The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers

Predrag Rajković, Marko D. Petković, University of Niš, Serbia and Montenegro
Paul Barry
School of Science, Waterford Institute of Technology, Ireland

Abstract

We discuss the properties of the Hankel transformation of a sequence whose elements are the sums of consecutive generalized Catalan numbers and find their values in the closed form.

Mathematics Subject Classification: 11Y55, 34A25
Key words: Catalan numbers, Hankel transform, orthogonal polynomials.

1. Introduction

The Hankel transform of a given sequence $A=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ is the sequence of Hankel determinants $\left\{h_{0}, h_{1}, h_{2}, \ldots\right\}$ (see Layman [7]) where $h_{n}=\left|a_{i+j-2}\right|_{i, j=1}^{n}$, i.e

$$
A=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}} \rightarrow \quad h=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}: \quad h_{n}=\left|\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \tag{1}\\
a_{1} & a_{2} & & a_{n+1} \\
\vdots & & \ddots & \\
a_{n} & a_{n+1} & & a_{2 n}
\end{array}\right|
$$

In this paper, we will consider the sequence of the sums of two adjacent generalized Catalan numbers with parameter L :

$$
\begin{equation*}
a_{0}=L+1, \quad a_{n}=a_{n}(L)=c(n ; L)+c(n+1 ; L) \quad(n \in \mathbb{N}) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
c(n ; L)=T(2 n, n ; L)-T(2 n, n-1 ; L) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
T(n, k ; L)=\sum_{j=0}^{n-k}\binom{k}{j}\binom{n-k}{j} L^{j} . \tag{4}
\end{equation*}
$$

Example 1.1. Let $L=1$. Vandermonde's convolution identity implies that

$$
\binom{n}{k}=\sum_{j}\binom{k}{j}\binom{n-k}{j} .
$$

Hence

$$
T(2 n, n ; 1)=\binom{2 n}{n}, \quad T(2 n, n-1 ; 1)=\binom{2 n}{n-1}
$$

wherefrom we get Catalan numbers

$$
c(n)=\binom{2 n}{n}-\binom{2 n}{n-1}=\frac{1}{n+1}\binom{2 n}{n}
$$

and

$$
a_{n}=c(n)+c(n+1)=\frac{(2 n)!(5 n+4)}{n!(n+2)!} \quad(n=0,1,2, \ldots)
$$

In the paper [3], A. Cvetković, P. Rajković and M. Ivković have proved that the Hankel transform of a_{n} equals sequence of Fibonacci numbers with odd indices

$$
h_{n}=F_{2 n+1}=\frac{1}{\sqrt{5} 2^{n+1}}\left\{(\sqrt{5}+1)(3+\sqrt{5})^{n}+(\sqrt{5}-1)(3-\sqrt{5})^{n}\right\} .
$$

Example 1.2. For $L=2$ we get like $a_{n}(2)$ the next numbers

$$
3,8,28,112,484, \ldots,
$$

and the Hankel transform h_{n} :

$$
3,20,272,7424,405504, \ldots
$$

One of us, P. Barry conjectured that

$$
h_{n}(2)=2^{\frac{n^{2}-n}{2}-2}\left\{(2+\sqrt{2})^{n+1}+(2-\sqrt{2})^{n+1}\right\} .
$$

In general, P. Barry made the conjecture, which we will prove through this paper.
Theorem 1.1. (The main result) For the generalized Pascal triangle associated to the sequence $n \mapsto L^{n}$, the Hankel transform of the sequence

$$
c(n ; L)+c(n+1 ; L)
$$

is given by

$$
\begin{align*}
& h_{n}=\frac{L^{\left(n^{2}-n\right) / 2}}{2^{n+1} \sqrt{L^{2}+4}} \tag{5}\\
& \left\{\left(\sqrt{L^{2}+4}+L\right)\left(\sqrt{L^{2}+4}+L+2\right)^{n}+\left(\sqrt{L^{2}+4}-L\right)\left(L+2-\sqrt{L^{2}+4}\right)^{n}\right\} .
\end{align*}
$$

From now till the end, let us denote by

$$
\begin{equation*}
\xi=\sqrt{L^{2}+4}, \quad t_{1}=L+2+\xi, \quad t_{2}=L+2-\xi \tag{6}
\end{equation*}
$$

Now, we can write

$$
h_{n}=\frac{L^{n(n-1) / 2}}{2^{n+1} \xi} \cdot\left((\xi+L) t_{1}^{n}+(\xi-L) t_{2}^{n}\right)
$$

Or, introducing

$$
\begin{equation*}
\varphi_{n}=t_{1}^{n}+t_{2}^{n}, \quad \psi_{n}=t_{1}^{n}-t_{2}^{n} \quad\left(n \in \mathbb{N}_{0}\right) \tag{7}
\end{equation*}
$$

the final statement can be expressed by

$$
\begin{equation*}
h_{n}=\frac{L^{n(n-1) / 2}}{2^{n+1} \xi} \cdot\left(L \psi_{n}+\xi \varphi_{n}\right) \tag{8}
\end{equation*}
$$

