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Abstract An exact nonnegative matrix decomposition algorithm is proposed. This is
achieved by 1) Taking a nonlinear approximation of a sparse real-valued dataset at a
given tolerance-to-error constraint, ε; 2) Choosing an arbitrary lectic ordering on the
rows or column entries; And, then 3) systematically applying a closure operator, so
that all closures are selected. Assuming a nonnegative hierarchical closure structure
(a Galois lattice) ensures the data has a unique ordered overcomplete dictionary
representation. Parts-based constraints on these closures can then be used to specify
and supervise the form of the solution. We illustrate that this approach outperforms
NMF on two standard NMF datasets: it exhibits the properties described above; It
is correct and exact.
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1 Introduction

In a seminal paper by Lee and Seung, the notion of Non-negative Matrix Factoriza-
tion (NMF) was proposed as a way to find a set of basis functions for representing
non-negative data [10]. NMF, claimed Lee and Seung, is useful for image articu-
lation libraries made up of combinations of articulations and poses. They claimed
NMF found the intrinsic “parts” of these images. This idea of decomposing images,
financial time-series [5], or word corpuses into significant parts (basis functions)
and activations of these parts (indicator functions) in the data ensemble has been
enthusiastically applied; The application of NMF to Blind Source Separation (cf.
[15]) related tasks has been frequently reported in these proceedings [3, 8, 16].
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More recently, however, Donoho and Stodden posed the two following funda-
mental questions [1]:

1. “Under what assumptions is the notion of NMF well-defined, for example is the
factorization in some sense unique?”

2. “Under what assumptions is the factorization correct, recovering the right an-
swer?”

To begin to address these questions Donoho and Stodden developed a geomet-
ric view of the NMF generative model, and derived geometric conditions under
which the factorization was essentially unique. They also formulated a class of im-
ages which looked to satisfy these conditions. This class of images was created by
an NMF-style generative model, where all different parts –building blocks of the
images– were exhaustively sampled. They named this class of images a Separable
Factorial Articulation Family (SFAF). They claimed that NMF of images from this
family produced factorizations which were effectively unique.

By introducing one factor which did not obey the conditions of a SFAF –into
their ensemble of images that had the SFAF properties– Donoho and Stodden were
only able to produce an approximately correct NMF. The reason that this solution
was only approximately correct was that this pathological factor appeared as a ghost
function in each factor in subsequent decompositions. It is this ghost that we aim to
eliminate in this paper.

Contribution 1:

We show how to generate a truly unique solution to the pathological SFAF problem
proposed by the Donoho and Stodden, and call this approach Ghostbusters. This
is an important result: NMF is widely used. Having the ability –even off-line– to
determine the correct solution is useful for retrospective analysis of NMF.

Contribution 2:

We show for binary matrices, a unique binary NMF can always be learned, irrespec-
tive of the properties embodied by the class of problems in the SFAF. NMF is often
applied to binary datasets by adding a small amount of additive noise to ensure the
dataset is in the nonnegative orthant, more recently, by leveraging some nonlinearity
in a heuristic approach to generate the factorization [22, 14, 13, 12]. We contribute
a binary NMF that operates directly on binary data.

Most humans typically out-perform NMF when decomposing Donoho and Stod-
den’s dataset into parts. There is no framework which incorporates the considerable
amount of information available to the user into an NMF decomposition. We in-
troduce an intuitive framework (which goes beyond introducing sparse priors) for
incorporating prior information (and representation selectivity) into the decomposi-
tion via parts-based rules.
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Contribution 3:

We then contribute an algorithm –suited to nonnegative datasets– to learn a unique
NMF subject to some target tolerance-to-error, which is practitioner specified. This
NMF problem formulation has its interest, as it gives an approximate (or exact)
decomposition where the approximation’s quality is user specified. Traditionally,
the practitioner has little control over the quality of the NMF approximation save for
running the NMF routine (sometimes) exhaustively until the approximation quality
criteria is met. Ghostbusters is slow, admittedly; However, we point to a related
paper which indicates how the underpinning routine may be significantly sped-up
by parallelizing the decomposition without communication between the different
computational resources [4] –a common failing of MapReduce implementations of
NMF [21, 2].

