
Harnessing Information Models and

Ontologies for Policy Con�ict Analysis

Steven Davy B.A. (Mod.)

Supervisors: Dr. Brendan Jennings, Prof. John Strassner

In partial ful�lment of the requirements for the award of

Doctor of Philosophy

Department of Computing, Mathematics and Physics

Waterford Institute of Technology

Ireland

Submitted to Waterford Institute of Technology, September 2008

Declaration

I hereby certify that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Doctor of Philosophy is entirely my own

work and has not been taken from the work of others save to the extent that such

work has been cited and acknowledged within the text of my work.

Signed:. ID: 20004309

Date: September 2008

ii

Harnessing Information Models and Ontologies

for Policy Con�ict Analysis

Steven Davy B.A.(Mod.)

Supervisors: Dr. Brendan Jennings, Prof. John Strassner

Abstract

Policies are meant to govern the behaviour of the communications network. Unfortu-
nately, most policy-based management systems do not contain con�ict analysis processes.
Therefore, if policy con�icts occur between deployed policies, there is no guarantee that
the intended behaviour will be realised by the communications network. In addition, most
policy-based management systems are designed to be used by a single constituency, so do
not address the needs of di�erent stakeholders that use the system in di�erent ways. This
thesis presents an approach to policy authoring that incorporates policy con�ict analysis
for communications networks. This approach is based on harnessing knowledge embodied
in information models and ontologies to represent relationships between policy compo-
nents that could indicate potential con�icts between policies. Harnessing the application
information embodied in knowledge bases makes the approach independent from the ap-
plication or use of policies because the application speci�c concerns are separated and thus
can be designed independently. A model of a policy continuum is presented, which is used
to maintain the relationships between di�erent levels of policies used by di�erent stake-
holders. A policy authoring process is then developed to formally describe the interaction
between stakeholders concerned with creating and modifying policies and the detection of
policy con�icts. An e�cient method of selecting appropriate subsets of policies that may
con�ict is developed. Experimental results show that this process results in a signi�cant
reduction in the number of policies that needed to be analysed.

iv

Acknowledgments

I would like to acknowledge my supervisory team of Dr. Brendan Jennings and Prof.

John Strassner for their excellent advice and guidance throughout my time as a student.

Their belief in my work and in my ability to complete this immense task is one of the

major contributing factors to its �nal submission. I would like to also thank the broader

research support available to me at Waterford Institute of Technology, especially Mícheál

Ó Fóghlú, Dr. Willie Donnelly and Eamonn deLeaster who encouraged an atmosphere of

research in WIT that inspired me to persue and complete this task. All the while, I was

instilled with the comfort of knowing that they and their experience were always at hand

during times of di�culty.

I would like to thank Dr. Sven van der Meer, Dr. Sasitharan Balasubramaniam and

Dr. Dmitri Botvich for their advice, encourgement and support during my time as a

student. They helped me consider new ways of addressing challenges in my research �eld.

A portion of the systems and testbeds developed within this thesis would were carried out

in coordination with Keara Barrett and Elyes Lehtihet, two former collegueas from WIT.

Their technical knowledge of Policy-based Management (Keara) and Ontologies (Elyes)

were of great help throughout each stage of the thesis development.

I would like to thank my �ancé Sinéad for her support and encourgement during this

time consuming task. Last, but not least, to my family; my parents Irene and Cormac

always encouraged me to try my best and my brothers understood I needed to unwind

from time to time. My brother Alan provided great feedback and comments on my work

and listened to its inner details for hours on end, as he too was going through the same

process.

Contents

Declaration ii

Abstract iii

Acknowledgments iv

List of Figures vii

List of Tables x

List of Algorithms xi

1 Introduction 1

1.1 Hypothesis . 3

1.2 Research Questions . 4

1.3 Main Contributions . 5

1.4 Main Conclusions . 6

1.5 Thesis Outline . 7

2 Background and Literature Review 8

2.1 Background . 8

2.1.1 Network Management Approaches 9

2.1.2 Policy Based Network Management 12

2.1.3 Information Models . 19

2.1.4 DEN-ng Policy Information Model 21

2.1.5 Ontological Engineering for Network Management 25

2.2 Literature Review . 30

2.2.1 Policy Con�ict . 30

v

Contents vi

2.2.2 Policy Analysis Processes . 34

2.2.3 Language based Policy Con�ict Analysis 37

2.2.4 Information Model based Policy Con�ict Analysis 44

2.2.5 Ontology based Policy Con�ict Analysis 50

2.3 Summary and Conclusions . 54

3 Policy Continuum Model and Policy Authoring Process 59

3.1 Policy Model Extensions for Con�ict Analysis 60

3.1.1 Extensions to the DEN-ng Policy Model 60

3.1.2 Extensions to the DEN-ng Policy Continuum Model 65

3.2 A Formal Policy Continuum Model . 67

3.2.1 Formalisms . 67

3.2.2 Assumptions . 69

3.2.3 Information Model Querying . 70

3.2.4 Policy Rule Formalism . 71

3.2.5 Policy Continuum Formalism . 79

3.2.6 Policy Authoring Process . 87

3.3 Summary and Discussion . 91

4 Application Independent Policy Con�ict Analysis Algorithm 94

4.1 Policy Con�ict Analysis Algorithm . 95

4.1.1 Algorithm Overview . 95

4.1.2 Phase 1: Policy Relationship Analysis 97

4.1.3 Phase 2: Con�ict Matrix Match . 112

4.1.4 DEN-ng Extensions to Represent Policy Relationships 115

4.2 Testbed Implementation . 118

4.2.1 Model Driven Development based Process 120

4.2.2 Testbed Architecture . 121

4.2.3 Policy Analyser . 128

4.3 Case Studies . 130

4.3.1 Business Level / System Level � Filtering Policy Con�ict 131

4.3.2 Business Level Policies � Access Control Policy Con�ict 134

4.3.3 Business Level Policies - Deontic Policy Con�ict 135

4.4 Summary and Discussion . 138

Contents vii

5 Enhancing Policy Con�ict Analysis using Ontologies 140

5.1 Motivating Example . 141

5.2 Ontology Enhanced Policy Con�ict Analysis Process 145

5.2.1 Enhancing the Policy Selection Algorithm 146

5.2.2 Enhancing the Policy Con�ict Analysis Algorithm 149

5.3 Testbed Implementation . 150

5.3.1 Information Model Associated Ontology 150

5.3.2 Ontology Construction . 151

5.3.3 Ontology Construction Example . 155

5.4 Case Study . 158

5.5 Summary and Discussion . 164

6 E�cient Policy Selection for Policy Con�ict Analysis 166

6.1 History based Policy Selection using Lopsided Trees 167

6.2 Integration with Policy Authoring Process 172

6.3 Theoretical Analysis . 175

6.3.1 Node Size Distribution Sensitivity 176

6.3.2 Number of Nodes Sensitivity . 178

6.4 Case Study Analysis . 179

6.5 Summary and Discussion . 185

7 Conclusion and Future Work 188

7.1 Appraisal of the Thesis . 189

7.2 Future Work . 192

7.2.1 Extensions to the Policy Con�ict Detection Algorithm 192

7.2.2 Extensions to the Policy Continuum Authoring Process 193

7.2.3 Related Fields of Research . 194

Bibliography 199

List of Acronyms 212

Appendix: Firewall Policies 216

List of Figures

2.1 Manager-agent concept. 10

2.2 Simpli�ed view of the PCIM (DMTF, 2008). 15

2.3 COPS architecture (Boyle et al., 2000). 18

2.4 SID diagram (TMForum, 2008). 20

2.5 DEN-ng product-service (TMForum, 2008). 21

2.6 DEN-ng PolicyRule model (TMForum, 2008). 22

2.7 DEN-ng PolicyApplication model (TMForum, 2008). 23

2.8 FOCALE and policy interaction (Strassner et al., 2006). 24

2.9 Router con�guration problem (Strassner, 2003). 26

2.10 DL knowledge base (Baader et al., 2007). 27

2.11 Classi�cation of policy con�icts (Mo�ett and Sloman, 1994). 31

2.12 IPsec policy anomaly (Fu et al., 2001). 40

2.13 Authentication con�ict description axiom (Bandara et al., 2003). 45

2.14 Custom policy action con�ict description axiom (Bandara et al., 2003). . . . 45

2.15 Sample con�icting policies (Kempter and Danciu, 2005). 47

2.16 UML model of functional dependency (Shankar et al., 2005a). 48

3.1 ECAPolicyRule. 62

3.2 Improved ManagementPolicy. 63

3.3 Deontic management policies. 64

3.4 Policy Continuum aware ManagementPolicy. 66

3.5 Conceptual policy continuum . 80

3.6 Policy authoring steps. 88

4.1 A policy relationship matrix . 97

4.2 Phase 2 con�ict matrix legend. 113

4.3 PolicyRelationship extensions to DEN-ng. 115

viii

List of Figures ix

4.4 PolicyRelationship extension for PolicySubject. 116

4.5 Con�ictMatrix extension. 117

4.6 MDD process steps. 119

4.7 Implementation diagram. 122

4.8 Product-Service-Resource DEN-ng . 124

4.9 Structural DSL snippet. 125

4.10 Structural DSL usage snippet. 125

4.11 OPNET simulated network . 126

4.12 Sample policy rule. 127

4.13 Policy con�ict dialog box. 129

4.14 Policy authoring scenario domain hierarchy. 131

4.15 Business to system con�ict. 133

4.16 Business to business policy con�ict. 135

4.17 Policy relationship matrix with Deontic relationships. 136

4.18 Relationship matrix: policy 3 and policy 1. 137

4.19 Relationship matrix: policy 3 and policy 2. 137

5.1 Sample network case 1. 143

5.2 Sample network case 2. 143

5.3 Sample network case 3. 145

5.4 Policy selection. 147

5.5 New con�ict signature matrix. 149

5.6 Architecture of the testbed incorporating ontologies. 152

5.7 Ontology construction steps. 154

5.8 Security policies hierarchy information model. 155

5.9 Security related policy actions. 156

5.10 Template search rule. 157

5.11 Case study administrative domains. 158

5.12 VoD tra�c passes through �rewall. 161

5.13 Search rules. 161

5.14 Search rule editor GUI and comment. 162

5.15 Phase 2 con�ict matrix for the case study. 164

6.1 Policy authoring process extended. 167

List of Figures x

6.2 Example policy insertion. 171

6.3 Probability of number of comparisons required per trial. 177

6.4 Node to policy ration. 180

6.5 Case study network topology. 181

6.6 Condition tree for �rewall policies for ISP A. 182

6.7 Tree created from ISP A and ISP B. 183

6.8 Probability density function of percentage reductions in comparisons. 186

7.1 Singly administered domain challenges. 195

7.2 Multi-administered domain challenges. 198

List of Tables

2.1 Description Logic notation. 28

2.2 Policy con�ict classi�cations. 33

2.3 Firewall policy anomalies. 38

2.4 Distributed �rewall policy anomalies. 39

3.1 Notation for VDM. 68

3.2 Terms used. 89

4.1 Policy relationship descriptions. 98

4.2 Business level policies and system level policies. 132

4.3 Business level access control policies. 134

4.4 Deontic Policies. 137

5.1 Firewall policies. 159

5.2 VPN policies. 160

6.1 Distributions of policies per subject. 176

6.2 Average number of comparisons for policy add. 177

6.3 Number of nodes and distribution of policies. 179

6.4 Reduction in comparisons for �rewall case study. 185

xi

List of Algorithms

1 Modify a policy in the policy continuum. 90

2 Create a policy in the policy continuum. 91

3 Delete a policy in the policy continuum. 92

4 Select policies then analyse for con�ict. 96

5 Analyse for con�ict. 97

6 Policy relationship comparisons. 99

7 AssociateBySubject. 99

8 markSSB. 100

9 isTypeOf and getMembers functions. 101

10 isSubjectSubset. 102

11 isSubjectEqual. 102

12 isSubjectSuperset. 102

13 isSubjectCorrelated. 102

14 associateByAction. 104

15 isActionSubset. 104

16 isActionEqual. 104

17 isActionSuperset. 104

18 isActionCorrelated. 105

19 doActionsContradict. 105

20 associateByEvent. 107

21 isEventSubset. 107

22 isEventEqual. 107

23 isEventSuperset. 107

24 isEventCorrelated. 108

25 isEventMUX. 108

26 associateByCondition. 110

xii

List of Algorithms xiii

27 isConditionSubset. 110

28 isConditionEqual. 110

29 isConditionSuperset. 110

30 isConditionCorrelated. 111

31 isConditionMUX. 111

32 Policy selection algorithm. 148

33 GetOntoRules. 148

34 Add a Policy to the tree. 169

35 Delete a Policy from the tree. 169

36 Updated AnalysePolicyCon�ict. 172

37 GetPoliciesViaRelationship. 173

Chapter 1

Introduction

This thesis presents processes and algorithms to support the authoring and, in particular,

con�ict analysis of policies deployed as a policy continuum in an integrated and e�cient

way. Central to the approach is the harnessing of knowledge embodied in information

models and associated ontologies to support the policy authoring and analysis processes.

Policy-based network management (PBNM) techniques are based on describing the in-

tended con�guration of a communications network in the form of rules termed �policies�

(Strassner, 2003). The primary motivation for PBNM is that policies reduce the complex-

ity associated with con�guring a heterogeneous communications network. PBNM systems

incorporate processes to support the con�guration and monitoring of the communications

network to enforce the behaviour de�ned by policies. Such processes include policy author-

ing, policy con�ict detection and resolution, policy transformation and policy re�nement.

A further step for PBNM systems is to enable high-level business policies to describe the

intended behaviour of a communications network expressed in terms familiar to business

users. To facilitate this functionality, algorithms are required to ensure deployed low-

level network policies realise the high-level business policies. Realising business policies on

a communications network not only requires the collaboration of separate constituencies

of experts to de�ne the policies, but also requires the con�guration and monitoring of

di�erent sets of software and hardware resources. This business to network realisation of a

PBNM has proven to be a di�cult challenge (Jude, 2001; Chadha, 2006), due to the lack

of integration between the processes and algorithms required for authoring and con�ict

analysis.

Policy con�icts occur as a consequence of new or modi�ed policies being deployed into

a PBNM system that leads the system to exhibit unintended behaviour. The enforcement

1

Chapter 1. Introduction 2

of policies (business or network) should be con�ict free, otherwise the intended behaviour

de�ned by policies cannot be guaranteed (Mo�ett and Sloman, 1993). Current con�ict

analysis approaches are tightly coupled to the policy applications for which they were

designed, are not integrated in other policy based management processes such as policy

re�nement and are not designed to cater for large numbers of policy sets.

A current bottleneck in the con�guration of large scale communications networks is

the manual alignment of network policies to business policies. There is a natural link

between the policies relating to business concerns and the policies relating to system or

network concerns; this link has been captured in the policy continuum as levels of associated

policies (Strassner, 2003). The use of the policy continuum provides a method of associating

business policies with network policies in an integrated way. The novelty of the approach

presented by Strassner (2003) is the use of an information model of the related managed

entities of an organisation to support the processes required by the policy continuum.

However, the processes and algorithms required are only outlined by (Strassner, 2003) and

are not formally speci�ed. A formal speci�cation of the policy continuum is required so that

processes and algorithms can be developed to describe policy authoring and policy con�ict

analysis. The policy continuum introduces new complexities when associated hierarchies of

policies are considered. As the policy continuum requires the integrated e�orts of separate

constituencies of systems experts to de�ne policies, there must be a process to cater for the

authoring of and detection of con�icts between the associated multiple levels of policies. As

the policies may be de�ned at di�erent levels of the organisation (i.e. business to network),

the con�ict analysis process must be able to accommodate the relationships between the

policies de�ned at the same or di�erent levels of abstraction.

There are challenges to realising an authoring process and con�ict analysis process

for policies deployed as a policy continuum. Speci�cally, there are complicated relation-

ships between policies de�ned at di�erent levels; when modi�cations are made a strict

process should be followed that interacts with the multiple policy authors to maintain the

consistency of the policy continuum. There is a complexity issue associated to selecting

appropraite sets of policies that must be analysed for con�ict at each policy continuum

level that needs to be addresses, otherwise solutions will not be e�cient.

1.1. Hypothesis 3

1.1 Hypothesis

The hypothesis of this thesis is derived from an extensive examination of the literature

covering the state of the art in policy based management processes, in particular looking

at policy authoring and policy con�ict analysis. It is the primary objective of this thesis

to prove the validity of the following hypothesis.

By leveraging semantic models (information models and ontologies) that have been enriched

with application speci�c information, policy con�ict analysis and policy selection processes,

that are policy application agnostic, can be developed for use speci�cally with policies de-

ployed as a policy continuum.

The literature review that is presented in chapter 2 yields the following key contributing

factors to the hypothesis:

• Language based policy con�ict analysis is usable only in situations where the intended

application of policies is well de�ned. However, such approaches do not make use of

application information (be it structural or semantic) to make the analysis process

more e�cient, leading to di�culties when larger repositories of policies need to be

analysed.

• Information model based policy con�ict analysis takes into account application in-

formation (structural) in order to enable policy con�ict analysis processes that are

somewhat agnostic of the application for which policies are de�ned. This approach is

not �exible in situations where the policy language or application constraints need to

be altered. However, a larger variety of con�ict types may be detected in comparison

to language based analysis.

• Ontology based policy con�ict analysis is the most �exile type of policy analysis,

where application information, both structural and semantic, is represented separate

to the policy language. Therefore, taking advantage of existing knowledge bases

(information model and ontologies) can yield a more e�cient policy con�ict analysis

process. Such processes are required when the policy language is substantially more

complex, as is the case when a policy continuum is being analysed.

• There is no existing policy authoring process that ties policy con�ict analysis to the

1.2. Research Questions 4

multiple levels of the policy continuum.

1.2 Research Questions

The research questions addressed by this thesis are listed below. They highlight the chal-

lenges faced when designing processes and algorithms for the authoring and con�ict analysis

of policies within the policy continuum.

1. How can a policy authoring process be de�ned that incorporates policy con�ict analysis

and that is speci�cally targeted at multiple constituencies of policy authors?

Multiple policy authors can create and modify policies at any level of the policy

continuum. Policy con�icts can be manifested at any level of the policy continuum,

where higher level policies as well as lower level policies can lead to the cause of

a policy con�ict. The relevant policy authors need to be alerted in a coordinated

fashion so that the con�icts can be dealt with appropriately.

2. What processes and algorithms need to be developed so that existing knowledge bases

can be harnessed to aid in policy con�ict analysis?

Knowledge embodied in information models and ontologies can describe in great de-

tail the semantics and constraints associated to the management of a communications

network. This thesis is interested in harnessing this knowledge automatically, to aid

in policy con�ict analysis. The reason for this is that with more knowledge of the

system, more informed decisions can be made in analysing for policy con�icts.

3. How can a policy con�ict analysis process be developed that is independent of the

nature (or purpose) of the policies?

Policies can be de�ned at multiple levels of the policy continuum, thus being described

in di�erent languages for application, services and resources of di�ering requirements.

A policy con�ict analysis process developed to analyse policies for a policy continuum

has to be applicable to the range of di�erent forms of policies that will be represented.

Therefore, the process should be independent from the nature of the policies and thus

can be used to analyse policies at multiple levels of the policy continuum.

4. How can processes and algorithms developed for policy authoring and policy con�ict

analysis be developed so that they are made e�cient when increasing numbers of

policies are being considered?

1.3. Main Contributions 5

When large sets of policies require analysis, the algorithm for analysing for poten-

tial con�icts has to be e�cient. This is an important criteria for and policy based

management processes.

1.3 Main Contributions

This thesis contributes to the research area of policy based network management. Speci�-

cally, it addresses the development of the policy authoring and con�ict analysis processes.

The main contributions are:

• A formal policy continuum model that de�nes the relationships that exist between

policies at di�erent levels of abstraction, incorporating:

� A policy authoring process, which is an iterative process that informs multiple

policy authors about the e�ects of modifying policies at a given level of the

policy continuum (Davy et al., 2007).

� A discussion of how other policy analysis processes interact with policy con�ict

analysis to deliver an e�ective policy authoring process (Davy et al., 2008c).

� Speci�c extensions to the existing DEN-ng policy information model as detailed

originally by Strassner (2003), to facilitate the incorporation of policy con�ict

de�nitions and policy continuum concepts (Strassner et al., 2007a).

• An approach to policy con�ict analysis for the policy continuum that makes extensive

use of an information model of a communications network and associated sets of

ontologies, incorporating:

� An information model oriented policy con�ict analysis algorithm that is speci�ed

for use with the policy continuum. The nature of the algorithm promotes the re-

use of previous con�ict analysis. Historical information is leveraged to improve

performance for large scale policy deployments (Davy et al., 2008a).

� A policy selection algorithm to be used with the policy con�ict analysis algo-

rithm that is capable of leveraging the information model to support the e�cient

selection of sets of deployed policies for analysis (Davy et al., 2008b).

� An approach that leverages ontologies that are associated to the information

model to aid in determining policy con�ict that would otherwise have been

di�cult to detect, (Davy et al., 2008d).

1.4. Main Conclusions 6

1.4 Main Conclusions

This thesis presents processes and algorithms to support the authoring and, in particular,

con�ict analysis, of policies deployed as a policy continuum in an integrated and e�cient

way. The algorithms are integrated into the policy authoring process of the policy contin-

uum and query an information model and associated ontology. The main conclusions of

the thesis are:

• As there is neither a formal de�nition of the policy continuum nor a de�ned methodol-

ogy to incorporate the e�ect a policy continuum has on policy authoring and con�ict

analysis, current policy based management systems �nd it cumbersome to enforce

policies de�ned for a policy continuum.

• The formal policy continuum model and associated authoring process describe the

interaction and dependency between policy re�nement and policy con�ict analysis,

which has not been formally described before. This demonstrates that policy re�ne-

ment and policy con�ict analysis can be developed independently but that they both

must be used in coordination with a policy authoring process.

• A policy con�ict analysis algorithm that makes use of the application speci�c infor-

mation encoded in an information model is able to cater for di�erent con�ict types if

the de�nition of what constitutes a con�ict is de�ned in the information model. The

con�ict analysis algorithm can be used to detect policy con�ict at any level of the

policy continuum due to the decoupling of the type of policies being analysed from

the algorithm.

• The policy con�ict analysis algorithm can be readily augmented to deal with new

types of policies and types of relationships between policies. Furthermore, by describ-

ing the relationships between two policies in an ontology, signi�cant improvements

to the con�ict analysis algorithm can be made in respect to policy selection.

• The policy relationships discovered during the con�ict analysis algorithm can be

saved as histories and readily re-used to improve the selection of policies that must

be further analysed for con�ict. By leveraging historical information, signi�cant

improvements in the performance of the con�ict analysis algorithm are observed.

1.5. Thesis Outline 7

1.5 Thesis Outline

Chapter 2 presents the background work related to network management and policy

based management. It discusses the related work on policy con�ict de�nition and analysis

approaches concluding with an identi�cation of the related open research issues and chal-

lenges concerning policy con�ict analysis, together with a set of requirements for the work

described in the remainder of the thesis.

Chapter 3 presents the proposed formalisation of the policy continuum model and as-

sociated policy authoring process. The authoring process is designed to cater for the

requirements of realising a policy continuum and maintaining the consistency of the policy

continuum as policies are created or modi�ed.

Chapter 4 presents the policy con�ict analysis algorithm that is a part of the policy

authoring process. The con�ict analysis algorithm is linked to and leverages an information

model that describes a communications network. A crucial result is that by taking this

approach, the algorithm can be used to detect potential con�ict among policies de�ned at

any individual policy continuum level. An implementation is described that demonstrates

several case studies depicting the analysis of policy con�ict at multiple levels of the policy

continuum.

Chapter 5 builds on the work of the previous chapter to address a challenge associated

with physically distributed groups of policies. By incorporating the use of ontologies into

the information model to further describe the relationships that can be established between

policies, the con�ict analysis algorithm can detect con�icts between distributed sets of

policies de�ned to manage di�erent devices having di�erent functionality.

Chapter 6 presents a policy selection algorithm that can be used with the policy con�ict

analysis algorithm to enable it to take advantage of historical information to enhance its

performance. The policy selection algorithm promotes the re-use of previous computations

during policy con�ict analysis. The results are presented for theoretical and case study

based policy repositories. The result indicate the potential savings in runtime complexity

the selection algorithm o�ers.

Chapter 7 summarises the contributions of this thesis and discusses future work. It

also outlines future challenges associated with, in particular, the interdomain management

aspects of using a policy continuum.

Chapter 2

Background and Literature Review

This chapter is comprised of three related portions. Firstly, the background work discusses

network management approaches and the use of information modelling in network and dis-

tributed systems management in particular. This motivates the development of the policy

continuum model in this thesis, indicating the complexity associated with communica-

tions network management. Policy based management is de�ned along with the challenges

associated with the speci�cation and enforcement of policy in communications networks.

The use of other technologies such as ontological engineering is reviewed to investigate its

current use within policy based management.

Secondly, a literature review of the work relating to policy based management and

policy con�ict analysis in particular is presented. The various de�nitions of policy con�ict

presented in the literature are reviewed. This provides a context for presenting current

research on the processes developed to analyse policy. The di�erent approaches to policy

con�ict analysis are categorised into language based, information model based and ontology

based; an investigation into each approach reveals their respective advantages and disad-

vantages. Thirdly, conclusions are drawn from the literature review and the requirements

of the approach are outlined.

2.1 Background

This section reviews the background of network management towards motivating the re-

search and development of policy based network management. A brief introduction to

communications network management is provided, highlighting the standard terminology

and concepts used. Policy based management is described and reviewed from the perspec-

8

2.1. Background 9

tive of its use in addressing the complexity associated with the management of large scale

and dynamic communications networks. The Directory Enabled Network new generation

(DEN-ng) policy information model (Strassner, 2003) is introduced to represent the state of

the art in policy based management for networks. The use of not only structural informa-

tion via information models, but semantic information via ontologies is also studied in the

context of network management to support its use in policy based network management.

2.1.1 Network Management Approaches

According to Hegering et al. (1999): �The management of networked systems comprises

all the measures necessary to ensure the e�ective and e�cient operation of a system and

its resources pursuant to an organisation's goals�. Communications networks are com-

plex and heterogeneous combinations of resources, services and applications and therefore

must be managed in an integrated and coordinated fashion. The management of network

resources concerns managing the physical routers, hubs, switches and other devices sup-

porting network communications. Network management is also concerned with managing

the distributed systems and services that run over the communications network, such as

network operating systems, �le systems and web servers.

The tasks of management can be dissected into �ve general areas as suggested by the

Open Systems Interconnection (OSI) group's management architecture; standardised by

the International Standards Organisation (ISO). These �ve general areas, typically referred

to as FCAPS, are fault management, con�guration management, accounting management,

performance management and security management. These areas of management indi-

cate what functionality must be provided by the management system. With such diverse

responsibilities from the network management system, there is a requirement for a signi�-

cant investment into systems that can coordinate the execution and monitoring of all the

management tasks.

Management architectures have been developed to integrate the various management

tasks in the form of distributed systems. Such tasks may typically be implemented on a

vendor speci�c basis and may have de�ned unique interfaces to con�gure and monitor the

associated entities. Vendor speci�c interfaces reduce the ability of a management system

to be integrated, because a separate interface to perform all the management tasks would

be required. A management architecture provides the basis for di�erent vendors to develop

interoperable management solutions largely independent of one another.

2.1. Background 10

Managed

Entity (Agent)

Managing

Entity (Manager)

MIB / Translation

Figure 2.1: Manager-agent concept.

A managed object is a concept used in many management systems to abstract from the

entity to be managed. The managed object is a management representation of an entity

that can be managed by the management architecture. The managed object can therefore

be a physical resource, a network service, a user account or even a domain structure.

The key concept that must be realised is that the interface to the managed object is

standardised and provides an abstraction above any vendor speci�c interface. Therefore,

the managed object concept is critical to realising the management of heterogeneous entities

in a communications network. To support the de�nition of these managed objects an

information model is required. The information model is the heart of any management

architecture as it de�nes the interfaces, behaviour and capabilities of all manageable entities

in a network.

The proper use of managed objects requires that the �manager-agent� paradigm is

followed, see �gure 2.1. The manager is a piece of software that knows how to communicate

management task related commands to an agent. The agent then knows how to perform

the speci�ed management task on the target resource and this is performed through a

standards based interface.

The management architecture also requires an organisational model that is capable

2.1. Background 11

of representing the structure and relationships between entities that are managed. The

organisational model must be able to represent roles and hierarchies of entities to re�ect

the nature of the organisation. In fact, policies are a natural method of representing an

organisational model according to Mo�ett and Sloman (1991).

Management architectures also require communication models and functional models.

The communication model de�nes the interaction between managed objects and the func-

tional model dissects the management tasks into functional areas as described typically

by FCAPS. From the perspective of this thesis the most important concepts are the po-

tential uses of the information model to aid in policy based management. Although the

other models of the management architecture are important, they are not considered as

a method of enhancing policy based management processes. For this reason, examples

of deployed management architectures are discussed from the perspective of their use of

information models.

There are many examples of modern management architectures that share the con-

cepts of information models. For example, the Simple Network Management Protocol

(SNMP) management architecture was the most common method of management found

on the Internet according to (Hegering et al., 1999), and is still widely supported. The

latest version of SNMP was published in RFC 3411. The information model concepts for

SNMP are based on the Structure of Management Information (SMI) and the Management

Information Base (MIB) group of standards developed by the IETF. The manager-agent

paradigm is followed to coordinate the management of networked services and resources.

Currently, SNMP is typically used only for monitoring managed objects and not widely

used for con�guration management.

The OSI provide a description of a telecommunications network management archi-

tecture and a realisation of this architecture can be observed in the Telecommunications

Management Network (TMN). The TMN is used to manage public networks and telecom-

munications networks of a large scale. The information model for the OSI management

architecture apply an object-oriented approach. The OSI information model is an example

of the importance of standardised structural information of a network for its use in man-

agement. The TMN adopted the OSI management architecture and standardised its use

in the International Telecommunication Union, Telecommunication Standardisation Sector

(ITU-T) speci�cally in the ITU-TM3xxx group of standards.

The Common Information Model (CIM) (DMTF, 2008) was developed by the Dis-

2.1. Background 12

tributed Management Task Force (DMTF) as an information model to aid in the integrated

management of desktop systems. The CIM uses an graphical and textual notation to de-

scribe the information model. The graphical notation illustrates the managed objects and

relationships between managed objects. The graphical notation is based on the Uni�ed

Modelling Language but is more correctly referred to as the Meta-Object Facility (MOF).

The use of information models as a method of abstracting from the heterogeneity of

communications networks is used in many management architectures as indicated in this

section. However, there still remains a form of heterogeneity in the way the network

resources and services are con�gured to realise business objectives. This point is addressed

by policy based network management and is covered in the next section.

2.1.2 Policy Based Network Management

Policy based network management (PBNM) is a management paradigm that separates the

rules governing the behaviour of a network from its functionality. Policy was originally

described for access control of sensitive data as detailed by Bell and LaPadula (1973).

It was in (Mo�ett and Sloman, 1991, 1993), that policies were �rst described for use in

network management.

The use of policy in network management was attractive because it o�ered a solution

to the management problem of large and heterogeneous networks (Strassner, 2003). To

provide a clear de�nition and description of policy based management the concepts of a

policy based management system and speci�cation and enforcement of policy are dealt

with in the next sections.

2.1.2.1 De�nition of Policy Based Management

According to the IETF policy terminology RFC (RFC 3198), and as described further

by Strassner (2003), a policy based management (PBM) system controls the state of the

system and objects within the system using policies. The control paradigm used is based

on �nite state automata. The PBM system is concerned with the installation, deleting and

monitoring of policy rules, as well as ensuring the system operates in accordance to those

policy rules. Policy based network management (PBNM) is PBM as applied to network

management. In this case the managed objects are networking devices, resources and

services. Ultimately, the PBNM system is used to control the provision of services across

a network in a predictable way.

2.1. Background 13

There are a number of terms associated with policy based management that are de-

scribed in RFC 3198 and by Strassner (2003). The terms can be split into two portions,

namely terms that describe a policy and terms that describe the management of those

policies. The following descriptions are derived from Strassner (2003) and there is some

overlap with the de�nitions de�ned in RFC 3198.

Policy: Policy is a set of rules that are used to manage and control the changing and/or

maintaining of the state of one or more managed objects.

Policy Rule: A PolicyRule is an intelligent container. It contains data that de�ne how the

PolicyRule is used in a managed environment as well as a speci�cation of behaviour

that dictates how managed entities that it applies to will interact.

Policy Group: A PolicyGroup is a container that can aggregate PolicyRule and/or Pol-

icyGroup objects.

Policy Condition: A PolicyCondition is represented as a Boolean expression and de�nes

the necessary state and/or prerequisites that de�ne whether the actions aggregated

by the PolicyRule should be performed.

Policy Action: A PolicyAction represents the necessary actions that should be performed

if the PolicyCondition clause evaluates to TRUE.

Policy Event: A PolicyEvent represents an occurrence of a speci�c event of interest to

that managed system and can be used to trigger the evaluation of a PolicyRule.

The speci�c terms to describe the components used to manage the operation of a PBM

are as follows:

Policy Decision Point: An entity that makes Policy Decisions for itself or for other

entities that request such decisions.

Policy Execution Point: An entity that is used to verify that a prescribed set of Poli-

cyActions have been successfully executed on a set of PolicyTargets.

Policy Domain: A PolicyDomain is a collection of managed entities that are operated

on using a set of policies.

Policy Repostory: A PolicyRepository is an administratively de�ned logical container

that is used to hold policy information.

2.1. Background 14

Policy Subject: A PolicySubject is a set of entities that is the focus of the policy. The

subject can make policy decision and information requests, and it can direct policies

to be enforced at a set of policy targets.

Policy Target: A PolicyTarget is a set of entities that a set of policies will be applied to.

The objective of applying policy is to either maintain the current state of the policy

target or to transition the policy target to a new state.

The above speci�ed de�nitions shall be referred to throughout the rest of the thesis unless

the de�nitions are explicitly modi�ed within the text.

2.1.2.2 Speci�cation and Enforcement

In the early 1990s PBNM was to revolutionise the way Quality of Service (QoS) would

be provisioned across communications networks. QoS-enabled networks aimed to deliver

di�erentiated services which were driven by business oriented goals and objectives (i.e.

policies) (Jude, 2001). Research soon indicated that this objective proved di�cult to

achieve. The primary reasons being that there was little understanding on how policy

should be speci�ed and that the de�ned policies were di�cult to enforced.

The original solutions developed to address QoS management via policy were predom-

inately vendor speci�c and were not interoperable across large scale communications net-

works. Therefore, even if the management protocols were based on a management model

that promoted interoperability (for example SNMP), the policy languages used to de�ne

the behaviour and execution environments used to enforce the policies, were not inter-

operable. This lack of interoperability between policy implementations occurred because

there was no standard interpretation of what policy was aiming to achieve. In a move to

increase interoperability, in RFC 3060 the IETF published the Policy Core Information

Model (PCIM) following from the success that information models had on interoperability

for network management. The PCIM is concerned with the speci�cation of policy and not

its enforcement.

Figure 2.2 depicts the primary components of the PCIM. The model describes the

structure of policies but does not dictate the contents of policies. The semantics of a

PCIM policy is de�ned to be �If a set of PolicyConditions are satis�ed, then execute the

appropriate set of PolicyActions�. Once the policy condition is evaluated to true a set of

policy actions are executed.

2.1. Background 15

CommonName: string

PolicyKeywords: string[]

Policy (Abstract)

ManagedElement (Abstract)

(from Core)

PolicyComponent

*
*

Dependency
*
*

PolicySet (Abstract)

See Policy Sets

PolicyActionStructure

ActionOrder: uint16

*

PolicyConditionStructure

 GroupNumber: uint16

 ConditionNegated: boolean

*

PolicySetComponent

Priority: uint16

PolicyCondition (Abstract)

See Policy Conditions

PolicyAction (Abstract)

See Policy Actions

*

*

*
*

PolicySetAppliesToElement

*

*

Figure 2.2: Simpli�ed view of the PCIM (DMTF, 2008).

The PCIM is de�ned to be generic enough so that it can be readily extended to meet the

requirements of any policy application. It was further extended by the IETF to meet the

requirements of representing policy to manage quality of service and security. RFC3644,

Policy Quality of Service Information Model (QPIM) (Snir et al., 2003), dictates how

policy can describe the enforcement of di�erentiated IP services (Di�Serv) and integrated

IP services (IntServ). RFC3585, IPsec Con�guration Policy Information Model (Jason et

al., 2003), dictates how policy can describe the enforcement of IPsec security services. The

execution semantics of such policies are well understood, in that the speci�ed conditions

are de�ned over IP header information of received IP tra�c on a router interface and the

speci�ed actions either alter information in the packet header and/or control the processing

of the packet.

Policy based management principles are equally applicable to domains other then net-

work management. Policy for access control is concerned with de�ning the actions that

should follow a request for access to a resource by some entity. The result may be to allow

or deny access. Conceptually, the principle of policy should apply as the conditions of the

policy describe the access rights of those entities that are allowed / denied access, and if the

requesting entity meets the conditions, the corresponding actions are performed. There are

many existing models for access control but a popular standard model for access control

2.1. Background 16

was developed by the National Institute of Standards and Technology (NIST), namely role

based access control or RBAC (Ferraiolo et al., 2001). RBAC speci�es that policies can

be de�ned to manage access to resources in a generic way. The model they de�ne is more

speci�c to access control then that proposed by the IETF in the PCIM, as it also deals

with concepts such as roles, users and groups. This model introduced new possibilities and

associated complexities into the speci�cation and enforcement of policy for access control.

The concept of separation of duty and delegation could now be represented which was

di�cult to implement with the existing PCIM.

For distributed systems, a general policy based management toolkit, named Ponder

(Damianou et al., 2001), mainly used for research was developed at Imperial College. The

tools comprises of a policy speci�cation language roughly based on the IETF PCIM, but

including concepts of access control and a set of management processes that can perform

some analysis of policies and enforce them. The tool was not directly aimed at network

management but towards managing access to and operation of services in a distributed

system. As Ponder combined two di�erent aspects of policy it enabled policy administrators

to specify di�erent types of policies. Policies could now be directly related to groups of

managed entities, and were subject or target based. In Ponder, Positive Authorisation

(A+) policies dictate under what conditions could a subject perform an operation on a

target. Negative Authorisation (A-) policies dictate the conditions when a subject could not

perform an operation on a target. There are also positive and negative Obligation (O+/-)

policies; these policies dictate when a subject must or must not perform a speci�c operation

on a target. Where authorisation policies were akin to access control, obligation policies

instruct the execution of operations (policy actions), similar to the original de�nition of

policy by the IETF.

Recent technologies for policy based management relate to managing access to Web

Services, such as XACML1 Godik et al. and WS-Policy2 (Bajaj et al., 2006). These tech-

nologies were developed to follow an access control paradigm. The speci�cation languages

are based on XML, and the enforcement of the policies follows the associated published

standards so that multiple vendors can implement their own enforcement processes. The

�Rei� (Kagal et al., 2003) and �KAoS� (Uszok et al., 2003) policy languages followed the

avenue of Ponder representing access control concepts in policy which required the incor-

1eXtensible Access Control Markup Language
2Web Service Policy

2.1. Background 17

poration of policy analysis. Their domain of application is that of pervasive environments

and agent based systems, respectively.

With varying types of policies being speci�ed, the enforcement of the policies also varies.

High level access control policies are enforced by network attached servers, dedicated to

processing access control requests, whereas low level network �ltering policies would be

enforced on the actual router interfaces spread throughout the network. These low level

policies would essentially be evaluated on the arrival of each IP packet. The di�ering

execution semantics of policy speci�ed at di�erent levels for di�erent applications, suggests

that there is no single view of policy. The next section discusses the architectures developed

to support policy based management.

2.1.2.3 Policy Architectures

The enforcement architecture for policy based management was standardised by the IETF

in RFC2748, Common Open Policy Service (COPS) (Boyle et al., 2000). The designated

architecture is depicted in �gure 2.3. COPS is designed to be used with the PCIM to

implement the decisions of the policies de�ned using PCIM and extended models. It

dictates the use of a Policy Decision Point (PDP) and a Policy Enforcement Point (PEP).

The decisions are the result of evaluating policy conditions. The enforcement of a decision

is basically the execution of the associated policy actions. The COPS protocol is used to

communicate policy decisions between the PDP and the PEP. However, there is a large

portion of the architecture missing as this RFC only describes the communication between

two of the core components and is not concerned with the interaction with policy authors

creating, modifying or deleting policies.

The architecture suggested in the COPS RFC is built upon the de�nitions used to

describe policy in the related RFCs, RFC 3198 (Terminology for Policy-Based Manage-

ment) (Westerinen et al., 2001) and RFC 2753 (A Framework for Policy-based Admission

Control) (Yavatkar et al., 2000). The descriptions are application independent and can

therefore be adapted for use in many applications. For example, in an access control ap-

plication that may be based on XACML, the PEP may be located separately from the

PDP. The PDP in this case is the XACML server, and the PEP is a software component

capable of communicating XACML requests to the server and subsequently allowing access

to a managed resource. For a network �ltering application, the PEP and PDP are hosted

locally, where all decision logic is available to the �ltering process and the �ltering process

2.1. Background 18

LPDP

PEP PDP

Network Element

COPS

Figure 2.3: COPS architecture (Boyle et al., 2000).

is capable of carrying out the decisions. Both scenarios abide by the description of a policy

based management system as detailed in the associated RFCs, but they have very di�erent

execution semantics, demonstrating the �exibility of the architecture. These two types of

policy based management systems depict the distinction between the two approaches to

implementing a PBM: distributed versus embedded.

In the distributed PBM, there is typically a policy server hosting the decision processes

and the individual policy descriptions. Compatible services can then query the policy

server for answers to policy related questions. The policy server can instruct the provision

of con�gurations that amend the behaviour of services to perform in accordance with policy.

The embedded PBM, such as used for network �ltering services, stores policies locally and

can make individual decisions based on these policies. The two approaches demonstrate

the separation of high level policy from low level policy. This separation complicates the

use of policy as a holistic management paradigm as it requires the coordination of policies

among separate PBM systems. The processes required for such coordination have not been

standardised. This thesis aims to contribute substantially in this domain.

Current network management research is investigating the use of policy based man-

agement from an autonomic network management perspective, as presented by Jennings

et al. (2007). Policy based management is seen to be an important facilitator for auto-

nomic network management due to its concept of separating the intended behaviour of a

communications network from its functionality.

2.1. Background 19

2.1.3 Information Models

Information models are a successful method of reducing the impact of managing heteroge-

neous networking resources. The Directory Enabled Networks (DEN) initiative (Strassner,

1999), enhanced the Common Information Model (CIM) with speci�c extensions so that

it could be used speci�cally to manage networked services and resources. Also, DEN was

designed with a data model to persist and store the objects de�ned within the information

model. The data model was a distributed directory using Lightweight Directory Access

Protocol (LDAP) (Howes and Smith, 1995). This directory provided applications and net-

working devices with a common interface to access management information. The problem

now was not the management of network resources, but the management of associated ap-

plications and services that used the network.

The business of providing high value services over a network, including the Internet,

was growing increasingly complex and existing management technologies were �nding it

di�cult to cope with the requirements of managing a network to ful�ll business objectives.

Operation Support Systems (OSS) are systems developed to cater for the complex man-

agement of such networks, but were predominately a mash up of di�erent �best of breed�

applications to support various management functions. The cost involved in managing

such large scale networks began to increase and was putting strains on the ability of busi-

nesses to turn pro�ts. In an aim to reduce the associated complexity of OSS management

systems, New Generation Operations Systems and Software (NGOSS) was developed by

the TMForum (TMF) (TMForum, 2003).

The objective of NGOSS was to develop a set of information models and associated

process models that would aid in establishing a better operations support system for the

telecommunication industry. The approach NGOSS took was to integrate an information

model that described all the applications and network resources that had to be managed,

combined with a guide book for related business processes. The information model was

called the Shared Information and Data Model (SID) in (TMForum) and the business

process guidebook was called enhanced Telecom Operations Map (eTom) in TMForum.

Together the SID and eTom de�ned the business processes and management information

required to develop business aware and e�ective OSSs. The SID is separated out into a

group of related information models each, de�ned for separate aspects of a business, as

depicted in �gure 2.4.

The SID is a standardised subset of another important information model, namely the

2.1. Background 20

Product

Market / Sales
Market Strategy & Plan

Market Segment

Marketing Campaign

Competitor

Contact/Lead/Prospect

Sales Statistic Sales Channel

Product

Product Specification Product Offering

Strategic Product
Portfolio Plan Product Performance

Product Usage Statistic

Customer
Customer

Customer Interaction

Customer Order

Customer Statistic

Customer Problem

Customer SLA

Service
Service

Service Specification

Service Applications

Service Configuration

Service Performance

Service Usage

Resource

Supplier / Partner
Supplier/Partner

S/P Plan

S/P Interaction

S/P Product

S/P Order

S/P SLA

Enterprise Common Business
Party

Location

Business Interaction

Policy Agreement

Applied Customer Billing
Rate

Customer Bill

Customer Bill Collection

Customer Bill Inquiry

Service Strategy & Plan

Service Trouble Service Test

Resource

Resource Specification

Resource Topology

Resource Configuration

Resource Performance

Resource Usage

Resource Strategy &
Plan

Resource Trouble Resource Test

S/P Problem

S/P Statistic

S/P Bill Inquiry

S/P Payment

S/P Performance S/P Bill

(Under Construction)

Product

Market / Sales
Market Strategy & Plan

Market Segment

Marketing Campaign

Competitor

Contact/Lead/Prospect

Sales Statistic Sales Channel

Product

Product Specification Product Offering

Strategic Product
Portfolio Plan Product Performance

Product Usage Statistic

Customer
Customer

Customer Interaction

Customer Order

Customer Statistic

Customer Problem

Customer SLA

Service
Service

Service Specification

Service Applications

Service Configuration

Service Performance

Service Usage

Resource

Supplier / Partner
Supplier/Partner

S/P Plan

S/P Interaction

S/P Product

S/P Order

S/P SLA

Enterprise Common Business
Party

Location

Business Interaction

Policy Agreement

Applied Customer Billing
Rate

Customer Bill

Customer Bill Collection

Customer Bill Inquiry

Service Strategy & Plan

Service Trouble Service Test

Resource

Resource Specification

Resource Topology

Resource Configuration

Resource Performance

Resource Usage

Resource Strategy &
Plan

Resource Trouble Resource Test

S/P Problem

S/P Statistic

S/P Bill Inquiry

S/P Payment

S/P Performance S/P Bill

(Under Construction)

Figure 2.4: SID diagram (TMForum, 2008).

DEN-ng (new generation). DEN-ng was originally developed by John Strassner, as docu-

mented in (Strassner, 2003), and was submitted and adopted by the TMF and called the

SID. The SID and DEN-ng have diverged in recent years with the DEN-ng focusing more

in communications network management, and the SID on the business oriented aspects of

management.