Lemma 1.1. The values φ_{n} and ψ_{n} satisfy the next relations

$$
\begin{array}{ccc}
\varphi_{j} \cdot \varphi_{k}=\varphi_{j+k}+(4 L)^{j} \varphi_{k-j}, & \psi_{j} \cdot \psi_{k}=\varphi_{j+k}-(4 L)^{j} \varphi_{k-j} & (0 \leq j \leq k) \\
\varphi_{j} \cdot \psi_{k}=\psi_{j+k}+(4 L)^{j} \psi_{k-j}, & \psi_{j} \cdot \varphi_{k}=\psi_{j+k}-(4 L)^{j} \psi_{k-j} & (0 \leq j \leq k) \tag{10}
\end{array}
$$

Corollary 1.1. Assuming that the main theorem is true, the function $h_{n}=h_{n}(L)$ is the next polynomial

$$
\begin{aligned}
h_{n}(L) & =2^{-n} L^{n(n-1) / 2} \\
& \cdot\left\{\sum_{i=0}^{[(n-1) / 2]}\binom{n}{2 i+1} L(L+2)^{n-2 i-1}\left(L^{2}+4\right)^{i}+\sum_{i=0}^{[n / 2]}\binom{n}{2 i}(L+2)^{n-2 i}\left(L^{2}+4\right)^{i}\right\} .
\end{aligned}
$$

Proof. By previous notation, we can write

$$
\begin{aligned}
& (L+\xi)(L+2+\xi)^{n}-(L-\xi)(L+2-\xi)^{n} \\
& =(L+\xi) \sum_{k=0}^{n}\binom{n}{k}(L+2)^{n-k} \xi^{k}-(L-\xi) \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(L+2)^{n-k} \xi^{k} \\
& =\sum_{k=0}^{n}\left(1-(-1)^{k}\right)\binom{n}{k} L(L+2)^{n-k} \xi^{k}+\sum_{k=0}^{n}\left(1+(-1)^{k}\right)\binom{n}{k}(L+2)^{n-k} \xi^{k+1} \\
& =2 \sum_{i=0}^{[(n-1) / 2]}\binom{n}{2 i+1} L(L+2)^{n-2 i-1} \xi^{2 i+1}+2 \sum_{i=0}^{[n / 2]}\binom{n}{2 i}(L+2)^{n-2 i} \xi^{2 i+1} \\
& =2 \xi\left\{\sum_{i=0}^{[(n-1) / 2]}\binom{n}{2 i+1} L(L+2)^{n-2 i-1} \xi^{2 i}+\sum_{i=0}^{[n / 2]}\binom{n}{2 i}(L+2)^{n-2 i} \xi^{2 i}\right\}
\end{aligned}
$$

wherefrom immediately follows the polynomial expression for h_{n}.

2. The generating function for the sequences of numbers and orthogonal polynomials

The Jacobi polynomials are given by

$$
P_{n}^{(a, b)}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n+a}{k}\binom{n+b}{n-k}(x-1)^{n-k}(x+1)^{k} \quad(a, b>-1) .
$$

Also, they can be written in the form

$$
P_{n}^{(a, b)}(x)=\left(\frac{x-1}{2}\right)^{n} \sum_{k=0}^{n}\binom{n+a}{k}\binom{n+b}{n-k}\left(\frac{x+1}{x-1}\right)^{k} .
$$

From the fact

$$
L=\frac{x+1}{x-1} \quad \Leftrightarrow \quad x=\frac{L+1}{L-1} \quad(x \neq 1, L \neq 1)
$$

we conclude that

$$
\begin{aligned}
T(2 n, n ; L) & =(L-1)^{n} \cdot P_{n}^{(0,0)}\left(\frac{L+1}{L-1}\right) \\
T(2 n+2, n ; L) & =(L-1)^{n} \cdot P_{n}^{(2,0)}\left(\frac{L+1}{L-1}\right)
\end{aligned}
$$

The generating function $G(x, t)$ for the Jacobi polynomials is

$$
\begin{equation*}
G^{(a, b)}(x, t)=\sum_{n=0}^{\infty} P_{n}^{(a, b)}(x) t^{n}=\frac{2^{a+b}}{\phi \cdot(1-t+\phi)^{a} \cdot(1+t+\phi)^{b}}, \tag{11}
\end{equation*}
$$

