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This study compares in vivo measurements of macular pigment (MP) obtained using customized het-
erochromatic flicker photometry (cHFP; Macular Metrics Densitometer™), dual-wavelength fundus
autofluorescence (Heidelberg Spectralis® HRA + OCT MultiColor) and single-wavelength fundus reflec-
tance (Zeiss Visucam® 200). MP was measured in one eye of 62 subjects on each device. Data from 49
subjects (79%) was suitable for analysis. Agreement between the Densitometer and Spectralis was
investigated at various eccentricities using a variety of quantitative and graphical methods, including:
Pearson correlation coefficient to measure degree of scatter (precision), accuracy coefficient, concordance
correlation coefficient (ccc), paired t-test, scatter and Bland—Altman plots. The relationship between max
MP from the Visucam and central MP from the Spectralis and Densitometer was investigated using
regression methods. Agreement was strong between the Densitometer and Spectralis at all central ec-
centricities (e.g. at 0.25° eccentricity: accuracy = 0.97, precision = 0.90, ccc = 0.87). Regression analysis
showed a very weak relationship between the Visucam and Densitometer (e.g. Visucam max on
Densitometer central MP: R> = 0.008, p = 0.843). Regression analysis also demonstrated a weak rela-
tionship between MP measured by the Spectralis and Visucam (e.g. Visucam max on Spectralis central
MP: R? = 0.047, p = 0.348). MP values obtained using the Heidelberg Spectralis are comparable to MP
values obtained using the Densitometer. In contrast, MP values obtained using the Zeiss Visucam are not
comparable with either the Densitometer or the Spectralis MP measuring devices. Taking cHFP as the
current standard to which other MP measuring devices should be compared, the Spectralis is suitable for
use in a clinical and research setting, whereas the Visucam is not.

© 2013 Elsevier Ltd. All rights reserved.
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light scatter (thereby reducing glare disability) (Hammond, et al.,
2013; Loughman et al., 2012; Stringham et al., 2011; Stringham

1. Introduction

Macular pigment (MP) is composed of the yellow carotenoid
pigments lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ). MP
is found at the macula, the specialized part of the retina that me-
diates fine central and color vision (Hirsch and Curcio, 1989). Its
unique anatomic location (Snodderly et al., 1984), short-
wavelength (blue) light filtering properties (Bone et al., 1992),
and antioxidant properties (Li et al., 2010; Sujak et al., 1999; Wrona
et al., 2004), make this pigment important for visual function.

Indeed, in the non-diseased retina (normal subjects), MP has
been shown to enhance visual function by reducing the effects of
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and Hammond, 2007, 2008; Yao et al., 2013) and chromatic aber-
ration (thereby optimizing contrast sensitivity) (Hammond et al,,
2013; Loughman et al., 2010a, 2012; Nolan et al., 2011; Renzi and
Hammond, 2010; Richer et al., 2011; Sasamoto et al.,, 2011; Yao
et al., 2013), via its light-filtering (optical) properties (Hammond
and Fletcher, 2012; Loughman et al., 2010b; Wooten and
Hammond, 2002). Moreover, MP is also postulated to protect
against age-related macular disease, particularly age-related mac-
ular degeneration (AMD) (Gale et al., 2003; Snodderly, 1995), the
developed world’s leading cause of age-related blindness (Bressler,
2004; Resnikoff et al., 2004). This putative protection is likely due
to the pigment’s optical and antioxidant properties (Sabour-Pickett
et al., 2011). Of interest, it has been shown that established risk
factors for AMD (i.e. age, family history of disease and cigarette
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smoking) (Beatty et al., 2001; Hammond et al., 1996; Kirby et al.,
2010; Nolan et al., 2007a) are associated with low levels of MP.
However, carotenoid supplementation studies have demonstrated
that serum carotenoid concentrations and MP optical density
(MPOD) can be increased through dietary modification (Hammond
et al., 1997) or supplementation (Bone et al, 2003; Bone and
Landrum, 2010; Garcia-Layana et al., 2013; Huang et al., 2013;
Koh et al.,, 2004; Landrum et al., 2012; Murray et al., 2013; Nolan
et al,, 2011; Richer et al., 2007; Stringham and Hammond, 2008;
Tanito et al., 2012; Weigert et al., 2011; Yao et al., 2013), with good
results achieved when the formulation used contains all three of
the macular carotenoids (L, Z and MZ) (Bone et al., 2007; Connolly
et al, 2011; Loughman et al., 2012; Meagher et al., 2012; Nolan
et al,, 2012).