2 Nonnegative Matrix Factorization

This paper deals with both binary-relational (association) and nonnegative (inten-
sity) matrices which are denoted by X ∈ℜ

M×N
01 and X+ ∈ℜ

M×N
+ respectively. Ap-

plications where an overcomplete dictionary –a set of linearly dependent vectors–
which is tuned to a stimulus ensemble X+, so that signals drawn from the ensemble
have sparse representations in the dictionary, arise in source separation [7], finance
and semantic and sentiment analysis. Given the matrix X+, NMF decomposes X+

into the product of two matrices, W+ ∈ℜ
M×R
+ and H+ ∈ℜ

R×N
+ where all matrices

have exclusively nonnegative elements (M > R,N > R). NMF-Frobenius’ objective
is the squared-`2 norm:

DF(X+||W+H+) =
1
2 ∑

m,n
|X+

m,n− [W+H+]m,n|2. (1)

A suitable step-size parameter, proposed by Lee and Seung in [11], results in two
alternating, multiplicative, gradient descent updating algorithms (the datatype qual-
ifier is leftout as it is clear from the context):

W ←W �XHT �WHHT , H← H�W T X�W TWH (2)

where � represents element-wise multiplication, and � is element-wise division.
The NMF solution is generally not unique, or exact. For every invertible A we have
a potential factorization [18, 9],

X ≈ (WA)(A−1H). (3)

In the present paper, we aim to solve the uniqueness problem and to address the
inexactness of NMF, and also for good measure, the permutation/scaling problem.
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When A = PD, a permutation matrix P and a diagonal matrix D, the elements
or A−1 are the reciprocal of the non-zero elements in A or zero; Thus A−1 is also a
permutation times a diagonal matrix. The condition that W and H are nonnegative
is not sufficient to eliminate the permutation/scaling degree of freedom of NMF. In
short, we aim to learn W and H so that the matrix A = I, is the canonical basis, and
the solution is exact, X =WH. This problem is expressed concisely as follows:

Problem Statement 1 (Unique, Exact, Permutation, Scaling-free NMF):
Given X ≥ 0, decompose X into the factorization WH such that X =
WAA−1H, WA≥ 0, A−1H ≥ 0 and the matrix A has the form A = I.

3 Introducing the Ghostly spectre: NMF’s short-comings

We consider a binary image dataset in order to introduce the uniqueness problem
first. Donoho and Stodden constructed a library of images showing a stick figure
with four limbs going through a range of motions to illustrate the ideas of a SFAF
[1]. We will focus on this example, namely the swimmers data-set as our touch-
stone example. Some of these swimmers are illustrated in Fig. 1. White denotes
zero, black denotes ones in all figures. They consist of four body parts (limbs);
Each of these parts has four possible articulations, (horizontal left/right, up/down,
diagonal up/down). The limbs and articulations are illustrated in Fig. 2. We posit
that in addition, this set of parts should include a torso –the I-shaped body part. It is
this torso which causes incorrect NMF decompositions.

In the swimmers dataset there are 256, 32× 32 images. Each image contains a
torso of 17 pixels in the centre and four 5 pixel limbs. Using all combinations of the
four limbs gives the 256 image dataset we use to illustrate our approach.
Remark: The torso component is present in each swimmer in Fig. 1. However, this
presence causes a ghostly version of the I-shaped body part to appear in NMF de-
compositions (cf. Fig. 3).

The NMF generative model
X ≈WH (4)

is a good candidate mixing model for these simple image settings: each scene in
Fig. 1 is composed of standard limbs (in Fig. 2) in various articulations. The rows
of the matrix H should hold various articulations of the limbs. The images in rows
of X ∈ ℜ

256×1024
+ consist of superpositions of the parts, weighted by the values in

the columns of W . When a part is present it has a positive activation; When it is not,
it has a zero activation.
Example: To illustrate the problem we wish to solve, we run NMF for 5000 alternat-
ing iterations on the swimmers datset and plot the parts learned in the decomposition
in Fig. 3. The problems with the derived solution are listed as follows:
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Fig. 1 Swimmers dataset: A
sample of the images taken
from Donoho and Stodden’s
library of swimmers.

Fig. 2 Limbs of the swim-
mers dataset: All four limbs in
all four articulations that are
used to construct the swim-
mers are plotted. The torso
is not plotted: The torso is a
separate part –A 17th part.