where

$$
\phi=\phi(x, t)=\sqrt{1-2 x t+t^{2}} .
$$

Now,

$$
\begin{aligned}
\sum_{n=0}^{\infty} T(2 n, n ; L) t^{n} & =\sum_{n=0}^{\infty} P_{n}^{(0,0)}\left(\frac{L+1}{L-1}\right)((L-1) t)^{n}=G^{(0,0)}\left(\frac{L+1}{L-1},(L-1) t\right), \\
\sum_{n=0}^{\infty} T(2 n+2, n ; L) t^{n} & =\sum_{n=0}^{\infty} P_{n}^{(2,0)}\left(\frac{L+1}{L-1}\right)((L-1) t)^{n}=G^{(2,0)}\left(\frac{L+1}{L-1},(L-1) t\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sum_{n=0}^{\infty} T(2 n, n-1 ; L) t^{n} & =t \cdot\left\{G^{(2,0)}\left(\frac{L+1}{L-1},(L-1) t\right)-1\right\} \\
\sum_{n=0}^{\infty} T(2 n+2, n+1 ; L) t^{n} & =\frac{1}{t} \cdot\left\{G^{(0,0)}\left(\frac{L+1}{L-1},(L-1) t\right)-1\right\}
\end{aligned}
$$

The generating function $\mathcal{G}(t ; L)$ for the sequence $\left\{a_{n}\right\}_{n \geq 0}$ is given by

$$
\begin{align*}
\mathcal{G}(t ; L) & =\sum_{n=0}^{\infty} a_{n} t^{n} \tag{12}\\
& =\frac{t+1}{t} G^{(0,0)}\left(\frac{L+1}{L-1},(L-1) t\right)-(t+1) G^{(2,0)}\left(\frac{L+1}{L-1},(L-1) t\right)-\frac{1}{t} .
\end{align*}
$$

After some computation, we prove the next theorem.
Theorem 2.1. The generating function $\mathcal{G}(t ; L)$ for the sequence $\left\{a_{n}\right\}_{n \geq 0}$ is

$$
\begin{equation*}
\mathcal{G}(t ; L)=\frac{t+1}{\rho(t ; L)}\left\{\frac{1}{t}-\frac{4}{(1-(L-1) t+\rho(t ; L))^{2}}\right\}-\frac{1}{t} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(t ; L)=\phi\left(\frac{L+1}{L-1},(L-1) t\right)=\sqrt{1-2(L+1) t+(L-1)^{2} t^{2}} \tag{14}
\end{equation*}
$$

The function $\rho(t ; L)$ has domain

$$
D_{\rho}=\left(-\infty, \frac{1-2 \sqrt{L}+L}{1-2 L+L^{2}}\right) \cup\left(\frac{1+2 \sqrt{L}+L}{1-2 L+L^{2}},+\infty\right) \quad(L \neq 1)
$$

and

$$
D_{\rho}=(-\infty, 1 / 4) \quad(L=1)
$$

Example 2.1. For $L=1$, we get

$$
\begin{equation*}
\mathcal{G}(t ; 1)=\sum_{n=0}^{\infty} a_{n}(1) t^{n}=\frac{1}{t}\left(\frac{(1-\sqrt{1-4 t})(1+t)}{2 t}-1\right) \tag{15}
\end{equation*}
$$

and for $L=2$, we find

$$
\begin{equation*}
\mathcal{G}(t ; 2)=\sum_{n=0}^{\infty} a_{n}(2) t^{n}=-\frac{1}{t}+\frac{t+1}{\sqrt{t^{2}-6 t+1}}\left\{\frac{1}{t}-\frac{4}{\left(1-t+\sqrt{t^{2}-6 t+1}\right)^{2}}\right\} \tag{16}
\end{equation*}
$$

3. The weight function corresponding to the functional

It is known (for example, see Krattenthaler [6]) that the Hankel determinant h_{n} of order n of the sequence $\left\{a_{n}\right\}_{n \geq 0}$ equals

$$
\begin{equation*}
h_{n}=a_{0}^{n} \beta_{1}^{n-1} \beta_{2}^{n-2} \cdots \beta_{n-2}^{2} \beta_{n-1}, \tag{17}
\end{equation*}
$$

where $\left\{\beta_{n}\right\}_{n \geq 1}$ is the sequence given by:

$$
\begin{equation*}
\mathcal{G}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{a_{0}}{1+\alpha_{0} x-\frac{\beta_{1} x^{2}}{1+\alpha_{1} x-\frac{\beta_{2} x^{2}}{1+\alpha_{2} x-\cdots}}} \tag{18}
\end{equation*}
$$

The sequences $\left\{\alpha_{n}\right\}_{n \geq 0}$ and $\left\{\beta_{n}\right\}_{n \geq 1}$ are the coefficients in the recurrence relation

$$
\begin{equation*}
Q_{n+1}(x)=\left(x-\alpha_{n}\right) Q_{n}(x)-\beta_{n} Q_{n-1}(x) \tag{19}
\end{equation*}
$$

where $\left\{Q_{n}(x)\right\}_{n \geq 0}$ is the monic polynomial sequence orthogonal with respect to the functional \mathcal{U} determined by

$$
\begin{equation*}
\mathcal{U}\left[x^{n}\right]=a_{n} \quad(n=0,1,2, \ldots) \tag{20}
\end{equation*}
$$

In this section the functional will be constructed for the sum of consecutive generalized Catalan numbers.

