
A HYBRID ARCHITECTURAL STYLE FOR COMPLEX HEALTHCARE SCENARIOS

Leigh Griffin1, Christopher Foley.1, and Eamonn de Leastar1

1Waterford Institute of Technology, Cork Road, Waterford, Ireland.
{lgriffin, ccfoley, edeleastar} @ tssg.org

In classic software engineering, a successful software architecture arises from functional and non-functional requirements analysis,
modeling, design elaboration and implementation phases, incorporating key trade-offs and constraints. This paper proposes an
alternative approach, informed by deep insights gained from understanding successfully deployed architectural styles in two key
domains: highly scalable, resilient web applications; and robust presence and messaging systems. We propose that the challenges and
complexities within the healthcare domain can be successfully addressed with this approach. Specifically, the REST architectural style
with its focus on resource oriented architecture, and the Jabber protocol set and its associated messaging and presence infrastructure.
These two approaches have been successfully implemented on a global scale, have been bound to legacy informations systems, and have
demonstrated an ability to evolve to match the most complex organizations. The approaches are complimentary, but not without
contradictions. This paper discusses these contradictions and lays out a set of challenges that, if successfully addressed, can yield a
flexible, powerful and resilient architecture within a highly challenging domain.

Index Terms—REST, healthcare, communications software, distributed systems.

1 Introduction

Modern hospitals within Ireland face daily problems when it
comes to inter-department communications. A simple request
for information between departments can suffer considerable
latency and be highly variable in terms of quality and delivery.
This paper proposes an architecture which could decrease the
turnaround in information exchange between departments,
offer controlled data sharing within a hospital environment
and ultimately improve the quality of care for the patient.
This paper is broken into 8 sections. Section 1 is this
introduction. Section 2 describes a typical scenario within an
Irish hospital setting. Section 3 “takes a systems of systems”
view on the hospital environment from a REST perspective.
Section 4 examines a means for facilitating communications
through XMPP. Section 5 looks at the application of REST
and XMPP principles to the scenario. Section 6 looks at the
challenges that such a hybrid approach raises. Section 7
discusses related work. Section 8 is the conclusion.

2.1 Scenario

A patient arrives at a hospital A&E. The receptionist looks up
the patients A number (everyone who has ever been in this
particular hospital has this number) and creates an admission
document, notifying the triage nurse within the A&E that
another patient has arrived. A request is sent to the archives
department to retrieve the paper version of the patients known
medical history chart.

When it is the patients turn, the triage nurse assesses the
patient and prioritises the patients care. A temporary chart is
used (while the full medical history chart is requested) and
initial vitals and visual assessment notes are added. The triage
nurse makes the report and depending on the priority assigned,
the patient will be seen immediately or in turn. The report is

left in the on duty doctors drop box.

The doctor, when available, takes the patients report and sees
the patient. This report will form the basis of the doctors
observations and if the doctor deems it necessary the patient is
admitted to the hospital. A ward most appropriate to their
current condition is selected and the patient assigned to it. The
doctor makes a phone call to ensure this ward has the capacity
for another patient, and if it does, a porter is called to transfer
the patient. The current matron in charge of the ward at the
present shift time is charged with admitting the patient upon
receipt from the porters. Finally the doctor adds to the triage
nurses report requesting tests ranging from Blood Pressure, to
Urine analysis to toxology reports to be completed upon
admission to the ward. This chart along with the patient are
transferred by the porters to the ward.

On admittance to the ward, the matron is responsible for
allocating a bed to the patient depending on factors such as
medical insurance and need for privacy or isolation. A doctor
is assigned, by the matron, to the patient. The doctor is
notified immediately either through a desk phone, a beeper or
a mobile phone depending on factors such as the urgency of
the case and his location within the building. The matron at
this point in time has received the full medical history from
the archives department and the matron combines the
temporary A&E charts with the full medical history. A ward
nurse is assigned the tests requested by the admitting doctor
and the matron creates further tests that are deemed relevant
based on the full medical history that is now made available.

