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Abstract—Discovering an efficient representation that reflects
the structure of a signal ensemble is a requirement of many
Machine Learning and Signal Processing methods, and gaining
increasing prevalence in sensing systems. This type of represen-
tation can be constructed by Convolutive Non-negative Matrix
Factorization (CNMF), which finds parts-based convolutive repre-
sentations of non-negative data. However, convolutive extensions
of NMF have not yet considered storage efficiency as a side con-
straint during the learning procedure. To address this challenge,
we describe a new algorithm that fuses ideas from the 1) parts-
based learning and 2) integer sequence compression literature.
The resulting algorithm, Storable NMF (SNMF), enjoys the
merits of both techniques: it retains the good-approximation
properties of CNMF while also taking into account the size of
the symbol set which is used to express the learned convolutive
factors and activations. We argue that CNMF is not as amenable
to transmission and storage, in networked sensing systems, as
SNMF. We demonstrate that SNMF yields a compression ratio
ranging from 10:1 up to 20:1, depending on the signal, which
gives rise to a similar bandwidth saving for networked sensors.

I. INTRODUCTION

Independent Component Analysis (ICA) has gained pop-
ularity as a method of reducing the redundancy of data
by projecting it onto its independent components [1]. The
underpinning principle of many members of this class of
learning algorithms is to maximize a statistical measure such as
independence [2], or non-Gaussianity [3]. Non-negative Matrix
Factorization (NMF) can be a more suitable alternative when
the data is element-wise non-negative (NN). NMF approxi-
mates element-wise NN data, which is expressed in matrix
form, V. € RZOMXN a5 the product of two element-wise NN
matrices W € RM>*7 and H € RE*N [4], [5]. By their own
nature, some problems do not involve negative values. Instead
of maximizing measures of independence or non-Gaussianity,
NMF finds the hidden parts [6] that generate the data, learning
a parts-based representation —a term made popular in [5].

Given that the only constraint NMF enforces is that the
data and factors are element-wise NN, and its optimization
routine is non-convex, it has been difficult to prove when
NMF gives the correct solution. Vavasis asserts in [7] that
NMF is NP-hard; However, a polynomial-time local search
heuristic exists. Donoho and Stodden showed that NMF only
gives the exact and unique solution for certain classes of parts-
based data-sets [6]. Nevertheless, the popularity of NMF in
recent years has grown unabated due to the simplicity of
its updates and the success of its application in areas such
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as bioinformatics [8] and computer vision [9]. In this paper,
we consider Donoho and Stodden’s parts-based explanation
for the success of NMF and posit that there exists, in some
sense, an even simpler representation of the data. We show
that increasing the simplicity of NMF representations could
be used to extend the application of NMF to domains where
resources, such as storage and bandwidth, are constrained.
Many advances in the compression literature rely on the fact
that simpler representations for a data-set are typically more
compressible. For non-adaptive signal analysis, the application
of the Discrete Cosine Transform (Wavelets) in lossy jpeg
(jpeg2000) encoding is a case in point [10], [11]. In terms of
performing adaptive analysis, the use of a sliding dictionary
of functions by Lempel and Ziv [12], has given rise to one
of the most commonly used loss-less compression algorithms
(gzip). We exploit the fact that parts-based representations are
generally simpler representations, that simpler representations
can be more compressible, and that if we interleave the
parts-based representation learning with compression, we can
improve compression without significantly affecting NMF.

Application domain: Our contribution, SNMF, is timely.
The Internet-of-Things (IoT) imagines a world of pervasive
connected devices, for example, mobile phones, sensors, home
area appliances, laptops, tablets [13]. Most of these devices
come equipped with acoustic sensors. These devices need to be
able to communicate, cooperate and learn in order to achieve
their designated goals, whilst also sharing constrained edge-
network resources with other applications and services. Ap-
plications include acoustic scene monitoring, event detection,
ambient assisted living, accident detection and speaker iden-
tification. In this connected world, which relies on a number
of potentially bandwidth restricted inter-connected networks,
these connected devices will produce gigantic quantities of data
to be transferred or stored over the Internet. One challenge,
illustrated in Fig. 1, is to learn acoustic features at the edge
of the network, be-it on an individual sensor, a local gateway
point or server, and to be able to transfer selected features
between sensors in order to: 1) improve local classification or
detection using a low-bit rate, or 2) to store more features on
the sensors or connected devices themselves. The focus of this
paper is on putting the first building block in place: learning
storable features which are as accurate as CNMF’s features.
Higher level functions such as networked-classification and
separation will be reported separately.

