Effect of system load on video service
metrics

Ruairi de Fréinf 1

TKTH - Royal Institute of Technology, Stockholm,
Sweden
fTWaterford Institute of Technology,
Ireland
web: https://robustandscalable.wordpress.com

in: Signals and Systems Conference (ISSC), 2015 26th Irish. See also BIBTgX entry below.

BIBTEX:

Qarticle{deFreinl5Effect,

author={Ruair\’ {i} de Fr\’{e}in$"\dagger$ $"{\dagger\dagger}$},

journal={Signals and Systems Conference (ISSC), 2015 26th Irish},

title={Effect of system load on video service metrics},

year={2015},

pages={1-6},

keywords={client-server systems;computational complexity; frequency-domain analysis;
regression analysis; video signal processing;LR approach;client machine;
client-server service modeling literature; frequency domain;hierarchical model;
kernel-level metrics;linear regression;load signal;low computational complexity;
machine kernel metrics;model selection;service quality metric;service-level metrics;
system load effect;video service metrics;Delays;Frequency-domain analysis;
Histograms;Kernel;Load modeling; Servers},

doi={10.1109/ISSC.2015.7163768},

note = {\url{http://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=7163768&1isnumber=7163737}},
month={June}, }

© 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

document created on: November 5, 2015
created from file: rdefreinISSC_online.tex

cover page automatically created with CoverPage. sty
(available at your favourite CTAN mirror)



Effect of System Load on Video Service Metrics

Ruairi de Fréin
KTH Royal Institute of Technology, Sweden

Abstract—Model selection, in order to learn the mapping
between the kernel metrics of a machine in a server cluster
and a service quality metric on a client’s machine, has been
addressed by directly applying Linear Regression (LR) to the
observations. The popularity of the LR approach is due to: 1) its
implementation efficiency; 2) its low computational complexity;
and finally, 3) it generally captures the data relatively accurately.
LR, can however, produce misleading results if the LR model
does not characterize the system: this deception is due in part to
its accuracy. In the client-server service modeling literature LR
is applied to the server and client metrics without treating the
load on the system as the cause for the excitation of the system.
By contrast, in this paper, we propose a generative model for
the server and client metrics and a hierarchical model to explain
the mapping between them, which is cognizant of the effects of
the load on the system. Evaluations using real traces support the
following conclusions: The system load accounts for > 50% of
the energy of a high proportion of the client and server metric
traces —-modeling the load is crucial; the load signal is localized in
the frequency domain: we can remove the load by deconvolution;
There is a significant phase shift between both the kernel and the
service-level metrics, which, coupled with the load, heavily biases
the results obtained from out-of-the-box LR without any system
identification pre-processing.

I. INTRODUCTION

Cisco [[1] predicts that network traffic volumes in the order
of tens of exabytes are not that far off [2]]; given that 90%
of the bits transmitted on the Internet will be video related
and that the number of consumers of these bits will soon
exceed lbn, monitoring customer experience will be crucial
to safeguard revenues. The authors addressed the monitoring
problem in [3[]; an important open problem is how to predict
the quality of video on a client’s machine given the operational
characteristics of the server delivering it. The first step is to
develop a model that characterizes the system.

Related work: The authors of [4] made publicly available
a series of datasets for evaluating techniques for predicting
real-time service-level metrics from device statistics, which
form the basis for our study. There are two notable differences
between [4] and the present paper that warrant reporting:
1) They did not explicitly model the affect of the load on
the service or kernel metrics they observed. In words, they
assumed that the statistics of the system were exactly the
same irrespective of the number of users requesting video. 2)
They presented their results in terms of a Normalized Mean
Absolute Error (NMAE), % >, lyi — 9:|, where ¥ is the mean
of the signal to be predicted, and ; is the signal prediction.
If the signal to be estimated y; is zero mean, the NMAE
is infinity, which is problematic. For non-zero mean signals,
a = g and b = ¢, the NMAE may give arbitrarily good or
bad scores for prediction performance. For example if the
mean of a = b = y = § = 20 and the absolute errors are
lyi — ;| ~ 2 the NMAE is generally ~ 10%; however, if

a=>b=y =9 =10 the NMAE is =~ 20% —which is twice as
bad. Finally, if the means a,b vary across samples they may
at times dominate the absolute errors, and at other times be
dwarfed by the absolute errors. We address this problem.

