International Mathematical Forum, 3, 2008, no. 38, 1853 - 1870

Analysis of Financial Data Using
Non-Negative Matrix Factorization
Konstantinos Drakakis!

UCD CASL, University College Dublin
Belfield, Dublin 4, Ireland

Konstantinos.Drakakis@ued.ie
Scott Rickard?

UCD CASL, University College Dublin
Belfield, Dublin 4, Ireland
Scott.Rickard@ucd.ie

Ruairi de Fréin

UCD CASL, University College Dublin
Belfield, Dublin 4, Ireland
Ruairi.deFrein@ee.ucd.ie

Andrzej Cichocki

Laboratory for Advanced Brain Signal Processing
Brain Science Institute, RIKEN, 2-1 Hirosawa
Wako-shi, Saitama, 351-0198, Japan
cia@brain.riken.jp

Abstract

We apply Non-negative Matrix Factorization (NMF) to the prob-
lem of identifying underlying trends in stock market data. NMF is a
recent and very successful tool for data analysis including image and
audio processing; we use it here to decompose a mixture a data, the
daily closing prices of the 30 stocks which make up the Dow Jones In-
dustrial Average, into its constitute parts, the underlying trends which

!The author is also affiliated with the School of Mathematics, University College Dublin.
2The author is also affiliated with Electronic & Electrical Engineering, University College
Dublin.

1854 Konstantinos Drakakis et al

govern the financial marketplace. We demonstrate how to impose ap-
propriate sparsity and smoothness constraints on the components of the
decomposition. Also, we describe how the method clusters stocks to-
gether in performance-based groupings which can be used for portfolio
diversification.

1 Introduction

The explosion in popularity of Non-negative Matrix Factorization (NMF) in
recent times has led to it being applied to diverse fields such as PET [1|, EEG
analysis [11], pattern recognition, feature extraction, denoising, dimensionality
reduction and blind source separation [4].

NMEF considers the following problem [8]:

Problem 1.1. Given a matrir Y = [y(1),y(2),...,y(T)] € R™T, NMF
decomposes Y into the product of two matrices,

A € R™" and X = [x(1),x(2),...,x(T)] € R™*7,
where all matrices have exclusively non-negative elements.

We can view Y as a mixture of the rows of X weighted by the coefficients
in the mixing matrix A. Thus, the rows of X can be thought of as underlying
components from which the mixtures are created. We shall consider here
decompositions which are approximative in nature, i.e.,

Y =AX+V, (1)

where A > 0, X > 0 component-wise and V € R™7T represents a noise or
error matrix.

One arena in which an understanding of the hidden components which
drive the system is crucial (and potentially lucrative) is financial markets. It
is widely believed that the stock market and indeed individual stock prices
are determined by fluctuations in underlying but unknown factors (signals).
If one could determine and predict these components, one would have the
opportunity to leverage this knowledge for financial gain. In this paper, we
use NMF' to learn the components which drive the stock market; specifically,
we use for Y the closing prices for the past 20 years of the 30 stocks which
make up the Dow Jones Industrial Average. To the best of our knowledge,
this is the first time NMF has been applied in a financial setting.

We begin with an overview of the NMF algorithm. Subsequently, we use its
2 standard varieties (Frobenius and Kullback-Leibler) to represent each stock
as a weighted sum of underlying components, and propose a novel method for
those components to be smooth. In fact, in some instances we are interested

Analysis of financial data 1855

in decompositions with sparse A and smooth X, and we modify the classical
NMF techniques accordingly. Finally, based on the identified mixing matrix
A, we propose a clustering that can be of potential use to investors as it
produces a performance-based grouping of the stocks instead of the tradition
sector-based grouping.

2 Non-Negative Matrix Factorization

We start by introducing two standard NMF techniques proposed by Lee and
Seung [8]. In their seminal work on NMF, [9] considered the squared Frobenius
norm and the Kullback-Leibler (KL) objective functions.

Frobenius:
Dr(Y||AX) = Zm— [AX]; [(2)
Kullback-Leibler:
Dgi(Y[|AX) = %:(ymln | AX] + [AX]x yk) (3)

A suitable step-size parameter was proposed in both cases resulting in two
alternating, multiplicative, gradient descent updating algorithms:

Frobenius:
A — AoYX"oAXXT, (4)
X « XoATYoATAX (5)

Kullback-Leibler:
A — A0 (Yo AX)XT o [Xlp,..., X177, (6)
X « XoAT(YoAX)o[AT1,,...,AT1,] (7)

where ® represents element-wise multiplication, @ represents element-wise di-
vision, and 1,, is a column vector with n ones.