Spectrograms have traditionally been the touch-stone rep-
resentation for speech [14] in speech enhancement; monaural
Blind Source Separation (BSS) tasks [15]; and classification
and identification of auditory objects. In combination with
spectral magnitude analysis of audio, our contribution, SNMF,
discovers auditory objects and their activation patterns in a
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Fig. 1. Learning (learning agents are indicated by a cog) is performed on
many connected devices in this IoT scenario. For example, on sensors (PDA,
PC, Camera), gateway servers and in cloud data-bases. This vast amount of
data transfer is indicated by up-link and down-link arrows. Features may also
be stored locally (indicated by a flash drive symbol) on the sensing device
etc. On the RHS, features learned in other parts of the network (LHS) may be
shared and used to perform speaker identification or event classification. The
bottleneck in this scenario is bandwidth - the more features available to each
classifier, the greater the potential classification discrimination power/accuracy.

manner which is similar in spirit to Non-negative Matrix
Factor Deconvolution [16]; however we consider the problem
of storage/transmission as well. SNMF builds on instantaneous
quantized and Integer Matrix Factorization (IMF), [17], [18].

Contribution: We show that the elements of the matrices
W and H learned by SNMF, are chosen from a set of
symbols, which typically has a small cardinality. Moreover,
restricting the elements of W and H to this symbol set does
not significantly affect the accuracy of the decomposition. The
motivation for SNMF is that the smaller the symbol set, the
more likely the solution is to be amenable to compression: it is
simpler. Putting this together, we demonstrate that compression
can be achieved without significant loss of performance. With
regard to the CNMF literature [16], the symbol set cardinality
of the factors W and H has not been considered as a problem
constraint. In short, we exploit Occam’s razor three times. 1)
we learn a low rank representation; 2) we learn parsimonious
activation functions of the underlying parts by using a convo-
lutive generative model; 3) we express the factorization using
a simpler symbol set which has a small cardinality.

Organization: Section II reviews NMF and CNMF. We
describe the difference between these mixing models using
synthetic audio captured at acoustic sensors. Section III con-
tributes SNMF. Section IV analyzes the performance of SNMF
on a noise burst data-set, an evolving spectrogram data-set
and speech from the TIMIT database. We demonstrate that
an increase in storage/transmission is possible with SNMEF,
without incurring a significant cost in decomposition accuracy,
by learning spectral features on speech captured on a single
channel acoustic sensor. We conclude by discussing the bene-
fits of SNMF in a networked sensors scenario in Section V.

II. SENSING AND LEARNING SET-UP: NMF

Consider the scenario in Fig. 1. A single channel acoustic
sensor captures an audio signal at 16kHz in the “Learning
Features in Acoustic Scene” area of the network and computes
a magnitude spectrogram V/, either on the sensing platform, or
some other intermediate gateway to the rest of the network. We
use a Hamming window with a time window of 1024 samples
and the signals are sampled at 16kHz in the remainder of this
paper. The time windows have an overlap of 512 samples. Note
that this set-up may be optimized for near-real-time sensing
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Fig. 2. Spectrogram of a signal composed of band-limited noise bursts (top
row). NMF of this signal: The two learned basis functions are illustrated in
row two; The activations of these basis functions are illustrated in row three.

and learning. An alternative analysis function (to the discrete
Fourier transform) may be used depending on the statistics of
the signal ensemble. The matrix V' € RM*N is a frequency-
by-time matrix, where M = 513 is the number of retained (for
learning) frequency bins (due to the symmetry of the discrete
Fourier transform), and N is the number of time windows
captured during the period the sensor is capturing audio. The
sensor captures audio intermittently either on a duty cycle
in a monitoring scenario, opportunistically (based on a voice
detection or activity protocol), or in response to an interaction
with a user. It has been argued in the literature [16] that each
component in the NMF of V' corresponds to an auditory object.
We focus on the problem of learning these objects using the
convolutive extension of NMF, namely CNMF, which allows
these objects to have a temporal structure.

A. Non-negative Matrix Factorization

Given the sensed NN magnitude spectrogram V € RM*N
NMF approximates V as the product of two element-wise NN
matrices, V.= WH. The columns of W € RM*E zre audio
features and the rows of H € R are the activation patterns
of these features in V. The goal of NMF is to learn an accurate
low-rank representation, that is, R < M, N. Approximation
error is measured below using a generalized version of the
Kullback Leibler Divergence (KLD).

. v .
D(V||V):||V®log§—V+V|\ (1)

Element-wise operations are frequently used. Hadamard mul-
tiplication and division are denoted ® and Z. Multiplicative
updates, [4], [18] and [19], have played a crucial role in
the uptake of NMF in recent years. Their appeal lies in
the fact that NN constraints do not need to be explicitly
programmed into the solver. Furthermore, the multiplicative
algorithms presented by Lee and Seung are guaranteed to
converge monotonically. One of the aims of NMF is to learn
a low-rank solution. When R < M, W is under-determined:
NMF reveals low rank features of the data.