1. Each part is mixed with the torso (Donoho and Stodden label this torso a ghost);
text

2. Only 16 and not 17 parts are learned. Increasing the rank of the decomposition
does not improve the situation (by demixing the torso);

3. The solution is not unique; The solution is not exact;
4. The parts are permuted (randomly);
5. The dataset is binary (not necessarily zeros and ones). Small random values must

be added to each matrix entry before decomposition in order to ensure that the
data is in fact nonnegative (there are no zero values): the NMF update rules are
guaranteed to improve the objective monotonically if the data, and factors are
initialized to be nonnegative.

6. There exists no NMF formulation which allows the user to add information about
the torso into the decomposition.
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Fig. 3 NMF decomposition
of the swimmers dataset:
We run NMF 5000 times
on the swimmers datset and
plot the parts learned in the
decomposition. Each part is
mixed with the torso, Donoho
and Stodden’s ghost torso.

4 Banishing the Ghostly Spectre: Towards Ordered Closures

A unique NMF decomposition for the swimmers exemplar problem is discussed.
First we show that NMF learns a mixture of rank-one approximations of X ; then we
show that closures are rank-one approximations with appealing properties.

What is meant by unique here, is that any time NMF is run, all four limbs in all
four articulations are learned (cf. Fig. 2) in the rows of the matrix H. Moreover, the
matrix H should be element-wise binary, not element-wise nonnegative. In addition,
the torso should also be learned as a basis function for this dataset in a row of H.
This is the correct solution; The underpinning criteria for correctness here is that
the decomposition is parts-based –the parts are learned exactly.

To start, let’s view the binary matrix X considered by Donoho and Stodden as a
binary relationship between two sets of labels, which identify the rows and columns
of the matrix X . By definition, R = {r1,r2, . . . ,rM} and C = {c1,c2, . . . ,cN} are
the sets of labels assigned to the rows and columns of X . In words, the swimmer
r1 activates the following sets of pixels {cn}. The torso’s presence in the dataset is
described by the set of pairs of labels

{{rm,cn}|r10 ≤ rm ≤ r22,rm ∈ Z,cn = r16}. (5)

Each pair gives the position of a “one” in the matrix X which forms part of the torso.
A similar set of pairs-of-labels describes each limb in each articulation. Seventeen
sets (of sets of pairs of labels) describe the parts of the swimmers dataset.

Proposition 1 One interpretation of the NMF mixing model is that it is the
sum of an ensemble of rank-one approximations of the dataset.

Example: There are many possible rank-one matrices which may be used to rep-
resent X . The torso and each swimmer part (in each articulation) –denoted by the
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Fig. 4 Some closures (1 - 16)
from the swimmers dataset.

row vectors Hr,:– times their corresponding activation vector –the column vectors
W :,r– have the property that they are rank-one approximations of the entire dataset.
The swimmers dataset is made up of R = 17 parts-based rank-one matrices. The
problem lies in detecting the correct ones.

Let’s be more selective. We defer mention of the mechanism for incorporating
selectivity via parts-based rules until later. We are interested in the set of rank-one
matrices which are also closures.

Proposition 2 Each limb in each articulation plus the torso, is a rank-one
binary matrix, e.g. (H torso,: +H leg left 1,:). Each of these rank-one binary matrices
is a closure. Moreover, the torso is also a separate closure.

To fix ideas, we give some examples of these rank-one matrices (W :,activation de-
notes the corresponding activation vector): W :,torsoH torso,:, W :,activation (H torso,: +H leg left 1,:) ,
W :,activation (H torso,: +H leg left 2,:). These matrices describe some of the closures illustrated
in Figures. 4 and 5.
Remark: It is significant is that the torso is present in this set of closures as a separate
closure. Moreover, there is an ordering on the closures. The closures are plotted
here using a permuted ordering for ease of illustration, starting with the torso in
the upper left hand plot, row-wise (the plot in row one, column two is next). Each
subsequent closure includes a full-bodied torso –the torso is no longer ghostly. By
set subtraction we can remove the effect of the torso from all closures save the torso
closure –the ghost is eliminated. It is this parts-based rule that gives its name to this
paper. This subtraction is possible due to the properties of closures.

