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Abstract

We study integer sequences and transforms that operate on them. Many of these transforms
are defined by triangular arrays of integers, with a particular focus on Riordan arrays and
Pascal-like arrays. In order to explore the structure of these transforms, use is made of
methods coming from the theory of continued fractions, hypergeometric functions, orthogonal
polynomials and most importantly from the Riordan groups of matrices. We apply the
Riordan array concept to the study of sequences related to graphs and codes. In particular,
we study sequences derived from the cyclic groups that provide an infinite family of colourings
of Pascal’s triangle. We also relate a particular family of Riordan arrays to the weight
distribution of MDS error-correcting codes. The Krawtchouk polynomials are shown to
give rise to many different families of Riordan arrays. We define and investigate Catalan-
number-based transformations of integer sequences, as well as transformations based on
Laguerre and related polynomials. We develop two new constructions of families of Pascal-
like number triangles, based respectively on the ordinary Riordan group and the exponential
Riordan group, and we study the properties of sequences arising from these constructions,
most notably the central coefficients and the generalized Catalan numbers associated to
the triangles. New exponential-factorial constructions are developed to further extend this
theory. The study of orthogonal polynomials such as those of Chebyshev, Hermite, Laguerre
and Charlier are placed in the context of Riordan arrays, and new results are found. We
also extend results on the Stirling numbers of the first and second kind, using exponential
Riordan arrays. We study the integer Hankel transform of many families of integer sequences,
exploring links to related orthogonal polynomials and their coefficient arrays. Two particular
cases of power series inversion are studied extensively, leading to results concerning the
Narayana triangles.
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Chapter 1

Introduction

1.1 Overview of this work

The central object of this work is the study of integer sequences, using both classical methods
and methods that have emerged more recently, and in particular the methods that have been
inspired by the concept of Riordan array. A leading theme is the use of transformations of
integer sequences, many of them defined by Riordan arrays. In this context, a transformation
that has attracted much attention in recent years stands out. This is the Hankel transform of
integer sequences. This is not defined by Riordan arrays, but in this work we study some of
the links that exist between this transformation and Riordan arrays. This link is determined
by the nature of the sequences subjected to the Hankel transforms, and in the main, we
confine ourselves to sequences which themselves are closely linked to Riordan arrays. This
aids in the study of the algebraic and combinatorial nature of this transform, when applied
to such sequences.

Many of the sequences that we will study in the context of the Hankel transform are
moments sequences, defined by measures on the real line. This builds a bridge to the world
of real analysis, and indeed to functional analysis. Associated to these sequences is the
classical theory of orthogonal polynomials, continued fractions, and lattice paths.

An important aspect of this work is the construction of so-called “Pascal-like” number
arrays. In many cases, we construct such arrays using ordinary, exponential or generalized
Riordan arrays, which are found to give a uniform approach to certain of these constructions.
We also look at other methods of construction of Pascal-like arrays where appropriate, to
provide a contrast with the Riordan array inspired constructions.

The plan of this work is as follows. In this Introduction, we give an overview of the work
and outline its structure.

In Chapter 2 we review many of the elements of the theory of integer sequences that
will be important in ensuing chapters, including different ways of defining and describing
an integer sequence. Preparatory ground is laid to study links between certain integer
sequences, orthogonal polynomials and continued fractions, and the Hankel transform. This
also includes a look at hypergeometric series. We finish this chapter by looking at different
ways of defining triangular arrays of integers, some of which are simple Pascal-like arrays.
Illustrative examples are to be found throughout this chapter.
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In Chapter 3, based on the published work [19], we explore links between the cyclic
groups, integer sequences, and decompositions of Pascal’s triangle. The circulant nature of
the associated adjacency matrices is exploited, allowing us to use Fourier analysis techniques
to achieve our results. We finish by looking at the complete graphs as well.

In Chapter 4, we review the notion of Riordan group, and some of its generalizations.
Examples are given that will be used in later chapters. The chapter ends by looking at the
notion of production matrices.

In Chapter 5, we briefly introduce the topic of the so-called “Deleham DELTA con-
struction.” This method of constructing number triangles is helpful in the sequel. To our
knowledge, this is the first time that this construction has been analyzed in the manner
presented here.

In Chapter 6, based on the published article [15], we study certain transformations on
integer sequences defined by Riordan arrays whose definitions are closely related to the
generating function of the Catalan numbers. These transformations in many cases turn out
to be well-known and important. Subsequent chapters explore links between these matrices
and the structure of the Hankel transform of certain sequences.

In Chapter 7 we give an example of the application of the theory of Riordan arrays to
the area of MDS codes. This chapter has appeared as [20].

In Chapter 8, based on the published paper [18], we apply the theory of exponential Ri-
ordan arrays to explore certain binomial and factorial-based transformation matrices. These
techniques allow us to easily introduce generalizations of these transformations and to ex-
plore some of the properties of these new transformations. Links to classical orthogonal
polynomials (e.g., the Laguerre polynomials) and classical number arrays are made explicit.

In Chapter 9.1 we continue to investigate links between certain Riordan arrays and or-
thogonal polynomials. We also study links between exponential Riordan arrays and the
umbral calculus. This chapter has appeared as [22].

In Chapter 10 we use the formalism of Riordan arrays to define and analyze certain
Pascal-like triangles. Links are drawn between sequences that emerge from this study and
the reversion of certain simpler sequences. We finish this chapter by looking at alternative
ways of constructing Pascal-like triangles, based on factorial and exponential methods. In
this section we introduce and study the notion of sequence-specific generalized exponential
arrays. An earlier version of this chapter has appeared as [16].

In Chapter 11 we continue the exploration of the construction of Pascal-like triangles, this
time using exponential Riordan arrays as the medium of construction. In the final section
we briefly indicate how some of the methods introduced in the final section of Chapter 10
can be used to build a family of generalized Narayana triangles. An earlier version of this
chapter has appeared as [17].

In Chapter 12 we give a brief introduction to the theory of the Hankel transform of
integer sequences, using relevant examples to prepare the ground for further chapters.

In Chapter 13 we extend the study already commenced in Chapter 11, and we also look
at the Hankel transforms of some of the sequences that emerge from this extension.

In Chapter 14 we calculate the Hankel transform of sequences related to the central
trinomial coefficients, and we conjecture the form of the Hankel transform of other associated
sequences. Techniques related to Riordan arrays and orthogonal polynomials are used in
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this chapter. Elements of this chapter have been presented at the Applied Linear Algebra
(ALA2008) conference in honour of Ivo Marek, held in the University of Novi Sad, May
2008. A forthcoming paper based on this in collaboration with Dr. Predrag Rajković and
Dr. Marko Petković has been submitted to the Journal of Applied Linear Algebra.

The author wishes to acknowledge what he has learnt through collaborating with Dr.
Predrag Rajković and Dr. Marko Petković, both of the University of Nǐs, Serbia. This
collaboration centred initially on Hankel transform methods first deployed in [61], and sub-
sequently used in [188], as well as in the chapters concerning the calculation of the Hankel
transform of integer sequences.
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Chapter 2

Preliminary Material

2.1 Integer sequences

We denote by N the set of natural numbers

N = {1, 2, 3, 4, . . .}.

When we include the element 0, we obtain the set of non-negative integers N0, or

N0 = {0, 1, 2, 3, 4, . . .}.

N0 is an ordered semigroup for the binary operation + : N0 × N0 → N0. N0 is a subset of
the ring of integers Z obtained from N0 by adjoining to N0 the element −n for each n ∈ N,
where −n is the unique element such that n+ (−n) = 0.
By an integer sequence we shall mean an element of the set ZN0 . Regarded as an infinite
group, the set ZN0 is called the Baer-Specker group [57, 199].
Thus a (one-sided) integer sequence a(n) is a mapping

a : N0 → Z

where a(n) denotes the image of n ∈ N0 under this mapping. The set of such integer
sequences ZN0 inherits a ring structure from the image space Z. Thus two sequences a(n)
and b(n) define a new sequence (a+ b)(n) by the rule

(a+ b)(n) = a(n) + b(n),

and similarly we obtain a sequence (ab)(n) by the rule

(ab)(n) = a(n)b(n).

The additive inverse of the sequence a(n) is the sequence with general term −a(n).
An additional binary operation, called convolution, may be defined on sequences as fol-

lows:

(a ∗ b)(n) =
n∑

k=0

a(k)b(n− k).

5



We then have a ∗ b(n) = b ∗ a(n). In addition, the sequence δn = 0n = (1, 0, 0, 0, . . .) plays a
special role for this operation, since we have a ∗ δ(n) = a(n) for all n.
A related binary operation is that of the exponential convolution of two sequences, defined
as
∑n

k=0

(
n
k

)
a(k)b(n− k).

Frequently we shall use the notation an for the term a(n). For a sequence an, we define
its binomial transform to be the sequence

bn =
n∑

k=0

(
n

k

)
ak.

This transformation has many interesting properties, some of which will be examined later.
In the sequence, we shall use the notation B to denote the matrix with general term

(
n
k

)
.

Integer sequences may be characterized in many ways. In the sequel, we shall frequently
use the following methods:

1. Generating functions.

2. Recurrences.

3. Moments.

4. Combinatorial definition.

We shall examine each of these shortly.

2.2 The On-Line Encyclopedia of Integer Sequences

Many integer sequences and their properties are to be found electronically on the On-Line
Encyclopedia of Sequences [205, 206]. Sequences therein are referred to by their “A” number,
which takes the form of Annnnnn. We shall follow this practice, and refer to sequences by
their “A” number, should one exist.

2.3 Polynomials

We let R denote an arbitrary ring. Let x denote an indeterminate. Then an expression of
the form

P (x) =
n∑

k=0

akx
k,

where ai ∈ R for 0 ≤ i ≤ n is called a polynomial in the unknown x over the ring R. If
an 6= 0 then n is called the degree of the polynomial P .

6



We denote by R[x] the set of polynomials over the ring R. The set of polynomials over R
inherits a ring structure from the base ring R. For instance, if P,Q ∈ R[x], where

P (x) =

nP∑
k=0

akx
k

and

Q(x) =

nQ∑
i=0

bix
i,

then we define P +Q ∈ R[x] as the element

(P +Q)(x) =

max(nP ,nQ)∑
j=0

(aj + bj)x
j,

where we extend either the ak or the bi by zero values as required.
A polynomial P (x) =

∑nP

k=0 akx
k is called monic if the coefficient of the highest order term

is 1.
A polynomial sequence with values in R[x] is an element of R[x]N0 . An example of an
important sequence of polynomials is the family of Chebyshev polynomials of the second
kind

Un(x) =

bn
2
c∑

k=0

(−1)k

(
n− k

k

)
(2x)n−2k.

The Chebyshev polynomials of the first kind (Tn(x))n≥0 are defined by

Tn(x) =
n+ 2 · 0n

2

bn
2
c∑

k=0

(−1)k

n− k + 0n−k

(
n− k

k

)
(2x)n−2k.

The Bessel polynomials yn(x) are defined by

yn(x) =
n∑

k=0

(n+ k)!

2kk!(n− k)!
xk

(see [108]). The reverse Bessel polynomials are then given by

Θn(x) =
n∑

k=0

(n+ k)!

2kk!(n− k)!
xn−k.

2.4 Orthogonal polynomials

By an orthogonal polynomial sequence (pn(x))n≥0 we shall understand [53, 99] an infinite
sequence of polynomials pn(x), n ≥ 0, with real coefficients (often integer coefficients) that

7



are mutually orthogonal on an interval [x0, x1] (where x0 = −∞ is allowed, as well as
x1 = ∞), with respect to a weight function w : [x0, x1] → R :∫ x1

x0

pn(x)pm(x)w(x)dx = δnm

√
hnhm,

where ∫ x1

x0

p2
n(x)w(x)dx = hn.

We assume that w is strictly positive on the interval (x0, x1). Every such sequence obeys a
so-called “three-term recurrence” :

pn+1(x) = (anx+ bn)pn(x)− cnpn−1(x)

for coefficients an, bn and cn that depend on n but not x. We note that if

pj(x) = kjx
j + k′jx

j−1 + . . . j = 0, 1, . . .

then

an =
kn+1

kn

, bn = an

(
k′n+1

kn+1

− k′n
kn

)
, cn = an

(
kn−1hn

knhn−1

)
.

Since the degree of pn(x) is n, the coefficient array of the polynomials is a lower triangular
(infinite) matrix. In the case of monic orthogonal polynomials the diagonal elements of this
array will all be 1. In this case, we can write the three-term recurrence as

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), p0(x) = 1, p1(x) = x− α0.

The moments associated to the orthogonal polynomial sequence are the numbers

µn =

∫ x1

x0

xnw(x)dx.

We can find pn(x), αn and βn from a knowledge of these moments. To do this, we let ∆n be
the Hankel determinant |µi+j|ni,j≥0 and ∆n,x be the same determinant, but with the last row
equal to 1, x, x2, . . .. Then

pn(x) =
∆n,x

∆n−1

.

More generally, we let H

(
u1 . . . uk

v1 . . . vk

)
be the determinant of Hankel type with (i, j)-th

term µui+vj
. Let

∆n = H

(
0 1 . . . n
0 1 . . . n

)
, ∆′ = H

(
0 1 . . . n− 1 n
0 1 . . . n− 1 n+ 1

)
.

Then we have

αn =
∆′

n

∆n

−
∆′

n−1

∆n−1

, βn =
∆n−2∆n

∆2
n−1

.
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Given a family of monic orthogonal polynomials

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), p0(x) = 1, p1(x) = x− α0,

we can write

pn(x) =
n∑

k=0

an,kx
k.

Then we have
n+1∑
k=0

an+1,kx
k = (x− αn)

n∑
k=0

an,kx
k − βn

n−1∑
k=0

an−1,kx
k

from which we deduce
an+1,0 = −αnan,0 − βnan−1,0 (2.1)

and
an+1,k = an,k−1 − αan,k − βnan−1,k (2.2)

2.5 Power Series

Again, we let R denote an arbitrary ring. An expression of the form

p(x) =
∞∑

k=0

akx
k,

is called a (formal) power series in the indeterminate x. ak is called the k-th coefficient of
the power series. We denote by R[[x]] the set of formal power series in x over the ring R
[210]. R(x) is a ring. For instance, if

q(x) =
∞∑

k=0

bix
i,

then we can define the sum of p and q as

(p+ q)(x) =
∞∑

j=0

(aj + bj)x
j.

Example 1. We consider the power series
∑∞

k=0 x
k. Here, the k-th coefficient of the power

series is 1. If for instance x ∈ C is a complex number with |x| < 1, then it is known that

∞∑
k=0

xk =
1

1− x
.
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2.6 Ordinary generating functions

For a sequence an, we define its ordinary generating function (o.g.f.) to be the power series

f(x) =
∞∑

k=0

anx
n.

Thus an is the coefficient of xn in the power series f(x). We often denote this by

an = [xn]f(x).

Example 2. The sequence 0n. The sequence with elements 1, 0, 0, 0, . . . has o.g.f. given
by f(x) = 1.

Example 3. The sequence 1. The sequence with elements 1, 1, 1, 1, . . . has o.g.f.

f(x) =
∞∑

k=0

xk

which we can formally express as
1

1− x
.

We shall on occasion refer to this as the sequence (1n) or just 1n. We note that we have

n∑
k=0

(
n

k

)
0k = 1.

Thus the binomial transform of 0n is 1n. Similarly,

n∑
k=0

(
n

k

)
(−1)n−k0k = (−1)n.

Thus the inverse binomial transform of 0n is (−1)n. In general, we have the following chain
of binomial transforms :

· · · → (−2)n → (−1)n → 0n → 1n → 2n → · · ·

corresponding to the generating functions

· · · 1

1 + 2x
→ 1

1 + x
→ 1 =

1

1− 0x
→ 1

1− x
→ 1

1− 2x
→ · · ·

Example 4. Fibonacci numbers. The Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, . . . A000045
with defining recurrence

Fn = Fn−1 + Fn−2, F0 = 1, F1 = 1,

have o.g.f.
x

1− x− x2
.
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Example 5. Jacobsthal numbers. The Jacobsthal numbers Jn = J(n) = 2n

3
− (−1)n

3

A001045 have generating function
x

1− x− 2x2
.

They begin 0, 1, 1, 3, 5, 11, 21, . . .. The sequence J1(n) = 2n

3
+ 2 (−1)n

2
has o.g.f.

1− x

1− x− 2x2
.

This sequence begins 1, 0, 2, 2, 6, 10, 22, . . . A078008. The sequence with elements J(n +
1) + J1(n) form the Jacobsthal-Lucas sequence A014551. This sequence has o.g.f. given by

2−x
1−x−2x2 .

If A(x), B(x) and C(x) are the ordinary generating functions of the sequences (an),(bn)
and (cn) respectively, then

1. A(x) = B(x) if and only if an = bn for all n.

2. Let λ, µ ∈ Z, such that cn = λan + µbn for all n. Then

C(x) = λA(x) + µB(x).

3. If c = a ∗ b then C(x) = A(x)B(x) and vice versa.

If the power series f(x) =
∑∞

k=0 akx
k is such that a0 = 0 (and hence f(0) = 0), then

we can define the compositional inverse f̄(x) of f to be the unique power series such that
f(f̄(x)) = x. f̄ is also called the reversion of f . We shall use the notation f̄ = Revf for
this. We note that necessarily f̄(0) = 0.

Example 6. The generating function

f(x) =
x

1− x− x2

has compositional inverse f̄ given by

f̄(x) =

√
1 + 2x+ 5x2 − x− 1

2x
.

This is obtained by solving the equation

u

1− u− u2
= x

where u = u(x) = f̄(x). We note that the equation

u

1− u− u2
= x

has two formal solutions; the one above, and

ũ = −
√

1 + 2x+ 5x2 + x+ 1

2x
.

We reject this solution as it does not have a power series expansion such that ũ(0) = 0.
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2.7 Exponential generating functions

For a sequence (an)n≥0, we define its exponential generating function (e.g.f.) to be the power
series

f(x) =
∞∑

n=0

an

n!
xn.

In other words, f(x) is the o.g.f. of the sequence
(

an

n!

)
.

Example 7. exp(x) = ex is the e.g.f. of the sequence 1, 1, 1, . . ..

Example 8. cosh(x) is the e.g.f. of the sequence 1, 0, 1, 0, 1, 0, . . . with general term

(1 + (−1)n)

2
.

Example 9. 1
1−x

is the e.g.f. of n!

If A(x), B(x) and C(x) are the exponential generating functions of the sequences (an),(bn)
and (cn) respectively, then

1. A(x) = B(x) if and only if an = bn for all n.

2. Let λ, µ ∈ Z, such that cn = λan + µbn for all n. Then

C(x) = λA(x) + µB(x).

3. If cn =
∑n

k=0

(
n
k

)
akbn−k then C(x) = A(x)B(x) and vice versa.

Example 10. The Bessel function I0(2x) is the e.g.f. of the ‘aerated’ central binomial
numbers 1, 0, 2, 0, 6, 0, 20, 0, 70, . . . with general term

an =

(
n
n
2

)
(1 + (−1)n)/2.

Then the product exp(x)I0(2x) is the e.g.f. of the sequence

tn =
n∑

k=0

(
n

k

)
ak · 1 =

n∑
k=0

(
n

k

)
ak

since exp(x) is the e.g.f. of the sequence bn = 1. tn is the sequence 1, 1, 3, 7, 19, 51, 141, . . .
of central trinomial numbers, where tn = coefficient of xn in (1 + x+ x2)n.

We note that for n = 2m+ 1, the expression
(

n
n
2

)
has the value

Γ(2m+ 2)

Γ
(

2m+3
2

)2 .
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2.8 Generalized generating functions

We follow [226] in this section. Given a sequence (cn)n≥0, the formal power series f(t) =∑∞
k=0

fktk

ck
is called the generating function with respect to the sequence cn of the sequence

(fn)n≥0, where cn is a fixed sequence of non-zero constants with c0 = 1. In particular, f(t)
is the ordinary generating function if cn = 1 for all n, and f(t) is the exponential generating
function if cn = n!.

2.9 The Method of Coefficients

The method of coefficients [158, 157] consists of the consistent application of a set of rules
for the functional

[xn] : C[[x]] → C.

In the sequel, we shall usually work with the restriction

[xn] : Z[[x]] → Z.

For f(x) and g(x) formal power series, the following statements hold :

[xn](αf(x) + βg(x)) = α[xn]f(x) + β[xn]g(x) K1 (linearity)

[xn]xf(x) = [xn−1]f(x) K2 (shifting)

[xn]f ′(x) = (n+ 1)[xn+1]f(x) K3 (differentiation)

[xn]f(x)g(x) =
n∑

k=0

([yk]f(y))[xn−k]g(x) K4 (convolution)

[xn]f(g(x)) =
∞∑

k=0

([yk]f(y))[xn]g(x)k K5 (composition)

[xn]f̄k =
k

n
[xn−k]

(
x

f(x)

)n

K6 (inversion)

We note that the rule K3 may be written as

[tn]f(t) =
1

n
[tn−1]f ′(t).

Example 11. We extend the following result :

n∑
k=bn

2
c

(
k

n− k

)
n

k
= Fn+1 + Fn−1

of [158]. This identity is based on two facts :

log

(
1

1− t

)
=

∞∑
k=1

1

k
tk
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and the following identity, a consequence of the rules for the evaluation of Riordan arrays :∑
k

(
m+ ak

n+ bk

)
fk = [tn](1 + t)mf(t−b(1 + t)a) (b < 0).

We use the following fact.

[tn]
1

1− αt− βt2
=

bn
2
c∑

k=0

(
n− k

k

)
αn−2kβk. (2.3)

We now wish to evaluate the expression

n∑
k=bn+1

2
c

(
k

n− k

)
αkβn−kn

k
.

We have

n∑
k=bn+1

2
c

(
k

n− k

)
αkβn−k 1

k
= βn

n∑
k=bn+1

2
c

(
k

n− k

)(
α

β

)k
n

k

= βn[tn]

[
ln

(
1

1− α
β
y

)
|y = t(1 + t)

]

= βn[tn] ln

(
1

1− α
β
t− α

β
t2

)

=
βn

n
[tn−1]

α
β
(1 + 2t)

1− α
β
t− α

β
t2

=
βn

n

α

β
[tn−1]

1 + 2t

1− α
β
t− α

β
t2
.

Thus using Eq. (2.3), we obtain

n∑
k=bn+1

2
c

(
k

n− k

)
αkβn−kn

k
=

bn−1
2
c∑

k=0

(
n− k − 1

k

)
αn−kβk + 2

bn−2
2
c∑

k=0

(
n− k − 2

k

)
αn−k−1βk+1.

For α = β = 1, we retrieve the Fibonacci result above. For α = 1, β = 2, we obtain that
that for n > 0, we have

n∑
k=bn+1

2
c

(
k

n− k

)
2n−kn

k
= J(n+ 1) + J1(n)

the Jacobsthal-Lucas numbers (A014551).
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2.10 Lagrange inversion

Let F = C[[t]]. If f(t) ∈ F with f(t) =
∑∞

k=0 fkt
k and r is the minimum integer for which

fr 6= 0, then r is called the order of f(t). The set of formal power series of order r is denoted
by Fr. F0 is the set of invertible formal power series, that is, series f(t) for which a series
f−1(t) exists in F such that f(t)f−1(t) = 1.

One version of Lagrange inversion [157] is given by rule K6:

[tn]f̄k =
k

n
[tn−k]

(
t

f(t)

)n

.

If now we have
w(t) = tφ(w(t))

where φ ∈ F0, then if we define f by

f(y) =
y

φ(y)
,

we have f̄ = w and so

[tn]w(t) =
1

n
[tn−1]

(
t

f(t)

)n

=
1

n
[tn−1]φ(t)n.

Now let F ∈ F , and let w(t) = tφ(w(t)). Then

[tn]F (w(t)) =
1

n
[tn−1]F ′(t)φ(t)n.

Also, we have, for F, φ ∈ F ,

[tn]F (t)φ(t)n = [tn]

[
F (w)

1− tφ′(w)
|w = tφ(w)

]
.

Example 12. Generalized central trinomial coefficients. We wish to find the gener-
ating function of

[tn](1 + αt+ βt2)n,

the central trinomial coefficients (for the parameters α, β). We let F (t) = 1, and φ(t) =
1 + αt+ βt2. We have w = t(1 + αw + βw2), and so

w =
1− αt−

√
1− 2αt+ (α2 − 4β)t2

2βt
.

Thus

[tn](1 + αt+ βt2)n = [tn]

[
F (w)

1− tφ′(w)
|w = tφ(w)

]
= [tn]

[
1

1− t(α+ 2βw)
|w =

1− αt−
√

1− 2αt+ (α2 − 4β)t2

2βt

]

= [tn]

[
1√

1− 2αx+ (α2 − 4β)x2
|w =

1− αt−
√

1− 2αt+ (α2 − 4β)t2

2βt

]
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This shows that the required generating function of the generalized central trinomial coeffi-
cients is given by

1√
1− 2αx+ (α2 − 4β)x2

.

Example 13. The Riordan array (1, xc(x)). Anticipating the developments of Chapter
4, we seek to calculate the general terms of the Riordan array (1, xc(x)). Now

(1, xc(x)) = (1, x(1− x))−1.

Thus we let

φ(w) =
1

1− w

and so w = tφ(w) implies
w(1− w) = t.

We also let F (t) = tk and so F ′(t) = ktk−1. Then

[tn](w(t))k = [tn]F (w(t))

=
1

n
[tn−1]F ′(t)φ(t)n

=
1

n
[tn−1]ktk−1

(
1

1− t

)n

=
1

n
[tn−1]ktk−1

∞∑
i=0

(
−n
i

)
(−t)i

=
1

n
[tn−1]k

∞∑
i=0

(
n+ i− 1

i

)
ti+k−1

=
1

n
k

(
n+ n− k − 1

n− k

)
=
k

n

(
2n− k − 1

n− k

)
.

Adjusting for the first row, we obtain that the general term of the “Catalan” array

(1, xc(x))

is given by
k + 0n−k

n+ 0nk

(
2n− k − 1

n− k

)
.

2.11 Recurrence relations

Recurrence relations allow us to express the general term of a sequence as a function of
earlier terms. Thus we may be able to express the term an as a function of a0, a1, . . . , an−1

for all n ≥ r. r is called the order of the recurrence. The values a0, a1, . . . , ar−1 are called
the initial values of the recurrence.
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Example 14. The sequence defined by the recurrence

an = an−1 + an−2

with initial values a0 = 0, a1 = 1 is the Fibonacci sequence A000045 given by

an = F (n) =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

It is easy to calculate the o.g.f. of this sequence. Letting A(x) =
∑∞

n=0 anx
n, and

multiplying both sides of the recurrence by xn and summing for n ≥ 2, we find that

∞∑
n=2

anx
n =

∞∑
n=2

an−1x
n +

∞∑
n=2

an−2x
n.

Now
∞∑

n=2

anx
n =

∞∑
n=0

anx
n − a1x− a0 = A(x)− x,

while, for instance,

∞∑
n=2

an−1x
n = x

∞∑
n=1

anx
n = x(A(x)− a0) = xA(x).

Thus we obtain
A(x)− x = xA(x) + x2A(x)

or
A(x) =

x

1− x− x2
.

Thus the generating function of the Fibonacci numbers is x
1−x−x2 .

Example 15. The sequence defined by the recurrence

an = an−1 + 2an−2

with initial values a0 = 0, a1 = 1 is the Jacobsthal sequence A001045 given by

an = J(n) =
2n

3
− (−1)n

3
.

This sequence starts 0, 1, 1, 3, 5, 11, 21, . . .. The generating function of the Jacobsthal num-
bers is x

1−x−2x2 .

In the above two examples, the recurrence was linear, of order 2. The following example,
defining the well-known Catalan numbers A000108, is of a different nature.
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Example 16. The sequence defined by the recurrence

Cn =
n−1∑
i=0

CiCn−i−1

with C0 = 1 is the sequence of Catalan numbers, which begins 1, 1, 2, 5, 14, 42, ...... This
sequence has been extensively studied and has many interesting properties.
The generating function of the Catalan numbers is the function

c(x) =
1−

√
1− 4x

2x
.

We note that the series reversion of xc(x) is given by x(1 − x). One way to see this is to
solve the equation

uc(u) = x.

We do this with the following steps.

1−
√

1− 4u

2
= x

1−
√

1− 4u = 2x
√

1− 4u = 1− 2x

1− 4u = (1− 2x)2 = 1− 4x+ 4x2

4u = 4x− 4x2

u = x(1− x).

2.12 Moment sequences

Many well-known integer sequences can be represented as the moments of measures on the
real line. For example, we have

Cn =
1

2π

∫ 4

0

xn

√
x(4− x)

x
dx,

Cn+1 =
1

2π

∫ 4

0

xn
√
x(4− x)dx,(

2n

n

)
=

1

π

∫ 4

0

xn√
x(4− x)

dx,(
n
n
2

)
1 + (−1)n

2
=

1

π

∫ 2

−2

xn

√
4− x2

dx.

It is interesting to study the binomial transform of such a sequence. If the sequence an has
the moment representation

an =

∫ β

α

xnw(x)dx
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then we have

bn =
n∑

k=0

(
n

k

)
ak

=
n∑

k=0

(
n

k

)∫ β

α

xkw(x)dx

=

∫ β

α

n∑
k=0

xkw(x)dx

=

∫ β

α

(1 + x)nw(x)dx.

Note that the change of variable y = x+ 1 gives us the alternative form

bn =

∫ β

α

(1 + x)nw(x)dx =

∫ β+1

α+1

ynw(y − 1)dy.

Example 17. The central trinomial numbers tn = [xn](1+x+x2)n are given by the binomial

transform of the aerated sequence
(

n
n
2

)1+(−1)n

2
. Thus

tn =
1

π

∫ 2

−2

(1 + x)n

√
4− x2

dx

=
1

π

∫ 3

−1

xn

√
3 + 2x− x2

dx.

The r-th binomial transform of an is similarly given by∫ β

α

(r + x)nw(x)dx.

More generally, we have ∫ β

α

(r + sx)nw(x)dx =
n∑

k=0

(
n

k

)
rn−kskak.

Aspects of these general binomial transforms have been studied in a more general context in
[207].

Example 18. We consider the sequence 1, 3, 12, 51, 222, 978, . . . or A007854 with o.g.f.
2

3
√

1−4x−1
and general term

n∑
k=0

((
2n

n− k

)
−
(

2n

n− k − 1

))
2k =

n∑
k=0

2k + 1

n+ k + 1

(
2n

n− k

)
2k.
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We have

an =
3

2π

∫ 4

0

xn

9− 2x

√
4− x

x
dx+

1

2

(
9

2

)n

=
3

2π

∫ 4

0

xn

9− 2x

√
4− x

x
dx+

1

2

〈
δ 9

2
, xn
〉
.

We note that this sequence is the image of 2n by the Riordan array (c(x), xc(x)2). Thus an

is defined by a so-called “Sobolev” measure [150].

Example 19. The sequence 1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, . . . with general term

an = (2(n/2)− 1)!!
1 + (−1)n

2

where the double factorials (2n − 1)!! =
∏n

k=1(2k − 1) is A001147, counts the number of
perfect matchings in Kn, the complete graph on n vertices. We have [104]

an =
1√
2π

∫ ∞

−∞
xne−

x2

2 dx.

The e.g.f. of this sequence is ex2

2
.

Note that we have

(2n− 1)!! =
1√
2π

∫ ∞

0

xn e
−x

2

√
x
dx =

1√
2π

∫ ∞

−∞
x2ne−

x2

2 dx.

The binomial transform bn of an is given by

bn =
1√
2π

∫ ∞

−∞
(1 + x)ne−

x2

2 dx

=
1√
2π

∫ ∞

−∞
xne−

(x−1)2

2 dx,

which is A000085. This counts, for instance, the number of Young tableaux with n cells.
We note that the Hankel transform of this last sequence is given by

2(n
2)

n−1∏
k=1

k! =
n∏

k=0

k!2k.

This is A108400.

Anticipating Chapter 4 we can represent A001147 as the row sums of the exponential Riordan
array

[
e−x, x(1 + x

2
)
]

which begins

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
1 −1 1 0 0 0 . . .
−1 0 0 1 0 0 . . .
1 2 −3 2 1 0 . . .
−1 −5 5 −5 5 1 . . .
...

...
...

...
...

...
. . .


.
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This is A154556.

2.13 The Stieltjes transform of a measure

The Stieltjes transform of a measure µ on R is a function Gµ defined on C \ R by

Gµ(z) =

∫
R

1

z − t
µ(t).

If f is a bounded continuous function on R, we have∫
R
f(x)µ(x) = − lim

y→0+

∫
R
f(x)=Gµ(x+ iy)dx.