We take a first step toward solving these problems using
a standard Signal Processing approach: we ensure that 1) all
signals are zero-mean and compute the Signal-to-Noise-Ratio
between estimates and the ground-truth; 2) we propose a form
of supervised deconvolution, 5], to remove the time varying
load component in the prediction step. This approach is novel:
in related works, the prediction of quality-of-service metrics
for IPTV using decision trees was discussed in [6] using the
aid of a domain expert to select relevant features. Network-
level metrics, e.g., delay, loss, and jitter measurements, were
used in [7] to estimate the quality-of-service metrics for IPTV
streaming clients. The primary purpose of this paper is not
prediction, but to characterize the system correctly and to
describe the effects of disregarding the load on the system.

LR Set-up: We consider a standard LR problem: modeling
the relationship between a scalar, dependent variable y; and
a number of explanatory variables (independent variables)
which are denoted in vector form x;. The authors of [4]]
consider solvers other than LR; we focus on LR as it provides
a well understood base-line technique to present ideas. If
y; € R is a service-level metric on a client’s machine in a
networking scenario, x; € RY is a set of kernel metrics taken
from a server machine, 7 is a time index in discrete time,
the goal of this paper is to propose a model that correctly
characterizes the relationship between the pairs {y;,x;} at
previous measurement time indices. If the service is video,
irrespective of the number of users on the system, the model
should allow us to characterize the load’s effect on the client’s
video quality if we have knowledge of the kernel metrics of
the server delivering the video.

Contribution: To simplify our initial approach we assume
that the network is sufficiently well resourced to safely
disregard the effects of the network in this mapping [4].
LR is a popular model for fitting a predictive model to
an observed dataset {y;,x;}. Our objective in this paper is
not to design a new LR solver but to demonstrate that off-
the-shelf application of standard regression toolboxes, used
in isolation, may lead to misleading results. Our first con-
tribution is to propose a new generative model for service
and kernel-level metrics in the Networking domain. We call
this model/processing approach Rapsode: [R]egression [A]nd
[P]rediction from [S]ynchr[o]nized [De]convolution. Our sec-
ond contribution is to show that the application of supervised
deconvolution [8], [S], source separation [9] and spectral
subtraction-like techniques [[10] allow us to perform prediction
of the effects of the system load on y, by using a model that
characterizes the system. To verify the efficacy of this model
on a real-world dataset and to determine the suitability of our



model, we propose to consider the following experiment. If a
previously unobserved vector of kernel measurements, x;41,
is drawn on the server machine, and we have no knowledge of
its accompanying y;+1, does our proposed model give a good
prediction of the effect of the load on y;417?

Organization: In Section [[I] we propose a first hierarchical
model for relationship between the load on the system and
the kernel and service metrics. In Section [[IIl we illustrate the
effects of the load in the learning problem. In Section [[V| we
provide evidence for the existence of the load and propose
estimators to characterize it. We provide empirical evidence to
support our results using video traces in Section

II. PROBLEM STATEMENT: RAPSODE

We assume that the system is operating under a light to
medium load. The relationship between the kernel metrics and
the service metrics is well represented by a linear model. The
response of the server, with respect to kernel metric n, to one
request for video at time ¢ is expressed as:

x;[n] = 0;[n] + €[n], where i € Z,x;[n],0;[n] € R. (1)

The expression x;[n] denotes the n-th element of the i-th
time vector. The signal (i;[n] could be a constant signal which
corresponds to an increase in the CPU workload, for example,
an extra X units per additional user for the duration of the
video requested by the user. In a more general set-up, the
vector 11 is the sum of shifted Heaviside functions. We assume
that the Heaviside functions are scaled in order to account for
the sensitivity of a given feature to the effect of adding a new
user. Without loss of generality, we assume that this scaling
is specific to each service and machine. The noise signal
€;[n] captures deviations from the expected performance. It
is convenient to assume that this deviations signal is normally
distributed with 0 mean and variance o2, and that the deviation
signals are uncorrelated. For two simultaneous video requests

x;[n] = 20;[n] + €[n, 1] + €;[n, 2], 2

where the deviation from the expected performance due to the
second user is €;[n,2]. When users start and stop watching
video arbitrarily, K () is the number of users at time 3.

K (i)
xi[n] = K(i)X + ) €ln, k]. 3)
k=1

We call the component signal, 1;[n] = K (i) X, the load signal.
In this paper, we consider the case of a sinusoidal variation
in the load. This choices makes it easier to demonstrate the
effect of the load in closed form. In addition, real traces are
available from an independent study in which the traces have
a sinusoidal component [4].

li[n] = K(i)X = a[n] cos(wni + ¢n). 4)
The observed n-th kernel metric is the linear combination:
x;[n] = aln] cos(wni + ¢,,) + X;[n]. ®)

Here the real-valued scalars, a[n] € R, w, € R and ¢,, € R,
are the amplitude, radial frequency, and phase of the load pat-
tern —they collectively describe the behaviour of the ensemble
of users. We make the simplifying assumption that they are

constant. We also simplify our notation by introducing the no-
tation X;[n] = f:(ll) €;[n, k], for the aggregate deviation. The

deviation signal X;[n] is not explicitly delayed or attenuated.