Lee and Seung argue that the advantage of having multiplicative updates is
that it provides a simple update rule under which A and X never become neg-
ative, and so projection into the positive orthant of the space is not necessary.
Having alternating updates implies that the optimization is no longer convex
(NMF is convex if either A or X are updated, while the other is known) and
therefore the solution it leads to may be neither unique nor optimal (exact).

Alternatively, NMF factorization can be achieved in many other ways: for
example, multiplicative or additive gradient descent [9], projected gradient
[10], exponentiated gradient [3], 2nd order Newton [12]; and with different
costs such as Kullback-Leibler, Frobenius and Amari-alpha divergence [4]; and
with additive or projected sparsity [4, 7] and/or orthogonality constraints [6].

1856 Konstantinos Drakakis et al

2.1 Sparsity and smoothness

When it is known that the components of A and X have certain properties
(e.g., sparsity), it is advantageous to manipulate the algorithm to produce
components with the desired properties. For example, [7] argues that explic-
itly incorporating a sparseness constraint improves the found decompositions
for face image databases. Alternatively, [2] apply a temporal smoothness con-
straint which they argue produces meaningful physical and physiological in-
terpretations of clinical EEG recordings. We now give a brief overview of how
sparsity and smoothness are implemented in practice. At the end of this sec-
tion, we propose a novel method of producing a decomposition with a sparse
mixing matrix and smooth component matrix.

Consider the following constrained optimization problems with the Frobe-
nius and KL cost [4]:

Dy " (Y[||[AX) = Dp(Y[|AX) + aada(A) + axJx(X), (8)
D (Y]|AX) = Dgr(Y||AX) + asdJa(A) + axJx(X),
s. t. Vi7j, k- Tk > 0, Qi > 0,
where vy > 0 and ax > 0 are regularization parameters, and functions Jy (X)

and J4(A) are used to enforce a certain application-dependent characteristics
of the solution, such as sparsity and/or smoothness.

2.1.1 Regularization functions:

The regularization, terms J4(A) and Jx(X) can be defined in many ways. Let
us assume the following definition for L,-norm of a given matrix C' = [¢;] €

1
RMN: L,(C) 2 (S0 S0 lemal?) 7 thus:

e [norm (p = 1) — for sparse solution:

Ja(A) = S0 Y ai, Ix(X) = 0 Y
VaJa(A) =1, ViJy(X) =1,

e Squared L, norm (p = 2) — for smooth solution:

Ja(A) = % 2111 Z;:1 a?j? Jx(X) = % Z};l 25:1 x?m
VAJA(A) = CLij, VXJX(X) = ZEjk,

There exists many other measures of sparsity and smoothness (e.g., see in
particular [7] which proposes a sparse measure with intuitively desirable prop-
erties), each of which has associated modified algorithms.

Analysis of financial data 1857

2.1.2 Modified Frobenius and KL algorithms:

The Lee-Seung algorithm with Frobenius cost can be regularized using additive
penalty terms [4]. Using gradient descent the following generalized updates can
be derived:

[[Y XT]Z']‘ — OKA[VAJA(A)}UL 9
[A X XT];; ’ ¥

Aij < Qij

[[AT Y] — ax[VxJx(X)]]

Tjr < Tjk [ATAX]]k 87 (10)
Qjj < #7 (11)

D iy @i

where the nonlinear operator [z]. = max{e,z} has been included in the nu-
merator to avoid the possibility of a negative numerator. Note that, in general,
the signature matrix A is normalized at the end of each pair (A and X) of
updates.

Regularization of the Lee and Seung algorithm with Kullback-Leibler cost
function was considered in [5]. The modified learning rules were found to
perform poorly. In order to enforce sparsity while using the Kullback-Leibler
cost function, a different approach can be used [4]:

. < STy 2 (/A X) >) 12

T
Zp:l mjp

1+ase
on (o, S /18K) .
Zq:la‘lj

P 14

1] Z:il a/ij 9 ()
where aig, and g, enforce sparse solutions. Typically, as,, as, € [0.001,0.005].
This is a rather intuitive or heuristic approach to sparsification. Raising the
Lee-Seung learning rules to the power of (1 + ag,) or (1 + ag,), and having
Qsq, s, > 0 resulting in an exponents that are greater than one, implies that
the small values in the non-negative matrix tend to zero as the number of iter-
ations increase. The components of the non-negative matrix that are greater

1858 Konstantinos Drakakis et al

than one are forced to be larger. In practice these learning rules are stable and
the algorithm works well.