If µ has compact support, then Gµ is holomorphic at infinity and for large z,

Gµ(z) =
∞∑

n=0

an

zn+1
,

where an =
∫

R t
nµ(t) are the moments of the measure. If µ(t) = dψ(t) = ψ′(t)dt then

ψ(t)− ψ(t0) = − 1

π
lim

y→0+

∫ t

t0

=Gµ(x+ iy)dx.

If now g(x) is the generating function of a sequence an, with g(x) =
∑∞

n=0 anx
n, then we can

define

G(z) =
1

z
g

(
1

z

)
=

∞∑
n=0

an

zn+1
.

By this means, under the right circumstances we can retrieve the density function for the
measure that defines the elements an as moments.

2.14 Orthogonal polynomials as moments

Many common orthogonal polynomials, suitably parameterized, can be shown to be moments
of other families of orthogonal polynomials. This is the content of [119, 120]. This allows us to
derive results about the moment sequences in a well-known manner, once the characteristics
(for instance, the three term recurrence relation) of the generating family of orthogonal
polynomials are known. Such characteristics of common orthogonal polynomials may be
found in [126]. This approach has been emphasized in [132], for instance, in the context of
the evaluation of the Hankel transform of sequences.

Example 20. A simple example [21, 134] of this technique is as follows. The reversion of
the generating function x

1+αx+βx2 generates the sequence with general term

un =

bn−1
2
c∑

k=0

(
n− 1

k

)
Ckα

n−2k−1βk
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(see Chapter 10). We are interested for this example in the Hankel transform of un+1. For
this, we cast un+1 into hypergeometric form :

un+1 = αn
2F1

(
1

2
− n

2
,−n

2
;
4β

α2

)
.

Applying the transformation

2F1

(
α,

1

2
+ α;

1

2
+ β; z2

)
=

1

(1− z)−2α 2F1

(
2α, β; 2β;

2z

z − 1

)
,

we obtain

un+1 = (α− 2
√
β)n

2F1

(
−n, 3

2
; 3;

4
√
β

2
√
β − α

)
.

This exhibits un+1 as a Meixner polynomial. Meixner polynomials are moments for the
Jacobi polynomials [119, 251]. Hence we can readily compute the Hankel determinant of

un+1 (it is equal to (α(α− β))(
n+1

2 )).

2.15 Lattice paths

Many well-known integer sequences can be represented by the number of paths through
a lattice, where various restrictions are placed on the paths - for example, the types of
allowable steps. The best-known example is the Catalan numbers, which count Dyck paths
in the plane.

Lattice paths can be defined in two distinct but equivalent ways - explicitly, as a sequence
of points in the plane, or implicitly, as a sequence of steps of defined types (we can find the
points in the plane by “following” the steps).

Thus we can think of a lattice path [143] as a sequence of points in the integer lattice Z2,
where a pair of consecutive points is called a step of the path. A valuation is a function on
the set of possible steps Z2 × Z2. A valuation of a path is the product of the valuations of
its steps.
Alternatively, given a subset S of Z× Z we can define a lattice path with step set S to be a
finite sequence Γ = s1s2 · · · sk where si ∈ S for all i [56].
Well known and important paths include Dyck paths, Motzkin paths and Schröder paths.

Example 21. A Dyck path is a path starting at (0, 0) and ending at (2n, 0) with allowable
steps (1, 1) (a “rise”) and (1,−1) (a “fall”), which does not go below the x-axis. Thus
S = {(1, 1), (1,−1)} Such paths are enumerated by the Catalan numbers Cn. The central
binomial coefficients

(
2n
n

)
count all such paths, when the restriction of not going below the

x-axis is lifted (such paths are then called Grand-Dyck paths or binomial paths [178]).

Example 22. The n-th central binomial coefficient, [xn](1 + x + x2)n, counts the number
of lattice paths starting at (0, 0) and ending at (n, 0), whose allowed steps are (1, 0), (1, 1)
and (1,−1). Thus in this case S = {(1, 0), (1, 1), (1,−1)}. The Motzkin numbers mn =∑bn

2
c

k=0

(
n
2k

)(
2k
k

)
= 2F1(

1−n
2
, −n

2
; 2; 4) count the number of such paths that do not descend

below the x-axis. A Dyck path is clearly a special case of a Motzkin path.
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Example 23. A Schröder path is a path that starts at (0, 0), ends at (2n, 0), and has
allowable steps (1, 1), (2, 0) and (1,−1). The Schröder numbers Sn = 2F1(1−n, n+2; 2;−1)
count the number of such paths that do not go below the x-axis.

Paths may be “coloured”, that is, for each step s ∈ S, we can assign it an element from a
finite set of “colours”.
Families of disjoint paths play an important role in the evaluation of certain important
determinants, including Hankel determinants [223]. For instance in the case [151] of the

Catalan numbers Cn, if we define H
(k)
n = |Ck+i+j|0≤i,j≤n−1 then this determinant is given by

the number of n-tuples (γ0, . . . , γn−1) of vertex-disjoint paths in the integer lattice Z × Z
(with directed vertices from (i, j) to either (i, j+1) or to (i+1, j)) never crossing the diagonal
x = y, where the path γr is from (−r,−r) to (k + r, k + r).

2.16 Continued fractions

Continued fractions [227] play an important role in many areas of combinatorics. They are
naturally associated to orthogonal polynomials and lattice path enumeration [89]. They play
an important role in the computation of Hankel transforms. In this section we briefly define
continued fractions and give examples of their application to integer sequence. A generalized
continued fraction is an expression of the form

t = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .

where the an (n > 0) are the partial numerators, the bn are the partial denominators, and
the leading term b0 is the so-called whole or integer part of the continued fraction. The
successive convergents (also called approximants) of the continued fraction are formed as
follows :

t0 =
A0

B0

= b0, t1 =
A1

B1

=
b1b0 + a1

b1
, t2 =

A2

B2

=
b1(b1b0 + a1) + a2b0

b2b1 + a2

, . . .

where An is the numerator and Bn is the denominator (also called continuant) of the nth
convergent, and where we have the following recurrence relations :

A−1 = 1, B−1 = 0, A0 = b0, B0 = 1;

Ap+1 = bp+1Ap + ap+1Ap−1,

Bp+1 = bp+1Bp + ap+1Bp−1

for p = 0, 1, 2, . . ..
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An

Bn
is called the nth convergent (approximant). We have

An

Bn

= b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . . + an
bn

.

The convergents of a continued fraction do not change when an equivalence transformation
is effected as follows:

b0 +
c1a1

c1b1 +
c1c2a2

c2b2 +
c2c3a3

c3b3 +
c3c4a4

c4b4 + . . .

Example 24.

c(x) =
1

1− xc(x)
=

1−
√

1− 4x

2
=

1

1− x

1− x

1− x

1− . . .

is the generating function of the Catalan numbers. The denominator polynomials are then
given by

1, 1, 1− x, 1− 2x, 1− 3x+ x2, 1− 4x+ 3x2, 1− 5x+ 6x2 − x3, . . .

Thus the nth denominator polynomial is given by

Bn(x) =

bn
2
c∑

k=0

(
n− k

k

)
(−1)kxk.

The binomial transform of the Catalan numbers has generating function

1

1− x−
x

1−
x

1− x−
x

1−
x

1− x−
x

1− · · ·

.
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The continued fraction

1

1−mx−
x

1−
x

1−mx−
x

1−
x

1−mx−
x

1− · · ·

is the generating function of the m-th binomial transform of the Catalan numbers (i.e. it is
equal to 1

1−mx
c
(

x
1−mx

)
).

More generally, we have

1

1− rxc(x)
=

1

1− rx

1− x

1− x

1− . . .

.

The denominator polynomials are then given by

1, 1, 1− rx, 1− (r + 1)x, 1− (r + 2)x+ rx2, 1− (r + 3)x+ (2r + 1)x2, . . .

Thus the nth denominator polynomial is given by

Bn(x) =

bn
2
c∑

k=0

(−1)k

((
n− k − 1

k

)
+

(
n− k − 1

k − 1

)
r

)
xk.

The Hankel transform of the sequence with g.f. 1
1−rxc(x)

is rn.
We have

c(rx) =
1

1− rx

1− rx

1− rx

1− . . .

.

c(rx) is the g.f. of the sequence rnCn which has Hankel transform rn(n+1).

Example 25. The continued fraction

g(x; r) =
1

1− rx

1− x

1− rx

1− x

1− rx

1− . . .
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generates the sequence an(r) which begins

1, r, r(r + 1), r(r2 + 3r + 1), r(r3 + 6r2 + 6r + 1), r(r4 + 10r3 + 20r2 + 10r + 1), . . .

which is the Narayana transform (see Example 184) of the power sequence 1, r, r2, r3, r4, . . . :

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .





1
r
r2

r3

r4

r5

...


=



1
r

r(r + 1)
r(r2 + 3r + 1)

r(r3 + 6r2 + 6r + 1)
r(r4 + 10r3 + 20r2 + 10r + 1)

...


,

an(r) =
n∑

k=0

N(n, k)rk.

For r = 0, 1, 2, . . . we obtain the following sequences

r = 0 1 0 0 0 0 0 0 . . . A000007
r = 1 1 1 2 5 14 42 132 . . . A000108
r = 2 1 2 6 22 90 394 1806 . . . A006318
r = 3 1 3 12 57 300 1686 9912 . . . A047891
r = 4 1 4 20 116 740 5028 35700 . . . A082298
r = 5 1 5 30 205 1530 12130 100380 . . . A082301

...
...

...
...

...
...

...

which include the Catalan numbers (r = 1) and the large Schröder numbers (r = 2). These
sequences can be characterized as

an(r) = [xn+1]Rev
x(1− x)

1 + (r − 1)x
.

The sequence an(r) has Hankel transform r(
n+1

2 ).

Example 26.

g(x) =
1

1− x

1− 2x

1− 3x

1− 4x

1− . . .

is the g.f. of the double factorials (2n − 1)!! =
∏n

k=1(2k − 1) = (2n)!
2nn!

, whose e.g.f. is 1√
1−2x

.
The denominator polynomials are then given by

1, 1, 1− x, 1− 3x, 1− 6x+ 3x2, 1− 10x+ 15x2, 1− 15x+ 45x2 − 15x3, . . .
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Thus the nth denominator polynomial is given by

Bn(x) =

bn
2
c∑

k=0

(
n

2k

)
(2k + 1)!!(−1)kxk.

Example 27.
1

1− x

1− x

1− 2x

1− 2x

1− 3x

1− . . .

is the g.f. of the factorial numbers n! with e.g.f. 1
1−x

. The denominator polynomials are
given by

1, 1, 1− x, 1− 2x, 1− 4x+ 2x2, 1− 6x+ 6x2, 1− 9x+ 18x2 − 6x3, 1− 12x+ 36x2 − 24x3, . . .

We obtain the following array of numbers as the coefficient array of these polynomials :

1
1
1 -1
1 -2
1 -4 2
1 -6 6
1 -9 18 -6
1 -12 36 -24
1 -16 72 -96 24

The second column is minus times the quarter squares bn
2
cdn

2
e A002620. The third col-

umn is given by
∑n−1

k=0(−1)n−k−1bk−1
2
cdk−1

2
ebk

2
cdk

2
e. We note that this last sequence appears

to be twice A000241(n+ 1), where A000241 gives the crossing number of Kn, the complete
graph with n nodes. The formula appears to be consistent with Zarankiewicz’s conjec-
ture (which states the the graph crossing number of the complete bigraph Kn,m is given
by bn

2
cbn−1

2
cbm

2
cbm−1

2
c [247]). In fact (see below), we conjecture that A000241 is given by(bn

2
c

2

)(bn−1
2
c

2

)
.

An alternately signed version of every second row of this array is given by

1
-1 1
1 -4 2
-1 9 -18 6
1 -16 72 -96 24
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This is A021010, the triangle of coefficients of the Laguerre polynomials Ln(x) (powers

of x in decreasing order). It has general term T
(1)
n,k = (−1)n−kk!

(
n
k

)2
.

Taking the second embedded triangle of alternate rows, we obtain

1
1 -2
1 -6 6
1 -12 36 -24

which has general term

T
(2)
n,k =

(−1)k(n+ 1)!
(

n
k

)
(n− k + 1)!

= (−1)k

(
n+ 1

k

)(
n

k

)
k!

We note that the quotient

T
(2)
n,k

(−1)k(k + 1)!

is the Narayana triangle (see A001263)

1
1 1
1 3 1
1 6 6 1
. . .

Combining the terms for T
(1)
n,k and T

(2)
n,k we see that the coefficient array for the denominator

polynomials is given by

Tn,k = (−1)k

(
bn+1

2
c

k

)(
bn

2
c
k

)
k!

This triangle is A145118. We note that the triangle with general term
(bn+1

2
c

k

)(bn
2
c

k

)
is

A124428. This triangle has row sums equal to
(

n
bn

2
c

)
. A variant is given by A104559, which

counts the number of left factors of peakless Motzkin paths of length n having k number of
U ’s and D’s.

Example 28. The Bell numbers A000110 have g.f. given by

1

1−
x

1−
x

1−
x

1−
2x

1−
x

1−
3x

1−
x

1− · · ·
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The bi-variate generating function

1

1−
xy

1−
x

1−
x

1−
2x

1−
x

1−
3x

1−
x

1− · · ·
generates the array that starts

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 2 2 1 0 0 . . .
0 6 5 3 1 0 . . .
0 22 16 9 4 1 . . .
...

...
...

...
...

...
. . .


with row sums equal to the Bell numbers A000110. This is the array

[0, 1, 1, 2, 1, 3, 1, 4, 1, . . .] ∆ [1, 0, 0, 0, . . .]

(see Chapter 5 for notation).

Of particular interest for this work is the notion of J-fraction. We shall consider these
in the context of a sequence c0, c1, . . . such that Hn = |ci+j|0≤i,j≤n 6= 0, n ≥ 0. Then there
exists a family of orthogonal polynomials Pn(x) that satisfy the recurrence

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x).

This means that the family Pn(x) are the denominator polynomials for the “J-fraction”

1

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x− . . .

The theory now tells us that in fact

g(x) =
∞∑

n=0

cnx
n =

c0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x− . . .
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is the generating function of the sequence. In addition, the Hankel transform of cn is then
given by

hn =
n∏

k=1

βn−k+1
k

[227, 131, 132].

Example 29. The continued fraction

1

1− x− x2

1− 2x− x2

1− 2x− x2

1− 2x− . . .

is the J-fraction generating function of the Catalan numbers. More generally, we have

c(x)

1− kxc(x)
=

1

1− (k + 1)x− x2

1− 2x− x2

1− 2x− x2

1− 2x− . . .

.

This is therefore the image of the power sequence kn (with g.f. 1
1−kx

) under the Riordan
array (c(x), xc(x)). Each of these sequences has Hankel transform hn = 1. Thus

n∑
k=0

k + 1

n+ 1

(
2n− k

n− k

)
rk = [xn]

1

1− (r + 1)x− x2

1− 2x− x2

1− 2x− x2

1− 2x− . . .

.

We note that the g.f. of Cn+1 is given by

1

1− 2x−
x2

1− 2x−
x2

1− 2x−
x2

1− · · ·

while that of
(
2n+1

n

)
A001700 is given by

1

1− 3x−
x2

1− 2x−
x2

1− 2x−
x2

1− · · ·
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The sequence with g.f. given by

1

1−
x2

1− 2x−
x2

1− 2x−
x2

1− · · ·

is Fine’s sequence A000957.

Example 30. The sequence A026671 which begins 1, 3, 11, 43, 173, . . ., with g.f.

1√
1− 4x− x

=
1

1− 3x−
2x2

1− 2x−
x2

1− 2x−
x2

1− · · ·

has Hankel transform 2n. The sequence 1, 1, 3, 11, 43, 173, . . . which has g.f.

1

1− x−
2x2

1− 3x−
x2

1− 2x−
x2

1− 2x−
x2

1− · · ·

also has Hankel transform 2n. A026671 is a transform of F (2n + 2) by the Riordan array
(1, xc(x)). The sequence 1, 1, 3, 11, 43, 173, . . . is the image of A001519, or F (2n − 1), by
(1, xc(x)).

Example 31. The sequence 1, 5, 28, 161, 934, 5438, . . . with g.f.

1

1− 5x−
3x2

1− 2x−
x2

1− 2x−
x2

1− 2x−
x2

1− · · ·

is the image of A107839, or [xn] 1
1−5x+2x2 under the Riordan array (1, xc(x)). It has Hankel

transform 3n. Looking now at the sequence 1, 1, 5, 28, 161, 934, 5438, . . . we find that it has
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a g.f. given by

1

1− x−
4x2

1− 19
4
x−

15
16
x2

1− 41
20
x−

24
25
x2

1− 61
30
x−

35
36
x2

1− 85
42
x−

48
49
x2

1− · · ·

This sequence has Hankel transform (n+ 3)3n−1 with g.f. 1−2x
(1−3x)2

(A006234).

Example 32. In this example we characterize a family of sequences in a number of ways.

The family, parameterized by r, is obtained by applying the Riordan array
(

1−x
1−rx

, x(1−x)
1−rx

)
to

the Catalan numbers Ck. Thus let an(r) denote the r-th element of this family. We have

an(r) =
n∑

k=0

k+1∑
j=0

(−1)j

(
k + 1

j

)(
n− j

n− k − j

)
rn−k−jCk,

with generating function

g(x; r) =
1− x

1− rx
c

(
x(1− x)

1− rx

)
.

In terms of continued fractions we find that

g(x; r) =
1

1− rx

1− x

1− x

1− rx

1− x

1− . . .

,

where the coefficients follow the pattern r, 1, 1, r, 1, 1, r, 1, 1, . . .. As a J-fraction, we have

g(x; r) =
1

1− rx− rx2

1− 2x− rx2

1− (r + 1)x− x2

1− (r + 1)x− rx2

1− 2x− . . .

Here, the α sequence is r, 2, r+1, r+1, 2, r+1, r+1, 2, . . . while the β sequence is r, r, 1, r, r, 1, r, r, 1, . . .
(starting at β1). The Hankel transform of an(r) is then given by

hn = rb
(n+1)2

3
c.

an(2) is A059279 with Hankel transform A134751.
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Example 33. The continued fraction

1

1− x− x2

1− 2x− 2x2

1− 3x− 3x2

1− 4x− . . .

is the generating function of the Bell numbers (see also Example 28), which enumerate the
total number of partitions of [n]. These are the numbers 1, 1, 2, 5, 15, 52, 203, . . . A000110
with e.g.f. eex−1. They satisfy the recurrence an+1 =

∑n
k=0

(
n
k

)
ak. From the above, we have

that

hn =
n∏

k=1

kn−k+1

which is 1, 1, 2, 12, 288, 34560, . . . or A000178, the superfactorials.

Example 34. The continued fraction

1

1− x− x2

1− 2x− x2

1− 3x− x2

1− 4x− . . .

is the generating function of the Bessel numbers, which count the non-overlapping partitions
of [n]. These are the numbers 1, 1, 2, 5, 14, 43, 143, 509, . . . A006789. They have Hankel
transform hn = 1.

Example 35. The continued fraction

1

1− x− x2

1− x− 2x2

1− x− 3x2

1− x− . . .

is the generating function of the sequence In of involutions, where an involution is a permu-
tation that is its own inverse. These numbers start 1, 1, 2, 4, 10, 26, 76, . . . A000085 with e.g.f.
ex(2+x)/2. Once again the Hankel transform of this sequence is given by the superfactorials.

Example 36. The continued fraction

1

1− 0x− x2

1− 0x− x2

1− 0x− x2

1− 0x− . . .
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or
1

1− x2

1− x2

1− x2

1− 0x− . . .

is equal to c(x2), the generating function of the aerated Catalan numbers 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, . . ..
Since βn = 1, the Hankel transform is hn = 1.
The coefficient array for the associated orthogonal polynomials (denominator polynomials)
is given by the Riordan array (

1

1 + x2
,

x

1 + x2

)
.

We note that the aerated Catalan numbers are given by

[xn+1]Rev

(
x

1 + x2

)
.

Example 37. The continued fraction

1

1− 1x− x2

1− 1x− x2

1− 1x− x2

1− 1x− . . .

is the generating function M(x) of the Motzkin numbers
∑n

k=0

(
n
2k

)
Ck. This is the binomial

transform of the last sequence (we note that the coefficients αn are incremented by 1). The
Hankel transform of the Motzkin numbers is given by hn = 1.

The coefficient array for the associated orthogonal polynomials (denominator polynomi-
als) is given by the Riordan array(

1

1 + x+ x2
,

x

1 + x+ x2

)
.

Example 38. The continued fraction

1

1− 0x− 2x2

1− 0x− x2

1− 0x− x2

1− 0x− . . .

is the generating function of the aeration of the central binomial numbers
(
2n
n

)
. Thus these

are the numbers
(

n
n/2

)
(1+(−1)n)/2 beginning 1, 0, 2, 0, 6, 0, . . . with g.f. 1√

1−4x2 . Their Hankel
transform is governed by the β-sequence 2, 1, 1, 1, 1, . . . and hence we have hn = 2n.
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The coefficient array for the associated orthogonal polynomials (denominator polynomi-
als) is given by the Riordan array (

1− x2

1 + x2
,

x

1 + x2

)
.

Example 39. The central trinomial numbers 1, 1, 3, 7, 19, . . . A002426, or tn = [xn](1 + x+
x2)n, are given by the binomial transform of the last sequence. Their generating function is
then

1√
1− 2x− 3x2

=
1

1− x− 2x2

1− x− x2

1− x− x2

1− x− . . .

.

The Hankel transform is again hn = 2n.
The coefficient array for the associated orthogonal polynomials (denominator polynomi-

als) is given by the Riordan array(
1− x2

1 + x+ x2
,

x

1 + x+ x2

)
.

Example 40. The sequence 1, 1, 2, 3, 6, 10, 20, . . . A001405 of central binomial coefficients(
n
bn

2
c

)
has the following continued fraction expression for its generating function

1

1− 1x− x2

1− 0x− x2

1− 0x− x2

1− 0x− . . .

.

Thus hn = 1.
The coefficient array for the associated orthogonal polynomials (denominator polynomi-

als) is given by the Riordan array (
1− x

1 + x2
,

x

1 + x2

)
.

Example 41. We have the following general result : If the α sequence is given by α, 0, 0, 0, 0, . . .
(i.e. αn = α0n), and the β sequence is given by 0, β, γ, γ, γ, . . . (i.e β0 = 0, β1 = β, βn = γ for
n > 1), then the coefficient array for the associated orthogonal polynomials (denominator
polynomials) is given by the Riordan array(

1− αx− (β − γ)x2

1 + γx2
,

x

1 + γx2

)
.
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In particular,

2γ

2γ − β − 2αγx+ β
√

1− 4γx2
=

1

1− αx− βx2

1− 0x− γx2

1− 0x− γx2

1− 0x− . . .

In this case we have
hn = βnγ(

n
2).

Example 42. The continued fraction

1

1− ax−
bx2

1−
bx2

1− ax−
bx2

1−
bx2

1− ax−
bx2

1− · · ·

is the generating function of the sequence

bn
2
c∑

k=0

(
n− k

k

)
Cka

n−2kbk.

It is equal to
1

1− ax
c

(
bx2

1− ax

)
where c(x) is the generating function of the Catalan numbers.
This sequence represents the diagonal sums of the triangular array with general term(

n

k

)
Cka

n−kbk.

To prove the initial assertion, we can proceed as follows.
∑bn

2
c

k=0

(
n−k

k

)
Cka

n−2kbk is the result
of applying the matrix with general term(

n− k

k

)
an−2k

to the scaled Catalan numbers bnCn. Now the matrix with general term
(

n−k
k

)
an−2k is the

generalized Riordan array (
1

1− ax
,

x2

1− ax

)
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while the g.f. of bnCn is expressible as the continued fraction

1

1−
bx

1−
bx

1− · · ·

.

Anticipating results from the theory of Riordan arrays, we can thus say that the g.f. of(
n
k

)
Cka

n−kbk is expressible as

1

1− ax

1

1−
b x2

1−x

1−
b x2

1−x

1− · · ·

.

Simplifying this expression leads to the desired result.

The Hankel transform of this sequence is b(
n+1

2 ). If a = b = 1, we obtain the sequence∑bn
2
c

k=0

(
n−k

k

)
Ck which is A090344. This enumerates the number of Motzkin paths of length

n with no level steps at odd levels. It represents the diagonal sums of the array
(

n
k

)
Ck,

A098474. Thus its generating function is given by

1

1− x−
x2

1−
x2

1− x−
x2

1−
x2

1− x−
x2

1− · · ·

This is equal to 1
1−x

c
(

x2

1−x

)
. The first differences of this sequence have g.f. c

(
x2

1−x

)
which is

equal to
1

1−
x2

1− x−
x2

1−
x2

1− x−
x2

1−
x2

1− x−
x2

1− · · ·

.

This sequence enumerates the number of Motzkin paths of length n with no level steps at
even levels. This is A121482.
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2.17 Hypergeometric functions

A generalized hypergeometric function [98, 141, 204] pFq(a1, . . . , ap; b1, . . . , bq;x) is a power
series

∑∞
k=0 ckx

k which can be defined in the form of a hypergeometric series, i.e., a series
for which the ratio of successive terms can be written

ck+1

ck
=
P (k)

Q(k)
=

(k + a1) . . . (k + ap)

(k + b1) . . . (k + bq)(k + 1)
.

We have

pFq(a1, . . . , ap; b1, . . . , bq;x) =
∑
k≥0

(a1)k · (a2)k · · · (ap)k

(b1)k · (b2)k · · · (bq)k

zk

k!
,

where (a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1). We note that pFq(a1, . . . , ap; b1, . . . , bq; 0) = 1.
For the important case p = 2, q = 1, we have

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
.

Example 43. 2F1(1, 1; 1;x) = 1
1−x

, the o.g.f. of the sequence un = 1 and the e.g.f. of the
sequence un = n!.

Example 44. 2F1(1, 2; 1;x) =2 F1(2, 1; 1;x) = 1
(1−x)2

, the o.g.f. of the sequence un = n+ 1,

and the e.g.f. of (n+ 1)!

Example 45. More generally 2F1(a, 1; 1;x) = 1
(1−x)a while 2F1(−a, b; b;x) = (1 + x)a.

Example 46. We have

1. 2F1(1/2, 1; 1; 4x) = 1√
1−4x

, the o.g.f. of
(
2n
n

)
. This has Hankel transform 2n.

2. 2F1(1/2,−1/2; 1/2; 4x) = 2F1(−1/2, 1; 1); 4x) =
√

1− 4x, the o.g.f. of
(2n

n )
1−2n

. This has
Hankel transform (2n+ 1)(−2)n.

3. 2F1(1/2,−1/2; 1/2; 4x/(1 − x)) =
√

1−5x
1−x

is the o.g.f. of the binomial transform of∑n
k=0(−1)n−k (2k

k )
1−2k

. This has Hankel transform with o.g.f. 1−2x
1+6x+4x2 which gives the

sequence (−2)n · L(2n+ 1), where L(n) is the Lucas sequence A000032.

4. 2F1(1/2, 1; 1; 4x/(1−x)) =
√

1−x
1−5x

is the binomial transform of
∑n

k=0(−1)n−k
(
2k
k

)
. This

has Hankel transform A082761, the trinomial transform of the Fibonacci numbers, with
o.g.f. 1−2x

1−6x+4x2 .

5. 2F1(1/2, 1; 1; 4x/(1+x)) =
√

1+x
1−3x

is the inverse binomial transform of the partial sums

of the central binomial coefficients. This has Hankel transform with o.g.f. (1−2x)/(1−
2x+ 4x2) or A120580.
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Example 47. We have

1. 2F1(1/2, 1; 2; 4x) = c(x), the o.g.f. of the Catalan numbers. In general, 2F1(k −
1/2, k; 2k; 4x) = c(x)2k−1.

2. 2F1(1/2, 1; 2; 4x/(1− x)) = 1−x−
√

1−6x+5x2

2x
, the o.g.f. of A002212. The Binomial trans-

form has o.g.f. c(x)
1+x

and the Hankel transform of A002212 is F (2n+ 1).

3. 2F1(1/2, 1; 2; 4x/(1+x)) = 1+x−
√

1−2x−3x2

2x
, the o.g.f. of A086246. The Hankel transform

of this sequence has o.g.f. 1−x
1−x+x2 . It is the inverse binomial transform of the partial

sum of the Catalan numbers i.e. the inverse binomial transform of c(x)
1−x

.

Example 48. We have the following:

1. 3 2F1(1/2, 1; 3; 4x) is the o.g.f. of the super-ballot numbers A007054, or 6(2n)!
n!(n+2)!

=

4Cn − Cn+1 [101]. The Hankel transform of this sequence is 2n+ 3.

2. 3 2F1(1/2, 2; 3; 4x) is the o.g.f. of C(n+1)+2C(n), or A038629. The Hankel transform
of this sequence has o.g.f. 3−x

1−4x+x2 (A001835).

3. 10 2F1(1/2, 1; 4; 4x) is the sequence A007272 with general term 60(2n)!
n!(n+3)!

. It has Hankel

transform A000447(n+ 2) with o.g.f. 10−5x+4x2−x3

(1−x)4
.

4. 5 2F1(1/2, 2; 4; 4x) yields a sequence with Hankel transform with o.g.f. ( 1−x+x2

(1−3x+x2)2
−

1)/x.

5. 10 2F1(1/2, 3; 4; 4x) is the o.g.f. of the sequence with general term
30(2n

n )
n+3

. Its Hankel

transform has o.g.f. given by 10−5x+14x2−x3

1−14x+6x2−14x3+x4 .

Example 49. 2F1(3, 1; 1; 9x) = (1 − 9x)−1/3 is the o.g.f. of A004987 with general term
3nn!

∏n−1
k=0 3k + 1.

Example 50. 2F1(1/2, 1; 1; 4x(1−kx)) is the o.g.f. of the sequence [xn](1+2x−(k−1)x2)n.

Example 51. We have

2F1(−n, 1/2; 1;−4k) = [xn](1 + (2k + 1)x+ k2x2)n

= n![xn]e(2k+1)xI0(2kx)

= [xn]
1√

1− 2(2k + 1)x+ (4k + 1)x2
.

The coefficient array of this family of polynomials in k is the array with general term

Tn,k =

(
2k

k

)(
n

k

)
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or 

1 0 0 0 0 0 . . .
1 2 0 0 0 0 . . .
1 4 6 0 0 0 . . .
1 6 18 20 0 0 . . .
1 8 36 80 70 0 . . .
1 10 60 200 350 252 . . .
...

...
...

...
...

...
. . .


.

Thus

2F1(−n, 1/2; 1;−4x) =
n∑

k=0

(
2k

k

)(
n

k

)
xk.

In particular,

[xn](1 + (2k + 1)x+ k2x2)n =
n∑

j=0

(
2j

j

)(
n

j

)
kj.

The row sums of the coefficient array above yield 1, 3, 11, 45, . . . or [xn](1 + 3x+ x2)n.
Taking the reversal of the above array, we obtain the array

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
6 4 1 0 0 0 . . .
20 18 6 1 0 0 . . .
70 80 36 8 1 0 . . .
252 350 200 60 10 1 . . .
...

...
...

...
...

...
. . .


.

The general term of this array is in fact

[xn−k] 2F1(1/2, k + 1; 1; 4x) =

(
2n− 2k

n− k

)(
n

k

)
.

Equivalently, (
n+ k

k

)(
2n

n

)
= [xn] 2F1(1/2, k + 1; 1; 4x).

Example 52. We have

[xn−k] 2F1(−rn,−n− s; 1; x) =

(
n+ s

k + s

)(
rn

n− k

)
.

For instance, [xn−k] 2F1(−2n,−n, 1, x) =
(

n
k

)(
2n

n−k

)
is A110608, which has row sums equal to(

3n
n

)
.
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Example 53. We have

[xn−k] 2F1(k + 1, k; 2; x) = ˜̃N(n, k),

where ˜̃N(n, k) = 1
n

(
n
k

)(
n

k−1

)
for n, k ≥ 1. This is the matrix

˜̃N =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .


,

a version of the Narayana numbers, A001263. Note that

[xn−k] 2F1(k + 1, k; 1; x) = (n− k + 1) ˜̃N(n, k),

or 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 3 6 1 0 0 . . .
0 4 18 12 1 0 . . .
0 5 40 60 20 1 . . .
...

...
...

...
...

...
. . .


,

with row sums
(2n

n )+0n

2
, or A088218. The Hankel transform of this latter sequence is n + 1.

The above triangle has general term 0n+k +
(

n
k

)(
n−1
k−1

)
. It is a left column augmented version

of A103371.