This model is general: The amplitude scales the load to give
it a response in the correct range for the n-th feature; if the n-
th feature is not a function of the load, a[n] = 0. The phase ¢,
may capture the network and machine delay between when the
request is made and the response given. This model is further
generalized by considering loads which are sums of sinusoids,
or other types of parametric signals and stochastic processes.
The service-level metric is a linear function of the set of kernel
metrics. The service-level metric is modelled by:

Yi = Z w(n]

The additional phase terms ¢,,,Vn capture the delay in the
effect of the load due to client requests on the server machine,
and network and server delays.

K (i)
a[n] cos(wnt + ¢n + @n) + Z €i[n, k| ©)

k=1

System Characterization: We have introduced a deviations
signal for each kernel feature, X;[n], to explain the deviation
of each kernel metric from its ideal performance for a given
load. A deviations signal is also required for the service-level
metric, ;. We explain the effect of each user’s request for
video on the kernel-level metrics, and then on his service-
level metric. In other words, we want to explain the signal that
captures the deviation of the service-level metric from the ideal
performance, as a function of the effect of the user requests
on each of the video server’s kernel metrics (the deviation of
each of the kernel metrics from their typical performance). We
propose the model,

i = w' %, ©)

and not the generative model we described above,
yi = w (Li_g + %Xi_q). (8)

The problem is that the signals that we can measure, the pairs
{xi,y;}, are mixtures of what we want and a high energy
load component, which we do not want. The reason why we
distinguish between these two problems is that the load may
potentially drown-out the deviation signals, ;, X;[n],Vn. In
general a good approximation of the load is known. There
is little point in approximating it. The ability to estimate
and predict deviations from ideal performance is the crucial
problem. The approximation of the load comes from the
TCPSCK field of the UNIX SAR command [11] which is
run every second on the video server. The SAR command
writes the contents of selected cumulative activity counters in
the operating system to standard output. The number of TCP
sockets currently in use gives a good indication of the load
on the kernel. The service-level metric, RTP Packet Count, is
obtained using a specially instrumented version of VLC Media
player that writes the RTP Packet Count to file every second.

III. LEARNING PROBLEM: INTERFERING LOAD

We want to model the effect of deviations from ideal
behaviour for each of the kernel metrics, e.g. X;[n] on the
deviations of the service-level metrics, e.g. ;. We do not want
to model the load signal as we can measure it directly using the
TCPSCK feature of x;. In the remainder of this paper feature
n = n* denotes the TCPSCK feature, e.g. x;[n*] = I;[n*]. We



take the TCPSCK feature as the true load signal; the ideal load
is known. With this knowledge we can begin to approximate
the parameters ¢,,, ¢n, a,. In addition we need to estimate the
set of frequencies, ;, which capture the load signal’s energy.

Simple Learning Model: We consider the case where we do
not acknowledge the presence of the load signal and attempt to
fit the model in Eqn. [8| Let’s initially only consider one feature
for simplicity, e.g. x;[n] and try to estimate y;. We drop the
time index and the feature index for notational convenience.
We let both the dependent and independent variables consist
of the sum of two components: the load component, which is
denoted by a subscript /; and the deviation component, which
is denoted by a subscript d. Therefore y; = y; + yq, Where
Vi, Y1, ¥a € R and x;[n] = x; + x4 and x;[n],x;, x4 € R. We
consider one weight w. The sum of the error in the mapping
for all times ¢ is denoted:

ZC(Xilnlvyi) = Z((yl + Ya) —

% %

w(x; +x4))% 9)

We can derive the weight using a Maximum Likelihood
Estimation (MLE) argument that minimizes ), ¢(x;[n], y;) by
taking the derivative with respect to w and setting it to zero,
and solving for w. Solving for w we have

w— DX +2ded2+ YiXd + YaXi (10)

Do (xF x4 2x4%))

We consider the relative importance of the load and deviation
terms in this update. Consider the (cross)-correlation or energy
terms for y; = a,, cos(wni+ ¢n), T1 = ay, cos(w,i) where we
let ¢,, = 0 for notational simplicity, and select ¢,, = 7 based
on the results obtained in the empirical evaluation that follows.

