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Abstract

The calculation of the magnetisation curve of an assembly of non-interacting "ne superparamagnetic particles, with
uniaxial anisotropy and easy axes "xed in a solid non-magnetic matrix is considered. The presence of anisotropy
complicates the calculation which otherwise would result in the Langevin function. The calculation for particles with
anisotropy and easy axes "xed at arbitrary angles to the external "eld, requires the calculation of the partition function,
which has previously been expressed exactly as a double integral or as a sum of single integrals. We have recently shown
how the partition function can be reduced to a single integral and here we show how this can be expressed as a double
in"nite series containing known functions. Special cases are considered, some existing analytic formulae are reobtained,
and some new analytic formulae are presented. For identical particles the deviation from the Langevin function is known
to be considerable. The formulae presented should facilitate the incorporation of the e!ects of anisotropy. ( 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we consider a superparamagnetic system, made up of "ne non-interacting single domain
magnetic particles possessing uniaxial anisotropy. We adopt the usual benchmark for superparamagnetism,
being that the relaxation time of every particle is less than 100 s. The system considered is made up of an
assembly of "ne particles with easy axes "xed relative to a solid non-magnetic matrix. This we refer to as
a solid superparamagnetic system. The particles are su$ciently dilute to ignore interactions. If the solid were
cooled in the presence of an external magnetic "eld we would expect a preferential alignment of the particles
easy axes in the direction of the "eld, resulting in a textured system. Cooling in the absence of an external "eld
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Fig. 1. The coordinate system used, with particle easy axis, "eld H and moment k.

would result in a random texture. We have recently [1] shown how the magnetisation of a solid super-
paramagnetic system, can be calculated from a single integral form of the partition function, which had been
expressed previously as a double integral [2] or as a sum of integrations [3]. Here we show how this single
integral in turn can be written as a double in"nite series of known functions. The series can be expanded until
tolerance limits are obtained. This should make the calculation of the magnetisation with anisotropy more
tractable, allowing a move away from the Langevin function of paramagnetism. As was originally stated by
Bean and Livingston [4] the presence of anisotropy causes a deviation from the behaviour predicted by the
Langevin function. For superparamagnetism the Langevin function is only valid for special cases. For
identical particles, these cases are a magnetic #uid, where the viscosity is low enough for the particles to
behave like a paramagnetic gas, a solid with zero anisotropy (physically unlikely) or a solid with anisotropy,
random texture, and low external "eld. For the last case, speci"cally where the "eld energy to thermal energy
ratio is less than one, the Langevin function is a valid approximation. When larger "elds are involved, the
anisotropy is an important factor in the description, and the predicted behaviour deviates signi"cantly from
that of the Langevin function. Speci"cally, saturation requires higher "elds to achieve than the Langevin
function would suggest. This is not surprising, as the anisotropy holds the magnetic vector of each particle
closely to its easy axis, inhibiting saturation. However, as illustrated by Mamiya and Nakatani, recently [5]
a size distribution can mask the e!ect of anisotropy on the magnetisation.

2. The magnetisation and the partition function with texture and size distributions

In general, the magnetisation can be calculated from the expected (equilibrium) value of cos u, written
Scos uT, where from Fig. 1, u is the angle between the moment of each particle k (k"<M

4
) and the "eld H.

The magnetisation can be written

M(b, a, t)"M
4
Scos uT"M

4

RZ/Rb
Z

, (1)

where b"HM
4
</k¹, with < the particle volume, H the applied "eld, M

4
the saturation magnetisation,

a"K</k¹ with K being the anisotropy constant and k¹ the thermal energy. Z is the partition function
given in Section 3 and t is the angle between the easy axis of the particle and the "eld as shown in Fig. 1. The
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formula can be taken to apply to an ensemble of identical particles each of which has its easy axis "xed at the
same angle t to the "eld. This would be the case if all the particles' easy axes were aligned, corresponding to
a delta-like distribution of easy axes. In general, any distribution of easy axes might exist. A solid cooled in
zero "eld should have a uniform distribution leading to a random texture or random anisotropy [5]. A solid
which was "xed in the presence of a "eld would have a preferential alignment leading to a non-random
texture. The delta-like case of all easy axes aligned is an extreme example of texture, resulting from
anisotropy and high cooling "eld. In general, texture can be incorporated into the analysis by integrating
over the distributions. For a system with texture given by a distribution of angles D(t) this integration is

M(b, a)"
:p
0
M(b, a, t)D(t) sin t dt

:p
0
D(t) sin t dt

. (2)

Distributions for non-random textures can be obtained following Ram\kher [6]. For a random texture
resulting from a uniform distribution we have [3]

M(b, a)"P
p@2

0

M(b, a, t) sin t dt, (3)

where the symmetry allows the halving of the interval. This applies to an ensemble of identical particles. For
a range of particle sizes a distribution such as that of Chantrell et al. [2] can be used. Eq. (1) requires the
calculation of the two integrals Z and RZ/Rb and it is the aim of this paper to present formulae which will
facilitate these calculations.