Example 54. We have

[xn−k] 2F1(k + 1,−k; 1; x) = (−1)n−k

(
n

k

)(
k

n− k

)
which is the general term of the array that starts

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −6 1 0 0 . . .
0 0 6 −12 1 0 . . .
0 0 0 30 −20 1 . . .
...

...
...

...
...

...
. . .


.
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The row sums of this array are 1, 1,−1,−5,−5, . . ., A098331, equal to

[xn]
1√

1− 2x+ 5x2
= [xn](1 + x− x2)n.

The binomial transform of this array is the Pascal-like array

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
1 −3 −3 1 0 0 . . .
1 −8 −12 −8 1 0 . . .
1 −15 −20 −20 −15 1 . . .
...

...
...

...
...

...
. . .


.

A version of this triangle (A099037) is related to the Krawtchouk polynomials.
We also have

[xn−k] 2F1(k + 1,−k; 2; x) = (−1)n−k

(
n
k

)(
k

n−k

)
n− k + 1

which is the general term of the array that starts

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 2 −6 1 0 . . .
0 0 0 10 −10 1 . . .
...

...
...

...
...

...
. . .


.

This array has row sums 1, 1, 0,−2,−3, 1, 11, . . . or

[xn]

√
5x2 − 2x+ 1 + x− 1

2x2
= [xn+1]Rev

x

1 + x− x2
.

Multiplying this array on the left by Pascal’s triangle B yields the Pascal-like matrix

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 0 0 1 0 0 . . .
1 −2 −4 −2 1 0 . . .
1 −5 −10 −10 −5 1 . . .
...

...
...

...
...

...
. . .


.

Finally

[xn−k] 2F1(k + 1,−k; 1/2;x) = (−4)n−k

(
n

2k − n

)
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which is the general term of the array A117411 which begins

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −4 1 0 0 0 . . .
0 0 −12 1 0 0 . . .
0 0 16 −24 1 0 . . .
0 0 0 80 −40 1 . . .
...

...
...

...
...

...
. . .


.

This has row sums 1, 1,−3,−11,−7, 41, 117, 29, . . ., A006495 which is [xn] 1−x
1−2x+5x2 . Multi-

plying this array by Pascal’s triangle B yields the Pascal-like array

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 −2 1 0 0 0 . . .
1 −9 −9 1 0 0 . . .
1 −20 −26 −20 1 0 . . .
1 −35 −30 −30 −35 1 . . .
...

...
...

...
...

...
. . .


.

2.18 Transformations on integer sequences

In this section, we shall use the notation Seq to denote the set ZN0 of integer sequences. By
an integer sequence transformation T we shall mean a mapping

T : Seq → Seq

such that
T (r1(an) + r2(bn)) = r1T (an) + r2T (bn)

for r1, r2 ∈ R.

Example 55. We define the binomial transform

B : Seq → Seq

to be the transformation of integer sequences defined by

an → bn =
n∑

k=0

(
n

k

)
ak.

Thus B{an} = {bn} where bn is defined above. Since
(

n
k

)
is always an integer, this is a

mapping from Seq to Seq. It is a classical result that this transformation is invertible, with
the inverse, which we denote by B−1, given by

an =
n∑

k=0

(−1)n−k

(
n

k

)
bk.

43

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A117411
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006495


We have already seen above that if A(x) is the e.g.f. of the sequence (an)n≥0, then exp(x)A(x)
is the e.g.f. of the binomial transform (bn). It is not difficult to show that the k-th iterate
of B, denoted by Bk, is given by

Bk : an → bn =
n∑

j=0

kn−j

(
n

j

)
aj.

We shall see later that if A(x) is the o.g.f. of (an)n≥0, then

1

1− x
A

(
x

1− x

)
is the o.g.f. of the binomial transform of (an).

Example 56. The partial sum of the sequence (an)n≥0 is the sequence (bn)n≥0 given by

bn =
n∑

k=0

ak.

This obviously defines a mapping

P : Seq → Seq.

If A(x) is the o.g.f. of (an) then the o.g.f. of (bn) is simply given by 1
1−x

A(x).

Example 57. Define a transform of the sequence (an)n≥0 by the formula

bn =
n∑

k=0

(−1)n−kak.

Then the o.g.f. of (bn) is given by 1
1+x

A(x). This corresponds to the fact that (bn) is the
convolution of (an) and the sequence with general term (−1)n.

Example 58. Define a transform of the sequence (an)n≥0 by the formula

bn =
n∑

k=0

(−1)kak.

Then the o.g.f. of (bn) has generating function 1
1−x

A(−x). (bn)n≥0 is called the alternating
sum of (an).

Example 59. In this example, we define a transformation on a subspace of Seq. Thus let
Seq0 denote the set of integer sequences (an)n≥0 with a0 = 0. For such a sequence (an)
with o.g.f. A(x), we define the INVERT transform of (an) to be the sequence with o.g.f.

B(x) = A(x)
1+A(x)

. We note that since a0 = 0, we also have b0 = 0. Hence we have

INVERT : Seq0 → Seq0.
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A number of consequences follow from this. For instance, we have

A(x) =
B(x)

1−B(x)
.

Similarly, we have
A(x)−B(x) = A(x)B(x)

and hence

an − bn =
n∑

k=0

ajbn−j.

Finally, since a0 = 0 and b0 = 0, we can calculate the bn according to

bn = an −
n−1∑
j=1

ajbn−j.

As an example, the Fibonacci numbers F (n) with o.g.f. x
1−x−x2 have INVERT transform

equal to the Pell numbers Pell(n) with o.g.f. x
1−2x−x2 . Thus

F (n)− Pell(n) =
n∑

k=0

F (k)Pell(n− k) = F ∗ Pell(n)

.

Example 60. Let (cn,k)n,k≥0 be an element of ZN0×N0 . Then (cn,k) defines a transformation
from Seq to Seq in the following natural way. Given {an} ∈ Seq we can define {bn} ∈ Seq

by

bn =
∑
k=0

cn,kak,

where we place appropriate conditions on an or cn,k to ensure that the sum is finite for finite
n. Thus we consider the element (cn,k)n,k≥0 ∈ ZN0×N0 as an infinite integer matrix.

2.19 The Hankel transform of integer sequences

For a general (integer) sequence (an)n≥0, we define

hn = ∆n =

∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an

a1 a2 . . . an+1
...

...
...

an−1 an . . . a2n−1

an an+1 . . . a2n

∣∣∣∣∣∣∣∣∣∣∣
Then the sequence of numbers hn is called the Hankel transform of an. The Hankel trans-
form is closely associated to the theory of orthogonal polynomials, moment sequences and
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continued fractions [53, 99]. The link to orthogonal polynomials may be derived as follows.
We let

hn(x) = ∆n(x) =

∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an

a1 a2 . . . an+1
...

...
...

an−1 an . . . a2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣
Then letting

Pn(x) =
∆n(x)

∆n−1

defines a family of orthogonal polynomials when hn 6= 0 for all n. This family will then obey
a three-term recurrence :

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x).

The Hankel transform can be calculated [132, 227] as

hn = an+1
0 βn

1 β
n−1
2 · · · β2

n−1βn.

The generating function of the sequence an is given by

G(x) =
∞∑

n=0

anx
n =

a0

1 + α0x−
β1x

2

1 + α1x− β2x
2

1 + α2x− · · ·

.

2.20 Simple Pascal-like triangles

We shall be concerned in Chapters 10 and 11 with the construction of generalized Pascal-like
triangles. In this section, we will study several simple families of Pascal-like triangles, as
well as looking at three Pascal-like triangles with hypergeometric definitions. By a Pascal-
like triangle we shall mean a lower-triangular array Tn,k such that Tn,0 = 1, T0,k = 0k and
Tn,k = Tn,n−k.
The first family of Pascal-like triangles corresponds to integer sequences an with a0 = 0 and
a1 = 1. We define the triangle Ta by

Ta(n, k) = [k ≤ n](1 + a(k)a(n− k)].

Clearly this triangle is Pascal-like. We note that the row sums are given by n + 1 +∑n
k=0 a(k)a(n− k) while the central coefficients Ta(2n, n) are given by 1 + a(n)2.
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Example 61. Taking a(n) = F (n), we obtain the triangle

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 2 2 1 0 0 . . .
1 3 2 3 1 0 . . .
1 4 3 3 4 1 . . .
...

...
...

...
...

...
. . .


with row sums equal to n + 1 +

∑n
k=0 F (k)F (n − k) with g.f. 1−2x+2x4

(1−x)2(1−x−x2)2
. The central

coefficients in this case are given by 1 + F (n)2.

Example 62. The case of a(n) = 1− 0n is of some interest. We obtain the matrix

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 2 2 1 0 0 . . .
1 2 2 2 1 0 . . .
1 2 2 2 2 1 . . .
...

...
...

...
...

...
. . .


with general term [k ≤ n](2 − 0k(n−k)). Taking the matrix obtained by removing the first
row as a production matrix (see Chapter 4), we find that this matrix generates the array
A132372, which begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 3 1 0 0 0 . . .
6 10 5 1 0 0 . . .
22 38 22 7 1 0 . . .
90 138 98 38 9 1 . . .
...

...
...

...
...

...
. . .


.

In terms of the so-called Deleham construction (see Chapter 5) this is the array

[1, 1, 2, 1, 2, 1, 2, 1, . . .] ∆ [1, 0, 0, 0, . . .]

with generating function
1

1−
x(1 + y)

1−
x

1−
2x

1−
x

1−
2x

1− · · ·
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The inverse of this array is the following signed version of the Delannoy triangle A008288

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
1 −3 1 0 0 0 . . .
−1 5 −5 1 0 0 . . .
1 −7 13 −7 1 0 . . .
−1 9 −25 25 −9 1 . . .
...

...
...

...
...

...
. . .


This is the Riordan array (

1

1 + x
,
x(1− x)

1 + x

)
.

In general, the Pascal-like array with general term [k ≤ n](r − (r − 1) ∗ 0k(n−k)) leads in a
similar manner to the array (

1 + (r − 2)x

1 + (r − 1)x
,

x(1− x)

1 + (r − 1)x

)
.

The next family of Pascal-like triangles derive many of their properties from Pascal’s triangle
B with general term

(
n
k

)
. Thus we define the triangle Br to be the triangle with general

term

Tn,k(r) = [k ≤ n]

((
n

k

)
(r − (r − 1)0n−k)− (r − 1)0k + (r − 1)0n+k

)
.

Clearly, B1 = B, while Tn,n−k(r) = Tn,k(r) shows that this is a Pascal-like family of matrices.
We have

Br =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2r 1 0 0 0 . . .
1 3r 3r 1 0 0 . . .
1 4r 6r 4r 1 0 . . .
1 5r 10r 10r 5r 1 . . .
...

...
...

...
...

...
. . .


.

Thus

B0 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
1 0 0 1 0 0 . . .
1 0 0 0 1 0 . . .
1 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .


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with inverse

B−1
0 =



1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
−1 0 1 0 0 0 . . .
−1 0 0 1 0 0 . . .
−1 0 0 0 1 0 . . .
−1 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .


,

while

B2 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 8 12 8 1 0 . . .
1 10 20 20 10 1 . . .
...

...
...

...
...

...
. . .


.

Interesting characteristics of these triangle are given below.

Sequence Formula g.f.

Row sums r2n − (r − 1)(2− 0n) 1−x+(r−1)x2

(1−x)(1−2x)

Diagonal sums rF (n+ 1)− (r − 1)
(

3+(−1)n

2
− 0n

)
1−x2+2(r−1)x3+(r−1)x4

(1−x2)(1−x−x2)

Central coefficients
(
2n
n

)
(r − (r − 1)0n) −

Central coefficients
(

n
bn

2
c

) (
r − (r − 1)

(
1
n

))
−

Example row sums are presented in the next table, along with their inverse binomial trans-

forms, which have g.f. 1+x+(r−1)2x2

1−x2 .

r Row sum sequence A-number Inverse binomial transform
0 1, 2, 2, 2, 2, 2, 2, . . . A040000 1, 1,−1, 1,−1, 1, . . .
1 1, 2, 4, 8, 16, 32, 64, . . . A000079 1, 1, 1, 1, 1, 1, . . .
2 1, 2, 6, 14, 30, 62, 126, . . . A095121 1, 1, 3, 1, 3, 1, . . .
3 1, 2, 8, 20, 44, 92, 188, . . . A131128 1, 1, 5, 1, 5, 1, . . .
4 1, 2, 10, 26, 58, 122, 250, . . . A131130 1, 1, 7, 1, 7, 1, . . .

These row sums have the interesting property that when we apply a certain inverse “Cheby-
shev” transform to them then the resulting sequences have interesting Hankel transforms.
Anticipating results of later chapters, we have the following. Consider the family of sequences

an(r) =

bn
2
c∑

k=0

(
n

k

)
(r2n−2k − (r − 1)(2− 0n−2k)).

The sequence an(r) is obtained from the corresponding row sum sequence by applying to

it the Riordan array
(

1−x2

1+x2 ,
x

1+x2

)−1

. Letting hn(r) denote the Hankel transform of anr, we
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find that the ratio
hn(r)

(2r)n

has a form whose formula is easy to conjecture. The first few of these sequences is as follows :

r First elements of sequence hn(r)
(2r)n

0 1, 1, 2, 5, 5,−2,−11,−11, 2, 17, 17, . . .
1 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, . . .
2 1, 1,−2,−7, 2, 13, 13,−2,−19,−19, . . .
3 1, 1,−4,−13,−13, 4, 25, 25,−4,−37,−37, . . .

The indicated form of the Hankel transform of an(r) is then

hn(r)

(2r)n
= −4

3
(r − 1)

(
cos

(
2

3
(n− 2)π

)
+

1

2

)
+ (−1)

n
3 (2n(r − 1) + 1)

(
2

3
cos

(
2nπ

3

)
+

1

3

)
+(−1)

n−1
3 (2(n− 1)(r − 1) + 1)

(
2

3
cos

(
2(n− 1)π

3

)
+

1

3

)
.

where the sequence on the right has generating function

(1 + x)(1− x3(6r − 7))

(1 + x3)2
− 2(r − 1)x2

1− x3
.

The next family T
(r)
n,k is simple to describe : the rth member of the family has general (n, k)-th

element given by
T

(r)
n,k = [x2k](1 +

√
rx+ x2)n.

T 0 is Pascal’s triangle, so we obtain a parameterized family of Pascal-like triangles T (r) with

T (0) = B.

The first few members of the family are

1 1 1
1 1 1 1 1 1
1 2 1 1 3 1 1 4 1
1 3 3 1 1 6 6 1 1 9 9 1
1 4 6 4 1 1 10 19 10 1 1 16 34 16 1
1 5 10 10 5 1 1 15 45 45 15 1 1 25 90 90 25 1

1 1 1
1 1 1 1 1 1
1 5 1 1 6 1 1 7 1
1 12 12 1 1 15 15 1 1 18 18 1
1 22 51 22 1 1 28 70 28 1 1 34 91 34 1
1 35 145 145 35 1 1 45 210 210 45 1 1 55 285 285 55 1
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These triangles exist for negative values of r as well. For instance,

1 1 1
1 1 1 1 1 1
1 1 1 1 0 1 1 -1 1
1 0 0 1 1 -3 -3 1 1 -6 -6 1
1 -2 -5 -2 1 1 -8 -14 -8 1 1 -14 -21 -14 1
1 -5 -15 -15 -5 1 1 -15 -30 -30 -15 1 1 -25 -35 -35 -25 1

correspond to the values r = −1, r = −2 and r = −3, respectively. The general triangle T (r)

is given by
1
1 1
1 r+2 1
1 3r+3 3r+3 1
1 6r+4 r2+12r+6 6r+4 1
1 10r+5 5r2+30r+10 5r2+30r+10 10r+5 1

with bivariate generating function

G(x, y) =
1− x(1 + y)

1− 2x(1 + y) + x2(1− (r − 2)y + y2)

and general term

T
(r)
n,k =

n∑
j=0

(
n

j

)(
j

2(j − k)

)
rj−k.

The central coefficients of the triangle T (r) are given by

T (r)(2n, n) =
n∑

k=0

(
n+ k

2k

)(
2n

n+ k

)
rk

=
n∑

k=0

(
2n

2k

)(
2n− 2k

n− k

)
rk.

The coefficient array
(

n+k
2k

)(
2n

n+k

)
begins

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
6 12 1 0 0 0 . . .
20 90 30 1 0 0 . . .
70 560 420 56 1 0 . . .
252 3150 4200 1260 90 1 . . .
...

...
...

...
...

...
. . .


.
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The k-th column of this array has g.f. given by

xk
∑k

j=0

(
k+j
2j

)(
2k

k+j

)
xk−j

(1− 4x)(4k+1)/2
.

T (0)(2n, n) =
(
2n
n

)
while T (1)(2n, n) is A082758.

We further note that the inverse binomial transform of T (r) has a special form. We find
in fact that B−1T (r) is the array

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 r 1 0 0 0 . . .
0 0 3r 1 0 0 . . .
0 0 r2 6r 1 0 . . .
0 0 0 5r2 10r 1 . . .
...

...
...

...
...

...
. . .


with general term (

n

2k − n

)
rn−k =

(
n

2n− 2k

)
rn−k.

This observation allows us to generalize the foregoing construction. Thus if an is a sequence
with a0 = 1, we form the matrix with general term

T
(a)
n,k =

n∑
j=0

(
n

j

)(
j

2(j − k)

)
aj−k.

We have

T
(a)
n,k =

n∑
j=0

(
n

j

)(
n− j

2(k − j)

)
ak−j

since
(

n
j

)
=
(

n
n−j

)
.

Thus for an = F (n+ 1) we obtain the matrix A162745 which begins

1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 3 1 0 0 0 0 . . .
1 6 6 1 0 0 0 . . .
1 10 20 10 1 0 0 . . .
1 15 50 50 15 1 0 . . .
1 21 105 173 105 21 1 . . .
...

...
...

...
...

...
...

. . .


with row sums starting 1, 2, 5, 14, 42, 132, 427, . . .. This is the sequence A162746 which is
equal to the second binomial transform of the aerated Fibonacci numbers starting at index
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1. This sequence has general term bn given by

bn =
n∑

j=0

(
n

j

) b j
2
c∑

k=0

(
j

2k

)
F (k + 1)

=
n∑

k=0

2n−k

(
n

k

)
F (k/2 + 1)

1 + (−1)k

2

=

bn
2
c∑

k=0

(
n

2k

)
2n−2kF (k + 1).

The case an = Cn is a special case, yielding the matrix with general term

Tn,k =
n∑

j=0

(
n

j

)(
j

2(j − k)

)
[k ≤ j]Cj−k

which begins 

1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 3 1 0 0 0 0 . . .
1 6 6 1 0 0 0 . . .
1 10 20 10 1 0 0 . . .
1 15 50 50 15 1 0 . . .
1 21 105 175 105 21 1 . . .
...

...
...

...
...

...
...

. . .


This is the Narayana triangle A001263. The row sums of this matrix are Cn+1. We obtain

Cn+1 =
n∑

j=0

(
n

j

) b j
2
c∑

k=0

(
j

2k

)
Ck =

n∑
k=0

2n−k

(
n

k

)
C k

2

1 + (−1)k

2
=

bn
2
c∑

k=0

(
n

2k

)
2n−2kCk.

Example 63. We let an = 1+(−1)n

2
, with e.g.f. cosh(x). Then we obtain the matrix that

begins 

1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
1 3 3 1 0 0 0 . . .
1 4 7 4 1 0 0 . . .
1 5 15 15 5 1 0 . . .
1 6 30 50 30 6 1 . . .
...

...
...

...
...

...
...

. . .


with row sums that start 1, 2, 4, 8, 17, 42, 124, 408, . . . with general term

n∑
k=0

2n−k

(
n

k

)
1 + (−1)

k
2

2

1 + (−1)k

2
.
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The Hankel transform of this sequence is 1, 0, 0,−1, 0, 0, . . ..

Example 64. We now take an = n!. We obtain the triangle A162747 which begins

1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 3 1 0 0 0 0 . . .
1 6 6 1 0 0 0 . . .
1 10 20 10 1 0 0 . . .
1 15 50 50 15 1 0 . . .
1 21 105 176 105 21 1 . . .
...

...
...

...
...

...
...

. . .


with row sums that start 1, 2, 5, 14, 42, 132, 430, 1444, 4984, . . .. This is the sequence A162748,
equal to the second binomial transform of the aerated factorial numbers. It has general term

n∑
k=0

2n−k

(
n

k

)(
k

2

)
!
1 + (−1)k

2
=

bn
2
c∑

k=0

(
n

2k

)
2n−2kk!

and generating function expressible as the continued fraction

1

1− 2x−
x2

1− 2x−
x2

1− 2x−
2x2

1− 2x−
2x2

1− 2x−
3x2

1− 2x− · · ·

.

The Hankel transform of this sequence is A137704.

Example 65. The following example will be returned to in Chapter 11. We let an =
(2n− 1)!! = (2n)!

2nn!
. These are the double factorial numbers, A001147, with e.g.f. 1√

1−2x
. This

gives us the Pascal-like triangle that begins

1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 3 1 0 0 0 0 . . .
1 6 6 1 0 0 0 . . .
1 10 21 10 1 0 0 . . .
1 15 55 55 15 1 0 . . .
1 21 120 215 120 21 1 . . .
...

...
...

...
...

...
...

. . .


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with row sums starting 1, 2, 5, 14, 43, 142, 499, . . ., A005425, with general term

n∑
k=0

2n−k

(
n

k

)
k!

2
k
2

(
k
2

)
!

1 + (−1)k

2
.

The e.g.f. of this sequence is e2x+x2

2 . The Hankel transform of this sequence is the sequence
of superfactorials A000178.

We close this section by looking at three special arrays whose binomial transforms are Pascal-
like, along with three closely related triangular arrays. Thus we consider the expressions

2F1

(
1

2
− n

2
,−n

2
; r;

4

x

)
and 2F1

(
1

2
− n

2
,−n

2
; r;

4

x2

)
for r = 1

2
, r = 1 and r = 2.

Starting with the value r = 1
2
, we find that xn

2F1

(
1
2
− n

2
,−n

2
; 1

2
; 4

x

)
defines the sequence of

polynomials

1, x, x2 + 4x, x3 + 12x2, x4 + 24x3 + 16x2, x5 + 40x4 + 80x3, . . .

with coefficient array 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 4 1 0 0 0 . . .
0 0 12 1 0 0 . . .
0 0 16 24 1 0 . . .
0 0 0 80 40 1 . . .
...

...
...

...
...

...
. . .


which is the matrix

(
n

2k−n

)
4n−k. We find that its binomial transform is the matrix T (4)

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 6 1 0 0 0 . . .
1 15 15 1 0 0 . . .
1 28 70 28 1 0 . . .
1 45 210 210 45 1 . . .
...

...
...

...
...

...
. . .


with general term

(
2n
2k

)
. This is the coefficient array of the polynomials

xn
2F1(−n,−n+ 1/2; 1/2; 1/x).

Thus

xn
2F1(−n,−n+ 1/2; 1/2; 1/x) =

n∑
k=0

(
2n

2k

)
xk.
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We have

xn
2F1

(
1

2
− n

2
,−n

2
;
1

2
;
4

x

)
=

n∑
k=0

(
n

2k − n

)
4n−kxk =

n∑
k=0

n∑
j=0

(−1)n−j

(
n

j

)(
2j

2k

)
xk.

We note further that the polynomials 2F1

(
1
2
− n

2
,−n

2
; 1

2
; 4x
)

or

1, 1, 4x+ 1, 12x+ 1, 16x2 + 24x+ 1, 80x2 + 40x+ 1, . . .

are given by

2F1

(
1

2
− n

2
,−n

2
;
1

2
; 4x

)
=

bn
2
c∑

k=0

(
n

2k

)
4kxk.

For example, the sequence an = 2F1

(
1
2
− n

2
,−n

2
; 1

2
; 4
)

is A046717 with

an =

bn
2
c∑

k=0

(
n

2k

)
4k = (3n + (−1)n)/2.

Associated with these arrays is the coefficient array of the family of polynomials

xn
2F1

(
1

2
− n

2
,−n

2
;
1

2
;

4

x2

)
or

1, x, x2 + 4, x3 + 12x, x4 + 24x2 + 16, x5 + 40x3 + 80x, . . .

The coefficient array is then given by

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
4 0 1 0 0 0 . . .
0 12 0 1 0 0 . . .
16 0 24 0 1 0 . . .
0 80 0 40 0 1 . . .
...

...
...

...
...

...
. . .


with general term (

n

k

)
4(n−k)/2(1 + (−1)n−k)/2,

indicating that

xn
2F1

(
1

2
− n

2
,−n

2
;
1

2
;

4

x2

)
=

n∑
k=0

(
n

k

)
4(n−k)/2 1 + (−1)n−k

2
xk.

We now consider the family xn
2F1

(
1
2
− n

2
,−n

2
; 1; 4

x

)
of polynomials :

1, x, x2 + 2x, x3 + 6x2, x4 + 12x3 + 6x2, x5 + 20x4 + 30x3, . . .
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with coefficient array A105868 :

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 0 6 1 0 0 . . .
0 0 6 12 1 0 . . .
0 0 0 30 20 1 . . .
...

...
...

...
...

...
. . .


with general term (

k

n− k

)(
n

k

)
.

This signifies that

xn
2F1

(
1

2
− n

2
,−n

2
; 1;

4

x

)
=

n∑
k=0

(
k

n− k

)(
n

k

)
xk.

Taking the binomial transform of this coefficient array, we obtain the number triangle

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 9 9 1 0 0 . . .
1 16 36 16 1 0 . . .
1 25 100 100 25 1 . . .
...

...
...

...
...

...
. . .


which has general term

(
n
k

)2
A008459. This is the coefficient array of the family of polyno-

mials defined by
xn

2F1(−n,−n; 1; 1/x),

so that

xn
2F1(−n,−n; 1; 1/x) =

n∑
k=0

(
n

k

)2

xk.

We also have

xn
2F1

(
1

2
− n

2
,−n

2
; 1;

4

x

)
=

n∑
k=0

n∑
j=0

(−1)n−j

(
n

j

)(
j

k

)2

xk.

We note further that the polynomials 2F1

(
1
2
− n

2
,−n

2
; 1; 4x

)
or

1, 1, 2x+ 1, 6x+ 1, 6x2 + 12x+ 1, 30x2 + 20x+ 1, . . .
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are given by

2F1

(
1

2
− n

2
,−n

2
; 1; 4x

)
=

bn
2
c∑

k=0

(
n

2k

)(
2k

k

)
xk.

In particular, we have

2F1

(
1

2
− n

2
,−n

2
; 1; 4

)
=

bn
2
c∑

k=0

(
n

2k

)(
2k

k

)
=

n∑
k=0

(
k

n− k

)(
n

k

)
= tn

where tn = [xn](1+x+x2)n denotes the n-th central trinomial coefficient A002426. Similarly

[xn](1 + x− x2)n = (−1)n

n∑
k=0

(
k

n− k

)(
n

k

)
(−1)k

=

bn
2
c∑

k=0

(
n

2k

)(
2k

k

)
(−1)k

= 2F1

(
1

2
− n

2
,−n

2
; 1;−4

)
is A098331.
We consider now the family xn

2F1

(
1
2
− n

2
,−n

2
; 1; 4

x2

)
, or

1, x, x2 + 2, x3 + 6x, x4 + 12x2 + 6, x5 + 20x3 + 30x, . . .

with coefficient array 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
2 0 1 0 0 0 . . .
0 6 0 1 0 0 . . .
6 0 12 0 1 0 . . .
0 30 0 20 0 1 . . .
...

...
...

...
...

...
. . .


A109187 with general term (

n+k
2

k

)(
n

n+k
2

)
1 + (−1)n−k

2
.

This array counts Motzkin paths of length n having k (1, 0)-steps. We have

xn
2F1

(
1

2
− n

2
,−n

2
; 1;

4

x2

)
=

n∑
k=0

(
n+k

2

k

)(
n

n+k
2

)
(1 + (−1)n−k

2
xk.

Finally, we consider the family xn
2F1

(
1
2
− n

2
,−n

2
; 2; 4

x

)
, or

1, x, x2 + x, x3 + 3x2, x4 + 6x3 + 2x2, x5 + 10x4 + 10x3, . . .
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with coefficient array A107131

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 3 1 0 0 . . .
0 0 2 6 1 0 . . .
0 0 0 10 10 1 . . .
...

...
...

...
...

...
. . .


which has general term

[k ≤ n]

(
n

2k − n

)
Cn−k.

Again, this array is associated to the counting of Motzkin paths, and it has as row sums the
Motzkin numbers. We have

xn
2F1

(
1

2
− n

2
,−n

2
; 2;

4

x

)
=

n∑
k=0

(
n

2k − n

)
Cn−kx

k.

Multiplying this coefficient array by the binomial matrix B, we obtain the Narayana numbers

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .


.

This triangle is the coefficient array of (x− 1)n
2F1

(
−n, n+ 3; 2; 1

1−x

)
. Thus

(x− 1)n
2F1

(
−n, n+ 3; 2;

1

1− x

)
=

n∑
k=0

1

k + 1

(
n

k

)(
n+ 1

k

)
xk.

We note further that the polynomials 2F1

(
1
2
− n

2
,−n

2
; 2; 4x

)
or

1, 1, x+ 1, 3x+ 1, 2x2 + 6x+ 1, 10x2 + 10x+ 1, . . .

are given by

2F1

(
1

2
− n

2
,−n

2
; 2; 4x

)
=

bn
2
c∑

k=0

(
n

2k

)
Ckx

k.

In particular, we have

2F1

(
1

2
− n

2
,−n

2
; 2; 4

)
=

bn
2
c∑

k=0

(
n

2k

)
Ck = Mn,
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the n-th Motzkin number (A001006). From the above, we also see that

Mn =
n∑

k=0

(
n

2k − n

)
Cn−k.

We look now at the family xn
2F1

(
1
2
− n

2
,−n

2
; 2; 4

x2

)
, or

1, x, x2 + 1, x3 + 3x, x4 + 6x2 + 2, x5 + 10x3 + 10x, . . .

with coefficient array A097610 which starts

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 3 0 1 0 0 . . .
2 0 6 0 1 0 . . .
0 10 0 10 0 1 . . .
...

...
...

...
...

...
. . .


with general term (

n

k

)
Cn−k

2

1 + (−1)n−k

2
.

This array counts Motzkin paths of length n having k horizontal steps. The row sums of the
array are indeed the Motzkin numbers. We have

xn
2F1

(
1

2
− n

2
,−n

2
; 2;

4

x2

)
=

n∑
k=0

(
n

k

)
Cn−k

2

1 + (−1)n−k

2
xk.

It is interesting to note that the family of polynomials given by

xn
2F1(−n,−n+ 1; 2; 1/x)

which begins

1, x, x(x+ 1), x(x2 + 3x+ 1), x(x3 + 6x2 + 6x+ 1), x(x4 + 10x3 + 20x2 + 10x+ 1), . . .

has coefficient array given by the Narayana numbers

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .


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with general term

N(n, k) = 0n+k +
1

n+ 0nk

(
n

k

)(
n

k − 1

)
= (−1)k

(
1

k

)
0n +

(
n− 1

k − 1

)(
n

k − 1

)
1

k + 0k
.

Thus xn
2F1(−n,−n+ 1; 2; 1/x) =

∑n
k=0N(n, k)xk. In particular, we find

Cn = 2F1(−n,−n+ 1; 2; 1).

The family of polynomials
xn

2F1(−n,−n+ 1; 1; 1/x)

has coefficient array 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 3 6 1 0 0 . . .
0 4 18 12 1 0 . . .
0 5 40 60 20 1 . . .
...

...
...

...
...

...
. . .


with general term N(n, k)(n− k + 1). Thus

xn
2F1(−n,−n+ 1; 1; 1/x) =

n∑
k=0

N(n, k)(n− k + 1)xk.

In particular we find that 2F1(−n,−n+ 1; 1; 1) =
(
2n−1

n

)
, A088218.

We summarize these findings as follows.

Polynomial family Coefficient array Polynomial family Coefficient array

xn
2F1(

1
2
− n

2
,−n

2
; 1

2
; 4

x
)

(
n

2k−n

)
4n−k xn

2F1(
1
2
− n

2
,−n

2
; 1

2
; 4

x2 )
(

n
k

)
4

n−k
2

1+(−1)n−k

2

xn
2F1(

1
2
− n

2
,−n

2
; 1; 4

x
)

(
n
k

)(
k

n−k

)
xn

2F1(
1
2
− n

2
,−n

2
; 1; 4

x2 )
(

n
k

)(
n−k
n−k

2

)1+(−1)n−k

2

xn
2F1(

1
2
− n

2
,−n

2
; 2; 4

x
)

(
n

2k−n

)
Cn−k xn

2F1(
1
2
− n

2
,−n

2
; 2; 4

x2 )
(

n
k

)
Cn−k

2

1+(−1)n−k

2

We note the following. We have

rn
2F1

(
1

2
− n

2
,−n

2
;
1

2
;

4

r2

)
=

n∑
k=0

(
n

k

)
4

n−k
2

1 + (−1)n−k

2
rk

=
n∑

k=0

(
n

k

)
rn−k4

k
2
1 + (−1)k

2
.