Justification: It is important to note that if the service metric
is the number of RTP packets received by the client and one
of the features is the TCPSCK rate, that as the load increases
the number of TCP sockets will increase, but the number of
received RTP packets will probably begin to decrease as the
system does not have unlimited resources. If the TCPSCK
count is a sinusoidal function, for example cos(w,?) then the
number of RTP packets will be cos(wy,i + m) = — cos(wpyi).

The cumulative deviations signal is defined as x; =

x;[n] = ZK(l) €;(n, k). The variance of each component
ez(n k) is a , and each component is zero mean. The upper
summation limit K () changes with time. The variance of the
sum of uncorrelated random variables is the sum of their vari-
ances. We make the simplifying assumption that the random
deviations are uncorrelated. We denote the variance of the sum
of the deviations overall time to be o2(i) = var(X;[n]) =
Var(zk 1 ez( k)) = K(i)o? The time variation arises
because of the changing number of users. As we assume
that K (i)o? < a[n)?,Vi we approximate this variance with
a constant 02 = 02 max K (i) in the following argument.

Remark: These assumptions are reasonable. In a real sys-
tem, the user-dependent variance assumption, K (7)o, implies
that the more users requesting video, the more volatile the
quality of each user’s video will be. The second assumption
K(i)o? < a[n]? implies that the variance of each kernel
metric’s behaviour, for a given number of users on the system,
will typically be much smaller than the mean effect of that
number of users on the kernel-level metric. This assumption

TABLE 1. COMPONENTS OF THE WEIGHT LEARNING RULE

2

% Do yixy = 7% > a®[n] cos? (wni) = — “[g]

T Zi YaXa Oy

T2 iXd = ZL - a[ cos(wni)Xq, = E YaXi =y, % cos(wni)yd
%Z,;Xl Xp = T > 2[n]cos (wni) = 2”

% Zl = Z XdXd = 02

T2 =

15 aln] cos(@ni)x

TABLE II. DETECTING LOAD SUPPORT, 6;, FROM TCPSCK, x;[n*].

Sort from largest to smallest: [X,,x (s)] = sort(|T{x;[n*]}(w)])
Compute the definite summation: I(b) = ij=1 X% (8)

Find the transition point: b* = locate{I(b) > T'}

Generate the load set: 6; = {w = unpermute{s}|1 < s < b*}.

is reasonable when the system is light-to-medium loaded, and
thus catastrophic system failures may be disregarded.

Analysis:_We scale the numerator and denominator terms
(in Eqn. by 2 7 for notational convenience and compute
the summations over an appropriate range of samples in
Table M When the load signal dominates the residual signal,
a*[n] > 02,02,, a®[n] > a[n], the derived weights depend
solely on the phase difference between the server and client’s
observations of the load

2
7% + % Z COS(W )(y(i - Xd) + Uacy -
alnl® L 15~ afn] cos(w

—1. (11

nt)Xq + 02

This implies that if the load is the dominant signal component,
when the load increases on the system, the RTP Packet Count
decreases. On the other hand, when there is no load signal
present the update rule reduces to the ratio of 1) the covariance
of the deviations of the kernel deviations signal with the
service deviations signal with 2) the auto-correlation of the
kernel deviations signal w = agy /o2, which is precisely what
we would like to understand better. This argument is easily
extended to the case where the service-level metric is modeled
by the sum of a number of features, some of which have the
load component, a;[n] # 0, and the terms that do have the
load component are in phase. In this case, the residual does
not play a significant role in the update for the corresponding
component of w(n] as the load dominates —this is undesirable
when the purpose of prediction is to be able to forecast failure.

Property: Learning a LR model when the load is mixed with
the deviations in the manner above yields a weight which
captures the relative attenuation and phase shift between the
load measured on the server’s kernel and the client’s machine,
as opposed to the deviations terms —which is what we are really
interested in. The purpose of LR is not to learn the relative
phase shift between the kernel and service-level metrics.

Time-varying Mean Component: An alternative way of
modeling this process is by modeling the observed client
service-level metric y; as a function of a varying mean —
corresponding to the system load— and the variation about it,

= (i) + > win)

This is clearly not a linear regression problem in the standard
form. How can we learn a mapping which is independent of
the load? How can we subtract the load component from each
signal? How can we estimate the load signal?

K(i)

> eiln, k] (12)

k=1



" Ak A

10000 20000 30000 40000 50000

o » ® o

Y(w),

=

10 20 30 40 50 60 70 80 90

P

x;(n"]

L L Y L T A T N Y R
w‘” W by i 'M‘M(.W ’ ANWW vj&“ 'Wﬁ Py M‘MW‘,\W.\‘W " M"\w\y/‘ WM‘A;" "‘ﬁnwvﬁ' mwwh AWy
| . .

