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Load-Adjusted Video Quality Prediction Methods for
Missing Data

Ruairı́ de Fréin
KTH Royal Institute of Technology, Sweden: rdefrein@gmail.com

Abstract—A polynomial fitting model for predicting the RTP
packet rate of Video-on-Demand received by a client is presented.
The approach is underpinned by a parametric statistical model
for the client-server system, namely the PQ-model. It improves
the robustness of the predictor in the presence of a time-varying
load on the server. The advantage of our approach is that (1)
if we model the load on the server, we can then use this model
to improve RTP packet rate predictions; (2) we can predict how
the server will behave under previously unobserved loads –a tool
which is particularly useful for network planning; and finally (3)
the PQ-model provides accurate predictions of future RTP packet
rates in scenarios where training data is unavailable.

Keywords—Video-on-Demand, Clouds, Network Analytics.

I. INTRODUCTION

The authors of [1] examined whether a client’s service level
metrics for Video-on-Demand could be accurately predicted
using metrics captured from the kernel of the server servicing
the requests. The authors of [2] demonstrated that load-
adjusted learning improved the predictor in [1] but did not
consider prediction when training data was missing. In this
paper we characterize the behaviour of the server irrespective
of the number of active user requests on the server. We show
that using a system characterization step allows us to improve
the prediction estimates. The application of Statistical Learning
(SL) for prediction in cloud and network environments is at an
early stage. Monitoring and predicting performance metrics for
clouds services is a challenging, open problem [3]. Running
software systems on general purpose platforms without real-
time guarantees, with the expectation that one can safeguard
revenues, is dichotomous. The video service level prediction
work of [1] is a timely contribution given that Cisco [4]
predicts that network traffic volumes in the order of tens of
exabytes are not that far off, and 90% will be video related
[5]. According to [1] a SL approach, for example Matrix
Factorization [6] or Formal Concept Analysis [7], is preferable
to developing and fitting complex analytical models for the
different layers of soft/hardware in these complex systems.
In terms of the practicality of this type of approach, the
authors of [8] make the case that modern multi-core (parallel
online) learning algorithms are limited by the bandwidth
bottleneck, and thus, overly complex SL algorithms may not
be suited for real-time cloud services. In terms of related
approaches, a method for identifying and ranking servers
with problematic behavior is proposed in [9]. The authors
use Random Forest classifiers to select candidate servers for
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modernization. A predictive model is then used to determine
the impact of modernization actions. A Support Vector Re-
gression predictor is used in [10] to perform lightweight TCP
throughput prediction. Prediction is based on prior file transfer
history and measurements of path properties. A method for
modeling application servers in order to detect performance
degradation due to ageing is presented by [11]. The authors
use classification algorithms to perform proactive detection of
performance degradation. Finally, the authors attempt to reduce
the size of the data-stream that is forwarded to an operations
support system by removing uncorrelated noise events in [12].
A heuristic cross-correlation function determines the degree
of inter-relationship between the events in the data-stream.
Little work has been done on dealing with the effects of
adaptive loads on these systems, in particular, on constructing
load-aware models with missing data as part of a prediction
systems. One of the first approaches by Zhang et al., showed
that Tree-Augmented Bayesian networks provide an effective
approach for identifying which low-level system properties are
correlated with high-level servlice level objective violations in
[13] in the presence of changing workloads.

Set-up: In Fig. 1 server resources are shared between multiple
clients. The video server (LHS box) delivers video to the target
client machine (RHS Upper); however, a number of other
clients also use the server’s resources. They are represented
by the load generator (RHS Lower box). The number of
clients using the video server changes with time, which makes
predicting the target client’s video quality challenging. We
desire a model that allows us to characterize the load’s effect
on the client’s video quality if we have knowledge of the kernel
metrics of the server delivering the video. Then, irrespective
of the number of users on the system, we would also like to
be able to predict when the client’s video quality will deviate
from its ideal performance. In order to match-up the server
and client observations, the clocks of the server and client
are synchronized using NTP1a. Samples from the server and
the client’s machine are collected every second. The client’s
service level metric, the RTP packet rate, yi at time i is
captured using VLC media player1c, which provides Video-
on-Demand requests in [1]. Features refer to metrics on the
operating system level for example, the number of active TCP
connections on the server. The feature set xi[n] is constructed
using the System Activity Report1b (SAR) on the server.