Thus this is the r-th binomial transform of the aerated sequence 1, 0, 4, 0, 16, 0, 64, 0, . . . with
g.f. 1

1−4x2 . Thus the sequence with general term rn
2F1(

1
2
−n

2
,−n

2
; 1

2
; 4

r2 ) has g.f. 1−rx
1−2rx−(4−r2)x2 ,

that is,

rn
2F1

(
1

2
− n

2
,−n

2
;
1

2
;

4

r2

)
= [xn]

1− rx

1− 2rx− (4− r2)x2
.
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Similarly we have

rn
2F1

(
1

2
− n

2
,−n

2
; 1;

4

r2

)
=

n∑
k=0

(
n

k

)(
n− k

n−k
2

)
1 + (−1)n−k

2
rk

=
n∑

k=0

(
n

k

)
rn−k

(
k

k/2

)
1 + (−1)k

2

which shows that rn
2F1

(
1
2
− n

2
,−n

2
; 1; 4

r2

)
is the r-th binomial transform of the aerated

sequence of central binomial coefficients 1, 0, 2, 0, 6, 0, . . .. Hence this sequence has g.f.
1√

1−2rx−(4−r2)x2
, that is,

rn
2F1

(
1

2
− n

2
,−n

2
; 1;

4

r2

)
= [xn]

1√
1− 2rx− (4− r2)x2

.

Finally, we have

rn
2F1

(
1

2
− n

2
,−n

2
; 2;

4

r2

)
=

n∑
k=0

(
n

k

)
Cn−k

2

1 + (−1)n−k

2
rk

=
n∑

k=0

(
n

k

)
rn−kCk/2

1 + (−1)k

2

where the last expression is the r-th binomial transform of the aerated Catalan numbers.
Thus

rn
2F1

(
1

2
− n

2
,−n

2
; 2;

4

r2

)
= [xn]

1− rx−
√

1− 2kx− (4− r2)x2

2x2
.
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Chapter 3

Integer sequences and graphs 1

Integer sequences arise naturally in the study of graphs. They are closely related to the
notion of walk or path on a graph, and their enumeration. In this chapter we shall study
the cyclic groups, and find links to a family of decompositions of Pascal’s triangle. The role
of the circulant matrix is central to much of the work of this note. We first recall some
definitions and then study some sequences associated to particular types of graph.

A graph X is a triple consisting of a vertex set V = V (X), an edge set E = E(X), and a
map that associates to each edge two vertices (not necessarily distinct) called its endpoints.
A loop is an edge whose endpoints are equal. To any graph, we may associate the adjacency
matrix, which is an n × n matrix, where |V | = n with rows and columns indexed by the
elements of the vertex set V and the (x, y)-th element is the number of edges connecting
x and y. As defined, graphs are undirected, so this matrix is symmetric. We will restrict
ourselves to simple graphs, with no loops or multiple edges.

The degree of a vertex v, denoted deg(v), is the number of edges incident with v. A graph
is called k-regular if every vertex has degree k. The adjacency matrix of a k-regular graph
will then have row sums and column sums equal to k.

A matching M in a graph X is a set of edges such that no two have a vertex in common.
The size of a matching is the number of edges in it. An r-matching in a graph X is a set
of r edges, no two of which have a vertex in common. A vertex contained in an edge of M
is covered by M . A matching that covers every vertex of X is called a perfect matching.
We note that a graph that contains a perfect matching has an even number of vertices. A
maximum matching is a matching with the maximum possible number of edges.

If x, y ∈ V then an x-y walk in X is a (loop-free) finite alternating sequence

x = x0, e1, x1, e2, x2, e3, . . . , er−1, xr−1, er, xr = y

of vertices and edges from X, starting at the vertex x and ending at the vertex y and
involving the r edges ei = {xi−1, xi}, where 1 ≤ i ≤ r. The length of this walk is r. If x = y,
the walk is closed, otherwise it is open. If no edge in the x-y walk is repeated, then the walk
is called an x-y trail. A closed x-x trail is called a circuit. If no vertex of the x-y walk is
repeated, then the walk is called an x-y path. When x = y, a closed path is called a cycle.

1This chapter reproduces the content of the published article “P. Barry, On Integer Sequences Associated
with the Cyclic and Complete Graphs, J. Integer Seq., 10 (2007), Art. 07.4.8” [19].
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The number of walks from x to y of length r is given by the x, y-th entry of Ar, where A is
the adjacency matrix of the graph X.
The cyclic graph Cr on r vertices is the graph with r vertices and r edges such that if we
number the vertices 0, 1, . . . , r − 1, then vertex i is connected to the two adjacent vertices
i+ 1 and i− 1(modr). The complete graph Kr on r vertices is the loop-free graph where for
all x, y ∈ V, x 6= y, there is an edge {x, y}.
We note that C3=K3.
A final graph concept that will be useful is that of the chromatic polynomial of a graph.
If X = (V,E) is an undirected graph, a proper colouring of X occurs when we colour the
vertices ofX so that if {x, y} is an edge inX, then x and y are coloured with different colours.
The minimum number of colours needed to properly colour X is called the chromatic number
of X and is written χ(X). For k ∈ Z+, we define the polynomial P (X, k) as the number of
different ways that we can properly colour the vertices of X with k colours.
For example,

P (Kr, k) = k(k − 1) . . . (k − r + 1) (3.1)

and
P (Cr, k) = (k − 1)r + (−1)r(k − 1). (3.2)

3.1 Notation

In this chapter, we shall employ the following notation : r will denote the number of vertices
in a graph. Note that the adjacency matrix A of a graph with r vertices will then be an
r × r matrix. We shall reserve the number variable n to index the elements of a sequence,
as in an, the n-th element of the sequence a = (an)n≥0, or as the n-th power of a number
or a matrix (normally this will be related to the n-th term of a sequence). The notation 0n

signifies the integer sequence with generating function 1, which has elements 1, 0, 0, 0, . . ..
Note that the Binomial matrix B and the Fourier matrix Fr (see below) are indexed from
(0, 0), that is, the leftmost element of the first row is the (0, 0)-th element. This allows us

to give the simplest form of their general (n, k)-th element (
(

n
k

)
and e−

2πink
r respectively).

The adjacency matrix of a graph, normally denoted by A, will be indexed as usual from
(1, 1). Similarly the eigenvalues of the adjacency matrix will be labelled λ1, λ2, . . . , λr.
In the sequel, we will find it useful to use the machinery of circulant matrices.

3.2 Circulant matrices

We now provide a quick overview of the theory of circulant matrices [64], as these will be
encountered shortly. An r × r circulant matrix C is a matrix whose rows are obtained by
shifting the previous row one place to the right, with wraparound, in the following precise
sense. If the elements of the first row are (c1, . . . , cr) then

cjk = ck−j+1
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where subscripts are taken modulo n. Circulant matrices are diagonalised by the discrete
Fourier transform, whose matrix Fr is defined as follows : let ω(r) = e−2πi/r where i =

√
−1.

Then Fr has i, j-th element ωi·j, 0 ≤ i, j ≤ r − 1.
We can write the above matrix as C = circ(c1, . . . , cr). The permutation matrix π =
circ(0, 1, 0, . . . , 0) plays a special role. If we let p be the polynomial p(x) = c1 + c2x +
. . .+ crx

r−1, then C = p(π).
We have, for C a circulant matrix,

C = F−1ΛF,

Λ = diag(p(1), p(ω), . . . , p(ωr−1)).

The i-th eigenvalue of C is λi = p(ωi), 0 ≤ i ≤ r − 1.

3.3 The graph C3 and Jacobsthal numbers

We let A be the adjacency matrix of the cyclic graph C3. We have

A =

 0 1 1
1 0 1
1 1 0

 .

Here, p(x) = x(1 + x). We note that this matrix is circulant. We shall be interested both
in the powers An of A and its eigenvalues. There is the following connection between these
entities:

trace(An) =
r∑

j=1

λn
j

where λ1, . . . , λr are the eigenvalues of A. Here, r = 3. In order to obtain the eigenvalues of
A, we use F3 to diagonalize it. We obtain

F−1
3 AF3 =

 2 0 0
0 −1 0
0 0 −1

 .

We immediately have
trace(An) = 2n + 2(−1)n.

Since J1(n) = (2n + 2(−1)n)/3, we obtain

Proposition 66. J1(n) = 1
3
trace(An)

Our next observation relates J1(n) to 3-colourings of Cr. For this, we recall that P (Cr, k) =
(k − 1)r + (−1)r(k − 1). Letting k = 3, we get P (Cr, 3) = 2r + 2(−1)r.

Proposition 67. J1(r) = 1
3
P (Cr, 3).

Since A is circulant, it and its powers An are determined by the elements of their first rows.
We shall look at the integer sequences determined by the first row elements of An - that is,
we shall look at the sequences a

(n)
1j , for j = 1, 2, 3.
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Theorem 68.

a
(n)
11 = J1(n), a

(n)
12 = J(n), a

(n)
13 = J(n).

Proof. We use the fact that

An = F−1

 2n 0 0
0 (−1)n 0
0 0 (−1)n

F. (3.3)

Then

An =
1

3

 1 1 1
1 ω ω2

1 ω2 ω4

 2n 0 0
0 (−1)n 0
0 0 (−1)n

 1 1 1
1 ω ω2

1 ω2 ω4


=

1

3

(
2n (−1)n (−1)n

...
...

...

) 1 1 1
1 ω ω2

1 ω2 ω4


=

1

3

(
2n + 2(−1)n (2n + (−1)nω3 + (−1)nω2

3) (2n + (−1)nω2
3 + (−1)nω4

3)
...

...
...

)
.

Thus we obtain

a
(n)
11 = (2n + 2(−1)n)/3

a
(n)
12 = (2n + (−1)nω3 + (−1)nω2

3)/3

a
(n)
13 = (2n + (−1)nω2

3 + (−1)nω4
3)/3.

The result now follows from the fact that

1 + ω3 + ω2
3 = 1 + ω2

3 + ω4
3 = 0.

Corollary 69. The Jacobsthal numbers count the number of walks on C3. In particular,
J1(n) counts the number of closed walks of length n on the edges of a triangle based at
a vertex. J(n) counts the number of walks of length n starting and finishing at different
vertices.

An immediate calculation gives

Corollary 70.
2n = a

(n)
11 + a

(n)
13 + a

(n)
13 .

The identity
2n = 2J(n) + J1(n)

now becomes a consequence of the identity

2n = a
(n)
11 + a

(n)
13 + a

(n)
13 .
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This is a consequence of the fact that C3 is 2-regular. We have arrived at a link between
the Jacobsthal partition (or colouring) of Pascal’s triangle and the cyclic graph C3. We
recall that this comes about since 2n = J1(n) + 2J(n), and the fact that J1(n) and J(n) are
expressible as sums of binomial coefficients.
We note that although C3 = K3, it is the cyclic nature of the graph and the fact that it is
2-regular that links it to this partition. We shall elaborate on this later in the chapter.
In terms of ordinary generating functions, we have the identity

1

1− 2x
=

1− x

(1 + x)(1− 2x)
+

x

(1 + x)(1− 2x)
+

x

(1 + x)(1− 2x)

and in terms of exponential generating functions, we have

exp(2x) =
2

3
exp(−x)

(
1 + exp(

3x

2
) sinh(

3x

2
)

)
+ 2

2

3
exp(

x

2
) sinh(

3x

2
)

or more simply,

exp(2x) =
1

3
(exp(2x) + 2 exp(−x)) + 2

1

3
(exp(2x)− exp(−x)).

An examination of the calculations above and the fact that F is symmetric allows us to state

Corollary 71.  a
(n)
11

a
(n)
12

a
(n)
13

 =
1

3

 1 1 1
1 ω ω2

1 ω2 ω4

 2n

(−1)n

(−1)n

 .

In fact, this result can be easily generalized to give the following
a

(n)
11

a
(n)
12
...

a
(n)
1r

 =
1

r
Fr


λn

1

λn
2
...
λn

r

 (3.4)

so that

An = circ(a
(n)
11 , a

(n)
12 , . . . , a

(n)
1r ) = circ(

1

r
Fr(λ

n
1 , . . . , λ

n
r )′).

It is instructive to work out the generating function of these sequences. For instance, we
have

a
(n)
12 =

1.2n + ω.(−1)n + ω2.(−1)n

3
.
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This implies that a
(n)
12 has generating function

g12(x) =
1

3

(
1

1− 2x
+

ω

1 + x
+

ω2

1 + x

)
=

1

3

(
(1 + x)2 + ω(1 + x)(1− 2x) + ω2(1− 2x)(1 + x)

(1− 2x)(1 + x)(1 + x)

)
=

3x(1 + x)

3(1− 2x)(1 + x)2

=
x(1 + x)

1− 3x2 − 2x3

=
x

1− x− 2x2
.

This is as expected, but it also highlights the importance of

(1− 2x)(1 + x)(1 + x) = (1− λ1x)(1− λ2x)(1− λ3x) = 1− 3x2 − 2x3.

Hence each of these sequences not only obeys the Jacobsthal recurrence

an = an−1 + 2an−2

but also
an = 3an−2 + 2an−3, n ≥ 3.

Of course,
1− 3x2 − 2x3 = (1− p(ω0

3)x)(1− p(ω1
3)x)(1− p(ω2

3)x)

where p(x) = x+ x2.

3.4 The case of C4

For the cyclic graph on four vertices C4 we have the following adjacency matrix

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 . (3.5)

Here, p(x) = x(1 + x2). We can carry out a similar analysis as for the case n = 3. Using F
to diagonalize A, we obtain

F−1AF =


2 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 0

 .

From this, we can immediately deduce the following result.
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Theorem 72.

1

4
traceAn =

1

4
(2n + (−2)n + 2.0n) = 1, 0, 2, 0, 8, 0, 32, . . .

Theorem 73.

a
(n)
11 = (2n + (−2)n + 2.0n)/4 = 1, 0, 2, 0, 8, 0, 32, . . .

a
(n)
12 = (2n − (−2)n)/4 = 0, 1, 0, 4, 0, 16, 0 . . .

a
(n)
13 = (2n + (−2)n − 2.0n)/4 = 0, 0, 2, 0, 8, 0, 32, . . .

a
(n)
14 = (2n − (−2)n)/4 = 0, 1, 0, 4, 0, 16, 0, . . .

Proof. We have

An =
1

4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




2n 0 0 0
0 0n 0 0
0 0 (−2)n 0
0 0 0 0n




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

From this we obtain

a
(n)
11 = (2n + 0n + (−2)n + 0n)/4 = (2n + (−2)n + 2.0n)/4

a
(n)
12 = (2n − i.0n − (−2)n + i.0n)/4 = (2n − (−2)n)/4

a
(n)
13 = (2n − 1.0n + (−2)n − 1.0n)/4 = (2n + (−2)n − 2.0n)/4

a
(n)
14 = (2n + i.0n − (−2)n − i.0n)/4 = (2n − (−2)n)/4.

Corollary 74. The sequences above count the number of walks on the graph C4. In par-
ticular, a

(n)
11 counts the number of closed walks on the edges of a quadrilateral based at a

vertex.

An easy calculation also gives us the important

Corollary 75.
2n = a

(n)
11 + a

(n)
12 + a

(n)
13 + a

(n)
14 .

In terms of ordinary generating functions of the sequences a
(n)
11 , a

(n)
12 , a

(n)
13 , a

(n)
14 , we have the

following algebraic expression

1

1− 2x
=

1

1− 2x

(
1− 2x2

1 + 2x
+

x

1 + 2x
+

2x2

1 + 2x
+

x

1 + 2x

)
.

Anticipating the general case, we can state

Theorem 76. There exists a partition

B = B0 + B1 + B2 + B3

where the Bi are zero-binomial matrices with row sums equal to a
(n)
11 , a

(n)
12 , a

(n)
13 , a

(n)
14 , respec-

tively, for i = 0 . . . 3.
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In fact, we have

a
(n)
11 =

∑
2k−n≡0 mod 4

(
n

k

)
a

(n)
12 =

∑
2k−n≡1 mod 4

(
n

k

)
a

(n)
13 =

∑
2k−n≡2 mod 4

(
n

k

)
a

(n)
14 =

∑
2k−n≡3 mod 4

(
n

k

)
.

We shall provide a proof for this later, when we look at the general case. Each of these
sequences satisfy the recurrence

an = 4an−2.

We can see the decomposition induced from C4 in the following coloured rendering of B.

B =



1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
1 3 3 1 0 0 0 . . .
1 4 6 4 1 0 0 . . .
1 5 10 10 5 1 0 . . .
1 6 15 20 15 6 1 . . .
...

...
...

...
...

...
...

. . .



1 0 0 0
0 1 0 1
2 0 2 0
0 4 0 4
8 0 8 0
0 16 0 16
32 0 32 0
. . . .

3.5 The case of C5

This case is worth noting, in the context of integer sequences, as there is a link with the
Fibonacci numbers. For the cyclic graph on five vertices C5 we have the following adjacency
matrix

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 . (3.6)

Here, p(x) = x(1 + x3).
Diagonalizing with F, we obtain

Λ =


2 0 0 0 0

0
√

5
2
− 1

2
0 0 0

0 0 −
√

5
2
− 1

2
0 0

0 0 0 −
√

5
2
− 1

2
0

0 0 0 0
√

5
2
− 1

2


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or

Λ =


2 0 0 0 0
0 1

φ
0 0 0

0 0 −φ 0 0
0 0 0 −φ 0
0 0 0 0 1

φ


where φ =

√
5+1
2

.

Proposition 77. 1
5
trace(An) = (2n + 2(−1)n(F (n+ 1) + F (n− 1)))/5.

Proof. We have 1
5
trace(An) =

(
2n + 2

(√
5

2
− 1

2

)n

+ 2
(
−

√
5

2
− 1

2

)n)
/5. An easy manipula-

tion produces the result.

This sequence is A054877.

Theorem 78.

a
(n)
11 =

(
2n + 2

(√
5

2
− 1

2

)n

+ 2

(
−
√

5

2
− 1

2

)n)
/5

a
(n)
12 =

2n +

(√
5

2
− 1

2

)n+1

+

(
−
√

5

2
− 1

2

)n+1
 /5

a
(n)
13 =

(
2n −

(√
5

2
− 1

2

)n(√
5

2
+

1

2

)
+

(
−
√

5

2
− 1

2

)n(√
5

2
− 1

2

))
/5

a
(n)
14 =

(
2n −

(√
5

2
− 1

2

)n(√
5

2
+

1

2

)
+

(
−
√

5

2
− 1

2

)n(√
5

2
− 1

2

))
/5

a
(n)
15 =

2n +

(√
5

2
− 1

2

)n+1

+

(
−
√

5

2
− 1

2

)n+1
 /5.

Equivalently,

a
(n)
11 =

(
2n + 2φ−n + 2(−φ)n

)
/5

a
(n)
12 =

(
2n + φ−n−1 + (−φ)n+1

)
/5

a
(n)
13 =

(
2n − φ−n+1 + (−1)nφn+1

)
/5

a
(n)
14 =

(
2n − φ−n+1 + (−1)nφn+1

)
/5

a
(n)
15 =

(
2n + φn+1 + (−φ)n+1

)
/5.

Proof. The result follows from the fact that the first row of An is given by 1
5
F(λn

1 , λ
n
2 , λ

n
3 , λ

n
4 , λ

n
5 )′.

Corollary 79. The sequences in Theorem 78 count walks on C5. In particular, the sequence
a

(n)
11 counts closed walks of length n along the edges of a pentagon, based at a vertex.
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We note that a
(n)
12 = a

(n)
15 . This is A052964. Similarly a

(n)
13 = a

(n)
14 . This is (the absolute value

of) A084179.
An easy calculation gives us the important result

Corollary 80.
2n = a

(n)
11 + a

(n)
12 + a

(n)
13 + a

(n)
14 + a

(n)
15 .

In terms of the ordinary generating functions for these sequences, we obtain the following
algebraic identity

1

1− 2x
=

1

1− 2x

(
1− x− x2

1 + x− x2
+

2x(1− x)

1 + x− x2
+

2x2

1 + x− x2
.

)
Anticipating the general case, we can state the

Theorem 81. There exists a partition

B = B0 + B1 + B2 + B3 + B4

where the Bi are zero-binomial matrices with row sums equal to a
(n)
11 , a

(n)
12 , a

(n)
13 , a

(n)
14 , a

(n)
15 ,

respectively, for i = 0 . . . 4.

In fact, we have

a
(n)
11 =

∑
2k−n≡0 mod 5

(
n

k

)
a

(n)
12 =

∑
2k−n≡1 mod 5

(
n

k

)
a

(n)
13 =

∑
2k−n≡2 mod 5

(
n

k

)
a

(n)
14 =

∑
2l−n≡3 mod 5

(
n

k

)
a

(n)
15 =

∑
2k−n≡4 mod 5

(
n

k

)
.

We note that

(1− p(ω0
5)x)(1− p(ω1

5)x)(1− p(ω2
5)x)(1− p(ω3

5)x)(1− p(ω4
5)x) = 1− 5x3 + 5x4 − 2x5

for p(x) = x+ x4 which implies that each of the sequences satisfies the recurrence

an = 5an−3 − 5an−4 + 2an−5.
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3.6 The General Case of Cr

We begin by remarking that since Cr is a 2-regular graph, its first eigenvalue is 2. We have
seen explicit examples of this in the specific cases studied above. We now let A denote the ad-
jacency matrix of Cr. We have A = p(π) where p(x) = x+xr−1, so A = circ(0, 1, 0, . . . , 0, 1).

Theorem 82.

2n =
r∑

j=1

a
(n)
1j

where a
(n)
1j is the j-th element of the first row of An.

Proof. We have

(a
(n)
1j )1≤j≤r =

1

r
F(λn

1 , λ
n
2 , . . . , λ

n
r )′

=
1

r
(

r∑
k=1

λn
kω

(j−1)(k−1)).

Hence we have

r∑
j=1

a
(n)
1j =

1

n

r∑
j=1

r∑
k=1

λn
kω

(j−1)(k−1)

=
1

r

r∑
k=1

λn
k

r∑
j=1

ω(j−1)(k−1)

=
1

r
rλn

1 =
1

r
r2n = 2n.

We can now state the main result of this section.

Theorem 83. Let A be the adjacency matrix of the cyclic graph on r vertices Cr. Let a
(n)
1j

be the first row elements of the matrix An. There exists a partition

B = B0 + B1 + . . .+ Br−1

where the Bi are zero-binomial matrices with row sums equal to the sequences a
(n)
1,i+1, respec-

tively, for i = 0 . . . r − 1.

Proof. We have already shown that

2n =
n∑

i=0

(
n

i

)
=

r∑
j=1

a
(n)
1j .
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We shall now exhibit a partition of this sum which will complete the proof. For this, we
recall that A = p(π), where p(x) = x+ xr−1. Then

(a
(n)
1j )1≤j≤r =

1

r
Fr


p(ω0

r)
n

p(ω1
r)

n

p(ω2
r)

n

...
p(ωr−1

r )n



=
1

r
Fr


(ω0 + ω0.(r−1))n

(ω1 + ω1.(r−1))n

(ω2 + ω2.(r−1))n

...
(ωr−1 + ω(r−1).(r−1))n



=
1

r
Fr


(ω0 + ω−0)n

(ω1 + ω−1)n

(ω2 + ω−2)n

...
(ωr−1 + ω−(r−1))n

 .

a
(n)
1j =

1

r

r−1∑
l=0

(ωl
r + ω−l

r )nω(j−1)l
r

=
1

r

r−1∑
l=0

n∑
k=0

(
n

k

)
ωkl

r ω
−l(n−k)
r ω(j−1)l

r

=
n∑

k=0

(
n

k

)
(
1

r

r−1∑
l=0

ωkl
r ω

−l(n−k)
r ω(j−1)l

r )

=
n∑

k=0

(
n

k

)
(
1

r

r−1∑
l=0

ω2kl+l(j−1−n)
r )

=
∑

r|2k+(j−1−n)

(
n

k

)

=
∑

2k≡(n+1−j) mod r

(
n

k

)
.

We thus have

(Bi)n,k = [2k ≡ n+ 1− i mod r]

(
n

k

)
.

Corollary 84.

An = circ

(
1

r
Fr

(
2n cos(

2πj

r
)n

)
0≤j≤r−1

)
.
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Proof. This comes about since (ωj + ω−j) = e2πij/k + e−2πij/k = 2 cos(2πj/r).

This verifies the well-known fact that the eigenvalues of Cr are given by 2 cos(2πj/r), for
0 ≤ j ≤ r − 1 [248]. It is clear now that if σi = i-th symmetric function in 2 cos(2πj/r),

0 ≤ j ≤ r − 1, then the sequences a
(n)
1j , 1 ≤ j ≤ r, satisfy the recurrence

an = σ2an−2 − σ3an−3 + · · ·+ (−1)r−1σr−1ar−1.

We thus have

Corollary 85. The sequences

a
(n)
1j =

∑
2k≡n+1−j mod r

(
n

k

)
,

which satisfy the recurrence

an = σ2an−2 − σ3an−3 + · · ·+ (−1)r−1σr−1ar−1

count the number of walks of length n from vertex 1 to vertex j of the cyclic graph Cr.

3.7 A worked example

We take the case r = 8. We wish to characterize the 8 sequences
∑

8|2k+(j−1−n)

(
n
k

)
for

j = 1 . . . 8. We give details of these sequences in the following table.

sequence an binomial expression

1, 0, 2, 0, 6, 0, 20 . . . (1 + (−1)n)(0n + 2.2n/2 + 2n)/8
∑

n−2k≡0 mod 8

(
n
k

)
0, 1, 0, 3, 0, 10, 0 . . . (1− (−1)n)(2n +

√
2(
√

2)n)/8
∑

2k−n≡1 mod 8

(
n
k

)
0, 0, 1, 0, 4, 0, 16, . . . (1 + (−1)n)2n/8− 0n/4

∑
2k−n≡2 mod 8

(
n
k

)
0, 0, 0, 1, 0, 6, 0 . . . (1− (−1)n)(2n −

√
2(
√

2)n)/8
∑

2k−n≡3 mod 8

(
n
k

)
0, 0, 0, 0, 2, 0, 12, . . . (1 + (−1)n)(2n − 2(

√
2)n)/8 + 0n/4

∑
2k−n≡4 mod 8

(
n
k

)
0, 0, 0, 1, 0, 6, 0 . . . (1− (−1)n)(2n −

√
2(
√

2)n)/8
∑

2k−n≡5 mod 8

(
n
k

)
0, 0, 1, 0, 4, 0, 16, . . . (1 + (−1)n)2n/8− 0n/4

∑
2k−n≡6 mod 8

(
n
k

)
0, 1, 0, 3, 0, 10, 0 . . . (1− (−1)n)(2n +

√
2(
√

2)n)/8
∑

2k−n≡7 mod 8

(
n
k

)

75



In terms of ordinary generating functions, we have

1, 0, 2, 0, 6, 0, 20 . . . :
1− 4x+ 2x2

(1− 2x2)(1− 4x2)

0, 1, 0, 3, 0, 10, 0 . . . :
x(1− 3x2)

(1− 2x2)(1− 4x2)

0, 0, 1, 0, 4, 0, 16, . . . :
x2(1− 2x2)

(1− 2x2)(1− 4x2)

0, 0, 0, 1, 0, 6, 0 . . . :
x3

(1− 2x2)(1− 4x2)

0, 0, 0, 0, 2, 0, 12, . . . :
2x4

(1− 2x2)(1− 4x2)

0, 0, 0, 1, 0, 6, 0 . . . :
x3

(1− 2x2)(1− 4x2)

0, 0, 1, 0, 4, 0, 16, . . . :
x2(1− 2x2)

(1− 2x2)(1− 4x2)

0, 1, 0, 3, 0, 10, 0 . . . :
x(1− 3x2)

(1− 2x2)(1− 4x2)

All these sequences satisfy the recurrence

an = 6an−2 − 8an−4

with suitable initial conditions. In particular, the sequence 1, 0, 2, 0, 6, . . . has general term

a
(n)
11 =

0n

4
+ (1 + (−1)n)

(
2n

8
+

(
√

2)n

4

)
.

This counts the number of closed walks at a vertex of an octagon.
The sequences are essentially A112798, A007582, A000302, A006516, A020522, with

interpolated zeros.

3.8 The case n→∞
We recall that the modified Bessel function of the first kind [231, 249] is defined by the
integral

Ik(z) =

∫ π

0

ez cos(t) cos(kt)dt.

In(z) has the following generating function

ez(t+1/t)/2 =
∞∑

k=−∞

Ik(z)t
k.
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Letting z = 2x and t = 1, we get

e2x =
∞∑

k=−∞

Ik(2x) = I0(2x) + 2
∞∑

k=1

Ik(2x).

The functions Ik(2x) are the exponential generating functions for the columns of Pascal’s
matrix (including ‘interpolated’ zeros). For instance, I0(2x) generates the sequence of central
binomial coefficients 1, 0, 2, 0, 6, 0, 20, 0, 70, . . . with formula

(
n

n/2

)
(1 + (−1)n)/2. This gives

us the limit case of the decompositions of Pascal’s triangle - in essence, each of the infinite
matrices that sum to B∞ corresponds to a matrix with only non-zero entries in a single
column.

The matrix

A∞ =


0 1 0 0 0 · · ·
1 0 1 0 0 · · ·
0 1 0 1 0 · · ·
0 0 1 0 1 · · ·
...

...
...

...
...

. . .


corresponds to the limit cyclic graph C∞. We can characterize the (infinite) set of sequences
that correspond to the row elements of the powers An

∞ as those sequences with exponential
generating functions given by the family Ik(2x). We also obtain that trace(An

∞) is the set of
central binomial numbers (with interpolated zeros) generated by I0(2x).

3.9 Sequences associated to Kr

By way of example for what follows, we look at the adjacency matrix A for K4. We note
that K4 is 3-regular. A is given by

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Again, this matrix is circulant, with defining polynomial p(x) = x+x2 +x3 = x(1+x+x2).
Using F to diagonalize it, we obtain

Λ =


3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

This leads us to the sequence 1
4
trace(An) = (3n + 3(−1)n)/4 = 1, 0, 3, 6, 21, 60, . . ., which is

A054878. Comparing this result with the expression P (Cn, 4) = 3n + 3(−1)n we see that
trace(An) = P (Cn, 4).
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Proposition 86.

a
(n)
11 = (3n + 3(−1)n)/4 = 1, 0, 3, 6, 21, 60, . . .

a
(n)
12 = (3n − (−1)n)/4 = 0, 1, 2, 7, 20, 61, . . .

a
(n)
13 = (3n − (−1)n)/4 = 0, 1, 2, 7, 20, 61, . . .

a
(n)
14 = (3n − (−1)n)/4 = 0, 1, 2, 7, 20, 61, . . .

Proof. Using

(a
(n)
1j )1≤j≤n =

1

n
F(λn

1 , λ
n
2 , . . . , λ

n
n)′

we obtain, for instance,

a
(n)
12 = (3n + ω(−1)n + ω2(−1)n + ω3(−1)n)/4

= (3n + (−1)n(ω + ω2 + ω3))/4 = (3n − (−1)n)/4.

We note that a
(n)
11 is A054878, while a

(n)
12 = a

(n)
13 = a

(n)
14 are all equal to A015518.

Corollary 87.
3n = a

(n)
11 + a

(n)
12 + a

(n)
13 + a

(n)
14 .

Corollary 88. The sequences a
(n)
1j satisfy the linear recurrence

an = 2an−1 + 3an−2

with initial conditions

a0 = 1, a1 = 0, j = 0

a0 = 0, a1 = 1, j = 2 . . . 4.

This result is typical of the general case, which we now address. Thus we let A by the
adjacency matrix of the complete graph Kr on r vertices.

Lemma 89. The eigenvalues of A are r − 1,−1, . . . ,−1.

Proof. We have A = p(π), where p(x) = x + x2 + . . . + xr−1. The eigenvalues of A are
p(1), p(ω), p(ω2), . . . , p(ωr−1), where ωr = 1. Then p(1) = 1 + . . .+ 1 = r − 1. Now

p(x) = x+ . . .+ xr−1 = 1 + x+ . . .+ xr−1 − 1 =
1− xr

1− x
− 1.

Then

p(ωj) =
1− ωrj

1− ωj
− 1 = −1

since ωrj = 1 for j ≥ 1.