To develop the relationship between the rank-one approximations, closures and
a framework for parts-based rules we introduce some notation.
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Fig. 5 Some closures (17
- 32) from the swimmers
dataset.

5 The Ghostbusters Algorithm

Lectic ordering is defined ab initio by arranging the labels {c1,c2, . . .} of X : the
ordering may be arbitrary. The default ordering is c1 < c2 . . . < cN .

We can apply the derivation operator on subsets of R and C , respectively, XR
and XC:

X ′
R = {c ∈ C | ∀r ∈R : (r,c) ∈ X} (6)

X ′
C = {r ∈R | ∀c ∈ C : (r,c) ∈ X}. (7)

We generate a closure by applying these derivation operators twice, the mappings,

XR 7→XR,
′′ and XC 7→X ′′

C . (8)

These mappings have the properties that:

XC ⊆ C , XR ⊆R, X ′
R = XC, X ′

C = XR. (9)

Example: Application of the closure operator on the rank-one swimmers’ limbs,
yield closures which consist of the limbs plus the torso.

All that is required now is a systematic method to search for all possible closures
in the swimmers dataset. This method should preferably yield a unique ordered set
of closures.

We appeal to a procedure called NextClosure, a well-known application of lattice
and order theory [20], to build the Galois lattice of X , using an algorithm proposed
in [20, 6] and made more efficient by distribution in [21] and again by paralleliza-
tion [4]. We then convert the lattice D into an ordered ensemble-tuned dictionary
H. This lattice has the property that it is unique and complete. Starting from the
empty set XC = {}, given XC ⊆ C , and cn ⊂ C , we may generate all closures by
systematically applying the rule,
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Algorithm 1 AllClosure
Input: {{},C },X ,C ,R: starting/stopping closures
Output: D : derived closures.
1: Initiate process: D = {},aXC = {}.
2: while aXC is not the last closure C do
3: [aXC] = NextClosure(R,C ,X ,aXC);
4: D ←D ∪ aXC;
5: end while

Algorithm 2 NextClosure
Input: R,C ,X ,aXC
Output: aXC .
1: for cn from cN down to c1 do
2: if cn /∈ aXC then
3: bXC ← aXC⊕ cn;
4: if aXC ≤cn bXC then
5: aXC ← bXC;
6: break;
7: end if
8: end if
9: end for

bXC = aXC⊕ cn := ((aXC ∩{c1, . . . ,cn−1})∪{cn})′′, (10)

which augments the current closure, aXC, by concatenating successive elements of
C (largest-to-smallest) and keeping the resulting set, bXC, if it is a closure and it is
lectically smaller than any closure already mined, a condition which is verified by
checking:

aXC ≤cn bXC :⇐⇒∃cn(cn ∈ bXC,cn /∈ aXC,

∀c j<cn(c j ∈ aXC⇐⇒ c j ∈ bXC)). (11)

A property of NextClosure is that the closure set is unique and complete [20, 6], and
is indexed in lectically increasing order using, rXC, where r = 1,2 . . . ,R,

1XC ≤ 2XC ≤ . . . rXC ≤ . . .RXC. (12)

This algorithm is described in Alg. 1 and 2. What is appealing is that it is as simple
to implement as the NMF procedure.

The Ghostbusters algorithm is described in Alg. 3. Eqn. 13 describes the removal
of the omnipresent torso. It is one example of a parts-based rule which is a gen-
eral framework embodying the parts-based selectivity mentioned above. We encode
prior information to the solver (7-10 in Alg. 3) using E ∈ℜ

|C|×|C|
01 . We now solve

X = (WA)
(
A−1H

)
=W (EH) . (15)
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Algorithm 3 Ghostbusters
Input: X
Output: D ,W ,H: derived closures, parts and activations matrices.
1: [D ] = AllClosure(R,C ,X ,{,},C );
2: Initialization process: generate a dictionary of atoms H ∈ ℜ

|C|×N
01 by stacking row-vectors,

which are constructed by inserting ones in the entries given by the sets D , and zeros elsewhere.
3: Check for ghosts: Construct the row vector

jn = ∑
|C|
i=1 H i,n.

4: De-ghost the ensemble tuned dictionary:

H i,n =

{
0, if jn = |C|, and i > 1,
H i,n, if jn 6= 0, and i > 1.