B. Convolutive Non-negative Matrix Factorization

The instantaneous NMF mixing model does not capture
the temporal extent of features. This limits its suitability for
many real-world audio signals. For example, multiple obser-
vations of speech over nearby intervals of time have temporal
relationships. These temporal relationships motivate the use
of a convolutive generative model to extend ICA and NMF
mixing models for speech [20], [16] and [21]. NMF models
the sensed magnitude spectrogram V' as the combination of a
set of objects (single spectral features) and the activations of
the each of these features in time. Convolutive NMF models
each object as a sequence/cascade of spectral features and the
activation of this cascade in time. Instead of activating each
time slice (spectrum) of an object individually, we activate an
entire cascade of basis functions:

- -1 t—
VaV-= Z W, H . )
t=0

The matrix V € RM*N js NMF’s magnitude spectrogram

estimate and W; € RM*E and H € RF*Y are its 1) tem-

porally extended features and 2) activations of these cascades

of spectral features. T is the number of time slices in each

spectral cascade. The vector W[, r| describes the spectrum

of the r-th object ¢ time steps after the object has begun.
t—

The time-shift operator (-) plays a crucial role: it moves its
argument ¢ places to the right. It is not a circular shift operator:
the left most-columns are filled with zeros. CNMF’s updates,
expressed below, monotonically decrease the objective. Here
1y«n is an M x N matrix of ones.

WT ;t Vt*}T
t |v v H
H:H®T7’ Wt:Wt®ﬁ 3)
Wi laxn lyxy H

C. Learning objects in auditory spectrograms

The difference between NMF and CNMF is explained by
contrasting Fig 2 and 3. These examples are available in [21].
They provide a benchmark from the literature for comparing
SNMF with NMF and CNMF [21]. In Fig. 2, two band-
limited noise bursts are present in the magnitude spectrogram
(centered around 2kHz and 6kHz). NMF is applied with R = 2
and the basis functions learned are shown along with their
activations in the spectrogram. NMF correctly reveals that the
magnitude spectrum, V is composed of two hidden parts —the
spectra of the noise bursts. In Fig. 3, instead of noise bursts,
two frequency sweeps centered on 2kHz and 6kHz make up the
magnitude spectrogram V. The application of CNMF, which
allows the factorization to capture temporal evolution of the
spectra (with temporal extent 7' = 32 and rank R = 2)
reveals the cascade of spectra which form the auditory features.
The activation functions, in row 3, are parsimonious. Only
the starting point of each auditory object is activated. Here,
although it is not shown due to space constraints, NMF fails
to learn the correct decomposition. CNMF learns the correct
decomposition. In this paper we attempt to learn the correct
decomposition in each case, but in a manner that ensures that
the learned solution is more efficient for storage.

III. STORABLE NMF

Non-adaptive Quantization: Taking a nonlinear approxima-
tion of each element of W, and H to improve the compress-
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Fig. 4. Effect of tuning the step-size: Decreasing the step-size A, increases
the resolution of the quantized vector and more bins are non-zero.

ibility of the factors introduces error into the factorization.
For example quantizing the factors produced by the updates
(Egn. 3) at convergence using one quantization step-size A*
for all rows and columns of the factors, where |-| denotes
rounding, produces the new factors

- 1 1 A 1 1
The matrices W; and H are element-wise NN and drawn
from a subset of the integers Z, which we denote I. This
indiscriminate, fixed quantization is inadequate as differences
in the dynamic range of the values used to capture each
component of V', the matrices A,, may vary significantly.

r-1 t—
A, =) Wil H [r,] Q)
t=0

This affects compression efficiency as the choice of elements
of the set I is not considered by the updates (Eqn. 3); A good I
from a compression perspective may not be selected if it affects
the quality of the factorization —this need not be dichotomous.
Because one quantization step-size may not be appropriate for
all components, certain components of the factorization may
be indiscriminately penalized over others. Recall that NMF is
non-unique [6]. The learned factorization is composed of the
sum of members of the set of all possible components (where



€ is an arbitrarily small accuracy target)

Q = {A,|A, contributes to any approximation

V that satisfies ||V — V|3 < e} , (6)

The dynamic range of the elements of the members of 2
may vary considerably. We desire a factorization that selects
components from 2 that are compressible and accurate. The
quantization functions in (Eqn. 4) may be adapted (one for
each factor) by tuning the step-sizes and the non-linearities,
||, to achieve this. In Fig. 4, the values from a continuous
rectified vector & ~ Ny (4,1) are quantized using a step-size
from the set {1,.5,.1,.05}. Histograms of these new values
are illustrated in rows 1-4. Decreasing the step-size, increases
the resolution of the quantized vector (spreading it over more
bins), which affects the cardinality of the symbol set I. SNMF
trades-off the resolution/cardinality of each of the different
components of the factorization.

Adaptive Quantization: We start by adapting the quantization
function’s step-size for each column of W, and each row
H. We interleave this adaptation with SNMF, as SNMF
converges. This means the components chosen from the set {2
are quantized (by an adapted quantization function). They are
element-wise integer, and generally more compressible, e.g.

2 Wt [I, 7'] 1
W, = t 7
t[?r}g { Aw[T‘] +2 7VT7 ( )
5 H[r,: ] 1
Hir,: = . 8
e | A + 5] ®
The cardinality of the set I, denoted ||, is generally minimized

as the set I is now indirectly learned with the factorization.