78

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A054878
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A015518


Theorem 90. Let A be the adjacency matrix of the complete graph Kr on r vertices. Then
the r sequences a

(n)
1j defined by the first row of An satisfy the recurrence

an = (r − 2)an−1 + (r − 1)an−2

with initial conditions

a0 = 1, a1 = 0, j = 1

a0 = 0, a1 = 1, j = 2 . . . r.

In addition, we have

(r − 1)n =
r∑

j=1

a
(n)
1j .

Proof. We have 
a

(n)
11

a
(n)
12
...

a
(n)
1r

 =
1

r
Fr


λn

1

λn
2
...
λn

r



=
1

r
Fr


p(1)n

p(ω2
r)

n

...
p(ωr−1

r )n



=
1

r
Fr


(r − 1)n

(−1)n

...
(−1)n

 .

Hence

a
(n)
11 =

1

r
((r − 1)n + (−1)n + . . .+ (−1)n)

=
1

r
((r − 1)n + (r − 1)(−1)n).

It is now easy to show that a
(n)
11 satisfies the recurrence

an = (r − 2)an−1 + (r − 1)an−2

with a0 = 1 and a1 = 0.
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For j > 1, we have

a
(n)
1j =

1

r
((r − 1)n + (−1)nωj + · · ·+ (−1)nωj(k−1))

=
1

r
((r − 1)n + (−1)n(ωj + . . .+ ωj(k−1))

=
1

r
((r − 1)n + (−1)n(

1− ωjk

1− ωj
− 1)

=
1

r
((r − 1)n − (−1)n).

This is the solution of the recurrence

an = (r − 2)an−1 + (r − 1)an−2

with a0 = 0 and a1 = 1 as required. To prove the final assertion, we note that

r∑
j=1

a1j(n) = a11(n) + (r − 1)a
(n)
12

=
(r − 1)n

r
+

(−1)n(r − 1)

r
+ (r − 1)

(
(r − 1)n

r
− (−1)n

r

)
=

(r − 1)n

r
(1 + r − 1) +

(−1)n(r − 1)

r
− (r − 1)(−1)n

r

=
(r − 1)n

r
r = (r − 1)n.

Thus the recurrences have solutions

an =
(r − 1)n

r
+

(−1)n(r − 1)

r

when
a0 = 1, a1 = 0,

and

a′n =
(r − 1)n

r
− (−1)n

r

for
a′0 = 0, a′1 = 1.

We recognize in the first expression above the formula for the chromatic polynomial P (Cn, r),
divided by the factor r. Hence we have

Corollary 91. 1
r
trace(An) = a

(n)
11 = 1

r
P (Cn, r).
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We list below the first few of these sequences, which count walks of length n on the complete
graph Kr. Note that we give the sequences in pairs, as for each value of r, there are only
two distinct sequences. The first sequence of each pair counts the number of closed walks
from a vertex on Kr. In addition, it counts r-colourings on Cn (when multiplied by r).

r = 3

(2n + 2(−1)n)/3 : 1, 0, 2, 2, 6, 10, 22, . . .

(2n − (−1)n)/3 : 0, 1, 1, 3, 5, 11, 21, . . .

r = 4

(3n + 3(−1)n)/4 : 1, 0, 3, 6, 21, 60, 183, . . .

(3n − (−1)n)/4 : 0, 1, 2, 7, 20, 61, 182, . . .

r = 5

(4n + 4(−1)n)/5 : 1, 0, 4, 12, 52, 204, 820, . . .

(4n − (−1)n)/5 : 0, 1, 3, 13, 51, 205, 819, . . .

r = 6

(5n + 5(−1)n)/6 : 1, 0, 5, 20, 105, 520, 2605, . . .

(5n − (−1)n)/6 : 0, 1, 4, 21, 104, 521, 2604, . . .

We have encountered the first four sequences already. The last four sequences are A109499,
A015521, A109500 and A015531.
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Chapter 4

Riordan arrays

4.1 The ordinary Riordan group

The Riordan group R [146, 153, 193, 202, 208], is a set of infinite lower-triangular matrices,
where each matrix is defined by a pair of ordinary generating functions g(x) = g0 + g1x +
g2x

2+ . . . where g0 6= 0 and f(x) = f1x+f2x
2+ . . .. We sometimes write f(x) = xh(x) where

h(0) 6= 0. The associated matrix is the matrix whose k-th column is generated by g(x)f(x)k

(the first column being indexed by 0). The matrix corresponding to the pair g, f is denoted
by (g, f), and is often called the Riordan array defined by g and f . When g0 = 1, the array
is called a monic Riordan array. When f1 6= 0, the array is called a proper Riordan array.
The group law is given by

(g, f) ∗ (u, v) = (g(u ◦ f), v ◦ f). (4.1)

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .
To each proper Riordan matrix (g(x), f(x)) = (g(x), xh(x)) = (dn,k)n,k≥0 there exist [75] two
sequences α = (α0, α1, α2, . . .)(α0 6= 0) and ξ = (ξ0, ξ1, ξ2, . . .) such that

1. Every element in column 0 can be expressed as a linear combination of all the elements
in the preceding row, the coefficients being the elements of the sequence ξ, i.e.

dn+1,0 = ξ0dn,0 + ξ1dn,1 + ξ2dn,2 + . . .

2. Every element dn+1,k+1 not lying in column 0 or row 0 can be expressed as a linear
combination of the elements of the preceding row, starting from the preceding column
on, the coefficients being the elements of the sequence α, i.e.

dn+1,k+1 = α0dn,k + α1dn,k+1 + α2dn,2 + . . .

The sequences α and ξ are called the α-sequence and the ξ-sequence of the Riordan matrix. It
is customary to use the same symbols α and ξ as the names of the corresponding generating
functions. The functions g(x), h(x), α(x) and ξ(x) are connected as follows :

h(x) = α(xh(x)), g(x) =
d0,0

1− xξ(xh(x))
.

82



The first relation implies that

α(x) = [h(t)|t = xh(t)−1].

The α-sequence is sometimes called the A-sequence of the array and then we write A(x) =
α(x). A matrix equipped with such sequences α and ξ can be shown to be a proper Riordan
array. A Riordan array of the form (g(x), x), where g(x) is the ordinary generating function
of the sequence an, is called the Appell array (or sometimes the sequence array) of the se-
quence an. Its general term is an−k.

If M is the matrix (g, f), and u = (u0, u1, . . .)
′ is an integer sequence with ordinary gener-

ating function U (x), then the sequence Mu has ordinary generating function g(x)U(f(x)).
We shall sometimes write

(g, f) · U = (g, f)U = g(x)U(f(x)).

Example 92. The binomial matrix B is the element ( 1
1−x

, x
1−x

) of the Riordan group. It

has general element
(

n
k

)
. For this matrix we have A(x) = 1 + x, which translates the usual

defining relationship for Pascal’s triangle(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.

More generally, Bm is the element ( 1
1−mx

, x
1−mx

) of the Riordan group, with general term(
n
k

)
mn−k. It is easy to show that the inverse B−m of Bm is given by ( 1

1+mx
, x

1+mx
).

Example 93. We let c(x) = 1−
√

1−4x
2x

be the generating function of the Catalan numbers

Cn = 1
n+1

(
2n
n

)
A000108. The array (1, xc(x)) is the inverse of the array (1, x(1 − x)) while

the array (1, xc(x2)) is the inverse of the array (1, x
1+x2 ).

Example 94. The row sums of the matrix (g, f) have generating function g(x)/(1− f(x))
while the diagonal sums of (g, f) have generating function g(x)/(1− xf(x)). The row sums
of the array (1, xc(x)), or A106566, are the Catalan numbers Cn since 1

1−xc(x)
= c(x). The

diagonal sums have g.f. 1
1−x2c(x)

, A132364.

4.2 A note on the Appell subgroup

We denote by A the Appell subgroup of R. Let A ∈ R correspond to the sequence (an)n≥0,
with o.g.f. f(x). Let B ∈ R correspond to the sequence (bn), with o.g.f. g(x). Then we have

1. The row sums of A are the partial sums of (an).

2. The inverse of A is the sequence array for the sequence with o.g.f. 1
f(x)

.

3. The product AB is the sequence array for the convolution a∗b(n) =
∑n

k=0 akbn−k with
o.g.f. f(x)g(x).
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Example 95. We consider the sequence an = Pell(n + 1) with o.g.f. f(x) = 1
1−2x−x2 , and

general term

an =
(1 +

√
2)n+1 − (1−

√
2)n+1

2
√

2
.

We obtain 1
f(x)

= 1− 2x− x2 and thus we see that the matrix

A =



1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
5 2 1 0 0 0 . . .
12 5 2 1 0 0 . . .
29 12 5 2 1 0 . . .
70 29 12 5 2 1 . . .
...

...
...

...
...

...
. . .


has as inverse the simple matrix

A−1 =



1 0 0 0 0 0 . . .
−2 1 0 0 0 0 . . .
−1 −2 1 0 0 0 . . .
0 −1 −2 1 0 0 . . .
0 0 −1 −2 1 0 . . .
0 0 0 −1 −2 1 . . .
...

...
...

...
...

...
. . .


where the k-th column has o.g.f. xk(1−2x−x2). Of course, this example extends in a natural
way to all sequences with o.g.f. of the form 1

1−αx−βx2 , and more generally to sequences with

o.g.f. 1
P (x)

where P (x) =
∑n

k=0 αkx
k is a polynomial with α0 = 1.

Another simple example (corresponding to the simple sequence an = 1 with o.g.f. 1
1−x

)

is given by the fact that the ‘partial sum’ matrix
(

1
1−x

, x
)



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 1 1 1 0 0 . . .
1 1 1 1 1 0 . . .
1 1 1 1 1 1 . . .
...

...
...

...
...

...
. . .


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has inverse the ‘first difference’ matrix (1− x, x)

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 0 −1 1 0 0 . . .
0 0 0 −1 1 0 . . .
0 0 0 0 −1 1 . . .
...

...
...

...
...

...
. . .


.

4.3 The subgroup (g(x), xg(x))

We let f(x) = xg(x) and hence (g(x), xg(x)) = (g(x), f(x)). Then

(g(x), xg(x))−1 = (g(x), f(x))−1

= (1/(g ◦ f̄), f̄)

=

(
f̄

x
, f̄

)
.

In addition, we have

(g(x), xg(x)) · (h(x), xh(x)) = (g(x)h(xg(x)), xg(x)h(xg(x))

= (g̃(x), xg̃(x))

where g̃(x) = g(x)h(xg(x)). Thus the subset of Riordan arrays of the form (g(x), xg(x))
constitutes a sub-group of R.

Example 96. Let g(x) = c(x) = 1−
√

1−4x
2x

be the generating function of the Catalan numbers.
Then if f(x) = xg(x) we have seen that f̄(x) = x(1− x). Hence

(c(x), xc(x))−1 = (1− x, x(1− x)).

Thus the inverse of the matrix

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
5 5 3 1 0 0 . . .
14 14 9 4 1 0 . . .
42 42 28 14 5 1 . . .
...

...
...

...
...

...
. . .


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is 

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 1 −3 1 0 0 . . .
0 0 3 −4 1 0 . . .
0 0 −1 6 −5 1 . . .
...

...
...

...
...

...
. . .


with general term

(−1)n−k

(
k + 1

n− k

)
.

The general term Tn,k of the matrix (c(x), xc(x)) may be expressed as

Tn,k =
(k + 1)

(
2n−k+1

n+1

)
2n− k + 1

[k ≤ n]

=
(k + 1 + 0n)

(
2n−k+1

n+1

)
2n− k + 1 + 02n−k

.

4.4 The subgroup (1, xg(x))

We let f(x) = xg(x) where g(0) 6= 0. Then we clearly have

(1, f(x))−1 = (1, f̄(x))

and
(1, f1(x))(1, f2(x)) = (1, f2(f1(x))).

Clearly, f2(f1(x)) = xg̃(x) where g̃(0) 6= 0.

Example 97. We consider the Riordan array (1, c(x)). This is the matrix

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 2 2 1 0 0 . . .
0 5 5 3 1 0 . . .
0 14 14 9 4 1 . . .
...

...
...

...
...

...
. . .


with general term

Tn,k =

(
2n−k−1

n−k

)
(k + 0n+k)

n+ 0nk
.

We have
(1, c(x))−1 = (1, x(1− x))

which has general term (−1)n−k
(

k
n−k

)
.
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4.5 The exponential Riordan group

The exponential Riordan group [17], [75], [73], is a set of infinite lower-triangular integer
matrices, where each matrix is defined by a pair of generating functions g(x) = g0 + g1x +
g2x

2 + . . . and f(x) = f1x + f2x
2 + . . . where f1 6= 0. The associated matrix is the matrix

whose i-th column has exponential generating function g(x)f(x)i/i! (the first column being
indexed by 0). The matrix corresponding to the pair f, g is denoted by [g, f ]. It is monic if
g0 = 1. The group law is then given by

[g, f ] ∗ [h, l] = [g(h ◦ f), l ◦ f ].

The identity for this law is I = [1, x] and the inverse of [g, f ] is [g, f ]−1 = [1/(g ◦ f̄), f̄ ] where
f̄ is the compositional inverse of f . We use the notation eR to denote this group.

If M is the matrix [g, f ], and u = (un)n≥0 is an integer sequence with exponential generat-
ing function U (x), then the sequence Mu has exponential generating function g(x)U(f(x)).
Thus the row sums of the array [g, f ] are given by g(x)ef(x) since the sequence 1, 1, 1, . . . has
exponential generating function ex.

As an element of the group of exponential Riordan arrays, we have B = [ex, x]. By
the above, the exponential generating function of its row sums is given by exex = e2x, as
expected (e2x is the e.g.f. of 2n).

Example 98. We consider the exponential Riordan array [ 1
1−x

, x]. This array has elements

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .


and general term [k ≤ n]n!

k!
with inverse

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .


which is the array [1− x, x]. In particular, we note that the row sums of the inverse, which
begin 1, 0,−1,−2,−3, . . . (that is, 1 − n), have e.g.f. (1 − x) exp(x). This sequence is thus
the binomial transform of the sequence with e.g.f. (1 − x) (which is the sequence starting
1,−1, 0, 0, 0, . . .).
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Example 99. We consider the exponential Riordan array [1, x
1−x

]. The general term of this
matrix may be calculated as follows:

Tn,k =
n!

k!
[xn]

xk

(1− x)k

=
n!

k!
[xn−k](1− x)−k

=
n!

k!
[xn−k]

∞∑
j=0

(
−k
j

)
(−1)jxj

=
n!

k!
[xn−k]

∞∑
j=0

(
k + j − 1

j

)
xj

=
n!

k!

(
k + n− k − 1

n− k

)
=

n!

k!

(
n− 1

n− k

)
.

Thus its row sums, which have e.g.f. exp
(

x
1−x

)
, have general term

∑n
k=0

n!
k!

(
n−1
n−k

)
. This is

A000262, the ‘number of “sets of lists”: the number of partitions of {1, .., n} into any number
of lists, where a list means an ordered subset’. Its general term is equal to (n−1)!Ln−1(1,−1).
The inverse of

[
1, x

1−x

]
is the exponential Riordan array

[
1, x

1+x

]
. The row sums of this

sequence have e.g.f. exp
(

x
1+x

)
, and start 1, 1,−1, 1, 1,−19, 151, . . .. This is A111884.

For more information on these matrices, see Chapter 8.

Example 100. The exponential Riordan array A =
[

1
1−x

, x
1−x

]
, or

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .


has general term

Tn,k =
n!

k!

(
n

k

)
.

It is closely related to the Laguerre polynomials. Its inverse is
[

1
1+x

, x
1+x

]
with general term

(−1)n−k n!
k!

(
n
k

)
. This is A021009, the triangle of coefficients of the Laguerre polynomials Ln(x).

It is noted in [205], that
A = exp(S),
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where

S =



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 4 0 0 0 0 . . .
0 0 9 0 0 0 . . .
0 0 0 16 0 0 . . .
0 0 0 0 25 0 . . .
...

...
...

...
...

...
. . .


.

Example 101. The exponential Riordan array
[
ex, ln

(
1

1−x

)]
, or

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 8 6 1 0 0 . . .
1 24 29 10 1 0 . . .
1 89 145 75 15 1 . . .
...

...
...

...
...

...
. . .


is the coefficient array for the polynomials

2F0(−n, x;−1)

which are an unsigned version of the Charlier polynomials (of order 0) [99, 195, 218]. This
is equal to

[ex, x]

[
1, ln

(
1

1− x

)]
,

or the product of the binomial array B and the array of (unsigned) Stirling numbers of the
first kind.

4.6 A note on the exponential Appell subgroup

By the exponential Appell subgroup of eR we understand the set of arrays of the form
[f(x), x].

Let A ∈ eR correspond to the sequence (an)n≥0, with e.g.f. f(x). Let B ∈ eR correspond
to the sequence (bn), with e.g.f. g(x). Then we have

1. The row sums of A are the partial sums of (an).

2. The inverse of A is the sequence array for the sequence with e.g.f. 1
f(x)

.

3. The product AB is the sequence array for the exponential convolution a ∗ b(n) =∑n
k=0

(
n
k

)
akbn−k with e.g.f. f(x)g(x).
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Example 102. We consider the matrix [cosh(x), x] with elements

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 3 0 1 0 0 . . .
1 0 6 0 1 0 . . .
0 5 0 10 0 1 . . .
...

...
...

...
...

...
. . .


.

The row sums of this matrix have e.g.f. cosh(x) exp(x), which is the e.g.f. of the sequence
1, 1, 2, 4, 8, 16, . . .. The inverse matrix is [sech(x), x] with entries

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
−1 0 1 0 0 0 . . .
0 −3 0 1 0 0 . . .
5 0 −6 0 1 0 . . .
0 25 0 −10 0 1 . . .
...

...
...

...
...

...
. . .


The row sums of this matrix have e.g.f. sech(x) exp(x).

Riordan group techniques have been used to provide alternative proofs of many binomial
identities that originally appeared in works such as [191, 192]. See for instance [208, 209].

4.7 Conditional Riordan arrays

On occasion, we find it useful to work with arrays that are “almost” of Riordan type. One
particular case is where after the first (0-th) column, subsequent columns follow a Riordan
type rule. We will call such arrays conditional Riordan arrays, and will use the notation

(h(x)|(g(x), f(x)))

to denote an array whose first column is generated by h(x), and whose k-th column, for
k > 0, is generated by g(x)f(x)k. We will sometimes also use the notation

(h(x)|g(x)f(x)k)

to denote such an array.

Example 103. The conditional Riordan array(
1

1 + x
|
(

1

1− x
,

x

1− x

))
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begins 

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
−1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
−1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .


On occasion, we shall also find it useful to use the notation

(h(x)||(g(x)/x, f(x)))

to denote the matrix whose first column is generated by h(x), with subsequent columns

generated by g(x)
x
f(x)k.

Example 104. The array (
1

1− x
||
(

1

x(1− x)
, x

))
begins 

1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 1 1 1 0 0 . . .
1 1 1 1 1 0 . . .
1 1 1 1 1 1 . . .
1 1 1 1 1 1 . . .
...

...
...

...
...

...
. . .


4.8 Generalized Riordan arrays

Recently, the authors in [226] have defined the notion of “generalized” Riordan array. Given
a sequence (cn)n≥0, with cn 6= 0∀n, a generalized Riordan array with respect to the sequence
cn is a pair (g(t), f(t))c of formal power series, where g(t) =

∑∞
k=0 gkt

k/ck and f(t) =∑∞
k=0 fkt

k/ck with f1 6= 0. The generalized Riordan array (g(t), f(t))c defines an infinite,
lower triangular (dn,k)0≤k≤n<∞ according to the rule:

dn,k =

[
tn

cn

]
g(t)

(f(t))k

ck
,

where the functions g(t)(f(t))k/ck are called the column generating functions of the gener-
alized Riordan array. Here, if f(t) =

∑∞
k=0 fkt

k/ck, then [tn/cn]f(t) = fn. We have[
tn

cn

]
f(t) = cn[tn]f(t).
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We now note that all the results that are valid for Riordan arrays remain valid for generalized
Riordan arrays, whenever we use [tn/cn] in place of [tn] in the ordinary case. Thus to say that
(g(t), f(t))c is a generalized Riordan array for the sequence cn is equivalent to saying that
g(t) =

∑∞
k=0 gkt

k/ck and f(t) =
∑∞

k=0 fkt
k/ck. We have for instance the following theorem

[226] :

Theorem 105. Let (g(t), f(t))c = (dn,k)n,k∈N be a generalized Riordan array with respect to
cn, and let h(t) =

∑∞
k=0 hkt

k/ck be the generalized generating function of the sequence hn.
Then we have

n∑
k=0

dn,khk =

[
tn

cn

]
g(t)h(f(t)),

or equivalently,
(g(t), f(t))c · h(t) = g(t)h(f(t)).

4.9 Egorychev arrays

Egorychev defined a set matrices, defined to be of type Rq(αn, βk;φ, f, ψ) [81, 83, 82] which
are more general then Riordan arrays. They in fact include the (ordinary) Riordan arrays,
exponential Riordan arrays and implicit Riordan arrays [156, 159].
Specifically, a matrix C = (cnk)n,k=0,1,2,... is of type Rq(αn, βk;φ, f, ψ) if its general term is
defined by the formula

cnk =
βk

αn

resx(φ(x)fk(x)ψn(x)x−n+qk−1)

where resxA(x) = a−1 for a given formal power series A(x) =
∑

j ajx
j is the formal residue

of the series.
For the exponential Riordan arrays, we have αn = 1

n!
, βk = 1

k!
, and q = 1.

4.10 Production arrays

The concept of a production matrix [75, 74] is a general one, but for this work we find it
convenient to review it in the context of Riordan arrays. Thus let P be an infinite matrix
(most often it will have integer entries). Letting r0 be the row vector

r0 = (1, 0, 0, 0, . . .),

we define ri = ri−1P , i ≥ 1. Stacking these rows leads to another infinite matrix which we
denote by AP . Then P is said to be the production matrix for AP .
If we let

uT = (1, 0, 0, 0, . . . , 0, . . .)

then we have

AP =


uT

uTP
uTP 2

...


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and
DAP = APP

where D = (δi,j+1)i,j≥0 (where δ is the usual Kronecker symbol).
In [174, 203] P is called the Stieltjes matrix associated to AP .

The sequence formed by the row sums of AP often has combinatorial significance and is
called the sequence associated to P . Its general term an is given by an = uTP ne where

e =


1
1
1
...


In the context of Riordan arrays, the production matrix associated to a proper Riordan array
takes on a special form :

Proposition 106. [75] Let P be an infinite production matrix and let AP be the matrix
induced by P . Then AP is an (ordinary) Riordan matrix if and only if P is of the form

P =



ξ0 α0 0 0 0 0 . . .
ξ1 α1 α0 0 0 0 . . .
ξ2 α2 α1 α0 0 0 . . .
ξ3 α3 α2 α1 α0 0 . . .
ξ4 α4 α3 α2 α1 α0 . . .
ξ5 α5 α4 α3 α2 α1 . . .
...

...
...

...
...

...
. . .


Morever, columns 0 and 1 of the matrix P are the ξ- and α-sequences, respectively, of the
Riordan array AP .

Example 107. We consider the Riordan array L where

L−1 =

(
1− λx− µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)
.

The production matrix (Stieltjes matrix) of

L =

(
1− λx− µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)−1

is given by

P = SL =



a+ λ 1 0 0 0 0 . . .
b+ µ a 1 0 0 0 . . .

0 b a 1 0 0 . . .
0 0 b a 1 0 . . .
0 0 0 b a 1 . . .
0 0 0 0 b a . . .
...

...
...

...
...

...
. . .


.
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We note that since

L =

(
1− λx− µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)
= (1− λx− µx2, x) ·

(
1

1 + ax+ bx2
,

x

1 + ax+ bx2

)
,

we have

L =

(
1− λx− µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)−1

=

(
1

1 + ax+ bx2
,

x

1 + ax+ bx2

)−1

·
(

1

1− λx− µx2
, x

)
.

If we now let

L1 =

(
1

1 + ax
,

x

1 + ax

)
· L,

then (see [175]) we obtain that the Stieltjes matrix for L1 is given by

SL1 =



λ 1 0 0 0 0 . . .
b+ µ 0 1 0 0 0 . . .

0 b 0 1 0 0 . . .
0 0 b 0 1 0 . . .
0 0 0 b 0 1 . . .
0 0 0 0 b 0 . . .
...

...
...

...
...

...
. . .


.

We have in fact the following general result [175] :

Proposition 108. If L = (g(x), f(x)) is a Riordan array and P = SL is tridiagonal, then
necessarily

P = SL =



a1 1 0 0 0 0 . . .
b1 a 1 0 0 0 . . .
0 b a 1 0 0 . . .
0 0 b a 1 0 . . .
0 0 0 b a 1 . . .
0 0 0 0 b a . . .
...

...
...

...
...

...
. . .


where

f(x) = Rev
x

1 + ax+ bx2
and g(x) =

1

1− a1x− b1xf
,

and vice-versa.

We have the important corollary
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Corollary 109. If L = (g(x), f(x)) is a Riordan array and P = SL is tridiagonal, with

P = SL =



a1 1 0 0 0 0 . . .
b1 a 1 0 0 0 . . .
0 b a 1 0 0 . . .
0 0 b a 1 0 . . .
0 0 0 b a 1 . . .
0 0 0 0 b a . . .
...

...
...

...
...

...
. . .


then L−1 is the coefficient array of the family of orthogonal polynomials pn(x) where p0(x) =
1, p1(x) = x− a1, and

pn+1(x) = (x− a)pn(x)− bnpn−1(x), n ≥ 2,

where bn is the sequence 0, b1, b, b, b, . . ..

We note that the elements of the rows of L−1 can be identified with the coefficients of the
characteristic polynomials of the successive principal sub-matrices of P .

Example 110. We consider the Riordan array(
1

1 + ax+ bx2
,

x

1 + ax+ bx2

)
.

Then the production matrix (Stieltjes matrix) of the inverse Riordan array
(

1
1+ax+bx2 ,

x
1+ax+bx2

)−1

left-multiplied by the k-th binomial array(
1

1− kx
,

x

1− kx

)
=

(
1

1− x
,

x

1− x

)k

is given by

P =



a+ k 1 0 0 0 0 . . .
b a+ k 1 0 0 0 . . .
0 b a+ k 1 0 0 . . .
0 0 b a+ k 1 0 . . .
0 0 0 b a+ k 1 . . .
0 0 0 0 b a+ k . . .
...

...
...

...
...

...
. . .


and vice-versa. This follows since(

1

1 + ax+ bx2
,

x

1 + ax+ bx2

)
·
(

1

1 + kx
,

x

1 + kx

)
=

(
1

1 + (a+ k)x+ bx2
,

x

1 + (a+ k)x+ bx2

)
.

In fact we have the more general result :(
1 + λx+ µx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)
·
(

1

1 + kx
,

x

1 + kx

)
=(

1 + λx+ µx2

1 + (a+ k)x+ bx2
,

x

1 + (a+ k)x+ bx2

)
.
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The inverse of this last matrix therefore has production array

a+ k − λ 1 0 0 0 0 . . .
b− µ a+ k 1 0 0 0 . . .

0 b a+ k 1 0 0 . . .
0 0 b a+ k 1 0 . . .
0 0 0 b a+ k 1 . . .
0 0 0 0 b a+ k . . .
...

...
...

...
...

...
. . .


.

Example 111. The series reversion of x(1+γx)
1+αx+βx2 , which has g.f.√

1 + (2γ − α)x+ (α2 − 4β)x2 + αx− 1

2(γ − βx)
,

is such that the first column of the Riordan array(
1− γx

1 + (α− 2γ)x+ (γ2 − αγ + β)x2
,

x

1 + (α− 2γ)x+ (γ2 − αγ + β)x2

)−1

is equal to

[xn+1]Rev
x(1 + γx)

1 + αx+ βx2
.

The production array of this matrix is given by

α− γ 1 0 0 0 0 . . .
−αγ + β + γ2 α− 2γ 1 0 0 0 . . .

0 −αγ + β + γ2 α− 2γ 1 0 0 . . .
0 0 −αγ + β + γ2 α− 2γ 1 0 . . .
0 0 0 −αγ + β + γ2 α− 2γ 1 . . .
0 0 0 0 −αγ + β + γ2 α− 2γ . . .
...

...
...

...
...

...
. . .


.

A consequence of this is that the Hankel transform of [xn+1]Rev x(1+γx)
1+αx+βx2 or

[xn]

√
1 + (2γ − α)x+ (α2 − 4β)x2 + αx− 1

2x(γ − βx)

is equal to

(−αγ + β + γ2)(
n+1

2 ).

The sequence [xn+1]Rev x(1+γx)
1+αx+βx2 has g.f. given by the following continued fraction :

1

1− (α− γ)−
(−αγ + β + γ2)x2

1− (α− 2γ)−
(−αγ + β + γ2)x2

1− (α− 2γ)−
(−αγ + β + γ2)x2

1− · · ·
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Equivalently the first column of the matrix(
1 + γx

1 + αx+ βx2
,

x

1 + αx+ βx2

)−1

is equal to the sequence with general term

[xn+1]Rev
x(1− γx)

1 + (α− 2γ)x+ (γ2 + β − αγ)x2
,

which has Hankel transform β(n+1
2 ) since, as we have seen earlier, the inverse matrix above

has production array 

α− γ 1 0 0 0 0 . . .
β α 1 0 0 0 . . .
0 β α 1 0 0 . . .
0 0 β α 1 0 . . .
0 0 0 β α 1 . . .
0 0 0 0 β α . . .
...

...
...

...
...

...
. . .


.

The sequence [xn+1]Rev x(1−γx)
1+(α−2γ)x+(γ2+β−αγ)x2 has generating function given by the continued

fraction
1

1− (α− γ)x−
βx2

1− αx−
βx2

1− αx−
βx2

1− · · ·
Example 112. The matrix AP with production matrix

P =



1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 1 1 1 0 0 . . .
1 1 1 1 1 0 . . .
1 1 1 1 1 1 . . .
1 1 1 1 1 1 . . .
...

...
...

...
...

...
. . .


or (

1

1− x
|| x

k−1

1− x

)
is the Catalan matrix (c(x), xc(x)) = (1 − x, x(1 − x))−1 (A033184). Similarly, the matrix
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with production matrix

P =



0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 1 1 0 0 . . .
0 1 1 1 1 0 . . .
0 1 1 1 1 1 . . .
0 1 1 1 1 1 . . .
...

...
...

...
...

...
. . .


is the Riordan array (1, xc(x)) (A106566).

Example 113. The matrix AP with production matrix

P =



0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
1 0 1 0 1 0 . . .
0 1 0 1 0 1 . . .
1 0 1 0 1 0 . . .
...

...
...

...
...

...
. . .


or (

1

1− x2
|| x

k−1

1− x2

)
is the aerated “ternary” matrix (1− x2, x(1− x2))−1. This begins

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 2 0 1 0 0 . . .
3 0 3 0 1 0 . . .
0 7 0 4 0 1 . . .
...

...
...

...
...

...
. . .


with first column given by

(3n
n )

2n+1
aerated, or(

3n/2
n/2

)
n+ 1

(1 + (−1)n)/2.

The Hankel transforms of these sequences are of combinatorial importance [102].

Letting P̂ denote the production array P augmented by the addition of a first row equal to
r0 = (1, 0, 0, 0, . . .) we see that

P̂ =

(
1

1− x2
, x

)
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with general term 1+(−1)n−k

2
. We then have

AP P̂
−1A−1

P = (1− x2, x(1− x2))−1 · (1− x2, x) · (1− x2, x(1− x2))

= (1− f 2, x),

where
f(1− f 2) = x.

Thus

AP ·
(

1

1− x2
, x

)
=

(
1

1− f 2
, x

)
· AP ,

with

f(x) =
2√
3

cos

cos−1
(
−3

√
3x

2

)
3

 .

Example 114. The production matrix for the array given by(
1 + γx

1− αx− βx2
,

x(1 + γx)

1− αx− βx2

)−1

is given by removing the first row from(
1− αx− βx2

1 + γx
, x

)
.

For example, the array A154929 defined by(
1 + x

1− x− x2
,
x(1 + x)

1− x− x2

)
which begins 

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
3 4 1 0 0 0 . . .
5 10 6 1 0 0 . . .
8 22 21 8 1 0 . . .
13 45 59 36 10 1 . . .
...

...
...

...
...