The ward nurse reads the A&E chart and knows the tests that
need to be performed. All test data is recorded on the patients
chart and the samples taken are labeled and where appropriate
tests are completed on the spot and the nurse records this data.
The nurse contacts the matron and the doctor immediately if

any abnormal results appeared in the initial testing. The rest of
the samples are taken to the lab for analysis by the nurse. The
technician responsible for these results is notified of the
urgency of the case and when the results are available, they
are faxed or rang through to the nurse who requested the
testing.
The doctor, upon arrival can see the reports and patients
history chart which together gives a detailed account of the
patients current state and past history respectively. After a first
hand investigation of the patient, a prognosis is made and a
care plan assembled. The doctor communicates this care plan
to the matron nurse who is responsible for assigning each shift
the tasks outlined in the care plan. At the end of every shift a
handover occurs whereby a group meeting between the ending
shift and the next starting shift happens. Doctors and nurses on
the ward are required to attend as the transition is important
for the well being of the patient and the execution of the care
plan. This handover occurs at the end of every 12 hour shift.

When the patient is discharged from the ward, a final report is
created and added to the patients medical history and the
archives department notified that the updated chart is ready to
be collected.

2.2 Use Case Model

In Figure 1 we identify the actors involved, and the
interactions that occur within use cases identified in this
scenario. In Section 2.3, we take two interacting use cases,
Preliminary Investigation and the Test Request, expanding on
them with a technological perspective. These use cases are
described in an idealised environment equipped with a suitable
software architecture. This architecture is elaborated in the
remainder of the paper.

 Figure 1 Use Case Model

2.3 Expanded Use Case

The doctor receives a communication on his PDA informing
him that a patient has been allocated to his queue and that he
has been added to a new care group for this patient – an active
list of the healthcare professionals dealing with the patient. A
flag appears next to the group showing how urgent the case is.
Depending on the seriousness, the doctor will see the patient
immediately or when the patients turn in the queue arrives.

When ready, the doctor takes out his PDA and checks the
contents of the care group. He notes two files, the patients full
medical history, and his temporary chart containing a short
detailed overview from the triage nurse that attended the
patient already. He opts to read the short overview as the
detailed medical history would be overwhelming at this point.

The patient is seen and assessed. The doctor requests that a
nurse come along and take the patients blood pressure and
glucose level. The doctor in the meantime goes to treat an
urgent case. Upon return the doctor finds in the care group,
test results that the nurse has uploaded. The doctor makes
some notes on his laptop and an initial prognosis and
assumption as to the cause of the patients illness is delivered.
A decision is taken to keep the patient in for observation and a
consultation with a specialist.

The doctor accesses a service showing him the available beds
in the ward that he feels matches the patients condition the
best. A service request is sent to the matron of the ward
requesting the bed and this resource is removed from the
available bed's service in case a double booking is made. The
matron, who's ward the patient will be placed in, is added to
the care group which from now on in will consist of the care
team responsible for issuing and following a care plan for the
patient. The matron is given the management rights to this
group as the principle care administrator, as it is now the
matrons role to allocate ward nurses and appropriate
consultants to the care team.

The doctor uploads his report and creates several testing
services that he feels should be performed upon admission to
the ward. These services in turn will be handled and allocated
to nursing staff by the matron. Finally the doctor accesses the
porters service and sends a request for the patient to be moved
from A&E to the ward. The doctor proceeds to the care of the
next patient on his list.

3.1 System of Systems View

At one level this scenario seems amenable to a conventional
analysis, modelling and implementation based on classic
enterprise oriented tools and techniques. For instance, the
Rational Unified Process [1], with its six disciplines (Business
Modelling, Requirements, Analysis & Design,
Implementation, Test and Deployment) could yield a workable
model expressed in a variety of UML artefacts, accompanying
data dictionary and procedural documentation. Indeed there
would probably be a reasonable chance that such an

implementation could succeed in a limited context. Provided
the scenario as documented is accurate and the environment is
highly regulated and controlled, then it may even prove
moderately long lived. However, these are very significant
assumptions, unlikely to hold firm within a healthcare context.
Re-examining the scenario, on a deeper analysis it could be
argued that it is in fact a description of multiple information
systems, intersecting often in an ad-hoc and unpredictable
fashion. Each system is evolving independently of the other,
undergoing differing constraints and limitations, and most
likely underwritten by substantial legacy application
infrastructure.