3. Reduction of the partition function to single integral form

The partition function Z as a double integral is given by

Z"

1

4pP
2p

0
P

p

0

exp(!a sin2 0#b cos u) sin 0 d0 dm, (4)

using the coordinate system of Chantrell et al. [2] given in Fig. 1. The angle u is determined by the relation

cos u"cos 0 cos t#sin 0 sin t cos m. (5)

Therefore, Z is given by

Z"

1

4pP
2p

0
P

p

0

exp(!a sin2 0#b cos 0 cos t#b sin 0 sin t cos m) sin 0 d0 dm. (6)

which we have shown in Ref. [1] can be reduced to the single integral form

Z"P
p@2

0

exp(!a sin2 0) cosh(b cos 0 cos t)I
0
(b sin 0 sin t) sin 0 d0. (7)

This reduction is achieved by considering the symmetry of the functions to be integrated and using an
integral de"nition of the modi"ed Bessel function of zero order I

0
(z), that is Eq. (9.6.16) of Abramowitz and

Stegun [7]. Furthermore, noting the di!erential properties of I
0
(z), given by Eq. (9.6.27) of Ref. [7]

d

dz
I
0
(z)"I

-
(z),
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we can calculate RZ/Rb from

RZ
Rb"P

p@2

0

exp(!a sin2 0)[cosh(b cos 0 cos t)I
1
(b sin 0 sin t) sin 0 sin t

#sinh(b cos 0 cos t)I
0
(b sin 0 sin t) cos 0 cos t] sin 0 d0. (8)

4. Expansion of the functions in the integrand

The integrand of Eq. (7) involves the exponential, modi"ed Bessel function of zero order and the hyperbolic
cosine functions. In this section we expand the "rst two of these as in"nite sums to "nd that the remaining
integral involving the hyperbolic cosine reduces to a known function. The series expansion of the exponential
is Eq. (4.2.1) of Ref. [7]

exp(!a sin2 0)"1#
=
+
n/1

(!a)n

n!
sin2n 0,

where for non-zero argument we can write

exp(!a sin2 0)"
=
+
n/0

(!a)n

n!
sin2n 0, (9)

and the modi"ed Bessel function as given by Eq. (9.6.10) of Ref. [7] is (in the notation of that text)

I
v
(z)"(z/2)v

=
+
k/0

(z2/4)k

k!C(v#k#1)
,

which for v"0 gives

I
0
(z)"

=
+
k/0

(z2/4)k

k!C(k#1)
"

=
+
k/0

(z/2)2k

(k!)2
, (10)

where the integer value of the Gamma function

C(k#1)"k!

given in Eq. (6.1.6) of Ref. [7] is used. In this case, taking

z"b sin 0 sin t,

we arrive at

I
0
(b sin 0 sin t)"

=
+
k/0

(1
2
b sin t)2k sin2k 0

(k!)2
. (11)

We note that the zero argument should be avoided in Eq. (11) for k"0 . Use of the sums given in Eqs. (9) and
(11) leads to

Z(b, a, t)"
=
+
n/0

(!a)n

n!

=
+
k/0

(1
2
b sin t)2k

(k!)2 P
p@2

0

sin2(n`k)0 cosh(b cos 0 cos t) sin 0 d0. (12)

The remaining integral can be dealt with by noting Eq. (9.6.18) of Ref. [7] which is

I
v
(z)"

(z/2)v

JpC(v#1/2)P
p

0

eBz #04 h sin2v h dh (Rv'!1/2),

P.J. Cregg, L. Bessais / Journal of Magnetism and Magnetic Materials 202 (1999) 554}564 557



here I
v
(z) is a modi"ed Bessel function. By adding both $ cases, and dividing by 2, in place of the

exponential, we obtain the hyperbolic cosine. In the notation of Ref. [7], we rearrange as

P
p

0

cosh(z cos 0) sin2v h dh"
I
v
(z)JpC(v#1/2)

(z/2)v
. (13)

The limits of this can be halved based on the symmetry of the integrands around p/2. Comparing this with the
remaining integral we see that the substitution of

z"b cos t,

and

v"n#k#1/2,

gives

P
p@2

0

cosh(b cos 0 cos t)sin2(n`k`1@2)0 d0"
I
n`k`1@2

(b cos t)Jp(n#k)!