The typical profile of MP has a central peak, which decreases in
concentration with retinal eccentricity (similar to that of a peaked
mountain, e.g. Mount Everest). In addition, atypical spatial profiles
of MP, containing “ringlike” structures, secondary peaks or plateaus
also exist (Berendschot and van Norren, 2006; Delori et al., 2006;
Kirby et al., 2009). Little investigation has been done involving
MP spatial profiles; however, it has recently been reported that
about 12% of the population has an atypical MP profile, character-
ized by a central plateau or central dip in the pigment profile (e.g.
Mount Kilimanjaro). Of note, such atypical central dips have been
found to be more common in subjects at increased risk of AMD
(Kirby et al., 2010); but it has been recently shown that a central dip
in MP’s spatial profile can be normalized following supplementa-
tion with a formulation containing the centrally dominant macular
carotenoid, MZ (Nolan et al., 2012).

Given the importance of MP for vision, and its potential role in
preventing and/or reducing risk of AMD development and/or its
progression, there is a clear need to measure this pigment with
accuracy in vivo. Moreover, it is important to be able to measure
patient response to supplement formulations containing the mac-
ular carotenoids at the target tissue (i.e. the macula).

There are a variety of methods currently in use that claim to
measure MPOD. However, researchers have been debating the ad-
vantages and limitations of these techniques for over 20 years
(Bernstein and Gellermann, 2003; Hammond et al., 2005;
Hammond and Wooten, 2006). These methods are divided into
psychophysical (sometimes referred to as subjective) and physical
(sometimes referred to as objective). The psychophysical techniques
available include color matching (Davies and Morland, 2002), mo-
tion photometry (Moreland, 2004), heterochromatic flicker
photometry (Bone and Landrum, 2004), and customized hetero-
chromatic flicker photometry (cHFP) (Stringham et al., 2008). Of
these psychophysical techniques, HFP and cHFP are the most widely
used. With HFP, the subject is required to make isoluminance
matches between two flickering lights: a green light (not absorbed
by MP) and a blue light (maximally absorbed by MP). The log ratio of
the amount of blue light absorbed centrally, where MP peaks, to that
absorbed at a peripheral retinal locus (the reference point), where
MP is assumed to be zero, gives a measure of the subject’'s MPOD.
Customized HFP optimizes the HFP technique by customizing the
procedure for each subject (see below). Importantly, HFP has been
validated by measuring its absorption spectrum in vivo and
comparing it to the in vitro spectral absorption curve of the macular
carotenoids (Bone et al., 1992; Stringham et al., 2008; Wooten and
Hammond, 2005), and it is therefore our view that cHFP, an opti-
mized form of HFP, represents a reference standard to which other
MP measuring techniques should be compared. Validation of MP
measurement techniques has been the subject of lively debate
(Gellermann and Bernstein, 2006; Hammond et al., 2005).

Physical techniques currently used for measuring MP include
resonance Raman spectroscopy (Bernstein et al., 1998, 2002), fundus

reflectance (Berendschot and van Norren, 2004), and fundus auto-
fluorescence (Delori, 2004). However, none of these physical tech-
niques have yet been properly validated (Hammond et al., 2005).

Fundus autofluorescence (AF) uses a confocal scanning laser
ophthalmoscope (cSLO) (Delori et al., 2011) or fundus camera
(Spaide, 2003). AF exploits the fluorescent properties of lipofuscin
present in the retinal pigment epithelium (RPE) (Sparrow, 2007).
RPE lipofuscin is a fluorophore that accumulates over time from the
phagocytosis of photoreceptor outer segments. Lipofuscin is excited
in vivo between 400 and 590 nm (peak excitation at 490—510 nm)
and emits AF at 520—800 nm (peak emission at 590—630 nm)
(Delori, 2004). MP, which is located anterior to the RPE, absorbs
light of 400—550 nm (peak absorption at 460 nm). Therefore, AF at
the macula is attenuated by MP if the excitation wavelength falls
within that of the absorption spectrum of MP.

Fundus reflectance, which quantitatively measures the light
reflected from the retina and choroid using a reflectometer
(Kilbride et al., 1989), a fundus camera (Chen et al., 2001), or a cSLO
(Brindley and Willmer, 1952), has also been widely used for the
measurement of MP. The reflectance method calculates MP in one
of two ways; either by comparing the light reflected at the macula,
some of which will be absorbed by the MP, to the light reflected at
the peripheral areas, where there is minimal MP present to atten-
uate the reflectance; or by a spectral analysis of the reflected light
(Berendschot and van Norren, 2004).

This current study was designed to compare in vivo mea-
surements of MP obtained using cHFP (Macular Metrics
Densitometer”), dual-wavelength fundus autofluorescence (Hei-
delberg Spectralis® HRA + OCT MuliColor) and single-wavelength
fundus reflectance (Zeiss Visucam® 200), and also reports on the
intra-session repeatability of these devices.

2. Methods
2.1. Subjects

62 subjects were recruited into the study, of which 49 (79%:
mean age = 49 + 13 years) were included in the final analysis. Eight
subjects (13%) were excluded due to presence of ocular disease (e.g.
AMD, diabetic retinopathy) and five subjects (8%) were excluded
because they were not able to perform cHFP reliably (i.e. sd > 10%).
The eye with best corrected visual acuity (BCVA) was selected as the
study eye (27 OD and 22 OS).