Vi h

10000 20000 30000 40000 50000

yioxin']

Residual

Fig. 1. RTP Packet Count, y; recorded over a =~ 50k second interval (row 1);
Its time-frequency magnitude spectrogram (row 2); TCPSCK kernel parameter
(row 3), x;[n*], which is a good proxy for the load; Its time-frequency
magnitude spectrogram (row 4). The RTP Packet Count has the same period
as the TCPSCK parameter. Row 5 overlays an amplitude scaled version of the
TCPSCK feature with the RTP Packet Count. Row 6 plots the filtered RTP
Packet Count ; and the TCPSCK feature %;[n*].

IV. LOAD DETECTION

We begin by providing evidence that the load plays a
significant role in the performance of the service-level metrics
and the kernel metrics. We plot the RTP Packet Count recorded
over a ~ 50k second interval, its time-frequency magnitude
spectrogram and the TCPSCK kernel parameter, which is
a good proxy for the load, along with its time-frequency
magnitude spectrogram in Fig. [l From visual inspection, it
is clear that the RTP Packet Count has the same period as the
TCPSCK parameter. There is a strong sinusoidal component
in both signals which is evident in the lower frequency ranges
of the time-frequency magnitude spectrograms in Fig. (I} The
response of the RTP packet count, y;, to the load, x;[n*],
captured here by the SAR TCPSCK feature, is ¢ ~ 7w degrees
out of phase with it. It is reasonable to model both signals as:
yi = wa[n*] cos(wyi+ 5 ) + i, and x;[n*] = a[n*] cos(wni —
%)+2;[n*]. If we learn a mapping from the kernel parameters,
which has a term cos(wni + 5), to the service-level metric,
which has a term cos(w,i — %), the dominant component
of the kernel-level metric is 7w rads out of phase and the
weight, w, attempts to compensate for the phase difference
in the different signals. The SAR feature corresponding to the
TCPSCK feature dominates the RTP Packet Counf']

In order to estimate the relative attenuation and delay
parameters (c,, and d,, in frequency bin w) between any two
signals we call on the linear transform T{y; }(w) : y; — Y (w)
and T{x;[n]}(w) : x;[n] — X, (w). In the discrete frequency
domain, e.g. when T'{-}() is the DFT, w denotes the frequency
bin index, and T{y; }(w) and T~1{Y (w)}(i) are the DFT and

A phase shift does not always imply a time shift [S]. We determine later
that the observed phase shift corresponds to a reflection through the mean
of the signal, an observation that agrees with the update rule for the weights
calculated previously. Secondly, we have assumed the TCPSCK feature is a
good proxy for the load and therefore its associated deviations signal is zero,

%X;[n*] = 0. This is not true for the other features, X;[n] # 0,Vn # n*.

TABLE III. RELATIVE oo AND § BETWEEN y; AND X; [n*].
o o

3.0038

Power Weighted Estimators —1784.4 samples

IDFT respectively. The magnitude spectrogram is defined as:
|T{y;}(w)|. Tt is a property of the DFT that a delay in the
discrete time domain is an phase shift in the discrete frequency
domain. The relative attenuation, for two discrete frequency
domain signals, X7 (w) and X3 (w), is defined as well.

{Xl(w)},aw: ‘Xl(“)‘ (13)

Xg (w) XQ (w)

Let’s consider how dominant the load component is in the
service-level metric (RTP Packet Count). We evaluate the
following ratio to find the content of the signal resulting from

the load component. The entire set of frequency bins is 6. The
set of frequency bins corresponding to the load is 6;.

Dweo, | T{Yi} ()2
Dweo | T{wit(@)?

The set 0; is determined from the TCPSCK feature using the al-
gorithm in Table. [[} The index variable s denotes the index into
the sorted vector |X,,«(s)|. The operator w = unpermute{s}
gives the w corresponding to a given s. The summation takes
as its lower bound the first non-zero frequency bin (DC is
excluded). This computation illustrates that 50.846% of the
RTP Packet signal lies in 0.07% of the frequency bins, the set
0; and that 86% of the energy of the TCPSCK signal lies in the
same frequency bins, ;. The set of load bins, 6;, is selected by
ordering, by magnitude, the DFT coefficients and choosing the
frequency bins that account for 86% of the signal. Somewhat
surprisingly the load signal is well localized. We conclude that:
1) The load signal has narrow support in the frequency domain
of the TCPSCK signal; 2) The TCPSCK signal has a narrow
bandwidth, which is indicative of a sinusoidal signal; 3) The
dominant component in the RTP Packet Count is the TCPSCK
signal, which is a proxy for the load. Many of these properties
are exploited by the Blind Source Separation community in a
different setting [S]], [8], [9]. We posit that we can remove the
sinusoidal component from both the RTP Packet Count and
the TCPSCK signal using the binary mask (and ¢; computed
from Table [M):