DEN-ng was designed to represent the management information of large scale commu-

nications networks, from a business through to implementation perspective. Not only are

the relationships among networking components and network services represented, but it

also represents business concepts and relationships. For example, the DEN-ng can repre-

sent information pertaining to a customer of an ISP service and its billing information and

can also represent the services and resources required to enable the provision of the service

within a communications network.

The DEN-ng is fully UML compliant and so can be used to automate the generation

of management interfaces (via Model Driven Development (MDD)/ Model Driven Archi-

tecture (MDA)) to the services and resources of the network, and therefore can be made

compatible with all existing management technologies. The primary enhancement DEN-ng

has over all previous information models is that it did not just represent the structure of

management information, it also de�nes a management methodology that instructed how

the management of a large scale communications network should be carried out. Policy

2.1. Background 21

ResourceFacingService
(from ResourceFacing Service Entities)

ServiceSpecification
(from Service Specification Entit ies)...)

Service

1 0..n1 0..n

SpecifiesService

CustomerFacingService
(from CustomerFacing Service Entities)...)

Product
(from Product ABE)

0..1

0..n

0..1

0..n

ProductRealizedAsCFService

CustomerFacingServiceSpec
(from CustomerFacing ServiceSpec Entities)

ProductOffering
(from Product Offering ABE)

1

0..n

1

0..n

ProdOfferDescribes

Resource
(from Resource Domain)

0..n

0..n

0..n

0..n

ProductRealizedAsResource

ResourceFacingServiceSpec
(from ResourceFacing ServiceSpec Entities)

ProductSpecification
(from Product Specification ABE)

0..n

0..n

0..n

0..n

ProdSpecRealizedAsCFServiceSpec

0..1

0..n

0..1

0..nProdSpecMadeAvailab leAs

ResourceSpecification

0..n0..n 0..n

InvolvedResourceSpecs

0..n

0..1 0..n0..1 0..n

SpecifiesResource

1

1..n

1

1..n

RFServiceSpecHasResourceSpecs

0..n

0..n

0..n

0..n

ProdSpecRealizedAsResourceSpec

Figure 2.5: DEN-ng product-service (TMForum, 2008).

based network management driven by an information model is one of the key di�erentiating

factors that sets DEN-ng apart from other information models.

The components of the DEN-ng information model describe the relationships and at-

tributes of common business to networking entities. It describes concepts related to prod-

ucts, services, customers down to routing protocols and QoS services. A typical information

model diagram is depicted in �gure 2.5 and illustrates the relationship between a product

that can be purchased by a customer from an ISP, to a set of services that must realise that

product in the communications network. The �gure illustrates that a Product is made up

of CustomerFacingServices or Resources. The associated speci�cation classes describe the

invariant characteristics associated to other classes.

2.1.4 DEN-ng Policy Information Model

The DEN-ng information model was designed with a policy information model built in.

The reasoning behind this is that policy could be related to business managed entities

down to network managed entities. As the DEN-ng information model can represent an

array of di�erent application domains, not just for network management, policy can be

developed to manage these applications. The approach to interoperability among policy

languages is the �exibility of the DEN-ng policy model in representing various types of

policies. The primary distinction that di�erentiates the DEN-ng policy model from the

2.1. Background 22

PolicyAction

1..n0..n 1..n

PolicyActionInPolicyRule

0..n

PolicyRule

1..n

IsTriggeredBy

0..n

PolicyEvent

PolicyConditionInPolicyRule

0..n1..n

PolicyCondition

0..n1..n

0..n

1..n

Figure 2.6: DEN-ng PolicyRule model (TMForum, 2008).

IETF PCIM policy model is that DEN-ng dictates the use of policy events as depicted in

�gure 2.6. The semantics of the policy are now, �On the occurrence of the Policy Events,

if the Policy Conditions are satis�ed, then execute the associated Policy Actions.� This

makes the enforcement of policy more scalable then in the previous model, as the policy

conditions are only evaluated after a speci�c event of signi�cance and not continuously

evaluated as indicated in the original PCIM de�nition.

Another important distinction between the DEN-ng policy model and the IETF PCIM

is that there is a policy management application hierarchy de�ned for DEN-ng. The DEN-

ng policy model di�erentiates between using policy to manage applications and manage-

ment applications used to manage and monitor the execution of policy. Figure 2.7 depicts

the current DEN-ng view of policy management applications. The DEN-ng policy model

recognises that it is not enough to just dictate the structure of policy but to also dictate

how policy should be integrated into various applications domains. It dictates that a pol-

icy application is a PolicyServer, a PolicyBroker or a component of a policy server, e.g. a

PolicyServerComponent. The PolicyBroker is designed to coordinate the distribution and

enforcement of policies in a distributed environment. The PolicyServer is an application

that controls the execution and veri�cation of policy via the PolicyExecutionPoint (PXP)

and the PolicyVeri�cationPoint (PVP). The PolicyDecisionPoint has the same functional-

ity as that described within the IETF PCIM.

The DEN-ng information model is designed to describe the structure of business to

network managed entities. One of the major advantages of this is that for the �rst time

it is possible to realise policy derived from business goals and objectives to con�gure the

behaviour of the communications network and services. The concept of the policy contin-

uum is used to illustrate the processes involved in carrying out business driven network

2.1. Background 23

PolicyApplication

PolicyEnforcement

Point

PolicyDecision

Point
11..n 11..n

DirectsEnforcementOf

PolicyExecution

Point

1

1..n

1

1..n

DirectsExecutionOf

PolicyProxy

PolicyBroker PolicyServer

0..1 0..n0..1 0..n

BrokerCoordinates

PolicyServerComponent

0..1 3..n0..1 3..n

HasPolicyServerComponents

PolicyVerification

Point

Figure 2.7: DEN-ng PolicyApplication model (TMForum, 2008).

management. It provides a means to related the various levels of policies that can exist,

from business policies to network policies. However, even though the policy continuum

o�ers this possibility, e�ective processes to realise this have not yet been developed. This

is primarily due to the lack of e�ective policy management processes for policy transfor-

mation, policy re�nement and policy con�ict analysis when dealing with a hierarchical set

of related policies and the relatively informal description of the policy continuum. In chap-

ter 3 of this thesis, extensions to the policy information model of DEN-ng are proposed,

and used throughout the thesis to support more expressive forms of policies and to more

e�ectivly support the use of the policy continuum.

The policy continuum (Strassner, 2003) is described as a set of interrelated policy

languages, where each policy language is expressed in the terminology most suitable to

its respective constituency of user. The number of levels is arbitrary; however, �ve has

been considered as appropriate for communications network management. The levels of

the policy continuum as speci�ed in DEN-ng are business, system, network, device and

instance. One of the main contributions of this thesis is to formally de�ne the policy

continuum and accompanying policy authoring process.

The majority of the research published for using the DEN-ng policy information model

is concerned with the use of policy to realise �autonomic� communications network man-

agement. The word autonomic refers to the autonomic nervous system of the human body,

2.1. Background 24

Figure 2.8: FOCALE and policy interaction (Strassner et al., 2006).

where the body can self-regulate, taking care of breathing, and controlling body tempera-

ture among other tasks. The properties exhibited by this autonomic system are typically

described as self-* (self-star) behaviour. The '*' can be replaced with the functionality

desired, for example self-managed, self-healing, self-con�gurable. Strassner et al. (2006)

introduce the FOCALE3 autonomic networking architecture, which is heavily dependent

on the DEN-ng information model and the associated policy continuum. In that paper,

they refer to the policy continuum as being integral to the operation of an autonomic net-

work, where business goals are translated into a form that can be use to con�gure network

resources. The importance of the policy continuum as being central to the realisation of au-

tonomic networking has also been stressed in later research by Strassner and collaborators.

As depicted in �gure 2.8, policy plays a role in managing the con�guration of resources

(loop 2), and managing the resource from a business perspective, i.e. maintenance (loop

1). Strassner et al. (2007g,h); Strassner (2007b,d); Strassner et al. (2007f) motivate the use

of FOCALE supported by the policy continuum to enhance the management of wireless

communications networks, speci�cally in the support of seamless mobility and autonomic

communications network management.

The core challenge in realising the policy continuum still remains. The challenge being

3Foundation, Observation, Comparison, Action, Learning and rEasoning

2.1. Background 25

that there are no integrated and application independent processes to realise authoring

of policies for the policy continuum. There has been signi�cant related work in the area

of enhancing the DEN-ng policy model towards making it more useful in a wider set of

application areas that require the use of the policy continuum. For example, Fu and Strass-

ner (2006) present an extension to the DEN-ng policy model to support role-based access

control and authentication for a converged wireless network. They demonstrate the ad-

vantages of using a model based approach to management, which in this case increases the

functionality of the management system to support seamless mobility in multiple wireless

access networks. Strassner (2007d) enhanced the DEN-ng policy model with the ability

to support a representation of context information. This enhancement enables DEN-ng

policies to react to changes in context, e�ectively altering the set of relevant policies based

on the state of the managed system. They discuss the enhancement to be critical to the

advancement of the use of policy as a facilitator for autonomic networking.

The policy models designed to date do not consider that there are always going to be

multiple levels of policy, where low level device or service con�guration policies are inspired

or derived from high level business policies that guide the behaviour of the communica-

tions network. Therefore, unless the a model of the policy continuum is created with an

integrated set of application independent processes for policy authoring, and policy con�ict

analysis, then e�orts such as FOCALE cannot be fully realised.

2.1.5 Ontological Engineering for Network Management

The DEN-ng information model is fully UML compliant and there is extensive documen-

tation published by the OMG detailing the capabilities of modelling systems with UML.

There are, however, some issues with using UML to describe management information for

a system (Wong et al., 2005). Once the information model is described for a system it must

then be used to build application speci�c and vendor speci�c data models. All information

can then be mapped back to a common representation; however, the key problem arises

when trying to compare di�erent application or vendor speci�c representations together.

Take for example the management of two routers, each manufactured by two di�erent

vendors. When con�guring Border Gateway Protocol (BGP) peers (as illustrated in �gure

2.9), the two routers must be con�gured correctly for routing to be successful, if not then

there may be connectivity problems. The two con�guration languages are completely dif-

2.1. Background 26

CISCO
Juniper

Router(config)#router bgp autonomous-system

Router(config-router)#neighbor

{ip-address | peer-group-name} remote-as number

Router(config-router)#neighbor ip-address activate

[edit]

routing-instance {

 routing-instance-name {

 protocols {

 bgp {

 group group-name {

 peer-as as-number;

 neighbor ip-address;}

} } } }

Figure 2.9: Router con�guration problem (Strassner, 2003).

ferent and it is di�cult to map the capabilities of the two languages. This is especially true

if commands exist in one language that are similar to groups of commands in the other

language, or worse still, may not exist in the other language.

A possible solution to this problem is to augment the information models and data

models with ontologies as described by Wong et al. (2005). Ontologies are capable of

representing formal semantics that can be reasoned over and are capable of representing

similarity relationships among modelled entities and other rich semantic relationships. The

rest of this section is devoted to discussing how ontologies can bene�t information modelling

and policy based management.

2.1.5.1 Types of Ontologies

Ontologies o�er a formal method of de�ning a better understanding of information and

according to Uschold and Gruninger (1996):

�Ontology is the term used to refer to the shared understanding of some domain of

interest which may be used as a unifying framework�

By sharing ontologies, di�erent parties can share how they perceive the meaning of

the related information. Ontologies also o�er methods of relating di�erent parties' inter-

2.1. Background 27

TBox

ABox

KnowledgeBase

Reasoning

Descriptions

API

Figure 2.10: DL knowledge base (Baader et al., 2007).

pretation of information. For example, one party may describe a particular object, say a

router, by its number of interfaces. Another may describe that router by its design goals

(e.g. bu�er size, capabilities and processor). By de�ning the concept of a router using

the two ontologies, the two parties may begin to reason over each others' version of the

router, in e�ect they will be describing the same router from di�erent perspectives. This

type of reasoning is very useful when trying to relate di�erent data models together and

even relate di�erent programming models..

There are many techniques and technologies available to develop ontology models.

Such techniques include using predicate calculus and frame logic (Gruber, 1993), but by

far the most popular approach is using description logic (DL) (Baader et al., 2007). De-

scription logic is a subset of �rst order logic and is concerned with the representation of

concepts, relationships between concepts and the constraints on those relationships. There

are essentially two aspects to DL, TBox concepts and ABox concepts. TBox dictates the

terminology of the concepts being described and the constraints and relationships over

those concepts. ABox dictates the individuals (assertions) that exist as types of concepts

in the description logic system. Figure 2.10 depicts the relationship between the compo-

nents of the DL knowledge base. An important property of DL that makes it so useful to

representing ontologies is that individuals can be readily subsumed by classes other then

the one they are originally typed by, thus allowing inference over the concepts de�ned in

2.1. Background 28

Notation Description

C ≡ D Equivalence class relationship, C is equivalent to D
B ≡ C uD B is equivalent to C and D (C intersection D)
B ≡ C tD B is equivalent to C or D (C union D)
B ≡ ∃x.D B is equivalent to anything that has a property x with some value

D (necessary)
B ≡ ∀x.D B is equivalent to anything that has a property x with value only

in D (necessary and su�cient)
A v B A is a sub type of B

Table 2.1: Description Logic notation.

the knowledge base.

An example of a TBox statement is depicted in equation (2.1):

SecureRouter ≡ Router u ∃hasCapability.Secure (2.1)

The statement de�nes the concept of a SecureRouter. It illustrates that if there exists

a Router that has a value of Secure in its hasCapability property then that router is

a SecureRouter. An example of an ABox statement is depicted in equation (2.2):

Router (CISCO3700)

Secure (SECDEV 1)

hasCapability (CISCO3700, SECDEV 1)

(2.2)

More general terminology used for describing the TBox portion of the knowledge base

is o�ered in table 2.1. The notation used represents the core axioms that can be used to

build a description logic knowledge base. This knowledge base is used to represent the

ontology. To query the knowledge, a new class type can be de�ned to investigate which

individuals are subsumed into the class.

2.1.5.2 Semantic Web Technologies

There has been a recent surge in the use of ontology technologies for use in describing the

semantics associated to web services and documents on the Internet. There is a family

of related technologies developed by the World Wide Web Consortium (W3C) namely:

Resource Description Framework (RDF), RDF Schema (RDFS), Web Ontology Language

(OWL) and Semantic Web Rule Language (SWRL). Each technology is a standard for

representing semantic information in XML, where each is more expressive then the last.

2.1. Background 29

RDF is able to describe metadata about documents on the Internet. It has a very simple

structure, a triple of the form (subject, predicate, object). The subject entity is related to

the object entity via some predicate logic statement. An example of its usage in depicted

in (2.3)

[qn : Router1, qn : V endor, ”Cisco”]

[qn : Router1, qn : Model, ”6509”]
(2.3)

RDF is good at representing simple relationships associated to documents, but is too

limited for some circumstances (Baader et al., 2007). RDFS is designed to extend the

semantics of RDF adding the notion of classes and class hierarchies (classes can be associ-

ated together using properties and domain / range expressions). An example of its usage

is depicted in (2.4), which speci�es that an entity Router2 is of type ATMRoutingDevice,

and that the new type ATMRoutingDevice is a sub class of type RoutingDevice.

[qn : ATMRoutingDevice, rdf : subClassOf, qn : RoutingDevice]

[qn : Router2, rdf : Type, qn : ATMRoutingDevice]
(2.4)

The Web Ontology Language (OWL) (W3C, 2004) is by far the most well known tech-

nology for representing semantic information in the form of ontologies. A version of OWL,

named OWL-DL is focused on using the notions from description logic to describe semantic

information. OWL is built upon RDF/RDFS, there has been a number of inference and

reasoning engines that have built in support for reasoning over the ontologies de�ned in

OWL. Reasoners are for example Racer (2008), Fact++ (2008) and Pellet (2008). A popu-

lar editor for OWL, and RDF/RDFS is Protégé (Protégé, 2008). Protégé provides the user

with a Graphical User Interface (GUI) and backend support for connecting to a reasoner

so that subsumption can be performed. One of the attractions to using OWL-DL is that it

remains computationally decidable as opposed to richer version of OWL such as OWL Full.

OWL Full o�ers more extensive features to represent semantic information but can cause

some performance complexity issues as it is not guaranteed to be decidable. For example,

OWL Full o�ers the ability to treat classes as individuals and reasoning can be performed

over classes as well as individuals of classes. The Semantic Web Rule Language (SWRL)

(W3C, 2008b) is a rule language that can extend the semantic information described in an

OWL ontology. It can for example re-classify individuals based on their relationships to

2.2. Literature Review 30

other individuals in a more �exible way that cannot be done with OWL on its own.

The use of ontologies to represent management information for network management

is well researched area, attracting considerable attention over the past few years (Lopez de

Vergara et al., 2003; Wong et al., 2005; de Vergara et al., 2004). The primary focus was

to enrich existing information models with semantic information to aid interoperability.

Recently however, the use of ontologies in policy based management has gained momentum.

A more thorough investigation into the use of ontologies in policy based management is

given in the literature review section.

2.2 Literature Review

This section provides a review of research related to policy analysis from the perspective

of how these processes perform along side a policy continuum. Firstly, a discussion of the

existing de�nitions of policy con�ict is presented. Depending on the application for which

policy is being de�ned there are varying views on the matter. Secondly, a description and

discussion of policy analysis processes that are required to deliver e�ective and dependable

policy based management systems are presented. Policy con�ict analysis is categorised into

three approaches that re�ect the current state of the art and from there a discussion of the

current de�ciencies of these approaches concerning operating within a policy continuum is

presented.

2.2.1 Policy Con�ict

Policy con�ict is one of the outstanding issues related to policy based management. Policy

con�icts have di�erent manifestations in di�erent applications that make use of policies.

Therefore, a policy con�ict in one application may not necessarily be a policy con�ict in

another application. The careful de�nition of policy con�ict should lead to the creation

of purpose built policy con�ict analysis processes that can e�ectively detect and cater for

con�icts among policies in speci�c applications. However, even the de�nition of policy

con�ict is a challenge. Strassner (2003) describes policy con�ict as:

"A Policy con�ict is when two of more policies applying to an overlapping set of man-

aged entities are simultaneously triggered, and there conditions are satis�ed, but their ac-

tions are contradictory."

This de�nition describes that the shared resource (the overlapping set of managed en-

2.2. Literature Review 31

Figure 2.11: Classi�cation of policy con�icts (Mo�ett and Sloman, 1994).

tities), has multiple policies specifying behaviour for them (two or more policies applying).

The overlapping set of policies are triggered simultaneously and are satis�ed (conditions

are true). The problem arises when the actions speci�ed by the policies are contradictory.

Di�erent approaches to policy based management prescribe their own de�nition of con�ict;

however, in general they all are related to the enforcement of actions that ultimately may

cause the managed system to act in a nondeterministic fashion.

Mo�ett and Sloman (1994) originally highlighted the issues associated to policy con-

�ict; they de�ne a policy con�ict to occur when the objectives of two or more policies

cannot simultaneously be met. They de�ne policy con�ict from the speci�c view point of

management policies, which they consider to be positive or negative, authorisation or obli-

gation policies. They describe that con�ict can occur between individual policies if there

is an overlap in the subjects, targets and actions of the policy and some other speci�c

conditions are met. The types of con�ict they de�ne are depicted in �gure 2.11. Con�icts

can be associated to the �modality� of policy (authorisation/obligation) and the goals of

the policy. Modality con�icts are when an action is both permitted and prohibited, or ob-

ligated and refrained (obliged not to). Goal con�icts are associated to the e�ect permitted

actions have on the system when carried out simultaneously. An example of this is, if two

policies require database access, but due to resource restrictions only one can access the

database at a time. A con�ict of duty occurs when the actions speci�ed do not con�ict

in the traditional sense, but where their simultaneous execution is a breach in the use of

the actions. For example, two policies may allow a bank clerk to both issue and approve

cheques; obviously the organisation will not want such policies to exist. This is similar

2.2. Literature Review 32

to the con�ict of interest policy con�ict. The multiple managers con�ict occurs when two

distinct subjects invoke contradicting actions on a common target; subsequently, the target

cannot decide which manager to follow and nondeterministic behaviour may occur.

The above view of policy con�ict has become quite popular and has been further

published along with resolution strategies by Lupu and Sloman (1997, 1999). A similar

de�nition of policy con�ict has been adopted by Dunlop et al. (2001, 2002, 2003) who

further classify policy con�ict into dynamic and static cases. Dynamic policy con�ict can

only be truly detected at runtime, whereas static policy con�ict can be detected at compile

time. Policies for network management are speci�ed at a system wide view of the network.

This system view is in contrast to lower level policies such as those de�ned to be used on

network interfaces, which have a network view.

Chomicki et al. (2003, 2000) formalise policy from a di�erent perspective: they perceive

policies as Event-Condition-Action triples. The subjects and targets of the policy are

implicitly speci�ed in the action component and describe that policy con�ict is the overlap

of events, conditions and actions, where the actions must contradict for a con�ict to occur.

This de�nition is similar to Strassner's de�nition, and can be associated to the system wide

policies or network device speci�c policies, as the application is not de�ned.

Policies de�ned speci�cally for network tra�c management are a relatively constrained

type of policy and are usually de�ned over IP tra�c match criteria, such as for �rewall

�ltering policies, Di�Serv classifying policies or IPsec VPN policies. Al-Shaer and Hamed

(2003, 2004a,b) look speci�cally at policy con�ict from this perspective and de�ne con-

�ict appropriately for their need: policy con�ict from the perspective of network �ltering

policies can be de�ned as a speci�c ordering of policies to produce anomalous behaviour.

Con�ict or anomalies in network �ltering policies come in the form of redundancy, con-

tradictory, generalisation and correlation. Redundancy refers to when a �ltering policy

is made redundant due to the order of the policies. This is a problem as the rule is not

required and can be removed. Contradictory, on the other hand is similar to redundancy

except that the rule must not be removed; instead a re-ordering of �rewall policies is

required. A more indepth analysis of �rewall policy con�icts is presented in section 2.2.3.

Using policy to de�ne the access rights of requesting entities, or more speci�cally ac-

cess control policies, can be a complex area. However, the de�nition of con�ict in this

circumstance is relatively straight forward. If contradicting access rights are granted to an

individual entity, then a con�ict has occurred. Ascertaining whether a con�ict may occur

2.2. Literature Review 33

Table 2.2: Policy con�ict classi�cations.

Body of Research Abstraction Level Policy Type
Con�ict
De�nition

Strassner (2003) Network view ECA
Incompatible
policy actions,

generic

Mo�ett and Sloman (1994) System view STA

Incompatible
policy types,
incompatible
policy actions

Dunlop et al. (2001, 2002, 2003) System view STA

Role con�ict,
dynamic

con�ict, static
con�ict

Chomicki et al. (2000, 2003) Network view ECA

Incompatible
policy actions,
incompatible
policy events

Al-Shaer and Hamed (2003, 2004a,b) Network view ECA

Incompatible
policy actions,

network
�ltering

Jajodia et al. (2001);
Wijesekera and Jajodia (2003)

System view STA
Incompatible
policy actions,
access control

is address by research carried out by Jajodia et al. (2001) and Wijesekera and Jajodia

(2003), who designed formal models of access control and devised algorithms to search for

various inconsistencies in deployed policies.

It can be seen that depending on what the policies are being applied to (i.e. its appli-

cation), then there are varying requirements for a policy con�ict to occur, as summarised

in table 2.2. In the table ECA refers to Event-Condition-Action policies and STA refers

to Subject-Target-Action policies. Therefore, a single de�nition of con�ict will not be ap-

plicable to all applications. The various approaches to policy con�ict analysis for di�erent

application types are examined in this chapter. The approaches can be arranged into three

areas:

1. Language based policy con�ict analysis, which is devoted to examining the

constructs of the policy language to determine cases for policy con�ict. This method

is predominately used for policy analysis on network �ltering policies as the policy

models and its associated execution semantics are well de�ned.

2.2. Literature Review 34

2. Information model based policy con�ict analysis approaches refer to a sys-

tem information model that describes both the policy model in use and the target

managed system, to support the con�ict analysis of policies.

3. Ontology based policy con�ict analysis is a relatively recent approach. Well

understood policy models are represented using ontologies and the inherent reasoning

capabilities of ontologies aids in policy analysis.

2.2.2 Policy Analysis Processes

This section is concerned with reviewing the processes related to policy analysis in gen-

eral and not speci�cally to policy con�ict analysis. The objective is to investigate the

dependency between the various analysis processes.

The power of policy based management is tied to the capabilities of the supportive

processes to analyse policies towards ensuring the policies proper enforcement. Policy

analysis is concerned with closely examining new and deployed policies so that they can

be enforced in a well behaved (or at least non hazardous) way. By de�ning policy over

a shared resource (e.g. router), each policy may specify some behaviour for the network

that is contrary to the behaviour speci�ed by other policies. The primary policy analysis

processes (according to Verlaenen et al. (2007a)) to support the well behaved enforcement

of policy are as follows:

• Policy con�ict analysis: does policy A con�ict with policy B?

• Policy re�nement: can policy A be realised at a lower level by policy set B?

• Dominance checking: if policy B were removed will the system behaviour be altered?

• Policy optimisation: the alteration of policies to reduce computational complexity of

the policies analysis or enforcement?

• Coverage checking: if a policy is de�ned for a particular condition, or speci�ed over

a set of managed entities?

• Policy combination: can two or more policies be replaced with less policies, where

the resulting behaviour is the same?

• Policy deduction: can a policy can be deduced from a set of policies?

2.2. Literature Review 35

• Policy transformation: if policy A is transformed to policy B does it still meets its

objectives?

According to Mo�ett and Sloman (1993), policy based management of very large (dis-

tributed) systems requires the generation of low level and system speci�c policies from

general high level business oriented policies. They propose the generation of policy hierar-

chies, where low level policies are generated to represent the goals and objectives of high

level policies. They describe the process of building the policy hierarchy as policy re�ne-

ment. Their paper is a discussion paper highlighting some of the mains research challenges

involved in automated policy re�nement. They describe that as policies are continuously

modi�ed, so too are the associated policy hierarchies. They also mention that the re�ned

policies must be analysed to ensure that they can be enforced onto the target managed

system and that the re�ned policies meet the goals and objectives of their higher level pol-

icy counterparts. Policy con�ict analysis should be performed in coordination with policy

re�nement, but the link between the two processes has not been formally investigated.

Later research lead to the development of a goal based policy re�nement framework

by Bandara et al. (2004) who present an approach to policy re�nement based on a formal

representation of the management system to aid in the derivation of low level policies. The

system is represented in a logic formalism named Event Calculus (EC). EC, as presented

in (Shanahan, 1999), is a formal language and is designed to represent and reason about

dynamic systems (i.e. systems whose state changes over time). Bandara et al. (2004) began

by representing the system in EC and described how low level actions a�ect the system by

way of EC statements. Goal elaboration is then used to expand a policy into a set of low

level actions that satisfy the goals of the original policy. It is then the responsibility of the

system administrator to ensure that the correct sub-goals (or system actions) are chosen

to enforce the high level goals (policies). Their approach is interesting as it dictates the

incorporation of system speci�c information into the re�nement process. They mention

that this system speci�c information may be derived from a UML model and associated

�nite state machine.

An application of their approach is discussed by Bandara et al. (2006a) who describe

policy re�nement for an IP Di�erentiated Services application. They demonstrate that is

it possible to represent the system in EC and de�ne high level QoS policies for it. These

high level policies are then re�ned into low level concrete policies that are used to actually

provision the Di�Serv classes of service. Their approach to policy analysis motivates and

2.2. Literature Review 36

demonstrates the use of supplying to analysis processes extra information concerning the

managed system. The approach they present is not formally tied to a con�ict analysis

process; however, they do address policy con�ict in related works (Charalambides et al.,

2005, 2006; Abedin et al., 2006). By not explicitly associating policy re�nement with

policy con�ict analysis there is no guarantee that the re�ned policies do not con�ict with

themselves or con�ict with the policies that have been previously deployed.

A alternative approach to policy re�nement, but for the creation of network security

policies, is proposed by Luck et al. (2002) and de Albuquerque et al. (2005). Their objective

is to reduce the complexity associated to describing security policies for communications

networks by �rst describing high level policies and then deriving low level concrete policies

that can be enforced within the network. They use a model-based management approach

where the management system is described using a set of tightly interrelated UML models

of varying abstraction. They introduce the concepts of consistency and completeness of

the re�nement process. Their de�nition of a consistent re�nement is when the resulting set

of policies are not in con�ict with each other, and their de�nition of completeness is that

once the re�nement is complete, all high level policies are satis�ed by low level policies.

These checks are important to a successful policy re�nement process as they provide some

measure of validation that the re�nements are correct. Their approach is not automatic

but is guided by a software tool used by the system administrator. They do not specify

their policy con�ict analysis process, but do highlight its importance in association to

policy re�nement.

Recent research into policy re�nement, building upon the research of Bandara et al.

(2006a), was carried out by Rubio-Loyola et al. (2005, 2006a,b). This work also used a

logic based approach to policy re�nement and incorporated a system model. The nov-

elty introduced by their work is that they incorporate formal veri�cation techniques; with

veri�cation being achieved using model checking techniques based on Linear Temporal

Logic (LTL). With LTL, one can examine the temporal relationship between actions over

a system. However, the process is not speci�cally designed to incorporate policy con�ict

analysis. They attempt to produce policies that are well speci�ed with regards to the sys-

tem speci�cation, but existing deployed policies are not considered in the con�ict analysis

process.

Policy re�nement is an active research area. It is clear that the introduction of infor-

mation concerning the managed system can be leveraged to enhance the processes involved

2.2. Literature Review 37

in policy re�nement. The main outstanding challenge is to devise a formal relationship

between the analysis processes for policy, as currently the process of policy re�nement and

policy con�ict analysis are de-coupled, but clearly they are highly related.

Another process that is related to policy re�nement and policy con�ict analysis is that

of policy transformation. Research carried out in (Cridlig et al., 2007) highlights the need to

be able to ensure that once a policy has been transformed from one policy model to another

that it still maintains consistent behaviour. They investigate the process of transforming

access control policies across di�erent policy models. They do not discuss the implications

their process has in terms of other important policy analysis processes; therefore, it would

be di�cult to see how the process �ts into a wider policy analysis process that caters for

all policy analysis requirements such as those mentioned above.

2.2.3 Language based Policy Con�ict Analysis

Network policies are devised to manage the behaviour of network services and vendor

speci�c policy languages are typically used to describe network policies because, di�erent

application domains have well de�ned semantics for how policies control the services, and

thus the policy languages have varying requirements. This section focuses on the analysis

techniques developed to analyse �rewall policies, IPsec VPN policies and routing policies.

For each type of policy application, similar approaches to con�ict analysis have been devel-

oped, but the algorithms developed depend heavily on the nature of the policy application.

Such language based approaches are predominately focused on examining the syntax of the

policy language to ascertain cases for con�ict.

〈IP.src〉 〈IP.dst〉 〈IP.srcPrt〉 〈IP.dstPrt〉 〈IP.tos〉 → 〈Forward/Drop〉 (2.5)

A typical �rewall policy rule could be described as depicted in (2.5). The �rewall policy

can be understood to mean, if an IP packet arrives on a speci�ed interface matching the

�elds as described, then the appropriate actions should be taken (forward or drop). This

�rewall policy speci�cation follows the policy semantics of �If condition is true then action�.

Recently however, it became apparent that so called con�icts or anomalies can occur

when speci�c orderings of policies were deployed in combination. Early research into

detecting anomalies in �rewall policies was documented by Hari et al. (2000) who recognise

2.2. Literature Review 38

Table 2.3: Firewall policy anomalies.
Anomaly Type Description

Redundancy Occurs if one rule is more general than another and the actions are
the same

Contradictory Occurs if one rule is more general than another and the actions are
di�erent

Generalisation Occurs if one rule is more speci�c then another and the actions are
the same

Correlation Occurs if one rule overlap with another rule on some IP criteria
and the actions are di�erent

that the inherent ordering of �rewall policies may lead to security holes. Al-Shaer and

Hamed (2003, 2004a,b) introduce a comprehensive �rewall analysis toolkit that is capable

of examining groups of deployed �rewall policies and determining if such anomalies exist;

the types of anomalies are listed in table 2.3 as documented by Al-Shaer and Hamed (2003).

The cause of the anomalies are down to the implicit execution semantics of �rewall

policies. More speci�cally, when an IP packet arrives on an interface and is sent to the

�rewall service to be processed, it is examined against each deployed �rewall rule in se-

quence until one of the policies conditions are satis�ed, the actions associated to this policy

alone are executed. The issue is that each policy describes match criteria, and for example,

the match criteria of an early policy may be more general then the match criteria of a later

policy, the e�ect being that the later policy is never actually triggered. This is especially

worrying if the later policy had a di�erent intended action then the earlier policy, this is

known as contradictory and can lead to undesired �rewall behaviour.

The approach taken by Al-Shaer and Hamed (2004a) was to devise a custom model

speci�cally to be used with �rewall policies. The model allows them to specify relationships

between �rewall policies, namely : disjoint, equal, inclusive, partially disjoint and corre-

lated. They also speci�ed a method for determining the appropriate relationships among

deployed policies. They devised a policy analysis algorithm that scans through each indi-

vidual policy and adds it to a �policy tree� representing the relationships of previous �rewall

policies. Each level of the policy tree represents a di�erent component of the match crite-

ria of the policy: source port, destination port, source IP address, destination IP address,

protocol and action. By storing the policies in such a data structure, the algorithm can

search the tree for speci�c policy anomalies. In (Al-Shaer et al., 2005), they focused on

a more complex variant of the above problem: the distributed scenario, which concerns

detecting �rewall policy con�ict between physically distributed routers. The increased se-

2.2. Literature Review 39

Table 2.4: Distributed �rewall policy anomalies.
Anomaly Type Description

Spuriousness Occurs if an upstream �rewall allows the tra�c blocked by a down
stream �rewall

Shadowing Occurs if an upstream �rewall blocks the tra�c allowed by a down
stream �rewall

Redundancy Occurs if an upstream �rewall blocks the tra�c also blocked by a
down stream �rewall

Correlation Occurs if an upstream �rewall allows/blocks the overlapping tra�c
blocked/allowed by a downstream �rewall

curity required for large scale communications networks demanded the investigation into

policy analysis when there were multiple �rewalls to cater for. The situation became more

complex as the semantics associated to the �rewall policies changed. Now a single �re-

wall policy could have an a�ect on the security of a path in the network. New forms of

anomalies were proposed and are listed in table 2.4. The primary new challenges encounted

when considering a distributed scenario is the increased scale of the problem. E�ectively,

the policy analysis algorithm must compare the �rewall policies on one device with those

deployed on associated devices in an e�cient manner. Al-Shaer et al. (2005) proposed to

base the discovery of related policies on pre-existing routes in the network; therefore, if

the network is changed the algorithm can adapt. The key problem with their approach is

that the con�ict analysis process is completely decoupled from the policy authoring process

or policy re�nement process. The complexity of the resulting solution can be seen as a

consequence of not analysing the policies at a higher level of abstraction �rst, before they

are deployed to the networking devices.

Research carried out by Zhang et al. (2007) investigated the intelligent distribution of

policy to avoid policy anomalies. They focus on addressing policy analysis at the authoring

phase. By addressing the problem at the authoring phase, corrective action can be taken in

the careful insertion of the new or modi�ed �rewall policy. The algorithm they developed is

based on re-ordering and checking the correctness of deployed policies on each modi�cation

to the set of deployed policies. They reduced the complexity associated to the problem

through abstraction.

Another approach to the problem, proposed by Bandara et al. (2006b), is to encode

the �rewall policies into a logic programming language and to use AI techniques to search

for policy anomalies. They represent a �rewall policy as a logic statement in Prolog (a

logic programming language). They designed a logic program to investigate the automatic

2.2. Literature Review 40

 ESP Tunnel

Ra Rb Rc Rd

AH Tunnel

(1) (2) (3)

(4) (5)

Figure 2.12: IPsec policy anomaly (Fu et al., 2001).

re-ordering of policies based on pre-de�ned precedence among the type of policies. The

program was capable of detecting all anomalies as presented in Al-Shaer and Hamed (2003),

and could resolve some anomalies by re-ordering the policies. Their approach was based

on argumentation logic. However, they do not address distributed �rewall problems, as

their approach su�ers from the same drawbacks as the approach presented by Al-Shaer

et al. (2005).

IPsec (Kent et al., 1998) is a security extension to the IPv4 and IPv6 protocols enabling

routing devices to secure IP tra�c by adding encryption, authentication, integrity and non-

repudiation. The ordering and execution semantics of IPsec policies are similar to that of

�rewall �ltering policies. They are described against a tra�c match criteria and a speci�c

operation is applied to the packet. The operations fall under two categories: tunnel mode

and transport mode. Tunnel mode encapsulates the original IP packet into the payload

of a new IP packet originating from the router, thus masking the original source and

destination addresses. Speci�c security services are used to encrypt and authenticate the

payload of the IP packet. Transport mode modi�es the original IP packet to apply a

security service to the payload only. The main di�erence between �rewall �ltering policies

and IPsec policies with respect to execution semantics is that IPsec policies must be path

based. This means that IPsec policies are required to secure the original packet at the

source router and un-secure the packet at the destination router. Therefore, policies must

be coordinated across the network. This feature of IPsec policies creates an environment

where policy analysis is critical to ensuring that the policies are correct and e�ective.

Fu et al. (2001) discusses the need for the analysis of IPsec policies and categorised a

number of anomalies that can occur within the network. The anomaly they focus on is that

2.2. Literature Review 41

given a speci�c ordering of IPsec policies across a number of routers, potentially sensitive IP

tra�c may be routed as clear text across the network. This anomaly occurs if an incorrect

group of tunnels are de�ned by policy. An example of this is depicted in �gure 2.12 which

shows a network with four routers and a source and destination endpoint. There are two

IPsec tunnels de�ned, one that encapsulates tra�c from Ra to Rc in an Authentication

Header (AH) tunnel, and one that encapsulates tra�c from Rb to Rd in an Encapsulated

Security Payload (ESP) tunnel. Therefore, the IP tra�c should be secured from end to

end. The process each IP packet goes through from Ra to Rd is as follows:

1. The tra�c from the source is encapsulated at Ra and forwarded.

2. The tra�c now arrives at Rb and is encapsulated again. As the tra�c in now

encrypted, Rc cannot de-capsulate the tra�c encapsulated at Rb and so forwards

the tra�c to Rd.

3. At Rd the tra�c is both encrypted and authenticated. The tra�c is now decrypted

but the protected payload belongs to the AH tunnel and must be de-capsulated at

Rc.

4. The tra�c is sent back to Rc, de-capsulated and forwarded on to Rd again.

5. The tra�c is �nally forwarded to the destination. In this scenario, the IP tra�c

passed as clear text from Rc to Rd thus breaching the de�ned policy and posing a

critical security threat.

Fu et al. (2001) proposed a method of analysing the set of associated policies and re-

de�ning the policies to eliminate overlapping tunnels. They noted that by eliminating

tunnel overlaps, the severity of the problem is reduced. The approach to splitting tunnels

was also addressed by Yang et al. (2004), who propose to retrieve all IPsec policies along a

speci�c path and analyse each policy source and destination address; a speci�c algorithm

is designed to determine if a split operation is required. If a split is required then some

policies are generated and the IPsec tunnel is split in two. The di�culty here is in deciding

what new policies should be created, and where they should be placed. These new policies

must also be analysed to ensure that more overlap is not created. This demonstrates the

di�culty involved in performing analysis when only the constructs of the language are

available.

2.2. Literature Review 42

Lin et al. (2006) describe more cases of policy con�ict, highlighting that the same

shadowing and redundancy anomalies as documented for �rewall �ltering policies can also

arise for IPsec policies. They also describe the problem of weakening security where a

strong security service like ESP is weakened by then applying AH in tunnel mode. It

showed that speci�c orderings of security services can degrade the security of a path in

the network. They proposed a model for policies and an algorithm that can automatically

re-order policies to eliminate speci�c cases of anomalies as documented. In common to the

reviewed approaches to IPsec policy analysis is that all information about the anomalies

is derived directly from the speci�cation of the policies, and is thus language based. The

language based approach works well here as the semantics of the policies are well de�ned

and can be assumed when de�ning algorithms to discover potential anomalies.

One of the �rst domains where policy was applied is that of routing in networks. Rout-

ing policies are de�ned to determine how tra�c is routed throughout a network and between

autonomous systems (AS). Con�icts in routing policies may lead to under-performance or

nondeterministic behaviour from networks. Policy for routing is used to control the path

information being transferred between autonomous systems. Yang et al. (2007) classify

a set of policy con�icts or anomalies that can exist between routing policies and IPsec

policies. The nature of the con�ict is that the paths in the network may be dynamic and

the route that secure tra�c takes may change from time to time. The consequence of

this is that tra�c may be susceptible to looping in the core of the network. They devised

a specialised algorithm taking the speci�c behaviour of the problem into account to de-

tect for conditions that may cause looping to occur when considering routing and IPsec

policies. Again their approach makes assumptions about the implicit behaviour of the

policies and depends on the speci�cation of the policies to discover cases of con�ict. As

they perform analysis at such a low level, they must develop more complex algorithms to

compensate for the lack of abstraction mechanisms. Analysis at a higher level may o�er

reduced complexity and easier solutions as suggested in Zhang et al. (2007).

The policy models discussed so far are typically described as Event-Condition-Action

(ECA) policies. Agrawal et al. (2005) investigated generic policy analysis algorithms that

can be applied to any policy model that is based on ECA. They treat the specialised cases

of policy relationships as de�ned above for network management policies in more general

terms. They also recognise that whether the policies are de�ned for �rewall �ltering,

IPsec VPNs or routing, similar analysis capabilities are required by the con�ict analysis

2.2. Literature Review 43

process. Subsequently, they de�ne four generic analysis processes, namely: domaince check,

potential con�ict check, coverage check and consistent priority assignment. Together the

de�ned processes are part of an encompassing policy rati�cation process, de�ned to ensure

that policies are well speci�ed and consistent with each other. They specify that the

majority of the processing is devoted to determining if the conditions of one policy are

implied by the conditions of another. Ascertaining this relationship between two network

�ltering policies is readily computable as the condition components are related to IP address

header information. However, in the general case determining implication relationships

between two Boolean expressions is a NP problem. They de�ne dominance checking as

the process to determine if the conditions of one policy imply another, where the actions

of the policies are equal. This is equivalent to redundancy for network �ltering policies.

They de�ne potential con�ict to occur if the conditions of one policy implies the condition

of another, but where the actions of the policies contradict. They de�ne contradicting

actions as actions that set a common attribute to di�erent values. Coverage checking is

the process of determining if a set of target managed entities are all covered by at least

one policy, the problem reduces to testing the coverage of Boolean expressions against a

range of values.

The language based policy con�ict analysis processes covered in this section treat the

problem of detecting con�ict as simple pair wise comparison of deployed policies. They do

not take into account that the policies may have been re�ned from higher level policies.

When policies are represented at a higher level of abstraction, it may be easier to ascertain

cases of policy con�ict, as more information may be available to the policy con�ict analysis

processes.

The main bene�ts of using language based approaches are that they suit analysis of

highly speci�c policy languages as exempli�ed by �rewall policies, IPsec VPN policies

or routing policies. The behaviour of the policy models in use is well understood and

documented; therefore, it makes the algorithms conceptually easier to understand and re-

apply. The disadvantages of the language based approach is that the algorithms developed

cannot be reused across di�erent applications as they depend heavily on the nature of

the policy language in use. The solutions are not inherently scalable as the policies are

distributed across the network, and it is not straightforward to discover which policies

should be retrieved for analysis. There is no consideration for the system constraints,

which may limit the actual enforcement of policies at runtime.

2.2. Literature Review 44

2.2.4 Information Model based Policy Con�ict Analysis

Information models are designed to describe a system in a technology independent way.

There are a number of methods to describe a system, UML being prominent. This section

discusses the research into policy con�ict analysis that makes use of an information model

to aid in the discovery of con�icts, as opposed to just using the constructs of the policy

language. The information models are used to not only describe the application being

managed but are also used to describe the policy language.

2.2.4.1 Formal model approach

Bandara et al. (2003) use a model to describe the structure of a target managed system

and further exploit this model to aid in policy con�ict analysis. The information model

they use is described in a formal logical notation, Event Calculus. As described earlier,

instances of EC can represent the behaviour of dynamic systems. The EC object model

(information model instances) express the service descriptions and systems constraints, for

example it could represent a set of printers grouped into hierarchical management domains.

It could also describe speci�c properties of those printers, for example whether they could

print in colour or whether one was inkjet or laser. After the structural representation of the

system is de�ned they then de�ned the behaviour of the system. They describe behaviour

by associating pre- and post-conditions to the actions possible within the system. For

example, a print action would render a printer busy for a period until the print job was

�nished.

The research looked at two aspects of policy con�ict: application independent4 and

application speci�c. They de�ne application independent policy con�ict as con�ict that

occurs due to the types of policies, i.e. when one policy permits an action and another

policy prohibits the same action. It is application independent as the semantics of the policy

types do not change across applications. Application speci�c con�icts are de�ned to exist

only within certain applications. This is because the actions causing the policy con�ict are

speci�cally associated to that application. For example, a �powerPrinterDown� operation

and a �printDocumentX� operation are deemed to con�ict within a printer management

system. The knowledge representing which actions con�ict are de�ned explicitly in the

model of the speci�c application.

4In the original work, they refer to application independent as �domain independent�. The de�nition is

changed here for clarity and consistency.

2.2. Literature Review 45

holdsAt(authConflict(Subj,Op), Tm)←
holdsAt(permit(Subj,Op), Tm) ∧ holdsAt(deny(Subj,Op), Tm).

Figure 2.13: Authentication con�ict description axiom (Bandara et al., 2003).

holdsAt(cwConflict(Subj, Target1, Action1, Target2, Action2), Tm)←
holdsAt(permit(Subj, operation(Target1, Action1)), T1)∧
holdsAt(permit(Subj, operation(Target1, Action1)), T1)∧
holdsAt(permit(Subj, operation(Target2, Action2)), T2)∧
conflictingOps(conflictDuty,Ops)∧
Target1! = Target2∧
memberOf(operation(Target1, Action1), Ops)∧
memberOf(operation(Target2, Action2), Ops)∧
T1 =< T2 =< Tm.

Figure 2.14: Custom policy action con�ict description axiom (Bandara et al., 2003).

A sample piece of code from Bandara et al. (2003) that tests for a simple application

independent con�ict is depicted in �gure 2.13. The key word holdsAt is a phrase in EC

and means that a speci�c fact is true at a given time (Tm). Therefore, it states that an

authCon�ict holds if there exists a permit policy and a deny policy that reference the same

subject (Subj) and the same operations (Op) at the same time (Tm). This statement does

not refer to the model of the system and so is application independent.

A more complex piece of code from Bandara et al. (2003) that tests for an application

speci�c con�ict is depicted in �gure 2.14. The type of con�ict being detected is where

the subjects are equal, the targets are di�erent and the actions are also di�erent, but in

this application the speci�ed actions are explicitly de�ned to con�ict. The line referring to

con�ictingOps is model based information and is de�ned per application. The contrast here

with language based policy con�ict analysis is that the semantics of the operations being

performed are not explicitly de�ned to con�ict and therefore must be implicitly encoded

into any algorithm used to detect for con�ict. The approach presented by Bandara et al.