We would like to express $\mathcal{U}[f]$ in the form:

$$
\mathcal{U}[f(x)]=\int_{R} f(x) d \psi(x)
$$

where $\psi(x)$ is a distribution, or, even more, to find the weight function $w(x)$ such that $w(x)=\psi^{\prime}(x)$.

Denote by $F(z ; L)$ the function

$$
F(z ; L)=\sum_{k=0}^{\infty} a_{k} z^{-k-1}
$$

From the generating function (13), we have:

$$
\begin{equation*}
F(z ; L)=z^{-1} \mathcal{G}\left(z^{-1} ; L\right) \tag{21}
\end{equation*}
$$

and after some simplifications we obtain that

$$
\begin{aligned}
F(z ; L) & =-1+\frac{2(z+1)}{L-1+z+\sqrt{L^{2}+(z-1)^{2}-2 L(z+1)}} \\
& =-1+\frac{2(z+1)}{L-1+z\left(1+z \rho\left(\frac{1}{z}, L\right)\right)}
\end{aligned}
$$

Example 3.1. From (15) and (16), we yield

$$
\begin{aligned}
& F(z ; 1)=z^{-1} \mathcal{G}\left(z^{-1} ; 1\right)=\frac{1}{2}\left\{z-1-(z+1) \sqrt{1-\frac{4}{z}}\right\}, \\
& F(z ; 2)=\frac{-1}{2 z}\left\{1+z\left(2-z+(z+1) \sqrt{1-\frac{6}{z}+\frac{1}{z^{2}}}\right)\right\} .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\int F(z ; 2) d z=z & +\frac{1}{4} z(z-1) \rho(1 / z, 2)+\log (z) \\
& -\frac{1}{2} \log (1+z(\rho(1 / z, 2)-3))-\frac{7}{2} \log (z-3+z \rho(1 / z, 2))
\end{aligned}
$$

It will be the impulse for further discussion.
Denote by

$$
R(z ; L)=z \rho\left(\frac{1}{z}, L\right)=\sqrt{L^{2}+(z-1)^{2}-2 L(z+1)}
$$

From the theory of distribution functions (see Chihara [2]), especially by the Stieltjes inversion formula

$$
\begin{equation*}
\psi(t)-\psi(0)=-\frac{1}{\pi} \lim _{y \rightarrow 0^{+}} \int_{0}^{t} \Im F(x+i y ; L) d x \tag{22}
\end{equation*}
$$

we conclude that holds

$$
\begin{equation*}
\mathcal{F}(z ; L)=\int F(z ; L) d z=\frac{1}{4}\left[z^{2}-2 L z-(z-L+1) R(z ; L)-l_{1}(z)+l_{2}(z)\right] \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
& l_{1}(z)=2(3 L+1) \log [z-(L+1)+R(z ; L)] \\
& l_{2}(z)=2(L-1) \log \left[\frac{-(L-1) R(z ; L)-(L-1)^{2}+z(L+1)}{z^{2}(L-1)^{3}}\right]
\end{aligned}
$$

Rewriting the function $R(z ; L)$ in the form

$$
R(z ; L)=\sqrt{(z-L-1)^{2}-4 L}
$$

and replacing $z=x+i y$, we have

$$
R(x ; L)=\lim _{y \rightarrow 0^{+}} R(x+i y ; L)=\left\{\begin{array}{lc}
i \sqrt{4 L-(x-L-1)^{2}}, & x \in(a, b) ; \\
\sqrt{(x-L-1)^{2}-4 L}, & \text { otherwise }
\end{array}\right.
$$

where

$$
\begin{equation*}
a=(\sqrt{L}-1)^{2}, \quad b=(\sqrt{L}+1)^{2} . \tag{24}
\end{equation*}
$$

In the case when $x \notin\left((\sqrt{L}-1)^{2},(\sqrt{L}+1)^{2}\right)$, value $R(x ; L)$ is real. Therefore we can calculate imaginary part of $\mathcal{F}(x ; L)=\lim _{y \rightarrow 0^{+}} \mathcal{F}(x+i y ; L)$:

$$
\Im \mathcal{F}(x ; L)=\Im\left[l_{2}(x)-l_{1}(x)\right]=0 .
$$

Otherwise, if $x \in\left((\sqrt{L}-1)^{2},(\sqrt{L}+1)^{2}\right)$ we have that:

$$
\begin{aligned}
& l_{1}(x)=2(3 L+1) \log \left[x-(L+1) \pm i \sqrt{4 L-(x-L-1)^{2}}\right] \\
& \Im l_{1}(x)= \begin{cases}2(3 L+1) \arctan \frac{\sqrt{4 L-(x-L-1)^{2}}}{x-(L+1)}, & x \geq L+1 ; \\
2(3 L+1)\left(\pi+\arctan \frac{\sqrt{4 L-(x-L-1)^{2}}}{x-(L+1)}\right), & x<L+1\end{cases} \\
& l_{2}(x)=2(L-1) \log \left[\frac{-(L-1)^{2}+2 x(L+1)-i(L-1) \sqrt{4 L-(x-L-1)^{2}}}{x^{2}(L-1)^{3}}\right] \\
& \\
& \Im l_{1}(x)= \begin{cases}2(L-1)\left(2 \pi+\arctan \frac{x(L+1)-(L-1)^{2}}{\sqrt{4 L-(x-L-1)^{2}}}\right), & x \geq \frac{(L-1)^{2}}{L+1} ; \\
2(L-1)\left(\pi+\arctan \frac{x(L+1)-(L-1)^{2}}{\sqrt{4 L-(x-L-1)^{2}}}\right), & x<\frac{(L-1)^{2}}{L+1}\end{cases}
\end{aligned}
$$

After substituting all considered cases in (23), we finally obtain the value $\Im \mathcal{F}(x ; L)=\lim _{y \rightarrow 0^{+}} \Im \mathcal{F}(x+i y ; L)=\Im l_{2}(x)-\Im l_{1}(x)-(x-L+1) \sqrt{4 L-(x-L-1)^{2}}$

From the relation ([22), we conclude that

$$
\begin{equation*}
\omega(x ; L)=\psi^{\prime}(x ; L)=-\frac{1}{\pi} \frac{d}{d x} \Im \mathcal{F}(x ; L) \tag{25}
\end{equation*}
$$

and finally, we obtain

$$
\begin{equation*}
\omega(x ; L)=\frac{1}{2 \pi}\left(1+\frac{1}{x}\right) \sqrt{4 L-(x-L-1)^{2}}=\frac{\sqrt{L}}{\pi}\left(1+\frac{1}{x}\right) \sqrt{1-\left(\frac{x-L-1}{2 \sqrt{L}}\right)^{2}} \tag{26}
\end{equation*}
$$

Previous formula holds for $x \in(a, b)$, and otherwise is $\omega(x ; L)=0$.

4. Determining the three-Term Recurrence relation

The crucial moment in our proof of the conjecture is to determine the sequence of polynomials $\left\{Q_{n}(x)\right\}$ orthogonal with respect to the weight $w(x ; L)$ given by (26) on the interval (a, b) and to find the sequences $\left\{\alpha_{n}\right\}\left\{\beta_{n}\right\}$ in the three-term recurrence relation.

Example 4.1. For $L=4$, we can find the first members

$$
\begin{array}{ll}
Q_{0}(x)=1, & \left\|Q_{0}\right\|^{2}=5 \\
Q_{1}(x)=x-\frac{24}{5}, & \left\|Q_{1}\right\|^{2}=\frac{104}{5} \\
Q_{2}(x)=x^{2}-\frac{127}{13} x+\frac{256}{13}, & \left\|Q_{2}\right\|^{2}=\frac{1088}{13} \\
Q_{3}(x)=x^{3}-\frac{541}{17} x^{2}+\frac{1096}{17} x-\frac{1344}{17}, & \left\|Q_{3}\right\|^{2}=\frac{5696}{17}
\end{array}
$$

wherefrom

$$
\alpha_{0}=\frac{24}{5}, \quad \beta_{0}=5, \quad \alpha_{1}=\frac{323}{65}, \quad \beta_{1}=\frac{104}{25}, \quad \alpha_{2}=\frac{1104}{221}, \quad \beta_{2}=\frac{680}{169}
$$

Hence

$$
h_{1}=a_{0}=5, \quad h_{2}=a_{0}^{2} \beta_{1}=104, \quad h_{3}=a_{0}^{3} \beta_{1}^{2} \beta_{2}=5^{3}\left(\frac{104}{25}\right)^{2} \frac{680}{169}=8704 .
$$

At the beginning, we will notice that in the definition of the weight function appears the square root member.

That's why, let us consider the monic orthogonal polynomials $\left\{S_{n}(x)\right\}$ with respect to the $p^{(1 / 2,1 / 2)}(x)=\sqrt{1-x^{2}}$ on the interval $(-1,1)$. These polynomials are monic Chebyshev polynomials of the second kind:

$$
S_{n}(x)=\frac{\sin ((n+1) \arccos x)}{2^{n} \cdot \sqrt{1-x^{2}}}
$$

They satisfy the three-term recurrence relation (Chihara [2]):

$$
\begin{equation*}
S_{n+1}(x)=\left(x-\alpha_{n}^{*}\right) S_{n}(x)-\beta_{n}^{*} S_{n-1}(x) \quad(n=0,1, \ldots), \tag{27}
\end{equation*}
$$

with initial values

$$
S_{-1}(x)=0, \quad S_{0}(x)=1,
$$

where

$$
\alpha_{n}^{*}=0 \quad(n \geq 0) \quad \text { and } \quad \beta_{0}^{*}=\frac{\pi}{2}, \quad \beta_{n}^{*}=\frac{1}{4} \quad(n \geq 1)
$$