An ancillary study was conducted to assess concordance between
MP spatial profile as recorded on the Densitometer and Spectralis,
and this additional study included the 49 subjects from the primary
analysis, and a further 15 subjects recruited specifically for this
purpose (n = 64; mean age = 48 + 13 years; 38 male, 26 female).

This study was approved by the Research Ethics Committee of
the Waterford Institute of Technology and was conducted in
accordance with the tenets of the Declaration of Helsinki.

2.2. Order of testing

First, BCVA was measured using a computerized Snellen Chart
(Test Chart 2000 Xpert; Thomson Software Solutions). Following
this, the first measure of MPOD was performed using cHFP. Sub-
jects were then dilated with one drop of tropicamide 1%
(Bausch + Lomb) before MPOD measurements were performed on
the Spectralis and Visucam devices.

2.3. Customized heterochromatic flicker photometry

The Macular Metrics Densitometer” (Macular Metrics, Reho-
both, MA, USA) was used in this experiment to measure MP by
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cHFP. The device and method are described in detail elsewhere
(Loane et al., 2007; Wooten et al., 1999). The Densitometer cHFP
method utilizes a light stimulus of alternating blue (460 nm) and
green (550 nm) wavelengths. Subjects are required to make iso-
luminance matches between the two wavelengths by adjusting the
radiance of the blue light, until the perceived flicker is minimized or
a point of “null” flicker is reached. The customization feature of
cHFP is achieved by optimization of the flicker frequency and using
a yoked method to determine at the isoluminance point.

Optimization of flicker is important because it calculates the
flicker frequency at which the subject can perform the measure-
ment best (i.e. the flicker rate at which the subject can clearly
identify a narrow null zone), and results in least variation. This was
achieved as follows: the flicker frequency was set for each target
using age-guided predictions (based on experience) to estimate the
optimal flicker frequencies for that subject (e.g. for a 30 year old
subject the flicker frequency was set at 15 HZ for 0.25° eccentricity).
If the variance was too great, the frequency was reduced by 2 HZ
stepwise until the subject was at his/her optimal flicker frequency.
If the subject could not identify a null zone, the flicker frequency
was increased by 1HZ stepwise until the subject was at his/her
optimal flicker frequency and could identify the narrow null zone.

The yoked function of the Densitometer is important because it
reduces brightness (luminance) change of the target that may
otherwise be mistaken as flicker change (we believe this to be an
issue with other HFP devices that do not employ the yoked func-
tion). With this method, the luminance of the blue and green light
emitting diodes (LEDs) used in the device are adjusted in an
inverse-yoked manner so that when the luminance of one wave-
length increases, the luminance of the other wavelength decreases.
The result is that the overall luminance of the target stays relatively
stable.

In this experiment, MP was measured at four different retinal
eccentricities: 0.25°, 0.5°, 1°, and 1.75°, with a reference point at 7°.
The targets and fixation points used for each retinal eccentricity
were as follows: the 0.25° and 0.5° eccentricities were measured
using a 0.5° and 1° diameter disc, respectively, with a 5’ black fix-
ation point at the center; the 1° and 1.75° eccentricities were
measured using a 20’ wide annuli with mean radii corresponding to
those eccentricities, with a central 5’ black fixation point. The 7°
reference measurement was a 2° diameter disc located 7° periph-
erally with reference to a 5 red fixation point. Subjects were
required to perform at least six null flicker matches per target.
Radiance values of acceptable null flicker matches fell within a
standard deviation of 0.1 (i.e. 10% variance). MPOD was calculated
using a log ratio of the foveal to parafoveal luminance values.

2.4. Fundus autofluorescence

The Heidelberg Spectralis® HRA + OCT Multicolor (Heidelberg
Engineering GmbH, Heidelberg, Germany) was used in this exper-
iment to measure MP. The Spectralis utilizes cSLO imaging with
diode lasers and uses dual-wavelength AF for measuring MP. Dual-
wavelength AF in this devise uses two excitation wavelengths, one
that is well-absorbed by MP (488 nm, blue) and one that is not well
absorbed by MP (518 nm, green). The excitation spectrums of the
two different AF images are then compared, and, along with a
parafoveal reference point, are used to calculate an MP density
profile.

During the measurement, the subject’s head was aligned using a
head-chin strap and he/she was instructed to fixate on an internal
fixation target. Initial camera alignment, illumination and focus
were done in infrared (IR) mode. Once the image is evenly illumi-
nated, the camera mode is switched to simultaneous blue AF and
green AF imaging (BAF + GAF) mode for MP measurement

acquisition. After additional adjustments to illumination and focus
to ensure optimal image quality, a 30 s video is recorded. This
additional adjustment time (10 s or more) in BAF + GAF mode also
allows time for the intense light used during image capture to
bleach the photoreceptors, ensuring minimal absorption by these
structures (Delori et al., 2011). A second video was taken within the
same session to test repeatability.