(13)

5: Regularization via Parts-based rules. Encode parts-based rules using encoding matrix H =
EH.

6: if Sufficient rankH then
7: An exact binary decomposition of X+ is obtained by solving for the matrix W ∈ℜN

+:

minimizeW(p,:)W (p, :)1,

subject to X(p, :)T = HTW (p, :)T ,

W (p, :)≥ 0. (14)

8: else
9: Lee-Seung activation update for low-rank W .

10: Project X ,H into nonnegative orthant if necessary: W →W �XHT �WHHT .
11: end if

To recover the swimmer parts we introduce additional constraints on the complexity
of the parts that are used by the activations, specificially, restrictions on the length of
the maximum vector norm, `0-norm of the closures, e.g `0(H i,:) = #{n|H i,n 6= 0}. In
effect we are imposing Occam’s razor –the principle of parsimony– on the closures
and the activations using E by introducing ones on the diagonal for closures that
satisfy the constraints, and a zeros for the rest.

Once an ordered ensemble-tuned dictionary is learned (steps 1-4 in Alg. 3), the
corresponding activations must be determined: this problem is addressed (in this pa-
per) by solving 1) a nonnegative least-squares, or 2) a nonnegative linear program-
ming problem depending on the type of solution desired. The statistical interpreta-
tion of the first approach is maximum likelihood estimation, given linear measure-
ments corrupted by noise –regularization may also be considered. Regularization is
often used by the NMF community to encourage a parts-based decomposition [17].
For this swimmers dataset, regularization is required. Appealingly, an `0-norm reg-
ularization contraint may be introduced here due to the binary form of the closures.
In the latter case, the activations have a Laplacian prior and the observation model is
noise-free; This is interpreted as MAP estimation. In both cases the matrix H gener-
ally has a sparse structure which speeds up the computation of W . Nonnegative and
parts-based datasets are frequently sparse. Solving for W is convex.
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6 Empirical Evaluation and Discussion

We demonstrate a subtractive and a “complexity-reducing” parts-based rule using
the removal of the omnipresent torso region in Donoho and Stodden’s swimmers
as a first test case. We then demonstrate how complexity-reducing constraints may
be applied more generally to Hoyer’s dataset (which has no omnipresent factor):
We apply bars-like constraints on neighbouring pixels. In both cases, the incorpo-
ration of a simple parts-based constraint yields the exact solution. The first dataset
is binary, and the second is nonnegative. The motivation for these experiments is to
show that 1) a range of prior information can be incorporated into the solution and
2) NMF disregards this information.

6.1 Unique and Correct Swimmers Decomposition

We run the Ghostbusters algorithm on Donoho and Stodden’s swimmers dataset to
demonstrate that a unique and correct swimmers decomposition is achieved for the
pathological SFAF problem.

By inspection we have prior information: 1) There are four limbs in four artic-
ulations (16 parts in total); 2) The torso is omnipresent; 3) The limbs vectors have
low `0-norm. The principle of Occam’s razor is incorporated when determining the
solution by selecting the 16 closures with the smallest complexity, measured here
using the `0-norm, and also by removing omnipresent features (encoded using E).
We argue that this choice is akin to selecting the parameter R for NMF, and therefore
justifiable: prior information about the rank of the desired solution is incorporated
by both methods, it is done by Ghostbusters using a complexity constraint. NMF,
however, has no facility for extracting an omnipresent feature because: 1) The ghost
learned in each NMF feature is not uniform in value in each parts vector or across
each parts vector (subtracting the average ghost may cause the parts to become neg-
ative). See for example the parts in Fig. 3; 2) Omnipresent vectors are typically not
uniform valued in the dataset (similar problems to averaging and subtracting the
ghost torso arise). Ghostbusters generates a closure, which is the torso, which is
easily removed using parts-based rules, as illustrated above.

Complexity penalty parts-based rules are needed as some closures are linear com-
binations of other closures (cf. Fig. 6 and 7) –the desired solution has low parts
complexity. We aim to learn a sparse decomposition, but not decompositions which
only activate the torso and a single other closure (for example, the closure with all
four limbs in the correct articulations). The total ordered ensemble-tuned dictionary
is highly overcomplete: what is required is a low-rank solution.
Comparison: The activations of the swimmers dataset are generated using the
NMF-Frobenius update W →W �XHT �WHHT and 16 vectors, preserved by E,
are plotted in Fig. 8. We run the NMF-Frobenius update for 5000 iterations, noise
(of machine error order) is added to the dataset to ensure nonnegativity. Table 1 sum-
marizes a comparison between Ghostbusters and NMF. Runtimes are given for an
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Fig. 6 Ghostbusters: Ordered
closures (1 - 16) swimmers
dataset. Not all closures are
linearly independent.