(2003) decouples the requirement for implicit knowledge. This is especially useful, as the

interaction among the actions is known to con�ict by the system administrator, so that

they can be encoded onto the model.

More recent research by Charalambides et al. (2005, 2006) explored similar concepts as

those described by Bandara et al. (2003) but in the application of managing Di�Serv aware

networks. They de�ned a structural and behavioural model using EC that was based on the

TEQUILA framework (Tequila IST, 2002). They propose the use of abductive reasoning

2.2. Literature Review 46

to explain the sequence of actions that must occur in order for a speci�c con�ict case to

occur, thus also establishing its potential occurrence at runtime. They also describe a set of

application speci�c con�icts that are speci�cally de�ned for their application. For example,

a con�ict occurs when there is an over provisioning of bandwidth after a particular sequence

of actions are executed. The models de�ned using EC are static and cannot be readily

altered at runtime; therefore, the system cannot be extended to cover more applications

without being re-designed.

Chomicki et al. (2003) investigate the incorporation of so called event monitors and

actions monitors to represent application speci�c information that should be taken into

account when determining a case for policy con�ict. The model for policy that Chomicki

et al. (2003) considers is ECA and the language they use is Policy Description Language

(PDL) as presented by Lobo et al. (1999). The approach they take to detect policy con�ict

is to determine if a speci�c sequence of actions are being executed together. The sequence of

actions is speci�ed in the action monitor list and represents a list of actions that should not

be executed simultaneously. The event monitor o�ers a similar approach to the previous

one but instead takes a more preventative approach. If a sequence of events as speci�ed

in the event monitor list occurs, then a con�ict may potentially occur. In reaction to the

occurrence of the highlighted events preventative action can be taken to prevent a con�ict

from occurring. The approach they takes depends on the system administer knowing the

correct sequence of actions or events that lead to con�ict. This may be di�cult to know

especially if the system functionality is continuously being extended.

Kikuchi et al. (2007) use a temporal logic to represent the behaviour of the target

managed system separate to policy. They then employ model checking techniques to ensure

that the speci�ed policies do not elicit bad behaviour from the target managed system.

Instead of focusing on detecting con�ict among policies they are interested in validation

and veri�cation of policies. Validation is concerned with analysing individual policies to

ensure that they do not contradict the intended behaviour of the system. Veri�cation is

concerned with ensuring the policies perform as planed when taking into account the e�ect

other policies have on the system.

Both Baliosian and Serrat (2004) and Vidales et al. (2005) make use of �nite state

transducers to represent the behaviour of policies. The motivation of the work is to in-

vestigate if existing processes and algorithms designed to combine �nite state transducers

can be reused to discover and potentially resolve policy con�icts. They developed a spe-

2.2. Literature Review 47

policy{id =′ A′

event{8am}
target{/terminals}
action{enable()}
}

policy{id =′ B′

event{8am}
target{/DHCP}
action{disable();update()}
}

Figure 2.15: Sample con�icting policies (Kempter and Danciu, 2005).

ci�c formal representation based on temporal logic and �nite state transducers that can

model policies speci�ed in the Ponder policy language. The main novel contribution of

their research is the �tautness� functions that can indicate a precedence ordering among

policies by examining the components of the policies (events, conditions and actions). The

algorithms and processes developed for policy con�ict analysis make heavy use of the taut-

ness function. However, the functionality and speci�cation of what the tautness function

measures between two policies can be de�ned per-application. Therefore, the algorithms

and processes can be re-used for di�erent applications where the tautness function can be

customised. This approach puts the focus on de�ning complex tautness functions which is

still a very di�cult problem.

The speci�cation of the system structure in the above listed approaches used predom-

inately non-standard methods. The use of non-standard methods of system descriptions

limits the widespread adoption of the work. In the next section, standards based approaches

are discussed that make use of standardised information modeling techniques. Following a

standard way of representing a system information model will not only improve uptake of

the techniques developed, but will also encourage reuse and tool development.

2.2.4.2 UML approach

Kempter and Danciu (2005) investigate the use of information models to be used as input

to a policy con�ict analysis process. They argue that policy con�icts can exist, speci�c

to a target system, which may be undetectable when deployed policies are analysed using

previous approaches (based on language analysis only). They contend that this occurs

because implicit knowledge about the system is unavailable to the con�ict analysis process.

Representing implicit knowledge about a system explicitly in UML is central to their

approach to policy con�ict analysis. The policy model they assume is ECA.

According to their paper, the policies depicted in �gure 2.15 represent a con�ict that

is undetectable using language based policy analysis. The policies are triggered simultane-

2.2. Literature Review 48

StateManagedObj

+enable():void

+disable():void

StateManagedObj

+enable():void

+disable():void

EnabledLogicalElement

cd: model 1.1

antecedent+
1

dependent+ 1

FunctionalDependency

Figure 2.16: UML model of functional dependency (Shankar et al., 2005a).

ously but refer to distinct target managed entities. However there is a relationship between

the target of policy A and policy B, in that the terminals are functionally dependent on

the Dynamic Host Con�guration Protocol (DHCP) server. The dependency is that the

terminals cannot be enabled unless the DHCP server is also enabled. This implicit infor-

mation is not modelled in the policies and therefore cannot be taken into consideration

during policy analysis if the approach is based on language construct analysis only. The

solution o�ered is to incorporate information de�ned within a system information model

into the policy con�ict analysis process. By considering invariants during policy analysis,

constraints imposed by the model can a�ect the outcome. Therefore, the implicit relation-

ships described for the policies depicted in �gure 2.15 are modelled as an invariant in the

model of the system. They go on to de�ne that a con�ict occurs when two or more policies

breach the invariants imposed by the model of the system. They also consider pre- and

post-conditions de�ned for actions that can be performed in the system, where breaches

in post-conditions can also be de�ned as a con�ict. Figure 2.16 illustrates the function-

alDependency class that is an association class between two stateManagedObj classes. The

Object Constraint Language (OMG, 2008) can be now used to further express the meaning

of the functional dependency to ensure that no state managed object can be disabled while

it is functionally dependent on another state managed object.

UML based information models as described in section 2.1.3 also have the added advan-

2.2. Literature Review 49

tage of supporting invariants, preconditions and postconditions via OCL. Shankar et al.

(2005a) investigate the use of OCL to augment policy analysis for pervasive computing

environments. They de�ne policies as ECA-P (postcondition) where a postcondition is

speci�ed along with the policy. The postcondition then speci�es the values the objects'

attributes should have once the policy has been enforced. They de�ned a con�ict to oc-

cur if two or more policies yield contradicting postconditions. The algorithm they de�ne

to detect for policy con�ict reduces to determining if postconditions contradict or not.

The approach they take reduces the requirement on knowing which actions con�ict be-

forehand. However, their approach does not take into account constraints concerning the

state the system can be in. Invariants and action pre-conditions can be used to represent

such information, failing to do so ignores the limitations in functionality of the managed

system.

2.2.4.3 Summary of Information Model based Policy Con�ict Analysis

The main advantage of model based approach is that the information that describes the

system is separated from the policies that de�ne the behaviour of the system. The added

information can be leveraged for use in policy analysis processes. Therefore con�ict analysis

algorithms can be designed to be application agnostic, taking application speci�c informa-

tion in from an information model. Policies can be de�ned over multiple abstractions of a

single managed system if the information model supports it. The added advantage here is

that more complex entities can be represented at a higher level of abstraction, subsequently

more expressive and powerful policy con�ict analysis processes can be developed.

The disadvantages of using such an approach is that there is an overhead involved in

designing the system information model, however this can be traded o� against the return

in more powerful analysis processes. The information model is relatively static, in that

once it has been designed it cannot be readily altered if new information about the struc-

ture of the system becomes known. The model may need to be re-engineered along with

supported tools. Another disadvantage is that when multiple administrative domains need

to distribute the management of the communications network, which invariably occurs,

they must agree on a common information model. Although standards aim to eliminate

this, they can only encourage uptake.

2.2. Literature Review 50

2.2.5 Ontology based Policy Con�ict Analysis

Ontology based policy con�ict analysis aims to take advantage of the ability of ontologies

to describe and reason about the semantics of the target managed system. As opposed

to the information available to language based policy analysis, ontology based approaches

can be made to leverage relationships de�ned and inferred between language constructs.

Ontologies also o�er a more expressive method of describing a target managed system over

UML as there is no formal reasoning capabilities built into UML. Following is a review of

the most popular ontology based policy approaches and how they make use of reasoning

techniques to improve policy con�ict analysis.

2.2.5.1 Description Logic (DL) approach

The KAoS policy language and an accompanying set of policy services were developed by

Uszok et al. (2003). KAoS is designed to manage agent based software systems but can

be extended to manage grid based and web based services. It uses the DARPA Agent

Markup Language, W3C (2001), a description-logic-based ontology language to describe

the structure of the target managed system and to describe policies. By basing the lan-

guages (structural and policy) on DAML it allows KAoS to be inherently extensible as it

is based on an extensible technology. KAoS policies are similar to Ponder policies as KAoS

also has notions of authorisation and obligation. Currently, policy analysis for KAoS is

capable of only detecting application independent con�ict. Their approach allows for the

use of inferencing and subsumption during the evaluation and enforcement of policies as

KAoS is integrated with the Java Theorem Prover (JTP, 2008) A signi�cant advantage of

this is that KAoS has the ability to reason over di�erent abstractions of policies to infer

speci�c relationships.

Campbell and Turner (2007) investigate the use of OWL based ontologies to describe

a policy language for a call control system. The policy language they developed is called

APPEL. The APPEL policy language is built to be applicable to any domain so long as

a domain speci�c ontology is de�ned and is compatible with the APPEL policy language,

which is based on the ECA policy paradigm and is susceptible to application speci�c

con�icts. The approach taken to detect con�ict is similar to that proposed in Chomicki

et al. (2003, 2000), where special rules are de�ned to trigger when particular sequences

of actions are performed simultaneously. Additionally, an optional resolution strategy can

be enforced to prevent the policy con�ict from a�ecting the managed system. The main

2.2. Literature Review 51

advantage of using ontologies within APPEL is that the language can be con�gured to

operate for speci�c domains, and their method of con�ict analysis can be con�gured. By

extending the base ontology to include concepts from the speci�c target application, the

policy language can be tailored, and their con�ict analysis rules can be extended to cover

the introduced concepts.

Verlaenen et al. (2007b) propose a generic policy model based on an ontology that is

designed to be extended for use in any policy application by extending the generic ontology.

They o�er an example of a telecoms policy scenario, where the information describing the

managed system is described in an ontology that is subsequently linked to the generic

policy model. Policy con�ict analysis is not strictly covered in their paper but they specify

that the existence of the domain ontology is critical to supporting policy con�ict analysis.

Determining the similarity of policies can aid in the policy con�ict analysis between

policies deployed to di�erent management domains, as Lin et al. (2007) demonstrate. They

propose to use policy similarity algorithms as a fast check to determine how similar two

policies are, so that policies can be rapidly eliminated from more extensive policy analysis.

The policy similarity process analyses two policies and with the aid of ontological repre-

sentations of the two policies can quickly establish a value representing policy similarity.

Their approach demonstrates that there is a strong need to reduce the complexity associ-

ated with policy analysis processes that are based on computationally expensive analysis

algorithms.

2.2.5.2 Logic Programming (LP) approach

The Rei policy language, presented by Kagal et al. (2003), is described as a policy language

for pervasive computing environments. Rei is de�ned using OWL-Lite and is based on logic

programming principles as opposed to description logic principles. For this reason, the

inherent reasoning capabilities of OWL are not used; instead, the policies are transformed

into Prolog and reasoning is performed in a logic programming system. Rei dictates that

the description of the domain over which policy is being de�ned is also de�ned using OWL;

therefore, the policy language can be attached to di�erent domains. It follows the deontic

concepts as proposed in Ponder (Damianou et al., 2001), and therefore su�ers from similar

forms of policy con�icts. Rei uses meta policies to describe how policy con�ict should be

resolved; for example, always prefer authorisation over prohibition in a con�ict situation.

Application speci�c policy con�ict is not addressed in Rei explicitly; however it does include

2.2. Literature Review 52

concepts of preconditions and postconditions of policy actions, and so may be extended to

support application speci�c con�icts.

2.2.5.3 Rule based approach

Kaviani et al. (2007b,a) describe recent work carried out by the REWERSE (2008) Frame-

work Programme 6 (European Comission, 2008) Network of Excellence project related to

representing policies using rule languages. They proposed a rule language named R2ML

and they provide mappings form R2ML to Rei and KAoS policies for interoperability.

Their primary motivation for this work is to combine the properties of description logic

based approaches with logic programming based approaches. They claim that by doing

this the resulting approach is able to perform better policy con�ict analysis and the poli-

cies are easier to enforce is distributed domains where multiple policy languages are being

used. The approach dose not o�er any new methods of detecting policy con�ict, it just

extends the reach of existing approaches to detecting policy con�ict among multiple policy

languages.

Verlaenen et al. (2007a) propose the use of a hybrid policy analysis engine that makes

use of description logic reasoning and logic programming reasoning to establish relation-

ships among policies, including policy con�ict. The types of relationships among policies

that they are interested in establishing are as follows:

• Policy equivalence: policy A is equivalent to policy B.

• Policy containment: if policy A's condition is met then policy B's condition is also

met.

• Policy incompatibility: if policy A's condition is met then policy B's condition cannot

be met.

• Policy con�ict: policies A and B are in con�ict if they cannot both be satis�ed

simultaneously.

• Policy incoherence: policy A cannot be triggered or ever evaluated to true.

• Dominance checking: if policy B were removed will the system behaviour be altered.

• Coverage checking: are all possible conditions met by atleast one policy

2.2. Literature Review 53

• Policy combination: where two or more policies can be replaced with fewer policies,

where the resulting behaviour is the same.

• Policy deduction: where a policy can be derived from a set of policies.

Their approach involves the description of custom rules that provide more powerful rea-

soning than ontologies alone would provide. By more powerful reasoning they argue that

inorder to establish the forms of policy relationships as described above, customised rules

are required that ontologies on their own do not provide. For example, checking a value

constraint on each element in a collection, or checking the non-existence of an element in

a collection. They o�er an implementation where each relationship can be described in a

logic programming language called Drools (2008), which is a forward chaining rule engine.

Their research can be contrasted to the research presented by Agrawal et al. (2005) who

determine similar relationships but focus speci�cally on the Boolean conditions of the pol-

icy. However, Agrawal et al. (2005) do not take into account ontological relationships to

aid in establishing policy relationships.

2.2.5.4 Summary of Ontology based Policy Con�ict Analysis

Using ontologies to describe the structure of a system allows policy analysis processes to

take advantage of the capabilities ontologies o�er to improve analysis functionality. On-

tologies o�er a method of expressing more extensive semantic information that can be

extended at runtime, therefore making the analysis processes more dynamic. Ontologies

also support the integration of policies where concepts de�ned in one ontology can be

mapped to concepts in another. This enables system designers to bridge the semantic

di�erence between independently created system ontologies. The classi�cation and sub-

sumption algorithms developed to support reasoning in ontologies can be reused to aid in

the analysis or relationships among policies, and concepts de�ned in the system ontology.

The down side of using ontologies to support policy con�ict analysis is more technical

for the moment then conceptual. As the use of ontologies within network management is

recent, the e�ciency of classi�cation and subsumption has not been developed to operate

at runtime, or on a large scale. There are also no standards for representing policies in an

ontology, although there has been considerable e�orts in this direction. This issue may be

overcome by using the semantic mapping capabilities of ontologies as discussed by Lin et al.

(2007); Cridlig et al. (2007), however there is currently no standard way of transforming

2.3. Summary and Conclusions 54

between policy languages.

2.3 Summary and Conclusions

This chapter reviewed the background and related works representing the state of the art in

policy based management and speci�cally policy con�ict analysis. The use of information

modelling was highlighted to demonstrate its use in improving the management processes

of the communications network by abstracting the heterogeneity of the network. PBM

research focuses on investigating the critical issues of policy analysis, such as re�nement and

con�ict analysis, but solutions remain application speci�c and heterogeneous. Crucially,

there are no integrated approaches that take account of multiple levels of policy that exist

in a policy continuum.

Language based policy con�ict analysis is best suited to applications where the en-

forcement semantics of policies are well understood. This is observed by Hari et al. (2000),

Al-Shaer and Hamed (2003, 2004a,b), Al-Shaer et al. (2005) and Bandara et al. (2006b), as

the algorithms developed depend on some sort of implicit knowledge of the target managed

system, for example, that the policies are ordered and only one in a set is enforced. This

approach can be very e�cient for centralised applications, but may not scale to distributed

systems without augmenting the algorithms (Al-Shaer et al., 2005). This approach is useful

when the policy language used exhibits well de�ned (but implied) semantics.

Information model based policy con�ict analysis is used with higher level policy lan-

guages (i.e., not device speci�c), where the target application or target managed system

cannot not be known at design time. The application speci�c information is described

separately to the policy language and is used to augment policy analysis processes, as pre-

sented by Bandara et al. (2003); Charalambides et al. (2005, 2006); Chomicki et al. (2000,

2003); Kikuchi et al. (2007). Information critical to enhancing policy con�ict analysis pro-

cesses are the relationships de�ned in the model and the preconditions, postconditions and

invariants de�ned for policy actions. Speci�cally, constraint information is used to aid in

determining the potential states of the system (Kempter and Danciu, 2005). Information

model based approaches may be scalable; however, the system model cannot be readily

adapted at runtime, nor can the policy language be modi�ed. Approaches that make ex-

tensive use of an information model are readily able to detect application speci�c con�icts

as well as application (domain) independent con�icts. A drawback of current approaches

is that the con�ict detection algorithms are designed to retrieve a well-de�ned set of in-

2.3. Summary and Conclusions 55

formation from the information model, and thus need to be coupled to a speci�c type of

information model. This limitation reduces that more widespread use of the algorithms as

existing information needs to be re-coded into proprietary formats.

Ontology based policy con�ict analysis o�ers the maximum �exibility to policy based

management systems. As the application speci�c information is described in an inherently

extensible technology, this information can be readily extended at runtime to extend the

coverage of the PBM system. Policy languages described using ontologies can also be

extended to describe policies speci�cally tied to the target application (Uszok et al., 2003;

Campbell and Turner, 2007; Verlaenen et al., 2007b; Kagal et al., 2003). The use of

ontologies falls into two categories: those that augment the process with rules, versus

those that solely rely on the reasoning capabilities of ontologies. The semantic web rule

language (SWRL) is extended from OWL, and illustrates the momentum more general

purpose reasoning engines are gaining. The signi�cance of this can be observed for example,

in Verlaenen et al. (2007a) who indicate that policy analysis can be enhanced by using more

expressive rule languages. However, research into the use of ontologies for policy analysis

is not extensive and typically does not always address application speci�c con�icts (Uszok

et al., 2003; Kagal et al., 2003).

The reviewed policy con�ict analysis approaches fail to adequately address the inte-

gration of the policy continuum, and thus fail to deliver a language integrated (or policy

continuum level integrated) approach to policy based management in an e�cient way.

Furthermore, the thesis proposes that policy con�ict analysis should be de�ned within the

policy authoring process and not as a separate process. The following hypothesis, presented

originally in chapter 1 is reiterated:

Hypothesis: The de�nition of a policy authoring process that harnesses existing knowl-

edge bases, which is cognisant of the intricate requirements associated to the policy contin-

uum must be developed to control the e�cient operation of policy con�ict analysis.

The following set of requirements for policy continuum based policy con�ict analysis

has subsequently been derived form the examination of the shortcomings of the related

work and the posed research question from chapter 1.

Requirements for a policy continuum based con�ict analysis process As the pol-

icy continuum must represent policies at varying levels of abstraction/granularity, there

must also exist policy con�ict analysis processes that can operate and coordinate across

2.3. Summary and Conclusions 56

multiple levels of the policy continuum. This gives rise to the following high level require-

ments for a policy con�ict analysis process for the policy continuum.

1. Be able to meet the needs of multiple constituencies of policy authors

2. Be extensible so that it can be used in multiple policy applications

3. Be information model based to take advantage of a system knowledge and to ensure

that the process is �exible enough to be used with various type of policies

4. Be adaptable to the varying application requirements that may be di�cult to repre-

sent in information models

5. Be computationally e�cient to meet the demanding performance requirements of

large scale communications networks where large numbers of policies are considered

These requirements arise due to the nature of the managed system that the policy con-

tinuum is managing. The multiple views of the managed system are from the perspective

of users with business concerns, to administrators concerned with network performance

and security. Therefore, a policy con�ict analysis approach targeted at a single layer of

the policy continuum is not desirable as con�icts can occur at multiple levels of the policy

continuum. This is why an approach that is integrated across the levels of the policy con-

tinuum is preferable. Multiple constituencies of users will continuously be updating the

policies of the policy continuum. As policies at one level can a�ect policies at multiple lev-

els, policy con�ict analysis should be capable of being performed not just from high level to

low level policies, but also from low level to high level policies. Currently no policy con�ict

analysis processes take these issues related to the policy continuum into consideration.

Scalability of policy con�ict analysis algorithms presented (i.e., their ability to handle

high numbers of policies), have not been evaluated for the majority of cases. An exception

is Al-Shaer et al. (2005); however, the approach they present is described speci�cally for

�rewall policy con�ict and the performance of the algorithm is not presented. Another

exception is the work on policy similarity carried out by Lin et al. (2007), who introduce

a �ltering step to eliminate policies from being considered for further expensive analysis.

Lacking in current implementations of policy con�ict analysis is a pre-analysis of deployed

policies so that an appropriate subset of policies can be selected for more extensive analysis.

Such a process should be integrated into a generic process for policy analysis for a policy

continuum.

2.3. Summary and Conclusions 57

The requirements speci�ed above fall within the scope of the research questions out-

lined in chapter 1. Question 1 states �How can a policy authoring process be de�ned that

incorporates policy con�ict analysis, which is speci�cally targeted at multiple constituencies

of policy authors? � The requirements indicate that the de�ned con�ict analysis process be

able to relate policies de�ned for di�erent applications (multiple stakeholders), associated

to di�erent policy continuum levels and de�ned by di�erent policy authors together.

Question 2 states �What processes and algorithms need to be developed so that existing

knowledge bases can be harnessed to aid the policy authoring and policy con�ict analysis

processes? � The requirements outlined fall within the scope of this research question,

as they clearly state that system knowledge and ontologies be integrated into and be

leveraged by policy con�ict analysis. Question 3 states �How can a policy con�ict analysis

process be developed that is independent of the nature of the policies? �. The requirements

outlined fall within the scope of this research question, as the requirements state that

the con�ict analysis process be extensible to many applications, be usable by multiple

policy authors with varying concerns and make use of language based and ontology based

analysis algorithms to maximise the use of system knowledge. Question 4 states �How

can the results produced by the processes and algorithms developed for policy authoring and

policy con�ict analysis be leveraged to be make the processes and algorithms more e�cient

when large numbers of policies are being considered?�. The requirements outlined also fall

with the scope of this research question, the need for e�ciency is paramount when faced

with large numbers of policies are is the case for large communications networks.

This thesis presents a generic and extensible policy con�ict analysis process and policy

selection algorithm that are both part of an encompassing policy authoring process. These

algorithms are de�ned in reference to a policy continuum and are tightly coupled to system

information models and ontologies. An approach to policy con�ict analysis is required that

can be used across any application; such a con�ict analysis process can take advantage of

the bene�ts o�ered by the approaches presented in this chapter. Central to many of the

approaches presented in this chapter is the requirement of being able to ascertain a set of

relationships among policies. This is demonstrated across all approaches presented in this

chapter.

In order to integrate the policy con�ict analysis process with the multiple levels of re-

lated policies de�ned in the policy continuum, a process de�ned to coordinate the analysis

2.3. Summary and Conclusions 58

is required. The policy continuum and associated analysis processes are de�ned in chapter

3, where the policy con�ict analysis algorithm developed, as a central component to the

policy con�ict analysis process, is presented in chapter 4. The policy selection process is

presented in chapter 5 where ontologies are used extensively. Finally, an e�cient enhance-

ment to the selection process is presented in chapter 6 to deal with large sets of deployed

policies.

Chapter 3

Policy Continuum Model and Policy

Authoring Process

The notion of a policy continuum, as presented by Strassner (2003), should be a funda-

mental component of any policy based management system, but as of yet it has no formal

operational semantics. A policy continuum model and accompanying policy authoring

process are presented in this chapter. This process demonstrates the key properties that

set a policy based management approach based on using a policy continuum apart from

other policy based management approaches. There are currently two challenges facing the

realisation of the policy continuum:

1. There is currently no formal (structural or operational) representation of the policy

continuum, which makes it di�cult for standard tools to be developed for policy

authors that wish to use it, and

2. Policy con�ict analysis across multiple levels of the policy continuum during the

policy authoring process has not been addressed. In particular, the realisation of

such an analysis process requires the integration of policy re�nement and policy

veri�cation processes.

The objective of this chapter is to de�ne a formal policy continuum model and a formal

policy authoring process that can be used with the policy continuum to guide the authoring

and analysis of policies at compile time. The DEN-ng information model is the starting

point of the model developed in this chapter to represent the policy continuum. In order

to achieve the objective set out, a portion of the DEN-ng information model referencing

59

3.1. Policy Model Extensions for Con�ict Analysis 60

the structure of policy and the policy continuum has to be extended so that an e�ective

policy authoring process can be de�ned. The policy model is derived from the existing

DEN-ng policy model as presented in chapter 2 and can be extended to meet the needs of

specialised applications.

The chapter is structured as follows. Section 3.1 describes extensions to the DEN-ng

policy information model to allow for more e�ective policy authoring in the context of

the policy continuum. Section 3.2 introduces a formal notation to describe the structure

of policy and the policy continuum, and illustrates the use of the formal representation

of these concepts to develop processes and algorithms to describe policy authoring and

con�ict analysis. Finally, the contribution of this chapter is summarised.

3.1 Policy Model Extensions for Con�ict Analysis

This section describes the DEN-ng policy model enhancements to model the extra infor-

mation required to represent policies in the policy continuum. There are limitations to

the existing DEN-ng policy model that reduce the �exibility of its use in policy analysis

processes, speci�cally in representing policies that describe deontic behaviour.

3.1.1 Extensions to the DEN-ng Policy Model

DEN-ng describes policy authoring and con�ict analysis processes at a conceptual level.

For example, it speci�es that when a policy is being authored from a policy editor Graph-

ical User Interface (GUI), the author must �rst authenticate, and must then be autho-

rised to edit the policy. Only then can a new policy be created or an existing policy

be modi�ed (Fu and Strassner, 2006). The DEN-ng model also describes two speci�c

policy application classes that should be used to aid in the detection and resolution of

policy con�icts. The LocalServerConflictDetectionComponent is used to examine poli-

cies for con�ict on a global level, where a con�ict is de�ned to occur when two policies

can be triggers and satisi�ed at the same time and where their actions contradict. The

PDPConflictDetectionComponent is used to detect con�icts at a device speci�c level,

where the capabilities of devices should be taken into account during the con�ict detection

process. Note that DEN-ng does not o�er any con�ict detection or resolution algorithms.

Essentially, the DEN-ng policy model does not specify how policy con�ict analysis should

be carried out, only where it should be carried out.

3.1. Policy Model Extensions for Con�ict Analysis 61

The de�nition of policy con�ict by Strassner (2003) is:

"A Policy con�ict is when two of more policies applying to an overlapping set of man-

aged entities are simultaneously triggered, and there conditions are satis�ed, but their ac-

tions are contradictory."

This de�nition does not take into account the requirements of di�erent types of appli-

cations, services and resources, where di�erent situations arise to establish policy con�ict.

An extension to the original DEN-ng policy information model is now de�ned so that policy

con�ict detection can be supported more e�ectively, and so that more policy application

types can be catered for. Speci�cally, deontic and access control policies are explicitly

modelled so that they can be represented at the business level of the policy continuum.

Currently, it is cumbersome to de�ne such types of business level policies using the existing

policy model.

The extensions to the DEN-ng policy information model are to the PolicyRule, Policy

and PolicyApplication classes. The �rst subtle change is the renaming of the Policy

class to PolicyConcept. This change was done to avoid confusing policy authors as well as

ontology-based applications about what a policy is. This new class name conveys that all

of its subclasses are in fact concepts relating to policy and not complete �policies�. Without

this change users could confuse the Policy and PolicyRule classes, and think (for example)

that they are used interchangeably- this is incorrect.

The next extension is to the PolicyRule class. It is important to remember that there

are many di�erent types of policy rules. Besides DEN-ng, no policy model to date has

actually tried to represent more than one basic type of policy (from a structural point of

view). The DEN-ng model must be able to represent all types of relevant policy rules, from

business policy rules to network policy rules. Hence, the speci�c structural representation

of a policy rule must be separated from the label �PolicyRule�. For example, a PolicyRule

is represented using a traditional event-condition-action form, then how is a policy rule

from the DMTF or IETF represented, since both only use condition-action representations

and do not contain an event. A new class type is de�ned called PolicyRuleStructure

which extends PolicyConcept, this can be then extended to describe policies that take

di�erent forms. Therefore, the ECAPolicyRule class is built to de�ne a particular type

of PolicyRuleStucture - one that has an {event, condition, action} structure; this is

depicted in �gure 3.1. This class is essentially identical to the previous PolicyRule as

de�ned in the original DEN-ng model with one important di�erence: there is no explicit

3.1. Policy Model Extensions for Con�ict Analysis 62

PolicyRuleStructure

PolicyConcept

PolicyEvent PolicyCondition PolicyAction

ECAPolicyRule

0..*

1..*

0..*

1..*

0..*

1..*

0..*

0..*

0..*

1..*1..*1..*

ECARuleUsesPolicyActions

ECAPolicyRuleUsesPolicyCondition

ECAPolicyRuleUsesPolicyEvent

Figure 3.1: ECAPolicyRule.

relationship to the managed entities that partake in the operation of the policy (i.e. the

subject and target of the policy).

The next extension is to introduce explicit links to PolicySubject and PolicyTarget.

The objective of applying policy is either to maintain the current state of the PolicyTarget,

or to transition the PolicyTarget to a new state. In the original DEN-ng model, these

classes were directly associated with a PolicyRule. In the modi�ed DEN-ng policy model,

this is no longer done, as this would have the unfortunate e�ect of binding the usage

of PolicySubject and PolicyTarget to an ECAPolicyRule. Instead, depicted in �gure

3.2, a ManagementPolicy class is introduced to separate the relationships between the

ECAPolicyRule and the PolicySubject and PolicyTarget. One of the main advantages

of this is that other types of policies can be created that may be only subject based or

target based. In addition, this decouples the notion of PolicySubject and PolicyTarget

from the representation of the ECAPolicyRule. In order to represent popular policy types

such as deontic policies, new ManagementPolicy subclasses are created. Policy con�ict

analysis processes can bene�t from these extensions, as previously there was no method of

representing deontic policies in DEN-ng. De�ning policies at varying levels of abstraction

such as is required in the policy continuum demands this �exibility in the information

model. A case study on con�ict analysis based on deontic policies is presented in chapter

4 in section 4.3.3.

Previously, deontic policies could only be represented by extending the PolicyRule

class. While that was possible, the functionality of the deontic policies was limited, as

3.1. Policy Model Extensions for Con�ict Analysis 63

PolicyTarget

ManagementPolicy

PolicySubject

ECAPolicyRule

hasSubRules : Boolean = FALSE

isCNF : Boolean = TRUE

IsECAPolicyRuleWellFormed()

getSubRules()

0..n

0..n

SubjectInteractsWith

0..n

0..n

0..n

0..n

TargetInteractsWith

0..n

0..n

0..n

0..n

ManagementPolicyHasECAPolicyRules

0..n

0..n

PolicyRuleStructure

Figure 3.2: Improved ManagementPolicy.

they had to reference all policy components (events, conditions, actions, subjects and

targets). However, with the introduction of the ManagementPolicy class, the relationships

are now more �exible. Deontic policy types such as those depicted in �gure 3.3 can now

be readily described using the approach. A new class called DeonticPolicy is derived

from ManagementPolicy, therefore inheriting the optional association to PolicySubject

and PolicyTarget.

AuthorisationPolicy embodies the concept of �is permitted to� or �is allowed to� Strass-

ner et al. (2007a). Deontic logicians assign the concept �may� to authorisation. A subject-

based authorisation policy is a policy that is enforced by a subject, and de�nes the actions

that a subject is permitted to perform on one or more targets. Conceptually, subject-based

authorisation policies are designed to de�ne actions that can be performed on the target

by the subject that will not adversely a�ect the subject. In contrast, target-based autho-

risation policies are enforced by the target, and de�ne the actions that a target permits a

subject to perform on the target.

ProhibitionPolicy de�nes the set of actions that an entity is forbidden to execute on

another entity Strassner et al. (2007a). Deontic logicians assign the concept �may not� to

authorization. Hence, subject-based prohibition policies are enforced by the subject, and

de�ne actions that the subject is forbidden to perform on a target, because performing

such actions would jeopardise the subject. Target-based prohibition policies are enforced

by the target, and de�ne the actions that a target forbids a subject to execute on that

target.

ObligationPolicy de�nes the set of actions that one entity must perform on another

entity Strassner et al. (2007a). Deontic logicians assign the concept �must� to obligation.

3.1. Policy Model Extensions for Con�ict Analysis 64

0..n

ManagementPolicy

DeonticPolicy ManagementMetaPolicy0..n 0..nModifiesDeonticPolicy0..n

AuthorizationPolicy

Delegation

Policy

ExemptionPolicy

ObligationPolicy

ProhibitionPolicy

Revocation

Policy

AuthorisationPolicy

Figure 3.3: Deontic management policies.

3.1. Policy Model Extensions for Con�ict Analysis 65

Subject-based obligation policies are enforced by the subject, and de�ne the set of actions

that a subject must do on a target. Target-based obligation policies are enforced by the

target, and de�ne the set of actions that the subject must do on a target.

ExemptionPolicy is, literally, immunity or release from an obligation Strassner et al.

(2007a). Deontic logicians assign the concept �need not� to exemption. Subject-based

exemption policies are enforced by the subject, and de�ne the set of actions that the

subject need not perform on the target. Target-based exemption policies are enforced by

the target, and de�ne the set of actions that the subject need not perform on the target.

Delegation de�nes the ability for a sender to confer some function or privilege to a

receiver Strassner et al. (2007a). Subject-based delegation policies are enforced by the

subject, and apply a subject-based policy to a receiver. Similarly, a target-based delegation

policy is enforced by the target, and applies a target-based policy to a receiver. Revocation

policies are used to retract functionality that was previously delegated. Subject-based

revocation policies are enforced by the subject, and retract a subject-based policy from a

receiver. Target-based revocation policies are enforced by the target, and retract a target-

based policy from a receiver.

As the DEN-ng policy model can now represent an increased amount of policy types, it

can therefore be used in a wider set of policy application domains and is more appropriate

for representing the various types of policies that can exist in the policy continuum. The

new information can also be leveraged for policy analysis processes, in particular for policy

con�ict analysis.

3.1.2 Extensions to the DEN-ng Policy Continuum Model

Just as the model of the Policy and PolicyRule has changed, so too is the DEN-ng model

of the policy continuum. Policies need to be related together across the levels of the policy

continuum, for example, it must be possible to determine the system level policies associ-

ated to a given business level policy. Also it must be possible to determine those business

level policies that rely on the behaviour o�ered by a system level policy (or policies). The

existence of this relationship has been added to the DEN-ng policy continuum model and

amounts to building a composite pattern to extend ManagementPolicy (see �gure 3.4). A

composite pattern is a modelling technique used to describe hierarchical structures. The

base class is extended with an atomic version of the class and an composite version of

the class. The composite version is associated to the base version of the class, that way

3.1. Policy Model Extensions for Con�ict Analysis 66

ManagementPolicyAtomic ManagementPolicyComposite

ManagementPolicy

policyContinuumLevel : Integer

0..*

0..* relatedToPolicies

0..*

0..*

Figure 3.4: Policy Continuum aware ManagementPolicy.

is can aggegrate both atomic and composite versions of the base class. The composite

pattern enables the representation of hierarchical structures of the base class, and is very

well suited to the representation of a policy continuum.

The name of the composite relationship is �relatedToPolicies�. It is a bi-directional rela-

tionship between the abstract class ManagementPolicy and the class ManagementPolicyComposite.

As the relationship is bi-directional, policies can be related to policies at higher levels and

lower levels. A ManagementPolicyConposite can be related to many ManagementPolicies,

and a ManagementPolicy can be related to many ManagementPolicyComposites. The

structure that can be built from this can re�ect the levels of the policy continuum as any

ManagementPolicy can also be a ManagementPolicyComposite. The information model

now contains an attribute that can be queried and searched when a policy continuum is

being used. However, the processes to support the proper use of these attributes and re-

lationships are currently ill de�ned. A constraint that must be imposed on this structure

that is not supported by the pattern is that if a policy is de�ned at the highest level of the

policy continuum, it should not be related to any higher level policies, and the relationship

should not be used. A decision was made therefore to set the relationship to 0..* and not

1..*. A consequence of this decision is that it is more di�cult to impose that fact that a

policy not at the highest level of the policy continuum must be associated to a higher level

policy, e�ectively enforcing a 1..* association.

3.2. A Formal Policy Continuum Model 67

3.2 A Formal Policy Continuum Model

This section builds on the extensions to the DEN-ng information model outlined in section

3.1 to model a policy continuum using a formal notation approach. By using a formal

notation, algorithms and processes for policy authoring and policy con�ict analysis can

be readily described from the perspective of how they operate with a policy continuum.

First, the notation used - the Vienna Development Methodology (VDM) notation (Bjorner

and Jones, 1978)- is described. Following that, the assumptions the approach is based on

are discussed along with the base model query interface used to leverage the information

model. Finally, the policy rule and policy continuum formal models are presented.

3.2.1 Formalisms

The notation used throughout the thesis to describe formalisms is based on the VDM formal

speci�cation language (Bjorner and Jones, 1978). VDM is an implementation independent

model for describing the structure and operation of software systems. It is based on the

mathematical theory of sets and maps. Sets are used in VDM to describe di�erent types of

entities that can exist in a system and can be thought of as objects in the object oriented

world. For example, a set containing all entities of type ManagementPolicy can be de�ned.

There is a very well de�ned method of searching and transforming the elements of this

set using the formal approach taken. Maps are used to describe relationships between

sets of entities. Maps are used to relate various Sets together, where the maps may have

speci�c properties (e.g. be transitive, re�exive, symmetric). For example, a map can be

de�ned that relates policies to events, in order to determine the set of those policies that

are associated to speci�c events, if policy sets and event sets are de�ned. The notation

used throughout is outlined in table 3.1.

The structural representation of a set of related entities in VDM is straightforward, once

the entities are well known. However, the functions de�ned to transform and analyse the

structural representation are of most interest. Functions can be de�ned using the function

notation described in table 3.1. For example, a set of natural numbers (A), another set of

the letters of the alphabet (B) and a map function that maps a letter to its numeric value

(C), is depicted below.

3.2. A Formal Policy Continuum Model 68

Table 3.1: Notation for VDM.
Notation Description

a ∈ S a is an entity belonging to the set S
S\a The set S less the element a
S ∪ a The set S union the element a
S ⊂ T The set S is a subset of the set T

PS The power set of S, i.e. a set containing sets of all the
permutations of the elements of the set S

b ∈ PS b is a set of entities from the set S
Q = S → T Q is a map that maps entities from the set S to entities in

the set T. S is the domain of the map, T is the range of the
map

dom ◦Q The domain of map Q. The domain is those elements that
can be input into the map Q

rng ◦Q The range of map Q. The range is those elements that the
input is mapped to the map Q

q(e) Map index function, if e∈dom ◦ q, then return what e is
mapped to in the map q

Q t [s→ t] Like union, but instead add a new mapping to a map
Q † [s→ t] Overrides an existing mapping

(R× S × T) A tuple consisting of an entity from each set speci�ed
πi Tuple index function, returns the element of a given tuple at

index i
π̄i Tuple remove function, returns the tuple with the associated

index removed
(I → f) A map transform function, the function f is applied to the

range of the map. I is the identity function in that the
domain of the map is unchanged.

(I → /(b)) A map transform function, the function b is a Boolean
function and is applied to each element of the range of the

map, if a true is returned then the element is kept,
otherwise it is discarded

(I → /̄(b)) A map transform function, the function b is a Boolean
function and is applied to each element of the range of the

map, if a false is returned then the element is kept,
otherwise it is discarded

funct : (A)→ (B) A function speci�cation, the parameter is from the set A
and the result if from the set B

∧= The function speci�cation symbol
Q−1 The inverse map of Q

∀a ∈ S : f (a) For each entity a in set S, apply function f

3.2. A Formal Policy Continuum Model 69

a ∈ A = N

b ∈ B = {A..Z}

c ∈ C = A→ B

(3.1)

This is a simple example that shows how to apply the map C indexed by the associated

number, and is outlined in equation (3.2). The complexity of the function is not so relevant,

but the notation used to formulate the function is used through the rest of the thesis.

GetLetter : (A× C)→ B

GetLetter (a, c) ∧= c(a)
(3.2)

3.2.2 Assumptions

There are key assumptions made in the development of the policy continuum model and

associated algorithms and processes. The assumptions are concerned with the form and

structure of the information model (noting that they are satis�ed by DEN-ng)

• The information model can represent the basic concepts of object-oriented modelling.

Speci�cally, it should model inheritence hierarchies, associations, operations and at-

tribites. Additionally the information model should be able to represent invariants,

as well as pre- and post- conditions relating to the state of attribites before and after

operation invocations;

• The information model encodes knowledge regarding the structure of and relation-

ships between managed entities. The degree to which the model re�ects the actual

managed system constrains the ability of algorithms developed for policy analysis.

• Policies are themselves modelled in the information model, in a manner such that

their relationships with each other can with managed entities can be ascertained.

• Policies are modelled as event-condition-action tuples, with the semantics of �on

event(s), if condition(s), do action(s)�. Also the subjects and targets of the policies

should be speci�ed.

• Operations de�ned for entities within the information model correspond to actions

of policies.

• Any modelling technology used should provide an interface for querying and searching

the information within the information model.

3.2. A Formal Policy Continuum Model 70

The assumptions outlined are important because they restrict the type of information

model that can be used to those that can represent useful information that can be queried.

The query interface is important because the speci�ed algorithms and processes need to

have access to a generic interface to the information model.

3.2.3 Information Model Querying

This section describes some information model queries speci�ed in VDM that may be used

to look up some information about a speci�c class. Note that the queries are implemen-

tation independent as they are speci�ed in VDM; therefore, for a runtime system a query

language that is capable of represent queries with similar semantics to the queries presented

here should be used. First, some simple sets can be de�ned to represent some of the infor-

mation contained within the information model. A class is the basic unit of modelling for

most modelling technologies; the basic structure which is de�ned in (3.3). The map Class-

Details describes that the element cld is a �class-to-details� mapping, where the details is

a tuple of sets. The map function returns a tuple of class related details when provided

with a class identi�er. The basic information that can be maintained about each class is

therefore its operations, properties, associations, invariants and a parent super class. All

information about a class is not mandatory. For example, parent super class can be left

out. Obviously, di�erent modelling technologies may contains more information about a

class; however, if for all classes a minimum set of details as listed in (3.3) is described, then

regardless of the modelling method used, that modelling method is deemed compatible

with the approach required for representing information models.

c ∈ Class

cld ∈ ClassDetails =

Class→ (POperation× PProperty × PAssociation× PInvariant× Class)
(3.3)

Next, some information model queries are de�ned to illustrate the type of capabilities

the query interface can provide any speci�ed algorithms that make use of an information

model.

GetClassParent This function (3.4) will return the parent class of a given class. Every

class is at least associated with a root class by default. This function can be used to

3.2. A Formal Policy Continuum Model 71

discover common parent classes between two given classes within the information model.

The returned information is the �fth tuple member that the ClassDetails map returns when

given a class identi�er. In this function, the map index operator, π5, is used to retrieve

the appropriate tuple entry.

GetClassParent : (Class× ClassDetails)→ Class

GetClassParent (c, cld) ∧= π5 ◦ cld(c)
(3.4)

GetClassAssociations This function will retrieve a list of associations for a particular

class. This set may be further traversed to �nd an association that links to a speci�c

class. The function uses the ClassDetails map function and indexes it to return the set of

associations.

GetClassAssociations : (Class× ClassDetails)→ PAssociation

GetClassAssociations(c, cld) ∧= π3 ◦ cld(c)
(3.5)

GetObjectClass This function will retrieve the class associated with this speci�c object.

This function begins to demonstrate the ability of coupling the information model with

the instances de�ned against it. Once the object's class is retrieved, the class's details and

associations can also be retrieved. This type of function can be used to facilitate model-

focused approaches to de�ning algorithms, where the information model is used both as a

design tool as well as for an inventory function that can track instances of model elements

at runtime.

GetObjectClass : (Object×ObjectClass)→ Class

GetObjectClass(o, objCl) ∧= objCl(o)
(3.6)

3.2.4 Policy Rule Formalism

This section outlines the policy model using the VDM formal notation. By de�ning the

policy model this way, it is easier to specify algorithm that need to be able to query

information about policies and their relationships with each other. A formal approach

to modifying policies is required to help better describe the complex processes of policy

authoring and policy con�ict analysis that require the ability to modify policies.

3.2. A Formal Policy Continuum Model 72

3.2.4.1 Policy Speci�cation

For a policy language to be compatible with the algorithms and processes de�ned in this

thesis, they must at least support the concepts de�ned here. The formalised policy model

presented is most aligned to the ManagementPolicy class of the modi�ed DEN-ng policy

information model, as presented in section 3.1.1. PolicyRuleComponents as de�ned in the

DEN-ng policy model are used here to illustrate the component parts of a policy rule.

The de�nitions depicted in equation (3.7), show that all de�ned policy rule components

are subsets of the set Object, meaning that the de�ned policy components are sub classes

of the Object class.

ob ∈ Object

e ∈ Event ⊂ Object

c ∈ Condition ⊂ Object

a ∈ Action ⊂ Object

t ∈ Target ⊂ Object

s ∈ Subject ⊂ Object

p ∈ PolicyRule ⊂ Object

(3.7)

Next the basic components of a policy rule, equation (3.8), are de�ned. A policy rule

is made up of sets of events, conditions, actions, subjects and targets as dictated in the

DEN-ng information model. A PolicyMap is used to associate this information to a policy

rule. When this map is applied to a policy rule, a tuple of information is returned. The

associated tuple contains sets of policy rule component identi�ers, therefore policy rule

components are de�ned separate to policy rules and can be shared among policy rules.

