

j

}
αj(β − α)i−l k!

(n− i)!

{
n− i

k

}

=
n∑

i=0

(
n

i

){
n− i

k

} i∑
l=0

(
i

l

) l∑
j=0

{
l

j

}
αj(β − α)i−l.

Proposition 10. The production matrix of S(α, β) is tri-diagonal, given by

AS(α,β) =



β 1 0 0 0 0 . . .
α β + 1 1 0 0 0 . . .
0 2α β + 2 1 0 0 . . .
0 0 3α β + 3 1 0 . . .
0 0 0 4α β + 4 1 . . .
0 0 0 0 5α β + 5 . . .
...

...
...

...
...

...
. . .


.

Proof. We calculate the bivariate generating function of the production matrix. We have
f(x) = ex − 1 and thus f̄(x) = ln(1 + x) and f ′(x) = ex. Thus

r(x) = f ′(f̄(x)) = eln(1+x) = 1 + x.

Now
g′(x) = (αex − (α− β))g(x)
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and hence

c(x) =
g′(f̄(x))

g(f̄(x))
=

g′(ln(1 + x))

g(ln(1 + x))
= (αeln(1+x) − (α− β)) = αx+ β.

Thus the g.f. of the production matrix is given by

exy(αx+ β + (1 + x)y)

as required.

We define the (α, β)-Stirling numbers of the first kind to be the elements of the matrix
s(α, β) = S(α, β)−1. We have

s(α, β) = [eα(e
x−1)−(α−β)x, ex − 1]−1 = [e−αx+(α−β) ln(1+x), ln(1 + x)].

Using for instance the results of [3], we then obtain the following results.

Corollary 11. For α ̸= 0, β ̸= 0, the matrix s(α, β) of the (α, β)-Stirling numbers of the
first kind is the coefficient array of the family of orthogonal polynomials Pα,β

n (x) defined by
the three-term recurrence

Pα,β
n+1(x) = (x− (n+ β))Pα,β

n (x)− αnP α,β
n−1(x).

For α ̸= 0, β ̸= 0, the (α, β)-Bell numbers Bell(n;α, β) are the moments of the orthogonal
polynomials Pα,β

n (x) defined above.

We note that in the case α = 0, β = 0, these polynomials become the polynomials
Pn(x) = (x)n (which are not orthogonal).

Corollary 12. The (α, β)-Bell numbers have ordinary generating function given by the con-
tinued fraction

go(x;α, β) =
1

1− βx−
αx2

1− (1 + β)x−
2αx2

1− (2 + β)x−
3αx2

1− · · ·

.

Corollary 13. The Hankel transform of the (α, β)-Bell numbers Bell(n;α, β) is given by

hn = α(
n+1
2 )

n∏
k=1

k!

Proof. This follows since

hn =
n∏

k=1

(αk)n−k+1.
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We note that this result is also a direct consequence of the known fact that the Han-

kel transform of the Bell polynomials
∑n

k=0

{
n
k

}
αk is given by α(

n+1
2 )∏n

k=1 k! [21], and the
invariance of the Hankel transform under the binomial transform.

We now define our second exponential Riordan array associated to the (α, β)-Bell num-
bers. This is the exponential Riordan array

[g(x;α, β), x] = [eα(e
x−1)−(α−β)x, x].

Proposition 14.
[g(x;α, β), x] = S(α, β) · S−1.

Proof. We have

[g(x;α, β), x]−1 · [g(x;α, β), ex − 1] =

[
1

g(x;α, β)
, x

]
· [g(x;α, β), ex − 1] = [1, ex − 1].

We now calculate the production matrix of [g(x;α, β), x].

Proposition 15. The production matrix of [g(x;α, β), x] is given by

β 1 0 0 0 0 . . .
α β 1 0 0 0 . . .
α 2α β 1 0 0 . . .
α 3α 3α β 1 0 . . .
α 4α 6α 4α β 1 . . .
α 5α 10α 10α 5α β . . .
...

...
...

...
...

...
. . .


.

Proof. We calculate the bivariate g.f. of the production matrix. We have f(x) = x and so
f̄(x) = x and f ′(x) = 1. Hence r(x) = f ′(f̄(x)) = 1. g(x) = g(x;α, β) = eα(e

x−1)−(α−β)x and
so g′(x) = (αex − (α− β))g(x). Thus

c(x) =
g′(f̄(x))

g(f̄(x))
=

g′(x)

g(x)
= αex − (α− β).

Thus the bivariate g.f. of the production matrix is given by

exy(αex + (β − α) + y),

as required.

Corollary 16. If β = α the production matrix of [g(x;α, β), x] is given by

αB+



0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
0 0 0 0 0 1 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


.
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Corollary 17. If α = β = 1 then the production matrix of [g(x; 1, 1), x] is given by

1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 2 1 1 0 0 . . .
1 3 3 1 1 0 . . .
1 4 6 4 1 1 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .


.

In this case, the matrix [g(x; 1, 1), x] is A056857, which begins

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
5 6 3 1 0 0 . . .
15 20 12 4 1 0 . . .
52 75 50 20 5 1 . . .
...

...
...

...
...

...
. . .


,

with first column equal to the Bell numbers. The Riordan array [g(x; 1, 1), ex − 1] is the
array [ee

x−1, ex − 1], A049020, [1]. This matrix begins

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 3 1 0 0 0 . . .
5 10 6 1 0 0 . . .
15 37 31 10 1 0 . . .
52 151 160 75 15 1 . . .
...

...
...

...
...

...
. . .


.

Again, we see that the first column gives the Bell numbers. The production matrix of this
exponential Riordan array is particularly simple:

1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
0 2 3 1 0 0 . . .
0 0 3 4 1 0 . . .
0 0 0 4 5 1 . . .
0 0 0 0 5 6 . . .
...

...
...

...
...

...
. . .


.

The corresponding orthogonal polynomials then have coefficient array given by

[ee
x−1, ex − 1]−1 =

[
1

1 + x
, ln(1 + x)

]
,
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which begins 

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
1 −3 1 0 0 0 . . .
−1 8 −6 1 0 0 . . .
1 −24 29 −10 1 0 . . .
−1 89 −145 75 −15 1 . . .
...

...
...

...
...

...
. . .


.

These are a version of the Charlier polynomials (see A094816 for an unsigned version of this
array). The production matrix of this orthogonal polynomial coefficient array is of interest
in itself, as it is given by 

−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 1 −3 1 0 0 . . .
0 −1 3 −4 1 0 . . .
0 1 −4 6 −5 1 . . .
0 −1 5 −10 10 −6 . . .
...

...
...

...
...

...
. . .


.

4 Final comments

As pointed out by a reviewer, the Bell numbers are often presented as the row sums of the
matrix of the Stirling numbers of the second kind. With this in mind, we define

B(n;α, γ) =
n∑

k=0

(
n

k

) k∑
i=0

{
k

i

}
αiγn−k.

Then we have
Bell(n;α, β) = B(n;α, β − α).

It is easy to see that B(n;α+1, β−α) is given by the row sums of S(α, β), and thus provides
another related generalization of the Bell numbers.

We finish this note by directing the reader to [5, 7, 18, 20] for some alternative general-
izations of the Stirling and Bell numbers.
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