The images in the video are aligned and averaged using Hei-
delberg Eye Explorer software (HEYEX, version 1.7.1.0), and an MP
density map is created. For analysis, the plateau (equivalent to the
reference point) was set to 7° to correspond to the reference point
used in cHFP. The average MPOD at radii corresponding to the ec-
centricities measured with cHFP were recorded (0.23, 0.47, 0.98,
1.72° eccentricity).

2.5. Fundus reflectance

The Zeiss Visucam® 200 (Carl Zeiss Meditec AG, Jena, Germany)
was used to measure MP by fundus reflectance. The Visucam is a
fundus camera which uses narrow-band wavelength (480—500 nm)
reflectance for measuring MP. The acquisition module uses a fixed
analysis area of 3.5° eccentricity and a reference area located at 4—
7.5° eccentricity. Determination of MPOD is done by comparing the
reflectance at the macula with the reflectance at the parafoveal
reference area. MPOD is automatically calculated by software to
give the mean and maximum amount of MP over the 3.5°.

Subject head alignment was maintained with a head-chin strap,
and an internal fixation target was used for image alignment. An
MP image was acquired on MPOD capture mode at a field angle of
30°. A second MP image was taken to test repeatability.

2.6. MP spatial profile classification

For the purpose of MP spatial profile comparison between the
Densitometer and Spectralis, subjects were classified as having
either typical or atypical MP spatial profiles. Spatial profile type was
determined by examination of the MP spatial profile generated by
each device. Subjects with MP spatial profiles containing a sec-
ondary peak or plateau were classed as atypical, while those with a
Gaussian distribution were classed as having a typical spatial
profile.

2.7. Statistics

Statistical analyses were conducted using SPSS® 19.0 (SPSS, Inc.,
Chicago, IL, USA) and the statistical programming language R (R
Foundation for Statistic Computing) (R Development Core Team,
2009). We report three indices of agreement for comparing MP
measurements from two devices: 1. precision, the Pearson corre-
lation coefficient, interpreted as measuring the degree of scatter
when MP measurements from the two devices are plotted against
each other, with values close to 1 indicating closeness to the ordi-
nary least squares regression line (and hence small scatter); 2. ac-
curacy, constructed from the means and standard deviations of the
MP measurements from each device, with values close to 1 indi-
cating that the two means are close to each other and that the two
standard deviations are close to each other; and 3. concordance
correlation coefficient (CCC), obtained as the product of the other
two coefficients. The CCC, in effect, measures closeness of the
points in the scatterplot to the line y = x, and is probably the best
single measure of agreement (Lin et al., 2012). Lower confidence
limits for concordance, precision, and accuracy coefficients were
obtained from R code supplied with Lin et al. (2012) and R
Development Core Team (2009). We also tested for bias (non-
zero mean difference of measurements) using the paired t-test.
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Table 1
Agreement indices for MPOD measurement between the Densitometer and the
Spectralis at each eccentricity.

Eccentricity cce? Precision Accuracy

0.25° 0.872 (0.81) 0.895 (0.83) 0.974 (0.94)
0.50° 0.846 (0.78) 0.882 (0.82) 0.959 (0.91)
1.00° 0.714 (0.59) 0.77 (0.65) 0.928 (0.84)
1.75° 0.461 (0.30) 0.588 (0.41) 0.783 (0.65)

For each coefficient, the 95% lower confidence limit is shown in brackets.
@ CCC = Concordance correlation coefficient.

Graphical methods included ordinary scatterplots with the line
y = x superimposed, and Bland—Altman plots of difference in
measurements versus mean measurements.

Power calculations were done using software package PASS
2008 (NCSS, LLC. Kaysville, Utah, USA). We present some illustrative
power calculations for a sample of size 49. These calculations are for
the CCC, and are based on the (somewhat arbitrary) assumption
that the minimum acceptable CCC for comparing two MP
measuring devices must exceed 0.80. If the actual CCC exceeds 0.80,
we want the probability (power) to be high that we will end up
rejecting the null hypothesis that CCC < 0.80. At the standard 5%
level of significance: (a) if the actual CCC is 0.95 for the two MP
measuring devices, then the power is 0.9996 that a sample of 49
will reject the null hypothesis that CCC < 0.80; (b) if the actual CCC
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is 0.90 then the power is 0.83, still acceptable (c) if the actual CCC is
0.85 then the power drops to 0.29. In short, a sample of this size has
ample power to detect CCC’s which are well above the threshold of
0.80, but does not have sufficient power for detecting CCC’s which
are only marginally above this threshold.