If we use the weight function $\hat{w}(x)=(x-c) p^{(1 / 2,1 / 2)}(x)$, then the corresponding coefficients $\hat{\alpha}_{n}$ and $\hat{\beta}_{n}$ can be evaluated as follows (see, for example, Gautschi [4])

$$
\begin{align*}
& \lambda_{n}=S_{n}(c) \\
& \hat{\alpha}_{n}=c-\frac{\lambda_{n+1}}{\lambda_{n}}-\beta_{n+1}^{*} \frac{\lambda_{n}}{\lambda_{n+1}}, \tag{28}\\
& \hat{\beta}_{n}=\beta_{n}^{*} \frac{\lambda_{n-1} \lambda_{n+1}}{\lambda_{n}^{2}} \quad\left(n \in \mathbb{N}_{0}\right) .
\end{align*}
$$

From the relation (27), we conclude that the sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ satisfies the following recurrence relation:

$$
\begin{equation*}
4 \lambda_{n+1}-4 c \lambda_{n}+\lambda_{n-1}=0 \quad\left(\lambda_{-1}=0 ; \lambda_{0}=1\right) \tag{29}
\end{equation*}
$$

The characteristic equation

$$
4 z^{2}-4 c z+1=0
$$

has the solutions

$$
z_{1,2}=\frac{1}{2}\left(c \pm \sqrt{c^{2}-1}\right)
$$

and the integral solution of (29) is

$$
\lambda_{n}=E_{1} z_{1}^{n}+E_{2} z_{2}^{n} \quad(n \in \mathbb{N})
$$

We evaluate values E_{1} and E_{2} from the initial conditions $\left(\lambda_{-1}=0 ; \quad \lambda_{0}=1\right)$.
In other to solve our problem, we will choose $c=-\frac{L+2}{2 \sqrt{L}}$. Hence

$$
z_{k}=\frac{-t_{k}}{4 \sqrt{L}} \quad(k=1,2), \quad \text { where } \quad t_{1,2}=L+2 \pm \sqrt{L^{2}+4}
$$

Finally, we obtain:

$$
\lambda_{n}=\frac{(-1)^{n}}{2 \cdot 4^{n} L^{\frac{n}{2}} \sqrt{L^{2}+4}}\left(t_{1}^{n+1}-t_{2}^{n+1}\right) \quad(\lambda=-1,0,1, \ldots),
$$

i.e,

$$
\lambda_{n}=\frac{(-1)^{n}}{2 \cdot 4^{n} L^{\frac{n}{2}} \xi} \psi_{n+1} \quad(\lambda=-1,0,1, \ldots)
$$

After replacing in (28), we obtain:

$$
\begin{align*}
& \hat{\alpha}_{n}=-\frac{L+2}{2 \sqrt{L}}+\frac{1}{4 \sqrt{L}} \cdot \frac{\psi_{n+2}}{\psi_{n+1}}+\sqrt{L} \cdot \frac{\psi_{n+1}}{\psi_{n+2}} \tag{30}\\
& \hat{\beta}_{n}=\frac{\psi_{n} \psi_{n+2}}{4 \psi_{n+1}^{2}} . \tag{31}
\end{align*}
$$

If a new weight function $\tilde{w}(x)$ is introduced by

$$
\tilde{w}(x)=\hat{w}(a x+b)
$$

then we have

$$
\tilde{\alpha}_{n}=\frac{\hat{\alpha}_{n}-b}{a}, \quad \tilde{\beta}_{n}=\frac{\hat{\beta}_{n}}{a^{2}} \quad(n \geq 0) .
$$

Now, by using $x \mapsto \frac{x-L-1}{2 \sqrt{L}}$, i.e., $a=\frac{1}{2 \sqrt{L}}$ and $b=-\frac{L+1}{2 \sqrt{L}}$, we have the weight function

$$
\tilde{w}(x)=\hat{w}\left(\frac{x-L-1}{2 \sqrt{L}}\right)=\frac{1}{2}\left(\frac{x-L-1}{2 \sqrt{L}}+\frac{L+2}{2 \sqrt{L}}\right) \sqrt{1-\left(\frac{x-L-1}{2 \sqrt{L}}\right)^{2}} .
$$

Thus

$$
\begin{equation*}
\tilde{\alpha}_{n}=-1+\frac{1}{2} \cdot \frac{\psi_{n+2}}{\psi_{n+1}}+2 L \cdot \frac{\psi_{n+1}}{\psi_{n+2}} \quad\left(n \in \mathbb{N}_{0}\right) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\beta}_{0}=(L+2) \frac{\pi}{2}, \quad \tilde{\beta}_{n}=L \frac{\psi_{n} \psi_{n+2}}{\psi_{n+1}^{2}} \quad(n \in \mathbb{N}) \tag{33}
\end{equation*}
$$