H:{ U Wt[m,r]}U{gI:I[r,n]}. )

m,r,t

Initially I is a subset of the NN real numbers, I C R,. At
convergence, it is a subset of the positive integers I C Z,. In
the following problem statement diag(x) places the elements
of its argument, x € REXL on the diagonal of an R x R
matrix. The vector 1, denotes a M x 1 vector of ones.

Definition 1: SNMF factorizes the matrix V € RJAV[ xN
into the product of two element-wise integer matrices W, €
IM*E and H € 1"V and two diagonal matrices diag(A,,)
and diag(A},), where A, A;, € RF*! such that the KLD
(Egn. 1) is minimized. The SNMF mixing model is

B T-1 t—
V=> Wdiag(A,)diag(Ay) H . (10)
t=0

In other words, the matrix V' is approximated by the sum of
quantized components V' = >~ A,, where

T-1 t—
A= AL ALY Wi H [ ()
t=0

Appealingly the majority of the elements of each component
t—

in this model are integer, W¢[m,r|, H [r,n] € 1 and the
quantization step-sizes A, [r], Ap[r] € R, though real-valued,
are few, and are adapted to minimize the cardinality of L.

Quantization Step-size Updates: The quantization step-sizes
Ap[r] and A,[r], in the convolutional mixing model in
(Egn. 10) decrease the objective in (Eqn. 1) and produce NN
updates if they are updated using

13, % ® | Wl r]Awr] tIC_f [r, :}H 1n
Aplr] + Aplr] —
17 15 Wels Ay ] H [, :]] 1y
(12)
13 % @ | S Wil AR H [r, ]H 1y
Ay lr] + Aylr] —
13 zT;ol W, r]Ap[r] H [r, :}} 1y

13)

Discussion: Alternating between 1) learning a quantization
step-size for each row and column of H and W, and 2)
learning the factors H and W, has the added advantage
of allowing the factors to absorb the distortion introduced
by quantization, and the quantization functions to absorb the
distortion introduced by the most recent estimates of the
factors. The precedent for alternating minimization of this form
is the way that CNMF’s W, factor is updated based on the
most recent H factor and vice versa. Interleaving adaptive
quantization with CNMF tends to allow the quality of the
factors and the quantization function to improve as the factors
and quantization functions converge. IMF [18] describes this
type of interleaved optimization for the first time. In this
paper we also consider the effects of features vectors that
have temporal extent in the hope that a more appropriate
representation is learned for features that evolve with time, and
greater compression achieved. We adapt a quantization step-
size for each of the R CNMF components, A, as the factors
and quantizers converge so that SNMF is flexible enough to
account for the dynamic range of the components of V.

Randomized Quantization Functions: The quantization step-
size updates in (Eqn. 12,13) decrease the objective. We must
also consider the effect of the non-linearity |-| if we are
to maintain the monotonic convergence property of SNMF.
The non-linearity is applied after each CNMF W, estimate
(Egn. 3) is computed. It is applied to the average of the
activation functions computed by CNMF (Eqn. 3). We describe
the new SNMF extended updates in Table. L.

By quantizing the updated factors (using Eqn. 3) without
considering the cost function, we may sacrifice CNMF’s mono-
tonic convergence property. We use the following heuristic,
randomized quantization, to improve the convergence proper-
ties of SNMF. The success of our experiments supports the effi-
cacy of approach. Each element of an updated factor, e.g. W[:
,7] in (Eqn. 14) is quantized using a uniform rounding function
and an adaptively tuned step-size Ay [r]. The output entropy
of a uniform quantizer is asymptotically smaller than that of
any other quantizer, independent of the density function of the
error criteria according to Gish and Pierce [22]. Quantization
is performed element-wise. Quantization of certain elements of
W may cause the KLD to increase. In general the step-size
is much smaller than corresponding values of the factors, or at
least its important (big) entries e.g. Ay [r] < Wy[:,r]. The
only purpose of quantization in SNMF is to produce a mapping
from each of the real-valued factor elements to the integer set



TABLE 1. SNMF UPDATE RULES.

Definition 2: SNMF W -update: Update the factor
t— T
¥ (diag(AH)H)
t—

1y xN (diag(AH)I:I)

W, = (V”vt diag(Aw)) ® (14)

Compute the non-linearity to generate a matrix of integers

Wolm, ] {L[m’ ]y EJMN

A, r] 2 1

Update Ay [r] for all r using (Eqn. 13). Re-scale A, so that lgAW =1.
Definition 3: SNMF H -update: Update H for all W,

(Weaine(aw) " [¥]

(W,, diag(Aw))T 1vxnN

H, = (diag(Am)H) © : (16)

Take an element-wise average of H; across ¢ and call it . Compute the non-linearity
to generate a matrix of integers

an

filrn] | B0 2 2

AH[T] 2

Update A g [r] for all r using (Eqn. 12). Re-scale A p so that 1£AH = 1.