1
0y =——~L
w

E(y:16,) = 100 (14)

1, w=0, orw¢§b
Mg, (w) = 5)
0, web,
and resynthesize the residual signal, yq R

Re{T{ My, (w)X,(w)}(i)}, which is the signal that
measures the deviation of the service-level from its typical
level. The operator Re{-} returns the real values of its
argument. We postulate that the remaining signal is the
deviation signal of the service-level metric, which a function
of the deviation signal of the kernel metrics. Fig. [T] illustrates
the residual signal obtained from this procedure.

We use a form of power-weighted estimator, similar to
the estimators proposed by Rickard and Yilmaz [9]. They
are motivated by the idea that y; and Z;[n*] consist of a
load component and a deviation component. The frequency
bins —where the component we desire resides— should have
a weighting corresponding to the cross-energy of that com-
ponent (across both the service and the kernel metric), as



Histogram RTP - scaled and delayed TCPSCK

2000

T
1500 Mean = 71.9
Std. Dev. = 55.4
1000 | Il Median = 57.6
500 |- “
0 HHiH
0
T

16th/84th percentiles = [-37.4 -26.9]

HHH\MMWHH (i

I L
100 200 300 400 500 600

Counts

-100
2000
1500
1000 |-

500 I

Ll w‘u

Mean = 119.4
" Std. Dev. = 63.8
T Median = 102.0

MH ‘H 16th/84th percentiles = [0.0 5.0]
; I
-100 0 100 200 300 400 500 600

T
Signal Values

Histogram RTP Packet

Counts

Fig. 2. Histogram of RTP Packets: Residual signal ¢; (in row 1) is unimodal
but skewed; y; (in row 2) is tri-modal and skewed.

opposed to giving equal weightings to frequency bins which
correspond to spurious noise. This is achieved by setting

C(w) = T{y: }(w)T{x;[n*]}(w)
Dweo, [C(w) oy, Soeo |CW)[26,

a= 0= 16
Soca CWE T Toe 0@ 17
where «, and ,, are the instantaneous relative amplitude and
delay experienced by the RTP Packet Count given the TCP-
SCK signal. The application of these estimators is justified: 1)
Not all frequency bins are as important; 2) The load component
is localized in a 0.07% of the frequency bins in both signals;
3) The cross product between the RTP Packet Count and
TCPSCK acts to cancel out interfering terms, emphasizing the
common component in both signals, i.e. the load; 4) The load
dominates both y; and x;[n*].

V. EMPIRICAL EVALUATION OF THE RAPSODE MODEL

In this section we: 1) fit the TCPSCK feature to the RTP
Packet count (using o, d) to estimate the deviations signal ;
2) evaluate the presence of the load in all the features to see
if it is as pervasive as our analysis suggests; and finally, 3)
evaluate how well the load predicts the RTP Packet count.

1) One-feature estimation: Given the dependence of the
service-level metric on the SAR TCPSCK feature, we attempt
to estimate the service-level metric using the SAR TCPSCK.
The relative attenuation and delay between the TCPSCK fea-
ture and the RTP Packet Count signal are estimated (cf. Eqn. [6])
in Table [Tl using 50k samples. We plot a histogram of the RTP
Packet count residual signal estimate, §; = y; — ax;_s[n*],
along with the original RTP Packet count signal in Fig.
Note that the RTP Packet Count residual, ¢, has only one
mode compared to the original RTP Packet Count. This is
another benefit of removing the load component from the
service-level feature when we are looking to predict the future
service-levels, as LR models typically model the noise as a
unimodal (Gaussian) distribution. The deviation histogram is
still skewed; we will address this in future work by examining
the quality of the procedure for estimating the set 6;.

2) Universality of the load: We discard the non-numeric
kernel metrics and the kernel metrics which have a constant
value. Approximately 231 out of the 854 kernel metric signals
are left, e.g. 27%. These 231 features are used for estimation
and prediction (cf. Table rows 1-2). We examine the effect
of the load signal on these 231 kernel metrics to determine if
a[n] is non-zero in (Eqn. @) We evaluate the energy of the

TABLE IV. ANALYSIS OF THE KERNEL METRICS

Total No Kernel Metrics, vy; 854
“Useable” Kernel Metrics, X, [n*] 231
E(x;[n]]6;) > 90, Vn in .07% of the 6 bins ~ 10%
E(x;[n]|0;) > 50,Vn in .07% of the 6 bins ~ 20%

E(x;[n]|0;) > 40,Vn in .07% of the 6 bins ~ 42%

20 < 6,5 < 20
Sz = 1760 4+ 20
bym = 1760 % 20
Oye = 1760 £ 20 or —50 < §,y <0

for &~ 25% of the features.
for = 11% of the features
for =~ 16% of the features.
for &= 37% of the features.