Following is a description of formally speci�ed functions that can be implemented to

create and modify a single policy. In essence, the PolicyRuleComponent association of the

PolicyRule class in DEN-ng is represented here as a tuple. In doing so, some structural

information is lost, but this is traded against improved operational semantics derived from

the formal function de�ned from here on. The following listed functions should be used

by external processes and algorithms as an interface to create and modify policies used to

manage the target system (communications network).

pm ∈ PolicyMap = PolicyRule→

(PEvent× PCondition× PAction× PSubject× PTarget)
(3.8)

3.2. A Formal Policy Continuum Model 73

CreatePolicyRule When a policy rule is created using the function de�ned in (3.9), it

is not associated with any sets of events, conditions, actions, subjects or targets. When a

policy rule is initially created it is just a container and is incapable of invoking any sort of

behaviour within the managed system. In the function, p is the new policy rule identi�ed

and pm is the policy information map, PolicyMap. Therefore the function results modi�es

PolicyMap, by adding a new mapping where p is mapped to a tuple. The component's

that comprise p's tuple are empty sets, demonstrating that there are currently no events,

conditions, actions, subjects or targets associated to this new policy rule.

CreatePolicyRule : (PolicyRule× PolicyMap)→ (PolicyMap)

CreatePolicyRule (p, pm) ∧= [p→ (∅, ∅, ∅, ∅, ∅)] t pm
(3.9)

AddPolicyEventToPolicyRule An event can be added to an existing policy rule. This

function is useful when the policy author needs to add a speci�c trigger to the policy rule

so that it will be evaluated in di�erent circumstances. In this function, se refers to a new

set of policy events. The union of this new set of policy events, with the existing set of

policy events creates an updated set of policy events for this policy rule. The function

e�ectively copies all existing components of the policy without modi�cation. The operator

used in this circumstance is the map override operator which will override the tuple that

policy p is currently mapped to and subsequently maps it to a new tuple of components.

Note that adding an event to a policy rule makes that policy rule more generic, and hence

care should be taken to redo any previous policy analysis to ensure that no new con�icts

have been added.

AddPolicyEventToPolicyRule : (PolicyRule× PEvent)→ (PolicyMap→ PolicyMap)

AddPolicyEventToPolicyRule (p, se) pm ∧= pm†


p→



se ∪ π1 ◦ pm(p),

π2 ◦ pm(p),

π3 ◦ pm(p),

π4 ◦ pm(p)

π5 ◦ pm(p)




(3.10)

RemovePolicyEventFromPolicyRule Similarly, an event can be removed from an

existing policy, by modifying only the set of events associated with that policy rule. This

3.2. A Formal Policy Continuum Model 74

function may be used if the policy author needs to reduce the circumstances for which

the policy rule is evaluated. Here the set of events are subtracted from the existing set of

events currently associated to the policy rule, thereby reducing the event set. Note that

removing an event from a policy rule makes the policy rule less generic and hence care

should be taken to redo any previous policy analysis to ensure that no new con�icts have

been added.

RemovePolicyEventFromPolicyRule : (PolicyRule× PEvent)→ (PolicyMap→ PolicyMap)

RemovePolicyEventFromPolicyRule (p, se) pm ∧= pm†


p→



se\π1 ◦ pm(p),

π2 ◦ pm(p),

π3 ◦ pm(p),

π4 ◦ pm(p),

π5 ◦ pm(p),




(3.11)

AddPolicyConditionToPolicyRule This function adds a condition element to the set

of conditions associated to the policy rule, therefore constraining its applicability. A po-

tential consequence of this operation is that it may logically contradict with an existing

policy condition, therefore making the policy rule unsatis�able.

AddPolicyConditionToPolicyRule : (PolicyRule× PCondition)→ (PolicyMap→ PolicyMap)

AddPolicyConditionToPolicyRule (p, sc) pm ∧= pm†


p→



π1 ◦ pm(p),

sc ∪ π2 ◦ pm(p),

π3 ◦ pm(p),

π4 ◦ pm(p),

π5 ◦ pm(p)




(3.12)

RemovePolicyConditionFromPolicyRule This function removes a condition element

from the set of conditions associated to the policy, therefore reducing the number of con-

ditions that must succeed before this policy rule can be executed. Care should be taken

to redo any previous policy analysis to ensure that no new con�icts have been added by

removing this policy condition.

3.2. A Formal Policy Continuum Model 75

RemovePolicyConditionFromPolicyRule : (Policy × PCondition)→ (PolicyMap→ PolicyMap)

RemovePolicyConditionFromPolicyRule (p, sc) pm ∧= pm†


p→



π1 ◦ pm(p),

sc\π2 ◦ pm(p),

π3 ◦ pm(p),

π4 ◦ pm(p)

π5 ◦ pm(p)




(3.13)

AddPolicyActionToPolicyRule This function adds a policy action to the existing set

of policy actions associated to the policy rule. Therefore the added policy action must

be carefully analysed before the addition is �nalised, as it may cause undesirable e�ects

within the managed system.

AddPolicyActionToPolicyRule : (PolicyRule× PAction)→ (PolicyMap→ PolicyMap)

AddPolicyActionToPolicyRule (p, sa) pm ∧= pm†


p→



π1 ◦ pm(p),

π2 ◦ pm(p),

sa ∪ π3 ◦ pm(p),

π4 ◦ pm(p),

π5 ◦ pm(p)




(3.14)

RemovePolicyActionFromPolicyRule This function removes a policy action from

the existing set of policy actions associated to the policy rule. Again this function may

invalidate a policy rule if there are no actions left after the function completes.

RemovePolicyActionFromPolicyRule : (PolicyRule× PAction)→ (PolicyMap→ PolicyMap)

RemovePolicyActionFromPolicyRule (p, sa) pm ∧= pm†


p→



π1 ◦ pm(p),

π2 ◦ pm(p),

sa\π3 ◦ pm(p),

π4 ◦ pm(p),

π5 ◦ pm(p)




(3.15)

3.2. A Formal Policy Continuum Model 76

AddPolicySubjectToPolicyRule This function adds a policy subject to the set of

policy subjects associated with the policy rule. This results in increasing the number of

subjects that impose this policy rule. E�ectively, this means that the policy rule can be

invoked by a larger set of managed entities.

AddPolicySubjectToPolicyRule : (PolicyRule× PSubject)→ (PolicyMap→ PolicyMap)

AddPolicySubjectToPolicyRule (p, ss) pm ∧= pm†


p→



π1 ◦ pm(p),

π2 ◦ pm(p),

π3 ◦ pm(p),

ss ∪ π4 ◦ pm(p),

π5 ◦ pm(p)




(3.16)

RemovePolicySubjectFromPolicyRule This function removes a policy subject from

the set of policy subjects associated to the policy rule. This results in a decrease of the

number of entities that represent the authority imposing this policy rule. E�ectively, this

means that the policy rule can only be invoked by a smaller set of managed entities.

RemovePolicySubjectFromPolicyRule : (PolicyRule× PSubject)→ (PolicyMap→ PolicyMap)

RemovePolicySubjectFromPolicyRule (p, ss) pm ∧= pm†


p→



π1 ◦ pm(p),

π2 ◦ pm(p),

π3 ◦ pm(p),

ss\π4 ◦ pm(p),

π5 ◦ pm(p)




(3.17)

AddPolicyTargetToPolicyRule This function increases the number of entities that

are the targets of this policy rule, thereby widening its scope. Hence, care should be taken

to redo any previous policy analysis to ensure that no new con�icts have been added.

3.2. A Formal Policy Continuum Model 77

AddPolicyTargetToPolicyRule : (PolicyRule× PTarget)→ (PolicyMap→ PolicyMap)

AddPolicyTargetToPolicyRule (p, st) pm ∧= pm†


p→



π1 ◦ pm(p),

π2 ◦ pm(p),

π3 ◦ pm(p),

π4 ◦ pm(p),

st ∪ π5 ◦ pm(p)




(3.18)

RemovePolicyTargetFromPolicyRule This function decreases the number of entities

that are the targets of this policy rule, thereby restricting its scope.

RemovePolicyTargetFromPolicyRule : (PolicyRule× PTarget)→ (PolicyMap→ PolicyMap)

RemovePolicyTargetFromPolicyRule (p, st) pm ∧= pm†


p→



π1 ◦ pm(p),

π2 ◦ pm(p),

π3 ◦ pm(p),

π4 ◦ pm(p),

st\π5 ◦ pm(p)




(3.19)

3.2.4.2 Policy Model Manipulation

The functions de�ned to manipulate policy rules do not take into account how the modi�-

cation of individual policy rules a�ect either the target managed system, or other policies

currently deployed to manage the system. For example, the modi�cation of a policy's ac-

tions may seem like a trivial task, but the introduction of a new action into a policy must

be analysed carefully. From examining the policy model as currently presented, there is

no way of knowing which action can or cannot be added to a policy as a policy con�ict

or inconsistency may arise. This is also true for all other modi�cations to a policy rule.

However, the information model that the policy model is a subset of can describe, in detail,

the associations and constraints among modelled types of events, conditions, actions, and

managed entities.

3.2. A Formal Policy Continuum Model 78

3.2.4.3 Information Model Integration

The policy model is a subset of the information model, as each event, condition, action,

subject and target is linked to modelled entities (classes) in the information model. The

links to the information model enable the design of speci�c algorithms and processes that,

given a policy object as input, can explore the information model and retrieve information

relating to the components of the policy. In e�ect, the information model is being used

as a data dictionary to capture relationships, attributes and methods that exist for the

managed system.

In the case of events, an information model such as DEN-ng describes a relevant set

of event types that can be observed from a telecommunications network, along with in-

formation pertaining to their execution frequency and association to other events. The

associations and hierarchies de�ned within the information model can be augmented fur-

ther with constraints. However, it is up to the information model architect to decide how

much should be modelled in the information model.

The information model may capture a constraint between two speci�c types of events in

an event hierarchy wherein the two event types cannot occur within a speci�c time interval.

Given this information, an algorithm can be devised to detect if a policy rule is relying on

the occurrence of these event types within a small time interval (i.e. simultaneously), thus

violating the constraint. This speci�c type of information would otherwise not be available

to the policy author who may not have intricate knowledge of the nature of the event

types as captured in the information model. This type of violation should be detected as a

semantic error, as the policy may be syntactically correct but the policy has an inconsistent

meaning according to the constraint information in the model.

Similarly for action types, constraint information may prohibit two action types from

being performed simultaneously. Therefore, a policy rule describing such behaviour would

be deemed in breach of the information model de�ned constraints. This information can

be leveraged by algorithms that could modify policies if violations are detected.

A subject or target may be any modelled entity de�ned in the information model. Sub-

jects and targets may be linked to roles or individual elements. Constraint information

de�ned across multiple roles can specify which roles are incompatible and which roles are

only applicable in speci�c contexts. This type of information can be used to augment

policies so that a clearer picture can be formed as to their applicability in certain circum-

stances. For example, a policy rule can be de�ned to enable a service use a speci�c router

3.2. A Formal Policy Continuum Model 79

interface to provide encryption; however, if the interface cannot perform in the encryption

due to an information model based constraint, then the policy is invalid and should be

modi�ed or removed.

Access to the information model is invaluable for creating consistent and correct poli-

cies, and these important uses require a formal link between the policy subset of the

information model and the part of the information model that describes the structure of

the managed system.

3.2.5 Policy Continuum Formalism

The policy continuum represents the concept that policies can be represented di�erently

for di�erent constituencies of policy authors or domains of expertise. This is outlined

pictorially in �gure 3.5. More speci�cally, policies related to business level concepts such as

customers, products and service contracts can be represented at a high-level of abstraction;

this is amenable to a business domain expert. In contrast, policies related to network level

concepts, such as routers, switches and storage devices can be represented at more detailed

levels of abstraction suitable to network administrators. The policy continuum is therefore

predominately used as an abstraction tool to help policy authors link low level policies

to high-level goals. However, this work focuses on realising a policy continuum structure

capable of maintaining the relationships among policies at multiple levels and maintaining

consistency as those relationships change over time. The main output from this section is

the de�nition of a formal model to represent the policy continuum.

3.2.5.1 Policy Continuum Model Speci�cation

The policy continuum is modelled as a tree of policy objects where the de�nition of a policy

object is speci�ed in the previous section in equation (3.8).

pr ∈ PolicyContinuum = PolicyRule→ (N× PPolicyRule)

dom ◦ pr = p
(3.20)

In the policy continuum as de�ned in (3.20), pr is a map function that maps policy

rules to other policy rules. The PolicyContinuum maps a policy to:

1. a natural number representing a policy continuum level; and

2. a set of policies that represents related policies the next lower level of the policy

3.2. A Formal Policy Continuum Model 80

View 1 Author

View 2 Author

View N Author

Level 1

Level 2

Level N

Management Interfaces

PEP
PEP

PEP

PEP

PEP

PEP

PDP

…
.

events

configuration

Policy

decisions

Figure 3.5: Conceptual policy continuum

3.2. A Formal Policy Continuum Model 81

continuum.

This facilitates the ability for a policy to reference policies in lower levels of the policy con-

tinuum. A policy can only be associated directly with policies de�ned at other continuum

levels. A policy at a speci�c level may be referenced by more than one policy at a higher

level and may reference one or more policies at lower levels. All policies within the policy

continuum must at least be accessible at the top level of the PolicyContinuum.

3.2.5.2 Basic Continuum functions

Once the structure of the policy continuum has been de�ned, some basic functions must

be formally described to enable processes to make use of the structure to store and retrieve

policies. These basic functions do not yet describe how the policy continuum is a�ected

by the addition or modi�cation of policies. These functions are used later as part of the

authoring process.

AddPolicy A crucial requirement for the policy continuum is the ability to add a given

policy to a speci�c level of the policy continuum. This function therefore simply adds a

policy at the given level and associates it to a null set of policies, as the policy is not yet

associated with policies at any other level of the policy continuum. In the function de�ned

in (3.21), n refer to a continuum level, p is a policy rule identi�er and pr is the policy

continuum to which the policy mapping is being added. The result of the function is a

modi�ed PolicyContinuum.

AddPolicy : (N× PolicyRule)→ (PolicyContinuum→ PolicyContinuum)

AddPolicy(n, p)pr ∧= pr ∪ [p→ (n, ∅)]
(3.21)

AssociatePolicy Associating policies in the policy continuum involves changing the set

of policies associated to the given policy. If the policy is updated, then the goals of the

higher level policy may be impacted. Essentially the policy p and a set of policies ps are

inserted into the map, where the policy rule set ps overrides the existing set of policy rules

associated to p. The associated policy set is a set of policies that exist at the lower level

of the policy continuum.

3.2. A Formal Policy Continuum Model 82

UpdatePolicy : PolicyRule× PPolicyRule→ (PolicyContinuum→ PolicyContinuum)

UpdatePolicy(p, ps)pr ∧= pr†
[
p→

(
π1 ◦ pr(p), ps

)]
(3.22)

GetPolicyChildren The child policies of a speci�c input policy can be recursively re-

trieved (3.23). This is useful to see the impact a speci�c policy rule may have on the

policy continuum. The function is recursive and is called on each of the child policy rule

associated to a policy rule p. The function terminates when there are no child policies left

to call. The function returns an enumerated set of child policies. As this function just

retrieves policies from the policy continuum, there are no side a�ects caused. The function

operates as follows.
(
I → π2

)
pr changes the structure of the policy continuum mapping

to map input policies to associated child policies only. When the input policy p is mapped

through, then a set of associated policies are returned. For each associated policy returned

(represented by pn), the GetPolicyChildren function is called. The result is a union of all

associated policies.

GetPolicyChildren : PolicyRule→ (PolicyContinuum→ PPolicyRule)

GetPolicyChildren(∅) ∧= ∅

GetPolicyChildren(p)pr ∧=

∀pn ∈
((
I → π2

)
pr
)

(p) : GetPolicyChildren(pn)

∪
((
I → π2

)
pr
)

(p)

(3.23)

GetPoliciesAtLevelN All policy rules at a speci�c level of the policy continuum (3.24)

can be retrieved. The policy continuum map pr, is restricted to only those policies that

are at the level equal to the level speci�ed as an argument to the function. The domain of

this reduced map is a set of policies at a speci�c level. The speci�ed map transformation

reduces a map function to only those members that satisfy the Boolean expression (i.e.

are speci�ed to exist at continuum level n). As any policy can be input into the policy

continuum map to access its continuum level and associated lower level policies, then the

domain of the restricted map are policies at a speci�c policy continuum level.

3.2. A Formal Policy Continuum Model 83

GetPoliciesAtLevelN : N→ (PolicyContinuum→ PPolicyRule)

GetPoliciesAtLevelN(n)pr ∧= dom(I → /
[
π1 = n

]
)pr

(3.24)

GetAllPolicies All policies in the policy continuum can be retrieved via (3.25). All

policies must at least be expressed in the domain of the policy continuum map. This

function can be used by other functions that must iterate over all existing deployed policies.

GetAllPolicies : PolicyContinuum→ PPolicyRule

GetAllPolicies(pr) ∧= dom(pr)
(3.25)

GetPolicyParents A policy can be referenced by multiple other policies at a higher level

of the policy continuum, these higher level policies can be retrieved using this function. It

is used to trace up the policy continuum given a policy at a speci�c level. The function

�rstly reduces the policy continuum map pr to only those policies speci�ed at a higher

level to the given policy p. This map is then transformed to a �policy-to-policy map�. The

inverse of this map is a map between policy rules and their associated parent policy rules.

When this new inverse map is indexed by p, the parent policy rules of p are returned.

GetPolicyParents : PolicyRule→ (PolicyContinuum→ PPolicyRule)

GetPolicyParents(p)pr ∧=((
I→ π2

)
GetPoliciesAtV iewN

(
π1 ◦ pr (p)− 1

))−1 (p)

(3.26)

GetCommonPolicies This function retrieves those policy rules speci�ed at lower levels

of the policy continuum that are in common to two given policy rules (3.27). This function

makes use of the GetPolicyChildren function, where the child policy rules of the supplied

policy rules pa and pb are retrieved, the intersection of which are common policies.

GetCommonPolicies : (PolicyRule× PolicyRule)→ (PolicyContinuum→ PPolicyRule)

GetCommonPolicies(pa, pb)pr
∧=

GetPolicyChildren(pa) ∩GetPolicyChildren(pb)
(3.27)

3.2. A Formal Policy Continuum Model 84

GetEventAssociatedPolicyRules The function depicted in (3.28) returns the set of

all policies that are associated to the same, or a super set of, the events of the input policy.

As VDM is implementation independent the evaluation of the super set relationhship is

not de�ned for the moment, but has to be de�ned for any implementation. This function

is useful for analysing the dependency among policies relating to the use of events. The

function operates as follows. The policy continuum map is restricted to contain only those

policies that reference the same, or super set of, the events referenced to by the input

policy. The domain of this restricted map is a set of policies that are event associated to

the input policy.

GetEventAssociatedPolicyRules : PolicyRule→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetEventAssociatedPolicyRules(p)pm, pr ∧=

dom
(
/[π2 ◦ pm(p) ⊆ π2 ◦ pm]pr

)
(3.28)

GetPoliciesWithEvent This function (3.29) returns all those policies that are triggered

by a speci�c input event. This is useful for �what if� analysis to retrieve those policies that

would be evaluated when a given event is triggered. This function restricts the policy con-

tinuum to only those policies that reference the input event. The domain of the restricted

continuum is a set of policies. This function illustrates the ability of querying the policy

continuum via speci�c policy events. Another example of a usage of this function would

be to analyse the policy continuum to investigate the popularity of use of certain events.

GetPoliciesWithEvent : Event→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetPoliciesWithEvent(e)pm, pr ∧= dom
(
/[e ⊆ π2 ◦ pm]pr

) (3.29)

GetConditionAssociatedPolicyRules The function depicted in (3.30) returns the set

of all policies that are associated to the same set or a super set of the conditions of the

input policy. This function is useful for analysing the dependency among policies relating

to the use of conditions. For example, a policy rule can be passed into the function, and

a set of policies will be returned that share the condition component of the input policy.

3.2. A Formal Policy Continuum Model 85

GetConditionAssociatedPolicyRules : PolicyRule→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetConditionAssociatedPolicyRules (p) pm, pr ∧=

dom
(
/
[
π2 ◦ pm (p) ⊆ π2 ◦ pm

]
pr
)

(3.30)

GetPoliciesWithCondition This function (3.31) returns all those policies that refer-

ence a given condition. This is useful for detecting those policies dependent on conditions

that may for example have a problem associated with them (i.e. the condition can no

longer be evaluated or there is an anomaly detected in the conditions evaluation). This

function di�ers from the previous function as a generic policy condition is used as an input

and may not necessarily be associated to an existing deployed policy.

GetPoliciesWithCondition : Condition→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetPoliciesWithCondition(c)pm, pr ∧= dom
(
/[c ⊆ π3 ◦ pm]pr

) (3.31)

GetActionAssociatedPolicyRules This function (3.32) returns the set of all policies

that are associated with the same or super set of actions of the input policy. This function

can be used, for example, to retrieve a set of policy rules that are associated to an action

that is failing for some reason. This function restricts the policy continuum to only those

policies that reference the same or more actions as referenced by the input policy.

GetActionAssociatedPolicyRules : PolicyRule→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetActionAssociatedPolicies (p) pm, pr ∧=

dom
(
/
[
π3 ◦ pm (p) ⊆ π3 ◦ pm

]
pr
)

(3.32)

GetPoliciesWithAction This function (3.33) returns the set of all policies that are

associated with the input action. This function di�ers from the previous function as it

does not depend on an input policy, but instead takes as input an arbitrary policy action

that may or may not be associated with deployed policies.

3.2. A Formal Policy Continuum Model 86

GetPoliciesWithAction : Action→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetPoliciesWithAction (a) pm, pr ∧=

dom
(
/
[
a ⊆ π3 ◦ pm

]
pr
)

(3.33)

GetSubjectAssociatedPolicyRules This function (3.34) returns the set of all policies

that are associated by subset or equality with the input policy via its referenced subject

components. By associating two policies by subset or equality, the function can determine

if the two policies share some subject components. This function can therefore retrieve

those deployed policies that have common subject components to the input policy.

GetSubjectAssociatedPolicyRules : PolicyRules→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetSubjectAssociatedPolicies (p) pm, pr ∧=

dom
(
/
[
π4 ◦ pm (p) ⊆ π4 ◦ pm

]
pr
)

(3.34)

GetPoliciesWithSubject This function (3.35) returns the set of all policies that are

associated with the input subject. The di�erence between this function and the previous

function is that the subject input into the function is independent from the currently

deployed policies, whereas the previous function depends on an input policy.

GetPoliciesWithSubject : Subject→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetPoliciesWithSubject (s) pm, pr ∧=

dom
(
/
[
s ⊆ π4 ◦ pm

]
pr
)

(3.35)

GetTargetAssociatedPolicyRules This function (3.36) returns the set of all policies

that are associated with the input policy via its referenced targets. This function can

be used to retrieve those deployed policies in the policy continuum that share common

target policy components with the input policy. For example, this function can be used to

discover policies that apply to a common set of targets.

3.2. A Formal Policy Continuum Model 87

GetTargetAssociatedPolicyRules : PolicyRule→

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetTargetAssociatedPolicies(p)pm, pr ∧=

dom
(
/[π6 ◦mpi(p) ⊆ π6 ◦ pm]pr

)
(3.36)

GetPoliciesWithTarget This function (3.37) returns the set of all policies that are

associated with the input target. This function di�ers from the previous function, as it is

independent from any input policy. Therefore, an arbitrary policy target can be input into

this function and all policy rules that reference this target are returned.

GetTargetAssociatedPolicies : Policy →

((PolicyMap× PolicyContinuum)→ PPolicyRule)

GetTargetAssociatedPolicies (p) pm, pr ∧=

dom
(
/
[
π5 ◦ pm (p) ⊆ π5 ◦ pm

]
pr
)

(3.37)

3.2.6 Policy Authoring Process

The information model is tightly integrated with policy model and the policy continuum

model. Any of the processes that must examine information concerning policy element

types can interrogate the information model directly. The advantages of the information

model integration become apparent when devising algorithms that depend on discovery of

relationships between policies within the policy continuum. This is especially the case for

con�ict analysis and policy re�nement, as outlined in this section where a policy authoring

process is de�ned. The authoring process must be aware that multiple constituencies

of policy authors may be involved in the deployment of a single policy. The process a

policy author must go through to create or modify a policy that is merged into the policy

continuum is the same across all levels. The process description in algorithm 1 depicts

modi�cation of a candidate policy. It is referred to as the candidate policy to distinguish

it from policies that are already contained in the policy continuum. The authoring process

is split into three steps.

The �rst step traces up the policy continuum to verify that the modi�cation of the

candidate policy does not invalidate the goals of higher-level deployed policies. The second

step analyses the policies at the same level of the policy continuum as that of the candidate

policy, to ensure that no potential con�ict exists with the candidate policy. The third step

3.2. A Formal Policy Continuum Model 88

Figure 3.6: Policy authoring steps.

invokes a re�nement process to derive a set of lower level policies from the candidate

policy that must be recursively veri�ed and tested for con�ict and validity. For each policy

produced during re�nement, they need to be integrated into the policy continuum. If there

are no policies produced from the re�nement step then the process �nishes.

Figure 3.6 depicts the steps involved in policy authoring, explaining the process from

the perspective of a policy author.

The process is described by presenting three essential component processes, modifying

a policy in the policy continuum, creating a policy in the policy continuum and removing a

policy from the policy continuum. Table 3.2 describes the terms used within the algorithm.

The modi�cation of a policy begins by ensuring the modi�cation to pold (the existing

policy), represented by pnew (the modi�ed version of the policy), satis�es all of the higher

level policy re�nements that pold was related to. The old policy may have been created

as a re�nement to a higher-level policy; therefore, if it is modi�ed the process needs to be

able to ensure that the related high-level policies can still meet their speci�ed objectives.

The process retrieves a set of parent policies by calling GetParentPolicies on pold and for

each parent policy it veri�es that it is still consistent (e.g. goals are still satis�ed) when

using the modi�ed version of the policy (i.e. pnew). If consistency with each parent policy

is satis�ed then the algorithm continues, otherwise the candidate policy pnew is causing

inconsistencies within the policy continuum and should not be committed. This result is

3.2. A Formal Policy Continuum Model 89

Table 3.2: Terms used.

Term Meaning

pold The policy being modi�ed before
modi�cation

pnew The policy being modi�ed after modi�cation
pc The policy continuum map

pparent The parent policy of the policy currently
being modi�ed

pcnf A policy that con�icts with the new policy
pparcnf The parent policy of a con�icting policy
pref A policy that is re�ned from the policy being

modi�ed
pref An old policy that is moi�ed due to a

re�nement from the current policy being
modi�ed

then passed to the current policy author. Assuming the candidate policy has passed the

previous test, it must now be analysed for con�ict against currently deployed policies at

the same continuum level.

A selection algorithm could be used here to reduce the runtime complexity associ-

ated with comparing the candidate policy against all deployed policies at the same policy

continuum level.

If a con�ict is detected, the set of associated parent policies that are indirectly involved

in the con�ict can to be retrieved so that more information about the con�ict can be

relayed back to the current candidate policy author. This information may be used to

establish a strategy to resolve the con�ict. If no con�ict is detected at the current policy

continuum level, pnew is re�ned into a set of lower level modi�cations that may consist

of create, modify or remove operations to lower level policies. For each policy that must

be created, modi�ed or removed, appropraite process is carried out. If re�nement is not

needed then the process returns with a successful commit. The process continues until

all re�nement operations are successful thus enabling it to commit pnew to the policy

continuum. Similarly, there is a CreatePolicy algorithm (algorithm 2) and DeletePolicy

algorithm (algorithm 3). Together these processes and the associated algorithms comprise

the authoring process.

The policy authoring process makes extensive use of three algorithms that work in-

dependently of each other but are combined to deliver an e�ective solution. Speci�cally,

the algorithms are AnalysePolicyCon�ict, Re�nePolicy and VerifyPolicyContinuum. The

3.2. A Formal Policy Continuum Model 90

Algorithm 1 Modify a policy in the policy continuum.

ModifyPolicy : (PolicyRule× PolicyRule× PolicyContinuum)→ B

ModifyPolicy (pold, pnew, pc)
∧=

∀pparent ∈ GetPolicyParents (pold) pc :

if not VerifyPolicyContinuum (pparent, pnew, pc)
then

NotifyCurrentAuthor (pparent)
return false

if Ppcnf = AnalysePolicyConflict (pnew, pc)
then

∀pcnf ∈ PotentialConflictList (pnew) pc :
∀pparcnf ∈ GetPolicyParents (pcnf) pc :

NotifyCurrentAuthor (pparcnf)
NotifyCurrentAuthor (pcnf)
return false

else

∀poldcld ∈ GetPolicyChildren (pold, pc) :
DeletePolicy (poldcld, pc)
∀pref = RefinePolicy (pnew, pc) :

AddPolicy
(
π1 ◦ pc (pnew) , pref

)
pc

VerifyPolicyContinuum (pnew, pref , pc)
CommitChange (pold, pnew, pc)

interfaces de�ned to the information model and the policy continuum provide such algo-

rithms with the ability to examine the dependencies among policies and to modify these

dependencies as they see �t.

Policy con�ict analysis is one of the integral processes that maintains the consistency

of the policy continuum as it is modi�ed by multiple constituencies of policy authors.

There are essentially two component processes that work together to deliver an e�ective

policy analysis process. They are policy selection and policy con�ict analysis. The policy

selection process deals with selecting a subset of policies that are currently deployed that

must be analysed against given the current candidate policy. The purpose of this process is

to e�ectively reduce the runtime complexity associated to policy con�ict analysis by only

analysing those policies that have a high probability of con�ict with the candidate policy.

The con�ict analysis algorithm takes as input two policies, the candidate policy and

one of the selected deployed policies, and performs a set of functions to ascertain a case

for potential con�ict. If a con�ict is detected it is highlighted and information pertaining

3.3. Summary and Discussion 91

Algorithm 2 Create a policy in the policy continuum.

CreatePolicy : (PolicyRule× PolicyContinuum)→ B

CreatePolicy (pnew, pc)
∧=

∀pparent ∈ GetPolicyParents (pnew, pc) :

if not VerifyPolicyContinuum (pparent, pnew, pc)
then

NotifyCurrentAuthor (pparent)
return false

if AnalysePolicyConflict (pnew, pc)
then

∀pcnf ∈ PotentialConflictList (pnew, pc) :
∀pparcnf ∈ GetPolicyParents (pcnfpc) :

NotifyCurrentAuthor (pparcnf)
NotifyCurrentAuthor (pcnf)
return false

else

∀pref = RefinePolicy (pnew, pc) :

AddPolicy
(
π1 ◦ pc (pnew) , pref

)
pc

VerifyPolicyContinuum (pnew, pref , pc)
returnCommitChange (pnew, pc)

to the con�ict is passed back to the policy author The policy con�ict analysis algorithm

for use within the policy authoring process is the topic of the next chapter.

3.3 Summary and Discussion

The policy continuum as described by Strassner (2003) can be automated if well de�ned

policy authoring and analysis processes exist. The concept of a policy hierarchy was intro-

duced by Mo�ett and Sloman (1993), who identify a need for high level business policies

to be translated or re�ned into lower level policies that carry out the high level objectives.

Policy hierarchies are also investigated by Wies (1995) who speci�cally identi�ed a need

for a re�nement process to automate the task of associating and creating e�ective policy

hierarchies. The main di�erence between the hierarchies of policy de�ned by Mo�ett and

Sloman (1993) and Wies (1995), and the policy continuum as de�ned by Strassner (2003)

is that, the former two authors do not consider the policy authoring process occurring for

multiple levels of policy. There are non-trivial issues to be aware of when trying to coor-

dinate edits to a group of related policies that from a policy continuum, such as: creating,

3.3. Summary and Discussion 92

Algorithm 3 Delete a policy in the policy continuum.

DeletePolicy : (PolicyRule× PolicyContinuum)→ B

DeletePolicy (pold, pc)
∧=

∀pparent ∈ GetPolicyParents (pold, pc) :

if not VerifyPolicyContinuum (pparent, pc)
then

NotifyCurrentAuthor (pparent)
return pc

∀pref ∈ GetChildPolicies (pold) pc :
DeletePolicy (pref , pc)

returnCommitChange (pold, pc)

modifying or removing a policy at a speci�c policy continuum level, policy re�nement,

policy con�ict analysis and policy veri�cation.

It is possible to expand on the functionality of existing approaches to policy re�nement

by incorporating re�nement into a holistic policy authoring process that is capable of

alerting the policy author when con�ict may occur as a result of a policy re�nement. Until

now, a formal model of the policy continuum has not existed that enables di�erent levels

of policy to be related to each other and that is sensitive to the intricate relationships that

exist among policies at multiple levels. the relationships that can be established between

policies depends on the information model.

The policy model used to represent policies in the policy continuum is very �exible

and can be used to represent many of the current policy languages in use at present.

Popular policy languages such as Ponder (Damianou et al., 2001), Rei (Kagal et al., 2003),

and KAoS (Uszok et al., 2003), which are used primarily for creating deontic policies

and XACML (Godik et al., 2003), which is primarily used for a subset of deontic actions

(access control), all have concepts of event, condition and action, though they vary in their

semantics. They also de�ne subject and target managed entities (again , their semantics

di�er). However, none of them use a policy continuum. The assumptions on the required

components of a compatible policy language for the policy continuum are therefore satis�ed

by these policy languages.

This chapter initially presented extensions to the existing DEN-ng information model

for the purpose of making the links between levels of the policy continuum more explicit.

This was followed by the development of a formal policy continuum and associated policy

authoring process. The formal model speci�es the operational semantics of the policy

3.3. Summary and Discussion 93

continuum and the steps the policy author must go through to deploy a newly created

or modi�ed policy into the policy continuum. An important component of the policy

authoring process is policy con�ict analysis. The authoring process explicitly mentions

policy con�ict analysis and relates its role in the authoring process with that of policy

re�nement and policy veri�cation. Research question 1, outlined in chapter 1 asks how

the policy author can interact with the policy continuum in a consistent manner across

policy continuum levels, while being alerted if a policy con�ict arises. The policy authoring

process, such as de�ned in this chapter addresses this research question as it is de�ned to

operate with a well speci�ed policy continuum model. The con�ict analysis process is the

focus of the next chapter. The con�ict analysis process is a pair-wise analysis process that

compares pairs of policies in order to establish a case for con�ict. The complexity of the

process lies in the fact that there is no single de�nition of policy con�ict making it di�cult

to design a generic and policy nature independent algorithm based on existing approaches.

The approach taken in this thesis harnesses the knowledge embodied in information model

to aid in ascertaining a case for con�ict among pairs of policies.

Chapter 4

Application Independent Policy

Con�ict Analysis Algorithm

Policy con�ict analysis is an integral part of the policy authoring process as presented in

chapter 3. The goal of this chapter is to de�ne an application independent and extensible

policy con�ict analysis algorithm to operate as part of the policy authoring process. This

algorithm should be capable of detecting potential policy con�ict while being independent

of the application domain to which the policies relate and the continuum level to which

policies are de�ned. The presence of an information model which models the structure

and relationships between the system managed entities and the policies that e�ect their

management is assumed. Given the presence of such an information model, and making

minimal assumptions regarding its nature this chapter demonstrates that it is possible to

de�ne an application independent and extensible policy con�ict analysis algorithm.

The algorithm de�ned in this chapter should be deployed as part of the policy au-

thoring process to ascertain if a newly created or modi�ed policy (the candidate policy)

potentially con�icts with already deployed policies. The policy authoring process controls

which policies are passed to the policy con�ict analysis algorithm via a selection process.

The candidate policy is analysed on a pair wise basis with currently deployed policies,

with the con�ict analysis algorithm being split into two phases. In the �rst phase, the

algorithm uses the information model to identify pertinent relationships between the can-

didate policy rule and the deployed policy rule (for example, the policies may reference the

same target entity). In the second phase these relationships are examined in the context

of an application speci�c con�ict signature matrix extracted from the information model.

The separation of the two phases re�ects the fact that di�erent applications utilise di�er-

94

4.1. Policy Con�ict Analysis Algorithm 95

ing policy execution models and hence there is no universal criteria to de�ne how policies

con�ict.

The rest of the chapter is structured as follows, section 4.1 presents the policy con-

�ict analysis algorithm. The policy based management implementation is described and

discussed in section 4.2. Section 4.3 presents set of non trivial case studies used to il-

lustrate the �exibility of the algorithm in detecting policy con�ict at di�erent levels of

the policy continuum and for di�erent applications. It demonstrates how the detection of

con�ict depends on the contents of the accompanying information model. Finally, section

4.4 summarises and concludes the chapter.

4.1 Policy Con�ict Analysis Algorithm

Research question 3 states, �How can a policy con�ict analysis process be developed that is

independent of the nature of the policies? � A policy con�ict analysis algorithm should be

equally applicable to a range of policy based applications so that the algorithms do not need

to be continously re-developed and re-engineered for each application of policy. The only

criterion for the policy language used is that it is compatible with the generic form of policy

that was presented in chapter 3. Also, the algorithm should be independent of application

and policy language, so that it can be used across heterogeneous applications and be

equally applicable to any constituency of policy author that uses the policy continuum.

Note, however, that this algorithm assumes that an information model is available that

can represent the structure and constraints of the system that is being managed by policy

and that there is a query interface to the information model consistent with that speci�ed

in chapter 3 in section 3.2.3.

4.1.1 Algorithm Overview

The di�erence between existing policy con�ict analysis algorithms is largely in how they

de�ne what a �policy con�ict� is, and subsequently how they measure success the of a

policy con�ict analysis algorithm. As di�erent application domains have di�ering policy

semantics, each application domain has di�erent criteria for determining when two policies

con�ict. The algorithm presented here decouples the criteria for con�ict from the analy-

sis of the policies, thus enabling the association of multiple de�nitions of policy con�ict.

Furthermore, it is assumed that as part of the policy authoring process presented in chap-

4.1. Policy Con�ict Analysis Algorithm 96

Algorithm 4 Select policies then analyse for con�ict.

analysePolicyConflict : (PolicyRule)→
(PolicyContinuum×Ontology × InformationModel)→ B

analysePolicyConflict (pcnd) pc, ot, in ∧=

let plist = selectPolicies
(
pcnd, GetPoliciesAtLevelN

(
π1 ◦ pc (pcnd)

)
pc
)
ot, in

∧=

∀pdep ∈ plist :
analyseConflict (pcnd, pdep)

ter 3 there is a separate selection algorithm that determines which appropriate subset of

policies must be analysed for con�ict. In this chapter the selection algorithm is assumed

to be a simple pair-wise selection algorithm, in which a candidate policy is analysed for

con�ict against all deployed policies. The role of the selection algorithm in policy con�ict

analysis is shown in algorithm 4. After a policy has been modi�ed by the user at the

policy authoring GUI, that policy is used to aid in the selection of those deployed policies

that must be further analysed for con�ict. For each selected policy, it is input into the

con�ict analysis algorithm. The result of the algorithm is fed back to the author via a

policy con�ict indication, from which the policy author should act upon. The interaction

of the algorithm with the policy continuum is also discussed.

Algorithm 5 illustrates the main steps of the 'analyseCon�ict' algorithm. There are

essentially two phases to the algorithm. The �rst phase performs a pair-wise examination

of the two input policies being analysed and creates a policy relationship matrix to de�ne

how di�erent aspects of policies are related to each other. The matrix is established by

comparing the contained policy rule components of the policies against each other. The

second phase retrieves a con�ict matrix from the information model representing a set of

those relationships that must exist between the two policies for a con�ict to potentially

occur. The con�ict matrix is matched against the policy relationship matrix for similarity;

if the matrices satisfy the match operation (denoted by ~ in algorithm 5) then a con�ict

can occur.

This approach decouples the application domain from the con�ict analysis algorithm

by retrieving application speci�c data via a well de�ned interface to the information model.

The policy con�ict types are decoupled because checking for con�ict is based on a con�ict

relationship matrix that can be adjusted to detect di�erent types of relationships among

di�erent pairs of policies. In addition, the algorithm does not depend on a particular policy

language, only that the language is compatible with the policy model de�ned in chapter

4.1. Policy Con�ict Analysis Algorithm 97

Algorithm 5 Analyse for con�ict.

analyseCon�ict : (PolicyRule× PolicyRule)→ B

analyseCon�ict (p1, p2) ∧=

//Phase1
let m = relatePolicies (p1, p2)

//Phase2
if m 6= null then
∀ cf ∈ retrieveCon�ictPattern (p1, p2) :
if m~ cf = 1 then
"Flag for Con�ict"


ssb ssp seq scor 0
tsb tsp teq tcor 0
esb esp eeq ecor emux
csb csp ceq ccor cmux
asb asp aeq acor actd


Figure 4.1: A policy relationship matrix

3. Both phases of the algorithm are now discussed in detail, along with the extensions to

the DEN-ng information model to represent policy relationships and con�ict matrices.

4.1.2 Phase 1: Policy Relationship Analysis

The approach taken is to initially create a matrix that relates policies to each other in

di�erent ways; this is the policy relationship matrix. From examining the related work

in the area, policies can be related in a number of di�erent ways depending on the policy

rule component type being analysed. For example, when determining if two access control

policies con�ict, there must be an overlap among the subjects, targets and actions (Lupu

and Sloman, 1999). Therefore, policies can be associated by subject, target and action as

a �rst step, and those policies that can be seen to overlap after this step can be �agged to

signify potential con�icts. These are potential con�icts, as the relationships only indicate

requirements for con�ict; thus, the con�ict may or may not happen at runtime. However,

in other cases, the combination of {subject, target, action } overlap may not be of interest,

but an {event, condition, action} overlap may be of interest; this is the case for detecting

con�ict in �rewall �ltering policies as (Al-Shaer et al., 2005). The relationship matrix dic-

tates whether two policies potentially con�ict or not, where di�erent types of relationships

are relevant to di�erent types of policy con�icts.

4.1. Policy Con�ict Analysis Algorithm 98

Table 4.1: Policy relationship descriptions.
Code Description

ssb pa.subject ⊂ pb.subject
ssp pa.subject ⊃ pb.subject
seq pa.subject = pb.subject
scor pa.subject ∩ pb.subject 6=∅
tsb pa.target ⊂ pb.target
tsp pa.target ⊃ pb.target
teq pa.target = pb.target
tcor pa.target ∩ pb.target 6=∅
esb pa.event ⊂ pb.event
esp pa.event ⊃ pb.event
eeq pa.event = pb.event
ecor pa.event ∩ pb.event 6=∅
emux pa.event ⇒ ¬pb.event
csb pb.condition ⇒ pa.condition
csp pa.condition ⇒ pb.condition
ceq pb.condition ⇔ pa.condition
ccor pb.condition ∨ pa.condition
cmux pb.condition ⇒ ¬pa.condition ∧pa.condition

⇒ ¬pb.condition
asb pa.action ⊂ pb.action
asp pa.action ⊃ pb.action
aeq pa.action = pb.action
acor pa.action ∩ pb.action 6=∅
actd ¬ (pa.action ∧ pb.action)

4.1. Policy Con�ict Analysis Algorithm 99

Algorithm 6 Policy relationship comparisons.

relatePolicies : (PolicyRule× PolicyRule× PolicyMap)→Matrix

relatePolicies (p1, p2, pm) ∧=

m = zeroMatrix

m = associateBySubject (p1, p2, pm) ◦
associateByTarget (p1, p2, pm) ◦

associateByEvent (p1, p2, pm) ◦
associateByCondition (p1, p2, pm) ◦

associateByAction (p1, p2, pm)m

Algorithm 7 AssociateBySubject.

associateBySubject : (PolicyRule× PolicyRule× PolicyMap)→ (Matrix→Matrix)

associateBySubject (p1, p2, pm)m ∧=

if isSubjectSubset (p1, p2, pm)
then

markSSB (p1, p2) ◦markSSP (p2, p1)m
elseif isSubjectSuperset (p1, p2, pm)
then

markSSP (p1, p2) ◦markSSB (p2, p1)m
elseif isSubjectEqual (p1, p2, pm)
then

markSEQ (p1, p2) ◦markSEQ (p2, p1)m
elseif isSubjectCorrelated (p1, p2, pm)
then

markSCOR (p1, p2) ◦markSCOR (p2, p1)m

The initial step of the algorithm is called RelatePolicies, as illustrated in algorithm

6. This step involves examining the candidate policy with a deployed policy in order to

discover whether speci�c relationships exist. Relationships can be established via event,

condition, action, subject or target; the approach is �exible and allows other policy com-

ponent types to be included or replaced in the matrix should the policy model need to be

extended. The initially zeroed matrix is modi�ed by a group of operations that populate

the matrix with ones or zeros depending on the result. Figure 4.1 illustrates a policy re-

lationship matrix, where the codes describe the associated signi�cance of the entry in the

matrix. The codes used in �gure 4.1 represent the associated relationships considered. The

�rst letter of the codes indicate which component is being analysed, and are as follows: �s�

pre�x for subject, �t� pre�x for target, and similarly �e� for event, �c� for condition and

�a� for action. The end of the codes indicate the type of relationship being established,

and are as follows: �sb� su�x for subset, �sp� su�x for superset, �eq� su�x for equal, �cor�

4.1. Policy Con�ict Analysis Algorithm 100

Algorithm 8 markSSB.

markSSB : (PolicyRule× PolicyRule)→ (Matrix→Matrix)

markSSB (p1, p2)m ∧= m[p1][p2][S][SB] = 1

su�x for correlation, �mux� su�x for mutually exclusive and �ctd� su�x for contradiction.

Each row is dedicated to holding relationship information about two policies concerning a

speci�c policy component type. For example, the �rst row describes subject based relation-

ships between two policies. There are four relationships that can be established: subset,

superset, equal and correlated. A subset relationship is established is the subjects of one

policy are a subset of the subjects of the other policy, similarly for superset and equal.

Correlated means that a subset, superset and equal relationship cannot be established but

that there are some shared subject members to both policies. Table 4.1 details the meaning

of the entries of the policy relationship matrix.

4.1.2.1 AssociateBySubject / AssociateByTarget

The subject and target tests are similar because both policy components refer to managed

entities. For example, the associateBySubject (algorithm 7) operation takes as input two

policies and tests for a set of relationships that exist among the subjects of the policies.

Each policy is analysed using four di�erent subject-based tests, where the tests examine

the subject of the policies for subset, superset, equality or correlation (intersection) rela-

tionships. If for example p1 and p2 (the two policies being compared respectively) return

true for the function isSubjectSubset, marks are placed in the input matrix at the positions

that signify the subject of p1 is a subset of the subject of p2, and inversely the subject of

p2 is a superset of the subject of p1. The functions used to mark the matrix are called

�mark� functions. The name of the function indicates the index into the matrix that is

marked for any given input policies. Algorithm 8 shows the setting of a relationship in the

matrix.

The isSubjectSubset is speci�ed in algorithm 10; it speci�es that two policies are input,

along with map functions to discover the components of the policies and the related classes

de�ned in the information model. The subject components of the two policies are retrieved

and compared. The comparison required is an element subset membership operation.

