
A Model for IM and Media Driven Communication
Services

Leigh Griffin 1, Eamonn de Leastar 1

1 Waterford Institute of Technology, Cork Road, Waterford Ireland
{lgriffin, edeleastar} @ tssg.org

Abstract

Constructing graphical client applications for the Instant Messaging (IM) domain can be complex
and error prone. As well as coping with the details of a specific IM protocol, the developer must
also master specific user interface toolkits, deal with media streaming protocols and codecs,
handle capability negotiation and deploy a robust event handling strategy for this highly
asynchronous application style. These often competing concerns must be encapsulated in a clean
design that can be evolved to cater for an ever expanding set of capabilities now viable for IM
client applications. This paper proposes an architecture, component set and pattern based
framework to encapsulate this domain, which facilitates the rapid construction of rich media client
IM applications. These may be conventional or specialised IM clients or add-on components for
existing applications.

Keywords: Instant Messaging, Media, Service Creation, Components, Communications Services

1. Introduction
Modern software development is becoming profoundly multi-disciplinary. As well as core software
engineering skills, the scale and complexity being addressed by many applications is such that there is
increasing specialisation required by development teams. Web applications, rich graphical user
interfaces, media processing, protocol handling, multithreading, database access, configuration, build
and deployment are often considered separate disciplines, serviced by different individuals with
specialised tools, skill sets and experiences. This trend is particularly true of communications
applications, which carry an additional burden in that they must interface with a communications
infrastructure, often highly demanding of the applications they interact with and intolerant of any
misuse. This paper tackles one specific domain – Instant Messaging communications client
applications – and proposes a model + pattern based framework to significantly ease the conceptual
burden on the developer creating such clients. The framework is targeted at the general developer, one
with intermediate level knowledge of the Java programming language and general familiarity with the
Swing GUI framework. As such, it attempts to counter the trend of increasing specialisation by
elegantly and efficiently encapsulating a complex domain, yielding a comprehensible model and a
powerful component set.

The paper is divided into 9 sections. Section 1 is this introduction. Section 2: IM Clients briefly
reviews the nature of IM applications and emerging features of clients within this domain. Section 3:
Complexity explores some of the difficulties with IM applications development, particularly the
diverse technology sets the domain encompasses. Section 4: Methodology relates this work to the
broader software engineering discipline, particularly to current software architecture, component and
design pattern thinking. Section 5: Architecture presents the core domain model for IM applications as
a UML model + a set of java interfaces. Section 6: Components explores how this model is
encapsulated within a Graphical User Interface context. Section 7: Patterns discusses aspects of the
framework design exposed to the developers. Section 8: Applications previews some clients that can
be built using the framework. Section 9: Implementation reviews some implementation experiences.

2. IM Clients
Instant Messaging (IM) is a form of text based, near real-time communication between two or more
users over a network. Simple IM clients provide the basic functionality for users to communicate in a
one to one fashion while providing basic error checking and receipt acknowledgement. Richer IM
clients retain the core text based communication but enhance the user experience by integrating group
communication and richer media. Employing microphones and web cams, a quick, cheap and effective
conference service can be created, allowing users to engage in real-time conversations. Adding to this
already rich suite of services additional features have been aggregated, including conversation logging,
file transfer, games, whiteboards, chat rooms and other new features, often added with each new
release of a particular client.

IM usage has expanded in recent years to become an essential service for both business and social use.
Potential applications for IM have emerged, evolving it from its roots in text based, presence aware
communication while still retaining this core functionality. In recent surveys it was found that 70% of
teenagers send more IM’s then emails showing the surge in popularity of this means of communication
[1]. Networked games have been integrated to some IM clients offering new types of experience [2].
IM Robots (or Bots) are software applications that run automated tasks within an IM context [3]. By
adding a Bot buddy to a buddy list a user can interact with this buddy which in turn may query a
database, access an external system or perform some other task. RSS feed bots, customer support bots
and other interactive bots are extending the range and application of the IM paradigm considerably
beyond its original conception. Many IM clients now incorporate full multimedia capabilities, both
voice and video [4][5]. In this configuration the IM client can be the primary communications end
point for a user, taking on the role of a conventional telephone, mobile and video conference facility.