Agreement between the Densitometer and Spectralis was
investigated by comparing MPOD at each eccentricity measured on
the Densitometer to the MPOD measured at corresponding eccen-
tricities on the Spectralis (circa 0.25, 0.50, 1.00, 1.75° eccentricity).
The relationship between the Visucam and each of the other de-
vices (Spectralis and Densitometer) was investigated using
regression methods, because data at different eccentricities is not
provided from the Visucam, which just reports the maximum and
mean value.

The same statistical methods (precision, accuracy, and CCC)
were used to assess repeatability of measurements obtained from
each of the Spectralis and Visucam devices.

Agreement between MP spatial profile classification generated
by the Densitometer and Spectralis was investigated by cross-
tabulation. Gender and smoking status (i.e. current, past, or never
smoker) was assessed for a possible relationship with MP spatial
profile classification using crosstabulations. The relationship be-
tween MP spatial profile classification and age, MPOD at different
eccentricities (0.23°, 0.47°, and 0.74°), and mean MPOD was
investigated using independent-samples t-test.
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Fig. 1. Scatterplots of the MP values obtained with the Densitometer and the Spectralis at circa 0.25°, 0.50°, 1.00°, and 1.75° eccentricity, with the line y = x superimposed. Any

negative values obtained were plotted as zeroes.
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Fig. 2. Bland—Altman plot of the difference in MPOD values at 0.25° eccentricity ob-
tained with the Densitometer and the Spectralis versus the mean MP measured with
both devices.

3. Results
3.1. Densitometer versus Spectralis

Agreement was strong between the Densitometer and Spectralis
(Table 1), especially at central eccentricities (0.25° and 0.50°) and
for subjects with midrange MP values (e.g. 0.20 to 0.60 optical
density units at 0.25° eccentricity). Precision (degree of scatter)
ranged from 0.895 at 0.25° to 0.588 at 1.75°. Accuracy ranged from
0.974 at 0.25° to 0.783 at 1.75°. CCC ranged from 0.872 at 0.25° to
0.461 at 1.75°.

Paired t-test analysis demonstrated that there was no signif-
icant difference between mean MP measured on both devices at
0.25° and 0.5° (mean difference = 0.0078, p = 0.575, and mean
difference = 0.0055, p = 0.690, respectively); however, there was
a statistically significant difference between mean MP measured
at 1° and 1.75° (mean difference = 0.0449, p < 0.001, and mean
difference = 0.0384, p < 0.001, respectively), representative of a
slight bias at these eccentricities, with the Spectralis giving
marginally higher readings than the Densitometer. These
findings suggest that agreement between MP measurements
taken on these two instruments diminishes with increasing
eccentricities.

Scatterplots of MPOD readings obtained from the Spectralis
and Densitometer at four eccentricities all show good agreement
(Fig. 1). It is notable that Densitometer readings tend to be higher
than Spectralis readings for subjects with high MP at central ec-
centricities (e.g. > 0.8 optical density units at 0.25°). A Bland—
Altman plot of the difference in MPOD values obtained with the
Densitometer and the Spectralis versus the mean MP measured
with both devices is presented in Fig. 2; this plot conveys much
the same information as the scatterplots of Fig. 1, but the limits of
agreement (upper and lower horizontal lines) convey the addi-
tional information that, for 95% of subjects, the maximum dif-
ference in MP at 0.25°, from the two devices, will not exceed
about 0.2.

We found no effect of age (range from 21 to 70 years) on the
difference in MP measurements between the Densitometer and the
Spectralis (e.g. simple linear regression of the difference in MP
measurements on the Densitometer and the Spectralis at 0.25°
eccentricity to age gave an R? value of 0.002, p = 0.735).

1.00 7

.80

Visucam Max MP (Optical Density Units)

T T T
.00 .20 40 60 80 1.00

Densitometer MP (Optical Density Units) at 0.25

Fig. 3. Scatterplot of Densitometer MP values at 0.25° eccentricity and max MP values
from the Visucam. The lines displayed are the ordinary least squares
(y = 0.299 + 0.023x) and ordinary least products regression (y = 0.082 + 0.445x) lines.

3.1.1. MP spatial profile comparison

In terms of MP spatial profile classification, there was agreement
between the two devices in 51 of 64 subjects (80%). Twelve subjects
(19%) were classed as atypical on the Spectralis, but typical on the
Densitometer. One subject was classed as atypical on the Densi-
tometer, but typical on the Spectralis.

Of the 64 MP spatial profiles measured on the Spectralis, 25
subjects (39%) were classed as atypical, and no significant corre-
lation was found between MP spatial profile classification and age
(p = 0.995), gender (p = 0.138), or smoking status (p = 0.104).

However, a typical MP spatial profile, as measured on the
Spectralis, was positively and significantly related to MPOD at 0.23°
eccentricity (p = 0.009), but not related to MPOD at other eccen-
tricities (p = 0.053 and 0.452 for 0.47° and 0.74°, respectively), or to
mean MP (p = 0.252).