If the information model allows subjects of a policy rule to be individually managed

entities or members of selected management domains, the class information of the subject

entities has to be examined in order to establish if it has a containment relationship. The

4.1. Policy Con�ict Analysis Algorithm 101

Algorithm 9 isTypeOf and getMembers functions.

isTypeOf : (Class× Class× ClassDetails)→ PObject
isTypeOf : (c1, c2, cld)→ PObject
if c1 = c2then
return true

else if isTypeOf
(
π5 ◦ cld (c1) , c2, cld

)
else return false

...

getMembers :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Integer

)
→ PObject

getMembers : (p1, pm, objCl, cld, parentType,i)→ PObject
let s1 =

⋃
∀se ∈ πi ◦ pm (p1) :

if isTypeOf (objCl (se) , parentType, cld) then
getMembers (se)

else se

return s1

inputs to the function are the ObjectClass map and the ClassDetails map. The algorithm

makes use of the well de�ned interfaces to the information model as speci�ed in chapter 3

to simplify the computation of these functions.

The isTypeOf function, as speci�ed in algorithm 9, compares two classes together that

are speci�ed from within the information model and can determine if one is equal to or

inherits from the other. The getMembers function, also speci�ed in algorithm 9, enables an

entity of a particular type to be searched for all of its members. This function is recursive,

so that nested domains are also expanded and searched. Using these two helper functions,

a complete set of domain entities that represent the subjects of both input policies can be

found; a test for inclusion will determine if one set is a subset of the other. This information

can be used to establish is one if a superset of the other.

The function for establishing subject equality is speci�ed in algorithm 11. This function

is similar to the algorithm 10 except the discovered subject members of the two policies

compared for equality.

Similarly, operations can be performed for testing for subject superset membership (see

algorithm 12) and subject correlation (see algorithm 13). After the relationship matrix

has been populated with information pertaining to subjects, additional operations can

be performed to populate the matrix with results of target, event, condition, and action

overlap in a similar manner.

4.1. Policy Con�ict Analysis Algorithm 102

Algorithm 10 isSubjectSubset.

isSubjectSubset :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isSubjectSubset (p1, p2, pm, objCl, cld, parentType)
∧=

let s1 = getMembers (p1, pm, objCl, cld, parentType, 4)
let s2 = getMembers (p2, pm, objCl, cld, parentType, 4)
return (s1 ⊂ s2)

Algorithm 11 isSubjectEqual.

isSubjectEqual :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isSubjectEqual (p1, p2, pm, objCl, cld, parentType)
∧=

let s1 = getMembers (p1, pm, objCl, cld, parentType, 4)
let s2 = getMembers (p2, pm, objCl, cld, parentType, 4)
return (s1 = s2)

Algorithm 12 isSubjectSuperset.

isSubjectSuperset :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isSubjectSuperset (p1, p2, pm, objCl, cld, parentType)
∧=

let s1 = getMembers (p1, pm, objCl, cld, parentType, 4)
let s2 = getMembers (p2, pm, objCl, cld, parentType, 4)
return (s1 ⊃ s2)

Algorithm 13 isSubjectCorrelated.

isSubjectCorrelated :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isSubjectCorrelated (p1, p2, pm, objCl, cld, parentType)
∧=

let s1 = getMembers (p1, pm, objCl, cld, parentType, 4)
let s2 = getMembers (p2, pm, objCl, cld, parentType, 4)
return (s1 6= s2 ∧ s1 6⊂ s2 ∧ s1 6⊃ s2 ∧ s1 ∩ s2 6= Ø)

4.1. Policy Con�ict Analysis Algorithm 103

4.1.2.2 AssociateByAction

Events, conditions and actions can be related in similar ways to subjects and targets.

However, there are other ways of relating these components of policy, since they indicate

the actual behaviour that the policy is proposing to enforce. The associateByAction (see

algorithm 14) operation is exemplary of these: it checks for any relationships between

actions de�ned in the policies that are being compared. The basic comparisons between

policy actions are the same as those de�ned for subjects: subset (algorithm 15), equality

(algorithm 16), superset (algorithm 17) and correlated (algorithm 18). Along with these

eelationships, the isActionContradiction operation examines if any of the actions speci�ed

in the candidate policy contradict with any of the actions speci�ed in the selected deployed

policy. Note that a policy con�ict may still not exist even if the actions of two policies

contradict. Typically a policy con�ict is manifested only when the policies can be triggered

at the same time and the conditions of the policies can both be satisi�ed. Therefore, if

only the relationship concerning the actions of the policies is established, then not enough

information is available to indicate a potential policy con�ict. Policy con�ict depends on

many more relationships among policies to be in place before �agging the policy author

can be justi�ed. For example, the candidate policy may specify that a system be shut

down, whereas a deployed policy may specify that a system run a backup process. The

two actions contradict if the backup process requires a system to be running and not shut

down; however, depending on how and when the policies are triggered and evaluated, they

may occur during non overlapping time intervals.

To determine whether two given policy actions actually contradict information speci�ed

within the information model about those operations may be leveraged. Any pre- and post-

conditions of class operations are made available through well speci�ed interfaces to the

information model. One of the assumptions speci�ed concerning the information model

is that policy actions are de�ned as operations in the information model. The function

doActionsContradict is based on the premise that:

1. Two operations are acting on the same type or sub type of an object,

2. The operations' pre-conditions can be satis�ed simultaneously and,

3. The operations' post conditions are `incompatible' or cannot be satis�ed simultane-

ously and,

4.1. Policy Con�ict Analysis Algorithm 104

Algorithm 14 associateByAction.

associateByAction : (PolicyRule× PolicyRule× PolicyMap×Matrix)→Matrix

associateByAction (p1, p2, pm,m) ∧=

if isActionSubset (p1, p2, pm)
then
markASB (p1, p2) ◦markASP (p2, p1)m

elseif isActionSuperset (p1, p2, pm)
then
markASP (p1, p2) ◦markASB (p2, p1)m

elseif isActionEqual (p1, p2, pm)
then
markAEQ (p1, p2) ◦markAEQ (p2, p1)m

elseif isActionCorrelated (p1, p2, pm)
then
markACOR (p1, p2) ◦markACOR (p2, p1)m

elseif doActionsContradict (p1, p2, pm)
then
markACLF (p1, p2) ◦markACLF (p2, p1) ◦m

Algorithm 15 isActionSubset.

isActionSubset :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isActionSubset (p1, p2, pm, objCl, cld, parentType)
∧=

let a1 = getMembers (p1, pm, objCl, cld, parentType, 3)
let a2 = getMembers (p2, pm, objCl, cld, parentType, 3)
return (a1 ⊂ a2)

Algorithm 16 isActionEqual.

isActionEqual :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isActionEqual (p1, p2, pm, objCl, cld, parentType)
∧=

let a1 = getMembers (p1, pm, objCl, cld, parentType, 3)
let a2 = getMembers (p2, pm, objCl, cld, parentType, 3)
return (a1 = a2)

Algorithm 17 isActionSuperset.

isActionSuperset :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isActionSuperset (p1, p2, pm, objCl, cld, parentType)
∧=

let a1 = getMembers (p1, pm, objCl, cld, parentType, 3)
let a2 = getMembers (p2, pm, objCl, cld, parentType, 3)
return (a1 ⊃ a2)

4.1. Policy Con�ict Analysis Algorithm 105

Algorithm 18 isActionCorrelated.

isActionCorrelated :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isActionCorrelated (p1, p2, pm, objCl, cld, parentType)
∧=

let a1 = getMembers (p1, pm, objCl, cld, parentType, 3)
let a2 = getMembers (p2, pm, objCl, cld, parentType, 3)
return (a1 6= a2 ∧ a1 6⊂ a2 ∧ a1 6⊃ a2 ∧ a1 ∩ a2 6= Ø)

Algorithm 19 doActionsContradict.

doActionsContradict :



PolicyRule× PolicyRule×
PolicyMap×
ObjectClass×
ClassDetails×
OperationConstraints×
ActionOperation


→ B

doActionsContradict (p1, p2,mpi, objCl, cld, op, actOp)
∧=

∀a1, a2 ∧ a1 ∈ π3 ◦ pm (p1) , a2 ∈ π3 ◦ pm (p2) :

if
(
I → π1

)
cld−1 (actOp (a1)) ∩

(
I → π1

)
cld−1 (actOp (a2)) 6= ∅

then

if ∀pre1, pre2 ∧ pre1 ∈
(
I → π1

)
op−1 (actOp (a1))

∧pre2 ∈
(
I → π1

)
op−1 (actOp (a2)) :

compatible (pre1, pre2)
then

if ∀post1, post2 ∧ post1 ∈
(
I → π2

)
op−1 (actOp (a1))

∧post2 ∈
(
I → π2

)
op−1 (actOp (a2)) :

incompatible (post1, post2)
elseif ∀post, inv ∧ post ∈

(
I → π2

)
op−1 (actOp (a1))

∪
(
I → π2

)
op−1 (actOp (a2)) , :

inv ∈
(
I → π4

)
cld−1 (actOp (a1))

∪
(
I → π4

)
cld−1 (actOp (a2))

incompatible (post, inv)

4.1. Policy Con�ict Analysis Algorithm 106

4. Any invariants de�ned also hold true through the life of each operation.

The pre-conditions specify the constraints over the attributes of the object before the oper-

ation can be performed and the post-conditions specify the constraints over the attributes

of the object after the operation has completed. The pre-conditions for the operations in

question must be true, because if they are not then the actions will not be performed simul-

taneously. �Incompatible post-conditions� means that the values speci�ed constraining the

objects attributes are contradicting for two or more post-conditions at the same time. In

e�ect, this would dictate the object to be in two di�erent states at the same time. Finally,

each action can have a number of invariants, which de�ne a set of global constraints for the

objects which must be preserved by all operations of that class. Therefore, the true power

of pre-conditions, post-conditions, and invariants is that collectively, they help specify the

expected behaviour of an object. Hence, any variation from the speci�ed pre-conditions,

post-conditions and invariants may result in unpredictable behaviour. This implies that

no side e�ects are present � everything that is required is speci�ed in the invariants, pre-

conditions, and post-conditions. The operation is speci�ed in algorithm 19. It begins by

discovering the associated classes in the information model that correspond to the actions

being performed by the two policies. If there exists any two actions that correspond to op-

erations on the same class then point 1 is satisi�ed. Next, the pre-conditions corresponding

to the associated operations are discovered and checked for compatibility. If compatible

then point 2 is satisi�ed. Then, the post conditions are discovered and checked for incom-

patibility, if incompatible, then contradicting actions are being performed. The invariants

as checked if the post-conditions are compatible. If the invariants are incompatible with

the post-conditions, then there are operations being speci�ed that contradict the behaviour

of the associated classes.

4.1.2.3 AssociateByEvent

If a policy A is triggered by some events that also trigger another policy B, but that policy

B depends on more events before it can be triggered, then policy A is related to the policy

B by an event subset relationship. An assumption can be made that when policy B is

triggered, then policy A is also be triggered.

For example, relating policies via events can give insight into whether the two policies

might be executed simultaneously. However, there are more interesting ways to compare

events; depending on the information supplied that de�ne the content and relationships of

4.1. Policy Con�ict Analysis Algorithm 107

Algorithm 20 associateByEvent.

associateByEvent : (PolicyRule× PolicyRule× PolicyMap×Matrix)→Matrix

associateByEvent (p1, p2, pm,m) ∧=

if isEventSubset (p1, p2, pm)
then
markESB (p1, p2) ◦markESP (p2, p1)m

elseif isEventSuperset (p1, p2, pm)
then
markESP (p1, p2) ◦markESB (p2, p1)m

elseif isEventEqual (p1, p2, pm)
then
markEEQ (p1, p2) ◦markEEQ (p2, p1)m

elseif isEventCorrelated (p1, p2, pm)
then
markECOR (p1, p2) ◦markECOR (p2, p1)m

elseif isEventMUX (p1, p2, pm)
then
markEMUX (p1, p2) ◦markEMUX (p2, p1) ◦m

Algorithm 21 isEventSubset.

isEventSubset :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isEventSubset (p1, p2, pm, objCl, cld, parentType)
∧=

let e1 = getMembers (p1, pm, objCl, cld, parentType, 1)
let e2 = getMembers (p2, pm, objCl, cld, parentType, 1)
return (e1 ⊂ e2)

Algorithm 22 isEventEqual.

isEventEqual :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isEventEqual (p1, p2, pm, objCl, cld, parentType)
∧=

let e1 = getMembers (p1, pm, objCl, cld, parentType, 1)
let e2 = getMembers (p2, pm, objCl, cld, parentType, 1)
return (e1 = e2)

Algorithm 23 isEventSuperset.

isEventSuperset :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isEventSuperset (p1, p2, pm, objCl, cld, parentType)
∧=

let e1 = getMembers (p1, pm, objCl, cld, parentType, 1)
let e2 = getMembers (p2, pm, objCl, cld, parentType, 1)
return (e1 ⊃ e2)

4.1. Policy Con�ict Analysis Algorithm 108

Algorithm 24 isEventCorrelated.

isEventCorrelated :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isEventCorrelated (p1, p2, pm, objCl, cld, parentType)
∧=

let e1 = getMembers (p1, pm, objCl, cld, parentType, 1)
let e2 = getMembers (p2, pm, objCl, cld, parentType, 1)
return (e1 6= e2 ∧ e1 6⊂ e2 ∧ e1 6⊃ e2 ∧ e1 ∩ e2 6= Ø)

Algorithm 25 isEventMUX.

isEventMUX :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isEventMUX (p1, p2, pm, objCl, cld, parentType)
∧=

let e1 = getMembers (p1, pm, objCl, cld, parentType, 1)
let e2 = getMembers (p2, pm, objCl, cld, parentType, 1)

if ∀inv1, inv2 ∧ inv1 ∈
(
I → π1

)
cl−1 (objCl (e1)) ,

inv1 ∈
(
I → π1

)
cl−1 (objCl (e1)) :

incompatible (inv1, inv2)

the objects that make up the events in the information model. Mutually exclusive events

are those events that cannot occur at the same time, and two policies depending on the

occurrence of two such events will not be evaluated simultaneously. A test for mutually

exclusive events can be speci�ed that takes into account the invariants associated to the

related event classes.

Algorithm 21 checks two policies to discover an event subset relationship. Algorithm

22 checks two policies to discover an event equality relationship. This means that two

policies are triggered by exactly the same event(s). Algorithm 23 checks two policies to

discover an event superset relationship. This is similar to the event subset relationship

but in the opposite direction. Algorithm 24 checks two policies to discover an event corre-

lation relationship. This relationship has the same meaning for correlation as de�ned for

subject and target correlation. There is an overlapping set of events that the two policies

share. Algorithm 25 checks two policies to discover an events mutually exclusive relation-

ship. To ascertain this relationship, class information about the events is retrieved from

the information model and the invariants de�ned for the associated classes are checked

for incompatibility. If the invariants of two events are incompatible (i.e. the state the

system must be in so that the events can be triggered), then the event cannot occur at

simultaneously.

4.1. Policy Con�ict Analysis Algorithm 109

4.1.2.4 AssociateByCondition

Similarly, conditions can be tested for subset, superset, equality and correlation relation-

ships. Therefore, in relating policies via the condition component, conclusions can be

drawn as to which policies imply the condition components of other policies.

Mutual exclusivity is not con�ned to events. For example, conditions that logically

contradict can never be satis�ed simultaneously and should be �agged as mutually exclu-

sive. A common example is temporal conditions that evaluate to true only during speci�c

non over lapping time intervals. AssociateByCondition is speci�ed in algorithm 26. In fact,

related work carried out by Agrawal et al. (2005) concerning policy rati�cation and by Lin

et al. (2007) concerning policy similarity highlight the challenges associated to comparing

the components of policies together. Speci�cally, Agrawal et al. (2005) states that deter-

mining boolean expression implication relationships can be a computationally expensive

problem. In that paper they do not solve the complexity issue, but instead reduce the

expressivness of the boolean expressions used. Their approach to specifying conditions is

adopted in the work presented in this chapter, where conditions are assumed to be sin-

gle attribute value restrictions. The consequence of this is that determining relationships

between condition components of policies is simpler, as the issues associated to detecting

complex implication relationships is eliminated.

Algorithm 27 checks two policies to discover a condition subset relationship. Algorithm

28 checks two policies to discover a condition equality relationship. This means that

two policies are satisi�ed simultaneously. Algorithm 29 checks two policies to discover a

condition superset relationship. Algorithm 30 checks two policies to discover a condition

correlation relationship. This relationship means that there are parts of the two conditions

components that are true simultaneously, but not all parts. Algorithm 31 check two policies

to discover a conditions mutually exclusive relationship. This relationship means that there

is no possible way that the two conditions can be satisi�ed simulataneously, or there the a

logical contradiction between the conditions components of the two policies.

4.1. Policy Con�ict Analysis Algorithm 110

Algorithm 26 associateByCondition.

associateByCondition : (PolicyRule× PolicyRule× PolicyMap×Matrix)→Matrix

associateByCondition (p1, p2, pm,m) ∧=

if isConditionSubset (p1, p2, pm)
then
markCSB (p1, p2) ◦markCSP (p2, p1)m

elseif isConditionSuperset (p1, p2, pm)
then
markCSP (p1, p2) ◦markCSB (p2, p1)m

elseif isConditionEqual (p1, p2, pm)
then
markCEQ (p1, p2) ◦markCEQ (p2, p1)m

elseif isConditionCorrelated (p1, p2, pm)
then
markCCOR (p1, p2) ◦markCCOR (p2, p1)m

elseif isConditionMUX (p1, p2, pm)
then
markCMUX (p1, p2) ◦markCMUX (p2, p1) ◦m

Algorithm 27 isConditionSubset.

isConditionSubset :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isConditionSubset (p1, p2, pm, objCl, cld, parentType)
∧=

let c1 = getMembers (p1, pm, objCl, cld, parentType, 2)
let c2 = getMembers (p2, pm, objCl, cld, parentType, 2)
return (c1 ⊂ c2)

Algorithm 28 isConditionEqual.

isConditionEqual :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isConditionEqual (p1, p2, pm, objCl, cld, parentType)
∧=

let c1 = getMembers (p1, pm, objCl, cld, parentType, 2)
let c2 = getMembers (p2, pm, objCl, cld, parentType, 2)
return (c1 = c2)

Algorithm 29 isConditionSuperset.

isConditionSuperset :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isConditionSuperset (p1, p2, pm, objCl, cld, parentType)
∧=

let c1 = getMembers (p1, pm, objCl, cld, parentType, 2)
let c2 = getMembers (p2, pm, objCl, cld, parentType, 2)
return (c1 ⊃ c2)

4.1. Policy Con�ict Analysis Algorithm 111

Algorithm 30 isConditionCorrelated.

isConditionCorrelated :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isConditionCorrelated (p1, p2, pm, objCl, cld, parentType)
∧=

let c1 = getMembers (p1, pm, objCl, cld, parentType, 2)
let c2 = getMembers (p2, pm, objCl, cld, parentType, 2)
return (c1 6= c2 ∧ c1 6⊂ c2 ∧ c1 6⊃ c2 ∧ c1 ∩ c2 6= Ø)

Algorithm 31 isConditionMUX.

isConditionMUX :
(
PolicyRule× PolicyRule× PolicyMap×ObjectClass..

ClassDetails× Class

)
→ B

isConditionMUX (p1, p2, pm, objCl, cld, parentType)
∧=

let c1 = getMembers (p1, pm, objCl, cld, parentType, 2)
let c2 = getMembers (p2, pm, objCl, cld, parentType, 2)

return¬ (c1 ← c2)

4.1. Policy Con�ict Analysis Algorithm 112

4.1.3 Phase 2: Con�ict Matrix Match

The manner in which policies are analysed for potential con�ict is highly dependent on

the application for which those policies are de�ned. For example, when determining if two

access control policies con�ict, there must be an overlap among the subjects, targets and

actions. Therefore, policies can be associated by subject, target and action as a �rst step,

and those policies that can be seen to overlap after this step can be �agged to indicate

potential con�icts. On the other hand, for �ltering policies (such as �rewall rules) subject,

target, action overlap are not of interest, but instead event, condition and action overlap

are relevent. Clearly, the relationship matrix between two policies gives an indication of the

potential for con�ict; however, di�erent relationships are relevant in di�erent application

contexts in respect to detecting con�ict.

In phase 2 another relationship matrix is used, but this one is not derived from the

examination of two policies, but is instead a pre-de�ned matrix. This is known as the

con�ict matrix and represents a set of relationships that if exist between two policies may

indicate a potential policy con�ict. The con�ict matrix is de�ned per application and

is tailored to list only those relationships that must exist for a con�ict to occur for that

application. There may be multiple con�ict matrices per application. The con�ict matrix is

used to make the decision whether to �ag the policies as potentially con�icting. A simple

matrix comparison operation is used that matches the relationship matrix produced in

phase 1 with a con�ict matrix that represents the set of relationships that may or must

hold for con�ict to exist. The matrix combination operation combines the values of two

matrices by using logical AND and OR operations and is speci�ed in equation 4.1. The

con�ict matrix speci�es the requirements for con�ict. Thus, the speci�cation of con�ict is

decoupled from the analysis algorithm and can accommodate disparate con�ict de�nitions.

This is a very important property of the presented approach as it enables the information

model architect to de�ne the requirements of policy con�ict on a per application basis, as

opposed to having to encode the causes of policy con�ict into specialised algorithms.

For each row in both matrices the appropriate entries are �rst logically ANDed together;

therefore, if a �1� is present on the relationship matrix (indicating that this relationship

exists) and also present in the con�ict matrix (indicating that this relationship can lead to

a con�ict), then that relationship satis�es the requirement for a policy con�ict to occur.

After the logical AND operation is completed the results are logically ORed together. The

e�ect of this for the row is that if one of the highlighted relationships is present, then ORing

4.1. Policy Con�ict Analysis Algorithm 113


ssb ssp seq scor 0
tsb tsp teq tcor 0
esb esp eeq ecor emux
csb csp ceq ccor cmux
asb asp aeq acor actd


Figure 4.2: Phase 2 con�ict matrix legend.

that row will produce a �1� for that row (i.e. con�icting via a speci�c policy component

type, now check the other component types). As each row represents a component type,

then a �1� for a particular stage signi�es that the two policies satisfy the conditions for

con�ict with respect to that policy component type.

This process is repeated for each row in the matrix, resulting in a �0� or �1� for each

policy component type. Finally these results are logically ANDed together, establishing

that only if each policy component type satis�es the case for con�ict that a �1� is returned.

(M ~M)i,j → B

(a~ b)i,j
∧=

i
∧

p=0

j
∨

q=0
(ap,q ∧ bp,q)

(4.1)

Figure 4.2 depicts a sample policy relationship matrix that is examined in this phase.

Each row represents the relationships of a component type of a policy. To describe a

condition for con�ict, a �1� is placed in the associated position in the con�ict matrix. For

example, if a speci�c type of con�ict requires subject subset membership, then a �1� would

be placed in the upper left position of the con�ict matrix. Note that the con�ict matrix

may signify multiple relationships for a single policy component type, indicating that any

one of the relationships may hold for a con�ict to be considered.

It is important to note that the set of relationship types given in the matrix can be

expanded on. This thesis considers a set of obvious relationship types among policy compo-

nents, but there are certainly more ways to relate two policy components. Both the con�ict

matrix and the policy relationship matrix can be increased in the number of columns and

rows so that new ways of relating policies can be addressed. A possible extension to the ma-

trix is to support relationships between policies that are related to the types of policies in

use. For example, the Ponder policy language speci�es �ve distinct policy types; they are:

positive and negative authorisation, obligation, refrain and delegation. A new row can be

easily de�ned to handle these types of relationships. However, the relationships presented

4.1. Policy Con�ict Analysis Algorithm 114

in the matrix are typical of the majority of current policy language implementations.

Compiling the correct entries for the con�ict matrix is a combined task of the policy

speci�cation expert and the information model architect. This is because the con�ict

matrix pattern is encoded in the information model, but the policy speci�cation expert

(policy author) is aware of what constitutes a policy con�ict for their speci�c application

of policies. The procedure for compiling the pertinent relationships for the con�ict matrix

is as follows. Note also that this is an o�ine process and can be done before any policies

are actually speci�ed.

1. The policy author must identify the target application that policies shall be used

to manage. This may be for example access control, deontic permissions, �rewalls,

IPsec VPNs or routing domains. There are well de�ned cases for con�ict in each of

these applications, some of the cases even overlap as outlined in chapter 2.

2. Compile a list of policy components that are required to represent the policy for that

applications. The available components include subject, target, event, condition and

action. Not all of these components may be needed if a limited policy language is

in use. For other cases new policy components may be required. For example, in

the case of deontic permissions, a policy deontic type component is required. For

the case of goal policies (policies that indicate a condition and action, but no event),

then the policy event component clause is not required.

3. An empty matrix can be built the considers all possible relationships between each

of the policy component types. The matrix is populated with '1's or '0's depending

on whether a speci�c relationship may contribute to a potential con�ict or not. A

set of questions can be answered about each entry in the matrix. For example, do

the subjects of the policies contribute to con�ict, depending on application this will

be true (1) or false (0).

4. Does the information model need to be extended to respresent extra semantics so that

a speci�c relationship can be discovered. If so, then the information model should

be extended. A description of how the information model is extended, speci�cally

for DEN-ng, is given in the next section.

5. For each relationship that needs to be evaluated in the con�ict matrix, the logic of

the evaluation is designed so that it can be implemented and evaluated at runtime.

4.1. Policy Con�ict Analysis Algorithm 115

PolicyConcept

PolicyApplication

MatrixDetails

PolicyConflictDetectionApp

PRMatrix

1..*

1..*

MatrixOfPolicyConfl ictApp

PolicyRelationship

0..*

1..*

0..*

1..*

PRhasPolicyConcepts

PRMatrixEntry

1

1..*

1

1..*

EntryHasPR

PRMatrixRow

1

1..*

RowsOfPolicyMatrix

1..*1 1..*1

EntriesOfMatrixRow

Figure 4.3: PolicyRelationship extensions to DEN-ng.

4.1.4 DEN-ng Extensions to Represent Policy Relationships

The algorithm presented depends heavily on the ability of the information model to de-

scribe the relationships that can exist between the various policy component types. To

illustrate that an information model can be extended to describe policy relationships, DEN-

ng is adapted. As the DEN-ng policy model has no facility to explicitly represent policy

component type relationships, a set of modelling extensions are required to meet the needs

of the approach taken.

Depicted in �gure 4.3 are the primary new classes de�ned in the information model

to support policy component type relationships. The PolicyRelationship class is an ab-

stract class and is used to represent a relationship type between two or more PolicyConcept

classes. Remember that a PolicyConcept class is a super class of the various component

types of policies and policy types. Therefore, this class can be extended to represent a

relationship between any combination of policy component types (or PolicyConcept sub-

classes). The concept of the policy relationship matrix is represented by the PRMatrix class,

where the �PR� is short for policy relationship. Instances of this matrix, as described in the

con�ict detection algorithm, are used to store a group of relationships between two or more

policy components. A PRMatrix is made up of a number of PRMatrixRow classes via the as-

sociation RowOfPolicyMatrix. Each PRMatrixRow represents a group of relationships that

are associated to the same policy component type. For example, a PRMatrixRow may rep-

resent a group of relationships that relate the PolicyEvent component of two policies. The

PRMatrixRow is associated with a PolicyRelationship via the PRMatrixEntry class. The

4.1. Policy Con�ict Analysis Algorithm 116

PolicyRelationship

PolicyConcept

0..*

1..*

0..*

1..*

PRhasPolicyConcepts

SubjectMembership

Equality
SubjectMembership

Subset

SubjectMembership

Superset
SubjectMembership

CorrelationPolicySubject

SubjectBasedRelationship

PolicyRelationship

ConceptDetails

SubjectBased

RCDetails

Figure 4.4: PolicyRelationship extension for PolicySubject.

PRMatrixEntry class is associated to a single PolicyRelationship. As the PolicyConcept

class is very abstract, it is also used to subclass ManagementPolicy, ECAPolicy etc. This

thesis does not consider relationships that can exist between policy types and focuses

instead on relationships between policy component types.

The policy relationship matrix as discussed in phase 1 of the algorithm can be built

from querying the PRMatrix classes in an information model. The PRMatrix class holds

details on the number of rows the matrix should have and which relationship must be

tested to populate each row. The logic for ascertaining the status of relationships between

the various policy component types can be held in the individual PolicyRelationship

subclasses. An example of extending the PolicyRelationship class is depicted in �gure

4.4.

The SubjectBasedRelationship is a subclass of the PolicyRelationship class and

is constrained to only relate PolicySubjects together. Specialised types of relationships

are then de�ned, such as SubjectMembershipEquality and SubjectMembershipSubset.

These two specialised classes are used to de�ne very speci�c types of relationships that can

exist between two PolicySubjects. The logic to ascertain this relationship is de�ned in

the implementation of the class, and is used to develop the policy relationship function as

used in phase 1 of the con�ict detection algorithm.

For phase 2 of the algorithm, a con�ict matrix is used and compared to the policy

relationship matrix in order to ascertain a potential policy con�ict. The con�ict matrix

is similar to the policy relationship matrix, but instead represents a group of desired rela-

tionships that could be ascertained in a particular application between two policies. The

extension to the DEN-ng policy model depicted in �gure 4.5 shows how the con�ict matrix,

4.1. Policy Con�ict Analysis Algorithm 117

PolicyRelationship

PRMatrixEntry

1..*

1

1..*

1

EntryHasPR

PRMatrixRow

1 1..*1 1..*

EntriesOfMatrixRow

ConflictMatrixEnrty ConflictMatrixRow

ConflictMatrix

PolicyApplication

MatrixDetails
PolicyConflictDetectionApp

PRMatrix

1

1..*

1

1..*

RowsOfPolicyMatrix

1..*

1..*

1..*

1..*

MatrixOfPolicyConflictApp

Figure 4.5: Con�ictMatrix extension.

represented by the class ConflictMatrix, is an extension of the PRMatrix class. Similarly,

the ConflictMatrixRow and ConflictMatrixEntry are extensions of the PRMatrixRow

and PRMatrixEntry classes respectively. In describing an application speci�c con�ict ma-

trix, the information model architect should extend these provided classes and establish

the associations to PolicyRelationships in order to represent the speci�c details of the

application using policy con�ict detection. The ConflictMatrixEntry should describe if

the associated PolicyRelationship is required, optional or not required. This is catered

for by describing an attribute in the class, if the attribute is set, then the relationship is

required. If it is unset, the relationship is optional. If the class is not associated to in the

matrix then the relationship is not required. The ConflictMatrixRow should describe if

the group of ConflictMatrixEntry classes are required, optional or not required. The re-

sulting ConflictMatrix is used in phase 2 of the con�ict detection algorithm. There is also

a selection process, where the appropriate ConflictMatries are chosen to be compared to

associated PRMatrices. To aid in this selection process, all matrix classes are associated

with speci�c sets of applications via the PolicyApplicationMatrixDetails association

class, which represents the semantics of the MatrixOfPolicyConflictApp association. Es-

sentially, the speci�c design of the matrix is tied to the application, and is independent

from the con�ict detection algorithm. It (as well as other classes described as part of this

4.2. Testbed Implementation 118

extension) are de�ned in the information model in order to de�ne, in a generic fashion, the

notion of policy con�ict detection. This enables di�erent applications to use the same set

of concepts to de�ne policy con�ict.

4.2 Testbed Implementation

In order to evaluate the processes and algorithm documented in this thesis a policy

based management testbed was implemented. The testbed has been designed to man-

age the resources and services of a simulated communications network modelled using

OPNETTM(OPNET, 2008). The design goals of the implementation are as follows:

• To be driven by a policy language tightly coupled to the information model of the

managed system.

• To be compatible with the policy continuum interfaces de�ned in chapter 4.

• To enable multiple policy authors access to di�erent management domains.

• To be �exible enough so that it can be readily extended to more policy applications.

• To support the validation and testing of the policy authoring process.

In light of these high level requirements the test bed was developed using model driven

development (MDD) techniques. MDD enables the harnessing of the information contained

within the UML model to aid in the automated generation of support tools and domain

speci�c languages for use within the test bed. There are advantages to taking a MDD

approach: 1) it alleviates the need to develop software tailored to a speci�c application

domain of policy, as the information model dictates the application concepts; 2) there

is reduced overhead involved in software development as code can be semi-automatically

generated, therefore more time can be put into developing the information model, and

subsequently reducing the time required to develop the software; and 3) the information

model is used to drive the generation of the tools and languages; therefore, the information

model is tightly coupled to the tools and hence can be rapidly updated should the model

need modi�cation.

4.2. Testbed Implementation 119

Information Model (Tagged)

Structural DSLs

Parser / Editor

Policy DSLs

Parser / Editor

Data

Model

Policy Deployment and Enforcement

Managed System

Policy AnalyserSyntactic / Semantic

Checking

Policy

Transformation

Policy Conflict

Prevention

Generates

Generates

Creates

Creates

New / Modified

Policies

Queries
Model Checking

Transformed Policies

Modifies

Events

Actions / Configurations

Step 1

Step 2

Step 3

Step 4

Figure 4.6: MDD process steps.

4.2. Testbed Implementation 120

4.2.1 Model Driven Development based Process

A generic process was developed to follow in the construction of the testbed implemen-

tation. The process steps are depicted in �gure 4.6. Each step indicates a part of the

development process where a clear decision can be made as to the functionality that is

required from the resulting testbed implementation. At step 1, an appropriate subset of

the information model is identi�ed against which the generation of support tools and lan-

guages will be carried out. Step 2 describes the generation of a structural domain speci�c

language, which can be used to build instances of the information model that directly rep-

resent entities of the actual target managed system. Step 3 describes the generation of a

policy language, the functionality of which depends on the subset of the information model

used. Step 4 describes the generation of base support tools that aid in policy authoring,

analysis and deployment. After all the support tools and languages have been developed,

the implementation must be further extended to bind with the speci�c applications, ser-

vices and/or resources that must be managed. Next a more detailed description of each

step in the process is provided:

Step 1 - Information Model Tagging. Once a relevant information model subset

is identi�ed it must be marked so that this subset of the model alone is used for tool

generation. For example, when using UML-based information models UML tagged value

pairs can be used to identify the information model subset. Tagged values represent a

simple extension to the meta-attributes of UML model elements. They add information to

existing model elements for the bene�t of back-end tools, such as code generators, report

writers and simulators. Thus, the utility of the information model can be increased. A

model element may have numerous markups (e.g. tagged value pairs), as each tagged value

may be relevant for more than one tool.

Step 2 - Structural DSL Generation. To manually create an object model that

represents the managed system (e.g. a communications network) using concepts speci�ed

in the information model, a domain speci�c language (DSL) is generated. This DSL is

called a structural DSL as it is designed expressly to build groups of interrelated managed

objects that represent the applications, services and resources that make up the system.

Such a structural DSL, and its accompanying parser and editor, is cognisant of the types of

entities that can be linked to one another and in precisely what manner. Multiple structural

4.2. Testbed Implementation 121

DSLs, along with associated parsers and editors can be generated from separate, or possibly

overlapping, identi�ed and tagged subsets of an information model. This enables di�erent

object models to be de�ned that correspond to the di�erent policy continuum levels of the

managed system.

Step 3 - Policy DSL Generation. DSLs from step 2 are used to represent the structure,

but not the behaviour of a managed system. The policy model subset of an information

model (e.g. the modi�ed DEN-ng policy model as de�ned in this thesis) includes entities to

represent various components of policy rules that are used to specify part of the behaviour

of a system. Similar to the generation of the structural DSL, policy DSLs are generated

and along with associated parsers and editors. The policies de�ned using a policy DSL

orchestrates the behaviour of managed entities described within the system, which has

been populated using structural DSLs. A bene�t of this is that the policy DSL editors can

prevent users from de�ning policy instances over entities or entity types that do not exist

within the managed system and that are inconsistent with the constraints de�ned in the

information model.

Step 4 - Support Tools Generation. The editors generated for the policy DSL and

structural DSL are not capable of performing in depth policy analysis, re�nement, trans-

formation, con�ict detection and resolution or other similar processes demanded by most

policy based management solutions. Therefore, some foundational tools are required to

provide access to the code generated and the instantiated objects produced by the DSLs.

The interfaces constructed can be leveraged by specially developed policy authoring and

analysis processes and it is these interfaces that are built upon to implement the de�ned

algorithms. The interfaces can be used to aid in the construction of databases for back

end storage of policies. Also, the information model query interfaces and policy query

interfaces can be generated from the information model.

4.2.2 Testbed Architecture

Following the process outlined in section 4.2.1, the policy based management testbed was

developed as depicted in �gure 4.7. The diagram illustrates that a structural DSL and

editor GUI were generated. The structural DSL editor is used to populate the object model

(instances of the information model classes) with information detailing those entities that

exist in the managed system. The policy model de�ned in the information model can be

4.2. Testbed Implementation 122

Sanitised

XMI

DEN-ng
(Rational)

DEN- ngLite
(Poseidon)

MDR2ECore
(Eclipse Plugin)

XMI

(Rational)

-
)

-

(ECore)(ECore)

Config

Editor
Parser

xText

Config DSL

events

OPNET info

(XML)

Parser

modifies

actions

OPNET

config

(ECore)

creates

()

instantiates

Policy

Editor
Parser

xText

Policy DSL

creates

PDP
(JBoss Rules)

policies

Policy Analyser

new/modified

policies

(ECore)

Data Model

Info Model

Check /

eXTend

Network Simulation
(OPNET)

Figure 4.7: Implementation diagram.

4.2. Testbed Implementation 123

used to generate a policy language that can in turn be used by policy authors to de�ne

policies. The type of policy language generated is determined by the portion of the policy

information model used. Multiple policy languages can be generated if only speci�c aspects

of the policy information model are used. For example, if the policy information model

and its associations to customer and product are used to generate a policy DSL, then that

policy DSL can be used to describe the behaviour of customers and products. The policy

authoring GUI was also generated, along with an associated DEN-ng compatible policy

language that can be used to de�ne management policies over the entities populating the

object model. Also generated were the interfaces to the object model to enable querying

of policies and entities.

To follow the steps, a version of the DEN-ng information model was exported from Ra-

tional Rose (Rational Rose, 2003) (which is the tool used to de�ne the DEN-ng information

model) and imported into Poseidon UML (Poseidon, 2008). At the time of development,

Poseidon was a free tool, and made the information model more accessible to the open

source community. Note that only the portion of the DEN-ng information model that

was of relevance to the management of the communications network described above was

imported. From here, tagged values were added to the classes de�ned in the information

model. A tool developed at the TSSG named MDR2Ecore was used to transform the

tagged DEN-ng information model from UML to an Ecore representation (Barrett et al.,

2007). Ecore is a platform speci�c modelling language developed to support model driven

development on the Eclipse IDE platform (Eclipse, 2008b), it is the core component of

the Eclipse Modelling Framework, EMF (Eclipse, 2008a). Once the model has been trans-

formed from UML to Ecore, the many hundreds of plug-ins that are being developed in the

open source community for Ecore can now be leveraged for this work. In particular, the

Eclipse plug-ins developed by openArchitectureWare (oAW, 2008) were chosen to perform

MDD as their implementations are mature and the most functional at the time of devel-

opment of this test bed. Alternatives would have been to use AndroMDA (AndroMDA,

2008) or similar model driven tool-kits; however, the tool functionality of oAW was very

attractive, as it supported the generation of code from models and the generation of DSLs

from models.

The subset of the information model focused on for the generation of a structural DSL,

was derived from DEN-ng. This DEN-ng subset de�ned logical resources and services. The

logical resource portion is a superset of the functionality de�ned in the SID addendum

4.2. Testbed Implementation 124

Resource

Service

Product

0..n 0..n0..n

ProductReferences

0..n

LogicalResourcePhysicalResource

0..n 0..n0..n 0..n

PResourceSupportsLResource

0..n

0..1

0..n

0..1

ProductHasPhysicalResources

CustomerFacingService

0..1

0..n

0..1

0..n

ProductRealizedAsCFService

ResourceFacingService

0..n

1..n

0..n

1..n

LogicalResourcesImplementRFS

0..n

1..n

0..n

1..n

PhysicalResourcesHostRFS

0..n 1..n0..n 1..n

CFServiceRequiresRFServices

Figure 4.8: Product-Service-Resource DEN-ng

GB922 5LR (TMForum, 2008). This SID addendum de�nes a model of logical resources,

such as routers and application servers. A picture illustrating a portion of the model is

shown in �gure 4.8. This �gure shows the relationships between a product, service and

resource as modelled in DEN-ng. The modelling of services that can be provided over

the network to users was also needed; thus, a subset of the DEN-ng service model was

de�ned, which is equivalent to a superset of the SID addendum GB922 4SO. The subset

of the information model used to generate the policy DSL was as described in the chapter

3 section 3.1.1.

A snippet of the structural DSL is depicted in �gure 4.9. Using oAW's Xpand model-to-

text plug-in, a script was developed to generate the speci�cation of the DSL from an Ecore

model. This particular snippet is derived from a set of classes describing LogicalResources,

and in particular DeviceInterface and EthernetInterface. A sample usage of this part

of the structural DSL is given in �gure 4.10. This usage snippet describes a collection

of routing devices with manually con�gured IP addresses that are directly connected to

each other. The structural DSL can be used to construct a complete communications

network by describing sets of connected logical resources. Network services can also be

similarly de�ned to run on the respective resources and this is catered for in DEN-ng in

the associations between Service with Resource. However, as manually describing a large

communications network may be time consuming, another plug-in was developed that can

4.2. Testbed Implementation 125

Figure 4.9: Structural DSL snippet.

Figure 4.10: Structural DSL usage snippet.

4.2. Testbed Implementation 126

64.10.10.0/24

64.11.0.0/16

64.10.11.0/24

64.10.12.0/24

Figure 4.11: OPNET simulated network

parse the con�guration �le generated from OPNET, and construct the approximate DSL

to re�ect the simulated routers and services. A PDP and PEP were also developed to

control the deployed routers and services. Therefore, when an object was altered in the

object model, this modi�cation would be propagated to the simulation environment.

The communications network that was designed in OPNET is an IP core network, with

Di�erentiated Service enabled routers at the edge (shown in �gure 4.11). The network is

designed to support the provision of access to a set of servers from a set of client domains.

The links across the core network are set at 100Mbps and the edge links are also 100 Mbps.

The types of services that are considered are �rewall �ltering services, IPsec VPN services

and Di�Serv QoS services.

The policy DSL is generated in a similar manner to the structural DSL. The generated

policy editor for the policy DSL provides very limited policy analysis, limited to syntactic

analysis. The tool o�ers some functionality for more expressive analysis by providing the

policy editor with an interface to the �Check� constraint checking language provided as

a plug-in by oAW (openArchitectureWare, 2008). The �Check� language is a constraint

language much like the Object Constraint Language (OCL) that enables the tool developer

to construct OCL style statements to verify the consistency of the created policies. These

statements, however, are primarily used only to check the values of parameters used to

create the policies. For example, a typical Check statement may ensure that each policy

has a unique identi�er, or that only speci�c values can be used to set Di�erentiated Services

4.2. Testbed Implementation 127

Figure 4.12: Sample policy rule.

Code Point (DSCP) values. A sample policy rule is depicted in �gure 4.12, this rule speci�es

that when a request for bandwidth is received from a PremiumPlus customer (the policy

event), and the network is congested to less than 90% of its capacity (the condition), then

the bandwidth is allocated (the action).

Once the policies have been fully analysed and checked for consistency against system

constraints and against each other, they must be deployed. The JBoss Rule engine (Drools,

2008) was used to actively monitor the managed system and maintain it in accordance with

currently deployed policies. The JBoss Rules engine is a forward chaining rule engine that

is based on the RETE OO pattern matching algorithm (Forgy, 1982). It provides a highly

e�cient method of evaluating large volumes of rules simultaneously and carrying out safe

and orderly execution.

To monitor the simulated network, current con�gurations and status are exported to

4.2. Testbed Implementation 128

a �le. This �le is then parsed and used to construct the state of all routers and services.

Any changes in system state (as compared to the previously monitored system state) are

asserted into the JBoss Rule engine as facts. Asserted facts can be used to trigger the

evaluation of installed rules in the rule base as the condition components of rules (policies)

can be de�ned over the status of managed entities. Those rules that must be executed are

added to the activation agenda and processed in accordance to rule priority. The actions

taken by the rules are used to modify the current object model representing the state of

the managed system. Any change in con�gurations are transformed into a corresponding

OPNET con�guration and imported back into OPNET, so that the e�ect of these changes

can be simulated. The a�ect the operations have on the communications network is then

modelled using OPNET.

To translate the policies into the JBoss Rule language, which is called Drools, oAWs

Xpand model-to-text language was used. Depending on the type of policy, there is a

mapping de�ned to translate it into a rule language. The translation process is outlined

as follows:

1. Events are transformed into statements that appear at the head of the rule.

2. Conditions are transformed into statements that may reference system state, event

attributes, or global attributes such as time. These statements are placed after the

events.

3. Actions are placed in the consequent part of the rule, meaning that the actions

will execute only if the events mentioned occur and the conditions are satis�ed.

Depending on the type of policy, the action may de�ne the installation of a speci�c

con�guration or a change to a con�guration, or it may return the answer to an access

request.

4.2.3 Policy Analyser

The policy analyser uses the interfaces generated at step four in the process to access the

instantiated objects of the managed system and the instances of policy de�ned by the policy

author at the policy editing GUI. The policy con�ict analysis algorithm is implemented

directly in Java and makes extensive use of oAW plugins to access data. The algorithm

has been extended to store objects in the policy relationship matrix as opposed to the

4.2. Testbed Implementation 129

Figure 4.13: Policy con�ict dialog box.

4.3. Case Studies 130

ones and zeros as outlined in the algorithm speci�cation. Therefore, when a relationship

is established between two policy component types, an object describing the nature of the

relationship is stored in the matrix. More extensive information can then be provided

back to the policy author concerning the nature of any policy con�icts that may occur.

For example, once the policy author hits the analyse button after they have modi�ed or

created a policy, a dialog popup is displayed similar to that depicted in �gure 4.13, should

a potential policy con�ict be discovered. The con�ict matrices are stored alongside the

policies and other object data and can be search and queried. The particular con�ict

matrices retrieved depend on the types of policies being currently analysed. The policy

continuum is implemented as a set of policy langauges and operations that can modify the

relationships explicitly linking policies in the policy continuum together. The re�nement

process is trivial for the moment as it is not the primary focus of the testbed.

4.3 Case Studies

This section describes the operation of policy con�ict analysis for a policy continuum via a

set of case studies. The case studies collectively relate to an ISP de�ning policy to manage

the provisioning of Internet service products across its communications network. Policies

are de�ned from the perspective of two management domains that have di�erent concerns

about the organisation and its services and resources. The management domains of users

and services are as depicted in �gure 4.14. The ISP's network administrators (DU1-3)

de�ne policy to e�ect management of network services and resources. In contrast, the

ISP's business oriented sales users de�ne policy to provision products based on Internet

service grades. The management domains of users and services are as depicted in �gure

4.14.