2(1
2
b cos t ) n`k`1@2

, (14)

where the Gamma function is replaced by the factorial as in Eq. (10), and where the functions I
n`k`1@2

(z) are
the modi"ed spherical Bessel functions of the "rst kind. Replacing the remaining integral in the partition
function gives

Z(b, a, t)"
=
+
n/0

(!a)n

n!

=
+
k/0

(n#k)!

(k!)2
(1
2
b sin t)2k

(1
2
b cos t)n`kS

p

2b cos t
I
n`k`1@2

(b cos t). (15)

It is helpful to introduce the notation

f
n
(z)"S

p
2z

I
n`1@2

(z), (16)

whereby

Z(b, a, t)"
=
+
n/0

(!a)n

n!

=
+
k/0

(n#k)!

(k!)2 A
b
2B

k~n sin2k t
cosn`k t

f
n`k

(b cos t). (17)

The di!erential properties of f
n
(z), given by Eq. (10.2.20) of Ref. [7], are

d

dz
f
n
(z)"f

n`1
(z)#

n

z
f
n
(z), (18)

which lead to

RZ(b, a, t)

Rb "

=
+
n/0

(!a)n

n!

=
+
k/0

(n#k)!

(k!)2 A
b
2B

k~n sin2k t
cosn`k t

[cos tf
n`k`1

(b cos t)#
2k

b
f
n`k

(b cos t)]. (19)

Considering the terms for n"0 and k"0 we can write

Z(b, a, t)"f
0
(b)#

=
+
n/1
A

!2a
b cos tB

n
f
n
(b cos t)

#

=
+
n/1

(!a)n

n!

=
+
k/1

(n#k)!

(k!)2 A
b
2B

k~n sin2k t
cosn`k t

f
n`k

(b cos t), (20)
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where the leading term is seen to have no t dependence as is shown in Appendix A and also

RZ(b, a, t)

Rb "f
1
(b)#

=
+
n/1
A

!2a
b cos tB

n
cos t f

n`1
(b cos t)

#

=
+
n/1

(!a)n

n!

=
+
k/1

(n#k)!

(k!)2 A
b
2B

k~n sin2k t
cosn`k tCcos t f

n`k`1
(b cos t)#

2k

b
f
n`k

(b cos t)D. (21)

The functions f
n
(z) can be calculated directly from hyperbolic functions and using the recurrence relations

(10.2.18) of Ref. [7],

f
n~1

(z)!f
n`1

(z)"
2n#1

z
f
n
(z). (22)

The "rst three are given in Appendix A.

5. Discussion of evaluation techniques

We now have a in"nite series for the partition function Z. This involves the modi"ed spherical Bessel
functions of the "rst kind and is given in Eq. (20). These functions are available in most mathematical
packages including Maple and Mathematica. This solution requires no numerical integration. The di!erential
properties allow us to write down another series for RZ/Rb, Eq. (21). In order to avoid the repetition of
evaluations which might take place when evaluating the Bessel functions in packages the recurrence relations
in Appendix A can be used. These require just a single evaluation of the hyperbolic sine and cosine functions
and the generation of coe$cients g

n
(b cos t). Alternatively, f

0
and f

1
can be calculated and the recurrence

relations of Eq. (22) can be used to generate the appropriate coe$cients. Also numerical integration of the
single integral form of Z, Eq. (7) and of RZ/Rb Eq. (8) can be reconsidered when it appears that convergence
requires a large numbers of terms. Overall, this should o!er an improvement on previous methods such as
that outlined in Ref. [3], which required sums of integrations.

6. Special cases

We can obtain some analytic approximations from the exact forms considered. We consider the limiting
case of no anisotropy, which leads to the Langevin function. For all easy axes aligned, we expand for small
anisotropy, where the Langevin function is the leading term. Also, for all easy axes aligned and very large
anisotropy we reobtain the asymptotic limit of hyperbolic tangent.