Contributions: (1) A parametric statistical model is con-
tributed, which has sufficient flexibility to describe the be-
haviour of the server’s kernel metrics. This model explicitly
accounts for the load on the system (when it does or does not

1ahttp://www.ntp.org; 1bhttp://linux.die.net/man/1/sar;
1chttp://www.videolan.org/vlc
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Figure 1. Prediction Scenario: A target client and multiple other clients (rep-
resented by the load-generating machine) share the video server’s resources.

affect a given kernel metric). In addition, a statistical generative
model, which captures the dependence between the server’s
behaviour and the client’s service level metric, is contributed.
(2) A polynomial system characterization technique, namely
the PQ-model, is proposed. This model accurately models the
expected behaviour of the server/client machine under different
load conditions, and also, the expected volatility in their
behaviour. (3) A prediction model, which incorporates system
characterization into the prediction model, is contributed. In
Section II we propose a generative model for the observations:
the server and client service metrics. We develop a system
characterization model in Section III which describes how
the server and client’s service level metrics behave under
different load conditions. We extend this characterization into
a prediction model for the client’s service level metric. We
evaluate these models empirically in Section IV.

II. PARAMETRIC STATISTICAL MODEL

When a client requests Video-on-Demand (VoD), the re-
sponse of the server, with respect to kernel metric n, the n-th
feature, to this request for video at time i is expressed as:

xi[n] = ûi[n] + εi[n], where i ∈ Z,xi[n], ûi[n] ∈ <. (1)

The first term, ûi[n] in (Eqn. 1), an indicator function, rep-
resents the increase in the usage of the n-th feature for the
duration of the client’s session. The second term εi[n] captures
the non-ideal behaviour of the server’s n-th feature. It is this
type of error that we would like to be able to predict. When
multiple users request VoD the expected usage of the n-th
resource is represented by the load signal li[n] = αnK(i).
The nonnegative scalar αn is the usage of the n-th feature by
one user and K(i) denotes the number of active user requests
at time i. The response of the n-th feature to this load is

xi[n] = li[n] +

K(i)∑
k=1

εi[n, k] = li[n] + x̂i[n]. (2)

Here the term x̂i[n] =
∑K(i)

k=1 εi[n, k] represents the sum of
all of the non-idealities, due to all of the active user sessions
on the server at time i, e.g. K(i). The service level metric,
the RTP packet rate in this paper, measured by the client of
interest is modelled by the linear expression

yi =
∑
n

w[n] (li[n] + x̂i[n]) = αyK(i) + ŷi. (3)

This expression is composed of the sum of a load term αyK(i),
where αy represents the affect of one user request on the RTP
packet rate and K(i) is the load trace. In addition, ŷi is the
aggregate deviations signal, which represents departures from
the ideal performance of the system measured by the client.
We desire a system that predicts, ŷi. To do this we need to
extract the deviations from the ideal performance component
signal, e.g. x̂i[n] and ŷ, from the load component li[n], and
predict how the deviations (alone) affect the RTP packet rate.
In summary, when the system is behaving in an ideal manner
the RTP packet rate at time i, e.g. yi, is modelled as a weighted
sum of the expected usage of each of the server’s resources,
yi =

∑
n w[n]li[n]. There is no uncertainty in how the server

will behave, ŷi = 0,∀i. All that is required to obtain good
estimates of the RTP packet rate, is to measure the usage of
each resource type for a given number of co-incidental user
requests using training data, and then to read-off what that
value should be from a look-up table during the prediction
step. If the system is not ideal, some of the server features
experience deviations from their ideal behaviour, x̂i[n]. The
goal of this paper is to predict how these deviation signals,
x̂i[n], affect the RTP packet rate.

III. SYSTEM CHARACTERIZATION: PQ-MODEL

We present a polynomial statistical system characterization
model. It allows us to answer the questions: (q1) “What is the
expected effect of k active users on the RTP packet rate of the
observed client?”; (q2) “What types of fluctuations should we
expect in the RTP packet rate for a given load on the system?”;
(q3) “If we have not observed the RTP packet rate when the
system is under the load k can we estimate what is would be?”
and finally, (q4) “What is RTP packet rate be at time i + 1
if we observe the kernel features at time i+ 1?” We evaluate
the efficacy of the model in the next section using the traces
generated in [1]. To characterize the system, using a real-trace
as training data, we generate the set of points corresponding to
a load of li = αyk for all values of k in the training data. We
denote this set H(y)|k. We model the characteristic behaviour
of the server by fitting a P -th degree polynomial through the
observations H(y)|k as a function of k, e.g. the number of
active users on the system.