Of course, this power raising technique can also be used with the Frobenius
norm, if we wish: in both cases then, this reduces to an intermediate step of
the algorithm performing the updates:

Tij — X 00T, @i — a0t (15)

This is actually the smoothness and sparsity technique we will be using to
derive our results.

2.1.3 Sparse A and smooth X

In many practical situation, we may desire a decomposition which has sparse
A and smooth X (or, alternatively sparse X and smooth A). We now propose
a simple approach which produces such solutions. In the Frobenius case, we
required a projection to correct the modified algorithm’s solutions that occa-
sionally lie outside the allowed non-negative space. The modified Kullback-
Leibler method does not produce satisfactory results which led to the heuristic
and intuitive approach for sparsification of the solution [5]. If we, however,
desire smooth solutions, we can modify (12) or (13) simply by setting ag, < 0
or ag, < 0. By setting, for example, ag, > 0 and ag, < 0, the solutions
produced have sparse A and smooth X. This is the approach we use in this

paper.

3 Stock market trends

We will be applying NMF on the closing prices for the past 20 years of the
30 stocks that make up the Dow Jones Industrial Index. These stocks are
traditionally grouped into sectors according to the nature of the activities or
the object of trade of the company they correspond to (such as Technology,
Basic Materials, Financial etc.); full information about these stocks can be
found in Table 3. The closing prices of stocks are definitely nonnegative signals,
so it makes sense to apply NMF on them; we actually analyze their natural
logarithms, and, to obtain better results, we “ground” them, namely we shift
the time series of each stock vertically so that the minimum value becomes 0.

It is reasonable to assume that stocks that are part of the same market
do not behave independently of each other, but are rather driven by some un-
derlying forces, normally significantly fewer than the number of stocks them-
selves. In this way, groups of stocks exhibit a correlated behavior, and these
groups may or may not coincide with the sectors mentioned above. Obviously,

Analysis of financial data 1859

the most interesting scenario would be a high performance group almost “or-
thogonal” to the sectors (that is, containing one stock from most sectors), as
investment in such a group would falsely appear to be diversified and subject
investors to unsuspected risk.

NMF is definitely an exemplary candidate method to determine these un-
derlying driving components; after all, this is exactly what it has been success-
fully applied to in audio and image processing, where it has proved extremely
efficient in demixing speech and separating overlapping images. In what fol-
lows, we will test some of the variants of NMF we have been describing above
on our financial data.

One last point to be mentioned concerns the clustering algorithm that
determines the groups of the stocks; this is, however, an extensively studied
problem in statistics and most mathematical software packages include efficient
algorithms that solve it automatically. In our case, we use the kmeans routine
of MATLAB on the matrix A we determine at the end of each run.

4 Results

We divide this section into various parts, according to the features incorporated
in the version of the NMF algorithm we use. Note that X is always normalized
so that each row’s maximum is equal to 1. We run the algorithms through
a recursion of 1000 steps, or until the cost stops decreasing, whichever comes
first. In Figure 1 we show 2 things that should be kept in mind through-
out the experiments: the original stock prices, so that we can compare the
reconstructions we obtain through NMF, and the action of exponentiation,
whereby exponents larger than 1 increase the range of values (making large
values larger and small values smaller, relatively speaking), while exponents
less than 1 suppress it.

4.1 Frobenius runs

In the following runs we use the Frobenius norm:

4.1.1 No smoothness, no sparsity

In this run we use “vanilla” NMF, making no effort to induce either extra
sparsity or extra smoothness; in other words, ag, = ag, = 0 in (15). The
recursion goes through all 1000 steps, and the results are shown in Figure 2.
We see that the components (rows of X) are already sufficiently smooth, and
that the reconstruction of the data from the determined components is also
very good. The cost is computed using (2).