This is in fact a “system of systems”, each of which
encompasses its own concerns, socio-technical practices and
independent development cycle. Such systems are among the
most challenging to analyse, model and implement. Indeed, if
one bears in mind the growing importance of pervasive
sources of information (sensors and other embedded sources
not explored in the scenario) then the problem becomes
considerably more complex. The US DoD sponsored Ultra
Large Scale Systems (ULS) [2] report charts this territory,
outlining a research agenda stretching well into this century.
In the ULS analysis, a recurring metaphor is the comparison
between a building and a city. Whereas a building is
“engineered”, amenable to consistent and repeatable best
practice in design and construction, a city is considerably
more complex. Cities are “not simply bigger systems: they
will be interdependent webs of software intensive systems,
people, policies, cultures, and economics”. These “systems of
systems” are radically different from conventional software
systems: they comprise “a dynamic community of
interdependent and competing organisms (in this case, people,
computing devices, and organisations) in a complex and
changing environment”. Taking a typical hospital and
applying this analogy, the hospital can be identified as a
system of systems. A hospital is made up of “systems” such as
the A&E department, X-Ray department, Surgical wards,
Medical wards, Theatre, Finance department, Record
department and many more.

Such systems pose serious challenges for traditional enterprise
and model-driven approaches - hence the ULS agenda to
investigate computation emergence, bio-inspired models,
policy driven development and other more exotic disciplines.
Whilst many of these disciplines are likely to achieve major
breakthroughs (perhaps in a 10-20 year time-scale, the agenda
for ULS research), this does not necessarily mean that highly
complex systems are beyond the reach of current technology.
In fact, there is one highly complex “systems of systems”,
complete with independently evolving constituent elements, in
some instances encapsulating diverse legacy information
systems and distributed across multiple organisational, legal
and technical boundaries. This is of course the Internet, the
most successful networked technology platform yet devised.

While the full stack of internet protocols is engineered to the
highest standard, and continuing to evolve to meet new
challenges [3], it could be argued that the network has evolved

above all into a services platform, with the World Wide Web
set of protocols [4] as a foundational specification for a truly
global platform. These protocols [5],[6],[7] have proven
themselves as resilient, scalable, robust and secure. Critically,
they are also comprehensible, easily understood, and embody
a set of principles that, if followed, enable services to be
constructed that are in tune with the scalable, independently
evolvable and robust nature of the network. It is possible to
construct an enterprise application across the network without
adhering to its principles [8][9], effectively building an
overlay network, re-purposing it with a new architecture.
These attempts have not been noticeably successful. However,
if the network is used as its designers intended, then it is
possible to construct outstandingly successful, integrated yet
modular and resilient services. These principles are known as
REST - Representational State Transfer [13] - and they
encapsulate the current best practice for building complex
“systems of systems” .

3.2 REST

Representational State Transfer or REST [13] is a set of
design criteria for distributed systems that stress component
interaction and scalability. It is not a specific architecture but
more a set of principles which one should adhere to make their
architecture RESTful. It is not dependant upon any particular
protocol and REST is not a standard per se. however it does
prescribe the use of standards, e.g.: HTTP, URL, XML,
HTML, + the full constellation of media formats and
standards.

The key principle of REST is the role played by resources. A
resource is anything that’s important enough to be referenced
as a thing in itself. REST principles can be summarised as:

• Uniquely Identified Resources; The URI is the name
and address of a resource. A resource must be
addressable.

• Uniform Interface; resources should only be
accessible via a constrained set of operations and
represented with a constraint set of content types

• Communicate Statelessly; this means that each
request must happen in complete isolation. The
request must contain all the necessary information
that the receiver needs to process it.

• Layered System; resource representations are
interconnected using URLs enabling a client to
progress through states.

• Cache; cached responses are proposed to improve
network efficiency

• Client-Server Pull; clients pull resource
representations from servers.

REST in itself is a high-level style that could be implemented
using many different technologies. HTTP is the predominant
instantiation of the REST uniform interface. As with all
architectural styles, there are advantages and disadvantages to
building RESTful architectures.

Some advantages

• General uniform interfaces
• Scalable component interactions
• Reduced need for resource discovery as resources are

inter-linked
• Not state dependent

Disadvantages
• Multiple client-server requests may impact network

performance
• If instantiating a REST architecture using HTTP as a

uniform interface raises problems around
asynchronous events being transferred to a client

4 Communications View

Reviewing the healthcare scenario again, an architecture to
realise key functions can clearly benefit from a RESTful
approach. However, there are also features that go beyond the
stateless, resource oriented nature of REST, requiring
additional core capabilities. These are most apparent in the
near real time communications required by the scenario. In the
communications, six key elements are important:

• A group (referred to as a care group) is assembled
around a specific task

• The current status/location, each member of this
group is visible to all of the group members.