3.2. Densitometer versus Visucam

No relationship was found between the Densitometer and
Visucam MP measurements. In the absence of data at different
eccentricities from the Visucam, which ruled out measuring for
agreement at specific eccentricities, we switched to a regression
approach in order to compare Visucam and Densitometer mea-
surements of MP. We investigated the relationship of max MP from
the Visucam to MP at the two central eccentricities (jointly) from
the Densitometer (0.25° and 0.50°). We also investigated the rela-
tionship of mean MP from the Visucam to MP at all eccentricities
(jointly) from the Densitometer. Very weak relationships were
found in both cases. Multiple regression of max MP from the
Visucam on Densitometer MP at eccentricities 0.25 and 0.50° had
an associated R? value of just 0.008 and was not statistically sig-
nificant (p = 0.843). Multiple regression of mean MP from the
Visucam on Densitometer MP at all eccentricities had an associated
R? value of 0.095 and was not statistically significant (p = 0.345).

Regression results were also poor when ordinary least products
regression was used in place of ordinary least squares (Ludbrook,
2010). To illustrate, Fig. 3 shows both the ordinary least squares
and ordinary least products regression lines for the regression of
max MP from the Visucam on Densitometer MP at 0.25° eccen-
tricity. It is clear from this figure that neither regression line fits the
data. It is also notable that no subject yielded an MPOD value
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Spectralis MP (Optical Density Units) at 0.23

Fig. 4. Scatterplot of Spectralis MP values at 0.23° eccentricity and max MP values
from the Visucam. The lines displayed are the ordinary least squares
(y = 0.265 + 0.090x) and ordinary least products regression (y = 0.023 + 0.553x) lines.

greater than 0.5 optical density units on the Visucam, despite many
subjects exhibiting MPOD readings greater than this value, as
recorded on the Densitometer.

3.3. Visucam versus Spectralis

No relationship was found between the Visucam and the
Spectralis MP measurements. Multiple regression of max MP from
the Visucam on Spectralis MP at eccentricities 0.23° and 0.27° had
an associated R? value of just 0.047 and was not statistically sig-
nificant (p = 0.348). Multiple regression of mean MP from the
Visucam on Spectralis MP at various eccentricities ranging from
0.23° to 1.76° had an associated R? value of 0.005 and was not
statistically significant (p = 0.634) (Fig. 4).

3.4. Repeatability

Densitometer repeatability has previously been investigated by
Kirby et al. (2009). Their study found very good repeatability with
respect to the cHFP technique, reporting intraclass correlations
(ICC) ranging from 0.93 to 0.96 at 0.25, 0.5, and 1° eccentricity.

Repeatability in the present study, results given in Table 2, was
excellent for the Spectralis and very good for the Visucam.

4. Discussion

Interest in the macular carotenoids, L, Z and MZ, and their
composite at the macula (MP), amongst scientists, clinicians and

Table 2

Repeatability of the Spectralis and Visucam MPOD measurements.
Eccentricity CcC Precision Accuracy
Spectralis
0.23° 0.988 0.992 0.996
0.47° 0.996 0.998 0.998
0.98° 0.995 0.997 0.998
1.72° 0.988 0.992 0.996
Visucam
Mean 0.873 0.873 0.991
Max 0.832 0.84 0.999

the general public, continues to grow. However, valid and reliable
measurement of tissue concentration of these nutrients at the
macula is needed in order to study (in both research and clinic
settings) their potential for vision and their contribution (if any) to
the natural history of macular disease. Of note, there are many
commercially available MP measuring devices which claim to
measure MP accurately and reproducibly, but not all of these de-
vices have been validated. One way to test the validity of new
technologies is to compare values obtained from such devices with
those of a validated instrument (such as the Densitometer). This
study was conducted to assess concordance between three devices,
namely the Macular Metrics Densitometer™ (taken as the standard
for MP measurement in this experiment), the Heidelberg
Spectralis® HRA + OCT MultiColor, and the Zeiss Visucam® 200. Of
note, this is the first study to measure MP using the new acquisition
module of the Heidelberg Spectralis® HRA + OCT MultiColor.

The literature on statistical methodology for measuring agree-
ment is confusing, and particularly challenging to the unfamiliar
investigator. Practitioners may use correlation, regression (both
ordinary least squares and ordinary least products) and intraclass
correlation (ICC) to measure agreement between two quantitative
variables, as well as measures arising from graphical methods, such
as the limits of agreement from the Bland—Altman approach (Bland
and Altman, 1986). For the most part, in this study, we followed the
approach of Lin et al. (2012), and have calculated their suggested
measures for our data. Thus, we report three indices of agreement:
precision, accuracy, and CCC (defined above). The CCC, in effect,
measures closeness to the line y = x, and is probably the best single
measure of agreement. It is identical to one version of the ICC,
which is why the ICC is not also reported in this study. However, all
correlation measurements (and hence our precision and CCC
measurements) are affected by the range of the data being
compared, and this should be borne in mind when interpreting our
findings. The lower agreement indices that we obtained at greater
eccentricities may reflect, in part, the smaller ranges of MP with
increasing eccentricity.