3. Complexity

An alphabet soup of protocols, APIs, components and toolkits are required to build even the most
conventional IM client application. IP, UDP, SIP, XMPP, XML, RPC, SOAP, RSS, RTP, JMF, SWING,
SMACK, TCP are some of the protocols, SDKs and applications that must be mastered to produce a
fully working IM client and service suite. This complexity is masked somewhat by the use of API's to
allow the developer easier access to the lower stack calls that make up the building blocks of the
protocols. However there is no singe API that encompass the full IM “stack” [6] and the developer
must currently cope with a broad range of tools and APIs. Moreover, current APIs do not encapsulate
media capabilities, requiring the developer to gain a comprehensive understanding of the intricacies of
IP, TCP, UDP and RTP, including the fine details of session set up, capability negotiation and quality
of service issues.

Added to this already steep learning curve is competing IM infrastructures. Google Talk, MSN, AIM
and XMPP are leaders in the IM field. Each boasts their own infrastructure which does not easily
allow users on one client to avail of the services offered by another. XMPP is the most open of these
standards (it has been adopted in modified form by Google Talk). However, even it imposes a
significant complexity burden, even for relatively straightforward activities. An entirely XML based
protocol – the schema has grown considerably since its first publication [7]. Similarly, media has a
diverse range of standards, codecs and device capabilities that must be mastered. AVI, DivX, MPEG,
WMV, WMA and MP3 are some of the better known formats. These formats are standardised and
documented, but applications and services have to know how to handle and render such formats on
client devices. This is accomplished using codecs. A codec is a device or program that is capable of
encoding and decoding a digital data stream. Each codec comes with its own performance overhead,
be it quality or compression size. This adds an extra layer of complexity to the process of handling
media which the programmer must currently take into account while trying to integrate media into an
application.

4. Methodology

Designing a coherent framework to support the creation of Instant
Messaging client applications and services is a significant
challenge. It requires a detailed grasp of both a complex and
continuously evolving problem domain and the employment of a
conceptual toolkit to master this complexity. A number of design
decisions taken early in the development will have a profound
impact on the structure and usefulness of the framework,
component set and services. This work takes advantage of
multiple paradigms currently in software development
methodologies to inform key architectural decisions. To guide
these decisions, we acknowledge the structural hierarchy of
paradigms adapted from [8] (fig 1) and deploy specific
approaches at a number of levels in this hierarchy. Specifically,
key decisions at the Architecture, Component and Design Pattern
levels.

At the architecture level we apply Domain Driven Design (DDD)
[9].This is a modern approach to architecting software systems
that places strong emphasis on coherent and comprehensible
domain models – drawn directly from the problem space.
Sometimes regarded as a rediscovery of the benefits of modelling
within an agile development methodology [9][10], DDD
enumerates core categories of building blocks coupled with a
“supple design” process to yield a highly declarative and “intention revealing” design. This is
grounded by a “Ubiquitous Language” - a type of system wide data dictionary. Applying DDD
principles to the IM domain yields a set of core classes and relationships that elegantly and
expressively captures key abstractions on the domain, facilitating comprehensibly and consistent
usage by client applications and services.

At the component level we apply Interface Oriented Design [11]. This is a set of useful practices for
designing interfaces to capture the responsibilities of a component set. Although overlapping
somewhat with DDD, Interface Oriented Design proposes more specific guidelines for representing a
design as a set of related interface specifications within a programming language that supports the
interface construct. When directly supported by a language, careful use of interfaces to encapsulate an
architecture represents an ideal specification language for a model of a system. Interfaces are
unambiguous, highly expressive, have a very low signal to noise ratio (when contrasted with classes
for instance) and are directly consumable by client applications.