• Depending on this status, messages can be exchanged
in near real time between group members

• Supplementing messages, files (images in particular)
can also be exchanged.

• Such conversations can be carried out on mobile
devices

• A log of all message and data traffic is readily
available

Historically, this would have been the realm of groupware
applications, which have evolved such features over
successive generations within the corporate realm [14]. With
the growth of the Internet and the strong reliance on open
protocols, these capabilities have been incorporated into
highly scalable Instant Messaging systems. The most
prominent and successful of these is the XMPP set of
standards[11], also known as Jabber. Jabber is built on five
key principles:

• Network—All Jabber domains that exchange
messages. A network must contain at least one
domain.

• Domain—A subset of the network containing all
entities that handle or belong to a domain. Provide
local control over parts of the Jabber network while
still communicating with users outside of the Jabber
domain.

• Server—A logical entity that manages a Jabber
domain.

• User—An entity representing a logical message
delivery endpoint. Users are managed on the server

with user accounts.

• Resource—An entity representing a particular
message delivery endpoint for a user. Jabber IM
clients play the role of Jabber resources.

Additionally, the protocol itself is based on fully open XML
Schema, with specific extension points clearly denominated.
These enable additional schema to be defined and, with
appropriate extensions to interested clients, the standardised
XMPP servers can seamlessly handle traffic with these
extension payloads.

Messaging systems constructed using the XMPP protocols
have some interesting similarities with the RESTFul
architectures discussed earlier. Both can be viewed as
replacements for earlier more heavyweight approaches, both
rely on the inherent properties of the underlying network
(DNS, TCP/IP protocols, URIs), and both embody relatively
simple principles that can be adapted and realised into highly
innovative services and applications that can scale
dramatically.

However, they both also differ substantially in other areas:
although they both use the concept of a resource, the
semantics of a resource is quite different for each. Whereas
REST relies on stateless communication, XMPP maintains a
single session to the communications server through which all
traffic passes. Finally, and perhaps most interestingly, REST is
an architectural style that can be realised using the HTTP set
of protocols. XMPP however, can not be regarded as an
architectural style as such, but is rather a highly successful
protocol set within the near real time communications domain.
Part of the challenge of this work is to “reverse engineer” a set
of principles from XMPP, and integrate them with the already
well formulated REST principles.

5.1 Application of RESTful Principles

This section looks to apply the REST principles described in
Section 3 to the expanded scenario specified earlier in Section
2. It also focuses on an XMPP implementation of the REST
principles and identifies the added value that this technology
brings when coupled with a RESTful approach.

The first task is to identify the main resources within the
system which would allow us hold, transfer and distribute key
data between the key actors. Figure 3 identifies a sample of
the resources which have been identified. A resource is shown
to have attributes. The value assigned to a resource attribute
may be a URI of another resource thus applying the ‘layered’
principle of REST, e.g. the attribute temporaryChart in the
patient resource has the value of the temporaryChart resource.

/medicalRecords/*

**
/medicalRecords/*

**

/patient/{Id}

name:
ID:A-Number
personalDetails
temporaryChart
medicalHistory
usergroup /patient/{Id}/temporaryChart

name:
ID:A-Number
requestedTests

/medicalRecords/patient/{Id}

name:
ID:A-Number
visits
sufferedFrom

/medicalTest/blood

completeBloodCellCount
bloodPressure
bloodOxygenLevel

/medicalTest/glucose

glucoseLevel

/medicalRecords/*

**

/doctor/{Id}

name:
schedule
department
personalDetails
patientQueue

/doctor/{Id}/patientQueue

queue: [{/patient/{Id},
priority}, {/patient/{Id},
priority},]

/doctor/{Id}/schedule

onSite:
onCall:
holidays:

Resource

Attributes

/patient/{Id}/usergroup

name:
ID:A-Number
assignedNurse
triageNurse
assignedDoctor
dataReadyIndicator
dataRequiredIndicator
wardMatron

/ward/{Id}

name:
patientType
bedRequests: [
/ward/{Id}/bedRequest, ...]
matron

/ward/{Id}/bedRequest

patient:
patientType
priority

Figure 2 Layered Resources

Figure 4 shows the sequence of events which may occur when
the scenario is realised. The TriageNurseService (not visible
in Figure 3 for readability reasons) does a PUT(i.e. modify) on
the doctor/patientQueue resource which assigns the patient to
a doctor with a priority setting. As part of this process a care
group is set up for that patient including the patient assigned
carers (e.g. nurse and doctor). Once this is set up all members
are subscribed to events which occur within this group. This is
built in real time functionality which XMPP provides.