1860

Konstantinos Drakakis et al

’ +# \ Symbol \ Company \ Sector
1 | AA Alcoa Basic Materials
2 | AIG American International Group Financial
3 | AXP American Express Financial
4 | BA Boeing Industrial Goods
5 | C Citigroup Financial
6 | CAT Caterpillar Industrial Goods
7 | DD DuPont Basic Materials
8 | DIS Disney Services
9 | GE General Electric Conglomerates
10 | GM General Motors Consumer Goods
11 | HD Home Depot Services
12 | HON Honeywell Industrial Goods
13 | HPQ Hewlett-Packard Technology
14 | IBM International Business Machines Technology
15 | INTC Intel Technology
16 | JNJ Johnson and Johnson Healthcare
17 | JPM JP Morgan Chase Financial
18 | KO Coca-Cola Consumer Goods
19 | MCD McDonald’s Services
20 | MMM Minnesota Mining and Manufacturing | Conglomerates
21 | MO Altria Consumer Goods
22 | MRK Merck Healthcare
23 | MSFT Microsoft Technology
24 | PFE Pfizer Healthcare
25 | PG Procter and Gamble Consumer Goods
26 | T AT&T Technology
27 | UTX United Technologies Conglomerates
28 | VZ Verizon Technology
29 | WMT Wal-Mart Services
30 | XOM ExxonMobil Basic Materials

Table 1: The 30 stocks of the Dow Jones Industrial Average (for the past 20
years) and their sectors.

Analysis of financial data 1861

18p

16

12p

0.8

0.6

0.4

0.2

L L L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) (b)

Figure 1: (a) The original stock prices data; (b) graph of the functions f(z) =
2? and f(z) = /x, z > 0.

4.1.2 No smoothness, sparsity

In this run we use ag, = 0, ag, = 0.01 in (15) in order to obtain a sparse A;
this turns out to produce components which oscillate too much (see Figure 3).
Hence, extra sparsity for A should be used in parallel with extra smoothness
for X. Note also that the recursion ended prematurely here, indicating that
the cost reached a minimum and was about to increase again.

4.1.3 Smoothness, no sparsity

In this run we use ag, = —0.05, ag, = 0 in (15) in order to obtain a smooth
X; this time the recursion goes on till the end, the components are smooth,
but they are also very similar to each other, with a clear upward trend (see
Figure 4). If we remove this common upward trend, the components will look
similar to those in Figure 2.

4.1.4 Other attempts to induce sparsity and smoothness

We saw earlier that our attempt to sparsify A by exponentiation led to oscilla-
tory components in X. We can remove this oscillation either by using agz < 0,
or by “brute force”, namely by convolving the rows of X with a smoothing
window at the end of each step of the algorithm. The latter method is espe-
cially appealing, as we can smoothen the components to an arbitrary degree,
by choosing the width of our smoothening window (we used a Hamming win-
dow of width 101). Here, the components look very much like the ones in
Figure 4.

1862 Konstantinos Drakakis et al

L L L L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) (b)

0 200 400 600 800 1000

Figure 2: Results of the Frobenius run with no extra smoothness or sparsity

4.2 Kullback-Leibler runs

In the following runs we use the Kullback-Leibler norm:

4.2.1 No smoothness, no sparsity

In this run we use again “vanilla” NMF', making no effort to induce either extra
sparsity or extra smoothness: we set ag, = as, = 0 in (15). The recursion
goes through all 1000 steps, and the results are shown in Figure 5. We see
that the components (rows of X) are already sufficiently smooth, and that the
reconstruction of the data from the determined components is also very good.
The cost is computed using (3).

4.2.2 No smoothness, sparsity

In this run we use ag, = 0, ag, = 0.002 in (15) in order to obtain a sparse A;
given the high oscillation we observed in the corresponding Frobenius run, we
decreased the exponent used, and this time the result is satisfactory. Although
the components are more oscillatory than before, they do not oscillate wildly

Analysis of financial data 1863

” ‘”u M

"“\ ‘H\ il 4

i

L L L L L L L L L L { L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) (b)

600 800 1000

Figure 3: Results of the Frobenius run with no extra smoothness but extra
sparsity for A

(see Figure 6). Finally, note that the recursion ended prematurely here.

4.2.3 Smoothness and sparsity

In this run we use ag, = —0.002, ag, = 0.002 in (15) in order to obtain a
sparse A; the results are very nice, as Figure 7 shows.

4.2.4 Smoothness by convolution and sparsity

In this run we use ag, = 0, ag, = 0.003 in (15), but attempt to smoothen the
components by filtering. As the convolution with a large Hamming window
did not produce interesting results in the corresponding Frobenius runs, we
now use a very small Hamming window instead of width 5 (after all, we are
only interested in fine scale smoothing).