I. We have freedom in how we apply element-wise rounding,
but desire monotonic convergence. If a given array of rounding

functions {% + %J causes the KLD to increase, we
w (7] . m,r,t . . .
randomly substitute in a number of new quantization functions

{M -1 , until the objective function is reduced

Aw[r] 2 m,r,t
by the new quantized factor. This randomization process is
controlled by Bernoulli trials. The probability of success, p,
controls the number of quantization functions that are switched
to round-down functions. In our experiments initially a number
of Bernoulli trials, over a range of probabilities p, are required
to obtain a good first initial array of quantization functions, but
once this good initial factorization is found, surprisingly few
random quantization arrays are required after this to ensure
monotonic convergence. This is not surprising because SNMF
quickly learns good quantization step-sizes and factors, which
in turn allows the non-linearity settle down. In our experiments,
randomized quantization is always more efficient than selecting
and testing all 2M 7" (or 28N) possible quantization functions.

NLA: Uniform mid-tread rounding quantization is chosen
because it maps a NN real-valued argument to the NN integers,
f: Ry — Z,, which compliments SNMF’s NN constraints.

W[m,r] 1J
m,r,t

Wim,r] — \‘—i- (18)

Ay[r] 2
Similar to the SNMF and step-size updates, any NN argument
(to Eqn. 18) returns a positive value. Care must be taken when
applying round-down quantization for real-valued inputs which
are close to zero, as a round-down may produce a negative
valued integer, and thus an unfeasible SNMF.

SNMF Algorithm: The KLD objective is minimized —such
that W, € TMXEXT and H € IP*N_ by interlacing two
new update rules for the parameters A,, and Ap, with the
updates for W and H, presented above. The SNMF algorithm
alternates these update rules in an iteration until some conver-
gence condition is met (a number of iterations, or an accuracy
criteria € has been met). We note that the randomized quanti-
zation procedure does not guarantee the selected quantization
function minimizes the objective; however, the success of the

TABLE II. PERFORMANCE COMPARISON NMF vs SNMF (T = 1)
Algorithm NMF SNMF (T'=1)
Number of unique elements of W/W 1026 138
Number of unique elements of H/H 874 19
File-size (gzip / not gzipped) in bytes 17704/35839 1659/35890
Compression ratio 10:1
SNR (dB) 6.58dB 6.6dB

TABLE III. PERFORMANCE COMPARISON CNMF vs SNMF (T = 32)
Algorithm CNMF SNMF (T = 32)
Number of unique elements of W/W 32832 155
Number of unique elements of H/H 436 21
File-size (gzip/ not gzipped) 300239/625609 13841/674142
Compression ratio 20:1
SNR (dB) 12.5dB 11.56dB

approach in the numerical evaluation section supports the claim
that an acceptably good decomposition is learned. SNMF’s
factorization is within 1-3dB of CNMF’s solution.

IV. EXPERIMENTAL EVALUATION

The goal of these experiments is to compare the perfor-
mance of NMF and CNMF with SNMF, on audio segments
for an in-network learning task to establish what the potential
benefits might be in a networked-sensor scenario. We evaluate
the accuracy of the factorizations and the compression ratio
achieved quantitatively and the similarity of the SNMF solu-
tion with the NMF/CNMF solution qualitatively. We use the
tables (Tab. II and III) to demonstrate that: 1) SNMF learns a
solution which is as accurate as NMF but more compressible
than NMF’s solution; and 2) SNMF learns a solution which
is as accurate as CNMF but more compressible than CNMF’s
solution. In short we show that we can learn a factorization
for instantaneous and convolutive mixing models, which are as
useful as the traditional methods in the literature, e.g. NMF and
CNMEF, but they are also more amenable to efficient storage.
Finally, we examine the cardinality of the symbol sets of
the different factorizations to explain where the source of the
performance gain achieved by SNMF originates.

A. Set-up for Synthetic Data Analysis and Compression

We run all variants of NMF for 100 iterations on the
noise burst data-set and the evolving spectrum data-set in this
section (cf. Fig. 2 and 3). This choice is determined by an
inspection of the convergence plots (obtained from a number of
randomly initialized trials for all techniques). The convolutive
extensions (both compressive and traditional variants) learn
basis functions of temporal extent 7" = 32 (= 1 second). The
rank of each technique is set to R = 2. It should be noted that
increasing R improves performance. This choice is justified
by inspection of the data-set and to be consistent with [21],
our performance baseline. These first results are determined
for synthetic wav files. In the cases presented below, the
average Signal-to-Noise-Ratio (SNR) of the decompositions
is poor as a rank-2 decomposition is learned; however, these
synthetic data-sets have the advantage of providing an intuitive
demonstration of how (and why) NMF works. These data-sets
have been used to demonstrate the operation of CNMF in the
paper [21]. Learning a rank-2 decomposition also makes it
easier to show the factors learned by traditional NMF and its
compressive extension side-by-side.