The doctor gets the temporaryChart and does the first analysis,
which results in ordering of further tests. This ordering is done
by performing a PUT on the nurse/patientQueue resource and
also performing a PUT on the requestedTests attribute of the
patient/{Id}/temporaryChart resource. The Nurse can perform
the tests and do a POST (i.e. create new resources) for both
medicalTest/blood and medicalTest/glucose. From this point
the doctor needs to be notified again (see the Asynch
Notification in Fig 3) that the tests are completed and the
patient can be reassessed. The care group is updated indicating
that data is ready. This will in turn flag to the subscribed users
(i.e. doctor and nurse) that the results are ready.

The doctor can then reassess the patient based on the test
results. Based on the doctors prognosis, he can create a /ward/
{Id}/bedRequest resource for the ward which is appropriate.
This request can be handled by matron or ward responsible.
The matron is then added to the patient care group, as one of
the carers. The care group concept changes personnel (cares)
as the patient resource moves throughout the hospital
departments (systems of systems).

PUT(doctor/patientQueue)

DoctorService NurseService WardService

put(nurse/patientQueue)

get-resource
(patient/temporaryChart)

Do first analysis, order tests,
put-resource

(temporaryChart.orderedTests)

Perform
requestedTests

post-resource
(medicalTest/blood)

(medicalTest/glucose)

put-resource(/ward/{Id}/bedRequest)

Further analysis on test
results, request bed in Ward

TriageNurseService

post-resource
(patient/{Id}/usergroup

put-resource
(patient/{Id}/usergroup)

dataReadyIndicator

patient/{Id}/usergroup
update notification

Figure 3 Sequence Chart

Once the patient actually moves from A&E to the ward, then
the matron becomes the key driver of the patient’s care group.
The care group will be modified to exchange the A&E nurse
and doctor to ward nurse and doctor as careers for the patient.

5.2 XMPP view

This section looks to apply the key principles of XMPP
introduced in Section 4. Taking the systems of systems
approach, each system or department within the hospital
would be represented as a Jabber domain. A hospital network
would be created governing all of these domains allowing
inter department communications. Each domain would retain
its own autonomy at all times. A Jabber based server would be
installed, integrating seamlessly into any existing LDAP based
directory for user authentication. Each staff member within the
hospital would be registered with the Jabber server and be
represented as a User. A desktop computer, a laptop, a PDA or
a mobile phone would be used by a User as a Resource to gain
access to the Jabber network.

Taking the above scenario, the doctor receives an instant
message on his PDA letting him know that a patient has been
allocated to him and directs him to the web services
responsible for handling the patient and the data. On the
doctors contact list a new care group has been created with the
patients name as the group title. After assessing the patient,
the doctor wishes for some tests to be performed. On his roster
list he checks to see what nurses are listed as available. Those
down as busy are already occupied with a patient. When a
nurse is located the doctor opens a chat session with her and
outlines what he wants done. The nurse is sent a group
invitation and on her roster list a new group containing the
doctor has appeared. Tasked with these tests, one of which
involves an interaction with the lab, the nurse goes and carries
out her work. Bringing up the Lab Departments roster she

contacts an available technician and outlines what specific
tests need to be carried out. This technician is sent a group
request and joins the existing members in the roster. When the
test results are available, the technician sends a message to the
nurse informing her that the results are now available. Upon
delivery of this message, the technician has no further need to
be in the group and leaves on his own accord.
When the doctor receives the test results and decides that the
patient needs to be kept in for observation, he opens a chat
with the matron of the destination ward. The matron is added
to the patient group and given full admin rights. The doctor
finally contacts the porter requesting that the patient be
moved. Having now completed all requested actions in
relation to the patient, the doctor leaves the patient group and
moves on to the next task at hand.