Three cases are examined. The �rst case analyses the interaction of �rewall �ltering

policies de�ned at the system level with service provisioning policies de�ned at the business

level. This case demonstrates the interaction between policies authored at di�erent levels

and by di�erent users of the policy continuum. The second case examines the interaction

of access control policies de�ned at the business level, but uses di�erent types of con�ict

matrices; this demonstrates the versatility of the con�ict analysis algorithm. The third

case illustrates that if the policy model being used is extended, that the con�ict analysis

algorithm can also be extended to account for the new functionality provided and hence

new forms of con�ict that may arise. The policy model makes use of deontic concepts

4.3. Case Studies 131

Email/WebFTPVoD

Backup 1

Backup 2

W1

W2

W3

F1

F2

E1

Subnet A Subnet B Subnet C

Administrators

Management

MU1

MU2

DU1
DU2 DU3

SU1

SU2

BU1

BU2

Firewall

Figure 4.14: Policy authoring scenario domain hierarchy.

and illustrates how the con�ict analysis algorithm can be extended to detect new forms of

policy con�ict based on deontic policies.

4.3.1 Business Level / System Level � Filtering Policy Con�ict

At the business level, a policy author de�nes a set of policies that relate to the grades of

Internet service package that a customer is assigned to, and which services it can utilise.

Table 4.2 depicts a set of current business policies (in a pseudo policy language for the

sake of brevity and clarity).

These policies are assumed to have already been added to the policy repository and that

there were no potential con�icts detected. A re�nement process is assumed to have derived

a set of related system level policies that can ful�l the network resource access and packet

�ltering requirements that were previously de�ned by the business level policies. These

are also depicted in Table 4.2. The network administrator needs to de�ne a policy that

will restrict video on demand tra�c, so that further policies can be installed to perform

essential �le backup during o�-peak hours. The candidate system level policy is de�ned

at the bottom of Table 4.2 and should be analysed against all appropriate system level

policies (i.e., those that are at the same level in the policy continuum).

4.3. Case Studies 132

Table 4.2: Business level policies and system level policies.

Business Level (1) System Level (2)

[ID 1.1] On IPPacketRecieved at

AccessRouter.IF0

Condition: SourceIPin64.10.10.0/24

 DestIP in 64.11.1.0/24

 DestPort equals 2000

Action: Forward [ID 1] Subnet_A
isAssignedForward{VoD,FTP,Web} [ID 1.3] On IPPacketRecieved at

AccessRouter.IF0

Condition: SourceIP in 64.10.10.0/24

 DestIP in 64.11.2.0/24

 DestPort equals 21

Action: Forward

[ID 1.3] On IPPacketRecieved at

AccessRouter.IF0

Condition: SourceIP in 64.10.10.0/24

 DestIP in 64.11.3.0/24

 DestPort equals 80

Action: Forward

[ID 2] Subnet_B

isAssignedForward {FTP,Web}

[ID 2.1] On IPPacketRecieved at

AccessRouter.IF0

Condition: SourceIP in 64.10.11.0/24

 DestIP in 64.11.2.0/24

 DestPort equals 21

Action: Forward

[ID 2.2] On IPPacketRecieved at

AccessRouter.IF0

Condition: SourceIP in 64.10.11.0/24

 DestIP in 64.11.3.0/24

 DestPort equals 80

Action: Forward

[ID 3] Subnet_B

isAssignedDrop {VoD}

[ID 3.1] On IPPacketRecieved at AccessRouter.IF0

Condition: SourceIP in 64.10.11.0/24

 DestIP in 64.11.1.0/24

 DestPort equals 2000

Action: Drop

[ID 4] Subnet_A isAssignedProduct
GoldInternet

[ID 4.1] On IPPacketRecieved at AccessRouter.IF0

Condition: SourceIP in 64.10.10.0/24

 DestIP in 64.11.1.0/24

 DestPort equals 2000

Action: Mark AF21

[ID 5] Subnet_B isAssignedProduct
SilverInternet

[ID 5.1] On IPPacketRecieved at AccessRouter.IF0

Condition: SourceIP in 64.10.11.0/24

 DestIP in 64.11.1.0/24

 DestPort equals 2000

Action: Mark AF31

[ID 0.1] On IPPacketRecieved at AccessRouter.IF0

 Condition:SourceIP in 64.10.0.0/16

 DestIP in 64.11.1.0/16

 DestPort in 2000

 Action: Mark AF21

The new candidate policy (at the bottom of the table) de�nes that the video on de-

mand service access (port 2000) must be remarked with a DSCP of AF21, thus reducing

its priority and its ability to congest the core links of the communications network. The

con�ict matrix that is tested relate to detecting con�ict relationships speci�cally among

network �ltering polices; this means that particular attention must be paid to the overlap-

ping condition in the IP Header match criteria of the deployed policies. From examining

the policies, the candidate policy installed by the network administrator may potentially

4.3. Case Studies 133

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

   
   
   
    =

   
   
      

1 1

1 1

11 1

1 1 1 1

1 1

�

Figure 13. Phase 2 Computation for Business/System Level Conflict
Figure 4.15: Phase 2 relationship matrix and con�ict matrix for business to system level
con�ict

con�ict with several deployed policies, including ID3.1. The policy con�ict analysis pro-

cesses the candidate policy with each of the deployed policies, and for each pair of policies

analysed, a set of relationship matrix is built. The relationship matrix established between

the candidate policy and

The policy relationship matrix between the candidate policy (ID 0.1) and the deployed

policy (ID3.1) is depicted in �gure 4.15. The con�ict matrix used to determine a case for

con�ict is chosen from a set of con�ict matrices that represent well known con�ict types that

can occur among network �ltering policies. In this example, the con�ict matrices represent

(1) policy subjects that are the same, (2) policy targets that are the same, (3), identical

events, (4) subset, equal or correlated condition, and (5) contradicting actions. When a

potential con�ict is detected, the encompassing policy authoring noti�es the current policy

author with information concerning the discovered potentially con�icting policies..

In this case, the policy with ID 3 at the business level is a parent policy of the problem-

atic deployed policy (ID3.1). Subsequently, an alert is presented to the system level policy

author describing the potential con�ict detected; in parallel, a list of higher level policies

that the deployed policy is related to is also presented to the policy author. By providing a

list of higher level policies the policy author is given more context as to why the deployed

policy exists and who to coordinate with in order to �nd out more information about the

policies in order to resolve the con�ict.

This case study demonstrates that policy con�ict can be discovered that originates

from the authoring of policies at di�erent levels of the policy continuum, by

1. Analysing policies at the same level and then,

2. Tracing up the policy continuum to ascertain the parent policies associated to the

con�icting policies.

The next case studies illustrate and discuss the �exibility of using the con�ict matrix to

4.3. Case Studies 134

Table 4.3: Business level access control policies.

Business Level (1)

[ID 1] Subnet_A isAssignedForward {VoD,FTP,Web}

during interval (09:00 – 18:00)

[ID 2] Subnet_B isAssignedForward {FTP,Web}

during interval (09:00 – 18:00)

[ID 3] Subnet_B isAssignedDrop{VoD}

during interval (09:00 – 18:00)

*[ID 4] Administrators isAssignedForward {VoD,FTP,Web}

during interval (17:00 – 23:00)

dictate the de�nition of con�ict by utilising a di�erent con�ict matrix for a di�erent pair

of policies.

4.3.2 Business Level Policies � Access Control Policy Con�ict

This case details a policy con�ict that exists solely at the business level. Therefore, the

candidate policy does not need to be re�ned and the policy author can be immediately

noti�ed. This is illustrated in the policy authoring process as presented in chapter 3 where

the process exits if a con�ict is detected.

The business level policy author de�nes policies that control access to a set of services

available to a set of customers. The currently deployed policies are as outlined in table 4.3,

and a new candidate policy is de�ned at the bottom of table 4.3, marked with an asterisk.

The candidate policy de�nes that users within the Administrators managed domain are

granted access (isAssignedForward allows tra�c to be forwarded) to all services during the

interval 17:00 to 23:00. The �rst phase of the algorithm compares this candidate policy

with all deployed policies to de�ne all appropriate relationships that exist among the

policies. The second phase then examines the derived relationships matrices and discovers

that a potential con�ict exists among the candidate policy and the deployed policy with

ID 3. A con�ict exists because there is an overlap between the subject components of

4.3. Case Studies 135

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

   
   
   
    =

   
   
      

1 1 1 1 1

1 1 1 1 1

11 1

1 1

1 1

�

Figure 14. Phase 2 Computation for Business Level Policies
Figure 4.16: Phase 2 Relationship Matrix (LHS) and Con�ict Matrix (RHS) for Business
to Business Level Con�ict.

the policies (i.e. user DU2 is shared between Subdomain B and Administrators) there is

a target component overlap (since both policies reference the VoD service), and there is

a correlation among the condition components (meaning that they temporally overlap).

The existence of these relationships indicates a potential con�ict as speci�ed in the con�ict

matrix depicted in �gure 4.16. Once the potential con�ict is detected, details describing

the con�ict are relayed back to the candidate policy author.

4.3.3 Business Level Policies - Deontic Policy Con�ict

Deontic concepts add extra expressiveness to policies; consequently, there are also more

chances for policies to con�ict with each other. In DEN-ng, deontic policies are classi-

�ed by type, as they are subclasses of ManagementPolicy. Deontic policy extensions to

DEN-ng are covered in section 3.1.1 on page 60. This new component of policy, namely

its type, introduces a new dimension which can be used to relate policies. Therefore, in

order to take advantage of a new policy relationship, the existing algorithm must be ex-

tended by introducing a new row into the policy relationship matrix, and introducing new

PolicyRelationship classes in the DEN-ng information model. The new row functions

as follows, there are �ve new entries in the matrix; therefore, the policies can be compared

in �ve new ways.

1. Exemption vs Authorisation (dea)

2. Obligation vs Prohibition (dop)

3. Exemption vs Obligation (deo)

4. Authorisation vs Prohibition (dap)

5. Similar Positive Types (dspt)

4.3. Case Studies 136



ssb ssp seq scor 0
tsb tsp teq tcor 0
esb esp eeq ecor emux
csb csp ceq ccor cmux
asb asp aeq acor actd
dea dop deo dap dspt


Figure 4.17: Policy relationship matrix with Deontic relationships.

The �rst type of relationship signi�es that one of the policies (the candidate or the de-

ployed) is an exemption policy and the other is an authorisation policy. This type of

relationship between two policies can be trivially established by comparing the types of

policies together (�dea� in the relationship matrix). This logic also applies for cases 2, 3

and 4 (�dop�,�deo� and �dap� in the relationship matrix). The �fth relationship type means

that there are two policies of the same type (i.e., authorisation or obligation) or that one

policy is of type authorisation while the other policy is of type obligation (dspt in the

relationship matrix). In this case, the policy type does not stop the associated action from

being performed.

The relationships of Exemption vs Prohibition are not recorded, as both policy types

deter the actions de�ned in the policy from being performed. The new policy relationship

matrix is now depicted in �gure 4.17. The algorithm for computing the values for the matrix

is also extended with a new function that is called to compute the relative relationships

between two policies as a function of their policy type. The new entries are pre�xed with

a 'd' to represent their deontic nature.

To demonstrate the operation of the extended policy relationship matrix, the policies

depicted in �gure 4.4 are considered. Note that the keywords used in the pseudo policy

languages dictate the type of policies being considered. The keyword must indicates

an obligation policy, isPermitted indicates an authorisation policy, isNotPermitted

indicates a prohibition policy and mayNot indicates an exemption policy. The business

policy author describes a set of policies to permit and restrict particular operations of user

groups and individuals.

Policy 1 is an obligation policy that states that user MU1 must upload a speci�c

directory to the FTP set of servers. This policy may be used to ensure regular backups

are made of sensitive documents that user MU1 is currently working on. Policy 2 is an

authorisation policy and states that users from the Subnet A domain can upload �les

to the FTP servers from 16:00 to 18:00. This policy ensures that the obligation policy

4.3. Case Studies 137

Table 4.4: Deontic Policies.

Business Level (1)

[ID 1] MU1 must uploadDirectory “X” to FTP at 17:00

[ID 2] Subnet A isPermitted to upload to FTP from 16:00 to

18:00

*[ID 3] Management mayNot upload to Backup1 from 16:00
to 18:00

 

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0

~



1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 1 0 0


Figure 4.18: Relationship matrix between policy 3 (candidate) and policy 1 (deployed).

de�ned in Policy 1 will be permitted. Now, assume that after these two policies have been

de�ned, another business policy author de�nes Policy 3 and hits the analysis button in

the authoring GUI. Policy 3 is a prohibition policy stating that users in the Management

domain may not upload to the machine Backup 1 between 16:00 and 18:00. Analysis of

the policy produces the following policy relationship matrix with Policy 1 (�gure 4.18) and

Policy 2 (�gure 4.19).

The relationship matrix produced between Policy 3 and Policy 1 states that Policy 3 is

a super set of Policy 1 via the subject component, and a subset via target component. The



0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
1 0 0 0 0

~



1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 0 0 0 0


Figure 4.19: Relationship matrix between policy 3 (candidate) and policy 2 (deployed).

4.4. Summary and Discussion 138

policies are associated by having equal events (i.e., none, which in DEN-ng is translated

as �always true�, since all DEN-ng policy rules must have event, condition and action

clauses). The conditions associated to Policy 3 are a super set of the conditions of Policy

1. Policy 3 contains a superset of the actions speci�c in Policy 1, this is because Policy

3 speci�es �upload�, whereas Policy 1 speci�es �upload a directory�. The last relationship

type is the deontic comparison, and the appropriate relationship discovered is Exemption

vs Obligation. A con�ict is established, since all relationship requirements set out in the

con�ict matrix are satis�ed. A similar relationship can be established between Policy 3

and Policy 2, where a potential policy con�ict also exists. The action components being

compared for policy 2 and 3 are equal in that they both specify �upload�, but the targets

of the are related via subset.

4.4 Summary and Discussion

A generic and extensible algorithm was presented that can analyse for policy con�ict at

multiple levels of a policy continuum and for multiple policy applications. Current policy

con�ict analysis algorithms are primarily focused on detecting policy con�icts within spe-

ci�c applications and make assumptions about the policy model in use. By designing a

con�ict analysis algorithm for speci�c applications, then a lot of di�erent algorithms are

needed when there are multiple applications. For a large communications network many

con�ict analysis algorithms are not feasible. Therefore, an extensible policy con�ict analy-

sis algorithm that is application independent is developed as required. Research question 2

as speci�ed in chapter 1 asks how can the information model be leveraged to aid in policy

con�ict analysis. This question is addressed in this chapter as the con�ict detection algo-

rithm uses the information model to abstract from the type of policy con�icts that can be

detected and the types of policy relationships that can be established. Research question 3

as speci�ed in chapter 1 asks how a policy con�ict analysis process be de�ned independent

of the nature of the policies the must be analysed. The solution presented in this chapter

addresses this question by harnessing the knowledge embodied in an information model.

Extensibility is achieved by separating the information speci�c to an application from

the con�ict analysis algorithm. As the con�ict analysis algorithm makes use of a generic

interface to an information model, the model can be changed depending on the application.

The de�nition of a potential policy con�ict is also decoupled from the con�ict analysis

algorithm, as the description of a con�ict is encoded in a relationship matrix and can be

4.4. Summary and Discussion 139

stored in the information model. This was demonstrated by extending DEN-ng to model

policy relationships. The extensibility of the algorithm is illustrated and discussed through

three diverse case studies, where di�erent con�ict matrices and di�erent types of policy

applications are used.

The detection of a policy con�ict is directly related to the ability to relate components

of policy together in ways that satisfy the needs of an application. However, there are some

current limitations to this approach. The expressiveness of the information model is some-

what limited and currently, there is only limited support in UML to verify the semantics

of the model. As the con�ict analysis algorithm is extensible, new ways of representing

the semantics associated to the information model can be leveraged. An extension to the

presented con�ict analysis algorithm is the topic of the next chapter where the information

model is augmented with more extensive semantics represented by accompanying ontolo-

gies. Such extensive semantic information can lead to the representation and discovery of

a wider range of policy con�icts. Another very important feature of the policy authoring

process that needs to be addressed is the policy selection algorithm that controls which

policies are input into the con�ict detection algorithm. Ontologies can be used to aid the

selection algorithm to select those policies that require further con�ict analysis. This is

the focus of the next chapter.

Chapter 5

Enhancing Policy Con�ict Analysis

using Ontologies

Policy con�ict analysis within the policy authoring process comprises two main steps as

described in the chapter 4. They are policy selection and policy con�ict analysis. The

deployed policies supplied to the con�ict analysis algorithm are determined by the policy

selection algorithm. In order to select a subset of deployed policies (at the same policy

continuum level only) that may con�ict with the candidate policy currently being analysed,

the selection algorithm requires the ability to di�erentiate the types and purpose of di�erent

deployed policies.

A policy selection algorithm is presented that is capable of determining a subset of

deployed policies that must be selected and passed to the con�ict analysis algorithm with-

out requiring the thorough analysis of all deployed policies. This is done by incorporating

an ontology associated with an information model, to represent the semantic relationships

among various types of policies. Specially designed selection rules are added to the on-

tology that can determine which policies should be analysed for con�ict. The selection

rules provide a form of lightweight analysis that can aid in reducing the need to perform

a potentially computationally complex analysis of a large number of possibly irrelevant

policies. This reduction in complexity is achieved by using policy relationships that are

pre-de�ned in the ontology. This step then pushes that responsibility to a knowledge

engineering expert that can coordinate with the application domain expert to de�ne the

appropraite selection rules. This type of selection is particularly useful when dealing with

policies that apply to di�erent sets of resources, where complex forms of policy con�icts

can exist due to the implicit relationships between resources. In this case, the con�ict

140

5.1. Motivating Example 141

analysis algorithm is extended to be able to ascertain a case for potential policy con�ict

when policies apply to di�erent resources. Information models are not designed to rep-

resent rich semantic information; hence, ontologies are used to augment the information

model by explicitly indicating the policy component types that are incompatible with each

other. This semantic information is de�ned in the ontologies and is used by the the con-

�ict analysis algorithm, which uses this information to establish relationships among the

candidate policy and deployed policies.

In section 5.1, the approach is motivated by describing a typical example where the

policy con�ict analysis algorithm is used. The example illustrates that determining a case

for con�ict in a scenario where the resources are physically distributed can be computation-

ally complex and some special forms of con�ict may go undetected if the con�ict analysis

algorithm is not enhanced. Section 5.2 discusses how the ontology can be leveraged to

create a policy selection algorithm driven by selection rules. It also discusses how the

policy con�ict analysis algorithm is extended to relate policy components via ontological

relationships. Section 5.3 describes the ontology construction process to accommodate the

use of ontologies. A usage scenario is outlined and discussed in section 5.4 to illustrate

the problems that this approach can now handle and how the use of ontologies aids in the

analysis of policies for con�ict. Discussions and a summary are presented in section 5.5.

5.1 Motivating Example

The di�erent ways that entities can be related to each other depends on the relationships

expressed within the information model. Establishing relationships such as equality, subset,

superset, and correlation of groups or individual managed entities is possible; however, in

certain situations that typically arise in large communications networks, policies may need

to be analysed against each other even if they are not being applied to the same entities.

This situation raises three important issues:

1. When analysing policies de�ned to manage di�erent resources having di�erent func-

tionality, the set of relationships will be diverse; this increases the runtime complexity

of the policy con�ict analysis algorithm, as there is a increase in the number of policies

that must be analysed.

2. When analysing policies de�ned to manage physically distributed resources, it is

di�cult to determine those policies the need to be analysed without retrieving all

5.1. Motivating Example 142

deployed policies, this increases the runtime complexity associated with the policy

con�ict detection algorithm.

3. Policies applying to distributed resources may implicitly rely on other policies in the

network, depending on the type of policy the reliance may be non trivial, and thus

pose signi�cant problems when ascertaining cases of potential policy con�ict.

An example case study is presented relating to distributed �rewall policy analysis in order

to motivate the need to extend the approach, outlined in chapter 4.

Three speci�c cases are examined: the �rst case examines the situation where no extra

information in the information model is warranted, in this case the existing approach in

which ontologies (selection rules) are not needed is completely justi�ed; the second case

exposes a di�cult policy con�ict detection problem that is subtly di�erent from the �rst

case, which warrants adaptation of the existing approach; the third case illustrates an ex-

ample of a policy con�ict involving di�erent security services, illustrating an implicit inter-

dependency among policies that cannot be easily represented in the information model;

hence, one or more ontologies are required.

The network topology depicted in �gure 5.1 represents a small communications network.

The �rst case depicted is where two disjoint �rewalls are used to police tra�c originating

from the two networks to a common destination network. The �rewall policies on Firewall

A police the IP tra�c originating from network Source A, and similarly for Firewall B.

No matter what e�ect the �rewall policies of Firewall A have on its tra�c, they will never

a�ect the tra�c being policed by Firewall B.

The con�ict pattern presented for �rewall policy con�ict (see chapter 4 �gure 4.15

on page 133) requires that the target entities be identical; therefore, as the �rewalls are

distinct, a con�ict is impossible. Consequently, a candidate policy deployed to Firewall A

must be analysed against all policies in Firewall B since the process does not distinguish

between policy location in the current selection process, thus making the associated policy

analysis redundant. In actual fact, all of the policies on Firewall B will return the same

answer to the target relationship query. A more informed selection process can aid in

reducing the need for redundant policy analysis.

The case depicted in �gure 5.2 shows Firewall A and Firewall C along a speci�c path

in the network. A �rewall policy still exists on Firewall A specifying that VoIP tra�c

should be allowed; however, there exists a �rewall policy on Firewall C that speci�es

that VoIP tra�c destined for the Destination network should be dropped. Obviously the

5.1. Motivating Example 143

Firewall ‘A’

Firewall ‘B’

Source A

Source B Destination

Figure 5.1: Sample network topology for distributed �rewall con�gurations: Case 1, �re-
walls for di�erent networks.

Firewall ‘A’

Source A

Destination

Firewall ‘C’

Figure 5.2: Sample network topology for distributed �rewall con�gurations: Case 2, �re-
walls on the same path.

5.1. Motivating Example 144

intended behaviour of Firewall A is that voice communication should be possible between

source and destination; however, its policies can only a�ect the IP tra�c on its own router

interfaces and not those belonging to other IP interfaces of another device. There has been

a lot of documented research describing the issues that may arise in this scenario. The

misbehaviour observed is a distributed �rewall policy con�ict (i.e. physically distributed

devices) where downstream devices treat tra�c di�erently from upstream devices. Clearly,

there should be an implicit reliance between the two routing devices, since they are policing

tra�c for a common path in the network.

The source of the problem is that the �rewall policies are de�ned for distributed devices

acting autonomously. In fact, the problem can arise for many di�erent policy applications

where some implicit coordination of behaviour is required. This example speci�cally looks

at the case for �rewall policies, but the problem may also arise for routing policies and

network security IPsec policies (Hamed and Al-Shaer, 2006). A �exible and extensible

method of incorporating semantic information into the information model is required so

that such cases as described here do not cause a problem for policy con�ict analysis.

At present, it is cumbersome to represent such information in the model using the tools

provided by UML. Dedicated associations could be added to resolve the issue; however,

this is not scalable since the information model would need to be continuously modi�ed

with such cumbersome associations as new service types are modelled, which adversely

impacts the e�ort required.

In the third case, as depicted in �gure 5.3, the security services that policy is managing

on the associated routers are di�erent, one being a �rewall service and the other being an

IPsec VPN service. The problem here is that �rewall policy authors may not be fully aware

of the nature and behaviour of IPsec VPN policies; similarly, IPsec VPN policy authors

may not be fully aware of the nature and behaviour of �rewall policies. Whilst the two

security services are very similar at a high level, their functionality and implementation

are di�erent and can cause con�icts in the network if not handled carefully. The solution

presented in chapter 4 would not be able to discern the semantics associated with di�erent

security policies even if they were on the same router without extra information. The case

study presented in section 5.4 at the end of this chapter goes into more details concerning

this problem.

The common theme in the second and third cases is the lack of semantic information

that cannot be represented and implemented using only information models. The rest of

5.2. Ontology Enhanced Policy Con�ict Analysis Process 145

Source A

Destination

Firewall

IPsec VPN

Figure 5.3: Sample network topology for distributed �rewall con�gurations: Case 3, dif-
ferent devices and policy languages.

this chapter shows how ontologies can be used to address this issue. In addition, the use

of ontologies enables the overall computational complexity of the solution to be reduced

by ensuring that redundant and non-applicable policies are eliminated in a light weight

analysis step.

5.2 Ontology Enhanced Policy Con�ict Analysis Process

An ontology constructed from an information model can represent the structural infor-

mation of an information model in a manner that can be reasoned with. More detail

describing the way ontologies are constructed and used in presented in section 5.3. Given

an information model associated ontology, a description of how the policy con�ict analysis

process is enhanced to use this ontology is presented. As shown in algorithm 4 on page 96,

the policy selection algorithm is used to identify those policies that require analysis for

con�ict. The selected policies are then input into the con�ict analysis algorithm. The pol-

icy selection algorithm is designed to take advantage of the increased speci�city in de�ning

semantic relationships that ontologies bring and the con�ict analysis algorithm is enhanced

to consider relationships established with the help of the ontology. The enhancements pre-

sented here establish the potential impact that incorporating ontologies into the analysis

5.2. Ontology Enhanced Policy Con�ict Analysis Process 146

process have. The enhanced policy selection algorithm and the �exible analysis of con�ict

among policies yields a more e�ective and more powerful policy con�ict analysis process

in comparison to existing approaches that do not leverage ontologies in the way presented

in this chapter.

5.2.1 Enhancing the Policy Selection Algorithm

For large (physically) distributed policy repositories, such as multiple routers in a com-

munications network, or multiple distributed application servers coordinating to ful�l a

work �ow, a method of retrieving and analysing these distributed sets of policies must

be devised. Such a method should also facilitate the detection of a broader set of policy

con�icts that exist only when physically distributed policies are considered. The approach

presented in chapter 4 cannot consider con�icts based on relationships such as, for example,

IPsec security policies compared against �rewall �ltering policies, because the relationship

between the policy types and their actions in particular are not trivial and are di�cult to

model. In the new approach two enhancements are incorporated: (1) semantically enriched

search queries; and (2), more expressive relationship analysis. The approach is depicted in

�gure 5.4 and outlined below.

1. A policy is initially modi�ed or created by a policy author and is sent to the selection

algorithm.

2. The policy �type� (e.g. �rewall or IPsec) is used to discover the selection rules that

are used to determine the deployed policies that should be retrieved and analysed

for con�ict. Selection rules are added to the associated ontology and are speci�c rule

patterns that must assert to true for a policy to be considered for con�ict analysis.

3. Once the rules are returned they must be iterated over by the policy selection process.

Each rule is used to retrieve a list of policies from the policy repository.

4. The ontology can be queried in order to satisfy the requirements of a selection rule.

5. The information model may also be queried in order to satisfy the requirements of a

selection rule.

6. Once the policies have all been selected the appropriate policies are returned and

forwarded from the policy selection process to the policy con�ict analysis process.

5.2. Ontology Enhanced Policy Con�ict Analysis Process 147

Policy

Authoring

GUI

Ontology

Information Model

(3)

(4)

(5)

(6)(7)

YES/NO
Policy Conflict

Analysis

Policy

Selection

(1)

(2)

Figure 5.4: Policy selection.

5.2. Ontology Enhanced Policy Con�ict Analysis Process 148

Algorithm 32 Policy selection algorithm.

selectPolicies : (PolicyRule× PPolicyRule)→
(Ontology × InfoModel)→ PPolicyRule

selectPolicies (pcnd, ps) ot, in
∧=

let rules = getOntoRules (pcnd, ot)
let list = ∅
∀r ∈ rules :

list = list ∪ evalRule (r, ot, in)

Algorithm 33 GetOntoRules.

getOntoRules : (PolicyRule×Ontology)→ PSelectRule

getOntoRules (pcnd, ot)
∧=

let type = objCl (pcnd) ot
let list = ∅
∀t ∈ type :

list = list ∪ ot (t)

7. If a con�ict is detected, then the policy author is noti�ed and any information avail-

able is relayed.

The algorithm for policy selection is shown in algorithm 32, which illustrates the use

of the information model and associated ontology. The getOntoRules function, shown

in algorithm 33, retrieves all associated policy selection rules de�ned in the ontology. This

function takes as input the candidate policy and the ontology, and returns a list of selection

rules. The selection rules are rules speci�ed in the ontology that indicate which policies need

to be retrieved for further con�ict analysis. The rules are designed as a pre-analysis step

that can be readily evaluated against currently deployed policies. Pre-analysis eliminates

the requirement for potentially expensive policy con�ict analysis to be preformed on all

deployed policies. The rules are stored in the ontology by way of policy type. As shown in

algorithm 33 the policy rules are queried for their class name in the information model by

using the map function objCl, speci�ed in chapter 3 in section 3.2.3 on page 70. As the name

of ontology concepts are taken from the information model, the class name of the policy is

used to lookup the rules in the ontology. Once retrieved, the rules are iterated over so that

they can select those appropriate policies that should be analysed. The evalRule function

calls the relevent rule engine to evaluate the speci�c rules discovered. Each deployed policy

is linked to the ontology as a instance and is accessible to the rules.

5.2. Ontology Enhanced Policy Con�ict Analysis Process 149


ssb ssp seq scor 0 sot
tsb tsp teq tcor 0 tot
esb esp eeq ecor emux eot
csb csp ceq ccor cmux cot
asb asp aeq acor actd aot


Figure 5.5: New con�ict signature matrix.

The description of the policy selection rules allow the author to ignore the di�erent

types of policies that can be de�ned in the system. For example, a search rule may require

analysis of all security type policies; as the ontology o�ers a �exible way of performing

classi�cation that is not based strictly on inheritence, reasoning may be used to help the

search query discover all security related policies even those not originally envisioned by

the creator of the search rule. The rules also enable the policy author to not have to be

concerned with the size of the communications network as only those policies that are

deemed applicable by search rules need be analysed futher for con�ict. An example of

search rules is presented in section 5.3.3 on page 155.

5.2.2 Enhancing the Policy Con�ict Analysis Algorithm

The extensions to the con�ict analysis algorithm that leverage the ontology are now dis-

cussed. As described in chapter 4, there are two phases to the con�ict analyse algorithm

that are embodied in the analyseCon�ict function depicted in algorithm 5 on page 97. The

proposed extensions enable the algorithm to compare di�erent types of policies to establish

new relationships in the policy relationship matrix.

The policy relationship matrix is extended to incorporate an extra column to represent

ontological relationships discovered among policies; the new matrix layout for policy rela-

tionships is depicted in �gure 5.5. The new column adds an entry to the end of each row;

this new entry represents a potential relationship that can exist between policy compo-

nents. It is established if said components are related via an ontological relationship. For

example, the subject components of the candidate policy and the deployed policy can now

be related by some ontological relationship. When the algorithm is establishing relation-

ships among policy components, it will do so by querying the associated ontology. There

are advantages to extending the matrix in this fashion:

1. Policy components no longer need to rely on the restricted semantics of the infor-

mation model to represent all relationships, as more extensive semantic relationships

5.3. Testbed Implementation 150

can now be represented and discovered in the ontology.

2. The algorithm can now bene�t from relationships that have been automatically gen-

erated due to ontology classi�cation rules or subsumption.

A single new column is used to instruct the con�ict analysis algorithm that a relationship of

signi�cance was detected between the two policies being analysed. Consequently, there may

be many relationships discovered between two policy component types via the ontology,

and therefore many reasons why a �1� is inserted into the matrix in the ontology column. By

only allowing a single new column, the meaning of the ontological relationship discovered

is left up to the policy author who makes the �nal decision as to whether a con�ict has

been discovered. The alternative is to introduce a new entry into the matrix representing

all the types of relationships that can be established in the ontology between ontology

types. The consequence of this approach is that the matrix may become too complex and

di�cult to understand. However, the �nal decision as to which approach to take is up to

the information model architect who designs the relationship matrix in the information

model.

5.3 Testbed Implementation

The testbed implementation was previously presented in section 4.2. The testbed is ex-

tended to cater for information model associated ontologies and the querying of ontologies

within the policy con�ict analysis algorithm. Section 5.3.1 discusses the need for ontolo-

gies to augment the knowledge embodied in the information model and how they can

be harnessed. Section 5.3.2 describes how ontologies were constructed from the DEN-ng

information model and section 5.3.3 illustrates a example of an ontology being constructed.

5.3.1 Information Model Associated Ontology

Previous approaches to augmenting a UML based information model with ontologies were

targeted at extending UML to support the description of ontologies (Crane�eld and Purvis,

1998). The method presented here is based on constructing an ontology that represents

the structure of entities de�ned in the information model (Lehtihet et al., 2006). Some

classi�cation and constraint rules can then be added to the resulting ontology to aid in the

discovery of policy con�icts.

5.3. Testbed Implementation 151

The constructed ontology can be augmented with extensive semantics. Information

describing the managed system can be more accurately represented in the ontology and

reduces the requirements of representing rich relationships in UML which is cumbersome.

The most useful aspect of an associated ontology is the ability to indicate relationships

that would be either cumbersome or impossible to represent in the information model. For

example, associating a router interface to a customer's billing event may not make sense in

the information model, as the relationship is not direct and discovering the link between

the entities will involve tracing through the associations of many classes. However, the

relationships may be easily de�ned or inferred in the ontology and may exist to determine

that a failed interface can be linked to a breach in service associated to a speci�c billed

customer. Such a relationship can be readily represented in an ontology as a rule.

Distinct IP services de�ned in the information model, such as an IPsec VPN and a

�rewall �ltering service, may not be directly related (in that there may not be an association

that relates them to each other or to another common managed object). The motivating

example in section 5.1 illustrates that the two security services are similar to each other

and may actually overlap in functionality. This implicit relationship can be made explicit

in the ontology by de�ning a relationship between the two services. This relationship can

be later used to aid in the analysis of potential policy con�ict.

5.3.2 Ontology Construction

The extended implementation of the testbed is depicted in �gure 5.6. Pellet 1.5.1 (Pellet,

2008) was used as the inference engine to host the query interface to the ontology. The rules

de�ned over the ontology were described in SWRL (W3C, 2008b), where inferencing over

the rules was supported by the JESS (Friedman-Hill, 2008) rules bridge to the Protégé

ontology editor (Protégé, 2008). The objects instantiated in the by the DSLs can be

mirrored in the ontology inference engine by instantiating individuals (i.e. instances) in

the ontology.

Most of the information required to construct the ontology is already de�ned in the in-

formation model. This enables the ontology construction process to concentrate on adding

semantics to the facts de�ned in the information model. When this ontology construction

process is performed against a speci�c information model, it can generate a baseline sys-

tem ontology representing the structure of the information model. The baseline ontology

is enhanced with application speci�c semantics to enhance reasoning over the structure

5.3. Testbed Implementation 152

Sanitised

XMI

DEN-ng
(Rational)

DEN- ngLite
(Poseidon)

MDR2ECore
(Eclipse Plugin)

XMI

(Rational)

-
)

-

(ECore)(ECore)

Config

Editor
Parser

xText

Config DSL

events

OPNET info

(XML)

Parser

modifies

actions

OPNET

config

(ECore)

creates

()

instantiates

Policy

Editor
Parser

xText

Policy DSL

creates

PDP
(JBoss Rules)

policies

Policy Analyser

new/modified

policies

(ECore)

Object Model

Info Model

Check /

eXTend

Network Simulation
(OPNET)

Ontology

(OWL)

Queries (Jena)

modifies

constructs

Pellet

Figure 5.6: Architecture of the testbed incorporating ontologies.

of the information model. The construction of the ontology is based on a tagged portion

of the information model. Therefore, multiple ontologies can be generated from a given

information model depending on the needs of the management processes and the di�erent

types of semantics that each application requires.

The MDD process is extended to incorporate the semi-automated construction of the

ontology. The steps of the ontology generation process are depicted in �gure 5.7. To

review, step 1 of the process requires the developer to identify the pertinent subsets of

the information model for the development of the Domain Speci�c Languages (DSLs); the

information model tags are also used for ontology construction. Step 2 generates DSLs

that can be used to de�ne object models that represent the structure of the system being

managed. These objects are also instantiated in the ontology to aid in reasoning. Step 3

generates an associated policy DSL to aid in the de�nition of system behaviour. Step 4

automatically constructs an ontology that can be further extended to provide reasoning

capabilities for the policies under consideration. This step is also concerned with enhancing

the basline ontology with semantic information concerning the applications to be managed.

Step 5 generates interfaces for policy analysis to can take advantage of the information

5.3. Testbed Implementation 153

model and ontology. These steps have previously been discussed; therefore the new step

(Step 4) is now discussed.

Step 4: Constructing a Baseline Ontology The tagged portion of the information

model is used to construct a baseline ontology. The baseline ontology holds semantic

information currently available within the UML information model but in a form that

can be reasoned over. This baseline ontology should be further enhanced to incorporate

semantic concepts that could not readily be represented within a UML-based information

model to allow for automated reasoning. The process followed for transforming a UML

model into an Ontology is as follows:

1. Each class in the information model is mapped to a concept in the ontology, with

associated inheritance hierarchies.

2. Properties of the classes in the information model are translated into properties in

the ontologies.

3. Associations of classes in the information model are translated into properties in the

ontologies with speci�c restrictions. These restrictions are used to enforce the asso-

ciation ends multiplicity at a minimum. Properties in ontologies can relate concepts

together, much like the use of associations in UML.

4. All sub classes de�ned in the information model are translated into disjoint concepts

in the ontology. Disjoint concepts in ontologies refers to the fact that an instance in

the ontology cannot belong to two or more disjoint concepts.

5. The baseline ontology is enhanced with relationships, constraints and rules that are

used to aid in policy selection and policy con�ict analysis.

Step 5: Generated Ontology Interfaces for Policy Analysis To make the extensive

semantic information available to policy based management processes, there must be an

interface to query and search the ontology. A query based interface is chosen, where the

processes build queries in an ontology query language such as SWRL (W3C, 2008b) or

SPARQL (W3C, 2008a). The use of SWRL as a method of extending the semantics of the

ontology is demonstrated in section 5.3.3.

5.3. Testbed Implementation 154

Information Model (Tagged)

Structural DSLs

Tools:Parser / Editor

Policy DSLs
Tools: Parser / Editor

System Ontology

Data

Model

Policy Deployment and Enforcement

Managed System

Policy AnalyserSyntactic / Semantic

Checking

Policy

Transformation

Policy Conflict

Prevention

Generated

Generated

Generated

Creates

Creates

New / Modified

Policies

ReasoningModel Checking

Transformed Policies Reasoning

Modifies

Events

Actions / Configurations

Step 1

Step 2

Step 3

Step 4

Step 5

Generated

Figure 5.7: Ontology construction steps.

5.3. Testbed Implementation 155

ECAPolicyRule

SecurityPolicyRule

FirewallPolicyRule IPsecVPNPolicyRule

IPsecTransportVPNPolicyRule IPsecTunnelVPNPolicyRule

Figure 5.8: Security policies hierarchy information model.

5.3.3 Ontology Construction Example

The ontology can be queried for semantic information pertaining to an information model

de�ned entity. A demonstration of how a simple ontology can be constructed and aug-

mented to aid in policy analysis is now presented. Figure 5.8 illustrates a UML diagram

of di�erent types of policies, as de�ned in DEN-ng, and in �gure 5.9 associated actions are

illustrated.

ECAPolicyRule v SecurityPolicyRule

SecurityPolicyRule v FirewallPolicyRule t IPsecV PNPolicyRule

IPsecV PNPolicyRule v IPsecTransportV PNPolicyRule t IPsecTunnelV PNPolicyRule
...

PolicyAction v FirewallAction t IPsecV PNAction

FirewallAction v FirewallDropAction t FirewallAllowAction

(5.1)

5.3. Testbed Implementation 156

PolicyAction

FirewallDropAction FirewallAllowAction

IPsecVPNActionFirewallAction

Figure 5.9: Security related policy actions.

FirewallPolicyRule ≡ ECAPolicyRule u ∃hasAction.F irewallAction (5.2)

The UML is translated into the ontological concepts as represented by description

logic in equation (5.1). The description logic depicted states that there is a concept

ECAPolicyRule that subsumes the concept of SecurityPolicyRule. This type of relation-

ship is similar to a super class. Similarly, FirewallPolicyRule and IPsecVPNPolicyRule

are subsumed by SecurityPolicy. An advantage of using ontologies is that a new policy

concept can be created that is associated to a the FirewallAction class. A rule in the

ontology can specify that any ECAPolicyRule that has a FirewallAction is classed as

a FirewallPolicy. The policy actions depicted can be used to infer a policy type; any

policy that references a FirewallAction is a FirewallPolicy. This can be carried out

by adding the rule as depicted in equation (5.2). If however, the same policy can also be

classed as an IPsecVPNPolicyRule (because it also contains an IPsecVPNAction); then an

inconsistency in the model is detected because these two policy types are disjoint.

A disjoint relationship can also be associated between action concepts in the ontology.

By explicitly mentioning that certain actions are disjoint, then the information model ar-

chitecture is explicitly specifying that those actions contradict. The approach taken here

is similar to that presented by Chomicki et al. (2003) and by Campbell and Turner (2007),

where that supply extra infromation to the con�ict analysis process indicating those actions

5.3. Testbed Implementation 157

1. PolicyRule(?cand)∧
2. PolicyRule(?dep)∧
3. hasProperty(?cand, ?t1)∧
4. hasProperty(?dep, ?t2)∧
5. hasIP (?cand, ?sip)∧
6. hasIP (?cand, ?dip)∧
7. differentFrom(?t1, ?t2)∧
8. → select(?dep)

Figure 5.10: Template search rule.

that con�ict with each other. However, they rely exclusively on this approach to con�ict

analysis, whereas the approach presented in this chapter explicitly marks contradicting

actions only when automatic detection is not feasible. For example, it is not feasible to in-

dicate a-priori all possible combinations of contradicting actions in the ontology. Therefore,

a balance is struck between automatically discovering contradicting actions as presented

in chapter 4 section 4.1.2.2 and explicitily marking �disjoint� actions in the ontology.

The more interesting rules added are that of search rules de�ned for various types

of policies. Depending on the type of policy, a search rule can be de�ned that can be

matched against di�erent policies and the classi�cation and restriction rules de�ned in the

ontology can then be leveraged to indicate whether a particular types of policy should be

retrieved for analysis. For example, a search query can be speci�ed to return all policies

that contain an IP address �eld in their condition component or all policies that are of

type SecurityPolicyRule. Taking advantage of subsumption in ontologies allows us to

specify more expressive search requirements to select a variety of policy types with simple

or complex restrictions than is otherwise possible using information models. A template

of a search rule is depicted in �gure 5.10. The search rule begins by selecting a type of

policy (1), depending on the type of policy the candidate policy is, this rule may or may

not be applicable. The rule retrieval function must examine this �rst line to ascertain

whether the rule should be retrieved or not. The next part of the rule (2) indicates the

type of candidate policies that must be examined. In this case, a default PolicyRule type

is declared to search on. The search criteria are then speci�ed in (3) through (7) where

attributes and properties of the policies can be checked. The last part of the query (8) is

entailed if a policy is found to match the search criteria. The select operation will add the

deployed policy to a list for later analysis.

Coming up with a useful search rule inevitably comes down to knowledge of the implicit

constraints and relationships in the applications of policy. In designing a search rule using

5.4. Case Study 158

Firewall

Administrator

VPN

Administrator

To Internet

Machine1 Machine2 Machine3 Machine4

Figure 5.11: Case study administrative domains.

ontologies, the designer needs to �gure out the types of distributed policies that need to be

returned in order to detect for con�ict. The use of an ontology based search rule is a very

�exible method of doing this. However, the true power of the solution very much depends

on the accuracy in de�nition of the search rules to retrieve only those relevent policies.

5.4 Case Study

The case study illustrates the new capabilities of the updated con�ict analysis process

and outlines a speci�c con�ict that can arise among security related IP tra�c engineering

policies across multiple routers. Multiple policy authors are assumed, where each policy

author is an expert in a single policy application. The associated management domains

are that of �rewall �ltering policies and IPsec VPN policies. The network topology as

depicted in �gure 5.11 is owned by a single organisation having at least two management

domains, one under control of the �rewall administrator and one under control of the VPN

administrator. Each administrator is responsible for authoring policies for their respective

domains.

Di�erent security services that have an overlap in functionality are chosen. Firewall

�ltering policies at a basic level instruct a routing device to allow or drop IP packets based

5.4. Case Study 159

Table 5.1: Firewall policies.
ID Type Policy

1 Firewall
From[LocalNetwork]To[Internet]
Protocol[V ideoOnDemand]
Action = DROP

2 Firewall
From[LocalNetwork]To[Internet]
Protocol[HTTP]
Action = ALLOW

3 Firewall
From[LocalNetwork]To[Internet]
Protocol[IPSEC]
Action = ALLOW

on a pattern (e.g. the source address) in the IP packet header. This service can be used

to block tra�c from speci�c hosts on the Internet or tra�c of a speci�c type. IPsec is a

security protocol that can provide con�dentiality, authenticity and integrity to IP tra�c

(Kent et al., 1998). The service can function in two modes: transport mode or tunnel

mode. Transport mode secures the payload of a packet, whereas tunnel mode secures the

full IP packet, header and payload and places it inside a new packet. The anomaly that

is explored in this case study is that IPsec in tunnel mode masks the original IP header

thus making it impossible for egress �rewall routers to recognise the true nature of the IP

tra�c.

The �rewall administrator has the responsibility of de�ning policies that control the

type of tra�c that can enter the network. This administrator has access to only a single

access router as depicted in �gure 5.11. A sample of the policies de�ned by the administra-

tor are depicted in table 5.1. The three policies de�ned are used to drop video on demand

(VoD) tra�c, allow HTTP tra�c and allow IPsec VPN tra�c respectively. These typical

�rewall policies may have been installed because the network connection to the Internet

may not have enough bandwidth to support the strict bandwidth requirements for VoD;

therefore, the decision was made to drop all VoD exiting the local network. Allowing HTTP

and IPsec tra�c is a typical requirement of edge routers, since HTTP is a fundamental

Internet service and IPsec tra�c supports the transmission of secure IP tra�c.

The VPN administrator has the responsibility of de�ning policy that controls the setting

up and securing of VPNs by con�guring IPsec services on end-user machines. Therefore,

depending on installed policies, tra�c may or may not be secured. The policies de�ned

on the end-user machines under control of the VPN administrator are depicted in table

5.2. The policies are distributed across the appropriate end-user machines in the VPN

5.4. Case Study 160

Table 5.2: VPN policies.
ID Type Policy

1 IPsecTun
From[Machine1]To[InternetIP1]
Action = ESPtun

2 IPsecTun
From[Machine2]To[InternetIP2]
Action = AHtun

3 IPsecTra
From[Machine3]To[InternetIP2]
Action = AHTra

administrator's domain. The policies describe what actions should be performed on the IP

packets as they leave the machine. Policy 1 de�nes that IP tra�c leaving Machine1 whose

destination is a machine on the Internet with IP address InternetIP1 must be encapsulated

and encrypted in an IPsec tunnel. Policies 2 and 3 are similar, except that policy 2 ensures

authentication in tunnel mode and policy 3 ensures authentication in transport mode.

A problem arises when a user on Machine1 sends VoD tra�c to InternetIP1. The VPN

policy 1 ensures that the packet is encrypted. Note that this also includes the header

information, thus masking the fact that the tra�c is of type VoD. When the IP tra�c

passes through the �rewall router, it is classi�ed as IPsec tra�c and not VoD tra�c and

is thus allowed; as shown in �gure 5.12. This is a con�ict, as the passing of VoD tra�c

through the �rewall router goes against the rules of the organisation.