As mentioned above, in this experiment we use the Densitom-
eter as the standard for measurement of MP. We justify this deci-
sion given the extensive validation undergone by this MP
measuring flicker device. Of note, the Densitometer is currently
being used at over 40 research centers around the world, including
the National Institute of Health (NIH), and the data generated by
this instrument has been published in over 100 peer-reviewed
scientific papers. Notably, this MP-measuring device has been
validated fully and correctly (i.e. by comparing and matching the
data it generates with the in vitro spectral absorption curve of the
macular carotenoids; by assessing the relationship between MP
measured using this device and its constituent carotenoids in diet
and serum; by confirming test-retest repeatability) (Nolan et al.,
2007b; Stringham et al., 2008; Wooten et al., 1999).

In this experiment we found strong agreement (for most sub-
jects; e.g. Fig. 2 shows that measurements differed by more than 0.2
for only two individuals) between the Densitometer and the
Spectralis, and we found no relationship between the Visucam and
either of the other two devices. Of course, each of these devices
uses different measuring techniques, but all claim to measure MP.
However, it is important to point out that it is difficult to directly
compare our findings to previously published studies using these
methodologies, given the inter-study variations of technique and
given the differences with respect to the apparatuses and protocols
used by other investigators.

With respect to statistical methodology, comparisons between
the current and previous studies are also difficult, as previous re-
ports have tended to emphasize only one aspect of agreement,
namely precision as measured by the correlation coefficient; also,
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the reported p-values for such correlations were testing closeness
to zero, whereas closeness to one is the real issue. We present
below (with caution, given the differences between devices and
protocols used) some of the observations from previous reports.

In 2001, Delori et al. (2001) compared MP measured using HFP,
dual-wavelength (470 and 550 nm) AF spectrometry, and dual-
wavelength (470 and 550 nm) reflectance, and found the AF tech-
nique correlated well with HFP and the reflectance method used in
their study (r = 0.77 and 0.73, respectively). They also reported that
the HFP and reflectance techniques correlated well (r = 0.61). Of
interest, and consistent with our findings, no subject in their study
measured above 0.40 optical density units on the reflectance
method, while some subjects yielded MP values of 0.90 (and
greater) optical density units using the HFP and AF methods. It
appears, therefore, that the reflectance method used here and
elsewhere underestimates MP values.

In another study, Berendschot and van Norren (2005) compared
MPOD of subjects measured using HFP (device designed by Mel-
lerio et al.) (Mellerio et al., 2002), dual-wavelength AF (custom-
built SLO) (Ossewaarde-Van et al., 2002), dual-wavelength reflec-
tance (custom-built SLO), and broad spectral reflectance (Foveal
Reflection Analyzer [FRA] 1 [420—790 nm] and FRA 2 [400—
950 nm]) (Zagers et al., 2002). In brief, they reported that all
techniques used in their study correlated well (significantly) with
each other (r = 0.42 to 0.94, p < 0.05, for all). However, they
concluded that the correlation between HFP and all other methods
was lowest (r = 0.42—0.59). Of note, the HFP technique used in their
study was not customized and, used a reference point of only 5°
eccentric to the fovea (Berendschot and van Norren, 2005), which
has been shown to underestimate MPOD in older subjects and in
subjects with high MPOD (Loane et al., 2007).

In another MP measurement comparison study, Canovas et al.
(2010) compared MPOD measured in nine subjects using dual-
wavelength AF with the Heidelberg Retina Angiograph (HRA) to
MPOD measured with cHFP (Densitometer) and reported good
(statistically significant) correlations between readings yielded on
these two devices, with the strongest correlation at 1.75° (r = 0.73;
p < 0.001). This is not consistent with the current study, which
found that the correlation between the Densitometer and the
Spectralis was weaker for measurements performed away from the
center of the fovea (i.e. with increasing eccentricity from the foveal
center, the agreement between the devices lessened), whereas the
strongest correlation in the current study was found at the
epicenter (i.e. 0.25°).

Of note, none of the previous studies investigating concordance
between MP measuring techniques reported the strong concor-
dance that we observed between the Spectralis and the Densi-
tometer. Indeed, and although each of these technologies is
designed to measure MP, each device employs a different meth-
odological approach, and each method has its own inherent ad-
vantages, assumptions and limitations (Howells et al., 2011).
Additionally, MP spatial distributions generated by the Spectralis
and Densitometer correlated well between these two techniques
(i.e. in 80% of subjects). Discrepancy between these two devices in
MP spatial profile classification is mainly due to secondary peaks or
plateaus around 0.75° eccentricity, an eccentricity not measured by
the Densitometer. Therefore, the Densitometer may not detect such
atypical profiles.