Example 4.2. For $L=4$, we get

$$
\begin{array}{ll}
P_{0}(x)=1, & \left\|P_{0}\right\|^{2}=3 \pi \\
P_{1}(x)=x-\frac{17}{3}, & \left\|P_{1}\right\|^{2}=\frac{32 \pi}{3}, \\
P_{2}(x)=x^{2}-\frac{43}{4} x+\frac{101}{4}, & \left\|P_{2}\right\|^{2}=42 \pi \\
P_{3}(x)=x^{3}-\frac{331}{21} x^{2}+\frac{1579}{21} x-\frac{2189}{21}, & \left\|P_{3}\right\|^{2}=\frac{3520 \pi}{21},
\end{array}
$$

wherefrom

$$
\tilde{\alpha}_{0}=\frac{17}{3}, \quad \tilde{\beta}_{0}=3 \pi, \quad \tilde{\alpha}_{1}=\frac{61}{12}, \quad \tilde{\beta}_{1}=\frac{32}{9}, \quad \tilde{\alpha}_{2}=\frac{421}{84}, \quad \tilde{\beta}_{2}=\frac{63}{16} .
$$

Introducing the weight

$$
\breve{w}(x)=\frac{2 L}{\pi} \tilde{w}(x)
$$

will not change the monic polynomials and their recurrence relations, only it will multiply the norms by the factor $2 L / \pi$, i.e.

$$
\begin{array}{lll}
\breve{P}_{k}(x) \equiv P_{k}(x), & \left\|\breve{P}_{k}\right\|_{\breve{w}}^{2}=\int_{a}^{b} \breve{P}_{k}(x) \breve{w}(x) d x=\frac{2 L}{\pi}\left\|P_{k}\right\|^{2} & \left(k \in \mathbb{N}_{0}\right), \\
\breve{\beta}_{0}=L(L+2), & \breve{\beta}_{k}=\tilde{\beta}_{k} \quad(k \in \mathbb{N}), & \breve{\alpha_{k}}=\tilde{\alpha}_{k}
\end{array}\left(k \in \mathbb{N}_{0}\right) . ~ \$
$$

Here is

$$
\begin{equation*}
\breve{\beta}_{0} \breve{\beta}_{1} \cdots \breve{\beta}_{n-1}=\frac{L^{n}}{2} \cdot \frac{\psi_{n+1}}{\psi_{n}} \tag{34}
\end{equation*}
$$

In the book [5], W. Gautschi has treated the next problem: If we know all about the MOPS orthogonal with respect to $\breve{w}(x)$ what can we say about the sequence $\left\{Q_{n}(x)\right\}$ orthogonal with respect to a weight

$$
w_{d}(x)=\frac{\breve{w}(x)}{x-d} \quad(d \notin \operatorname{support}(\tilde{w})) ?
$$

W. Gautshi has proved that, by the auxiliary sequence

$$
r_{-1}=-\int_{\mathbb{R}} w_{d}(x) d x, \quad r_{n}=d-\breve{\alpha}_{n}-\frac{\breve{\beta}_{n}}{r_{n-1}} \quad(n=0,1, \ldots),
$$

it can be determined

$$
\begin{array}{ll}
\alpha_{d, 0}=\breve{\alpha}_{0}+r_{0}, & \alpha_{d, k}=\breve{\alpha}_{k}+r_{k}-r_{k-1}, \\
\beta_{d, 0}=-r_{-1}, & \beta_{d, k}=\breve{\beta}_{k-1} \frac{r_{k-1}}{r_{k-2}} \quad(k \in \mathbb{N}) .
\end{array}
$$

In our case it is enough to take $d=0$ to get the final weight

$$
w(x)=\frac{\breve{w}(x)}{x} .
$$

Hence

$$
\begin{equation*}
r_{-1}=-(L+1), \quad r_{n}=-\left(\breve{\alpha}_{n}+\frac{\breve{\beta}_{n}}{r_{n-1}}\right) \quad(n=0,1, \ldots) . \tag{35}
\end{equation*}
$$

Lemma 4.1. The parameters r_{n} have the explicit form

$$
\begin{equation*}
r_{n}=-\frac{\psi_{n+1}}{\psi_{n+2}} \cdot \frac{L \psi_{n+2}+\xi \varphi_{n+2}}{L \psi_{n+1}+\xi \varphi_{n+1}} \quad\left(n \in \mathbb{N}_{0}\right) \tag{36}
\end{equation*}
$$