The �rst step is to generate the associated ontology from the information model of the

system and augment it with search rules and classi�cations to aid in policy con�ict analysis.

Some important classi�cations in the ontology are policy types as depicted previously in

equation (5.1). A PolicyRule class can be specialised into a SecurityPolicyRule class,

which in turn can be either an IPsecVPNPolicyRule or a FirewallPolicyRule. Another

addition to the ontology is depicted in equation (5.3) which states that FirewallPolicyRule

is disjointFrom IPsecTunPolicyRule, and that any tunnel encryption action class is also

disjointFrom the FirewallDropAction action class. These classi�cations are harnessed later

in the con�ict analysis process.

disjointFrom (FirewallPolicyRule, IPsecTunPolicyRule)

disjointFrom (IPsecTunActionESP , F irewallDropAction)

disjointFrom (IPsecTunActionAHESP , F irewallDropAction)

(5.3)

One of the speci�c search rules that are added to the ontology is outlined in �gure 5.13.

This search rule is designed to look for FirewallPolicyRule types (1) and deployed policies

5.4. Case Study 161

Firewall

Administrator

VPN

Administrator

To Internet

Machine1 Machine2 Machine3 Machine4

VoD Only

ESPtun with VoD

Figure 5.12: VoD tra�c passes through �rewall.

1. F irewallPolicyRule (?cand)∧
2. IPSecTunPolicyRule (?dep)∧
3. hasTarget (?cand, ?tc)∧
4. hasTarget (?dep, ?tx)∧
5. differentFrom (?tc, ?tx)∧
6. sourceIP (?dep, ?sipd)∧
7. destIP (?dep, ?dipd)∧
8. ipddress (?tc, ?tip)∧
9. onRouter (?sipd, ?dipd, ?tip)∧
10. → select(?dep)∧
11. linked(?cand, ?dep)

Figure 5.13: Search rules.

5.4. Case Study 162

Figure 5.14: Search rule editor GUI and comment.

5.4. Case Study 163

of type IPSecTunPolicyRule (2). Lines (3) and (4) retrieve the associated targets of the

policies referring to the router interfaces that they are deployed on. Line (5) ensures that

the deployed policies retrieved are on di�erent routers; therefore, only deployed policies on

other routers can be considered to satisfy this rule. Lines (6) and (7) retrieve the source and

destination IP address of the potential deployed policy, and line (8) retrieves the IP address

of the target device of the candidate �rewall policy. In line (9), the information model

is queried to ascertain whether the tra�c �ow referenced in the source / destination IP

addresses on the IPsecTunnelVPNPolicyRule passes through the interface that contains the

candidate policy. If line (9) returns true, then there may be a tunneling con�ict and more

analysis is required. By (10) the policy has been selected and in (11) a special relationship is

created to establish that the two policies are linked. This special relationship is instantiated

in the ontology and re�ects that an ontological relationship has been established between

the two policies.

The policy authoring process followed by the �rewall administrator is now described.

The process begins with the �rewall administrator designing a policy, in this case policy

1 as shown in table 5.1, that is to be added to the policy continuum. According to the

process as outlined for creating a new policy in the policy continuum, the policy is �rst

analysed to see if any higher-level policies are invalidated by the insertion of the new policy.

This process is outlined in algorithm 2 on page 91. The higher-level policies are satis�ed

and the process continues to analyse for policy con�ict between the policies at the same

policy continuum level.

All other mentioned policies are assumed to have already been added and analysed for

con�ict. The next step in the process is policy selection as shown in algorithm 4 on page 96

and algorithm 32 on page 148. The appropriate search rule for FirewallPolicyRule types

is retrieved from the ontology (i.e., that depicted in �gure 5.13). This rule is retrieved

because there is a search rule stored in the ontology that references the class name of the

policy currently being analysed. Next, the rule is evaluated and a list of potential policies

is enumerated. The policies returned are policies 1 and 2 from table 5.2, which they both

satisfy all the criteria outlined in the search rule. Notice that policy 3 from the same �gure

was not considered because it is of type IPsecTransportVPNPolicyRule. Now that the

policies have been selected they must be sent to the con�ict analysis algorithm for further

processing.

The resulting policy relationship matrix is shown in �gure 5.15. The �rst comparison

5.5. Summary and Discussion 164


ssb(0) ssp(0) seq(0) scor(1) 0 sot(0)
tsb(0) tsp(0) teq(0) tcor(0) 0 tot(1)
esb(0) esp(0) eeq(1) ecor(0) emux(0) eot(0)
csb(0) csp(1) ceq(0) ccor(0) cmux(0) cot(0)
asb(0) asp(0) aeq(0) acor(0) actd(0) aot(1)

~


1 1 1 1 0 1
0 0 1 0 0 1
0 0 1 0 0 0
1 1 1 1 0 0
0 0 0 0 1 1

=1
Figure 5.15: Phase 2 con�ict matrix for the case study.

is between the candidate �rewall policy and the deployed policy, VPN policy 1. The

subjects of the policies are correlated, or overlap as they as members of a shared domain

(i.e. the organisation). According to the policy con�ict analysis algorithm, the policies

should not be related via target. However, because the search rule returned true for

the selected policy, there now exists a relationship between the policy targets (i.e., the

previously established �linked� relationship in �gure 5.13). The existence of this ontological

relationship establishes a one in the �tot� (target ontology relationship) �eld of the policy

relationship matrix. The events are equal (i.e., IP packet received). The conditions are

related, in that both policies are applied to overlapping IP header information. More

speci�cally, the �rewall policy is a superset of the VPN policy via conditions. The action

components of the two policies cannot be directly compared because, the candidate policy

action is Drop and the deployed policy action is ESPTUN . Hence, the ontology must be

queried. An ontology query reveals that the actions belong to classes FirewallDropAction

and IPsecTunActionESP respectively. The ontology speci�es that these two classes of

actions are �disjointFrom� each other; hence, the fact that they con�ict with each other

can be inferred. This con�ict information represents a potential policy con�ict between

the two policies and is relayed back to the policy author.

5.5 Summary and Discussion

This chapter presented an updated policy con�ict analysis algorithm with an enhanced

policy selection algorithm. The enhancements come from the integration of an information

model with an associated ontology that is capable of representing more extensive semantics

than that possible in the information model. This combination can be used by algorithms

and processes to improve the selection of deployed policies for con�ict analysis and re-

duces the number of policies that need to be retrieved for more thorough con�ict analysis.

The primary objective of the enhancements was to reduce the complexity associated with

analysing large sets of policies. Using an ontology that is associated with an information

5.5. Summary and Discussion 165

model, increases the ability of the policy selection algorithm to select only appropriate

policies for con�ict analysis. The selection algorithm is made more e�cient by introducing

a pre-analysis step that can determine whether a deployed policy should be further anal-

ysed for con�ict or disregarded. The selection rules de�ned within the ontology are the

key to making the selection process more e�cient, as they are based on policy type, which

can be established using subsumption or classi�cation algorithms. Research question 2

is addressed in this chapter, it asks �What processes and algorithms need to be developed

so that existing knowledge bases can be harnessed to aid in policy con�ict analysis? �. In

this chapter, ontologies are leveraged and their ability to express more extensive semantic

information than UML is used to improve the functionality of the policy con�ict analysis

process.

Research questions 3 and 4, ask �How can a policy con�ict analysis process be developed

that is independent of the nature of the policies?� and �How can processes and algorithms

developed for policy authoring and policy con�ict analysis be developed so that they are

made e�cient when large numbers of policies are being considered? �. This chapter presents

a solution that is relevant to both questions, as the con�ict analysis algorithm is now

independent of the location of the policies and is more e�cient due to the inclusion of the

policy selection algorithm.

The case study presented demonstrated that it is possible to select a subset of deployed

policies for further analysis, and that a rich set of policy con�icts can be ascertained that are

based on the information supplied by the ontology and not solely in the information model.

The next chapter focuses on a slightly di�erent problem associated to policy selection,

which is the re-use of historical information on previous policy comparisons to reduce

computational complexity.

Chapter 6

E�cient Policy Selection for Policy

Con�ict Analysis

In large communication networks, there may be a large number of policies that exist at

multiple levels of the policy continuum. This puts a focus on the performance of the policy

based management processes. An enhanced selection process based on selection rules was

presented in chapter 6 that can reduce the number of policies returned by the selection

process. Although this process signi�cantly improves the situation, there is no way of

prioritising policies for analysis or for eliminating policies from being analysed should new

information become known.

In this chapter, an e�cient policy selection process is presented, that maintains a history

of previous policy comparisons in a lopsided (or unbalanced) tree data structure that is

used to reduce the number of comparisons required in subsequent iterations of the selection

process. The ability to incorporate historical information into the selection process stems

from the two phase approach taken in the con�ict analysis algorithm.

The outline of the chapter is as follows. Section 6.1 describes and discusses the policy

selection process and the improvements made. Next, section 6.3 presents the experimental

analysis of the implementation of the policy selection process where properties of the

process are tested against policy repositories of a speci�c nature. Experimental results

presented here show that signi�cant performance improvements can be made using this

approach; however, the degree of this improvement is dependent on the nature of the

relationships between deployed policies. A non-trivial case study is presented and discussed

in section 6.4. The results of the case study illustrate the potential of the approach de�ned

in the thesis in reducing the computational complexity associated with policy con�ict

166

6.1. History based Policy Selection using Lopsided Trees 167

Policy

Editor GUI

Information Model

Verify

Continuum

GetPolicyParents

OK

Error

Completed

Err

GetPoliciesAtLevelN

Refine Policy

Err

OK

GetPolicyChildren

Yes

No

Conflict Analysis

Process

Policy

Refinement

Process

Select

Policy

Conflict

Analysis

More

Policies?
Yes

Trees

No

Figure 6.1: Policy authoring process, including policy selection and con�ict analysis.

analysis within a network. This process can be used with the selection process outlined in

chapter 6. A summary and discussion is presented in section 6.5.

6.1 History based Policy Selection using Lopsided Trees

The policy authoring process as presented in chapter 3 controls the selection of which

deployed policies a candidate policy should be compared to. This is re�ected in the updated

policy authoring process depicted in �gure 6.1. The �gure illustrates the relative sequence

of steps the authoring process follows. The policy selection process as presented in chapter

3 is based on a pair-wise comparison of the candidate policy against each deployed policy

(at the same policy continuum level) to test for potential con�ict. For policy repositories

with a high number of policies, this approach may cause potentially signi�cant scalability

issues as it is O (n), n being the number of currently deployed policies. This section

discusses how to improve the e�ciency of the selection process by reusing the results of

previous iterations to reduce the number of comparisons required in future iterations.

The results of previous iterations of the policy con�ict analysis algorithm can be reused

by maintaining the results in groups of tree data structures. A tree data structure enables

simple updating by adding policies based on their relationship (via policy component)

to existing deployed policies. Policies that form similar relationships with other policies

6.1. History based Policy Selection using Lopsided Trees 168

are grouped together. Therefore, if a candidate policy is deemed similar (by way of a

policy component relationship) to a group of existing policies, the policy con�ict analysis

algorithm can re-use the set of existing relationships with other deployed policies, instead

of comparing the policy to all deployed policies. This approach reduces the number of

computations required to ascertain if two policies input into the policy con�ict analysis

algorithm, that are not related via a speci�c component, potentially con�ict with each

other. A tree data structure is used becuase is can encode multiple relationships between

its nodes in a e�cient way, because not every node of the tree needs to be related explicitly.

Given any two nodes in the tree, a relationship can be discovered between then by tracing

the structure of the tree. The natural structure of the tree is leveraged to improve the

e�ciency of storing relationships between policies.

t ∈ Tree = Node→ PNode

Node ⊂ Tree

nd ∈ NodeDetails = Node→ PPolicyRule

(6.1)

A tree data structure is de�ned for each row in the policy relationship matrix. That is,

there is a separate tree for policy events, conditions, actions, subjects and targets. Indeed a

tree should be de�ned for any new policy relationship row introduced into the relationship

matrix. For example, a new tree may be introduced to handle �deontic policy type�, since a

deontic policy is a special organisation of policy components with speci�c semantics. A new

row in the policy relationship matrix was introduced to represent relationships between

deontic policies in chapter 4 section 4.3.3 on page 135. Each tree data structure as de�ned

in equation (6.1) illustrates that a tree is made up of a node map, where each node is

mapped to a set of nodes. In the context of this work a node is a subset of a tree, meaning

that a node can be viewed as a tree. This is useful when de�ning recursive search algorithms

to add and delete nodes from a tree. A node can be mapped to a set of policies. Each

tree data structure aids in establishing relationship patterns among policy components

for phase 1 of the algorithm, for each row of the relationship matrix respectively. The

relationships ascertained in phase 1 of the algorithm are currently equality, superset, subset

and correlation for each component type. A tree can be de�ned to e�ciently store equality,

subset and superset. Equality, subset and superset relationships are re�exive; therefore,

when a candidate policy is compared to a deployed policy and establishes that a relationship

holds for one of their components, the con�ict analysis algorithm can re-use the candidate

6.1. History based Policy Selection using Lopsided Trees 169

Algorithm 34 Add a Policy to the tree.

AddPolicyToTree : (PolicyRule→ Tree×NodeDetails)→ Tree

AddPolicyToTree (p) t, nd ∧=

∀n ∈
(
I → π1

)
t :

if (p = nd (n) [0])
nd = nd t (n→ {p})

elseif (p ⊂ nd (n) [0])
AddPolicyToTree (p)n, nd

elseif (p ⊃ nd (n) [0])
nd = nd t (ne → {p})
t=t t (ne → {n})
t = t\n

else

nd = nd t (ne → {p})

Algorithm 35 Delete a Policy from the tree.

DeletePolicyFromTree : (PolicyRule→ Tree×NodeDetails)→ Tree

DeletePolicyFromTree (p) t ∧=

∀n ∈
(
I → π1

)
t :

if (p = nd (n) [0])
nd = nd t (n→ (nd(n)\p))
if nd (n) = ∅then

t = t\n
elseif (p ⊂ nd (n) [0])

DeletePolicyFromTree (p)n, nd

policy to infer that is it also related to other deployed policies. Correlation relationships

can exist between nodes too, but the tree data structure does not store them elegantly.

Therefore, it is assumed that only the relationships of equality, subset and superset are

stored in the tree data structure.

As more policies are added to the policy trees they begin to form groups around com-

mon managed entities in regards to subject and target trees, as well as common event

types, conditions and actions that are used for the other trees, respectively. Each tree is

kept ordered, with the nodes sorted in order of size (i.e. the number of related policies).

Therefore, policies are compared to the most popular policies �rst. By comparing a can-

didate policy to the most popular policies �rst, the probablity of discovering a position for

the policy in the tree is increased. This is because the new policy has a higher probability

of being related to more general policies then very speci�c ones. Trees that are maintained

unbalanced are commonly referred to as lopsided trees.

6.1. History based Policy Selection using Lopsided Trees 170

Algorithm 34 shows the policy add function and algorithm 35 shows the policy delete

function, that modify a policy tree and maintains its structure appropriately. The AddPol-

icyToTree algorithm takes as input an existing tree and a candidate policy and outputs a

the new tree. The candidate policy is compared against the top level nodes of the tree,

where each node contains a list of policies related via equality. If the candidate policy

matches the node via equality, it is merged into the tree at that node and the algorithm

�nishes. If the candidate policy is a subset of the current node, then the policy is recur-

sively added to the child nodes. If the candidate policy is a superset of the current node,

then a new node is created for the candidate policy, and the current node is added to the

new node as a branch. If the candidate policy is not related to any existing nodes, then a

new node is created in the tree and the candidate policy is added to it. Depending on the

type of tree, the equality, subset and superset comparators determine by which component

the policies are being related. A counter is incremented for each node as a policy is either

added to it or to one of its branches. Therefore node and branch size can be calculated.

The DeletePolicyFromTree is used to remove a policy from the policy tree. Firstly, the

top level branches are searched, if the policy is equal to any of the nodes via the speci�c

policy component type, then the policy is assumed to exist in that node, the policy is

removed and appropriate counters are decremented. If the function can establish a subset

relationship between the policy and any of the nodes, then the function is called recursively

on the appropriate branch node of the tree.

Each tree, per component type, grows as policies are added to it. Subsequently, the

least speci�c policies are placed at the top of the trees, and the most speci�c are placed at

the leaf edges of the trees. A count is maintained for each node that represents the total

number of policies associated to that node including the count of its child nodes. The nodes

at the same level are sorted so that the node with the highest count is compared against

�rst, as it is associated with the largest number of policies. To illustrate the concept,

�gure 6.2 depicts a simple insertion operation. The contents of a policy component are

represented as a set of letters for the ease of illustration. Therefore, policies that reference

the same set of letters can be grouped together. By organising the policies into a tree

structure where the top node is a superset of all policies, the policies can be grouped into

nodes of the tree.

From this tree, relationships among policies can be derived. For example, policies

located in nodes in the same branch that are closer to the root of the tree are a superset

6.1. History based Policy Selection using Lopsided Trees 171

Figure 6.2: Example policy insertion.

of the policies contained in lower nodes, while policies located at the same node position

reference equivalent entities. Establishing the order of policies can be carried out per

component, based on the speci�c policy components they may be related di�erently to

other policies. Therefore, a policy �A� may be a subset of another policy �B� via one

component type, but via another component type, policy �A� by may be a superset of

policy �B�.

The steps depicted in �gure 6.2 are now described. At step (i), the contents of the

candidate policy are compared against the contents of the node with the highest count at

the top level (i.e., the node containing P1). The count (which is 4) is simply the number of

child nodes plus that particular node, and is used to e�ciently select, in order of decreasing

magnitude, which nodes of the tree should be compared against the candidate policy. The

candidate policy is not related to any other branch of the tree at the top level, since its

contents {ac} are not contained in the contents of the other nodes {efg} or {ef}. Indeed,

only one comparison is needed, since policy P6 is a subset of the node containing policies

P2 and P8, and the contents of P2 and P8 are equal. Since the contents of the candidate

policy are not related to the contents of the other node (the one containing policies P2,

P8, and P6), this eliminates the need to compare the candidate policy against this node.

At step (ii), the candidate policy is compared against the largest node, which contains P7

6.2. Integration with Policy Authoring Process 172

Algorithm 36 Updated AnalysePolicyCon�ict.

analysePolicyConflict : (PolicyRule)→
(PolicyContinuum×Ontology × InformationModel)→ B

analysePolicyConflict (pcnd) pc, ot, in ∧=

let plist = selectPolicies
(
pcnd, GetPoliciesAtLevelN

(
π1 ◦ pc (pcnd)

)
pc
)
ot, in

∧=
∀t ∈ GetPolicyTree (pcnd) :
AddPolicyToTree (pcnd) t, nd
∀ cf ∈ RetrieveCon�ictPattern (pcnd) :

∀row ∈ cf :
∀rel ∈ row ∧ rel = 1
plist = plist ∩ getPoliciesViaRelationship(pcnd, rel)

∀pdep ∈ plist :
FlagForConflict (pcnd, pdep)

and P3. However, as policies P7 and P3 are equivalent, only a single policy in the group

needs to be compared against the candidate policy, thus eliminating another comparison.

The candidate policy is not related to that node, so the search continues. The next node

compared against, step (iii), is of size one and contains P4. The candidate policy is

equivalent to this policy; hence, it is inserted into this node. Policies that exist in the tree

within other branches are thus pruned from the search.

6.2 Integration with Policy Authoring Process

The use of policy trees to store the relationships between policy components has to be in-

tegrated into the policy authoring process. The updated process is is depicted in �gure 6.1

on page 167. Algorithm 36 shows the modi�cation to the previous analysePolicyCon�ict

algorithm which was presented in chapter 4 section 4.1.1 in algorithm 4. In that algorithm

the selected policies were iterated through the con�ict analysis algorithm where the rela-

tionships in the policy relationship matrix were established, and these relationships were

evaluated against the con�ict matrix. In algorithm 36, the process is slightly altered to

take advantage of the e�cient policy trees. The process is now described as follows:

1. Create/Modify Policy: The policy author identi�es a policy that must be modi�ed

in, or creates a new policy that must be added to, the policy continuum (the candidate

policy).

2. Veri�cation: The candidate policy is used by the policy veri�cation process to

6.2. Integration with Policy Authoring Process 173

Algorithm 37 GetPoliciesViaRelationship.

getPoliciesViaRelationship : (PolicyRule×Relationship→ Tree×NodeDetails)
→ (PPolicyRule)

getPoliciesViaRelationship (p, r) t, nd ∧=
if r = Equal then

let n = nd−1 (p)
return nd (n)
elseif r = Superset then

let ns = nd ◦ t−1 (n)
return ns ∪ getPolicyViaRelationship (ns[0], r)

elseif r = Subset then

let ns = nd ◦ t (n)
return ns ∪ getPolicyViaRelationship (ns[0], r)

investigate if the goals of higher-level policies are a�ected, if not the process continues.

3. Con�ict Analysis: The candidate policy now has to be analysed for con�ict between

the policies at the same policy continuum level.

(a) Select Policies: The selection algorithm as outlined in chapter 5 on page 140

section 5.2.1 is called. This algorithm makes use of the policy type (class) infor-

mation to retrieve the appropriate selection rules represented in the ontology.

These rules are then used to select a subset of deployed policies that should

be further analysed for policy con�ict with the candidate policy. This step is

performed before the policy trees are considered in order to restrict the num-

ber of policies that need to be considered for con�ict analysis, and to leverage

semantic information available in the ontology.

(b) Select Policy Trees: The selected policies have pre-existing relationship in-

formation stored in the policy trees that relates those policies to other deployed

policies. The policy trees are retrieved based on the type of relationships that

can be established in the policy relationship matrix. Essentially, there is a policy

tree for each row of the policy relationship matrix. The retrieval of the policy

trees is carried out by calling the GetPolicyTree function which should access

and retrieve the set of trees being maintained.

(c) Add Policy to Trees: Before the con�ict matrices are considered, the can-

didate policy is e�ciently added to each tree, per relationship type. This step

6.2. Integration with Policy Authoring Process 174

e�ectively evaluates how the candidate policy is related to all other deployed

policies with a reduced number of policy comparisons. After the policy has been

added to all policy trees, it has established relationships between the policies

selected from step (a). The con�ict matrix is retrieved from the information

model and is used to investigate the nature of the relationships just established.

(d) Considering the Con�ict Matrix: The con�ict matrix dictates the relation-

ships that should exist for a potential con�ict to occur. Each row of the con�ict

matrix is associated with a particular policy component type. For each row of

the con�ict matrix, the associated policy tree is considered. The policy trees

are reduced to contain only those policies selected from step (a). If a �1� is in

the con�ict matrix, then the associated policy tree is queried to enumerate all

deployed policies that are connected to the candidate policy with respect to the

highlighted relationship. For example, if a �1� existed in the subject row indi-

cating that equality contributed to con�ict, then all equal policies are retrieved

from the subject component tree. This can be done e�ciently by examining the

policy tree as described in section 6.1. All other trees are sucessively reduced

to contain only selected policies.

(e) Iterate for Each Tree: The process is repeated for each row of the con�ict

matrix. Algorithm 37 is used to search the policy trees and retrieve sets of

policies that are associated with the input policy via a speci�c relationship.

The process stops if all con�ict matrix rows have been explored, or if no policies

remain selected as a result of a reduction step. If there are policies remaining

after each row of the con�ict matrix is considered, then these policies may

potentially con�ict with the candidate policy. The candidate policy then should

be removed from all a�ected policy trees. If there are no policies remaining, then

there are no potentially policies that can con�ict with the candidate policy.

4. Re�nement: If there are no potential policy con�icts detected, then the candidate

policy is re�ned by the policy re�nement process. For each new policy at the lower

level of the policy continuum, the process is repeated.

The updated policy authoring process is e�ected in how it is used to analyse for policy

con�ict only and the other processes such as veri�cation and re�nement are not e�ected.

The use of policy trees introduces an e�cient way of eliminating policies from the analysis

6.3. Theoretical Analysis 175

step depending on the nature of the policy being added to the policy continuum.

6.3 Theoretical Analysis

To test the performance of the enhancement to policy selection for the con�ict analysis

algorithm, a set of experiments were devised that test the sensitivity of the algorithm to

the distribution of node sizes, and its sensitivity to the ratio of policies to nodes. Note

that actually detecting a policy con�ict between two policies is not important here, only

the number of comparisons required to ensure all policies were analysed for con�ict. In

fact, no policy con�icts may exist among the set of policies. To reduce the number of

variables measured, the experiments were carried out to only compare the equality of

policy subjects between the candidate policy and deployed policies. Therefore, only a

single tree was generated for this relationship. The e�ciency of the process depends on

the number of nodes in the resulting policy tree and also on the distribution of policies

across the nodes; therefore, it is independent of how a node is created and added to a

policy tree. These assumptions do not a�ect the accuracy of the results that are outlined

throughout the rest of this section, because in an real deployment of policies, only the

number of created trees will increase and not the behaviour of the trees.

For the theoretical analysis, sets of policies have to be generated to �t a speci�c prede-

termined nature. For example, the nature of the policies generated must follow a speci�c

probability distribution function via policy subject components. Typically, it is the job

of the policy author to de�ne policies, but as the theoretical analysis experiments are not

concerned with the behaviour that the policies are de�ning, random policies can be gen-

erated. Random policies are generated by populating the policy components of a policy

with random entities (i.e., subjects). By controlling the probability distribution functions

being used to build the set of policies, the nature of these policy sets can be designed a

priori.

The �rst experiment is related to measuring the sensitivity of the approach to node

size (i.e. how many policies are stored in a node). The second experiment is related to

measuring the sensitivity of the approach to the number of nodes in the tree.

6.3. Theoretical Analysis 176

Table 6.1: Distributions of policies per subject.
Trial Distribution

1.1 1, 1, 1, 1, 2, 5, 30, 215
1.2 2, 3, 5, 8, 16, 31, 63, 128
1.3 4, 6, 9, 14, 23, 38, 61, 101
1.4 12, 15, 19, 24, 31, 39, 50, 66
1.5 32, 32, 32, 32, 32, 32, 32, 32

6.3.1 Node Size Distribution Sensitivity

Each level of the policy continuum can have very di�erent characteristics when it comes

to how much the existing relationships among deployed policies can be leveraged. An

experiment was devised to demonstrate the applicability of the process to sets of policies

of varying characteristics. For this experiment, it is assumed that there are a �xed number

of policies and a �xed number of nodes within the tree data structure. The distribution

of policies among the nodes is varied to simulate the di�erent popularity of some policy

subjects over others. A node is established if a policy references a particular subject; the

policies are grouped via subject equality. The experiments assumes there are 256 policies

in total and 8 di�erent policy subjects; therefore, there is a maximum of 8 nodes in the

tree. The distribution of policies per node was generated using an exponential distribution

with varying weights to give distributions of di�erent gradients. Five distributions were

generated to represent the varying nature of policy repositories. The distribution of policies

per subject is outlined in table 6.1.

The experiment consisted of generating a random sequence of policies, based on a

predetermined random seed, to be added to the tree. When the �nal policy (the candidate

policy) is added to the tree (i.e., policy numbered 256), the total number of comparisons

required to add this last policy to the tree were counted. A pair wise comparison would

take 255 comparisons (i.e. the candidate policy is compared against all deployed policies).

The test for each set of policies was performed 1000 times where each iteration had a

di�erent random seed. The average number of comparisons for the approach along with

the reduction in computational complexity, is outlined in table 6.2, the distribution of the

number of comparisons is depicted in �gure 6.3. The experiment assumes that the addition

of new candidate policies follow the same probability distribution as that used to populate

the other 255 nodes.

Figure 6.3 shows that the distribution of policies per tree node a�ects the performance

of the policy selection process. The behaviour observed is directly related to the nature of

6.3. Theoretical Analysis 177

Table 6.2: Average number of comparisons for policy add.
Trial Average No. Comparisons Percent Reduction

1.1 1.295 99.49%
1.2 2.032 99.23%
1.3 2.456 99.04%
1.4 3.254 98.72%
1.5 4.666 98.17%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

P
ro

b
a
b

il
it

y
 o

f
N

u
m

b
e
r

o
f

C
o

m
p

a
ri

s
o

n
s

Number of Comparisons

Trial 1.1

Trial 1.2

Trial 1.3

Trial 1.4

Trial 1.5

Figure 6.3: Probability of number of comparisons required per trial.

6.3. Theoretical Analysis 178

relationships between the sets of policies. This demonstrates why the tree is maintained

sorted in order of node count (i.e., node size) after each policy insertion. The probability

of the candidate policy being compared against a group that is most related to it is thus

increased; this in turn subsequently increases the probability of it being compared against

fewer nodes. The distribution with the least amount of variability (trial 1.5) has roughly

an equal probability of matching against any node when the �nal policy is added. However,

notice that the number of comparisons is now bounded by the number of established nodes

as opposed to the number of policies. The number of comparisons is of the order of the

number of nodes in the tree, never rising above eight.

6.3.2 Number of Nodes Sensitivity

This experiment demonstrates the sensitivity of the policy selection process to the number

of nodes produced by the tree to re�ect the equality of policy subjects. For this experiment,

it is assumed that there are 100 policies and 100 subjects that these policies can reference.

For each trial, the number of subjects that are referenced by the set of policies is varied.

The number of subjects referenced determines the number of nodes in the tree, because this

experiment only considers equality relationships. There were 13 trials in total, where the

distribution of policies per node reduced as the number of nodes increased. The number

of nodes per trial are as follows: 1, 2, 3, 4, 8, 15, 20, 30, 40, 50, 70, 90, 99. The number of

nodes was chosen to illustrate the performance of the process as the nature of the policy

repository varied. Form each trial, policies were distributed uniformly and exponentially

among the numbers of nodes that are created. For example, when 20 nodes are created,

each node can have 5 policies or the distribution of policies can be exponential in which

case one of the nodes will have the majority of policies. Similar to the previous experiment,

the policies were put into a random sequence and added to the policy tree. The number

of comparisons required for the last policy to be added to the tree is recorded for each

trial. Each trial is repeated 1000 times with a di�erent random sequence for each trial.

The results for the experiment are presented in table 6.3.

The number of nodes produced per set of 100 policies directly a�ects the performance

of the policy selection process, as shown graphically in �gure 6.4. The di�erence that the

distribution of node size has on the process can be observed, as it is designed to leverage any

commonalities among policies. Therefore, the performance of the exponential distributions

sustain better performance than the uniform distributions. The performance gain can be

6.4. Case Study Analysis 179

Table 6.3: Number of nodes and distribution of policies.

Trial Nodes
Average

Comparisons
(Exp)

Average
Comparisons

(Uni)

Exp %
Reduction

Uni %
Reduction

2.1 1 1 1 99.0% 99.0%
2.2 2 1.296 2 98.7% 98.0%
2.3 3 1.466 2.623 98.5% 97.4%
2.4 4 1.586 4 98.4 96.0%
2.5 8 1.914 8 98.0 93.0%
2.6 15 3.216 15 96.8 85.0%
2.7 20 4.407 20 95.6 80%
2.8 30 9.464 25.796 90.5 74.2%
2.9 40 15.688 33.93 84.3 66.0%
2.10 50 22.927 50 77.1 50%
2.11 70 47.241 57.128 52.8 42.9%
2.12 90 79.756 79.839 20.2 20.1%
2.13 99 99 99 0.0% 0.0%

put down to the fact that more policies exist in the earlier nodes of the tree, and thus there

is a higher probability that the candidate policy can be matched and inserted.

Most notably, for trial 2.1, one subject was referenced in common to all policies. When

the last policy was added, it too referenced the same subject as all currently deployed poli-

cies and so it required only a single comparison to establish its association to all deployed

policies. This case represents the best performance case for the algorithm, however this

performance will not typically be achieved in all cases as it requires that all policies via a

speci�c component type (e.g. subject) be equal.

In contrast, for trial 2.13, each deployed policy referenced a distinct subject. When

the last policy was added, it too referenced a distinct subject; therefore, it would have to

be compared against each deployed policy to establish a relationship pattern. This case

represents the worst case performance of the algorithm, speci�cally when the number of

nodes generated approaches the total number of policies in the repository.

6.4 Case Study Analysis

In order to illustrate the impact that the performance enhancements have on a realistic

deployment of policies, a case study based on a set of network level �rewall �ltering policies

is described. The reduction in comparisons required to associate a new policy to currently

deployed policies is investigated. This is compared to a pair-wise (i.e O(n)) approach, which

6.4. Case Study Analysis 180

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

Policy to Node Ratio

P
e

rc
e

n
ta

g
e

 R
e

d
u

c
ti

o
n

 i
n

 C
o

m
p

a
ri

s
o

n
s

Uniform
Distributions

Exponential
Distributions

Figure 6.4: Node to policy ration.

is required for inter- and intra-device policy con�ict analysis. The process is repeated for

each policy to produce a set of data points indicating the average reduction in comparisons

for this scenario. For the case study analysis, the policies were very speci�c and could not

simply be randomly generated. In this case each policy was de�ned at the policy authoring

GUI.

The network topology is depicted in �gure 6.5. The network is made up of an internet

service provider (ISP) that is connected to the wider Internet. This ISP is contracted

to serve four corporate customers. It is the task of the ISP to con�gure edge routers

denoted by the letters A, B, C and D, which are located on the customers premises.

Therefore, the ISP has total administrative control over the network. Each customer has

di�erent connectivity requirements based on their SLA and these requirements are realised

by di�erent �rewall �ltering policies deployed on the respective edge routers. The router

denoted by E is an edge router on the core of the ISP network. A complete list of the

�rewall policies are detailed in the Appendix chapter. There are 57 policies de�ned in total

across all the routers considered.

The business agreements represented by each customer's SLA with the ISP dictate

6.4. Case Study Analysis 181

Internet

A

B

C

D

E

Figure 6.5: Case study network topology.

the behaviour of the �rewall con�gured on the customer premise equipment (CPE). The

network administrator uses the policy con�ict analysis algorithm as presented in chapter

4 to analyse the policies for a set of con�ict types. The information model of the network

is extended so that inter-router policy con�icts can be discovered. The policy relationship

matrix is designed to consider the following relationships that can be ascertained between

two �rewall policies for this application:

• Between the targets of the policies (i.e., the router interfaces that policies are deployed

to)

� Equality is only considered, as each policy is de�ned to be deployed on a single

router interface

• Between the conditions of the policies (i.e., the rules over the IP packet header

information)

� Equality, subset, superset and correlation must all be considered

• Between the actions of policies (i.e., the action to be taken on the IP packet)

� Equality, as there are only two types of actions considered - forward and drop

When a new candidate policy is being added to any of the router interfaces, it must be

analysed for con�ict against currently deployed policies. The rules and ontologies as de�ned

6.4. Case Study Analysis 182

A.1

A.12

A.11

A.10

A.9

A.8

A.7

A.6

A.5

A.4

A.3

A.2

Subset/Superset

Relationship

Figure 6.6: Condition tree for �rewall policies for ISP A.

in chapter 5, can aid in guiding the policy analysis to �rst detect for con�icts on the same

target device to which the policy is being added and then analyse the policies on other

routers. For this application, no matter what order the policies are analysed, all policies

still need to be processed through the policy selection algorithm. A candidate policy

must carry out six distinct computations with a deployed policy to establish a relationship

matrix. One relationship exists between policy targets, four between policy conditions

and one between policy actions. There is no need to establish a relationship between the

policy subject components, as they are assumed to be identical across all policies for this

case study. There is also no need to establish a relationship between the policy event

components as there is only a single type of policy event for this case study (i.e., IP packet

received). The total number of relationship computations is thus 57 policies times 6, which

is 342, assuming that no leveraging of previous relationships is used. Therefore, to reduce

the number of comparisons the administrator invokes the use of the tree based approach

presented in this chapter to leverage historical information about previous policy con�ict

analysis comparisons.

The tree formed to represent condition relationships established from all policies associ-

6.4. Case Study Analysis 183

B.1

B.11

B.10

B.9B.8B.7

B.6

B.5

B.4

B.3

B.2

Subset/Superset

Relationship

B.12

A.1

A.11

A.10

A.9

A.8A.7

A.6

A.5

A.4

A.3

A.2

A.12 B.14

B.13

Equality

Relationship

Figure 6.7: Tree created from ISP A and ISP B.

ated to the CPE of ISP A is depicted in �gure 6.6. This tree can represent the relationships

of subset, superset and equality. There are no equality relationships established for this

policy component type, so none are depicted in the �gure.

As there is a single common target for all the policies on the CPE for ISP A, there is only

a single node produced in the �policy targets� tree, and each policy is associated with this

node. The �policy actions� tree contains only two nodes; a node representing those policies

that forward IP packets and those that drop IP packets. Similar trees are constructed

from the addition of policies to the other CPE routers and the NP (network provider)

edge router. Figure 6.7 depicts the combination of trees resulting from the analysis of the

condition components of the �rewall policies associated to the CPE for ISP B.

After all policies have been analysed and the relevant trees for each component type

have been created, the number of comparisons required to add a new candidate policy

to one of the routers is examined. Note that as the deployed policies were added, the

network administrator followed the policy authoring process, which took advantage of

the e�ciencies introduced in this chapter. To illustrate the savings in computation in

comparison to a fully search, a new candidate policy is analysed; however, the savings

6.4. Case Study Analysis 184

in computational complexity would have been observed as each of the existing deployed

policies were added.

As calculated earlier, the total number of comparisons required for establishing a rela-

tionship between a candidate policy and all existing deployed policies is 342. The network

administrator wishes to add a new policy to the CPE of B which will allow VoD tra�c on

the network; the policy added is:

B.x 64.10.32.0/19 * * 2000 TCP Forward

To establish a relationship concerning the policy target, the policy is inserted into the

�policy targets� tree. As there are only �ve potential policy targets, there are at most

�ve comparisons. In this case, there is actually only one comparison. This is because the

trees' nodes are sorted in order of decreasing size, and the node referring to the CPE of

ISP B has the most policies. Next, the policy is inserted into the �policy conditions� tree.

The �rst node contains a reference to �ve equal policies, namely A.12, B.14, C.12, D.12

and E.7. The condition component of the candidate policy needs only to be related to

one of these policies condition components in order to establish a relationship with all �ve

policies. The comparison establishes that a subset/superset relationship exists. The next

largest child node is then queried, which is the node that contains policy B.12, as it is has a

superset relationship with twelve policies. The computation establishes that no condition

relationship exists between these policies and so eliminates these thirteen policies from

consideration. The next node references B.2, which has a subset/superset relationship

with one other policy. The computation establishes that the condition of the candidate

policy is not related by a subset/superset relationship to the deployed policy B.2. The

candidate policy is correlated with B.2 but not correlated with B.1. The computations

continue; subsequently, six further policies are pruned form the tree. The pruned policies

are C.1, C.3, C.5, D.1, D.3, D.5, because the analysis process was able to establish that

no relationships existed between those policies �superset� members and inferred that no

relationship could exist with the �subset� policies.

To establish relationships between the action component of the candidate policy and

the deployed policies, the candidate policy is inserted into the �policy actions� tree. As

there are only two types of distinct actions, there are only two nodes in the tree. There

are 32 policies in the �rst node of the tree, all these nodes are equal with respect to

their actions, since all of these policies enforce the same tra�c forwarding action. The

6.5. Summary and Discussion 185

Table 6.4: Reduction in comparisons for �rewall case study.
Relationship Type Comp. Before Comp. After Reduction

Target Equality 57 1 98.2%
Condition Equality 57 33 42.1%
Condition Subset 57 33 42.1%
Condition Superset 57 32 48%

Condition Correlation 57 32 48%
Action Equality 57 1 98.2%

Total No. Comparisons 342 132 61.4%

other node in the tree has 27 policies that are all related, since they all enforce the same

tra�c dropping action. The candidate policy only needs to perform a single comparison

to determine if it is related to all existing policies via the �policy actions� tree.

The total number of comparisons required by the candidate policy concerning estab-

lishing condition relationships was 130. The total number of comparisons required was

132, illustrating that establishing relationships between conditions is relatively complex.

The total reduction in the number of comparisons required overall was 61.4%, which is a

signi�cant reduction in computational complexity.

The next step is to detect policy con�icts among the policies. This step involved tracing

through the established trees for each policy component and discovering if a speci�c set

of relationship types exist between the new candidate policy and the deployed policies.

The speci�c set of relationship is provided in the con�ict matrix as discussed in chapter 4.

To further validate the approach, another experiment was carried out, where each policy

played the role of candidate and was compared against all the other deployed policies. In

total there were 57 runs. For each run of the experiment a di�erent policy was selected

to be the candidate policy. This experiment produced the following results as depicted in

�gure 6.8. The results illustrate that the average reduction in comparisons is a 59.5 %,

with a standard deviation of 8.8%. This is depicted in the �gure by the solid vertical line

(average) and the dashed lines (standard deviation), and again is a signi�cant reduction

in computational complexity.

6.5 Summary and Discussion

An e�cient policy selection process that uses a lopsided tree to maintain the history of

policy relationships for each policy component type was presented. The policy authoring

process can leverage the tree data structure to introduce signi�cant performance enhance-

6.5. Summary and Discussion 186

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80 90 100

Percentage Reduction in Comparisons (%)

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y
 F

u
n

c
ti

o
n

Figure 6.8: Probability density function of percentage reductions in comparisons.

ments by reducing the required number of policies that are need to analysed for potential

con�ict by the con�ict analysis algorithm.

The potential bene�ts of using the approach in comparison to traditional pair-wise com-

parison was demonstrated. Sensitivity analysis of node count, and node size distribution

yielded a set of results illustrating the potential reduction in computational complexity

that this enhancement o�ers against policy sets with varying characteristics. It is assumed

that the range of characteristics of policy sets tested can be aligned with the varying

characteristics of di�erent levels of the policy continuum. In this light, the experiments

presented are designed to demonstrate the applicability of the approach to a range of policy

continuum level types, where speci�c performance gains for particular policy continuum

level types can be expected to be between the extremes presented. The results presented

in this chapter are equally applicable to the extended algorithm as presented in chapter

5 when an extra column is used to represent ontological relationships. The integration of

the selection process described in chpater 5 and the enhancement presented in this chapter

are discussed. Selection rules are used to limit the number of policies that need to be

considered for policy con�ict and the policy trees are used to e�ciently establish the re-

6.5. Summary and Discussion 187

lationships as required in the policy relationship matrix, for equality, subset and superset

for each policy component type.

Research question 4, as presented in chapter 1, asks �How can processes and algorithms

developed for policy authoring and policy con�ict analysis be developed so that they are

made e�cient when large numbers of policies are being considered? �. The work presented

in this chapter addressed this question by incorporating the use of lopsided trees to aid in

the re-use of historical information towards reducing the runtime complexity of the policy

selection algorithm.

Chapter 7

Conclusion and Future Work

This thesis presented a contribution to the research area of policy based network man-

agement, speci�cally to progress upon the methods currently used for policy authoring

and con�ict analysis for the policy continuum. Chapter 2 discussed work related to net-

work management approaches, along with the use of information modelling in network

and distributed systems management. This motivated the use of the policy continuum in

this work. From examining the shortcommings of the current state of the art in policy

based management, the requirements of the research carried out in this thesis were then

presented. Chapter 3 presented a formal model of the policy continuum as well as an

associated policy authoring process, required to de�nitively outline how policy modi�ca-

tions should be dealt with within the policy continuum. This thesis focused primarily on

policy con�ict analysis algorithm presented in chapter 4. The con�ict analysis algorithm

is designed to harness the knowledge embodied in an information model. Harnessing the

information model allows for the development of a �exible policy con�ict analysis algo-

rithm, that is designed to be independent of the application which is being managed by

policies. Chapter 5 describes how the con�ict analysis algorithm is enhanced through the

use of ontologies to create a policy selection process that can be used to determine a subset

of deployed policies that need to be analysed against a new candidate policy for con�ict.

Chapter 6 presented a further enhancement to the policy selection process making it more

e�cient. This enhancement makes use of a specialised data structure to leverage historical

policy analysis information.

The hypothesis of this thesis is that by leveraging semantic models (information models

and ontologies) that have been enriched with application speci�c information, then policy

con�ict analysis and policy selection processes can be developed for use speci�cally with

188

7.1. Appraisal of the Thesis 189

policies deployed as a policy continuum, agnostic to the application of the policies. The

hypothesis lead to the development and examination of the new algorithms for policy

con�ict analysis and policy selection for the policy continuum.

7.1 Appraisal of the Thesis

To place this research in context, the requirements for the research are now reviewed

as presented in chapter 2. In that chapter, current policy based management processes

were discussed. This highlighted a lack in the ability of current policy based management

processes to cope with policies de�ned as a policy continuum. At a minimum, the policy

continuum requires the integration of policy veri�cation, policy con�ict analysis and policy

re�nement processes in order to be e�ectively utilised. The proposed policy authoring

process focused on de�ning a way of integrating the above listed processes. However, the

main contribution of the thesis is the policy con�ict analysis algorithm and its enhancement

to leverage existing semantic models to aid in policy selection and de�ning criteria for

con�ict in an application independent way.

The advantages of the presented approach to policy analysis are as follows:

• Flexiblity

The con�ict analysis approach presented in this thesis is �exible, as the policy con�ict

matrix used in this approach is separate from the con�ict analysis algorithm. The

con�ict analysis algorithm can be extended to de�ne the requirements for de�ning

con�icts for di�erent applications being managed with policies. The policy relation-

ship matrix is also de�ned per application; therefore, relationships that can exist

between speci�c policy component types can be de�ned per application.

Information concerning the entities and relationships that exist in a communications

network are separated into an information model and associated sets of ontologies.

This enables the same con�ict analysis algorithm to be re-used to maintain the con-

sistency of policies for arbitrary applications, as application information is de�ned

by the information model and associated ontologies. To support new applications,

the information model and ontologies can be readily extended.

• E�cient

The approach presented in this thesis is e�cient, as the policy selection algorithm can

7.1. Appraisal of the Thesis 190

leverage: 1) ontologies that represent selection rules, which can be used to restrict

the number of deployed policies that need to be analysed for con�ict; 2) historical

information that is stored from the result of the analysis of previously added (or

modi�ed) policies is re-used to aid in the elimination of remaining deployed policies

that need to be considered for con�ict analysis.

The above described advantages have been highlighted as essential from the detailed discus-

sion of current approaches from chapter 2. The presented work meets the requirements set

out to improve PBNM solutions designed to manage large scale communications networks.

The research questions as presented in chapter 1 are now reviewed.

1. How can a policy authoring process be de�ned that incorporates policy con�ict anal-

ysis, which is speci�cally targeted at multiple constituencies of policy authors?

This question is addressed in chapter 3, where a formal policy authoring process is

presented that describes in detail the interaction of multiple policy authors, each

authoring policies at di�erent levels of the policy continuum.

2. What processes and algorithms need to be developed so that existing knowledge bases

can be harnessed to aid the policy authoring and policy con�ict analysis processes?