y =

P∑
p=0

apk
p, and R2

a =
∑
i=1

[
yi −

P∑
p=0

apK(i)p

]2

. (4)

The residual of this approximation is given by R2
a and the

notation K(i) indicates the number of active user requests
at time i. The trace K(i) is obtained from the TCP socket
count of the server. The set of parameters θy = {a0, . . . aP }
that minimize the residual are obtained by deriving the partial
derivatives of (Eqn. 4) and setting them to zero,

∂R2
a

∂am
= −

∑
i

[
yi −

P∑
p=0

apK(i)p

]
K(i)m. (5)

We reformulate these systems of equations in matrix form –for
notational convenience– and then solve for a.

M =


1 K(1) . . . KP (1)
1 K(2) . . . KP (2)
...

...
. . .

...
1 K(T ) . . . KP (T )

 ,a =

ao
a1
. . .
aP

 ,y =

y1
...
yT

 (6)



We obtain the parameters in the set θy by computing

a = (MTM)−1MTy. (7)

We now answer q1 by plugging the value k into the polynomial
and examining the expected RTP packet rate ȳ(k)

ȳ(k) =

P∑
p=0

apk
p. (8)

Remark: We have presented a polynomial generalization of
the system in (Eqn. 3), where the first term is no longer
restricted to be linear in form. This added flexibility allows
us to model saturation effects using a higher order polynomial
yi = ȳ(K(i)) + ŷi. Note that we model discrete data using a
normal distribution because (1) in other scenarios, the service
metric that is modelled may be real-valued; (2) we choose
the normal distribution as a first-approximation, we does not
preclude further refinement of our approach using a more
suitable distribution; (3) we fit the P-th order polynomial to
the server’s kernel metrics, some of which are real-valued. To
consider q2, the fluctuations of the RTP packet rate for a given
load on the server, we generate the squared differences signal,

εy,i = (yi − ȳ(K(i)))2, (9)

by subtracting the expected RTP packet rate (Eqn. 8), given
the load is K(i), at time i, from the observed RTP packet rate
y, and model the signal εy,i using the Q-th order polynomial

εy =

Q∑
q=0

bqk
q. (10)

We solve for the parameters, b, by computing

b = (MTM)−1MT εy, (11)

where εy = [εy,1, εy,2 . . . εy,T ]T and b = [b1 . . . bQ]T . An
estimate of the expected fluctuation of the system, given a
k active user requests on the server, is obtained by computing

ε̄y(k) =

P∑
p=0

bpk
p (12)

We add the parameters b to the system characterization set
θy = {a0, . . . aP , b0, . . . , bQ} –a second order characterization
of the server. A similar modeling step may be taken for
each of the features x̂i[n] which results in the characteristic
set θn = {a0, . . . aP , b0, . . . , bQ}, where a and b have the
same role as before, and the feature index is denoted by the
subscript n. In conclusion the entire system is characterized
by {θy, θ1, . . . θn, . . . θN}.

Remark: We have implicitly assumed that the samples used
in the P-th order polynomial are iid. Fitting a Q-th order to
the squared residual signal implies that we do not believe
that this is the case. Inspection of the data illustrates that the
variance of the observations depends on the value of the load,
and thus the fit of the P-th order polynomial is affected. The
purpose of the system’s characterization is not to give an exact
characterization, but a good approximation to aid the prediction
step. The success of the prediction algorithm in the numerical
evaluation section supports our approach.

Figure 2. Boxplots and the 1st, 2nd, 3rd quartile of the underlying RTP packet
rates as a function of the number of active users sessions k. The expected RTP
packet rate ȳ(k) [blue] and ε̄y(k) [green-dash] are also illustrated.