Evaluation: Tabulated performance metrics are averages ob-
tained from Monte Carlo trials (We truncate accuracy of the
metrics) The Signal-to-Noise-Ratio (SNR) of both the tradi-
tional and compressive matrix factorizations is approximately



equal in Table II and III. There is no accuracy penalty incurred
by learning SNMF instead of NMF/CNMF. The SNR for NMF
is 6.58dB versus 6.6dB for SNMF (1T' = 1). CNMF and
SNMF (T = 32) learn signal representations of SNR 12.5dB
and 11.57dB respectively. When the rank of the factorization
increases, the SNR of both SNMF and NMF/CNMF increases.
From the perspective of compression, the real valued factor
W of NMF is composed of elements from a set which has
a significantly larger cardinality than the integer-valued set
which is used to represent the integer-valued factor W, e.g.
1026 versus 138 elements, for SNMF (7' = 1). Similarly, the
cardinality of the symbol set used to represent the real-valued
factor H for NMF and its integer-valued counterpart H for
SNMF is 874 versus 19 elements. The efficiency of the SNMF
(T' = 1) representation is captured by running gzip on the
SNMF (T = 1) and NMF data-structures presented below.

Definition 4: SNMF-data-structure: SNMF is rearranged
as the sequence:

S = M|R|IN|T|Wi[:, 1]\W1[1, 2| ;IW2[1, -1
H{L | H[2, ]| Ay Ay (19)

Definition 5: NMF/CNMF-data-structure: A  similar
data-structure is used to represent NMF and CNMF.
S = M|RIN|T|W [ W[, 2] - [Woal:, 1] - |
H[L:|[H[2,). (0)

The size of the file required to store NMF and SNMF (T = 1)
before gzip is run is 35839 and 35890 bytes respectively —this
file size is approximately the same for both types of factoriza-
tion because double-precision floating points numbers are used
to store the integer matrices in our Julia [23] implementation
of SNMF (T = 1) and SNMF (T = 32). However, when gzip
is run on NMF and SNMF (T = 1), the SNMF (T' = 1)
file size reduces dramatically to 1659 bytes, compared to the
file size of NMF, which is 17704 bytes. A similar bandwiAdth
saving (a factor of 10) is obtained when the data-structure S is
packetized. It is reasonable to posit that this bandwidth saving
is achieved because of the reduction in the cardinality ofA I,
which is the union of the symbol sets used to represent W
and H above.

To give an initial qualitative demonstrate that SNMF factor-
izations are as useful as traditional NMFs, in Fig. 5 we overlay
plots of: column one of NMF’s W' matrix with column one
of SNMF’s (T' = 1) W matrix; column two of NMF’'s W
matrix with column two of SNMF’s (" = 1) W matrix; row
one of NMF’s H matrix with row one of SNMF’s (T' = 1)
H matrix; and finally, row two of NMF’s H matrix with row
two of SNMF’s (I' = 1) H matrix. In each plot the vectors
are normalized (to sum to one) and thus the amplitude of
the spectra of W and W and the assignment strength of the
activations H and H are not shown. Fig. 5 illustrates that both
NMEF and SNMF (7" = 1) yield almost identical factorizations;
and the objects are successfully separated. The only discernible
difference is that SNMF (1" = 1) tends to over-estimate small
values (cf. the activation vector plots in Fig. 5). This overesti-
mation is an artifact of the mid-tread method of quantization
deployed, which avoids introducing negative entries into the
factors. It explains the < 1db difference between the CNMF
and SNMF’s factorization SNR.
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Fig. 5. Band-limited noise burst data: the two NMF basis functions are
illustrated in row one. SNMF’s (1" = 1) basis functions are overlay-ed. NMF
and SNMF (T'" = 1) yield very similar functions. The activations of these
basis functions for SNMF (7" = 1) and NMF are illustrated in row two. The
factors are almost identical.

To underline why SNMF (7" = 1) is more compressible
than NMF, in Fig. 6 we plot histograms of the entries of
SNMF’s (T' = 1) basis functions in row one, and histograms
of the entries of NMF’s basis functions in row two. SNMF
(I' = 1) produces an integer-valued matrix W, which has
values clustered about one integer-valued histogram bin. The
set of bins for NMF’s factors is the real-line. Because the
symbol set of W is unconstrained, typically each value of
W is unique. Using an element-wise integer-valued mixing
model affects the entropy of the learned factor, producing
a more compressible vector in general. The basis functions
in Fig. 5 are almost identical for SNMF and NMF. The
histograms of symbol sets used to represent them using SNMF
and NMF are completely different. In general most of the
entries of SNMF’s basis functions are close to zero, which
explains the peak in the SNMF (7' = 1) histogram (close to
zero). A selected few histogram bins (corresponding to higher
magnitudes) are activated by SNMF. NMF activates a bin per
magnitude value of the basis functions. SNMF removes this
redundancy without incurring significant error into the learned
basis function (cf. Fig. 5). Note that SNMF was within 1dB
of the NMF solution in > 90 % of our trials. A similar
quantitative analysis is summarized for CNMF and SNMF
(T = 32) on the evolving spectrum data-set in Table III. The
main points of this description are summarized as follows.
The gain in compression is twice that of the gain achieved by
SNMF (T = 1) over NMF. This increase can be attributed to
the significant reduction in the number of elements required
to represent W versus W, e.g. 32832 versus 155 elements. It
is reasonable to assume that this improvement is due to the
introduction of basis functions with temporal extent T' = 32.

