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Synchronization and Clustering in a Multimode Quantum Dot Laser
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We analyze experimentally the intensity oscillations of the longitudinal modes of quantum dot
semiconductor lasers. We show that the modal intensities can oscillate chaotically with different average
frequencies, but obey a highly organized antiphase dynamics leading to a constant total output power. The
fluctuations are in the MHz range. We report the first experimental observation of frequency clustering
associated with synchronization. We also observe the propagation of perturbations across the optical

spectrum from blue to red.
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Coupled oscillators exhibit many interesting features
that appear naturally in everyday life [1,2]. Such systems
can be broadly divided into either globally coupled, where
each oscillator is directly influenced by each of the other
oscillators, or locally coupled, where nearest-neighbor in-
teractions dominate. Synchronization occurs in both types
of systems. The appearance of one or more clusters, where
each cluster consists of a subset of synchronized oscilla-
tors, was predicted for globally coupled systems in the
framework of the Kuramoto model [3]. In lasers, synchro-
nization has been harnessed to achieve phase locked arrays
of lasers which deliver high brightness outputs (local cou-
pling) [4] and mode-locked lasers resulting in very short
optical pulses (global coupling). Fundamental studies of
chaotic state locking have also been examined in multi-
mode lasers; e.g., two coupled modes of a ring laser can
exhibit chaotic phase synchronization [5]. Globally
coupled multimode lasers also exhibit antiphase dynamics
[6,7]. Antiphase dynamics was studied theoretically and
experimentally in diverse globally coupled systems such as
Josephson junctions [8], chemical oscillators [9], and ol-
factory systems [10].

The aim of this Letter is to report the first experimental
evidence, to our best knowledge, of clustering effects
associated with synchronization. This was achieved by
analyzing the intensity oscillations of the longitudinal
modes of quantum dot semiconductor lasers. Each laser
has up to 40 longitudinal modes where each lasing mode
displays large amplitude chaotic fluctuations although the
total laser output power remains almost constant. The
fluctuations measured in each mode occur at frequencies
of tens of MHz, which is much smaller than the frequency
difference between two consecutive modes (25 GHz) and
the laser’s relaxation oscillation frequency (>1 GHz).
Modal fluctuations in quantum well lasers at similar fre-
quencies, known as mode partition, have previously been
interpreted as a noise induced phenomenon [11]. However,
our measurements indicate several deterministic features
which cannot be accounted for by such a description. We
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observe that groups of modes may have the same frequency
indicating the appearance of clustering. We also observe
the propagation of perturbations across the optical spec-
trum from blue to red similar to those observed in quantum
well semiconductor lasers [12]. Transient propagation of
waves in the spectrum of a laser was previously observed in
a fiber laser [13]. In the present case the perturbations
consist of chaotic deviations from a mean value as opposed
to the situation with quantum well devices where only one
mode appears at any time. With increasing injection cur-
rent, this propagation becomes more regular and results in
a constant propagation velocity over the measurement
range.

The devices used for this experiment were the same as
reported in [14] and were fabricated using InAs quantum
dot material emitting at 1310 nm [15]. The self-organized
quantum dot active region heterostructure consisted of six
InAs quantum dot layers embedded in quantum well using
DWELL technology. The ground state wavelength of such
structures was around 1310 nm. Single transverse mode
ridge waveguide (3—5 um wide, 0.9 um deep, 1.5 mm
long) index guided lasers were fabricated and operated at
room temperature under dc biasing. The laser operated on
many longitudinal modes, from less than 10 to above 40
depending on the pump current.

To analyze the multimode dynamics in these structures,
a monochromator was used to separate individual longitu-
dinal modes, whose intensity was coupled to a high band-
width detector (Newport AD300, rise time 300 ps). As the
power spectrum exhibited fluctuations at frequencies lower
than 50 MHz, we replaced our high speed detector with a
lower bandwidth amplified InGaAs detector (50 MHz,
Thorlabs PDA255). A typical time trace of an individual
mode is shown in Fig. 1. For a fixed current level, each
mode displayed strong fluctuations (ac/dc standard devia-
tion around 40%), while the total power remained nearly
flat, demonstrating the appearance of antiphase dynamics.
In order to ascertain whether the underlying dynamics is of
a stochastic or deterministic nature, we measured the cor-
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FIG. 1. Example of a chaotic time trace from one longitudinal
mode at 31, recorded on a digital ocsilloscope.

relation dimension [16] as a means to evaluate the fractal
dimension. Usually, low dimensional chaos leads to a frac-
tional value of the correlation dimension between 2 and 3,
while high dimensional chaos or noise leads to much larger
values. In the case of our experiment, the correlation
dimension of the fluctuations in each mode was between
2.8 and 3.3 at 3/, (I, = 40 mA) depending on the mode
number demonstrating the deterministic origin of these
fluctuations. Both the number of longitudinal modes and
the average frequency of fluctuations in each longitudinal
mode increased with injection current. The peak frequency
of fluctuations is between 10 and 30 MHz as shown in
Fig. 2. The most interesting feature of the observed fluc-
tuations is the difference in the power spectra of individual
mode fluctuations. The modes can have either the same or
sufficiently different frequencies of fluctuations, forming
the groups of modes fluctuating at the same frequency and
therefore exhibiting clustering phenomena. It was also
noted that the spread of peak frequencies narrows with
increasing current from 11 MHz (at 37y) to 3 MHz (at
41y,).