Learning and Prediction: To perform prediction we learn the
weights that minimize the squared error in the approximation

yi ≈ wTxi. (13)

When, N = 1, we model yi with one feature xi and take a
maximum likelihood approach to obtain the best fit,

ηi = yi − wxi, where ηi ∼ N (γi, κi). (14)

If the mean and standard deviation of the random variables yi
and xi depend on the load, µy(k), µx(k), σy(k) and σx(k)
respectively, it follows that ηi ∼ N (µy − wµx, σ

2
y(k) +

w2σ2
x(k)− 2wCov(xi(k), yi(k))), which gives the likelihood

L =

T∏
i=1

1√
2πκ2i

e
− ηi−γi

2κ2
i . (15)

Remark: Another way of thinking about this likelihood func-
tion, is that it is composed of the product of a number of
translated and dilated likelihoods; one translation and dilation
for each value of the load k. In an attempt to remove the
dependence on the load, k, and thus to be able to use all of
the samples in prediction, we standardize yi and xi. For a fixed
value of the weight w, η ∼ N (0, σ2) where σ2 = 1+w2−2wρ
and ρ is the correlation between yi and xi. We assume the
correlation is the same irrespective of k. The log likelihood is

lnL = Const.− 1

2σ2

∑
i

(yi − wxi)2. (16)

When N > 1, for each value of the load we have the sets

{H(y)|k,H(xi[1])|k, . . .H(xi[n])|k, . . .H(xi[N ])|k}. (17)

For many of the features, the load signal component, K(i), is
present. It causes the distribution of the values of the associated
RTP packet rate and features to be translated and dilated.
We denote estimates of these translations and dilations, ȳ(k),
ε̄y(k), x̄i[n](k) and ε̄n(k) respectively. These estimates are
obtained by computing the P -th and Q-th order polynomials
described above, for set in the set of sets in (Eqn. 17). To learn
the mapping between H(y)|k and H(xi)|k for any load value
it is necessary to undo this translation and dilation for the RTP
packet rate and each of the features in turn. This mapping is
achieved for the service level metric and the n-th feature by

y′i ←
H(yi)|k − ȳ(K(i))

max(Re{
√
ε̄y,i(K(i))}, 1)

, (18)

x′i[n]← H(xi[n])|k − x̄i[n](K(i))

max(Re{
√
ε̄n,i(K(i))}, 1)

, (19)



Figure 3. Estimated standard deviation of the RTP packet rate vs. the number
of active user sessions k: green dashed line, using all of the data; and black
dashed line, in the missing data case.

and produces standardized random variables, y′i and x′i[n]. The
operator Re{·} returns the real part of its argument. To perform
prediction, we learn the weights, w, that minimize:

L′ =

T∏
i=1

1√
2πκ2

′
i

e
− η
′
i−γ
′
i

2κ2
′
i , where η′i = y′i −wTx′i. (20)

The argument, η′i ∼ N (η′i, κ
2′

i ), is normally distributed, with
mean η′i = µy′ − wTµx′ = 0, and variance κ2

′

i = σ2, the
variance of the linear combination of the features. Once we
have determined the weights that minimize the objective, w?

and obtained an estimate y′i+1 = w?x′i+1 we can undo the
effect of standardization by applying the inverse mapping,

yi+1 = y′i+1 max(Re{
√
ε̄y,i(K(i+ 1))}, 1) + ȳ(K(i+ 1)),

(21)
which scales the standardized estimate y′i+1, by the stan-
dard deviation estimate obtained from the training data√
ε̄y,i(K(i+ 1)) and adds the mean offset ȳ(K(i + 1)) for

a load of value K(i+ 1).

IV. NUMERICAL EVALUATION

We evaluate the PQ-model in two types of scenario: (1) We
observe the performance of the system for every load value in
the range, 19 ≤ k ≤ 90. There is no missing data in the
traces. The purpose of this evaluation is to demonstrate the
accuracy of the system characterization step. We establish our
ability to answer q1 and q2. (2) We are given limited training
data. We do not observe the behaviour of the RTP packet rate
for certain values of the load –the missing data problem– we
demonstrate our ability to answer q3. Finally, we evaluate q4,
the improvements gained in predicting the RTP packet rate by
including the system characterization step described above in
the prediction process. We pre-process the traces by removing
all non-numeric and constant valued features from the set of
server features. As a result of this pre-processing step we use
N = 231 features. We draw ≈ 50k samples under different
load conditions from the server and the client machine and use
a subset of these samples as training data and the remaining
samples subset is used as test data.