The algorithms developed in this thesis for policy con�ict analysis, and policy se-

lection using selection rules and policy trees, make use of query processes to access

the knowledge embodied in the information models and ontologies. The algorithms

assume a well de�ned interface to the semantic models is available and this interface

is integrated into the speci�cation of the algorithms. The interface to the information

model is presented in chapter 3, and the use of this interface is part of the algorithms

and processes speci�ed in chapters 4, 5, and 6.

3. How can a policy con�ict analysis process be developed that is independent of the

nature of the policies?

This question is addressed in chapter 4, where a policy con�ict analysis algorithm

is presented that makes extensive use of information models as a method of sub-

stantially reducing the reliance on knowing the nature of policies prior to con�ict

analysis. This is achieved by separating the analysis of policies into two phases.

The �rst phase establishes a policy relationship matrix between two policies, and the

second phase compares the relationship matrix to a con�ict signature matrix that

7.1. Appraisal of the Thesis 191

is de�ned speci�cally for an application which describes the criteria for a potential

con�ict in the context of that application. Multiple con�ict signature matrices can be

described and a process of extending the information model to realise these con�ict

signature matrices is presented.

4. How can processes and algorithms developed for policy authoring and policy con�ict

analysis be developed so that they are made e�cient when large numbers of policies

are being considered?

This question is addressed in chapters 5 and 6, where policy selection algorithms are

integrated with the policy con�ict analysis algorithm. In chapter 5, ontologies are

used to enhance the semantic information available to the con�ict analysis algorithm

so that informed decisions can be made when determining those deployed policies

that require more detailed con�ict analysis. Selection rules are encoded into the

ontologies and an algorithm is de�ned to query and make use of these selection rules

in the retrieval of deployed policies for con�ict analysis. In chapter 6, the relationships

that are established between two policies as part of the con�ict analysis algorithm are

analysed and maintained in lopsided policy trees. These policy trees are then used

to signi�cantly improve the e�ciency of the determining those policies that must be

analysed for potential policy con�ict.

There are shortcomings to the approach taken in this thesis that will be addressed in

future research, speci�cally:

Complex component relationships. The relationships that can be ascertained be-

tween two policies via a speci�c policy component type for use in the policy relationship

matrix are limited, from the perspective of this thesis. For example, when relating the

subject components of two policies, the relationships that can be ascertained are limited

to subset, superset, equality and correlation when only the information model is used.

There are more complex relationship types that are not considered; for example, subjects

can also be related by roles and responsibilities. Ascertaining such relationships would

required the information model to model the associated relationships and devise the com-

putations required to ascertain those relationships. There are a number of policy con�ict

types that require role overlap for a con�ict to occur. Note, however, that the approach of

this thesis is not compromised, as incorporating this feature results in additional columns

to be added to the matrix.

7.2. Future Work 192

Another limitation of the policy relationship matrix is that the condition components of

policies are related in a simpli�ed manner. In reality, relating the condition components of

policies is a complex task (Agrawal et al., 2005). Due to the associated complexity, a simple

condition model was used that was able to represent ranges of values with a limited number

of attributes. Although the simpli�ed condition model can represent temporal conditions

and IP address classi�cation conditions, it can not represent more complex conditional

expressions, with multiple or nested OR statements. Such condition types are used widely

in rule based systems and research on relating rules together in rule-based systems may be

leveraged. For example, the rete algorithm developed by (Forgy, 1982) can analyse a set

of rules and determine relationships between the rules so that an e�cient data structure

can be developed to aid in evaluating the rules at runtime.

Dependency on policy veri�cation and policy re�nement. The authoring process

de�ned in this thesis brings together policy veri�cation, policy con�ict analysis and policy

re�nement. Policy con�ict analysis is the primary focus of this thesis; however, there is an

implied assumption that policy veri�cation and policy re�nement processes are available. In

fact, there are policy veri�cation and policy re�nement processes published in related works,

but they do not follow the model based approach as prescribed in this thesis (Bandara et al.,

2004), (Rubio-Loyola et al., 2005, 2006a,b). The approach presented in this thesis assumes

the availability of fully functioning veri�cation and re�nement processes; however, in the

developed testbed, simpli�ed implementations of policy re�nement and policy veri�cation

were used.

7.2 Future Work

The future research directions are split into three sections. Section 7.2.1 discuss further

possible extensions to the policy con�ict analysis algorithm. Section 7.2.2 suggests ex-

tensions to the policy continuum and associated authoring process, while section 7.2.3

discusses some issues for future related work focusing on other processes for policy based

management.

7.2.1 Extensions to the Policy Con�ict Detection Algorithm

More expressive policy relationships. The policy con�ict analysis algorithm pre-

sented makes some assumptions as to how which types of relationships can be ascertained

7.2. Future Work 193

between two policies. The assumptions are concerned with reducing the complexity as-

sociated to ascertain those relationships. Indeed, research presented by Agrawal et al.

(2005) concerning policy rati�cation highlights the associated complexity in establishing

relationships between the conditional components of policies. Although their research is

not totally concerned with policy con�ict analysis, the types of relationships their approach

can establish between policies should be investigated for adaptation into the algorithm for

con�ict analysis presented in this thesis.

Other research, conducted by Lin et al. (2007), discusses the complexity associated

to establishing a similarity factor between two policies. They present an algorithm that

can readily establish how similar two policies are, by examining the respective policy

components of each policy. This similarity measure can then be used to guide which policies

require further policy analysis. The similarity measure between policies can be integrated

into the policy relationship matrix and can be described by a new row in the matrix. This

extension to the policy relationship matrix can enable the de�nition of con�icts based on a

similarity measure, making the de�nition of con�ict more �exible especially when a direct

comparison may be di�cult if the policies are de�ned in di�erent policy languages.

Higher order analysis. The presented con�ict analysis algorithm compares policies two

at a time. However, an individual policy may con�ict with no other individual policies,

but instead con�ict with the combined e�ect of a set of deployed policies. For example,

a �rewall policy A may be correlated with a preceeding policy B and another preceeding

policy C. Con�ict analysis between policies A and B may not yield a con�ict, and analysis

between A and C may also not yield a con�ict. However, it is possible that the combined

a�ect of policies B and C may completely cover policy A, this shadowing the policy and

causing a con�ict. The underlying complexity in this case is that in order to detect such

a con�ict, the candidate policy must be analysed against each deployed policy as well as

analysed against sets of deployed policies. A possible approach may be to extend the

dimensions of the policy matrix to consider relationships between sets of deployed policies.

7.2.2 Extensions to the Policy Continuum Authoring Process

Runtime analysis. The policy analysis processes are currently intended for use in an

o�ine environment, where all con�icts and re�nements are processed and analysed before

7.2. Future Work 194

they are fully deployed. An obvious extension to the policy analysis processes is to adapt

them for runtime environments. The added �exibility of runtime analysis is that policies

can be modi�ed while the system is being managed at runtime.

Other policy authoring related processes. This thesis focused speci�cally on the

algorithms for policy con�ict analysis and policy selection. Other related processes that

need to be further researched to realise policy based management using a policy continuum

include policy re�nement, policy veri�cation/validation, policy transformation and policy

optimisation. These processes are depicted in �gure 7.1. Policy re�nement and policy

veri�cation/validation have been integrated into the policy authoring process in this thesis,

but more research is required to realise these processes for use with the formalised policy

continuum model. Policy transformation is concerned with translating a policy from one

policy language into an equivalent policy or set of policies in another policy language.

Realising policy transformation will require the use of ontologies to aid in translating

between the terms and concepts used within each policy language. There has been works

published in this area, most notably by Kaviani et al. (2007a).

7.2.3 Related Fields of Research

Maximising the use of policy relationships. The policy relationship matrix pre-

sented in this thesis provides a lot more information about how two policies are related

and can be used for more than just indicating if the policies potentially con�ict. For

example, the relationship matrix may be used as part of algorithms to ascertain if one

policy can be replaced by another or if two policies can be combined. Algorithms can be

developed to aid in the analysis of policies for reduncancy and coverage checking which is

an emerging area in policy based management as presented by Verlaenen et al. (2007a),

who propose that the relationships between policies can indicate more than just policy

con�icts. They use the results of analysing policies to perform consistency checks to en-

sure that the policies can operate e�ectively. In the context of the policy continuum, the

type of relationships between policies is more complex as a policy at one level can have

multiple links to policies at a higher or lower level. Thus the policy relationship matrix

can be used to examine the complexity of the relationships between levels of the policy

continuum. Complex relationships between the levels of the policy continuum may make

policy authoring di�cult and evaluating such complexity can lead to the development of

7.2. Future Work 195

Management Interfaces

Policy Conflict

Detection

Policy Selection

Policy Authoring

Policy Refinement

Policy Verification /

Validation

Policy

Transformation

Policy Optimisation

Figure 7.1: Singly administered domain challenges.

7.2. Future Work 196

algorithms to alleviate this.

Extending the use of ontologies. The use of ontologies as presented in this thesis is

limited to describing semantic relationships between policies to aid in policy con�ict anal-

ysis and policy selection algorithms. However, there are additional uses of ontologies that

may aid in the delivery of policy based management solutions. Ontologies can aid in the

deployment of policies, the re�nement of policies and the negotiation of policies. In these

approaches, a process known as ontology mapping can be leveraged to integrate between

two di�erent ontologies. Augmenting the information model with associated ontologies

provides a starting point for the potential semantic integration of disparate information

models, which will aid in establishing distributed policy based management solutions. Van

der Meer et al. (2005) investigated the use of ontologies to aid in policy mobility, where

ontologies aid in using policies between management domains. As presented by Verlaenen

et al. (2007a) and Lin et al. (2007), ontologies can be used extensively in other policy based

management processes, such as similarity matching between policies and the integration

of policy languages.

Use of data-mining techniques. Data-mining techniques look for hidden relationships

within large volumes of data (Han and Kamber, 2001). Policies for large scale communi-

cations networks certainly occur in high numbers. Data-mining of large policy repositories

may o�er more substantial analysis capabilities over and above pair-wise policy analysis.

For example, data-mining of policy repositories may yield information pertaining to im-

plicitly chained policies, where one policy may be triggered by another policy in a chain. A

potential anomaly is that the cumulative e�ect of the chained policies may lead to con�ict,

whereas each separate policy, when analysed, will not reveal a con�ict. These so called pol-

icy chains are extremely di�cult to detect, but data-mining techniques may be part of the

solution. Golnabi et al. (2006) investigates the use data mining techniques to analysis sets

of �rewall rules for anomalies; their results illustrate that data mining is a viable approach

to policy con�ict analysis of �rewall policies. Further research can expand the use of data

mining techniques to aid in the analysis of policies in more general policy applications.

Policy based management for multiple administrative domains. An interesting

challenge, that has yet to be resolved concerning the policy continuum, is the challenges

associated to the use of policies to orchestrate management across multiple domain bound-

7.2. Future Work 197

aries. This may also be referred to as inter-domain PBM. Currently inter domain man-

agement of policies is limited to areas of low level network management such as routing

and quality of service management. Negotiation of policies across management domains

should be incorporated into related processes for the policy continuum. This is required

because policies can be related to each other across administrative domain boundaries and

this relationship should be propagated from higher level policies.

When two distinct policy domains, for example two ISPs, need to coordinate the de-

ployment of policies, the negotiation of policy is required. Such a coordination would be

required to enable ISPs to managed their SLAs with partner ISPs. One method would

be to make agreements o�ine and establish the policies before they are deployed. An

alternative approach is the dynamic creation and negotiation of policies, which reduces

management overhead and speeds up the deployment of services. Policy con�ict analysis

from this perspective is increasingly important, automated negotiation of policies is re-

quired. Some important issues are raised, including, how to interpret policies de�ned in

di�erent policy languages (inter domain policy transformation) and with di�erent infor-

mation models in mind. Another issue is how to detect con�ict between distributed policy

bases, a part of the problem is the selection of policies across domain boundaries where

access may be restricted, or there may be security issues to consider. Future research will

need to solve these problems to enable inter-domain policy based management, as depicted

in �gure 7.2.

Emerging application areas. Cognitive radio networks are radio networks that op-

portunistically manage spectrum in a way that maximises the utilisation of the various

spectrum bands available for radio communications (Ghaseml and Sousa, 2008). The re-

quirements of cognitive radio networks demand systems that can dynamically adapt the

behaviour of spectrum management. Policy based management may be well suited to this

application (Strassner, 2007c). The policy continuum can aid in representing the behaviour

of the cognitive radio networks and the associated processes can be used to provide e�ective

solutions to the problem.

The goal of autonomic network management as described by Jennings et al. (2007) is

to realise a management system that can abstract the complexity associated with low level

network management tasks. A potential avenue of research in this regard is that of policy

based bio-inspired algorithms as presented by Balasubramaniam et al. (2008), who inves-

7.2. Future Work 198

Policy Conflict

Detection

Policy Selection

Policy Authoring

Policy Refinement

Policy Verification /

Validation

Policy

Transformation

Policy Optimisation

Policy Conflict

Detection

Policy Selection

Policy Authoring

Policy Refinement

Policy Verification /

Validation

Policy

Transformation

Policy Optimisation

Interdomain Policy

Selection

Policy Negotiation

Interdomain Policy

Conflict Detection

Interdomain Policy

Transformation

Interdomain Policy

Refinement

Information Model B
Information Model A

Figure 7.2: Multi-administered domain challenges.

tigate the use of policy to managed the behaviour of bio-inspired routing and bandwidth

allocation algorithms. The analysis of con�icts between the di�erent con�gurations of

these algorithms has yet to be investigated. The DEN-ng policy information model holds

signi�cant potential to be used in the above emerging application areas. Research into

extending the DEN-ng information model has been carried out by Strassner et al. (2008).

In that paper a new policy information model is presented that can be used speci�cally for

use in cognitive radio networks and in autonomic communications networks.

Bibliography

Abedin, M., Nessa, S., Khan, L. and Thuraisingham, B. (2006), `Detection and Resolution

of Anomalies in Firewall Policy Rules', in Proc. of the 20th Annual IFIP WG 11.3 Working

Conference on Data and Applications Security , pp. 15�29.

Agrawal, D., Giles, J., Lee, K.-W. and Lobo, J. (2005), `Policy Rati�cation', in Proc. of

the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks,

(Policy 2005) , pp. 223�232.

Al-Shaer, E. and Hamed, H. (2003), `Firewall policy advisor for anomaly detection and

rule editing', in Proc. of the Eight IEEE/IFIP International Symposium on Integrated

Network Management, (IM 2003) , pp. 17�30.

Al-Shaer, E. and Hamed, H. (2004a), `Discovery of Policy anomalies in Distributed

Firewalls', in Proc. of the 23rd Conf. IEEE Communications Soc. (INFOCOM 2004)

, pp. 2605�2616.

Al-Shaer, E. and Hamed, H. (2004b), `Modeling and Management of Firewall Policies',

IEEE Transactions on Network and Service Management 1(1), pp. 2�10.

Al-Shaer, E., Hamed, H., Boutaba, R. and Hasan, M. (2005), `Con�ict classi�cation and

analysis of distributed �rewall policies', IEEE Journal on Selected Areas in Communica-

tions, JSAC 23(10), pp 2069�2084.

AndroMDA (2008), `Andromda.org - home'. http://www.andromda.org/ available

12/9/2008.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. and Patel-Schneider, P. (2007),

`The description logic handbook: theory, implementation, and applications', Cambridge

University Press .

199

Bibliography 200

Bajaj et al. (2006), `Web Service Policy Framework (WS-Policy)'

http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf available 12/09/2008

Balasubramaniam, S., Botvich, D., Jennings, B., Davy, S., Donnelly, W. and Strassner,

J. (2008), `Policy-constrained bio-inspired processes for autonomic route management',

Elsevier Computer Networks Special Issue on Autonomic and Self-organising Systems,

(COMNET, 2008) .

Baliosian, J. and Serrat, J. (2004), `Finite State Transducers for Policy Evaluation and

Con�ict Resolution', in Proc. of the Fifth IEEE International Workshop on Policies for

Distributed Systems and Networks, (Policy 2004) , pp. 250�259.

Bandara, A. K., Lupu, E. C. and Russo, A. (2003), `Using Event Calculus to formalize

policy speci�cation and analysis', in Proc. of the 4th IEEE Workshop on Policies for

Distributed Systems and Networks, (Policy 2004) , pp. 1�14.

Bandara et al. (2004), `A Goal-based Approach to Policy Re�nement', in Proc. of the

Fifth IEEE International Workshop on Policies for Distributed Systems and Networks,

(Policy 2004) , pp. 229�239.

Bandara et al. (2006a), `Policy Re�nement for IP Di�erentiated Services Quality of Service

Management', IEEE eTransactions on Network and Service Management, TNSM 3(2), pp

2�13.

Bandara et al. (2006b), `Using Argumentation Logic for Firewall Policy Speci�cation and

Analysis', in Proc. of the 17th IFIP/IEEE Distributed Systems: Operations and Manage-

ment, (DSOM, 2006) , pp. 185�196.

Barrett et al. (2007), `A Model Based Approach for Policy Tool Generation and Policy

Analysis', in Proc. IEEE Global Information Infrastructure Symposium, (GIIS 2007) ,

pp. 99�105.

Bell, D. and LaPadula, L. (1973), `Secure computer systems: Mathematical foundations',

Technical Report esd-tr-278, MITRE Corporation.

Bjorner, D. and Jones, C. (1978), The Vienna Development Method: The Meta-Language,

Springer-Verlag London, UK.

Boyle, J., Cohen, R., Herzog, S., Rajan, R., Sastry, A. and Durham, D. (2000), RFC2748:

The COPS (Common Open Policy Service) Protocol, Technical report.

Bibliography 201

Campbell, G. A. and Turner, K. J. (2007), `Ontologies to Support Call Control Policies',

in Proc. Third Advanced International Conference on Telecommunications, (AICT 2007)

, pp. 18�28.

Chadha, R. (2006), `Beyond the Hype: Policies for Military Network Operations', in

Proc. International Conference on Systems and Networks Communication, (ICSN 2006)

, pp. 38�42.

Charalambides, M., Flegkas, P., Pavlou, G., Bandara, A., Lupu, E., Russo, A., Dulay,

N., Sloman, M. and Rubio-Loyola, J. (2005), `Policy con�ict analysis for quality of ser-

vice management', in Proc. of the Sixth IEEE International Workshop on Policies for

Distributed Systems and Networks, (Policy 2005) , pp. 99�108.

Charalambides, M., Flegkas, P., Pavlou, G., Rubio-Loyola, J., Bandara, A., Lupu, E.,

Russo, A., Sloman, M. and Dulay, N. (2006), `Dynamic Policy Analysis and Con�ict

Resolution for Di�Serv Quality of Service Management', in Proc. of the 10th IEEE/IFIP

Network Operations and Management Symposium, (NOMS 2006) , pp. 294�304.

Chomicki, J., Lobo, J. and Naqvi, S. (2000), `A Logic Programming Approach to Con-

�ict Resolution in Policy Management', in Proc. Ninth International Conference of the

Principles of Knowledge Representation and Reasoning, (KR 2000) , pp. 121�132.

Chomicki, J., Lobo, J. and Naqvi, S. (2003), `Con�ict Resolution Using Logic Program-

ming', IEEE Transactions on Knowledge and Data Engineering, (TKDE 2003), pp. 244�

249.

Crane�eld, S. and Purvis, M. (1998), `UML as an Ontology Modelling Language', in

Proc. of the 16th International Joint Conference on Arti�cial Intelligence Workshop on

Intelligent Information Integration, (IJCAI 99) .

Cridlig, V., State, R. and Festor, O. (2007), `A model for checking consistency in access

control policies for network management', in Proc. of the 10th IFIP/IEEE International

Symposium on Integrated Network Management, (IM 2007) , pp. 11�19.

Damianou, N., Dulay, N., Lupu, E. and Sloman, M. (2001), `The Ponder Policy Spec-

i�cation Language', in Proc. of the International Workshop on Policies for Distributed

Systems and Networks, (Policy 2001) , pp. 18�38.

Bibliography 202

Davy, S., Jennings, B. and Strassner, J. (2007), `The Policy Continuum - A Formal

Model', in Proc. of the 2nd IEEE International Workshop on Modelling Autonomic Com-

munications Environments, (MACE 2007) , pp. 65�79.

Davy, S., Jennings, B. and Strassner, J. (2008a), `Application Domain Independent Policy

Con�ict Analysis Using Information Models', in Proc. IEEE/IFIP Network Operations

and Management Symposium, (NOMS 2008) , pp. 17�24.

Davy, S., Jennings, B. and Strassner, J. (2008b), `E�cient Policy Con�ict Analysis for

Autonomic Network Management', in Proc. 5th IEEE Workshop on Engineering of Au-

tonomic and Autonomous Systems, (EASe 2008) , pp. 16�24.

Davy, S., Jennings, B. and Strassner, J. (2008c), `The Policy Continuum - Policy Author-

ing and Con�ict Analysis', in Computer Communications (31), (COMCOM 2008) pp.

2981�2995.

Davy, S., Jennings, B. and Strassner, J. (2008d), `Using an Information Model and As-

sociated Ontology for Selection of Policies for Con�ict Analysis', in Proc. of the Ninth

IEEE International Workshop on Policies for Distributed Systems and Networks, (Policy

2008) .

de Albuquerque, J., Krumm, H. and de Geus, P. (2005), `Policy modeling and re�nement

for network security systems', in Proc. of the Sixth IEEE International Workshop on

Policies for Distributed Systems and Networks, (Policy 2005) , pp. 24�33.

de Vergara, J., Villagre, V. and Berrocal, J. (2004), `Applying the Web ontology language

to management information de�nitions', IEEE Communications Magazine 42(7), pp. 68�

74.

Distributed Management Task Force, (2008)`Common Information Model Schema version

2.19'

Drools (2008), `Drools - jboss rules'. http://www.jboss.org/drools/ available 12/09/2008.

Dunlop, N., Indulska, J. and Raymond, K. (2001), `Dynamic Policy Model for Large

Evolving Enterprises', in Proc. of the Fifth IEEE International Enterprise Distributed

Object Computing Conference, (EDOC 2001) , pp. 193�197.

Bibliography 203

Dunlop, N., Indulska, J. and Raymond, K. (2002), `Dynamic con�ict detection in policy-

based management systems', in Proc. of the Sixth IEEE International Enterprise Dis-

tributed Object Computing Conference, (EDOC 2002) , pp. 15�26.

Dunlop, N., Indulska, J. and Raymond, K. (2003), `Methods for con�ict resolution in

policy-based management systems', in Proc. of the Seventh IEEE International Enterprise

Distributed Object Computing Conference, (EDOC 2003) , pp. 98�109.

Eclipse (2008a), `The eclipse modelling framework'.

http://www.eclipse.org/modeling/emf/ available 12/09/2008.

Eclipse (2008b), `The eclipse platform'. http://www.eclipse.org available 12/09/2008.

Fact++ (2008), `OWL : Fact++'. http://owl.man.ac.uk/factplusplus/ available

12/09/2008.

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D. and Chandramouli, R. (2001), `Proposed

NIST standard for role-based access control', ACM Transactions on Information and

System Security, (TISSEC 2001) 4(3), pp. 224�274.

Forgy, C. (1982), `Rete: A fast algorithm for the many pattern/many object pattern

match problem', Arti�cial Intelligence 19(1), pp. 17�37.

FP6 (2008), `Fp6 - research - european commission'. http://ec.europa.eu/research/fp6/

available 12/09/2008.

Friedman-Hill, E. (2008), `Jess, the rule engine for the java platform'.

http://herzberg.ca.sandia.gov/ available 12/09/2008.

Fu, Z. and Strassner, J. (2006), `Access Control and Authentication for Converged Wire-

less Networks', in Proc. Third Annual International Conference on Mobile and Ubiquitous

Systems: Networking and Services, (MOBIQUITOUS 2006) , pp. 1�8.

Fu, Z., Wu, S., Huang, H., Loh, K., Gong, F., Baldine, I. and Xu, C. (2001), `IPSec/VPN

Security Policy: Correctness, Con�ict Detection and Resolution', in Proc. of the IEEE

International Workshop on Policies for Distributed Systems and Networks, (Policy 2001)

, pp. 39-56.

Bibliography 204

Ghaseml, A. and Sousa, E. (2008), `Spectrum Sensing in Cognitive Radio Networks:

Requirements, Challenges and Design Trade-o�s', IEEE Communications Magizine

26(4), pp. 32�39.

Godik, S., Moses, T. et al. (2003), `eXtensible Access Control Markup Lan-

guage (XACML) Version 1.0', OASIS Standard, February http://www.oasis-

open.org/committees/download.php/2406/oasis-xacml-1.0.pdf available 12/09/2008 .

Golnabi, K., Min, R., Khan, L. and Al-Shaer, E. (2006), `Analysis of Firewall Policy Rules

Using Data Mining Techniques', in Proc. of the 10th IEEE/IFIP Network Operations and

Management Symposium, (NOMS, 2006) , pp. 305�315.

Gruber, T. (1993), `A translation approach to portable ontology speci�cations', Knowl-

edge Acquisition 5(2), pp. 199�220.

Hamed, H., Al-Shaer, E. and Marrero, W. (2005), `Modeling and Veri�cation of IPSec and

VPN Security Policies', in Proc. of the 13th IEEE International Conference on Network

Protocols, (ICNP, 2005) , pp. 259�278.

Hamed, H. and Al-Shaer, E. (2006), `Taxonomy of con�icts in network security policies',

IEEE Communications Magazine 44(3), pp. 134�141.

Han and Kamber Jiawei Han and Micheline Kamber (2001), `Data Mining', Morgan

Kaufann ISBN 1558604898.

Hari, A., Suri, S. and Parulkar, G. (2000), `Detecting and resolving packet �lter con�icts',

in Proc of the 19th Annual Joint Conference of the IEEE Computer and Communications

Societies, (INFOCOM, 2000), pp. 1203�1212.

Hegering, H., Abeck, S. and Neumair, B. (1999), Integrated Management of Networked

Systems: Concepts, Architectures, and Their Operational Application, Morgan Kaufmann.

Howes, T. and Smith, M. (1995), `The LDAP Application Program Interface', RFC 1823

.

Lougheed et al. (1991), `A border gateway protocol 3 (bgp-3)' RFC 1267.

Jason et al. (2003), `IPsec Con�guration Policy Information Model', RFC 3585 .

Bibliography 205

Jajodia, S., Samarati, P., Sapino, M. and Subrahmanian, V. (2001), `Flexible support for

multiple access control policies', ACM Transactions on Database Systems, (TODS, 2001)

26(2), pp. 214�260.

Jennings, B., Van Der Meer, S., Balasubramaniam, S., Botvich, D., óFoghlu, M., Don-

nelly, W. and Strassner, J. (2007), `Towards Autonomic Management of Communications

Networks', IEEE Communications Magazine 45(10), pp. 112�121.

JTP (2008), `Java Theorem Prover: An object oriented modular reasoning system'.

http://www.ksl.stanford.edu/software/JTP/ available 12/09/2008.

Jude, M. (2001), `Policy-based Management: Beyond The Hype', Business Communica-

tion Review , pp. 52�56.

Kagal, L., Finin, T. and Joshi, A. (2003), `A Policy Language for a Pervasive Computing

Environment', in Proc. of the 4th IEEE International Workshop on Policies for Distributed

Systems and Networks, (Policy 2003) , pp. 63�74.

Kaviani et al. (2007a), `Exchanging Policies between Web Service Entities using Rule

Languages', in Proc. IEEE Congress in Services, (Services, 2007) , pp. 57�64.

Kaviani et al. (2007b), `Web Rule Languages to Carry Policies', in Proc. of the Eighth

IEEE International Workshop on Policies for Distributed Systems and Networks, (Policy

2007) , pp. 188�192.

Kempter, B. and Danciu, V. (2005), `Generic Policy Con�ict Handling Using a priori

Models', in Proc. of the 16th IFIP/IEEE International Workshop on Distributed Systems:

Operations and Management, (DSOM, 2005) , pp. 84�96.

Kent et al. (1998), `Security architecture for the internet protocol', RFC 2401 .

Kikuchi, S., Tsuchiya, S., Adachi, M. and Katsuyama, T. (2007), `Policy Veri�cation

and Validation Framework Based on Model Checking Approach', in Proc. of the Fourth

International Conference on Autonomic Computing, (ICAC 2007), pp. 1-10 .

Lehtihet, E., Strassner, J., Agoulmine, N. and Fóghlú, M.Ó. (2006), `Ontology-Based

Knowledge Representation for Self-Governing Systems', in Proc. of the 17th IFIP/IEEE

Distributed Systems: Operations and Management, (DSOM 2006) pp. 74�85.

Bibliography 206

Lin, C., Xue, C. and Zhitang, L. (2006), `Analysis And Classi�cation of IPSec Security

Policy Con�icts', in Proc. Japan-China Joint Workshop on Frontier of Computer Science

and Technology, (FCST 2006) , pp. 83�88.

Lin, D., Rao, P., Bertino, E. and Lobo, J. (2007), `An approach to evaluate policy simi-

larity', in Proc. of the 12th ACM symposium on Access control models and technologies,

(SACMAT 2007) , pp. 1�10.

Lobo, J., Bhatia, R. and Naqvi, S. (1999), `A policy description language', in Proc. of the

Sixteenth National Conference on Arti�cial Intelligence, (AAAI 1999) , pp. 291�298.

Lopez de Vergara, J., Villagra, V., Asensio, J. and Berrocal, J. (2003), `Ontologies: giving

semantics to network management models', IEEE Network 17(3), pp. 15�21.

Luck, I., Vogel, S. and Krumm, H. (2002), `Model-based con�guration of VPNs', in Proc.

of the IEEE/IFIP Network Operations and Management Symposium, (NOMS, 2002) ,

pp. 589�602.

Lupu, E. and Sloman, M. (1997), `Con�ict Analysis for Management Policies', in Proc.

of the 5th International Symposium on Integrated Network Management, (IM, 1997) ,

pp. 430�443.

Lupu, E. and Sloman, M. (1999), `Con�icts in Policy-Based Distributed Systems Man-

agement', IEEE Transactions on Software Engineering 25(6), pp. 852�869.

Mo�ett, J. and Sloman, M. (1991), `The Representation of Policies as System Objects', in

Proc. of the Conference on Organisational Computer Systems, (COCS, 1991) 12(2-3), pp.

171�184.

Mo�ett, J. D. and Sloman, M. S. (1993), `Policy Hierarchies for Distributed Systems Man-

agement', IEEE Journal on Selected Areas in Communications, JSAC 11,(9), pp. 1404�

1414.

Mo�ett, J. and Sloman, M. (1994), `Policy Con�ict Analysis in Distributed System Man-

agement', Journal of Organizational Computing 4(1), pp. 1�22.

oAW (2008), `openarchitectureware'. www.openarchitectureware.org avaliable

12/09/2008.

Bibliography 207

OMG (2008), `Uml 2.0 ocl speci�cation'. www.omg.org/docs/ptc/03-10-14.pdf available

12/09/2008.

openArchitectureWare (2008), `Openarchitectureware 4.1 check validation language'.

http://mail.eclipse.org/gmt/oaw/doc/4.1/ available 12/09/2008.

OPNET (2008), `Opnet modeller TM'. http://www.opnet.com available 12/09/2008.

Pellet (2008), `Pellet: The open source owl dl reasoner'. http://pellet.owldl.com available

12/09/2008.

Poseidon (2008), `Poseidon for uml'. http://www.gentleware.com/ available 12/09/2008.

Protégé (2008), `The protégé ontology editor and knowledge acquisition system'.

http://protege.stanford.edu available 12/09/2008.

Racer (2008), `Racer System'. http://www.racer-systems.com available 12/09/2008.

Rational Rose (2003), `Rose enterprise edition'. http://www-

306.ibm.com/software/rational/ available 12/09/2008.

REWERSE (2008), `Rewerse - reasoning on the web'. http://rewerse.net/ available

12/09/2008.

Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G. and Lafuente, A.

(2005), `Using linear temporal model checking for goal-oriented policy re�nement frame-

works', in Proc. of the Sixth IEEE International Workshop on Policies for Distributed

Systems and Networks, (Policy 2005) , pp. 181�190.

Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P. and Pavlou, G. (2006a), `A

Functional Solution for Goal-oriented Policy Re�nement', in Proc. of the Seventh IEEE

International Workshop on Policies for Distributed Systems and Networks, (Policy 2006)

, pp. 133�144.

Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P. and Pavlou, G. (2006b), `A

Methodological Approach towards the Re�nement Problem in Policy-based Management

Systems', IEEE Communications Magazine 44(10) , pp. 60�68.

Russo, A., Miller, R., Nuseibeh, B. and Kramer, J. (2002), `An Abductive Approach for

Analysing Event-Based Requirements Speci�cations', in Proc. of the 18th International

Conference on Logic Programming, (ICLP, 2002) , pp. 22�37.

Bibliography 208

Shankar, C., Ranganathan, A. and Campbell, R. (2005a), `An ECA-P Policy-based

Framework for Managing Ubiquitous Computing Environments', in Proc. of the 2nd An-

nual International Conference on Mobile and Ubiquitous Systems: Networks and Services,

(MOBIQUITOUS, 1999) , pp. 33�44.

Shanahan, M. (1999)`The Event Calculus Explained', Lecture Notes in Computer Science,

LNCS 1600

Snir et al. (2003), `Policy Quality of Service (QoS) Information Model', RFC 3644 .

Strassner, J. (1999), Directory Enabled Networks, Macmillan Technical Publishing. ISBN

1-57870-140-6.

Strassner, J. (2003), Policy-Based Network Management, Morgan Kaufmann. ISBN 1-

55860-859-1.

Strassner, J., Agoulmine, A. and Lehtihet, E. (2006), `FOCALE�A Novel Autonomic

Networking Architecture', in Proc. Latin American Autonomic Computing Symposium,

(LAACS, 2006) .

Strassner, J., Neuman de Souza, J., Raymer, D., Samudrala, S., Davy, S. and Barrett,

K. (2007), `The Design of a New Policy Model to Support Ontology-Driven Reasoning

for Autonomic Networking', in in Proc. 5th Latin American Network Operations and

Management Symposium, (LANOMS, 2007) , pp. 114�125.

Strassner, J. (2007a), `Policy Management and Autonomic Mechanisms for Seamless Mo-

bility Networks and Applications', in Proc. IEEE International Symposium on a World

of Wireless, Mobile and Multimedia Networks, (WoWMoM, 2007) , pp. 1�6.

Strassner, J. (2007b), `The Role of Autonomic Networking in Cognitive Networks', Cog-

nitive Networks : Towards Self-Aware Networks, Chapter 2, John Wiley and Sons, Ltd.,

ISNB: 9780470061961 pp. 23�52.

Strassner, J. (2007c), `Using Autonomic Principles to Manage Converged Services in

Next Generation Networks', in Proc. of the Fourth IEEE International Workshop on

Engineering of Autonomic and Autonomous Systems, (EASe, 2007) , pp. 176�186.

Strassner, J. and Ó Fóghlú, M. and Donnelly, W. and Agoulmine, N. (2007), `Beyond the

Knowledge Plane: An Inference Plane to Support the Next Generation Internet', in Proc.

Bibliography 209

First International of the Global Information Infrastructure Symposium, (GIIS, 2007) ,

pp. 112�119.

Strassner, J. and Menich, B. and Johnson, W. (2007), `Providing Seamless Mobility in

Wireless Networks Using Autonomic Mechanisms', in Proc. First International Confer-

ence on Autonomous Infrastructure, Management and Security, (AIMS, 2007) pp. 121�

130.

Strassner, J. and Raymer, D. and Samudrala, S. (2007), `Providing Seamless Mobility

Using the FOCALE Autonomic Architecture', in Proc. 7th International Next Generation

Teletra�c and Wired/Wireless Advanced Networking Conference, (NEW2AN, 2007) , pp.

330�341.

Strassner et al. (2008), `The design of a novel context-aware policy model to support

machine-based learning and reasoning', accepted for publication in the Special Issue of

LANOMS 2007 in the Journal of Network and Systems Management, JNSM .

Tequila (2002), `TEQUILA : Tra�c Engineering for Quality of Service in the Internet, at

Large Scale'. http://www.ist-tequila.org/ available 12/09/2008.

TMForum (2003), `An Overview of the NGOSS Arhcitecture', TeleManagement Forum

Whitepaper http://www.tmforum.org/browse.aspx?catID=2009linkID=29204docID=2535

available 12/09/2008

TMForum (2004), `Enhanced Telecom Operations Map (eTOM) The Business Process

Framework GB921' http://www.tmforum.org/page35597.aspx available 12/09/2008.

TMForum (2008), `Shared Information / Data (SID) Model', GB922 Addendum, TeleM-

anagement Forum). http://www.tmforum.org available 12/09/2008

Uschold, M. and Gruninger, M. (1996), `Ontologies: principles, methods and applications',

Knowledge Engineering Review 11(2), 93�136.

Uszok, A., Bradshaw, J. M., Je�ers, R., Suri, N., Hayes, P., Breedy, M. R., Bunch, L.,

Johnson, M., Kulkarni, S. and Lot, J. (2003), `KAoS policy and domain services: Toward

a description-logic approach to policy representation, decon�iction, and enforcement', in

Proc. of the 4th IEEE International Workshop on Policies for Distributed Systems and

Networks, (Policy 2003) , pp. 93�96.

Bibliography 210

Van der Meer, S., Jennings, B., O Sullivan, D., Lewis, D. and Agoulmine, N. (2005),

`Ontology based policy mobility for pervasive computing', in Proc. of 12th Workshop of

the HP Open University Association, HP-OVUA , pp. 211�224.

Verlaenen, K., De Win, B. and Joosen, W. (2007), `Policy Analysis Using a Hybrid

Semantic Reasoning Engine', in Proc. Eight IEEE International Workshop on Policies

for Distributed Systems and Networks, (Policy 2007) , pp. 193�200.

Verlaenen, K., Win, B. D. and Joosen, W. (2007), `Towards simpli�ed speci�cation of

policies in di�erent domains', in Proc. 10th IFIP/IEEE International Symposium on In-

tegrated Network Management, (IM, 2007) , pp. 20�29.

Vidales, P., Baliosian, J., Serrat, J., Mapp, G., Stajano, F. and Hopper, A. (2005),

`Autonomic System for Mobility Support in 4G Networks', IEEE Journal on Selected

Areas in Communications, JSAC 23(12), 2288�2304.

W3C (2001), `Daml+oil (march 2001) reference description'.

http://www.w3.org/TR/daml+oil-reference available 12/09/2008.

W3C (2004), `Web ontology language OWL / W3C semantic web activity'.

http://www.w3.org/2004/OWL/ available 12/09/2008.

W3C (2008a), `Sparql query language for RDF'. http://www.w3.org/TR/rdf-sparql-

query/ available 12/09/2008.

W3C (2008b), `SWRL: A semantic web rule language combining OWL and RuleML'.

http://www.w3.org/Submission/SWRL/ available 12/09/2008.

Westerinen et al. (2001), `Terminology for Policy-Based Management', RFC 3198 .

Wies, R. (1995), `Using a Classi�cation of Management Policies for Policy Speci�cation

and Policy Transformation', in Proc. of the 4th Integrated Network Management, (IM,

1995) 4, pp. 44�56.

Wijesekera, D. and Jajodia, S. (2003), `A Propositional Policy Algebra for Access Control',

ACM Transactions on Information and System Security, (TISSEC, 2003) 6(2), pp. 286�

325.

Bibliography 211

Wong, A., Ray, P., Parameswaran, N. and Strassner, J. (2005), `Ontology mapping for

the interoperability problem in network management', IEEE Journal on Selected Areas

in Communications, JSAC 23(10), pp. 2058�2068.

Yang, Y., Martel, C. U. and Wu, S. F. (2007), `CLID: A General Approach to validate

security policies in a dynamic network', in Proc. of the 10th IFIP/IEEE International

Symposium on Integrated Network Management, (IM 2007), pp. 1�10.

Yang, Y., Martel, C. and Wu, S. (2004), `On building the minimum number of tunnels:

an ordered-split approach to manage IPSec/VPN policies', in Proc. of the IEEE/IFIP

Network Operations and Management Symposium, (NOMS 2004), pp. 277�290.

Yavatkar et al. (2000), `A Framework for Policy-based Admission Control', RFC 2753 .

Zhang, C. C., Winslett, M. and Gunter, C. A. (2007), `On the Safety and E�ciency of

Firewall Policy Deployment', in Proc. IEEE Symposium on Security and Privacy, (SP

2007) pp. 33�50.

List of Acronyms

ABox Assertion Box

AF Assured Forwarding

AH Authentication Header

AS Autonomous System

BGP Border Gateway Protocol

CIM Common Information Model

COPS Common Open Policy Service

CPE Customer Premise Equipment

DHCP Dynamic Host Con�guration Protocol

DL Description Logic

DMTF Distributed Management Task Force

DSCP Di�erentiated Services Code Point

DSL Domain Speci�c Language

EC Event Calculus

ECA Event Condition Action

ESP Encapsulated Security Payload

eTom enhanced Telecom Operations Map

FCAPS Fault, Con�guration, Accounting, Performance, Security

212

List of Acronyms 213

FOCALE Foundation, Observation, Comparison, Action, Learning and rEasoning

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Standards Organisation

ISP Internet Service Provider

ITU-T International Telecommunication Union, Telecommunication Standardisation

Sector

LDAP Lightweight Directory Access Protocol

LTL Linear Temporal Logic

Mbps Mega Bits Per Second

MDA Model-Driven Architecture

MDD Model-Driven Development

MIB Management Information Base

MOF Meta Object Facility

NGOSS New Generation Operations Systems and Software

NIST National Institute of Standards and Technology

NP Network Provider

oAW Open Architecture Ware

OCL Object Constraint Language

OMG Object Management Group

OO Object Oriented

List of Acronyms 214

OSI Open Systems Interconnection

OSS Operation Support System

OWL Web Ontology Language

PBNM Policy-Based Network Management

PCIM Policy Core Information Model

PDL Policy Description Language

PDP Policy Decision Point

PEP Policy Enforcement Point

PVP Policy Veri�cation Point

PXP Policy eXecution Point

QoS Quality of Service

RBAC Role Based Access Control

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RFC Request For Comment

RFC Request For Comments

SID Shared Information and Data Model

SMI Structure of Management Information

SNMP Simple Network Management Protocol

STA Subject-Target-Action

SWRL Semantic Web Rule Language

TBox Terminology Box

TMF TMForum

TMN Telecommunications Management Network

List of Acronyms 215

UML Uni�ed Modelling Language

VDM Vienna Development Methodology

VoD Video On Demand

VoIP Voice Over Internet Protocol

VPN Virtual Private Network

W3C World Wide Web Consortium

WS-Policy Web Service Policy

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

Appendix: Firewall Policies

The following policies are associated to the case study as presented in chapter 6, section 6.4

on page 179.

Policies deployed on �rewall device A

No. SourceIP SourcePort DestIP DestPort Proto Action

A.1 64.10.0.0/19 * 64.10.32.0/19 80 TCP Forward

A.2 64.10.0.0/19 * 64.10.32.0/19 * * Drop

A.3 64.10.0.0/19 * 64.10.64.0/18 80 TCP Forward

A.4 64.10.0.0/19 * 60.10.64.0/18 * * Drop

A.5 64.10.0.0/19 * 64.10.128.0/18 80 TCP Forward

A.6 64.10.0.0/19 * 60.10.128.0/18 * * Drop

A.7 64.10.0.0/19 * * 80 TCP Forward

A.8 64.10.0.0/19 * * * ESP Forward

A.9 64.10.0.0/19 * * 5060 TCP Forward

A.10 64.10.0.0/19 * * 21 TCP Drop

A.11 64.10.0.0/19 * * 2000 TCP Drop

A.12 * * * * * Drop

216

Appendix 217

Policies deployed on �rewall device B

No. SourceIP SourcePort DestIP DestPort Proto Action

B.1 64.10.32.0/19 * 64.10.0.0/19 80 TCP Forward

B.2 64.10.32.0/19 * 64.10.0.0/19 * * Drop

B.3 64.10.32.0/19 * 64.10.64.0/18 80 TCP Forward

B.4 64.10.32.0/19 * 64.10.64.0/18 * * Drop

B.5 64.10.32.0/19 * 64.10.128.0/18 80 TCP Forward

B.6 64.10.32.0/19 * 64.10.128.0/18 * * Drop

B.7 64.10.32.0/19 * * 80 TCP Forward

B.8 64.10.32.0/19 * * * ESP Drop

B.9 64.10.32.0/19 * * 5060 TCP Forward

B.10 64.10.32.0/19 * * 21 TCP Forward

B.11 64.10.32.0/19 * * 2000 TCP Drop

B.12 64.10.0.0/19 * * * * Forward

B.13 64.10.0.0/19 * 64.10.32.0/19 80 TCP Forward

B.14 * * * * * Drop

Policies deployed on �rewall device C

No. SourceIP SourcePort DestIP DestPort Proto Action

C.1 64.10.64.0/18 * 64.10.0.0/19 80 TCP Forward

C.2 64.10.64.0/18 * 64.10.0.0/19 * * Drop

C.3 60.10.64.0/18 * 64.10.32.0/19 80 TCP Forward

C.4 64.10.64.0/18 * 60.10.32.0/19 * * Drop

C.5 60.10.64.0/18 * 64.10.128.0/18 80 TCP Forward

C.6 64.10.64.0/18 * 60.10.128.0/18 * * Drop

C.7 64.10.64.0/18 * * 80 TCP Forward

C.8 64.10.64.0/18 * * * ESP Drop

C.9 60.10.64.0/18 * * 5060 TCP Forward

C.10 64.10.64.0/18 * * 21 TCP Forward

C.11 60.10.64.0/18 * * 2000 TCP Drop

C.12 * * * * * Drop

Appendix 218

Policies deployed on �rewall device D

No. SourceIP SourcePort DestIP DestPort Proto Action

D.1 64.10.128.0/18 * 64.10.0.0/19 80 TCP Forward

D.2 64.10.128.0/18 * 64.10.0.0/19 * * Drop

D.3 60.10.128.0/18 * 64.10.32.0/19 80 TCP Forward

D.4 64.10.128.0/18 * 60.10.32.0/19 * * Drop

D.5 64.10.128.0/18 * 64.10.64.0/18 80 TCP Forward

D.6 60.10.128.0/18 * 60.10.64.0/18 * * Drop

D.7 64.10.128.0/18 * * 80 TCP Forward

D.8 64.10.128.0/18 * * * ESP Drop

D.9 64.10.128.0/18 * * 5060 TCP Forward

D.10 64.10.128.0/18 * * 21 TCP Forward

D.11 60.10.128.0/18 * * 2000 TCP Drop

D.12 * * * * * Drop

Policies deployed on �rewall device E

No. SourceIP SourcePort DestIP DestPort Proto Action

E.1 64.10.0.0/18 * 64.10.64.0/18 80 TCP Forward

E.2 64.10.0.0/18 * 64.10.128.0/18 80 TCP Forward

E.3 64.10.64.0/18 * 64.10.0.0/18 80 TCP Forward

E.4 64.10.128.0/18 * 64.10.0.0/18 80 TCP Forward

E.5 64.10.0.0/18 * 64.10.64.0/18 80 TCP Forward

E.6 64.10.0.0/17 * * * * Forward

E.7 * * * * * Drop

219