As the phase relations between coupled oscillators usu-
ally provide insights about their interaction we measured
the phase difference between each mode and some refer-
ence mode. For nonperiodic signals, the Hilbert transform
is commonly used to extract phase information [17] and
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FIG. 2. Power spectra calculated from the Fourier transforms
of recorded intensity time traces (over 1 ms time span) for a
representative sample of longitudinal modes at (a) 3/ (the
spread is 11 MHz) and (b) 41, (the spread is 3 MHz).

study phase synchronization of chaotic oscillators [18]. In
semiconductor lasers, this technique has been successfully
applied to study the effects of external optical feedback
[19]. In our experiment, a second detector was used to
monitor the output of a reference mode, measured simul-
taneously with one of the lasing modes. For each pair, the
evolution of the Hilbert phase difference with some refer-
ence mode, and the normalized cross-correlation function
were calculated. The use of a reference mode ensured
stable behavior throughout the measurement. This experi-
ment was repeated with different reference modes and the
same results were obtained. The typical evolution of the
Hilbert phases is shown in Fig. 3(a). We note that some
modes have a phase difference with the reference mode
which is bounded while others are unbounded. In addition,
a locking range can be observed in some pairs of bounded
modes indicating the appearance of synchronization as
previously described in [18]. For each mode we calculate
the average frequency as the average time derivative of the
Hilbert phase. In Fig. 3(b), where the average frequency
difference with a reference mode is plotted as a function of
mode number, the formation of clusters can be seen. We
notice that the modes are divided in a subset of clusters,
and in each cluster, all the modes have the same frequency.
A cluster can be composed of modes from different do-
mains of the optical spectrum. This clustering is observed
for a wide parameter range, but the number of clusters and
the number of modes within a cluster can vary with pump-
ing current. As the injection current increases, the number
of modes increases while the frequency spread decreases
indicating a higher degree of synchronization.
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FIG. 3. (a) Hilbert phases for three modes. The reference mode
is plotted with a thin solid line. The difference between the phase
of the reference mode and the phase of the mode plotted with
dotted line is bounded and therefore these modes belong to the
same cluster. The difference between the phase of the reference
mode and the mode plotted with thick solid line is unbounded.
(b) The frequency difference (calculated as the mean of the
derivative of the Hilbert phase difference) between the reference
mode and each remaining mode in the optical spectrum for two
different reference frequencies (mode number 5, open circles;
mode number 10, solid circles). Note that some of the modes
form clusters. For example, the sets of modes (1,19-21) and (6—
8, 11-12, 14-18) each form separate clusters. The error bars
correspond to the standard deviation of the frequency with time
in each case.
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There are too many modes to simultaneously access
their time evolution. Therefore, the cross correlation of
each mode with the reference mode was calculated from
the time series recorded on a digital oscilloscope. In order
to assess the degree of correlation, the absolute value of the
normalized cross correlation was calculated. This quantity
is equal to 1 when the two signals are identical apart from a
time shift. If the two modes are independent, then the
normalized cross correlation is zero. The degree of corre-
lation between the modes remains low, almost constant
across the optical spectrum and increases with increasing
injection current from typically 0.1 near threshold to 0.3 at
high injection current. Such behavior is consistent with the
reduction of spread of frequencies and reflects the in-
creased synchronization of our system. Furthermore, the
time lag corresponding to the maximum correlation with
the reference mode was calculated for all lasing modes.
The results for 3/, and 41, are shown on Fig. 4. At the
lower current, the time lag displays an increase in average
from blue to red over the spectral range with strong devia-
tions from mode to mode [Fig. 4(a)]. At the higher current,
these fluctuations are much reduced and we observe that
the time lag for maximum correlation increases linearly
from mode to mode as shown on Fig. 4(b). The linear
dependence at high currents indicates that the disordered
sequence of switching between the modes becomes more
regular. This behavior is consistent with the increased
synchronization observed in the previous section.

Finally, in order to characterize the chaotic nature of the
observed fluctuations, we measured the correlation dimen-
sion of the modal signals as already discussed in the
introduction. The modes from the central region of the
spectrum have lower values of the correlation dimension,
~2.8, and the modes at the edges have higher values,
~3.3. The trend is similar to the distribution of frequencies
across the spectrum suggesting that the modes from differ-
ent clusters can exhibit different levels of complexity. The
higher correlation dimension corresponds to the modes at
the edges of optical spectrum which have stronger influ-
ence of noise. We link the difference in the calculated
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FIG. 4. Time lag corresponding to the maximum of the corre-
lation function with respect to a fixed reference mode, for each
longitudinal mode at (a) 31, and (b) 41,.

correlation dimensions to the stochastic processes which
govern the appearance of new lasing modes at the edges of
optical spectrum.