Applying principles from both DDD and Interface Oriented Design attractively marries architectural
concerns with an unambiguous model specification language. We choose the Java programming
language, which has a mature implementation of interfaces, coupled with useful modern programming
language features such as annotations and generics. The challenge is to use these tools to render a
flexible, comprehensible and powerful model for IM client application and service development. This
model should be reasonably quick to explain to a developer and implementable across multiple IM
technologies.

Figure 1: Software Paradigms

5. Architecture

The model (fig 2) was evolved using Domain Driven Design [9] principles to capture the core domain
artifacts for the IM framework. This model provides the building blocks for IM service creation,
delivering the key abstractions from which IM applications can be constructed. The model has two
distinct subsets; the core domain and the event model. The domain model captures the core mechanics
of an instant messaging client application: connecting to an IM server, initiating conversations,
establishing media sessions and generally managing the buddy list and connection settings. The event
model binds these artifacts together, delivering an elegant model for presence updates, buddy initiated
conversations and messages and general management of asynchronous event information within the
domain.

Figure 2: Domain and Event Class diagram

Adhering to the principles of Interface Oriented Design [11] each of these domain classes is realised as
a Java interface. The interface can be considered the most expressive representation of a domain
artifact - relevant information is presented, without any
implementation details. In fact we can review the full
interface specifications here:

• Buddy: used to represent a single contact that the
user may wish to communicate with.

• Group: In Instant messaging applications it is
common practice to assign contacts to groups for
easier management and for quick reference.
Common groups such as family, work and friends
are mainstays on most instant messaging
applications.

• BuddyList: A buddy list is a collection of groups.
Like most subsequent interfaces, The BuddyList
can be updated asynchronously, hence the
PropertyChangeSupport accessor (discussed
below).

interface IBuddy
{
 String getName();
 String getStatus();
 String getUserID();
}

interface IGroup
{
 String getName();
 void remove(IBuddy Buddy);
 void add(String buddyID);
 List<IBuddy> getBuddies();
}

interface IBuddyList
{
 void add(String buddyName, String ID);
 IBuddy get(String buddyName);
 List<IGroup> getGroups();
 PropertyChangeSupport getPCS();
}

• Connection: This interface is
responsible for dealing directly with
the messaging server and
negotiating a client-server session
with it. It contains the key factory
methods for the client application.
Conversations, Conferences, Media
based Conversations and Presence
awareness are all supported in a
short, clear and unambiguous
specification.

• Conversation: This interface represents
a one to one conversation between the
user and a buddy. It is responsible for
creating, managing and terminating the
conversation.

• GroupConversation: A form of conversation except this class handles multiple conversations
within the one session. This class is
responsible for creating and managing a
Multi User Chat, creating the room, the
access rights and populating the room
with the requesting owner and sending
invites to any party who wishes to
partake in the conversation.

• MediaConversation: A form of
conversation that adds a media element
to the already existing textual
conversation. This class looks after the
establishment of a connection between
the two clients who wish to participate
in a Media based conversation.

• VideoDevice: This interface is used to
control the video device used in a
Media Conversation. It provides the
means for basic playback functionality
and allows the user have full control
over the video device that is currently
connected and in use. If multiple
devices are available the interface
provides a provision for choosing which device to use as the primary device.

• AudioDevice: Provides a means to
control the audio device used during a
Media Conversation. Several audio
devices can be connected to a single
piece of hardware and this interface
allows different audio devices to be
selected as the currently used device.

interface IConnection
{
 void connect(String server, int port);
 IConversation createConversation(IBuddy buddy);
 IConference createConference(String roomName);
 IMediaConversation createMediaConversation
 (IBuddy buddy,
 IAudioDevice audio,
 IVideoDevice video);
 void authenticate(String username, String password)
 void setPresence(PresenceType presence,
 String message)
 IBuddyList getBuddyList();
…
}

interface IGroupConversation extends IConversation
{
 void inviteUser(ImpBuddy buddy, String message);
 BuddyList getParticipants();
 PropertyChangeSupport getPCS();
}

interface Conversation
{
 IBuddy getBuddy();
 void sendMessage(String message);
 PropertyChangeSupport getPCS();
}

interface IMediaConversation extends IConversation
{
 IVideoDevice getVideoDevice();
 IAudioDevice getAudioDevice();
 PropertyChangeSupport getPCS();
}

interface IVideoDevice
{
 void pause();
 void play();
 void play(String file);
 void record(String filename);
 void chooseVideoDevice(int DeviceNumber);
}

public interface AudioDevice
{
enum VolumeLevel {off, low, med, high, max}
void setVolume(VolumeLevel level)
void mute();
void record(String filename);
void play(String filename);
void chooseAudioDevice(int DeviceNumber)
}