1864 Konstantinos Drakakis et al

L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) (b)

200 400 600 800 1000

Figure 4: Results of the Frobenius run with no extra sparsity but extra smooth-
ness for X

4.3 Discussion of the various runs

In the experiments above we tried to sample a huge variety of parameters. Our
results suggest the following:

e There is practically no difference between using the Frobenius cost and
using the Kullback-Leibler cost;

e Attempts to sparsify A lead to oscillations in X that need to be smoo-
thened out;

e Smoothening through exponentiation tends to perform both coarse and
fine scale smoothening and reduces the overall oscillation of the compo-
nents, yielding very similar components which need to have their trends
removed;

e Smoothening X through filtering (with a Hamming window, in our ex-
ample) gives us more control which scales we want to smoothen over,
and is thus a method more suitable for our purposes.

Analysis of financial data 1865

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) (b)

x10° Cost

0 200 400 600 800 1000

Figure 5: Results of the Kullback-Leibler run with no extra smoothness or
sparsity

4.4 Stock clustering

The determination of the underlying driving components of the market in the
various runs above leads us to investigate which stocks behave similarly, in the
sense that they rely mainly on (are linear combinations of, that is) the same
components. This can be easily done by examining the rows of A determined
at the end of each run and deciding which rows have the dominant coefficients
at the same positions (columns). This is a well studied problem in statistics
and MATLAB has a routine (kmeans) that does the grouping automatically
upon feeding it with A and the number of clusters we seek; we set 7 clusters
in all cases.

The results of the clustering can be seen in Table 4.4, which demonstrates
clearly the success of NMF in the analysis of financial data. Indeed, we see
that clusters (or at least sub-clusters) of stocks persist across the various runs,
that is they are not dependent on the parameters we run NMF with (cost,
sparsity, smoothness etc.) This implies that NMF is robust when financial
data is concerned, hence very suitable for analysis. In addition, those persistent
clusters, as we are about to see, are frequently “orthogonal” to the traditionally

1866 Konstantinos Drakakis et al

“

i ! A L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(b)

800 1000

Figure 6: Results of the Kullback-Leibler run with no extra smoothness but
extra sparsity for A

defined sectors, falsely suggesting good portfolio diversification options. More
precisely, to give some concrete examples,

e 3 and 5 are always grouped together, with 1 exception only (run 5), and
correspond to American Express and Citigroup (finance).

e 11 and 23 are always together, and correspond to Microsoft (technology)
and Home Depot (services).

e 2.9, and 24 are always grouped together, often along with 29, and
correspond to AIG (financial), General Electric (conglomerates), Pfizer
(healthcare), and Wal-Mart (services), so the group they form cuts across
4 sectors.

e 21 and 25 are always together with 1 exception (run 2), and correspond
to Altria and Procter & Gamble, both in consumer goods.

e 13 and 17 are always together except in run 4, and correspond to Hewlett-
Packard (technology) and JP Morgan Chase (finance).

Analysis of financial data 1867

L L L L L L L L L L L L L L L L L L
1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) (b)

600 800 1000

Figure 7: Results of the Kullback-Leibler run with extra smoothness for X
and extra sparsity for A

e 7,10, 19, 26, 28 are grouped together in all runs, often along with 12 and
22: this is a large group comprising DuPont (basic materials), General
Motors (consumer goods), MacDonald’s (services), AT&T (technology),
Verizon (technology), Honeywell (industrial goods), and Merck (health-
care), and truly remarkable as it intersects almost all sectors.

5 Conclusion and summary

We tested the main variations of the NMF algorithm on the analysis of finan-
cial data, namely the closing prices of the 30 stocks forming the Dow Jones
Industrial Index for the past 20 years, in order to discover the underlying
forces driving the financial market. We found that there is a tradeoff between
the smoothness of those underlying components and the sparsity of the repre-
sentation of the stock prices as linear combinations of these components, and
proposed a novel method for sparsity and smoothness through exponentiation.