...
. . .


has inverse (√

1 + 6x+ 5x2 − x− 1

2x(1 + x)
,

√
1 + 6x+ 5x2 − x− 1

2(1 + x)

)
or equivalently, (

1

1 + x
c

(
−x

1 + x

)
,

x

1 + x
c

(
−x

1 + x

))
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with production matrix 

−2 1 0 0 0 0 . . .
1 −2 1 0 0 0 . . .
−1 1 −2 1 0 0 . . .
1 −1 1 −2 1 0 . . .
−1 1 −1 1 −2 1 . . .
1 −1 1 −1 1 −2 . . .
...

...
...

...
...

...
. . .


which is (

1− x− x2

1 + x
, x

)
with its first row removed. We note that the general term of(

1 + x

1− x− x2
,
x(1 + x)

1− x− x2

)
is given by

n∑
j=0

(
j + 1

n− j

)(
j

k

)
while the general term of the inverse matrix is given by

n∑
j=0

(−1)n−k k + 1

j + 1

(
n

j

)(
2j − k

j − k

)
.

We note further that the inverse of
(

1−x−x2

1+x
, x
)

is
(

1+x
1−x−x2 , x

)
which is the sequence array

for F (n+ 2) : 

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
3 2 1 0 0 0 . . .
5 3 2 1 0 0 . . .
8 5 3 2 1 0 . . .
13 8 5 3 2 1 . . .
...

...
...

...
...

...
. . .


Removing the first row of this matrix, we obtain the production matrix

2 1 0 0 0 0 . . .
3 2 1 0 0 0 . . .
5 3 2 1 0 0 . . .
8 5 3 2 1 0 . . .
13 8 5 3 2 1 . . .
21 13 8 5 3 2 . . .
...

...
...

...
...

...
. . .


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of the matrix that begins 

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
7 4 1 0 0 0 . . .
31 18 6 1 0 0 . . .
154 90 33 8 1 0 . . .
870 481 185 52 10 1 . . .
...

...
...

...
...

...
. . .


where the first column is A007863.
This is the matrix (

1− x− x2

1 + x
,
x(1− x− x2)

1 + x

)−1

or
(f/x, f)

where

f(x) =
1

3

(
√

4− 3x sin

(
1

3
sin−1

(
18x+ 11

2(4− 3x)
3
2

)))
− 1

3

is the reversion of x(1−x−x2)
1+x

.
The matrix (

1− x− x2

1 + x
,
x(1− x− x2)

1 + x

)
starts 

1 0 0 0 0 0 . . .
−2 1 0 0 0 0 . . .
1 −4 1 0 0 0 . . .
−1 6 −6 1 0 0 . . .
1 −6 15 −8 1 0 . . .
−1 7 −23 28 −10 1 . . .
...

...
...

...
...

...
. . .


.

We further note that 

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
7 4 1 0 0 0 . . .
31 18 6 1 0 0 . . .
154 90 33 8 1 0 . . .
870 481 185 52 10 1 . . .
...

...
...

...
...

...
. . .


·B−1
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is generated by the matrix

B ·



1 0 0 0 0 0 . . .
−2 1 0 0 0 0 . . .
1 −4 1 0 0 0 . . .
−1 6 −6 1 0 0 . . .
1 −6 15 −8 1 0 . . .
−1 7 −23 28 −10 1 . . .
...

...
...

...
...

...
. . .


with its first row removed.

Example 115. The matrix AP with production matrix

P =



1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
1 6 15 20 15 6 . . .
...

...
...

...
...

...
. . .


with general term (

n+ 1

k

)
or equivalently the matrix (

1

1− x
|| xk−1

(1− x)k+1

)
is the (unsigned) Stirling matrix of the first kind[

1

1− x
, ln

(
1

1− x

)]
.

In this case P is equal to
(

1
1−x

, x
1−x

)
(or [ex, x]) less its top row.

We now define the augmented production array P̂ to be the matrix with general term
(

n
k

)
,

that is, P̂ = B. This is the matrix P with the row

r0 = (1, 0, 0, 0, . . .)

added as its first row. We find that

AP P̂
−1A−1

P =



1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .


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or [1− x, x] whose inverse is given by

AP P̂A
−1
P =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .


or [ 1

1−x
, x]. This translates the identity of Riordan arrays[

1

1− x
, ln

(
1

1− x

)]
[ex, x][e−x, 1− e−x] =

[
1

1− x
, x

]
.

Example 116. This example continues the theme of the last example. We start with the
array [1− x, x]; removing its first row we obtain the matrix

−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
0 0 0 0 0 −6 . . .
...

...
...

...
...

...
. . .


.

This is the production matrix of the inverse of the Stirling matrix of the first kind
[

1
1−x

, ln
(

1
1−x

)]
,

or [e−x, 1− e−x] which starts

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
1 −3 1 0 0 0 . . .
−1 7 −6 1 0 0 . . .
1 −15 25 −10 1 0 . . .
−1 31 −90 65 −15 1 . . .
...

...
...

...
...

...
. . .


.

This is the (signed) Stirling matrix of the second kind. Now taking as production array the
0-column augmented matrix

0 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 0 −2 1 0 0 . . .
0 0 0 −3 1 0 . . .
0 0 0 0 −4 1 . . .
0 0 0 0 0 −5 . . .
...

...
...

...
...

...
. . .


,
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we find that this generates the matrix

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 1 −3 1 0 0 . . .
0 −1 7 −6 1 0 . . .
0 1 −15 25 −10 1 . . .
...

...
...

...
...

...
. . .


which is the Stirling matrix of the second kind [1, 1 − e−x]. We note that if we square this
production matrix, and remove the first column, we obtain the matrix

−1 1 0 0 0 0 . . .
1 −3 1 0 0 0 . . .
0 4 −5 1 0 0 . . .
0 0 9 −7 1 0 . . .
0 0 0 16 −9 1 . . .
0 0 0 0 25 −11 . . .
...

...
...

...
...

...
. . .


.

This matrix generates the exponential Riordan array
[

1
1+x

, x
1+x

]
of (signed) Laguerre coeffi-

cients. This matrix begins

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
2 −4 1 0 0 0 . . .
−6 18 −9 1 0 0 . . .
24 −96 72 −16 1 0 . . .
−120 600 −600 200 −25 1 . . .

...
...

...
...

...
...

. . .


.

The inverse of this is the unsigned version of the above matrix, which is the Riordan array

Lag =

[
1

1− x
,

x

1− x

]
(see Chapter 8). This latter matrix has production matrix given by

1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
0 4 5 1 0 0 . . .
0 0 9 7 1 0 . . .
0 0 0 16 9 1 . . .
0 0 0 0 25 11 . . .
...

...
...

...
...

...
. . .


.
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We note that since the first column of Lag is n!, the above indicates that the generating
function of n! is given by

1

1− x−
x2

1− 3x−
4x2

1− 5x−
9x2

1− 7x−
16x2

1− · · ·

.

Example 117. The matrix AP with production matrix P with general term

rn−k+1

(
n+ 1

k

)
or equivalently the matrix (

r

1− rx
|| xk−1

(1− rx)k+1

)
is the exponential Riordan array [

1

1− rx
,
1

r
ln

(
1

1− rx

)]
with general term

dn,k =
n!

rkk!
[xn]

1

1− rx

(
ln

(
1

1− rx

))k

.

(See Chapter 4). In this case P is equal to
(

1
1−rx

, x
1−rx

)
less its top row (that is, P̂ is equal

to
(

1
1−rx

, x
1−rx

)
).

Example 118. The matrix AP with production matrix P with general term(
n+ 1

k

)
+ (r − 1)

(
n

k

)
is the exponential Riordan array

Lag(r−1) =

[
1

(1− x)r
, ln

(
1

1− x

)]
.

(See Chapter 8 for the above notation). The matrix P is the r-Pascal matrix(
1 + (r − 1)x

1− x
,

x

1− x

)
,

less its top row.
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Example 119. The Lah matrix (see Chapter 8) is defined as

Lah =

[
1,

x

1− x

]
.

The production matrix P for this matrix is given by

P =



0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 2 4 1 0 0 . . .
0 0 6 6 1 0 . . .
0 0 0 12 8 1 . . .
0 0 0 0 20 10 . . .
...

...
...

...
...

...
. . .


.

The matrix obtained from P by removing the leftmost column is the exponential Riordan
array [(1 + x)2, x]. The row sums of this latter matrix have e.g.f. (1 + x)2ex. By prepending

the row (1, 0, 0, 0, . . .) we obtain a matrix P̂ with row sums equal the central polygonal
numbers n2 − n+ 1 with e.g.f. (1 + x2)ex. Thus

P̂ =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 2 4 1 0 0 . . .
0 0 6 6 1 0 . . .
0 0 0 12 8 1 . . .
...

...
...

...
...

...
. . .


.

Then

AP P̂A
−1
P =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 6 4 1 0 0 . . .
0 24 18 6 1 0 . . .
0 120 96 36 8 1 . . .
...

...
...

...
...

...
. . .


,

with general term 0n+k +
(

n−1
k−1

)
(n− k + 1)!. We now note that

AP P̂
−1A−1

P =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 2 −4 1 0 0 . . .
0 0 6 −6 1 0 . . .
0 0 0 12 −8 1 . . .
...

...
...

...
...

...
. . .


,
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which is a signed version of P̂ . The corresponding signed production array generates the
signed Lah numbers

[
1, x

1+x

]
.

Example 120. We consider the conditional Riordan array

P(α, β) =

(
βx

1− x
||(α− (α− 1)0k−1)xk−1

)
.

The row sums of AP have o.g.f.
1− (α− 1)x

1− αx− βx2
.

Furthermore, the row sums of the matrix with production array I+P where I is the (infinite)
identity matrix, are the binomial transform of the first sequence. For example, with α = 2
and β = 3, we get

P(2, 3) =



0 1 0 0 0 0 . . .
3 0 2 0 0 0 . . .
3 0 0 2 0 0 . . .
3 0 0 0 2 0 . . .
3 0 0 0 0 2 . . .
3 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


and the row sums of AP are given by 1, 1, 5, 13, 41, 121, 365, . . ., A046717, with o.g.f. 1−x

1−2x−3x2 .

The row sums of AP̃ where P̃ = P(2, 3) + I are given by 1, 2, 8, 32, 128, 512, . . ., A081294,
with o.g.f. 1−2x

1−4x
, which is the binomial transform of A046717. In general the row sums of

the matrix with production array P + kI will be the k-th binomial transform of the matrix
with production array P.

Example 121. The production array of the Riordan array(
1

1− x− rx2
,

x

1− x

)
is given by

I +

(
rx

1− x
||xk−1

)
.

Thus in particular, Pascal’s triangle B =
(

1
1−x

, x
1−x

)
has production array

I +
(
0||xk−1

)
with

P̂ = (1 + x, x).

In [75], we find the following result concerning matrices that are production matrices for
exponential Riordan arrays.
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Proposition 122. Let A = (an,k)n,k≥0 = [g(x), f(x)] be an exponential Riordan array and
let

c(y) = c0 + c1y + c2y
2 + . . . , r(y) = r0 + r1y + r2y

2 + . . . (4.2)

be two formal power series that that

r(f(x)) = f ′(x) (4.3)

c(f(x)) =
g′(x)

g(x)
. (4.4)

Then

(i) an+1,0 =
∑

i

i!cian,i (4.5)

(ii) an+1,k = r0an,k−1 +
1

k!

∑
i≥k

i!(ci−k + kri−k+1)an,i (4.6)

or, defining c−1 = 0,

an+1,k =
1

k!

∑
i≥k−1

i!(ci−k + kri−k+1)an,i. (4.7)

Conversely, starting from the sequences defined by 4.2, the infinite array (an,k)n,k≥0 defined
by 4.7 is an exponential Riordan array.

A consequence of this proposition is that P = (pi,j)i,j≥0 where

pi,j =
i!

j!
(ci−j + jrr−j+1) (c−1 = 0).

Furthermore, the bivariate exponential function

φP (t, z) =
∑
n,k

pn,kt
k z

n

n!

of the matrix P is given by
φP (t, z) = etz(c(z) + tr(z)).

Example 123. The exponential array s =
[
1, ln

(
1

1−x

)]
of Stirling numbers of the first kind,

which starts 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 2 3 1 0 0 . . .
0 6 11 6 1 0 . . .
0 24 50 35 10 1 . . .
...

...
...

...
...

...
. . .


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has production array with bivariate generating function

te(t+1)x = etx(0 + ext)

so that c(x) = 0, r(x) = ex. This begins

0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 2 1 0 0 . . .
0 1 3 3 1 0 . . .
0 1 4 6 4 1 . . .
0 1 5 10 10 5 . . .
...

...
...

...
...

...
. . .


.

The array
s ·B

which begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 3 1 0 0 0 . . .
6 11 6 1 0 0 . . .
24 50 35 10 1 0 . . .
120 274 225 85 15 1 . . .
...

...
...

...
...

...
. . .


has production array with bivariate g.f. equal to e(1+t)x(1+t) = etx(1+t)ex so that c(x) = ex

and r(x) = ex. The production array then begins

1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
1 6 15 20 15 6 . . .
...

...
...

...
...

...
. . .


.

Example 124. We consider the exponential array[
eαx, log

(
1

1− x

)]
which is the product of Bα and the Stirling matrix of the first kind s =

[
1, ln

(
1

1−x

)]
. This

matrix also defines the (unsigned) Charlier polynomials of order α. We now find, using
Equations (4.3) and (4.4), that

r

(
log

(
1

1− x

))
=

1

1− x
=⇒ r(x) = ex

c

(
log

(
1

1− x

))
=

(eαx)′

eαx
= α =⇒ c(x) = α.
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Thus the production array P for this array has bivariate generating function

φP (t, z) = etz(α+ tez).

This implies that P takes the form

α 1 0 0 0 0 . . .
0 α+ 1 1 0 0 0 . . .
0 1 α+ 2 1 0 0 . . .
0 1 3 α+ 3 1 0 . . .
0 1 4 6 α+ 4 1 . . .
0 1 5 10 10 α+ 5 . . .
...

...
...

...
...

...
. . .


,

or

αI +



0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 2 1 0 0 . . .
0 1 3 3 1 0 . . .
0 1 4 6 4 1 . . .
0 1 5 10 10 5 . . .
...

...
...

...
...

...
. . .


.

Example 125. Taking

c(x) = 1 + αx

r(x) = 1 + αx

we find that AP is the array [
e

eαx−1
α ,

eαx − 1

α

]
.

For α = 2, this is the array [
esinh(x)ex

, sinh(x)ex
]
,

whose production array P has generating function

etx(1 + t)(1 + 2x).

This array begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
3 4 1 0 0 0 . . .
11 19 9 1 0 0 . . .
49 104 70 16 1 0 . . .
257 641 550 190 25 1 . . .
...

...
...

...
...

...
. . .


.
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This is A154602. The first column of this array is given by A004211, while the row sums are
A055882, equal to 2nBell(n), with e.g.f.

exp(exp(2x)− 1).

The array with

c(x) = 1 + x

r(x) = 1 + x,

and hence with production array with generating function

etx(1 + t)(1 + x)

is equal to [
eex−1, ex − 1

]
whose inverse is the array of coefficients of the (signed) Charlier polynomials (see A094816).
This array begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 3 1 0 0 0 . . .
5 10 6 1 0 0 . . .
15 37 31 10 1 0 . . .
52 151 160 75 15 1 . . .
...

...
...

...
...

...
. . .


.

This is A049020. It can be expressed as

[1, 1, 1, 2, 1, 3, 1, 4, 1, . . .] ∆ [1, 0, 1, 0, 1, 0, . . . ].

It has production matrix which starts

1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
0 2 3 1 0 0 . . .
0 0 3 4 1 0 . . .
0 0 0 4 5 1 . . .
0 0 0 0 5 6 . . .
...

...
...

...
...

...
. . .


.

indicating that the generating function of the Bell numbers can be expressed as

1

1− x−
x2

1− 2x−
2x2

1− 3x−
3x2

1− · · ·

.

The product of this array with B−1 is the matrix S = [1, ex − 1] of Stirling numbers
{

n
k

}
of

the second kind.
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Example 126. We let

cn = −(−α)n, c(x) = − 1

1 + αx
,

rn = (−α)n, r(x) =
1

1 + αx
.

Then we find that
A−1

Pα
=
[
ex, x(1 +

αx

2
)
]
.

For instance, α = 3 gives us the array

A−1
P3

=



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 5 1 0 0 0 . . .
1 12 12 1 0 0 . . .
1 22 69 22 1 0 . . .
1 35 235 235 35 1 . . .
...

...
...

...
...

...
. . .


.

We have

APα =

[
e

1−
√

1+2αx
α ,

√
1 + 2αx− 1

α

]
and the bivariate generating function of Pα is given by

φPα = etx t− 1

1 + αx
.

For more about these arrays, see Chapters 11 and 13.

Example 127. The production matrix with bivariate generating function

φP = etx t− 1

1 + x2

generates the exponential Riordan array[
ex, x+

x3

3

]−1

.

More generally, the production matrix with generating function

φP = etx t− 1

1 + xm

generates the array [
ex, x+

xm+1

m+ 1

]−1

.

112



Similarly, the production matrix with generating function

φP = etx t− 1

1 + xm/m

generates the array [
ex, x+

xm+1

m(m+ 1)

]−1

.

For example, the array [
ex, x+

x3

2 · 3

]
=

[
ex, x+

x3

3!

]
begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 4 3 1 0 0 . . .
1 8 10 4 1 0 . . .
1 15 30 20 5 1 . . .
...

...
...

...
...

...
. . .


.

We note that the second column is essentially the so-called “cake numbers”, A000125.

Example 128. The production matrix with bivariate generating function

φPα = etx t− 1

(1 + αx)2

generates the exponential Riordan array[
ex, x(1 + αx+

α2

3
x2)

]−1

.

For instance

φPα = etx t− 1

(1 + x)2

generates the inverse of the array [ex, x(1 + x+ x2/3)] which begins

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 11 9 1 0 0 . . .
1 24 50 16 1 0 . . .
1 45 210 150 25 1 . . .
...

...
...

...
...

...
. . .


.

The row sums of this array, which begin 1, 2, 6, 22, 92, 432, . . . have e.g.f. e2x+x2+x3/3.
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Example 129. The production matrix with bivariate generating function

φP = etx(1 + t)(1 + x)2

corresponding to
c(x) = r(x) = (1 + x)2

generates the array

P =

[
e

x
1−x ,

x

1− x

]
which begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
3 4 1 0 0 0 . . .
13 21 9 1 0 0 . . .
73 136 78 16 1 0 . . .
501 1045 730 210 25 1 . . .
...

...
...

...
...

...
. . .


,

which is A059110. This array is equal to Lah ·B (see Chapter 8).

Example 130. The matrix [e
x2

2 , x] begins

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 3 0 1 0 0 . . .
3 0 6 0 1 0 . . .
0 15 0 10 0 1 . . .
...

...
...

...
...

...
. . .


,

with production matrix given by

0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 2 0 1 0 0 . . .
0 0 3 0 1 0 . . .
0 0 0 4 0 1 . . .
0 0 0 0 5 0 . . .
...

...
...

...
...

...
. . .


.

This is A099174, which is linked to the Hermite and Bessel polynomials. Its general element
T (n, k) is the number of involutions of {1, 2, ..., n} having k fixed points. A066325 is a signed
version of this array.
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Chapter 5

The Deleham construction

5.1 Definition of the Deleham construction

The Deleham construction is a powerful method for constructing number triangles. Based
on the theory of continued fractions and orthogonal polynomials, it provides insight into the
construction of many important number triangles. Its input is two integer sequences, which
we shall denote by rn and sn, or r and s (where r(n) = rn etc). We can then construct a
two dimensional integer array, called the Deleham array determined by r and s, as follows.
First, we form the function of n, x and y defined by

q(n, x, y) = xrn + ysn. (5.1)

Then we form a family of polynomials P (n,m, x, y) as follows :

P (n,m, x, y) =


1 if n = 0

0 if n > 0 and m = −1

P (n,m− 1, x, y) + q(m,x, y)P (n− 1,m+ 1, x, y)

(5.2)
Finally, we form the array with general term ∆n,k determined by

∆n,k = [xn−k]P (n, 0, x, 1). (5.3)

The array so formed will be denoted by r∆s or ∆(r, s). We shall on occasion also use the
notation

∆
(m)
n,k = [xn−k]P (n,m, x, 1) (5.4)

and
∆

(m)
n,k (r, s;α, β) = [xn−k]P (n,m, x+ α, β). (5.5)

Example 131. We take rn = 1−(−1)n

2
and sn = 1+(−1)n

2
. Thus rn starts 0, 1, 0, 1, 0, 1, . . .
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while sn starts 1, 0, 1, 0, 1, 0, . . .. The array P (n,m, x, y) then starts
1 1 1 1 . . .
y x+ y x+ 2y 2x+ 2y . . .

y(x+ y) x2 + 3xy + y2 x2 + 5xy + 3y2 3x2 + 8xy + 3y2 . . .
y(x2 + 3xy + y2) x3 + 6x2y + 6xy2 + y3 x3 + 9x2y + 14xy2 + 4y3 4(x3 + 5x2y + 5xy2 + y3) . . .

...
...

...
...

. . .


Thus P (n, 0, x, y), n = 0, 1, 2, . . . gives the family of polynomials

1, y, y(x+ y), y(x2 + 3xy + y2), y(x3 + 6x2y + 6xy2 + y3), . . .

which leads to the following matrix representation of rn ∆ sn :

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .


which is the Narayana triangle A090181 ˜̃N with generating function

1

1−
xy

1−
x

1−
xy

1−
x

1− · · ·

or equivalently

1

1− (y − 1)x−
x

1− (y − 1)x−
x

1− (y − 1)x−
x

1− . . .

.

We note further that
∆

(1)
n,k = Ñ(n, k)

where

Ñ(n, k) =
1

k + 1

(
n

k

)(
n+ 1

k

)
=

1

n+ 1

(
n+ 1

k

)(
n+ 1

k + 1

)
.
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This is therefore the triangle 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .


which has generating function

1

1− xy −
x

1−
xy

1−
x

1−
xy

1− · · ·

.

Example 132. We now take rn = 1 and sn = 1+(−1)n

2
. We obtain the family of polynomials

P (n, 0, x, y) that begins

1, x+ y, 2x2 + 3xy + y2, 5x3 + 10x2y + 6xy2 + y3, 14x4 + 35x3y + 30x2y2 + 10xy3 + y4, . . .

This gives us the following Deleham array

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 3 1 0 0 0 . . .
5 10 6 1 0 0 . . .
14 35 30 10 1 0 . . .
42 126 140 70 15 1 . . .
...

...
...

...
...

...
. . .


which is A060693 with general term

(
2n−k

k

)
Cn−k. Note that this array is the product of the

previous array and B :

[1, 1, 1, 1, 1, . . .] ∆ [1, 0, 1, 0, . . .] = ([0, 1, 0, 1, 0, . . .] ∆ [1, 0, 1, 0, . . .]) ·B.

The generating function of this array can be expressed in continued fraction form as

1

1− xy −
x

1− xy −
x

1− xy −
x

1− xy −
x

1− xy − · · ·
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or
1

1−
x+ xy

1−
x

1−
x+ xy

1−
x

1−
x+ xy

1− · · ·
Example 133. In this example, we reverse the roles of r and s in the previous example.
Thus we take rn = 1+(−1)n

2
and sn = 1. This gives us the Deleham array ∆(r, s) or

[1, 0, 1, 0, 1, 0, . . .] ∆ [1, 1, 1, 1, . . .]

that begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 2 0 0 0 . . .
1 6 10 5 0 0 . . .
1 10 30 35 14 0 . . .
1 15 70 140 126 42 . . .
...

...
...

...
...

...
. . .


with general term

(
n+k
2k

)
Ck = 1

k+1

(
n
k

)(
n+k

k

)
. This is A088617. This is the reverse of the

previous array. This array is linked to the coefficient array of the series reversion of

x(1− αx)

1 + x
.

We can see this as follows. The sequence [xn+1]Revx(1−αx)
1+x

has generating function

1− x−
√

(1− x)2 − 4αx

2αx
.

Expanding this as a power series, we find the coefficients

1, α+ 1, 2α2 + 3α+ 1, 5α3 + 10α2 + 6α+ 1, . . .

with coefficient array A088617. We note that the generating function for this array can be
expressed as the continued fraction

1

1− x−
xy

1− x−
xy

1− x−
xy

1− x−
xy

1− x− · · ·
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or
1

1−
x(1 + y)

1−
xy

1−
x(1 + y)

1−
xy

1− · · ·
or indeed as

1

1− x−
xy

1−
x+ xy

1−
xy

1−
x+ xy

1− · · ·

.

This last expression follows from

[1, 0, 1, 0, . . .] ∆ [1, 1, 1, . . .] = [1, 0, 1, 0, . . .] ∆(1) [0, 1, 1, 1, . . .].

As an example, we take the sequence A103210, or

an = [xn+1]Rev
x(1− 2x)

1 + x
.

We can express the g.f. of this sequence, given by

g(x) =
1− x−

√
1− 10x+ x2

4x

in continued fraction form as

g(x) = 1/(1− 3x/(1− 2x/(1− 3x/(1− 2x/(1− 3x/(1− . . . ,

= 1/(1− x− 2x/(1− x− 2x/(1− x− 2x/(1− . . . ,

= 1/(1− 3x− 6x2/(1− 5x− 6x2/(1− 5x− 6x2/(1− . . .

Correspondingly we have the following expressions for an :

an =
1

n

n∑
k=0

(
n

k

)(
n

k − 1

)
3k2n−k, n > 0, a0 = 1,

=
1

n

n∑
k=0

(
n

k

)(
n

k + 1

)
2k3n−k, n > 0, a0 = 1,

=
n∑

k=0

(
n+ k

2k

)
2kCk,

=
n∑

k=0

(
2n− k

k

)
2n−kCn−k.
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As noted by Deleham in A103210, we also have

an = an−1 + 2
n−1∑
k=0

akan−k−1, n > 0, a0 = 1.

In fact, we have the following general result.

Proposition 134. Let

an = [xn+1]Rev
x(1− αx)

1− βx
.

Then the g.f. of an can be expressed in continued fraction form as

g(x) = 1/(1− (α− β)x/(1− αx/(1− (α− β)x/(1− αx/(1− . . . ,

= 1/(1 + βx− αx/(1 + βx− αx/(1 + βx− αx/(1− . . . ,

=
1

1− (α− β)x−
α(α− β)x2

1− (2α− β)x−
α(α− β)x2

1− (2α− β)x− . . .

.

We then have

an =
1

n

n∑
k=0

(
n

k

)(
n

k − 1

)
(α− β)kαn−k, n > 0, a0 = 1,

=
1

n

n∑
k=0

(
n

k

)(
n

k + 1

)
αk(α− β)n−k, n > 0, a0 = 1,

=
n∑

k=0

(
n+ k

2k

)
(−β)n−kαkCk,

=
n∑

k=0

(
2n− k

k

)
(−β)kαn−kCn−k.

In addition, an satisfies the recurrence

an = (−β)an−1 + α
n−1∑
k=0

akan−k−1, n > 0, a0 = 1.

Corollary 135. We have

an =
n∑

k=0

˜̃Nn,k(α− β)kαn−k

=
n∑

k=0

Nn,kα
k(α− β)n−k.
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Corollary 136. an is the moment sequence for the family of orthogonal polynomials defined
by

P0(x) = 1, P2(x) = x− (α− β), Pn+2(x) = (x− (2α− β))Pn+1(x)−α(α− β)Pn(x).

We now note that the product of the array

[1, 0, 1, 0, . . .] ∆ [1, 1, 1, . . .]

with B, that is, ∆(r, s) ·B, has generating function

1

1− x−
x(y + 1)

1− x−
x(y + 1)

1− x−
x(y + 1)

1− x−
x(y + 1)

1− x− · · ·
or

1

1−
x(2 + y)

1−
x(1 + y)

1−
x(2 + y)

1−
x(1 + y)

1− · · ·
This is

[2, 1, 2, 1, 2, . . .] ∆ [1, 1, 1, 1, . . .].

A related matrix is A107131, which has general term

[k ≤ n]

(
n

2n− 2k

)
Cn−k.

This matrix begins 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 3 1 0 0 . . .
0 0 2 6 1 0 . . .
0 0 0 10 10 1 . . .
...

...
...

...
...

...
. . .


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with generating function
1

1−
xy(1 + x)

1−
x2y

1−
xy(1 + x)

1−
x2y

1− · · ·

.

Other forms of its generating function are

1

1− xy −
x2y

1− xy −
x2y

1− . . .

and
1

1−
xy + x2y

1−
x2y

1−
xy + x2y

1−
x2y

1− . . .

.

This matrix is the coefficient array for the polynomials xn
2F1(

1
2
− n

2
,−n

2
; 2; 4

x
). The product

of B and this array gives the Narayana triangle Ñ , which therefore has generating function
of the following form :

1

1− x− xy −
x2y

1− x− xy −
x2y

1− x− xy −
x2y

1− . . .

.

Example 137. We can define a “q-Catalan triangle” to be the following :

[1, q, q2, q3, q4, . . .] ∆ [1, 0, 1, 0, 1, . . .].

For instance, when q = 2, we get the triangle that begins

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
3 4 1 0 0 0 . . .
17 25 9 1 0 0 . . .
171 258 102 16 1 0 . . .
3113 4635 1788 290 25 1 . . .

...
...

...
...

...
...

. . .


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with g.f. given by
1

1−
x+ xy

1−
2x

1−
4x+ xy

1−
8x

1−
16x+ xy

1− · · ·
The first column, which has g.f.

1

1−
x

1−
2x

1−
4x

1−
8x

1−
16x

1− · · ·
is the sequence A015083 of q-Catalan numbers for q = 2. The row sums of this matrix are
A154828. They may be considered as q-Schröder numbers for q = 2.

Example 138. We let r be the sequence 0, 1, 0, 2, 0, 3, . . . and sn = bn+2
2
c. Then

[0, 1, 0, 2, 0, 3, 0, . . .] ∆ [1, 1, 2, 2, 3, 3, . . .]

is the array 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 2 0 0 0 . . .
0 1 6 6 0 0 . . .
0 1 14 36 24 0 . . .
0 1 30 150 240 120 . . .
...

...
...

...
...

...
. . .


which has general term k!

{
n
k

}
=
∑k

j=0(−1)k−jjn
(

k
j

)
where

{
n
k

}
denotes the Stirling numbers

of the second kind. This matrix has bi-variate generating function

1

1−
xy

1−
x+ xy

1−
2x

1−
2(x+ xy)

1−
3xy

1−
3(x+ xy)

1− · · ·
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This is A019538.

Example 139. We let rn = 0n and sn = 1− 0n. Then ∆(r, s) is the array

1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 2 0 0 0 . . .
1 3 5 5 0 0 . . .
1 4 9 14 14 0 . . .
...

...
...

...
...

...
. . .


.

∆(1)(r, s) is the Catalan array A009766 which begins

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 2 0 0 0 . . .
1 3 5 5 0 0 . . .
1 4 9 14 14 0 . . .
1 5 14 28 42 42 . . .
...

...
...

...
...

...
. . .


with general term

(
n+k

n

)
n−k+1

n+1
and generating function

1

1− x−
xy

1−
xy

1−
xy

1−
xy

1− · · ·

Example 140. Similarly, if rn = 0n and sn is the sequence

0, 2, 1, 1, 1, . . .

then ∆(1)(r, s) is the array 

1 0 0 0 0 0 . . .
1 2 0 0 0 0 . . .
1 4 6 0 0 0 . . .
1 6 16 20 0 0 . . .
1 8 30 64 70 0 . . .
1 10 48 140 256 352 . . .
...

...
...

...
...

...
. . .


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with generating function
1

1− x−
2xy

1−
xy

1−
xy

1−
xy

1− · · ·
The row sums of this triangle are A026671 with g.f. given by

1

1− x− 2c(x)
=

1

1− x−
2x

1−
x

1−
x

1− · · ·

We note the following proposition :

Proposition 141. We have
∆(r + s, s) = ∆(r, s) ·B.

Proof. We let ∆∗ = ∆(r + s, s) and ∆ = ∆(r, s). We note first that since

x(rn + sn) + ysn = xrn + (x+ y)sn,

∆∗ is defined by P (n,m, x, x+ y) where ∆ is defined by P (n,m, x, y).

Example 142. We take rn = 1 and sn = 1−(−1)n

2
. The ∆(r, s) or

[1, 1, 1, . . .] ∆ [0, 1, 0, 1, 0, . . .]

is the array that starts 

1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
5 5 1 0 0 0 . . .
14 21 9 1 0 0 . . .
42 84 56 14 1 0 . . .
...

...
...

...
...

...
. . .


with general term

[k <= n]
1

n+ 1

(
n− 1

k

)(
2n− k

n

)
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and generating function
x

1−
x+ xy

1−
x

1−
x+ xy

1− · · ·

.