O 0NN B W=

signal present in the frequency bins (of the kernel metrics)
corresponding to 86% of the energy of the TCPSCK kernel
metric, the set #;. Row 4 in Table [[V|states that approximately
20% of the kernel features have greater than 50% of their
energy in the same set of frequency bins, 6;, as the load. Row
3 and 5 give the percentage for a percentage energy content
greater than equal to 90% and 40%. The load is captured by
0.07% of the frequency bins of x;[n*]. This statistic motivates
the assertion that the discrete frequency domain support of
many of the kernel features is approximately the same as the
support of the TCPSCK signal. If the energy in these frequency
bins is due to the load, the relative delay between y; and the
231 other features, X;[n], e.g. dy, should be approximately the
same. However, if there is significant interference due to the
response of the kernel to the load in these same frequency
bins, the relative parameter estimators will perform poorly.

Relative Delay Estimates: Firstly, we compute the relative
phase shift between all of the features and the TCPSCK
feature, namely the feature-to-feature estimates, d,,. Secondly,
we compute the relative phase shift between all of the features
and the RTP Packet Count, §,,. The histogram bins are 20
samples apart in Fig. [5] We consider relative delays between
the features in the range —6000 < §,, < 6000 for all 50k
samples. We claim that the estimates J,, are clustered around
0 (cf. Table [[V]row 6). The relative delay d,, between 25% of
the features, e.g. 61, and the load is =~ 0 samples. Examining
dyz» 33 of the estimates yield a delay of 1760 £ 20 samples
(cf. Table row 8). In other words, approximately 16% of
features have a relative delay with the load that is the same.
The peaks at the relative delays 26000 mean the relative delays
0yr —for ~ 20 of the feature vectors— are greater/less than
+6000 samples. Given that the sinusoidal load oscillation is
< 6000 samples we rule these delays out of being due to the
load (unless they are integer multiples of the period of the
load). Three of the d,, histogram bins, indicated 33,27, 25,
account for 85 of the features; all of the other histogram bins
have less than 6 features in them. The bins corresponding to the
count labels 27, 25 correspond to a d,, which is approximately
zero. In our simplified model for the affect of the load, we
modelled it as a cosine: cos(wpi + ¢y,), assuming ¢,, = 0.

Discussion: We posit that half a cosine oscillation corresponds
to ~ 1760 samples. Recall that cos(w,i + ) = — cos(wp1).
The peaks in the histograms ¢, and d,, are highly significant
because they correspond to the case where the negative load,
— cos(wp?) and the positive load cos(wy,%) appear in the kernel
features and the service-level metric, and the peaks in the
relative delay histograms are accounted for in this way. This
means that the relative delay of ~ 1760 samples between RTP
Packet Count and 33 of the features is due to the negative load
— cos(wpt). Approximately zero delay is measured between
the RTP Packet Count and another 25 + 27 of the features,
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Fig. 4. The upper figure illustrates how well the load predicts the entire RTP
Packet Count. The lower figure illustrates how well the load predicts the load.

e.g. the load is cos(wy,i). In the J,, histogram the relative
delay of ~ 1760 samples between TCPSCK and 26 of the other
features is due to the negative load — cos(w,,?). Approximately
zero delay is measured between the TCPSCK and 61 of the
other features due to the load being cos(wy,1).

In summary, ~ 42% of the features have greater than 40%
of their energy in the same frequency bins as the load. The
load has a frequency domain support of 0.07% of the frequency
bins. Approximately 37% of the usable kernel features have a
relative delay with the service-level metric and TCPSCK which
is consistent with the load signal being modelled as COS(UJni)
or — cos(wp,i). We conclude that the load plays a big role in
characterizing the kernel features and the RTP Packet Count.