Fig 3: Netbeans IM_Views Palette

In any application exhibiting highly asynchronous behaviour, an appropriate event model is of central
importance. Failure to devise an application wide strategy for event handling will quickly lead to ad-
hoc approaches among different subsystems and ultimately a degraded and over complex design. As
the work in this paper is focussed in IM client development, an event model from the JDK was
adopted directly into the model. This is the Java Specification Request (JSR) 295 – Beans Binding
implementation [12]. This specification has been incorporated into the JDK relatively recently
defining (among others) PropertyChangeSupport and ProperteChangeEvent classes, and a
PropertyChangeListener interface. To be a source of events, a class can create a
PropertyChangeSupport instance and feed events to it. To consume events, a class can implement a
PropertyChangeListener interface and receive PropertyChangeEvent objects through an implemented
method on that interface. The simplicity of this approach belies some important benefits: events can be
tagged, with listeners only listening for specific categories; events can be routed into a specific thread
– very important for GUI applications which usually require UI updates on a specific thread (the Event
Dispatch Thread), and finally the GUI designer directly understands this mechanism and can “wire”
components together visually whilst generating the appropriate code based on JSR 295 artefacts.

6. Components

This domain model serves as the core communication model for the framework. It is as an elegantly
encapsulated foundation for the next layer – the GUI components that render IM views within
appropriate contexts. When approaching the development of GUI components, tool support is
particularly important. The Netbeans IDE [13] incorporates a breakthrough GUI design tool
(previously called project Matisse [14]). This facilitates rapid visual
prototype and creation of GUI’s. It comes with built-in support for
JSR-296 (Swing Application Framework) [15] as well as JSR-295.
Layout designs and visual forms have traditionally been a
stumbling block for java developers, with considerable expertise
required to hand-code convincing user interfaces. Netbeans design
tool dramatically simplifies this task with a high quality visual
designer. Precision placing of components is now carried out by
moving the component with the mouse to the desired location and
adjusting behaviour and alignment via intelligent guides that cue at
appropriate locations during the design process.

In Netbeans GUI designer the palette is a standard holding area for
common components used in creating a standard GUI. It allows the
user to select components from a set of default Swing components
and drag and drop them onto the canvas and thus create an effective
user interface. An important capability of the designer is the ability
to extend the palette with custom components. Appropriately
packaged, the custom components can be visually assembled into
client applications as it they were standard swing components. A
set of standard components, bound to the domain model, can be
defined and loaded onto a Netbeans palette. These components can provide stock set view of domain
artefacts, facilitating extremely rapid IM applications construction. Among the views created are:

• BuddyListView: A tree structure showing a users buddy list. The ability to add users, remove

users and a group management feature were all provided by this visual component.

• ConnectionView: Manages the user profile settings – server name, authentication details etc..

• ConversationView: This view was used to house a one to one text based conversation. In the
lower pane the user can type messages and send them to the buddy currently in the

conversation. A copy of the message is sent to the upper pane. Incoming messages from the
buddy are displayed also in this pane allowing a user see a full history of the current chat as it
is occurring.

Figure 3: Selected Views

• GroupConversationView: This view is created to house the multi user chat feature of the IM
client. A lower and upper pane similar to the conversation view’s panes are utilised to keep a
history of the conversation. A panel to the upper right hand side is used to keep a track of the
current participants in the chat room.

• MediaView: The media view is used to house a one to one media based conversation with
another user of the application. Buttons are provided to choose between Audio Only, Video
only and Full Media Conversation. Panes similar to the conversation pane are utilised to hold
a simultaneous text based chat conversation.