The Data Sets the Compressibility: in the next section we
show that the actual improvement is due to the structure of the
data. Crucially, SNMF learns the appropriate symbol-set for
the data. It does not explicitly optimize compressibility, but
removes needless redundancy from the CNMF factorization,
but no more. The improvement in SNR for both CNMF and
SNMF (T = 32) over SNMF (1" = 1) and NMF above is due
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Fig. 6. Histograms of the elements of SNMF’s (T' = 1) basis functions W
and NMF’s basis function W. The number of bins of the histograms associated
with SNMF (T" = 1) is smaller than for NMF. NMF’s basis function elements
only have one element per bin.

TABLE IV. EFFECT OF T ON CNMF VERSUS SNMF (1 < T < 7)
CNMF SNMF CNMF SNMF
Algorithm T=1) | IT'=1) | (T =5 (T =5)
No. unique elements W/W 10260 1133 51299 374
No. unique elements H/H 1820 518 1818 54
File-size gzip bytes 112278 11442 489705 46389
File-size not gzipped bytes 232444 226119 1016321 1035544
Compression ratio ~9.8:1 ~10.6:1
SNR (dB) 11.61 11.19 25.4 24.14
Algorithm T=3) | T=3) | (T'="17 (T =17
No. unique elements W/W 30780 341 71820 421
No. unique elements H/H 1820 86 1801 47
File-size gzip bytes 305111 30243 682557 63990
File-size not gzipped bytes 632236 633672 1417852 1438136
Compression ratio ~10.1:1 ~10.67:1
SNR (dB) 15.63 15.83 29.28 26.5

to: 1) the temporal extent of the features and 2) the fact that
the data in the convolutive example assumes a small number
of amplitudes, relative to the dimensions of the factorization.

B. Speech: Data Analysis and Compression

Consider the performance of SNMF and CNMF on sample
data from the TIMIT database [24] in order to establish
whether or not the bandwidth savings achieved above are pos-
sible for real-world signals captured in a system of networked
sensors. We run all techniques for 500 iterations. We perform
Monte Carlo trials and average the performance statistics. The
TIMIT corpus of read speech is a widely used and accepted
speech corpus in the speech analysis community. We tabulate
the results obtained by running a comparison of CNMF and
SNMF, for one of the TIMIT speakers saying the sentence:
“She had your dark suit in greasy wash water all year” in
Table IV. To generate the tabulated results: 1) we use the
same spectrogram parametrization as in the previous set of
experiments; 2) we learn a decomposition of rank R = 20;
3) we vary the temporal extent parameter T = {1,3,5,7}
for a fixed rank parameter (R = 20). This has the effect of
increasing the SNR of the decompositions for both the CNMF
and SNMF algorithms, to an acceptable level, as the parameter
T is increased. It also allows us to determine the affect of the
temporal extent parameter on the symbol set cardinality of both
factors for this data-set, in isolation from the rank, R. It allows

us to consider the question: is the compression gain due to the
parametrization of the factorization, e.g. R and 7T, or due to
SNMF learning the appropriate symbol-set for the data.

Symbol Set Cardinality: The number of unique elements of
W for NMF and W for SNMF increases as 7' increases. The
growth in the symbol set cardinality of W, for CNMF, is a
linear function of T". We conclude that the characteristics of the
data-set do not play a large role in determining the symbol set
cardinality for CNMF. We believe that this is a disadvantage
when this type of learning algorithm is required in a system
of bandwidth and storage restricted networked sensors. The
cardinality is approximately M x RxT irrespective of the data-
set. The growth of the cardinality of the symbol set of W is not
a linear function of 7. Instead, we posit that it is a function
of the complexity of the features learned, and that the data
plays a major role here. Samples of the symbol set cardinality
as a function of T are listed as follows (7', cardinality of
W, for all t): (1,1133), (3,341), (5,374) and (7,421). We
conclude that certain parametrizations achieve a better symbol
set cardinality for this particularly data-set; however, this does
not necessarily determine the level of compression achieved.
A similar analysis follows for the CNMF factor H and the
SNMF factor H. The symbol set cardinality of the factor
H is approximately 1820 irrespective of the temporal extent
T for CNMF, which is problematic. Secondly, the symbol
set cardinality of H is approximately fixed even-though the
symbol set cardinality of W is linearly increasing with T
This leads us to infer that it is not the complexity of the
data that sets the symbol set cardinalities of both factors,
but the parametrizations of CNMF. We conclude that CNMF
learns factorization with significant symbol-set redundancy. In
comparison, there is a decreasing trend in the symbol set
cardinality, of SNMF’s H, e.g. (1,518), (3,86), (54,5) and
(47,7), which leads us to believe that it is a combination of the
data and the parametrization that sets the symbol set cardinality
of SNMF. SNMF is the first algorithm that attempts to learn
the appropriate symbol set for convolutive mixing models.