6.1. The case of no anisotropy

For the case of zero anisotropy we have only the leading terms in Eqs. (20) and (21) so that

Z(b)"f
0
(b)"

sinh b
b

, (23)

and

RZ
Rb"f

1
(b)"

cosh b
b

!

sinh b
b2

, (24)
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where we have noted Eqs. (10.2.13) and (10.2.14) of Ref. [7] given in Appendix A of this paper. From Eq. (1)
this leads to

M(b)

M
4

"¸(b) (25)

where ¸(b) is the Langevin function given by

¸(b)"
f
1
(b)

f
0
(b)

"coth b!
1

b
. (26)

6.2. For all particles aligned with the parallel xeld and 2a(b

For the case of low anisotropy and all easy axes aligned with the "eld we have t"0 giving sin t"0 and
cos t"1 so that

ZE(b, a)"f
0
(b)#

=
+
n/1
A
!2a

b B
n
f
n
(b). (27)

For 2a(b we can expand as

ZE(b, a)"f
0
(b)!

2a
b

f
1
(b)#

4a2

b2
f
2
(b)#2. (28)

From Eq. (21) we can write RZ/Rb as

RZE(b, a)

Rb "f
1
(b)#

=
+
n/1
A
!2a

b B
n
f
n`1

(b) (29)

and expand as

RZE(b,a)

Rb "f
1
(b)!

2a
b

f
2
(b)#

4a2

b2
f
3
(b)#2. (30)

From Eq. (1) the magnetisation is then

M
,
(b, a)

M
4

"

f
1
(b)!(2a/b) f

2
(b)#(4a2/b2) f

3
(b)#2

f
0
(b)!(2a/b) f

1
(b)#(4a2/b2) f

2
(b)#2

#2. (31)

In terms of the Langevin function this can be written as

M
,
(b, a)

M
4

"¸(b)#
2a/b(¸(b)/b!¸@(b))!(2a/b)2((3/b)(¸@(b)!3¸(b)/b#2/3))

1!(2a/b)¸(b)#(2a/b)2(1!3¸(b)/b)
. (32)

For easy axes parallel to the external "eld we expect the presence of anisotropy to result in saturation at
lower "elds. Noting that the approach of the Langevin function to saturation is given by [4]

¸(b)+1!
1

b
(33)

for large b, we "nd the approach to saturation for b<1 and 1(2a(b to be

M
,
(b, a)

M
4

+1!
1

b
#

2a
b2

. (34)
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6.3. For all particles aligned with large anisotropy and arbitrary parallel xeld b

For the case of aPR and arbitrary b we consider the single integral form of the partition function of Eq.
(7). For all particles aligned with the "eld we have t"0 giving sin t"0 and cos t"1. Thus, since
I
0
(0)"1, Z is

Z"P
p@2

0

exp(!a sin2 0) cosh(b cos 0) sin 0 d0. (35)

Making the substitution x"cos 0 we get

Z"P
1

0

exp(a(x2!1)) cosh(bx) dx. (36)

Separating the integral limits into two parts

Z"P
1

1~x1

exp(a(x2!1)) cosh(bx) dx#P
1~x1

0

exp(a(x2!1)) cosh(bx) dx. (37)

We "nd that as a becomes large the "rst integral becomes very much larger than the second for smaller values
of the arbitrary value x

1
, so that only the value of cosh(bx) at x"1 is signi"cant, resulting in the limit

ZPcosh be~aP
1

1~x1

exp(ax2) dx as aPR. (38)

From Eq. (1) the parallel magnetisation can then be written as

M
,
(b, aPR)

M
4

"tanh b. (39)

This is the formula for aligned grains suggested in Ref. [8]. Also it is worth noting that it corresponds to the
Brillouin function for paramagnetism when the lowest spin number S"$1

2
is used in that function [9,10]

with only the discrete parallel and anti-parallel alignments possible. This agreement is not surprising as in the
limit aPR the discrete constraint is consistent with the magnetic moments being "xed tightly to their easy
axes. Furthermore, for a random texture we can write the asymptotic limit for Eq. (3) as

M(b, aPR)

M
4

"P
p@2

0

cos t tanh(b cos t) sin t dt, (40)

which is in agreement with that employed in Ref. [5]. We further note that Garanin [11] has presented
correction terms for Eq. (39) given by

M
,
(b, a)

M
4

+tanh b!
1

2aA
b

cosh2 b
#tanh bB#

b
(2a)2

.