These experimental results provide important insights
into the multimode quantum dot laser behavior. As noted in
the introduction, the modal fluctuations characterized in
this Letter occur in the same frequency range as modal
fluctuations observed in quantum well devices and reported
as mode partition noise [11]. However, the observation of a
low correlation dimension, clustering of the oscillation
frequencies and propagation waves in the optical spectrum
indicates the presence of a strong underlying deterministic
mechanism. Indeed, these experimental results should play
an important role in the development of future quantum dot
laser models. The essential features that should be included
are as follows: (i) Globally coupled longitudinal modes can
display antiphase dynamics with nearly complete compen-
sation in the total output; (ii) they can have different
average frequencies of fluctuations; (iii) they may form
clusters; and (iv) they can exhibit ordered perturbation
waves through the modal spectrum.

Previous studies have shown that laser antiphase dynam-
ics of the modal intensities with nearly complete compen-
sation in the total output can be described by a rate
equation model for globally coupled lasing modes [20—
23]. Therefore, we first divide the ensemble of quantum
dots into N groups, where N is the number of lasing modes.
Each group contains the dots with resonant energy for
interband transition corresponding to one of the lasing
modes. We may assume that the complex modal fields
E (1) can be described by rate equations which are globally
coupled to the integrated populations of the dots within the
group 7;(¢). In its simplest version, the model is

dE; _1

C =30 =i@[G ny, Eck=1,...ND = 1JE;, (1)

dnj N
T~ P(1=n;) = n; - Zk:gjk({ne, Eg; €

=1,....,NDIE/? ()

where P is the pump normalized to its threshold value, n =
7./T, is the ratio between the carrier lifetime and the
cavity round trip time, « is the linewidth enhancement
factor,and 1 — n j is the Pauli blocking factor. The modal
gains G;({ny, Ex;k =1,...,N}) and the cross-couplings
coefficients g ({n¢, E;;¢ = 1,..., N}) typically depend
on four-wave mixing processes and inhomogeneous broad-
ening [12,24].

Equations (1) and (2) lead to N relaxation oscillation
frequencies. The largest is practically equal to the usual
single mode relaxation oscillation frequency while all the
others are much smaller and close to each other. The
frequency separation among the oscillating modes is ex-
tremely small compared with the optical frequencies.
Therefore, in a good first approximation, one may assume
that all frequency-dependent parameters are equal. This
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leads to a highly degenerate set of equations which requires
the use of group theoretical tools [7]. This is how the model
was analyzed for solid-state lasers and for bulk and mul-
tiple quantum well semiconductor lasers. As such, the
model accounts for antiphase dynamics of the modal in-
tensities with nearly complete compensation in the total
output. What is particular to quantum dot lasers is that the
modes have different average oscillation frequencies. We
relate this nondegeneracy to the high degree of inhomoge-
neous broadening. Considering a weak coupling between
the modes, Egs. (1) and (2) may be reduced to a set of
globally coupled phase equations which are known to also
display antiphase dynamics [25] and clustering [26].

A critical result for quantum dot laser modeling is the
observation of a selective blue-to-red propagation of the
perturbations. It is important because the degenerate set of
equations derived from Egs. (1) and (2) predicts (N — 1)!
equally probable channels of propagation for the perturba-
tions of N lasing modes [6]. The fact that only one propa-
gation channel is observed implies a spontaneous sym-
metry breaking. Clearly, this channel selection is not re-
lated to the linear gain distribution or other dispersion
features neglected to derive the degenerate rate equations.
This symmetry breaking was recently reported for mul-
tiple quantum well multimode semiconductor lasers [12].
Modeling is more advanced for those lasers and four-wave-
mixing together with a finite « factor could be unambig-
uously assigned as the origin of this selective blue-to-red
propagation mode. The « factor is a global measure of the
phase-amplitude coupling. It characterizes the spectral
asymmetry in the multimode regime. Quantum dot lasers
have a lower «a factor, and each mode has a nearly sym-
metric spectral profile at low current. This symmetry pre-
vents the selection of a unique sequence of switching. As a
result, the distribution of the average phases of the chaotic
signal is disordered as demonstrated by the correlation
measurements in Fig. 4(a). Higher injection currents lead
to an increase in the « factor and the asymmetry of the
modal spectral profile, eventually leading to excited state
lasing [27]. This asymmetry, together with the increase of
the « factor, results in an ordered perturbation wave mov-
ing from the bluest to the reddest mode as in quantum well
lasers.

In conclusion, we have experimentally demonstrated
that for quantum dot semiconductor lasers, the modal out-
put powers display chaotic antiphase oscillations while the
total output power remains constant. These chaotic oscil-
lations, which are in the MHz range and are much lower
than any intrinsic frequencies in the device, exhibit fre-
quency clustering and propagate across the optical
spectrum.
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