But, more importantly, we also found that the clustering of the stocks

1868 Konstantinos Drakakis et al

L L L L L L L L L ¥ L L " L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) (b)

x10° Cost

o kN w & a0 o N ® ©

0 200 400 600 800 1000

Figure 8: Results of the Kullback-Leibler run with extra smoothness induced
by filtering for X and extra sparsity for A

according to the components they depend on is robust in the parameters we
use, in the sense that certain groups of stocks persist in all (or at least in most)
clusterings we attempted, and that those groups often span many sectors, thus
potentially giving investors a false sense of security that they have diversified
their portfolio, when in fact they have not. Conversely, investing in stocks
belonging to different persistent groups, but not necessarily in different sectors,
offers genuine portfolio diversification options.

Acknowledgements

This material is based upon works supported by the Science Foundation Ireland
under Grant No. 05/YI2/1677.

Analysis of financial data 1869

3,5|[11, 23[[13, 14, 17]|2, 9, 15, 24[[16, 21, 25, 29][1, 6, 20, 27, 304, 7, 8, 10, 12, 18, 19, 22, 26, 28
15[11, 23[[4, 25, 30][6, 16, 20[[8, 18, 21, 22, 29][2, 3, 5,9, 14, 24, 27[[1, 7, 10, 12, 13, 17, 19, 26, 28
13,17|[4, 8, 18[[3, 5, 6, 27|11, 15, 22, 23][16, 20, 21, 25, 30][1, 2, 9, 14, 24, 29][7, 10, 12, 19, 26, 28
15[[14, 17][11, 23][6, 12, 13, 27[12, 3, 5, 9, 24[[16, 18, 21, 22, 25, 29[[1, 4, 7, 8, 10, 19, 20, 26, 28, 30
14|[13,17|[3, 6, 27|11, 15, 23][2, 5, 9, 24, 29][1, 4, 16, 20, 21, 25, 30[|7, 8, 10, 12, 18, 19, 22, 26, 28
13,17|[11, 23[[3, 5|6, 14, 27][2, 9, 12, 15, 24][7, 8, 10, 19, 26, 28[[1, 4, 16, 18, 20, 21, 22, 25, 29, 30
14[[11, 15, 23([4, 21, 25]|1, 2,9, 24, 29][3, 5, 6, 13, 17]| 12, 16, 20, 27, 30[|7, 8, 10, 18, 19, 22, 26, 28

Table 2: Clustering of the stocks according to the 7 runs performed, in the
same order from top to bottom; the correspondence between numbers and
stocks can be found in Table 3.

References

[1] B. Bodvarsson and M. Mgrkebjerg. Analysis of dynamic PET data. Mas-
ter’s thesis, Informatics and Mathematical Modelling, Technical Univer-
sity of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800
Kgs. Lyngby, 2006. Supervised by Lars Kai Hansen, IMM.

[2] Z. Chen, A. Cichocki, and T. Rutkowski. Constrained non-negative ma-
trix factorization method for EEG analysis in early detection of alzheimer
disease. In IEEFE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), volume 5, pages 893-896, May 2006.

[3] A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and Z. He.
Extended SMART algorithms for non-negative matrix factorization . In
ICAISC, pages 548-562, 2006.

[4] A. Cichocki and R. Zdunek. NMFLAB User’s Guide MATLAB Toolbox
for Non-Negative Matriz Factorization. Laboratory for Advanced Brain
Signal Processing, Riken, 2006.

[5] A. Cichocki, R. Zdunek, and S. Amari. New algorithms for non-negative
matrix factorization in applications to blind source separation. In IFEE

International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 5, pages 621-624, May 2006.

[6] T. Feng, S. Li, H. Shum, and H. Zhang. Local non-negative matrix fac-
torization as a visual representation. In ICDL °02: Proceedings of the
2nd International Conference on Development and Learning, page 178,

Washington, DC, USA, 2002. IEEE Computer Society.

[7] P. Hoyer. Non-negative matrix factorization with sparseness constraints.
J. Mach. Learn. Res., 5:1457-1469, 2004.

1870 Konstantinos Drakakis et al

[8] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401:788-791, 1999.

[9] D. Lee and H. Seung. Algorithms for non-negative matrix factorization.
In NIPS, pages 556-562, 2000.

[10] C. Lin. Projected gradient methods for non-negative matrix factorization.
Technical report, Department of Computer Science, National Taiwan Uni-
versity, 2005.

[11] W. Liu, N. Zheng, and X. Li. Nonnegative Matriz Factorization for EEG
Signal Classification, volume 3174 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004.

[12] R. Zdunek and A. Cichocki. Non-negative matrix factorization with quasi-
newton optimization. In ICAISC, pages 870-879, 2006.

Received: April 25, 2008