V. BANDWIDTH, LEARNING & LATENCY

In this paper we demonstrated the performance of SNMF
using a single channel acoustic sensor. Stereo recordings on
everyday sensing devices typically perform mono recordings
and produce identical copies of the single channel recording
on both of the stereo channels. As this is generally the case we
cannot appeal to additional information from a second channel.

Processing time vs Bandwidth: In practice modern computers
are fast and frameworks such as MapReduce [25] improve
computation speeds; however many IoT sensing devices may
have orders of magnitude less processing power and may
require that processing is performed on a local gateway
or dedicated learning server. We consider the case where
sensing is performed using a 1-channel microphone on a
(standard) laptop computer. A modern laptop might have 8
cores operating at 3GHz, each core capable of 4 floating
point operations per clock cycle, providing a peak performance
of 96GFlops. Our parametrization of the discrete Fourier
transform yields N windows of 513 frequency bins, where
N is determined by the window overlap and the recording
period. This parametrization may be optimized for different
sensing platforms. The complexity of the SNMF update is
critically dependent on R,T’, the number of iterations and
also on the number of random trials required for randomized



quantization. Typically, randomized quantization only affects
the first 5 iterations, and pre-computed template quantization
functions may be used instead. Convergence in tens of seconds
is not unreasonable. We argue that floating point performance
analysis is insufficient to capture the constraints imposed by
real systems: the limiting factor is not computation, but rather
network limits on bandwidth and latency (cf. [26]).

Congestion and Storage Efficiency: Given a set of features
is learned at sensor A, congestion in the core of the network
may reduce the available bandwidth for transmission of the
features to sensor B. SNMF features and activation patterns
may be stored at an intermediate point and transmitted when
the channel is improved, which introduces considerable latency
as freshly learned features are unavailable at the point-of-
interest in the network. Reducing the size of the feature set
by a factor of 10-20 here is useful as we are transmitting less
data on a congested link. Even-though DSL connections are
asymmetric, the down-link connection from a local gateway to
sensor B may be congested due to the connection being shared,
simultaneously, with prioritized video or VoIP sessions. Note
that VoIP sessions are typically point-2-point, and that IPTV
may be multicasted or broadcasted. A SNMF feature sharing
scheme is likely to be a many-2-many sensor scheme, and
unlike IPTV, to be transmitted on an shared network. IPTV
providers do multicast content; however, a dedicated network
infrastructure is used to ensure low latency and packet drop
rates. The sensor networking application for SNMF we have
used to motivate SNMF is opportunistic; we cannot rely on
a guaranteed channel quality which implies that optimizing
the feature representation to minimize bandwidth is crucial.
Bear in mind that applications such as VoIP an IPTV have
real-time constraints, and the packet-flows associated with
them may receive higher priority routing paths through the
network during route-discovery, than SNMF packets. The up-
link connection from sensor A to the rest of the network may
also be congested due to the sharing of resources, inevitably
introducing latency. It may also be useful to cache features
locally (to a sensor) to improve higher level learning processes,
for example BSS and response times of services. Reducing
the data-size (obtained from a local cache) by a factor of 10—
20 (at the point where it is generated in the network) in a
monaural BSS scenario is appealing as typically < 10 speakers
are present. A 10-20-times increase in the number of features
per speaker available locally, when there are few speakers
present, is likely to have a great impact on separation. In future
work we will evaluate whether SNMF’s ability to allow us to
cache 10-20-times more features locally, improves separation
performance, and to what extent. We will also perform an
empirical investigation of the reduction in network load.

VI. CONCLUSION

SNMF addresses the problem of how to learn storable and
transmittable (convolutive) matrix factorizations. We show that
composing the factors from a smaller symbol set produces
compressible matrix factorizations. A factor of 10-20 storage
space (bandwidth) is saved. We make the following experimen-
tally supported claims: the symbol set of the factors learned
by SNMF is smaller than for CNMF; the compressibility of
SNMF is greater than a comparably dimension-ed CNMF; the
compressibility is not affected by an increase in the temporal
extent of the features; the error introduced into the factorization
by using SNMF instead of CNMF is relatively insignificant;
and finally, for a number of examples we demonstrated that

the factors learned by CNMF and SNMF are generally indis-
tinguishable. The storage and bandwidth savings achieved by
SNMF are significant and may lead to improved classification
performance in networked systems.
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