• LoginView: This view provides the means for the user to enter their credentials. A username
and password field is provided as well as information about the server that they wish to
connect to.

• PresenceView: This view allows the user to dynamically change their online presence so that
other IM users can see if they are available, away, busy or a custom presence message.

7. Patterns

Realising graphical user interface applications can be a particularly complex design and development
activity. GUI components are difficult to configure, contain multiple event interfaces and often
embody complex interdependencies that will quickly overwhelm the cleanest design. Separation of
concerns is paramount, but choosing which concerns to isolate and how the isolation is achieved can
be taxing. A venerable design pattern – Model View Controller – has been a mainstay of GUI
application design for many years and has been partly or fully incorporated into a range of GUI
frameworks [16]. MVC is now most commonly encountered in Web application frameworks [17]. A
recent review of GUI patterns – and a recasting of MVC into a modern GUI context [16] have yielded
a refinement called Model View Presenter (MVP). This pattern has been adopted into the IM
framework, specifically to relate the views (presented above) with the appropriate domain model
classes discussed earlier.

In MVP the model is an artefact drawn from the domain – the
IM model in our instance. The View is the GUI rendering classes
­ these are designed and configured to reside on the Netbeans
GUI designer palette. The View is “passive” [18], which implies
that there is no behaviour (event handlers, view synchronisation
logic) in the view code at all. These views are thus very low
maintenance, and can be totally maintained by a designer using a
standard visual tool (Netbeans Visual designer in this case). The
Presenter then has the task of binding the View to the Model –
and in particular is tasked with ensuing that the View
components are appropriately “armed” with the correct
behaviour logic.

Taking the buddy list as an example, BuddyListView is a visual component, available on the palette,
which can render a buddy list data structure. The BuddyListPresenter subscribes to a number of events
in the View. When an event of interest takes place, the Presenter decides on a course of action and
invokes methods on the model component. Changes are then made in the View to let the user know
that their interaction has resulted in a change occurring. This triad is replicated for each of the
views/domain model classes in the framework (Fig 3).

Applying MVP yields a comprehensive design context for the GUI components, enabling the rapid
visual construction of IM client applications. An IM client application can be created by
selecting/painting the appropriate visual components into a GUI application, and then customisation of
the presenters to achieve specific behaviour as appropriate. The developer experience, assuming a
general familiarity with MVP, is significantly simplified over creating a IM client directly using the
model classes themselves. MVP, combined with the domain model, delivers a robust event model,
appropriately configured and primed visual components enabling interesting and innovative IM client
applications to be defined, tuned and tested within a high quality development environment.

Figure 4: MVP BuddyList Triad

8. Applications

The model and it’s in built flexible component rendered within the Netbeans palette, facilitates the
rapid creation and development of IM based service suites. This allows for several types of
applications to be rapidly developed as derivatives of the standard IM model. These could be
innovative, but conventional, IM applications, or they could be clients offering specific collaboration
facilities layered on top of the IM infrastructure and model. Avatar based chat rooms, customer service
bots, presence triggered meeting clients or interesting integrations into calendaring or email systems
could be rapidly prototyped.

Besides more conventional applications, the components could be used in a collaboration or
monitoring role. For instance a security camera monitoring application – configured as a set of IM
clients – could be assembled rapidly. An application of this nature could be quickly put together and
provide a cheap perhaps short term solution to a problem. Furthermore, the components could be
deployed to augment an existing application with IM capabilities. For instance a Customer
Relationship Management application could be modified to incorporate IM capabilities relatively
easily, enabling presence, messaging and even media communications taking advantage of the
additional contextual information available with the host application.

9. Implementation

During the development of the framework a set of open standards and components was selected as part
of the initial implementation. These included Openfire [19], which is a real time XMPP based
collaboration server, Smack [20] an open source java XMPP library, JMF [21] a framework for media
communications in Java. These three technologies delivered a useful, open source and largely reliable
test bed on which to evolve the components. Bridge [10] is the key design pattern deployed in the
implementation. This enables the model to be cleanly decoupled from the implementation and thus
alternative bindings developed as additional protocols, codecs and standards are tackled. The model
developed in conjunction with Bridge thus allows the implementation to vary quite significantly
depending on critical project factors such as time, money and resources.