6. Challenges of a hybrid approach

Successfully merging two architectural styles poses some
significant challenges from a development perspective. Four
challenges for developing this hybrid style have been
identified:

• Incorporate RESTful approaches into XMPP. The
styles and principles laid down by REST would be
brought into XMPP by it's extensible nature.

• URL endpoints chain into XMPP. Looking at the
opposite direction, have an implementation of REST
used to stimulate XMPP. Services directing to URL
endpoints would be used as the trigger for XMPP
messages.

• Resources. Both styles pose two different concepts of
a resource which were shown in Sections 3 and 4. An
XMPP resource would need to be treated as a REST
resource or vice versa. A common resource definition
and usage is vital for a hybrid model to succeed

• “Stateless-Session” Hybrid. The Stateless world of
HTTP and the Session based world of XMPP could
be combined to form a hybrid “stateless-session” of
sorts

7. Related Work

The merging of two disparate technologies as proposed in this
paper takes it's inspiration from the merging of P2P and SOA
technologies. In particular the work carried out by [15] which
saw dynamic group orientated service composition. The HEA
Serving Society project is also addressing the area of service
provision and communications infrastructure for complex
health-care scenarios.

8. Conclusion

Engineering complex systems poses considerable risks. The
industry is littered with large scale failures, particularly in
publicly funded information systems. The REST architectural
style, coupled with an efficient messaging and presence
system, has the potential to deliver a robust and resilient
foundation for complex information systems. These two

approaches are particularly relevant where there is a high
priority on group collaboration, significant legacy information
systems and a critical, near real time, communications
requirement. Both styles are complimentary, but not without
contradictions and tensions. This paper proposes both as
providing a solid starting point for such a system, a baseline
infrastructure, a set of assumptions and a technical vocabulary
already imbued with appropriate architectural semantics. The
contradictions are also laid out, as a series of challenges,
which have the potential, if addressed and resolved, to yield a
powerful and resilient hybrid architectural style.

Acknowledgement: This work was part funded by the HEA
PTRLI Cycle 4 project Serving Society: Future
Communications Networks and Services.

8. References

[1] Mancin, Enrico et al., 2007. The IBM Rational Unified
Process for System z. IBM Redbooks.

[2] Ultra Large Scale Systems [online]. Available at
http://www.sei.cmu.edu/uls [Accessed on 25-OCT-2008]

[3] Ipv6 [online]. Available at http://www.ipv6.org/
[Accessed on 29-OCT-2008]

[4] IETF & W3C [online]. Available at
http://www.w3.org/Signature/ [Accessed on 29-

 OCT-2008]
[5] Hyper Text Transfer Protocol – HTTP/1.1, [online]

Available at http://www.ietf.org/rfc/rfc2068.txt [
 Accessed on 29-OCT-2008]

[6] Domain Name System Structure and Delegation [online]
 Available at http://www.isi.edu/in-notes/rfc1591.txt

[Accessed on 31-OCT-2008]
[7] XHTML 1.0 The Extensible Hypertext Markup

Language (Second Edition) [online] Available at
http://www.w3.org/TR/xhtml1/ [Accessed on 19-
OCT-2008]

[8] The Corbra programming language. [online] Available at
http://cobra-language.com/ [Accessed on 3-NOV-2008]

[9] Web Services at WC3. [online] Available at
http://www.w3.org/2002/ws/ [Accessed on 14-
NOV-2008]

[11] XMPP [online]. Available at: http://xmpp.org [Accessed
 on 29-OCT-2008]

[12] XMPP-Extensible Messaging and Presence Protocol:
 SOAP and REST get closer company [online].
 Available at:http://searchsoa.techtarget.com/

 tip/0,289483,sid26_gci1332820,00.html [Accessed on
 15-OCT-2008]

[13] Representational State Transfer (REST). [online]
 Available at:
 http://www.ics.uci.edu/~fielding/pubs/dissertation/
 rest_arch_style.htm [Accessed on 1 OCT-2008]

[14] Groove Networks [online] Available at
 http://www.groove.net/ [Accessed on 14-NOV-2008]

[15] Galatopoullos et al. (2008). “A P2P SOA enabling group
 collaboration through Service Composition”. Paper
 presented at ICPS '08, Sorrento, Italy.