Local Load Predictions: Given that the load is highly
prevalent in 30 — 40% of the kernel features we evaluate
how well the load, x;[n*] predicts the load component of
the RTP Packet Rate, the frequency bins 6;, e.g. y;|lw € 6;.
Then, we evaluate how well the load x;[n*] predicts both the
deviations and the load of the RTP Packet Rate, the signal y;.
The purpose of these experiments is not to perform perfect
prediction, but to 1) demonstrate that the load is prevalent and
helps perform prediction; 2) justify our characterization of the
model; and finally, 3) evaluate the combination of our relative
attenuation, delay and MLE weight estimators. We believe
that these prediction algorithms provide a good base-line for
future algorithms that exploit all of the features —the purpose
of the predictions in this paper is to establish how well the
Rapsode model characterizes the system. For the two experi-
ments above, we vary the complexity of the predicted signal
to demonstrate the improvement gained by introducing more
parameters. Each prediction algorithm estimates 1) the set of
frequency bins 6;; and 2) the relative attenuation and delay «,
0. To increase the complexity of the model we then consider
predictions which incorporate the MLE weight estimate w —
using the sets of parameters {0;,«,d} and {0}, o, §, w}.

TABLE V. PREDICTOR ALGORITHMS
Estimate 85, and oy from y; and x;[n*] given 0; for the last 30k samples
Evaluate the MLE of w using the last 30k samples
Generate the predictions §;4+1 = wal;41-5[n*], §it+1 = aliy1-s[n*],
Pit1 = —waljp1[n*], §it1 = —wal;41[n”]
Evaluate the local SNR measure S; 1 between §;41 and yi41.
Evaluate the local SNR measure S; 1 between ;11 and y;41 in the bins 6;.

Each prediction algorithm is a two-step process summa-
rized in Table [V| First, we estimate the load signal 1;[n*] =
x;[n*]|weo, using the frequency bins ¢;. We use this load signal
estimate, and y;, the service-level metric (RTP Packet count),
to learn estimates of «, § for some training period (samples r =
10000. ..40000). We center the signals corresponding to the
previous 30000 samples. We compute the Maximum Likeli-
hood Estimate for the weight parameter given fixed parameters
aand §, w= (3, oli_sn *]y,) / (e (0di_s[n*])?). We
then compute the predictions ;11 = wale sin*], Gip1 =
aliy1-5[n*], Jiv1 = —wal;41[n*] and §i41 = —walHl[n ].
We use the Signal-to-Noise-Ratio (SNR) of the service-level
metric-to-(Service-level metric minus prediction)-Ratio as our
indicator of performance. We consider the local SNR, e.g.
between the last 1000 predictions and true values.

Si+1 = 10log; (Z y3+1> / <Z(yi+1 - Z)i+1)2> (17)
We then re-position our training set window over the next
range of samples 10001 < ¢ < 40001; center the signal;
recompute the parameters «, § for this new window of samples;
learn a MLE for the weight w; and generate a new prediction.
We continue this procedure for 10000 samples so that we can
evaluate the effect of locally obtained parameters «, ¢ and the
weight w on the prediction process 10000 times, in a manner
similar to a real-prediction engine.

Discussion: Fig. illustrates that the models y;41 =
—wal;41[n*] and §;11 = —wal;11[n*] predict the entire
RTP Packet Count the best, in the sense that the lowest
local SNR is almost always positive. Reflecting the load
signal through its mean, as opposed to delaying the load
by 7 rads, gives the best predictions. It is remarkable that
the load predicts the entire RTP Packet Count with such
high fidelity. If we compute the instantaneous SNR of each
prediction, e.g. 1010g1o ¥7,1/(Yi+1 — Gi+1)? in isolation, 71%
of the 10000 predictions have a positive SNR, and the median
instantaneous SNR is ~ 3dB. Similarly in the case where
the load x[n*] is used to predict the load component of y;,
predictors §;11 = —wal;11[n*] and ;41 = —wal;y1[n*]
give the best SNRs in the sense that the SNR is never the
lowest. The effectiveness of the parameters is summarized as
follows: the parameters o and § scale and align the TCPSCK
signal with the load component, y; in the observed service-
level metric trace, and the weight w learns the mapping from
the scaled, aligned load signal to the observed service-level
metric, which has an additional deviation component, recall
y; = Y1 +vyq. The weight gives the algorithm a small additional
flexibility to compensate for the deviations component, ¥4, of
the signal y;; parameters « and J are not intended to serve this
purpose as we assume that the set of frequency bins 6; in both
y; and x;[n*] correspond to the load. Typically an evaluation
of this type of procedure looks to break the correlation in
prediction errors by randomly partitioning the data into a test
and training set. In a real system errors in our predictions
are potentially correlated. In future work we will consider



the implementation of the predictors using a parallel online
learning framework, e.g. [12].

VI. CONCLUSIONS

Adopting the correct model for a set of observations from a
real-world random process is a crucial first step for developing
statistical inference algorithms. We have demonstrated in this
paper that adopting the incorrect model causes incorrect,
although potentially accurate, predictions to result. Accuracy
and correctness are therefore not the same thing if the model is
misspecified. In future work we will generalize theses results
to the case where there are multiple services.
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