Octave implementation on a 2.6GHz personal computer –they are guideline figures.
NMF is run for 5000 iterations; Using an alternative measure of convergence, NMF
may be stopped earlier. NMF suffers from the scaling problem: the sparsity measure
of the W is therefore subject to this ambiguity. However, NMF consistently leads to
poorer sparsity measures in these experiments (the parts it learns are mixed). NMF
has a shorter runtime, yet the torso is mixed with each part –the swimmers problem
is not solved. NMF has considerable approximation error, which is measured using
(Eqn. 1), compared to Ghostbusters. The activations are approximately binary for
Ghostbusters, whereas the activations for NMF are nonnegative. Note the `1-norm
of W for NMF is uninformative as NMF suffers from the scaling ambiguity (which
may be addressed by row-normalizing H). In short, Ghostbusters is slower but the
solution is correct and parts-based. Ghostbusters solves the problem; NMF does not.
Discussion: The significance of this result is explained.

1. The set of closures is unique, therefore the matrix H is unique. Arbitrary parts-
based constraints may be applied in an ordered manner in Ghostbusters, this in-
formation is not (and cannot be) incorporated into the NMF solution.

2. Ghostbusters does not suffer from the scaling and permutation ambiguity; The
matrix H is binary and unique. In addition, solving for W is a convex optimiza-
tion problem. NMF performs an alternating minimization optimization which is
convex in W or H, but not in both factors.

3. The rank is encoded into the activation matrix solver based on user constraints
on the complexity of the parts (using E). We can think of the rank of the problem
as the cardinality of the active set of the optimization problem (the diagonal of
E).
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Fig. 7 Ghostbusters: Ordered
closures (17 - 32) from the
swimmers dataset.

Table 1 Comparison: Ghostbusters with NMF

Ghostbusters Swimmers Hoyer
Closures 626 (separate torso) 10/69/212
Run time 700.3s (closures) 2.38s
W -update 20s (5000its) 0.113s
Error 2×10−13 0

Convex in W –
Perm.-free 4 4
Scaling-free 4 4
Correctness 4 4

`1(W ) 1280 (W ∈ℜ256×17) 193.40
NMF Swimmers Hoyer
No. parts 16 (no separate torso) 10
Run time 59.924s (5000its) 15.6s (5000its)
Error 3.68×10−4 4.1×10−4

Perm.-free 5 5
Scaling-free 5 5
Correctness Mixed Mixed
`1(W ) 2014.2 (W ∈ℜ256×16) 492

6.2 Binary Matrices and Nonnegative Matrices

The “bars” dataset was proposed by Hoyer in [7] in order to motivate sparse non-
negative coding problems. It is challenging for NMF as an overcomplete dictionary
is required from a mixture of parts. Regularization is used to address this challenge:
the choice of a suitable weighting term for the regularization parameter is difficult
[17].

A second challenge lies in the fact that whilst the parts are binary, they are mixed
synthetically with nonnegative values. However, parts-based constraints recommend
themselves to this problem because the underlying parts are binary, and so we ad-
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Fig. 8 Activations W ∈
ℜ256×17 for the swimmers
computed using parts-based
encoding so that X ≈W (EH).
The torso is omnipresent
(rightmost column)

Fig. 9 Set of bars used to gen-
erate nonnegative mixtures.

dress the problem of learning binary parts from nonnegative matrices using Ghost-
busters.

Nonnegative mixtures X+ ∈ℜ100×9 are mixed (in Fig. 10) using the ground-truth
bars, H ∈ℜ10×9 (reformulated as 3×3 matrices in Fig. 9) and uniformly distributed
nonnegative activations W ∼U (0,1). Noise is uniformly distributed.