(1) Supervised System Characterization: We characterize
the performance of the server using the PQ-model above.
We illustrate the results for {P,Q} = {40, 24} and the
observations of the client’s RTP packet rate. We do not include
our analysis of each of the server’s features, but instead focus
on the client’s RTP packet rate due to space constraints. In
order to select the best {P,Q} we evaluate the quality of the

Figure 4. Predictions of the typical RTP packet rate and fluctuations in the
RTP packet rate for a range of unseen values of the load 41 ≤ k ≤ 59. The
expected RTP packet loss for the missing data case, ȳ(k), is indicated by pink
squares. The expected fluctuations, ε̄y(k) are indicated by black dashed lines.

fit achieved using different values of P independently of Q.
Once P is chosen we choose the Q that achieves the best fit.
Fig. 2 illustrates yi, where a box is constructed for each value
of the load. The load increases from k = 19 to k = 90 on the
x-axis. The boxplots provide a benchmark for the PQ-model.
We overlay a P-th order polynomial fit for the expected/ideal
RTP packet rate, ȳ(k), for each k using a blue line (in Fig. 2).

(1) The P-th order polynomial is approximately equal to the
median. The difference between the median and the P-th order
polynomial is explained by the median’s robustness to outliers.
There are more too-high outliers in the range 19 ≤ k ≤ 30 than
too-low outliers when k > 30. (2) The relationship between
the load and the client’s RTP packet rate is not linear. The
linearity assumption is reasonable in the range 19 ≤ k ≤ 30.
When the load is above k = 30, the server becomes overloaded
and the number of RTP packets that the user receives begins
to decrease. The linear model in (Eqn. 3) does not accurately
characterize the system. Fig. 2 gives evidence that a higher
order relationship gives a better system characterization. The
Q-th order polynomial, that models the deviation signal, εy,i,
is illustrated as an upper and lower range for the P-th order
polynomial, ȳ(k) ± ε̄y(k), e.g. two dashed green lines in
Fig. 2 (and in isolation in Fig. 3). The range of fluctuation in
the number of RTP packets the target client receives initially
increases as the number of clients increases. This relationship
is approximately linear in the range 19 ≤ k ≤ 30. However,
when k > 30 the fluctuation decreases. If the client receives
fewer packets because the server is saturated, it is reasonable
to assume that the range of fluctuations of the packet count will
be similarly reduced. (1) The Q-th order polynomial accounts
for the increase in fluctuation when the load is approximately
30 active user requests. Fig. 3 illustrates that the fluctuation of
the RTP packet rate is 70 packets when the server is serving
30 active user requests. It is 20 RTP packets when the server is
serving 19 active user requests. The Q-th order polynomial is
potentially an over-estimate of the fluctuation; this observation
is based on the fact that the 1st and 3rd quartiles are in general
closer to the median than the fluctuation estimate. (2) The
standard deviation of the RTP packet rate is clearly a function
of the load on the system, an assertion that contradicts the
claim that the standard deviation of the RTP packet rate is the
same, irrespective of the load on the system [1]. The PQ-model
allows us to rule out the use of a simple linear model.

Missing data System Characterization: We address q3 by
establishing our ability to estimate how the RTP Packet will
behave when a load we have not observed before is placed on
the server. This type of prediction problem is of interest from



TABLE I. COMPARISON OF ESTIMATES OF ȳ(k), WHEN k = 40 IS
INCREASED BY 2.5-37.5% CONSECUTIVELY WHEN (1) NO SAMPLES ARE

AVAILABLE FOR THESE LOADS AND (2) SAMPLES ARE AVAILABLE.

% 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5
Missing 133.7 119.9 110.6 105.9 104.4 104.5 104.1 102.1
All 136.9 124.5 114.9 107.9 102.8 98.8 95.3 91.7

the perspective of network planning and resource allocation.
From the point of view of the network manager, the ability to
estimate how a client will be affected if an existing server is
not supplemented by another server, when the load increases
by 10%, for example, is of interest. We assume that the service
level metric, yi, is only captured when the load on the system
is in either of the ranges 20 ≤ k ≤ 40 or 60 ≤ k ≤ 90. Instead
of using all 51043 samples from the traces to characterize the
system, we use 33294 samples. The goal is to estimate how
the client’s service level metric will typically behave in the
range 41 ≤ k ≤ 59. In addition we want to estimate what
types of fluctuations to expect when the server is under this
type of load. The PQ-model computed for the entire data-set
(along with the boxplots) are illustrated as before (blue line and
green dashed lines) in Fig. 4. To evaluate the predictive power
of the PQ-model, a P-th order polynomial is fit to the data-set
which is missing samples for loads in the range 41 ≤ k ≤ 59.
Pink squares denote the estimated ideal behaviour of yi in the
ranges 20 ≤ k ≤ 40 and 60 ≤ k ≤ 90, and also, in the range
41 ≤ k ≤ 59 where we have no observations of yi. The pink
squares are aligned with the P-th order polynomial computed
using the entire data-set and also the median of the boxplots.
The parameters used to fit these polynomials are P = 9 and
Q = 57. These parameters are chosen by evaluating the quality
of the fit of the P-th order polynomial to the samples, drawn
when 20 ≤ k ≤ 40 or 60 ≤ k ≤ 90, and then, the quality
of the fit of the Q-th order polynomial to the same samples.
The underpinning assumption is that if the fit is good when
the load is 20 ≤ k ≤ 40 or 60 ≤ k ≤ 90, it will also be good
when the load is 41 ≤ k ≤ 59.