Proof. We will use the mathematical induction. For $n=0$, we really get the expected value

$$
r_{0}=-\frac{L^{2}+2 L+2}{(L+1)(L+2)}
$$

Suppose that it is true for $k=n$. Now, by the properties for φ_{n} and ψ_{n}, we have

$$
\tilde{\alpha}_{n+1} \cdot r_{n}+\tilde{\beta}_{n+1}=-\frac{\psi_{n+1}}{\psi_{n+3}} \cdot \frac{L \psi_{n+3}+\xi \varphi_{n+3}}{L \psi_{n+1}+\xi \varphi_{n+1}} .
$$

Dividing with r_{n}, we conclude that the formula is valid for r_{n+1}.
Example 4.3. For $L=4$, we get

$$
r_{-1}=-5, \quad r_{0}=-\frac{13}{15}, \quad r_{1}=-\frac{51}{52}, \quad r_{2}=-\frac{356}{357}
$$

wherefrom

$$
\alpha_{0}=\frac{24}{5}, \quad \beta_{0}=5, \quad \alpha_{1}=\frac{323}{65}, \quad \beta_{1}=\frac{104}{25}, \quad \alpha_{2}=\frac{1104}{221}, \quad \beta_{2}=\frac{680}{169}
$$

just the same as in the Example 4.1.
Proof of the main result. The Krattenthaler's formula (17) can be also written in the form

$$
\begin{equation*}
h_{1}=a_{0}, \quad h_{n}=\beta_{0} \beta_{1} \beta_{2} \cdots \beta_{n-2} \beta_{n-1} \cdot h_{n-1} \tag{37}
\end{equation*}
$$

From the theory of orthogonal polynomials, it is known that

$$
\begin{equation*}
\left\|Q_{n-1}\right\|^{2}=\beta_{0} \beta_{1} \beta_{2} \cdots \beta_{n-2} \beta_{n-1} \quad(n=2,3, \ldots) \tag{38}
\end{equation*}
$$

wherefrom

$$
\begin{equation*}
h_{1}=a_{0}, \quad h_{n}=\left\|Q_{n-1}\right\|^{2} \cdot h_{n-1} \quad(n=2,3, \ldots) \tag{39}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\left\|Q_{n-1}\right\|^{2}=\beta_{0} \frac{r_{n-2}}{r_{-1}} \prod_{k=0}^{n-2} \breve{\beta}_{k}=\frac{L^{n-1}}{2} \cdot \frac{L \psi_{n}+\xi \varphi_{n}}{L \psi_{n-1}+\xi \varphi_{n-1}} . \tag{40}
\end{equation*}
$$

We will apply the mathematical induction again. The formula for h_{n} is true for $n=1$. Suppose that it is valid for $k=n-1$. Then

$$
h_{n}=\frac{L^{n-1}}{2} \cdot \frac{L \psi_{n}+\xi \varphi_{n}}{L \psi_{n-1}+\xi \varphi_{n-1}} \cdot \frac{L^{(n-1)(n-2) / 2}}{2^{n} \xi} \cdot\left(L \psi_{n-1}+\xi \varphi_{n-1}\right),
$$

wherefrom it follows that the final statement

$$
h_{n}=\frac{L^{n(n-1) / 2}}{2^{n+1} \xi} \cdot\left(L \psi_{n}+\xi \varphi_{n}\right) \quad(n \in \mathbb{N})
$$

is true.

References

[1] P. Barry, On Ineger Sequences Based Constructions of Generalized Pascal Triangles, Preprint, Waterford Institute of Technology, 2005.
[2] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[3] A. Cvetković, P. Rajković and M. Ivković, Catalan Numbers, the Hankel Transform and Fibonacci Numbers, Journal of Integer Sequences, 5, May 2002, Article 02.1.3.
[4] W. Gautschi, Orthogonal polynomials: applications and computations, in Acta Numerica, 1996, Cambridge University Press, 1996, pp. 45-119.
[5] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press Oxford, 2003.
[6] C. Krattenthaler, Advanced Determinant Calculus, at http://www.mat.univie.ac.at/People/kratt/artikel/detsurv.html
[7] J. W. Layman, The Hankel Transform and Some of its Properties, Journal of Integer Sequences, Article 01.1.5, Volume 4, 2001.
[8] P. Peart and W. J. Woan, Generating functions via Hankel and Stieltjes matrices, Journal of Integer Sequences, Article 00.2.1, Issue 2, Volume 3, 2000.
[9] W. J. Woan, Hankel Matrices and Lattice Paths, Journal of Integer Sequences, Article 01.1.2, Volume 4, 20
[10] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/~njas/sequences/.

Predrag Rajković, Marko D. Petković,
University of Niš, Serbia and Montenegro
Address: A. Medvedeva 14, 18000 Niš, Serbia and Montenegro
e-mail: pedja.rajk@gmail.com, dexterofnisgmail.com

Paul Barry

School of Science, Waterford Institute of Technology, Ireland
e-mail: pbarry@wit.ie