This array has as row sums the little Schröder numbers A001003. The generating function
of this array can also be expressed as the continued fraction

1

1−
x

1− xy −
x

1− xy −
x

1− xy −
x

1− · · ·

The array ∆(1)(r, s) is the array A126216 which begins

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
5 5 1 0 0 0 . . .
14 21 9 1 0 0 . . .
42 84 56 14 1 0 . . .
132 330 300 120 20 1 . . .
...

...
...

...
...

...
. . .


This array has general term 1

n+2

(
n
k

)(
2n−k+2

n+1

)
= 1

n+1

(
n+1

k

)(
2n−k+2

n+2

)
and generating function

1

1− x−
x+ xy

1−
x

1−
x+ xy

1− · · ·

.

Now
∆(1)(r, s) ·B−1 = Ñ

where Ñ(n, k) = 1
k+1

(
n
k

)(
n+1

k

)
.

5.2 The fundamental theorem

For the purposes of this work, we shall take as definition of the the Deleham array

[r0, r1, r2, r3, . . .] ∆ [s0, s1, s2, s3, . . .]

126

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001003
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A126216


the number triangle with generating function

1

1−
(r0x+ s0xy)

1−
(r1x+ s1xy)

1−
(r2x+ s2xy)

1− · · ·

.

Then we have

Theorem 143. The first column of the Deleham array

[r0, r1, r2, r3, . . .] ∆ [s0, s1, s2, s3, . . .]

has g.f.
1

1−
r0x

1−
r1x

1−
r2x

1− · · ·

.

The main diagonal of the array has g.f.

1

1−
s0x

1−
s1x

1−
s2x

1− · · ·

.

The row sums of the array have g.f.

1

1−
(r0 + s0)x

1−
(r1 + s1)x

1−
(r2 + s2)x

1− · · ·

.

The diagonal sums of the array have g.f.

1

1−
(r0x+ s0x

2)

1−
(r1x+ s1x

2)

1−
(r2x+ s2x

2)

1− · · ·

.
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The product of the array with B has generating function

1

1−
((r0 + s0)x+ s0xy)

1−
((r1 + s1)x+ s1xy)

1−
((r2 + s2)x+ s2xy)

1− · · ·

=
1

1−
r0x+ s0x(1 + y)

1−
r1x+ s1x(1 + y)

1−
r2x+ s2x(1 + y)

1− · · ·

.

The product of B and the array has generating function

1

1− x−
(r0x+ s0xy)

1−
(r1x+ s1xy)

1− x−
(r2x+ s2xy)

1− · · ·

.

Proof. The g.f. of the first column is obtained by setting y = 0 in the bivariate g.f. Similarly,
the g.f. of the row sums is obtained by setting y = 1, while that of the diagonal sums is
found by setting y = x. The g.f. of the binomial transform of the array will be given by

1

1− x

1

1−
(r0 + s0y)

x
1−x

1−
(r1 + s1y)

x
1−x

1−
(r2 + s2y)

x
1−x

1− · · ·

,

which simplifies to
1

1− x−
(r0x+ s0xy)

1−
(r1x+ s1xy)

1− x−
(r2x+ s2xy)

1− · · ·

.

The array
[r0, r1, r2, r3, . . .] ∆(1) [s0, s1, s2, s3, . . .]

has generating function
1

1− (r0x+ s0xy)−
r1x+ s1xy

1−
r2x+ s2xy

1− · · ·

.
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5.3 The Deleham construction and Riordan arrays

In the particular case of rn being the sequence

α, β, γ, 0, 0, 0, 0, . . .

and sn = 0n, we have the following result :

Proposition 144. The Deleham array

[α, β, γ, 0, 0, 0, . . .] ∆ [1, 0, 0, 0, . . .]

is given by the Riordan array(
1− (β + γ)x

1− (α+ β + γ)x+ αγx2
,

x(1− γx)

1− (α+ β + γ)x+ αγx2

)
.

This array has row sums with g.f. given by

1− (β + γ)x

1− (1 + α+ β + γ)x+ (1 + α)γx2
.

Proof. The generating function of this array is given by

1

1−
αx+ xy

1−
β

1− γx

This is equal to
1− (β + γ)x

1− (α+ β + γ + y)x+ γ(α+ y)x2
.

A trivial consequence of this is that

B = [1, 0, 0, 0, . . .] ∆ [1, 0, 0, 0, . . .]

while
B−1 = [−1, 0, 0, 0, . . .] ∆ [1, 0, 0, 0, . . .].

Example 145. We take for rn the sequence 1,−1, 1, 0, 0, 0, . . .. Then we obtain the array(
1

1−x+x2 ,
x(1−x)
1−x+x2

)
with row sums with g.f. 1

1−2x+2x2 (and e.g.f. given by (exp(x) sin(x))′).

The row sums of the inverse of this matrix are the so-called “Motzkin sums” A005043.

Corollary 146.
[α, β, 0, 0, 0, . . .] ∆ [1, 0, 0, 0, . . .]

is given by the Riordan array (
1− βx

1− (α+ β)x
,

x

1− (α+ β)x

)
.

For instance,
[k, 0, 0, 0, . . .] ∆ [1, 0, 0, 0, . . .] = Bk.
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5.4 The Deleham construction and associahedra

The Deleham construction leads to many interesting triangular arrays of numbers. The field
of associahedra [44, 49, 94, 180] is rich in such triangles, including the Narayana triangle.
We give two examples from this area.

Example 147. The triangle with general term

1

k + 1

(
n

k

)(
n+ k + 2

k

)
is given by

[1, 0, 1, 0, 1, . . .] ∆(1) [1, 1, 1, 1, . . .].

This is the coefficient array for the f -vector for An [44, 49]. We recall that

[1, 0, 1, 0, 1, . . .] ∆ [1, 1, 1, 1, . . .]

has generating function
1

1−
x+ xy

1−
xy

1−
x+ xy

1− · · ·
and thus

[1, 0, 1, 0, 1, . . .] ∆(1) [1, 1, 1, 1, . . .]

has generating function
1

1− (x+ xy)−
xy

1−
x+ xy

1−
xy

1− · · ·

.

This is the array A033282 that begins

1 0 0 0 0 0 . . .
1 2 0 0 0 0 . . .
1 5 5 0 0 0 . . .
1 9 21 14 0 0 . . .
1 14 56 84 42 0 . . .
1 20 120 1300 330 132 . . .
...

...
...

...
...

...
. . .


.
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We note that we have
n∑

k=0

1

k + 1

(
n

k

)(
n+ k + 2

k

)
rk =

n∑
k=0

(
n

2k

)
(2r + 1)n−2k

(
2

(
r + 1

2

))k

Ck (5.6)

= [xn+1]Rev
x

1 + (2r + 1)x+ 2
(

r+1
2

)
x2
. (5.7)

We deduce that the row sums (case r = 1) are given by sn+1, where sn are the little Schröder
numbers A001003. They have generating function

1

1− 2x−
x

1−
2x

1−
x

1−
2x

1− · · ·
In addition, the diagonal sums of this array, given by A005043(n + 2) where A005043 are
the so-called “Motzkin sums”, have generating function

1

1− x(1 + x)−
x2

1−
x(1 + x)

1−
x2

1−
x(1 + x)

1− · · ·
We note that this generating function may also be represented as

1

1− x(1 + x)−
x2

1− x−
x2

1− x−
x2

1− · · ·
The Hankel transform of this sequence begins

1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, . . .

The corresponding h-vector array is given by the Narayana numbers

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .


131

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001003
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005043
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005043


with generating function
1

1− x−
xy

1−
x

1−
xy

1−
x

1− · · ·
Thus the transition from f -vector array to h-vector array is symbolized by

1

1− (x+ xy)−
xy

1−
x+ xy

1−
xy

1−
x+ xy

1− · · ·

⇒
1

1− x−
xy

1−
x

1−
xy

1−
x

1− · · ·
There is also a well-defined transition from

[1, 0, 1, 0, 1, . . .] ∆ [1, 1, 1, 1, . . .]

to the Narayana numbers. [1, 0, 1, 0, 1, . . .] ∆ [1, 1, 1, 1, . . .] is the array with general ele-
ment Tn,k = 1

k+1

(
n+k

k

)(
n
k

)
. Forming the array with general element Tk,n−k or

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 3 1 0 0 . . .
0 0 2 6 1 0 . . .
0 0 0 10 10 1 . . .
...

...
...

...
...

...
. . .


we find that the product of B and this matrix is the triangle of Narayana numbers. Alter-
natively, reversing [1, 0, 1, 0, 1, . . .] ∆(1) [1, 1, 1, 1, . . .] to give

[1, 1, 1, 1, . . .] ∆(1) [1, 0, 1, 0, 1, . . .]

or 

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
5 5 1 0 0 0 . . .
14 21 9 1 0 0 . . .
42 84 56 14 1 0 . . .
132 330 300 120 20 1 . . .
...

...
...

...
...

...
. . .


we find that the product of this matrix and B−1 gives the Narayana numbers Ñ.

132



Example 148. The triangle with general term(
n

k

)(
n+ k

k

)
=

(
n+ k

2k

)(
2k

k

)
A063007 is the coefficient array for the f -vector for Bn [49]. This array is given by

[1, 0, 1, 0, 1, 0, . . .] ∆(1) [0, 2, 1, 1, 1, 1, . . .]

and thus has generating function

1

1− x−
2xy

1−
x+ xy

1−
xy

1−
x+ xy

1− · · ·

which can also be expressed as

1

1− x−
2xy

1− x−
xy

1− x−
xy

1− x−
xy

1− · · ·
or as

1

1 + x−
2(x+ xy)

1−
xy

1−
x+ xy

1−
xy

1−
x+ xy

1− · · ·
The array begins 

1 0 0 0 0 0 . . .
1 2 0 0 0 0 . . .
1 6 6 0 0 0 . . .
1 12 30 20 0 0 . . .
1 20 90 140 70 0 . . .
1 30 210 560 630 252 . . .
...

...
...

...
...

...
. . .


.
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Its row sums are A001850, the central Delannoy numbers. We deduce the following gener-
ating functions for A001850 :

1

1− x−
2x

1−
2x

1−
x

1−
x

1−
2x

1− · · ·
and

1

1− x−
2x

1− x−
x

1− x−
x

1− x−
x

1− · · ·
Reversing this array to get the array

[0, 2, 1, 1, 1, 1, . . .] ∆(1) [1, 0, 1, 0, 1, 0, . . .]

with general term
(

n
k

)(
2n−k

n

)
we find that the product of this matrix with B−1 is the matrix

with general term
(

n
k

)2
. This is the h-vector array for Bn. We note that in the case of

Tn,k =
(

n
k

)(
n+k

k

)
the product of B and the matrix with general term Tk,n−k is the matrix with

general term
(

n
k

)2
. This matrix has generating function

1

1 + x− xy −
2x

1−
xy

1−
x

1−
xy

1−
x

1− · · ·
We thus have the transition

1

1 + x−
2(x+ xy)

1−
xy

1−
x+ xy

1−
xy

1−
x+ xy

1− · · ·

⇒
1

1 + x− xy −
2x

1−
xy

1−
x

1−
xy

1−
x

1− · · ·
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We note that we obtain the identities(
n

k

)2

=
n∑

j=0

(
n

j

)(
j

k

)(
2n− j

n

)
(−1)j−k

and (
n

k

)
=

n∑
j=0

(
n− k

j − k

)(
2n− j

n

)
(−1)j−k.
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Chapter 6

Riordan arrays and a Catalan
transform 1

6.1 Introduction

In this chapter, we report on a transformation of integer sequences that might reasonably be
called the Catalan transformation. It is easy to describe both by formula (in relation to the
general term of a sequence) and in terms of its action on the ordinary generating function
of a sequence. It and its inverse can also be described succinctly in terms of the Riordan
group.
Many classical “core” sequences can be paired through this transformation. It is also linked
to several other known transformations, most notably the binomial transformation.
Unless otherwise stated, the integer sequences we shall study will be indexed by N0, the
nonnegative integers. Thus the Catalan numbers, with general term Cn, are described by

Cn =
1

n+ 1

(
2n

n

)
with ordinary generating function given by

c(x) =
1−

√
1− 4x

2x
.

In the following, all sequences an will have offset 0, that is, they begin a0, a1, a2, . . .. We use
the notation 1n to denote the all 1′s sequence 1, 1, 1, . . . with ordinary generating function
1/(1 − x) and 0n to denote the sequence 1, 0, 0, 0, . . . with ordinary generating function 1.
This is A000007. We have 0n = δn,0 =

(
0
n

)
as an integer sequence. This notation allows us

to regard . . . (−2)n, (−1)n, 0n, 1n, 2n, . . . as a sequence of successive binomial transforms (see
next section).
In order to characterize the effect of the so-called Catalan transformation, we shall look at
its effect on some common sequences, including the Fibonacci and Jacobsthal numbers. The

1This chapter reproduces the content of the published article “P. Barry, A Catalan Transform and Related
Transformations on Integer Sequences, J. Integer Seq., 8 (2005), Art. 05.4.5” [15].
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Fibonacci numbers [237] are amongst the most studied of mathematical objects. They are
easy to define, and are known to have a rich set of properties. Closely associated to the
Fibonacci numbers are the Jacobsthal numbers [239]. In a sense that will be made exact
below, they represent the next element after the Fibonacci numbers in a one-parameter family
of linear recurrences. These and many of the integer sequences that will be encountered are
to be found in The On-Line Encylopedia of Integer Sequences [205], [206]. Sequences in this
database will be referred to by their Annnnnn number. For instance, the Catalan numbers
are A000108.
The Fibonacci numbers F (n) A000045 are the solutions of the recurrence

an = an−1 + an−2, a0 = 0, a1 = 1

with
n 0 1 2 3 4 5 6 . . .

F (n) 0 1 1 2 3 5 8 . . .

The Jacobsthal numbers J(n) A001045 are the solutions of the recurrence

an = an−1 + 2an−2, a0 = 0, a1 = 1

with
n 0 1 2 3 4 5 6 . . .

J(n) 0 1 1 3 5 11 21 . . .

J(n) =
2n

3
− (−1)n

3
.

When we change the initial conditions to a0 = 1, a1 = 0, we get a sequence which we will
denote by J1(n) A078008, given by

n 0 1 2 3 4 5 6 . . .
J1(n) 1 0 2 2 6 10 22 . . .

We see that
2n = 2J(n) + J1(n).

The Jacobsthal numbers are the case k = 2 for the one-parameter family of recurrences

an = an−1 + kan−2, a0 = 0, a1 = 1

where the Fibonacci numbers correspond to the case k = 1. The Pell numbers Pell(n)
A000129 are the solutions of the recurrence

an = 2an−1 + an−2, a0 = 0, a1 = 1

with
n 0 1 2 3 4 5 6 . . .

P ell(n) 0 1 2 5 12 29 70 . . .

The Pell numbers correspond to the case k = 2 of the one-parameter family of recurrences

an = kan−1 + an−2, a0 = 0, a1 = 1

where again the Fibonacci numbers correspond to the case k = 1.

137

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000045
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001045
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A078008
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000129


6.2 Transformations and the Riordan Group

In this chapter we use transformations that operate on integer sequences. An example of
such a transformation that is widely used in the study of integer sequences is the so-called
binomial transform [230], which associates to the sequence with general term an the sequence
with general term bn where

bn =
n∑

k=0

(
n

k

)
ak.

If we consider the sequence to be the vector (a0, a1, . . .) then we obtain the binomial transform
of the sequence by multiplying this (infinite) vector with the lower-triangle matrix Bin whose
(i, j)-th element is equal to

(
i
j

)
:

Bin =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .


Note that we index matrices starting at (0, 0). This transformation is invertible, with

an =
n∑

k=0

(
n

k

)
(−1)n−kbk.

We note that Bin corresponds to Pascal’s triangle. Its row sums are 2n, while its diagonal
sums are the Fibonacci numbers F (n+ 1). The inverse matrix Bin−1 has form

Bin−1 =



1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
1 −2 1 0 0 0 . . .
−1 3 −3 1 0 0 . . .
1 −4 6 −4 1 0 . . .
−1 5 −10 10 −5 1 . . .
...

...
...

...
...

...
. . .


If A(x) is the ordinary generating function of the sequence an, then the generating function
of the transformed sequence bn is (1/(1− x))A(x/(1− x)).

Thus the transformation represented by the Binomial matrix Bin is the element ( 1
1−x

, x
1−x

)

of the Riordan group, while its inverse is the element ( 1
1+x

, x
1+x

). It can be shown more gener-

ally [209] that the matrix with general term
(

n+ak
m+bk

)
is the element (xm/(1−x)m+1, xb−a/(1−

x)b) of the Riordan group. This result will be used in a later section, along with char-
acterizations of terms of the form

(
2n+ak
n+bk

)
. As an example, we cite the result that the
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lower triangular matrix with general term
(

2n
n−k

)
=
(

2n
n+k

)
is given by the Riordan array

( 1√
1−4x

, 1−2x−
√

1−4x
2x

) = ( 1√
1−4x

, xc(x)2) where c(x) = 1−
√

1−4x
2x

is the generating function of
the Catalan numbers.
A lower-triangular matrix that is related to ( 1√

1−4x
, xc(x)2) is the matrix ( 1√

1−4x
, x2c(x)2).

This is no longer a proper Riordan array: it is a stretched Riordan array, as described in
[59]. The row sums of this array are then the diagonal sums of ( 1√

1−4x
, xc(x)2), and hence

have expression
∑bn/2c

k=0

(
2(n−k)

n

)
.

6.3 The Catalan transform

We initially define the Catalan transformation by its action on ordinary generating functions.
For this, we let A(x) be the generating function of a sequence. The Catalan transform of
that sequence is defined to be the sequence whose generating function is A(xc(x)). The
Catalan transform thus corresponds to the element of the Riordan group given by (1, xc(x)).
This has bivariate generating function 1

1−xyc(x)
. That this transformation is invertible is

demonstrated by

Proposition 149. The inverse of the Catalan transformation is given by

A(x) → A(x(1− x)).

Proof. We prove a more general result. Consider the Riordan matrix (1, x(1 − kx)). Let
(g∗, f̄) denote its Riordan inverse. We then have

(g∗, f̄)(1, x(1− kx)) = (1, x).

Hence

f̄(1− kf̄) = x ⇒ kf̄ 2 − f̄ + x = 0

⇒ f̄ =
1−

√
1− 4kx

2k
.

Since g = 1, g∗ = 1/(g ◦ f̄) = 1 also, and thus

(1, x(1− kx))−1 =

(
1,

1−
√

1− 4kx

2k

)
.

Setting k = 1, we obtain
(1, x(1− x))−1 = (1, xc(x))

Taking inverses, we obtain
(1, xc(x))−1 = (1, x(1− x))

as required.
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We note that in the sequel, the following identities will be useful: c(x(1 − x)) = 1
1−x

and

c(x) = 1
1−xc(x)

.
In terms of the Riordan group, the Catalan transform and its inverse are thus given by the
elements (1, xc(x)) and (1, x(1− x)). The lower-triangular matrix representing the Catalan
transformation has the form

Cat =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 2 2 1 0 0 . . .
0 5 5 3 1 0 . . .
0 14 14 9 4 1 . . .
...

...
...

...
...

...
. . .


Where convenient, we shall denote this transformation by Cat. We note the the row sums
of this matrix have generating function given by (1, xc(x)) 1

1−x
= 1

1−xc(x)
= c(x). That is, the

matrix Cat has the Catalan numbers as row sums. The bivariate generating function of this
matrix may be expressed as

1

1−
xy

1−
x

1−
x

1−
x

1− · · ·

(6.1)

or as
1

1−
xy

1− x−
x2

1− 2x−
x2

1− 2x−
x2

1− · · ·

(6.2)

The inverse Catalan transformation Cat−1 has the form

Cat−1 =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 0 −2 1 0 0 . . .
0 0 1 −3 1 0 . . .
0 0 0 3 −4 1 . . .
...

...
...

...
...

...
. . .


The general term of the matrix (1, x(1 − x)) is given by

(
k

n−k

)
(−1)n−k. This can be shown

by observing that the k−th column of (1, x(1 − x)) has generating function (x(1 − x))k.
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But [xn](x(1− x))k =
(

k
n−k

)
(−1)n−k. We note also that the bivariate generating function of

(1, x(1− x)) is 1
1−xy(1−x)

.
We now characterize the general term of the matrix for the Catalan transform.

Proposition 150. The general term T (n, k) of the Riordan matrix (1, c(x)) is given by

T (n, k) =
k∑

j=0

(
k

j

)(
j/2

n

)
(−1)n+j22n−k.

Proof. We seek [xn](xc(x))k. To this end, we develop the term (xc(x))k as follows:

xkc(x)k = xk

(
1−

√
1− 4x

2x

)k

=
1

2k
(1−

√
1− 4x)k

=
1

2k

k∑
j=0

(
k

j

)
(−
√

1− 4x)j

=
1

2k

∑
j

(
k

j

)
(−1)j(1− 4x)j/2

=
1

2k

∑
j

(
k

j

)
(−1)j

∑
i

(
j/2

i

)
(−4x)i

=
1

2k

∑
j

(
k

j

)
(−1)j

∑
i

(
j/2

i

)
(−4)ixi

=
∑

j

(
k

j

)∑
i

(
j/2

i

)
(−1)i+j22i−kxi

Thus [xn](xc(x))k =
∑k

j=0

(
k
j

)(
j/2
n

)
(−1)n+j22n−k.

The above proposition shows that the Catalan transform of a sequence an has general term
bn given by

bn =
n∑

k=0

k∑
j=0

(
k

j

)( j
2

n

)
(−1)n+j22n−kak.

The following proposition gives alternative versions for this expression.

Proposition 151. Given a sequence an, its Catalan transform bn is given by

bn =
n∑

k=0

k

2n− k

(
2n− k

n− k

)
ak

=
n∑

k=0

k

n

(
2n− k − 1

n− k

)
ak
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or

bn =
n∑

j=0

n∑
k=0

2k + 1

n+ k + 1
(−1)k−j

(
2n

n− k

)(
k

j

)
aj.

The inverse transformation is given by

an =

bn/2c∑
k=0

(
n− k

k

)
(−1)kbn−k

=
n∑

k=0

(
k

n− k

)
(−1)n−kbk.

Proof. Using [209] (3.164) we have

T (n, k) = 22n−k(−1)n

k∑
j=0

(
k

j

)( j
2

n

)
(−1)j

= 22n−k(−1)n

{
(−1)n2k−2n

((
2n− k − 1

n− 1

)
−
(

2n− k − 1

n

))}
=

(
2n− k − 1

n− 1

)
−
(

2n− k − 1

n

)
=

k

n

(
2n− k − 1

n− 1

)
=
k

n

(
2n− k − 1

n− k

)
.

But

k

n

(
2n− k − 1

n− k

)
=

k

n

2n− k − (n− k)

2n− k

(
2n− k

n− k

)
=

k

n

2n− k − n+ k

2n− k

(
2n− k

n− k

)
=

k

2n− k

(
2n− k

n− k

)
This proves the first two assertions of the proposition. Note that we could have used La-
grange inversion to prove these results, as in Example 13.

The last assertion follows from the expression for the general term of the matrix (1, x(1−x))
obtained above. The equivalence of this and the accompanying expression is easily obtained.
The remaining assertion will be a consequence of results in Section 5.

Using the last proposition, and [205], it is possible to draw up the following representative
list of Catalan pairs, that is, sequences and their Catalan transforms.
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Table Catalan pairs
an bn an bn
0n 0n A000007 A000007
1n Cn 1n A000108

2n
(
2n
n

)
A000079 A000984

2n − 1
(

2n
n−1

)
A000225 A001791

2n −
∑k−1

j=0

(
n
j

) (
2n

n−k

)
various various

n 3nCn/(n+ 2) A001477 A000245
n+ 1 Cn+1 A000027 A000108(n+ 1)(

n
2

)
5
(

2n
n−2

)
/(n+ 3) A000217(n− 1) A000344(

n+1
2

)
4
(
2n+1
n−1

)
/(n+ 3) A000217 A002057(

n+2
2

)
3
(
2n+2

n

)
/(n+ 3) A000217(n+ 1) A000245

0n − (−1)n Fine’s sequence - A000957
(1 + (−1)n)/2 Fine’s sequence A000035(n+ 1) A000957(n+ 1)

2− 0n (2− 0n)Cn A040000 A068875

F (n) [xn] xc(x)

x+
√

1−4x
A000045 -

F (n+ 1) [xn] 1
x+

√
1−4x

A000045(n+ 1) A081696

J(n)
∑b(n−1)/2c

j=0

(
2n−2j−2

n−1

)
A001045 A014300

J(n+ 1)
∑bn/2c

j=0

(
2n−2j−1

n−1

)
+ 0n A001045(n+ 1) A026641(n) + 0n

J1(n)
∑n

k=0

(
n+k−1

k

)
(−1)n−k A078008 A072547

2 sin(πn
3

+ π
3
)/
√

3 1n A010892 1n

(−1)nF(n+ 1) (−1)n (−1)nA000045(n+ 1) (−1)n

2
n
2 (cos(πn

4
) + sin(πn

4
)) 2n A009545 A000079

We note that the result above concerning Fine’s sequence A000957 is implicit in the work
[71]. We deduce immediately that the generating function for Fine’s sequence can be written
as

x

1− (xc(x))2
=

2x

1 + 2x+
√

1− 4x
=

x

1 + x− xc(x)
.

See also [173].

6.4 Transforms of a Jacobsthal family

From the above, we see that the Jacobsthal numbers J(n) transform to give the sequence
with general term

b(n−1)/2c∑
j=0

(
2n− 2j − 2

n− 1

)
and generating function

xc(x)

(1 + xc(x))(1− 2xc(x))
.
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This prompts us to characterize the family of sequences with general term

b(n−1)/2c∑
j=0

(
2n− 2j − 2

n− 1

)
kj

where the transform of the Jacobsthal numbers corresponds to the case k = 1. Re-casting
the ordinary generating function of the Jacobsthal numbers as

x

(1 + x)(1− 2x)
=

x(1− x)

(1− x2)(1− 2x)

we see that the Jacobsthal numbers are the case k = 1 of the one-parameter family of
sequences with generating functions

x(1− x)

(1− kx2)(1− 2x)
.

For instance, the sequence for k = 0 has g.f. x(1−x)
1−2x

which is 0, 1, 1, 2, 4, 8, 16, . . .. For k = 2,
we obtain 0, 1, 1, 4, 6, 16, . . ., or A007179. The general term for these sequences is given by

(
√
k)n−1(1−

√
k)

2(2−
√
k)

+
(−
√
k)n−1(1 +

√
k)

2(2 +
√
k)

+
2n

4− k

for k 6= 4. They are solutions of the family of recurrences

an = 2an−1 + kan−2 − 2kan−3

where a0 = 0, a1 = 1 and a2 = 1.

Proposition 152. The Catalan transform of the generalized Jacobsthal sequence with ordi-
nary generating function

x(1− x)

(1− kx2)(1− 2x)

has ordinary generating function given by

x√
1− 4x(1− k(xc(x))2)

and general term
b(n−1)/2c∑

j=0

(
2n− 2j − 2

n− 1

)
kj.

Proof. By definition, the Catalan transform of x(1−x)
(1−kx2)(1−2x)

is

xc(x)(1− xc(x))

(1− kx2c(x)2)(1− 2xc(x))
.
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But c(x)(1− xc(x)) = 1 and 1− 2xc(x) =
√

1− 4x. Hence we obtain the first assertion.
We now recognize that

1√
1− 4x(1− k(xc(x))2)

=

(
1√

1− 4x
, x2c(x)2

)
1

1− kx
.

But this is
∑bn/2c

j=0

(
2n−2j

n

)
kj. The second assertion follows from this.

For example, the transform of the sequence 0, 1, 1, 2, 4, 8, . . . can be recognized as
(
2n−2
n−1

)
=∑b(n−1)/2c

j=0

(
2n−2j−2

n−1

)
0j.

As noted in A014300, the Catalan transform of the Jacobsthal numbers corresponds to
the convolution of the central binomial numbers (with generating function 1√

1−4x
) and Fine’s

sequence A000957 (with generating function x
1−(xc(x))2

). The above proposition shows that
the Catalan transform of the generalized Jacobsthal numbers corresponds to a convolution of
the central binomial numbers and the “generalized” Fine numbers with generating function

x
1−k(xc(x))2

.
Using the inverse Catalan transform, we can express the general term of this Jacobsthal

family as
bn/2c∑
k=0

(
n− i

i

)
(−1)i

b(n−i−1)/2c∑
j=0

(
2n− 2i− 2j − 2

n− i− 1

)
kj.

This provides us with a closed form for the case k = 4 in particular.
We now wish to find an expression for the transform of J1(n). To this end, we note that

J(n+ 1) →
bn/2c∑
j=0

(
2n− 2j − 1

n− 1

)
+ 0n =

b(n−1)/2c∑
j=0

(
2n− 2j − 1

n− 1

)
+

1 + (−1)n

2
.

Then J1(n) = J(n+ 1)− J(n) is transformed to

bn−1)
2

c∑
j=0

(
2n− 2j − 1

n− 1

)
+

1 + (−1)n

2
−

bn−1
2
c∑

j=0

(
2n− 2j − 2

n− 1

)
or

b(n−1)/2c∑
j=0

(
2n− 2j − 2

n− 2

)
+

1 + (−1)n

2
.

The first term of the last expression deserves comment. Working with generating functions,
it is easy to show that under the Catalan transform, we have

(−1)nF (n+ 1)/2 + cos
(πn

3

)
/2 +

√
3 sin

(πn
3

)
/6 → 1 + (−1)n

2
.

Hence
∑b(n−1)/2c

j=0

(
2n−2j−2

n−2

)
is the Catalan transform of

J1(n)− (−1)nF (n+ 1)/2− cos
(πn

3

)
/2−

√
3 sin

(πn
3

)
/6.
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6.5 The Generalized Ballot Transform

In this section, we introduce and study a transformation that we will link to the general-
ized ballot numbers studied in [165]. For this, we define a new transformation Bal as the
composition of the Catalan transform and the Binomial transform:

Bal = Cat ◦Bin.

The Riordan matrix formulation of this transformation is thus given by

Bal = Cat ◦Bin

= (1, c(x))

(
1

1− x
,

x

1− x

)
=

(
1

1− xc(x)
,

xc(x)

1− xc(x)

)
= (c(x), c(x)− 1) = (c(x), xc(x)2).

This has generating function
1

1−
x+ xy

1−
x

1−
x

1− · · ·

.

The row sums of this array are
(
2n
n

)
since

c(x)

1− xc(x)2
=

1√
1− 4x

.

In similar fashion, we can find the Riordan description of the inverse of this transformation
by

Bal−1 = Bin−1 ◦Cat−1

=

(
1

1− x
,

x

1− x

)−1

(1, c(x))−1

=

(
1

1 + x
,

x

1 + x

)
(1, x(1− x))

=

(
1

1 + x
.1,

x

1 + x

(
1− x

1 + x

))
=

(
1

1 + x
,

x

(1 + x)2

)
.

The general term of Bal−1 is easily derived from the last expression: it is [xn](xk(1 +
x)−2k+1) =

(
n+k
n−k

)
(−1)n−k =

(
n+k
2k

)
(−1)n−k. Alternatively we can find the general term in the
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matrix product of Bin−1, or
(

n
k

)
(−1)n−k, with Cat−1, or

(
k

n−k

)
(−1)n−k to get the equivalent

expression
∑k+n

j=0

(
n
j

)(
k

j−k

)
(−1)n−k.

We now examine the general term of the transformation Bal = (c(x), c(x)−1) = (c(x), xc(x)2).
An initial result is given by

Proposition 153. The general term T (n, k) of the Riordan matrix (c(x), c(x)− 1) is given
by

T (n, k) =
k∑

j=0

j+1∑
i=0

(
k

j

)(
j + 1

i

)(
i/2

n+ j + 1

)
(−1)k+n+i+122n+j+1

and

T (n, k) = 2.4n

2k+1∑
j=0

(
2k + 1

j

)(
j/2

n+ k + 1

)
(−1)n+k+j+1.

Proof. The first assertion follows by observing that the k−th column of (c(x), c(x) − 1)
has generating function c(x)(c(x) − 1)k. We are thus looking for [xn]c(x)(c(x) − 1)k. Ex-
panding and substituting for c(x) yields the result. The second assertion follows by taking
[xn]c(x)(xc(x)2)k.

We now show that this transformation has in fact a much easier formulation, corresponding
to the generalized Ballot numbers of [165]. We recall that the generalized Ballot numbers or
generalized Catalan numbers [165] are defined by

B(n, k) =

(
2n

n+ k

)
2k + 1

n+ k + 1
.