10. Conclusion

This paper explored the viability of applying Domain Driven Design, Interface Oriented Design and
the Model View Presenter design pattern to engineer an elegant yet powerful component set to support
the development of Instant Messaging Graphical User Interface client applications. The components
hide considerable complexity, yet enable interesting variations on an IM client to be rapidly
constructed within a high quality Integrated Development Environment (Netbeans). These IM
components become useful and interesting building blocks for a broad range of communications
applications – either standalone variations on IM functionality, innovative new areas not necessarily
considered within the remit of IM and also as a component set that can augment an existing
application.

Acknowledgements:
This research activity is funded under the EU IST FP7 project, Autonomic
Internet (Grant agreement no.:216404). Some contributions to this paper
have been sponsored by Science Foundation Ireland (SFI) under grant number
03/CE3/I405.

References

[1] IM vs. Email with Different users. [online]. Available at:
http://communication.howstuffworks.com/im-and-email2.htm [Accessed on 31-JUL-2008]

[2] MSN Games. [online]. Available at:
http://zone.msn.com/en/general/article/generalmessengergames.htm [Accessed 31-JUL-2008]

[3] Zimbie. [online]. Available at: http://www.zimbie.com/ [Accessed on 1-JUL-2008]
[4] Google Talk. [online]. Available at: http://www.google.com/talk/ [Accessed on 15-JUL-2008]
[5] MSN Messenger. [online]. Available at: http://webmessenger.msn.com/ [Accessed on 15-

JUL-2008]
[6] Smack. [online]. Available at: http://www.igniterealtime.org/projects/smack/index.jsp

[Accessed on 1-JUL-2008]
[7] XMPP Schemas [online]. Available at: http://www.xmpp.org/schemas/ [Accessed on 31-

JUL-2008]
[8] Kaisler, Stephen H., 2005. Software Paradigms. Great Britain: Wiley.
[9] Evans, Eric., 2004. Domain Driven Design: Tackling Complexity in the Heart of Software.

United States of America: Addison Wesley.
[10] Holub, Allen., 2004. Learning Design Patterns by Looking at Code. United States of America:

Apress.
[11] Pugh, Ken., 2006. Interface Orientated Design. United States of America: Pragmatic Bookshelf.
[12] JSR-295: Beans Binding. [online]. Available at: http://jcp.org/en/jsr/detail?id=295 [Accessed on

16-JUL-2008]
[13] Netbeans IDE [online]. Available at http://www.netbeans.org/ [Accessed 27-JUL-2008]
[14] Java GUI’s and Project Matisse Learning Trail [online]

http://www.netbeans.org/kb/articles/matisse.html [accessed on 29-JUL-2008]
[15] JSR-296: Swing Application Framework. [online]. Available at: http://jcp.org/en/jsr/detail?

id=296 [Accessed on 16-JUL-2008]
[16] Fowler, Martin., 2006. GUI Architectures. [online] Available at:

http://martinfowler.com/eaaDev/uiArchs.html [Accessed 02-JUL-2008]
[17] Spring Framework. [online]. Available at: http://www.springframework.org/ [Accessed on 19-

JUL-2008]
[18] Fowler, Martin,. Passive View. [online]. Available at:

http://martinfowler.com/eaaDev/PassiveScreen.html [Accessed on 30-JUL-2008]
[19] Openfire Server [online]. Available at: http://www.igniterealtime.org/projects/openfire/

[Accessed on 12-JUN-2008]
[20] Smack. [online]. Available at: http://www.igniterealtime.org/projects/smack/index.jsp

[Accessed on 1-JUL-2008]
[21] Java Media Framework [online]. Available at: http://java.sun.com/products/java-media/jmf/

[Accessed on 10-JUN-2008]

	A Model for IM and Media Driven Communication Services