This result has practical significance. Consider the follow-
ing resource allocation problem: if we have a good estimate
of how the RTP packet rate will behave when 19 ≤ k ≤ 40,
e.g. ȳ(k), we are then interested in predicting how the RTP
packet rate is affected if the load is 2.5-37.5% larger. Accurate
estimates of ȳ(k) facilitate improved network planning; one
action, for example, if our predictor tells us that the RTP packet
rate will be too low, is to deploy additional VoD servers. Does
our PQ-model give us a sufficiently good estimate when data is
missing to justify the cost of purchasing and deploying an ad-
ditional server? Table I compares the ȳ(k) estimates obtained
from a P-th order polynomial when no data is missing, namely
the row “All”, with a P-th order polynomial obtained obtained
when 65% of the samples are missing, namely “Missing”, and
none of the samples used lie in the range of loads of interest,
41 ≤ k ≤ 59. To put these estimates in context, an increase of
2.5% in the load corresponds to a load of k = 41 user requests;
an increase of 37.5% corresponds to a load of k = 55 users.
Table I demonstrates that the P-th order polynomial which
is fit to 65% gives estimates of the P-th order polynomial,
which is fit to all of the data, which are within 1-10 packets.
Moreover, we increased the load by up to 50% and the results
give approximately the same accuracy. Black dashed lines in
Fig. 4 illustrate the estimate of a Q-th order fit to estimate the
fluctuations of the server over the entire range: 20 ≤ k ≤ 40

TABLE II. COMPARISON OF ESTIMATES OF ε̄y(k), WHEN k = 40 IS
INCREASED BY 2.5-37.5% CONSECUTIVELY WHEN (1) NO SAMPLES ARE
AVAILABLE FOR THESE LOADS AND (2) WHEN SAMPLES ARE AVAILABLE.

% 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5
Missing 45.4 38.3 32.8 30.1 29.8 30.7 31.3 30.6
All 47.9 42.6 38.3 35.1 33.0 31.4 30.2 28.8

Figure 5. Effect of standardization on yi. Irrespective of the load on the
system, the samples are drawn from approximately the same distribution.

and 60 ≤ k ≤ 90, and also the range of loads for which we
have no samples, 41 ≤ k ≤ 59. The estimate is closely aligned
with the Q-th order polynomial fit using the entire data-set
in the range 20 ≤ k ≤ 53. The RTP packet rate fluctuation
estimate is heavily influenced by outliers above k ≥ 53. This
is explained by the fact that we have an uneven number of
samples for every value of the load. Table II demonstrates that
once again the difference in the estimates of the fluctuations
in the RTP packet rates are approximately 1-3 RTP packets.

In summary, the PQ-model may be used to predict the
typical RTP packet rate and the potential range of fluctuations
in the RTP packet rate of a target client even when a significant
proportion, 35% in the example given above, of the data
is missing, and in this particular case, no observations are
available for the load value in question. For example if the
number of active users is increased from 40 users to 51 users,
the RTP packet rate of the client is predicted to fall from a
level of 144 Packets to 104.5 ± 30.7 (when all of the data is
used to fit the model) or to 98.8± 31.4 (when some the data
is missing for the load values 41 ≤ k ≤ 59). The difference
between the typical RTP packet rate using the missing data
estimate 104.5 and the entire data-set 98.8 is small enough for
us to have confidence in making a good management decision,
e.g. deploying an additional server, based on the missing data
estimate. The two estimates of the potential fluctuations in the
RTP packet rate are within 1 packet of each other.