The advantages of the cHFP method (using the Densitometer)
include its proven validity, reliability, and reproducibility
(Hammond et al., 2005; Kirby et al., 2009; Wooten and Hammond,
2005). The Densitometer obtains a parafoveal reference value
(unique to each subject) to calculate MPOD. This parafoveal mea-
sure is essential to the measurement of MP as it accounts for light
absorption and scatter within the eye (factors known to be

influenced by cataract and age) (Gaillard et al., 2000; van den Berg
et al,, 2010). On the other hand, the Densitometer assumes that
there is virtually no MP present at 7° of eccentricity (Snodderly
et al., 1984; Stabell and Stabell, 1980). Also, this method requires
the subject to be able to fixate on the targets presented, and follow
operator instructions, rendering this method unsuitable for per-
sons with learning difficulties, memory problems, or young chil-
dren. Also, when measuring the spatial profile of MP (as performed
in this experiment), this technique can take up to 30 min per eye,
and can be difficult for some subjects to complete. Indeed, five (8%)
of the 62 subjects recruited into this study could not complete the
MP measurement using cHFP.

Physical methods are typically faster, and involve little partici-
pation from the subject. However, these methods require pupil
dilation, expose subjects to bright lights, and are expensive. Also,
physical methods are potentially vulnerable to “noise” attributable
to a variety of assumptions relating to intraocular light scatter, light
absorption, excitation spectrums, emission spectrums, and reflec-
tance spectrums (Delori et al., 2001; Howells et al., 2011).

The dual-wavelength AF method utilized by the Heidelberg
Spectralis for MP acquisition requires little subject compliance, and
takes just several minutes to perform. This new Spectralis®
HRA + OCT MultiColor device acquires blue and green AF images
simultaneously. This results in exact pixel to pixel alignment and
equal illumination of both images. Earlier studies using cSLOs for AF
measurement of MP acquired blue and green AF images sequen-
tially, with risk of consequential eye movement artifacts
(Wustemeyer et al., 2002). The Spectralis® HRA + OCT MultiColor
also has the benefit of providing an MP profile that yields MPOD
across all eccentricities (i.e. a full spatial profile of MP is obtained).
With the AF method, assumptions include: 1. the responsivity of
the retina to light is the same across this tissue; 2. the fluorophores
are the same across the retina; 3. the emission spectrum of the
fluorophores is the same throughout the retina; 4. each wavelength
used is subject to the same amount of intraocular light scatter.
However, it has been claimed that the use of two-wavelengths,
confocal optics, and complex algorithms account and control for
these assumptions. Also, it should be noted that we found no effect
of age on the difference in MP measurements between the Densi-
tometer and the Spectralis, which suggests that age (and maybe
lens density, which is known to increase with age) does not influ-
ence MP measurement when using the Spectralis’ AF method.
However, further investigation in patients with cataracts is needed
to fully understand the effect of lens absorption and scatter when
using this device.

The Zeiss reflectance method is quick and requires minimal
subject involvement. The technique used applies mathematical
models which, the manufacturers claim, correct for the many as-
sumptions inherent in their method. These assumptions include: 1.
the reflection spectrum of the retina is homogenous across the
retina; 2. intraocular light scatter can be corrected using mathe-
matical models (however, these models are not well described and
contain many free and undefined parameters); 3. distribution of
RPE melanin and other light absorbers is the same throughout the
retina; 4. there is negligible MP at the parafoveal reference area. As
mentioned earlier, the reflectance technique can measure MP
either by comparing the light reflected at the macula to the light
reflected at a peripheral (reference) area, or by a spectral analysis of
the reflected light (Berendschot and van Norren, 2004). The former
method can also be performed using one or two wavelengths. The
benefit of having two wavelengths, as opposed to one, is that the
lens absorbance can be estimated and controlled for (Berendschot
and van Norren, 2004). The Zeiss Visucam® 200 (the reflectance
device used in this study), however, only uses one wavelength (a
narrow-band wavelength: 480—500 nm), and therefore cannot
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account for lens absorption. We see this as a serious weakness in
the Zeiss method.

In conclusion, MP values obtained using the Heidelberg Spec-
tralis are comparable to MP values obtained using the Densitom-
eter. In contrast, MP values obtained using the Zeiss Visucam are
not comparable with either the Densitometer or the Spectralis MP
measuring devices, and the Zeiss Visucam appears to underesti-
mate MP measurement. The Densitometer and Spectralis are suit-
able for measuring MP in both the clinical and research settings,
whereas the Visucam is not. Further study using Heidelberg Spec-
tralis is required to assess its suitability in patients with ocular
disease, including cataract and AMD.
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