7. Conclusions

It is hoped that the options presented here will facilitate accurate calculations of magnetisation curves for
superparamagnetic systems with anisotropy.

We o!er two routes: (a) direct numerical integration of one single integral for Z and another for RZ/Rb;
(b) evaluation of truncated sums of known functions for both quantities. As improving preparation
techniques should tend towards the possibility of a narrower distribution of particle sizes it is to be expected
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Fig. 2. The reduced magnetisation M(a, b)/M
4
as a function of b"HM

4
</k¹ for a system with random texture. The dashed and dotted

curves are ¸(b) and Eq. (40), respectively. The solid lines are calculated numerically using the single integral forms Eqs. (7) and (8) with
Eqs. (1) and (3), for a"5, 10, 15 and 25.

Fig. 3. The reduced parallel magnetisation M
,
(a, b)/M

4
for aligned particles a"5. The solid is from the single integral forms. The

dashed curve is ¸(b). The dotted and the dot-dashed curves are Eqs. (32) and (34), respectively.

that the e!ects of anisotropy will become more manifest. Fig. 2 shows the e!ect of increasing anisotropy on
a system with random texture. The overall e!ect is to leave the low-"eld region of the magnetisation curve
and so the initial susceptibility una!ected, but to inhibit saturation. Fig. 3 shows the magnetisation curve for
a delta-like distribution of easy axes where the "eld is applied parallel to the easy axes. The system saturates
at lower "elds than predicted by the Langevin function.

Acknowledgements

This paper is based on work performed under Commission of European Communities DG XII Human
Capital & Mobility (Third Framework) contract no: ERBCHICT940165. Dr. Eamon Molloy of WIT is
thanked for assistance with graphs. Dr. Tom Power, Dr. Brendan Mc Cann and Dr. Kieran Murphy of WIT
are thanked for helpful conversations. PJC recalls that in Jean Louis Dormann, there existed both the
excitement and energy of the enthusiast with the knowledge and experience of the professional. LB writes in
memory of Jean Louis Dormann, from whom he gained the appetite for research and from whose scienti"c
experience he pro"ted greatly. Both of us are indebted to Jean Louis Dormann, and we express here our deep
gratitude.

562 P.J. Cregg, L. Bessais / Journal of Magnetism and Magnetic Materials 202 (1999) 554}564



Appendix A

In Eq. (17) when n"0 we obtain a sum, which, by considering the original expansion in Eq. (7) is seen to
equal the integral

=
+
k/0

(b/2)k

(k!)

sin2k t
cosk t

f
k
(b cos t)"P

p@2

0

cosh(b cos 0 cos t)I
0
(b sin 0 sin t) sin 0 d0. (A.1)

With no anisotropy, t has no physical meaning. Therefore, any angle t could be chosen, thus Eq. (A.1)
should be independent of t. From Watson [12] Eq. (12.14) we can write the following:

P
p@2

0

cosh(b cos 0 cos t)I
0
(b sin 0 sin t)P

n
(cos 0) sin 0 d0"(!1)n@2P

n
(cos t) f

n
(b), (A.2)

where P
n
(x) are the Legendre polynomials and where n must be even. This gives

P
p@2

0

cosh(b cos 0 cos t)I
0
(b sin 0 sin t) sin 0 d0"f

0
(b), (A.3)

which is the leading term in the partition function as required.
Also, in the speci"c case of t"p/2 we "nd

P
p@2

0

I
0
(b sin 0) sin0 d0"

sinh(b)

b
, (A.4)

which is in agreement with Eq. (11.4.10) of Ref. [7].
The modi"ed spherical Bessel functions of the "rst kind can be calculated from Eq. (10.2.12) of Ref. [7]

f
n
(z)"S

p

2z
I
n`1@2

(z)"g
n
(z) sinh(z)#g

~n~1
(z) cosh(z),

where

g
0
(z)"

1

z
, g

1
(z)"!

1

z2
g
n~1

(z)!g
n`1

(z)"(2n#1)
g
n
(z)

z
.

From Eq. (10.2.13) of Ref. [7] the "rst three functions are

f
0
(z)"S

p
2z

I
1@2

(z)"
sinh z

z
, f

1
(z)"S

p
2z

I
3@2

(z)"!

sinh z

z2
#

cosh z

z
,

and

f
2
(z)"S

p

2z
I
5@2

(z)"A
3

z3
#

1

zBsinh z!
3

z2
cosh z.
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