Remark: It is important to note that some of the features
assume discrete levels approximately. Fitting a smooth poly-
nomial function may not be the best approach in these cases;
however, exhaustively selecting functions to model features
may not be practicable and fitting a polynomial is computation-
ally cheap and fast. Secondly, some of the transitions between
the different levels of the x-boxplots may be quite sharp. A
polynomial fit may not accurately capture these transitions.
Numerical evaluations demonstrate that it is a good trade-off
between accuracy and speed.

Predicting Missing Data: We determine the accuracy of the
predictor for certain load values when training data corre-
sponding to these load values is missing. The goal is to predict
the value of the yi+1 using the features observed xi+1, when
observations for the load at time i+1 have not previously been
observed. That is, we evaluate the accuracy of the predictor



TABLE III. LOAD VALUES ktarget TESTED (ROW 1), THE NUMBER
SAMPLES PREDICTED (ROW 2) AND THE MEAN OF yi (ROW 3).

41 42 43 44 45 46 47 52 53 54 55 58 59
823 866 944 891 931 875 789 962 1006 984 999 1041 968
123 121 117 114 112 105 100 93 93 90 88 82 80

Figure 6. Boxplots (one for each value of ktarget) of the percentage absolute
error for each predicted RTP packet rate.

derived by minimizing the likelihood function L′. The flow
of control of these experiments is summarized as follows.
We observe features from the server and the client’s service
level metric at all times indices where the load is in the set
K = {k|20 ≤ k ≤ 90} \ ktarget. The index ktarget is the value
of the load which corresponds to the RTP packet rates we are
trying to predict. The load values tested are tabulated in row 1
of Table III. Row 2 lists the number of samples predicted for
each of these load values. We do not have any training data
(features and service-level metrics) for any of the load values
ktarget. We fit a P-th and Q-th order polynomial to the features
and service level metric for all samples corresponding to the set
K. These samples are the training data. This is a missing-data
problem as the P-th and Q-th order polynomials are learned for
all load values except for ktarget. We standardize this training
data and then learn the weights w that minimize the likelihood
function L′. We use these weights to generate predictions
of the RTP packet rate when the load is ktarget, using the
features observed at these times. In order to use the weights,
we standardize the features using the P-th and Q-th order
polynomial computed for the missing-data problem above. For
each of the sets of features at each sampling point, we generate
a standardized prediction for the value of the RTP packet rate.
We then dilate and translate (using Eqn. 21) the predictions
using the P-th and Q-th order polynomial computing for the
RTP packet rate above (for samples when the load is k ∈ K).

We evaluate the accuracy of these, I , predictions by
computing the absolute difference between the true RTP
packet rate (not standardized) and the predicted value of
the RTP packet rate which has the inverse mapping of the
standardization applied to it (Eqn. 21). We then normalize
the absolute difference by the average true RTP packet rate
and scale this fraction by 100 in order to obtain a percentage,
ei = 100I(|yi − y′i|)/(

∑I
i=1 yi). Fig. 6 illustrates boxplots

of the precentage asbolute error for each of the predicted
RTP packet rate values. For almost all load values, the error
in the prediced RTP packet rate for 50% of the predictions
is less than 10% of the mean RTP packet rate for yi. For
convenience, the mean of yi for each value of the load is
listed in row 3 of Table III. If the mean RTP packet rate
is 123 packets per second for a given load value, greater
than 50% of the predictions made have an error which is
less than 12 RTP packets. This result is remarkable given
that we have no training data for each of the load values for

which predictions were made. Moreover, the range of means
in Table III is 43 RTP packets and the range of RTP packet
rates observed is considerably higher. In summary we have
demonstrated that accurate RTP packet rate predictions can be
obtained even if there is no training data for certain load values
by using the PQ-model to characterize the system. In future
work we will develop strategies to counter-act the sensitivity
of the prediction algorithm to the inverse mapping described
in (Eqn. 21) and we will evaluate the PQ-model and prediction
in a wider range of prediction scenarios.

V. CONCLUSIONS

We proposed a generative model for the RTP packet rate
received by a target client who has requested VoD from a
server shared with other users. Unlike previous approaches, (1)
it does not assume that there is a linear relationship between
the RTP packet rate received and the load on the server; (2)
it accurately predicts ranges for the range of RTP packet rate
the client will receive, even that observations for that value of
the load have not been experience by the system. Remarkably,
good estimates are computed for these statistics, even when
the load is increased by 50%. (3) It accurately predicts RTP
packet rates in the absence of training data. We contribute
evidence that a linear model is inappropriate; we propose a
number of tools for network planning; and finally, for service
level prediction when there is missing data.
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