X+ =WH +N, Nm,n ∼U (0,0.1). (16)

There is no omnipresent part (similar to the torso) in this dataset –this rule is not
needed. The closures (36 excluding the empty closure) are computed from the bars
for comparison purposes and plotted in Fig. 11 in order to show the ground-truth
closures. Parts-based rules are encoded in E to consider the following observations
which are drawn by inspection of Fig. 10. This information is disregarded by NMF.

1. There are no omnipresent closures.
2. The `0-norm of the salient parts is 3 or 6.
3. There are 10 parts. These parts are bar-like (parts have triplets-of-pixels that are

horizontal or vertical neighbours).

Problem Statement 2 Given the matrix X+, decompose X+ into W+ ∈ℜM×R times
H+ ∈ℜR×N , subject to DF(X+||W+H+) = 0, such that there is no permutation or
scaling, and the rows of H yield a sparse signal representation.

To deal with the noise, a NonLinear Approximation (NLA) [19] of the sparse ma-
trix X+ produces its binary-relational counterpart, X , with approximation error
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Fig. 10 A sample of the
mixed noisy bars data.

Fig. 11 Sample of closures
for the unmixed bars.

Fig. 12 Sample of closures
for the mixed bars.

DF(0||(¬X)�X+)< ε , where ¬ is element-wise negation,

Xm,n =

{
1, if X+

m,n > T,
0, otherwise.

(17)

In this paper, the threshold parameter T is found quickly by application of the
Armijo Rule or the Bisection method.
Comparison: In total, 212 closures are obtained from the NLA (Eqn. 17) of the
mixture (Eqn. 16). They are illustrated in Fig. 12 and may be directly compared
with the closures computed using the raw bars (in Fig. 11), as both sets of closures
are plotted in lectic ordering. What is clear is that the closures in Fig. 12 have higher
`0-norm. Sixty-nine closures (in Fig. 12) satisfy the constraints that `o(H i,:) = 3 or
`o(H i,:) = 6; However we may also encode bar-like constraints,

E i,i =



1, if (H i,n = 1&H i,n+1 = 1&H i,n+2 = 1)
and `0(H i,:) = 3 or 6,
or (H i,n = 1&H i,n+3 = 1&H i,n+2×3 = 1)
and `0(H i,:) = 3 or 6

0, otherwise.

Discussion: Only 10 closures satisfy the `0 and bar-like constraints. Ghostbusters is
once again compared with Lee-Seung NMF in Table. 1 for this dataset with no prior
information, save the rank R = 10. NMF’s sparsity regularization involves trial-
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and-error tuning and is not performed here. NMF does not determine the correct
solution; Ghostbusters does. During Monte Carlo trials, a different set of stimulus-
tuned closures is learned by Ghostbusters for a given ε . We have observed that the
ground-truth closures are typically amongst this set.

This paper raises the question of how to include a range of prior information
into an NMF so that NMF generates the appropriate parts-based representation.
Frequently, the solution can almost be “picked-out-by-eye” and yet NMF frustrates
by learning a good parts-based solution, but not the solution the user wants. The
swimmers dataset is a case-in-point. Allowing the user to encode a set of criteria
into the solver, in order to specify the type of solution that is interesting to him, is a
powerful concept; It raises a fundamental question: Is this technique supervised or
unsupervised?

Decomposing the magnitude spectrogram of speech is one problem NMF has
been applied to. The relationship between the inter-formant frequency distances,
though well-understood by the community, is not used in NMF decompositions [17].
As a result speech phones are sometimes separated into high frequency features and
low frequency features, as the appropriate rank is not known, and the solution is not
parts-based. We will investigate if improvement is speech representations may be
achieved by incorporating this domain-expertise. By exploiting the binary data-type
of closures we have proposed a framework which allows the user to be prescriptive
when formulating the desired form of the NMF solution.

7 Conclusions

The label “parts-based” implies that the data is composed of simple building blocks,
which may often be identified by eye. Encoding parts-based constraints in NMF
algorithms is difficult: NMF does not allow for this level of direct specificity. We
introduce a framework based on closure-finding. Once a set of suitable closures
has been identified, parts-based based constraints may be easily incorporated into
the optimization routine. Ghostbusters has a number of advantages over NMF: 1)
It learns overcomplete representations; 2) It allows for the encoding of arbitrary
constraints; 3) It is unique, correct, permutation and scaling free; 4) It can learn
sparser solutions which are exact.
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