B(n, k) can be written as

B(n, k) =

(
2n

n+ k

)
2k + 1

n+ k + 1
=

(
2n

n− k

)
−
(

2n

n− k − 1

)
where the matrix with general term

(
2n

n−k

)
is the element(

1√
1− 4x

,
1− 2x−

√
1− 4x

2x

)
=

(
1√

1− 4x
, x
c(x)− 1

x

)
=

(
1√

1− 4x
, xc(x)2

)
of the Riordan group [11]. The inverse of this matrix is (1−x

1+x
, x

(1+x)2
) with general term

(−1)n−k 2n
n+k

(
n+k
2k

)
.

Proposition 154. The general term of the Riordan matrix (c(x), c(x)− 1) is given by

B(n, k) =

(
2n

n+ k

)
2k + 1

n+ k + 1
.
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Proof. We provide two proofs - one indirect, the other direct. The first, indirect proof is
instructive as it uses properties of Riordan arrays.
We have B(n, k) =

(
2n

n−k

)
−
(

2n
n−k−1

)
. Hence the generating function of the k−th column of

the matrix with general term B(n, k) is given by

1√
1− 4x

(c(x)− 1)k − 1√
1− 4x

(c(x)− 1)k+1

Then

1√
1− 4x

(c(x)− 1)k − 1√
1− 4x

(c(x)− 1)k+1 = (c(x)− 1)k

(
1√

1− 4x
− c(x)− 1√

1− 4x

)
= (c(x)− 1)k

(
1√

1− 4x
(1− (c(x)− 1))

)
= (c(x)− 1)k

(
−c(x) + 2√

1− 4x

)
= (c(x)− 1)kc(x)

But this is the generating function of the k−th column of (c(x), c(x)− 1).
The second, direct proof follows from the last proposition. We first seek to express the

term
∑2k+1

j=0

(
2k+1

j

)(
j/2

n+k+1

)
(−1)j in simpler terms. Using [209] (3.164), this is equivalent to

{
(−1)n+k+122k+1−2(n+k+1)

((
2n+ 2k + 2− 2k − 1− 1

n+ k

)
−
(

2n+ 2k + 2− 2k − 1− 1

n+ k + 1

))}
or (−1)n+k+1 1

2.4n

{(
2n

n+k

)
−
(

2n
n+k+1

)}
. Hence

B(n, k) = 2.4n(−1)n+k+1

2k+1∑
j=0

(
2k + 1

j

)(
j/2

n+ k + 1

)
(−1)j

=

{(
2n

n+ k

)
−
(

2n

n+ k + 1

)}
=

{(
2n

n− k

)
−
(

2n

n− k − 1

)}
=

(
2n

n+ k

)
2k + 1

n+ k + 1
.

The numbers B(n, k) have many combinatorial uses. For instance,

B(n, k) = D(n+ k + 1, 2k + 1)

where D(n, k) is the number of Dyck paths of semi-length n having height of the first peak
equal to k [173]. B(n, k) also counts the number of paths from (0,−2k) to (n − k, n − k)
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with permissible steps (0, 1) and (1, 0) that don’t cross the diagonal y = x [165].

We recall that the classical ballot numbers are given by k
2n+k

(
2n+k

n

)
= k

2n+k

(
2n+k
n+k

)
[117].

We now define the generalized Ballot transform to be the transformation corresponding
to the Riordan array Bal = Cat ◦Bin = (c(x), c(x)− 1) = (c(x), xc(x)2). By the above, the
generalized Ballot transform of the sequence an is the sequence bn where

bn =
n∑

k=0

(
2n

n+ k

)
2k + 1

n+ k + 1
ak.

In terms of generating functions, the generalized Ballot transform maps the sequence with
ordinary generating function g(x) to the sequence with generating function c(x)g(c(x) −
1) =c(x)g(xc(x)2) where c(x) is the generating function of the Catalan numbers. We then
have

Proposition 155. Given a sequence an, its inverse generalized Ballot transform is given by

bn =
n∑

k=0

(−1)n−k

(
n+ k

2k

)
ak.

If an has generating function g(x) then bn has generating function 1
1+x

g
(

x
(1+x)2

)
.

Proof. We have seen that Bal−1 = Bin−1 ◦ Cat−1 = ( 1
1+x

, x
(1+x)2

). The second statement

follows from this. We have also seen that the general term of Bal−1 is (−1)n−k
(

n+k
2k

)
. Hence

the transform of the sequence an is as asserted.

We can now characterize the Catalan transformation as

Cat = Bal ◦Bin−1.

Since the general term of Bin−1 is (−1)n−k
(

n
k

)
we immediately obtain the expression∑n

j=0

∑n
k=0

2k+1
n+k+1

(−1)k−j
(

2n
n−k

)(
k
j

)
for the general term of Cat.

The following table identifies some Ballot transform pairings [205].

Table. Generalized Ballot transform pairs
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an bn an bn
(−1)n 0n (−1)n A000007

0n Cn A000007 A000108

1n
(
2n
n

)
1n A000984

2n [xn] 1
1−3xc(x)

A000079 A007854

n [xn] xc(x)
1−4c(x)

A001477 A000346(n− 1) + 0n/2

n+ 1
∑n

k=0

(
2n
k

)
A000027 A032443

2n+ 1 4n A005408 A000302

(1 + (−1)n)/2
(
2n+1

n

)
A059841 A088218

2− 0n
(
2n+1
n+1

)
A040000 A001700

(2n + 0n)/2 - A011782 A090317

cos(2πn
3

) + sin(2πn
3

)/
√

3 1n A057078 1n

cos(πn
2

) + sin(πn
2

) 2n - A000079

cos(πn
3

) +
√

3 sin(πn
3

) 3n A057079 A000244
F (n) − A000045 A026674

F (n+ 1) − A000045(n+ 1) A026726

In terms of the Riordan group, the above implies that the generalized Ballot transform and

its inverse are given by the elements (c(x), x(c(x) − 1)/x) and
(

1
1+x

, x
(1+x)2

)
. The lower-

triangular matrix representing the Ballot transformation thus has the form

Bal =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 3 1 0 0 0 . . .
5 9 5 1 0 0 . . .
14 28 20 7 1 0 . . .
42 90 75 35 9 1 . . .
...

...
...

...
...

...
. . .


while the inverse Ballot transformation is represented by the matrix

Bal−1 =



1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .

1 −3 1 0 0 0 . . .
−1 6 −5 1 0 0 . . .

1 −10 15 −7 1 0 . . .
−1 15 −35 28 −9 1 . . .

...
...

...
...

...
...

. . .


The first matrix is A039599, while the absolute value of the second matrix is A085478.

6.6 The Signed Generalized Ballot transform

For completeness, we consider a transformation that may be described as the signed gener-
alized Ballot transform. As a member of the Riordan group, this is the element (c(−x), 1−
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c(−x)) = (c(−x), xc(−x)2). For a given sequence an, it yields the sequence with general
term

bn =
n∑

k=0

(−1)n−k

(
2n

n+ k

)
2k + 1

n+ k + 1
ak.

Looking at generating functions, we get the mapping

A(x) → c(−x)A(1− c(−x)) = c(−x)A(xc(−x)2).

The inverse of this map is given by

bn =
∑
k=0

(
n+ k

2k

)
ak

or, in terms of generating functions

A(x) → 1

1− x
A
(

x

(1− x)2

)
.

Example mappings under this transform are 0n → (−1)nCn, 1n → 0n, F (2n+ 1) → 1n.
We note that if the sequence an has generating function of the form

1

1−
α1x

1−
α2x

1− · · ·
then the matrix with general term (

n+ k

2k

)
ak

has generating function
1

1− x−
α1xy

1− x−
α2xy

1− x− · · ·

.

Hence the inverse signed generalized Ballot transform of the sequence an will in this case
have the generating function

1

1− x−
α1x

1− x−
α2x

1− x− · · ·

.

We can characterize the effect of this inverse on the power sequences n → kn as follows:
the image of kn under the inverse signed generalized Ballot transform is the solution to the
recurrence

an = (k + 2)an−1 − an−2
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with a0 = 1, a1 = F (2k + 1).
The matrices that represent this inverse pair of transformations are, respectively, the alter-
nating sign versions of A039599 and A085478.
The latter matrix has a growing literature in which it is known as the DFF triangle [87],

[88], [216]. As an element of the Riordan group, it is given by
(

1
1−x

, x
(1−x)2

)
.

It has a “companion” matrix with general element

bn,k =

(
n+ k + 1

2k + 1

)
=
n+ k + 1

2k + 1

(
n+ k

2k

)
called the DFFz triangle. This is the element(

1

(1− x)2
,

x

(1− x)2

)
of the Riordan group with inverse(

1− c(−x)
x

, 1− c(−x)
)

= (c(−x)2, xc(−x)2).

Another number triangle that is related to the above [216] has general term

an,k =
2n

n+ k

(
n+ k

2k

)
.

Taking a0,0 = 1, we obtain the matrix

1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
2 9 6 1 0 0 . . .
2 16 20 8 1 0 . . .
2 25 50 35 10 1 . . .
...

...
...

...
...

...
. . .


which is the element

(
1+x
1−x

, x
(1−x)2

)
of the Riordan group. Its inverse is the matrix

1 0 0 0 0 0 . . .
−2 1 0 0 0 0 . . .

6 −4 1 0 0 0 . . .
−20 15 −6 1 0 0 . . .

70 −56 28 −8 1 0 . . .
−252 210 −120 45 −10 1 . . .

...
...

...
...

...
...

. . .


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with general element (−1)n−k
(

2n
n−k

)
which is the element(

1√
1 + 4x

,
1 + 2x−

√
1 + 4x

2x

)
=

(
1√

1 + 4x
, 1− c(−x)

)
of the Riordan group. We note that 1+2x−

√
1+4x

2x2 is the generating function of (−1)nCn+1.
Applying Bin2 to this matrix yields the matrix

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
2 0 1 0 0 0 . . .
0 3 0 1 0 0 . . .
6 0 4 0 1 0 . . .
0 10 0 5 0 1 . . .
...

...
...

...
...

...
. . .


which is the element

(
1√

1−4x2 , xc(x
2)
)

of the Riordan group.

6.7 An Associated Transformation

We briefly examine a transformation associated to the Ballot transformation. Unlike other
transformations in this study, this is not invertible. However, it transforms some “core”
sequences to other “core” sequences, and hence deserves study. An example of this transfor-
mation is given by

Mn =

bn/2c∑
k=0

(
n

2k

)
Ck

where Mn is the nth Motzkin number A001006. In general, if an is the general term of a
sequence with generating function A(x) then we define its transform to be

bn =

bn/2c∑
k=0

(
n

2k

)
ak

which has generating function
1

1− x
A
(

x2

(1− x)2

)
.

As this sequence represents the diagonal sums of the array with general term(
n+ k

2k

)
ak,

it will have generating function

1

1− x−
α1x

2

1− x−
α2x

2

1− x−
α3x

2

1− x− · · ·
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in the event that an has generating function

1

1−
α1x

1−
α2x

1− · · ·

.

The opening assertion concerning the Motzkin numbers follows from the fact that

1

1− x
c

(
x2

(1− x)2

)
=

1− x−
√

1− 2x− 3x2

2x2

which is the generating function of the Motzkin numbers. We also deduce that the generating
function of the Motzkin numbers may be expressed as

1

1− x−
x2

1− x−
x2

1− x− · · ·

.

The effect of this transform on the power sequences n→ kn is easy to describe. We have

1

1− kx
→ 1− x

1− 2x− (k − 1)x2
.

In other words, the sequences n → kn are mapped to the solutions of the one parameter
family of recurrences

an = 2an−1 + (k − 1)an−2

satisfying a0 = 1, a1 = 1.
For instance,

bn/2c∑
k=0

(
n

2k

)
2k = ((1 +

√
2)n + (1−

√
2)n)/2

is the general term of the sequence A001333 which begins 1, 1, 3, 7, 17, . . .. Related to this is
the following formula for the Pell numbers A000129

bn/2c∑
k=0

(
n

2k + 1

)
2k = Pell(n).

Under this mapping, the central binomial numbers
(
2n
n

)
are mapped to the central trinomial

numbers A002426 since

1√
1− 4x

→ 1

1− x

1√
1− 4x2/(1− x)2

=
1√

1− 2x− 3x2
.
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This is an interesting result, as the central trinomial numbers are also the inverse binomial
transform of the central binomial numbers :

1√
1− 4x

→ 1

1 + x

1√
1− 4x/(1 + x)

=
1√

1− 2x− 3x2
.

We also deduce the following form of the generating function for the central trinomial num-
bers

1

1− x−
2x2

1− x−
x2

1− x− · · ·

.

This transformation can be represented by the “generalized” Riordan array ( 1
1−x

, x2

(1−x)2
). As

such, it possesses two interesting factorizations. Firstly, we have(
1

1− x
,

x2

(1− x)2

)
=

(
1

1− x
,

x

1− x

)
(1, x2) = Bin ◦ (1, x2).

Thus the effect of this transform is to “aerate” a sequence with interpolated zeros and then
follow this with a binomial transform. This is obvious from the following identity

bn/2c∑
k=0

(
n

2k

)
ak =

n∑
k=0

(
n

k

)
1 + (−1)k

2
ak/2

where we use the usual convention that ak/2 is to be interpreted as 0 when k is odd, that is
when k/2 is not an integer. Secondly, we have(

1

1− x
,

x2

(1− x)2

)
=

(
1− x

1− 2x+ 2x2
,

x2

1− 2x+ 2x2

)(
1

1− x
,

x

1− x

)
.

As pointed out in [59], this transformation possesses a left inverse. Using the methods of
[59] or otherwise, it is easy to see that the stretched Riordan array (1, x2) has left inverse
(1,

√
x). Hence the first factorization yields(

1

1− x
,

x2

(1− x)2

)∼1

= (Bin ◦ (1, x2))∼1

= (1,
√
x) ◦Bin−1

= (1,
√
x)

(
1

1 + x
,

x

1 + x

)
= =

(
1

1 +
√
x
,

√
x

1 +
√
x

)
where we have used (.)∼1 to denote left-inverse.
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It is instructive to represent these transformations by their general terms. We look at
(1, x2) first. We have

[xn](x2)k = [xn]x2k = [xn]
∞∑

j=0

(
0

j

)
x2k+j =

(
0

n− 2k

)
Hence

bn =

bn/2c∑
k=0

(
n

2k

)
ak =

n∑
k=0

n∑
j=0

(
n

j

)(
0

j − 2k

)
aj.

We now wish to express bn in terms of an. We have

[xn](
√
x)k = [t2n]tk = [t2n]

∞∑
j=0

(
0

j

)
tk+j =

(
0

2n− k

)
.

Hence

an =
2n∑

k=0

k∑
j=0

(
0

2n− k

)(
k

j

)
(−1)k−jbj.

We can use the methods of [59] to further elucidate the relationship between (1, x2) and
(1,

√
x). Letting b(x) be the generating function of the image of the sequence an under

(1, x2), we see that b(x) = a(x2) where a(x) =
∑∞

k=0 akx
k. We wish to find the general term

an in terms of the bn. We have a(x) = [b(t)|x = t2] and so

an = [xn]a(x) = [xn](b(t)|t =
√
x)

= [w2n](b(t)|t = w)

=
1

2n
[t2n−1](b′(t))2n =

1

2n
2n.b2n

= b2n.

Table 3 displays a list of sequences and their transforms under this transformation. Note
that by the above, we can recover the original sequence an by taking every second element
of the inverse binomial transform of the transformed sequence bn.

Table 3. Transform pairs
an bn an bn
0n 1n A000007 1n

1n (2n + 0n)/2 1n A011782

2n (1+
√

2)n+(1−
√

2)n)
2

A000079 A001333

n n2n−3 − (1
n)−(0

n)
4

A001477 -

n+ 1 [xn] (1−x)3

(1−2x)2
A000027 A045891

2n+ 1 2n(n+ 2)/2, n > 1 A005408 A087447

(1 + (−1)n)/2
∑bn/4c

k=0

(
n
4k

)
A059841 A038503(

2n
n

)
Central trinomial A000984 A002426

Cn Motzkin A000108 A001006
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6.8 Combining transformations

We finish this chapter by briefly looking at the effect of combining transformations. For
this, we will take the Fibonacci numbers as an example. We look at two combinations: the
Catalan transform followed by the binomial transform, and the Catalan transform followed
by the inverse binomial transform. For the former, we have

Bin ◦Cat =

(
1

1− x
,

x

1− x

)
(1, xc(x)) =

(
1

1− x
,

x

1− x
c

(
x

1− x

))
.

while for the latter we have

Bin−1 ◦Cat =

(
1

1 + x
,

x

1 + x

)
(1, xc(x)) =

(
1

1 + x
,

x

1 + x
c

(
x

1 + x

))
.

Applying the first combined transformation to the Fibonacci numbers yields the sequence
0, 1, 4, 15, 59, 243, . . . with generating function

(
√

5x− 1−
√
x− 1)

2((x− 1)
√

5x− 1− x
√
x− 1))

or √
1− 6x+ 5x2 − (1− 5x+ 4x2)

2(1− x)(1− 6x+ 4x2)
.

Applying the second combined transformation (Catalan transform followed by the inverse
binomial transform) to the Fibonacci numbers we obtain the sequence 0, 1, 0, 3, 3, 13, 26, . . .
with generating function

(1 + 2x)
√

1− 2x− 3x2 − (1− x− 2x2)

2(1 + x)(1− 2x− 4x2)
.

It is instructive to reverse these transformations. Denoting the first by Bin ◦Cat we wish
to look at (Bin ◦Cat)−1 = Cat−1 ◦Bin−1. As elements of the Riordan group, we obtain

(1, x(1− x))

(
1

1 + x
,

x

1 + x

)
=

(
1

1 + x− x2
,
x(1− x)

1 + x− x2

)
.

Applying the inverse transformation to the family of functions kn with generating functions
1

1−kx
, for instance, we obtain

1

1 + x− x2

1

1− kx(1−x)
1+x−x2

=
1

1− (k − 1)x+ (k − 1)x2
.

In other words, the transformation (Bin ◦ Cat)−1 takes a power kn and maps it to the
solution of the recurrence

an = (k − 1)an−1 − (k − 1)an−2

with initial conditions a0 = 1, a1 = k − 1. In particular, it takes the constant sequence 1n

to 0n.
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The Jacobsthal numbers J(n), for instance, are transformed into the sequence with ordinary

generating function x(1−x)
1+x−3x2+4x3−2x4 with general term

bn =
n∑

k=0

(
k

n− k

) k∑
j=0

(
k

j

)
(−1)n−jJ(j)

= 2
√

3 sin(πn/3 + π/3)/9−
√

3

18

{
(
√

3− 1)n+1 − (−1)n(
√

3 + 1)n+1
}
.

We now look at (Bin−1 ◦ Cat)−1 = Cat−1 ◦ Bin. As elements of the Riordan group, we
obtain

(1, x(1− x))(
1

1− x
,

x

1− x
) =

(
1

1− x+ x2
,
x(1− x)

1− x+ x2

)
.

Applying this inverse transformation to the family of functions kn with generating functions
1

1−kx
, for instance, we obtain

1

1− x+ x2

1

1− kx(1−x)
1−x+x2

=
1

1− (k + 1)x+ (k + 1)x2
.

Thus the transformation (Bin−1 ◦ Cat)−1 takes a power kn and maps it to the solution of
the recurrence

an = (k + 1)an−1 − (k + 1)an−2

with initial conditions a0 = 1, a1 = k+ 1. In particular, it takes the constant sequence 1n to
2

n
2 (cos(πn

4
) + sin(πn

4
)) (the inverse Catalan transform of 2n).

As a final example, we apply the combined transformation Cat−1 ◦ Bin to the Fibonacci
numbers. We obtain the sequence

0, 1, 2, 2, 0,−5,−13,−21,−21, 0, 55, 144, 233, 233, 0,−610,−1597, . . .

whose elements would appear to be Fibonacci numbers. This sequence has generating func-
tion

x(1− x)

1− 3x+ 4x2 − 2x3 + x4
.

In closed form, the general term of the sequence is

bn = φn

√
2

5
+

2
√

5

25
sin
(πn

5
+
π

5

)
− (

1

φ
)n

√
2

5
− 2

√
5

25
sin

(
2πn

5
+

2π

5

)
where φ = 1+

√
5

2
. We note that

bn =
2

5

{
φn

√√
5φ sin

(πn
5

+
π

5

)
− (

1

φ
)n

√√
5/φ sin

(
2πn

5
+

2π

5

)}
.
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Chapter 7

An application of Riordan arrays to
coding theory 1

7.1 Introduction

In this chapter, we report on a one-parameter family of transformation matrices which can be
related to the weight distribution of maximum distance separable (MDS) codes. Regarded
as transformations on integer sequences, they are easy to describe both by formula (in
relation to the general term of a sequence) and in terms of their action on the ordinary
generating function of a sequence. To achieve this, we use the language of the Riordan
group of infinite lower-triangular integer matrices. They are also linked to several other
known transformations, most notably the binomial transformation.

7.2 Error-correcting codes

Maximum separable codes are a special case of error-correcting code. By error-correcting
code, we shall mean a linear code over Fq = GF (q), that is, a vector subspace C of F n

q for
some n > 0. If C is a k-dimensional vector subspace of F n

q , then the code is described as a
q-ary [n, k]-code. The elements of C are called the codewords of the code. The weight w(c)
of a codeword c is the number of non-zero elements in the vector representation of c. An
[n, k] code with minimum weight d is called an [n, k, d] code. A code is called a maximum
separable code if the minimum weight of a non-zero codeword in the code is n− k + 1. The
Reed-Solomon family of linear codes is a well-known family of MDS codes.

An important characteristic of a code is its weight distribution. This is defined to be
the set of coefficients A0, A1, . . . , An where Ai is the number of codewords of weight i in C.
The weight distribution of a code plays a significant role in calculating probabilities of error.
Except for trivial or ‘small’ codes, the determination of the weight distribution is normally
not easy. The MacWilliams identity for general linear codes is often used to simplify this

1This chapter reproduces the content of the published article “P. Barry and P. Fitzpatrick, On a One-
parameter Family of Riordan arrays and the Weight Distribution of MDS Codes, J. Integer Seq., 10 (2007),
Art. 07.9.8.” [20].
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task. The special case of MDS codes proves to be tractable. Using the MacWilliams identity
[147] or otherwise [179], [222], we obtain the following equivalent results.

Proposition 156. The number of codewords of weight i, where n − k + 1 ≤ i ≤ n, in a
q-ary [n, k] MDS code is given by

Ai =

(
n

i

)
(q − 1)

i−dmin∑
j=0

(−1)j

(
i− 1

j

)
qi−dmin−j

=

(
n

i

)∑
j=0

(−1)j

(
i

j

)
(qi−dmin+1−j − 1)

=

(
n

i

) i∑
j=dmin

(−1)i−j

(
i

j

)
(qj−dmin+1 − 1)

where dmin = n− k + 1.

We note that the last expression can be written as

Ai =

(
n

i

) i−dmin∑
j=0

(−1)i−dmin−j

(
i

j + dmin

)
(qj+1 − 1)

by a simple change of variable.
We have A0 = 1, and Ai = 0 for 1 ≤ i ≤ n − k. The term

(
n
i

)
is a scaling term, which

also ensures that Ai = 0 for i > n. In the sequel, we shall study a one-parameter family of
Riordan arrays associated to the equivalent summation expressions above.

7.3 Introducing the one-parameter family of ‘MDS’

transforms

In this section, we shall frequently use n and k to address elements of infinite arrays. Thus
the n, k-th element of an infinite array T refers to the element in the n-th row and the k-th
column. Row and column indices will start at 0. This customary use of n, k, should not
cause any confusion with the use of n, k above to describe [n, k] codes.

We define Tm to be the transformation represented by the matrix

Tm =

(
1 + x

1−mx
,

x

1 + x

)
where m ∈ N. For instance, we have

T1 =

(
1 + x

1− x
,

x

1 + x

)
=



1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
2 1 0 1 0 0 . . .
2 1 1 −1 1 0 . . .
2 1 0 2 −2 1 . . .
...

...
...

...
...

...
. . .


.
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This triangle is A113310, which has row sums 1, 3, 4, 4, 4, . . . with generating function (1+x)2

1−x
.

This is A113311. In general, the row sums of Tm have generating function (1+x)2

1−mx
. Note also

that

T0 =

(
1 + x,

x

1 + x

)
=



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 −1 1 0 0 . . .
0 0 1 −2 1 0 . . .
0 0 −1 3 −3 1 . . .
...

...
...

...
...

...
. . .


with general term

(
n−2
n−k

)
(−1)n−k.

The A-sequence of each matrix Tm is clearly 1−x (since f(x) = x
1+x

), and hence we have

Tm(n+ 1, k + 1) = Tm(n, k)− Tm(n, k + 1).

Proposition 157. For each m, Tm is invertible with

T−1
m =

(
1− (m+ 1)x,

x

1− x

)
.

Proof. Let T−1
m = (g∗, f̄). This exists since Tm is an element of the Riordan group. Then

(g∗, f̄)

(
1 + x

1−mx
,

x

1 + x

)
= (1, x).

Hence
f̄

1 + f̄
= x⇒ f̄ =

x

1− x

and

g∗ =
1

g ◦ f̄
⇒ g∗ =

1−mf̄

1 + f̄
= 1− (m+ 1)x.

Corollary 158. The general term of T−1
m is given by

T−1
m (n, k) =

(
n− 1

n− k

)
− (m+ 1)

(
n− 2

n− k − 1

)
.
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Proof. We have

T−1
m (n, k) = [xn](1− (m+ 1)x)(

x

1− x
)k

= [xn−k](1− (m+ 1)x)
∑
j≥0

(
−k
j

)
(−1)jxj

= [xn−k](1− (m+ 1)x)
∑
j≥0

(
k + j − 1

j

)
xj

= [xn−k]
∑
j≥0

(
k + j − 1

j

)
xj − (m+ 1)[xn−k−1]

∑
j≥0

(
k + j − 1

j

)
xj

=

(
k + n− k + 1

n− k

)
− (m+ 1)

(
k + n− k − 1− 1

n− k − 1

)
=

(
n− 1

n− k

)
− (m+ 1)

(
n− 2

n− k − 1

)
.

Our main goal in this section is to find expressions for the general term Tm(n, k) of Tm. To
this end, we exhibit certain useful factorizations of Tm.

Proposition 159. We have the following factorizations of the Riordan array Tm:

Tm =

(
1 + x

1−mx
,

x

1 + x

)
= (1 + x, x)

(
1

1−mx
,

x

1 + x

)
=

(
1,

1

1 + x

)(
x

1− (m+ 1)x
, x

)
=

(
1

1−mx
, x

)(
1 + x,

x

1 + x

)
=

(
1

1 + x
,

x

1 + x

)(
1

1− x

1

1− (m+ 1)x
, x

)
.

Proof. Each of the assertions is a simple consequence of the product rule for Riordan arrays.
For instance,(

1,
x

1 + x

)(
1

1− (m+ 1)x
, x

)
=

(
1.

1

1− (m+ 1) x
1−x

,
x

1 + x

)

=

(
1.

1 + x

1 + x− (m+ 1)x
,

x

1 + x

)
=

(
1 + x

1−mx
,

x

1 + x

)
= Tm.

The other assertions follow in a similar manner.
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The last assertion, which can be written

Tm = B−1

(
1

1− x

1

1− (m+ 1)x
, x

)
,

is a consequence of the fact that the product BTm takes on a simple form. We have

BTm =

(
1

1− x
,

x

1− x

)(
1 + x

1−mx
,

x

1 + x

)
=

(
1

1− x

1 + x
1−x

1−m x
1−x

,
x

1+x

1 + x
1−x

)

=

(
1

1− x

1

1− (m+ 1)x
, x

)
.

We can interpret this as the sequence array for the partial sums of the sequence (m + 1)n,

that is, the sequence array of (m+1)n+1−1
(m+1)−1

. Thus Tm is obtained by applying B−1 to this

sequence array. We note that the inverse matrix (BTm)−1 takes the special form

((1− x)(1− (m+ 1)x), x) = (1− (m+ 2)x+ (m+ 1)2x2, x).

Thus this matrix is tri-diagonal, of the form

(BTm)−1 =



1 0 0 0 0 0 . . .
−(m+ 2) 1 0 0 0 0 . . .
m+ 1 −(m+ 2) 1 0 0 0 . . .

0 m+ 1 −(m+ 2) 1 0 0 . . .
0 0 m+ 1 −(m+ 2) 1 0 . . .
0 0 0 m+ 1 −(m+ 2) 1 . . .
...

...
...

...
...

...
. . .


Corollary 160. The general term of the array Tm is

Tm(n, k) =
n∑

j=k

(−1)n−j

(
n

j

)
((m+ 1)j−k+1 − 1)/m, m 6= 0.

Proof. By the last proposition, we have

Tm = B−1

(
1

1− x

1

1− (m+ 1)x
, x

)
.

The general term of B−1 = ( 1
1+x

, x
1+x

) is (−1)n−k
(

n
k

)
while that of the second Riordan array

is (m+1)n−k+1−1
(m+1)−1

. The result follows from the product formula for matrices.
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Corollary 161.

Tm−1(n, k) =
n∑

j=k

(−1)n−j

(
n

j

)
mj−k+1 − 1

m− 1
=

n−k∑
j=0

(−1)n−k−j

(
n

j + k

)
mj+1 − 1

m− 1
.

Equivalently,

(m− 1)

(
n

k

)
Tm−1(n, k) =

(
n

k

) n−k∑
j=0

(−1)n−k−j

(
n

j + k

)
(mj+1 − 1).

This last result makes evident the link between the Riordan array Tm−1 and the weight
distribution of MDS codes. We now find a number of alternative expressions for the general
term of Tm which will give us a choice of expressions for the weight distribution of an MDS
code.

Proposition 162.

Tm(n, k) =
n−k∑
j=0

(−1)j

(
j + k − 2

j

)
mn−k−j

=
n−k∑
j=0

(−1)n−k−j

(
n− j − 2

n− j − k

)
mj

=
n∑

j=k

(
n− 1

n− j

)
(−1)n−j(m+ 1)j−k.

Proof. The first two equations result from

Tm(n, k) = [xn]
1 + x

1−mx

(
x

1 + x

)k

= [xn−k](1−mx)−1(1 + x)−(k−1)

= [xn−k]
∑
i≥0

mixi
∑
j≥0

(
−(k − 1)

j

)
xj

= [xn−k]
∑
i≥0

∑
j≥0

(
k + j − 2

j

)
(−1)jmixi+j.

The third equation is a consequence of the factorization

Tm =

(
1,

1

1 + x

)(
1

1− (m+ 1)x
, x

)
since

(
1, 1

1+x

)
has general term

(
n−1
n−k

)
(−1)n−k.
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Thus we have, for instance,

(m− 1)

(
n

k

)
Tm−1(n, k) = (m− 1)

(
n

k

) n∑
j=k

(
n− 1

n− j

)
(−1)n−jmj−k.

Using the notation from the second section, we obtain

Ai = (q − 1)

(
n

i

) i∑
j=dmin

(
i− 1

i− j

)
(−1)i−jqj−dmin .

7.4 Applications to MDS codes

We begin this section with an example.

Example 163. The dual of the [7, 2, 6] Reed Solomon code over GF (23) is an MDS [7, 5, 3]
code, also over GF (23). Thus the code parameters of interest to us are q = 8, n = 7, k = 5
and dmin = n− k + 1 = 3. Let D = diag(

(
7
0

)
,
(
7
1

)
, . . . ,

(
7
7

)
, 0, 0, . . .) denote the infinite square

matrix all of whose entries are zero except for those indicated. We form the matrix product
(q − 1)DTq−1, with q = 8, to get

7diag

{(
7

j

)}



1 0 0 0 0 0 0 0 0 . . .
8 1 0 0 0 0 0 0 0 . . .
56 7 1 0 0 0 0 0 0 . . .
392 49 6 1 0 0 0 0 0 . . .
2744 343 43 5 1 0 0 0 0 . . .
19208 2401 300 38 4 1 0 0 0 . . .
134456 16807 2101 262 34 3 1 0 0 . . .
941192 117649 14706 1839 228 31 2 1 0 . . .
6588344 823543 102943 12867 1611 197 29 1 1 . . .

...
...

...
...

...
...

...
...

...
. . .



=



7 0 0 0 0 0 0 0 0 . . .
392 49 0 0 0 0 0 0 0 . . .
8232 1029 147 0 0 0 0 0 0 . . .
96040 12005 1470 245 0 0 0 0 0 . . .
672280 84035 10535 1225 245 0 0 0 0 . . .
2823576 352947 44100 5586 588 147 0 0 0 . . .
6588344 823543 102949 12838 1666 147 49 0 0 . . .
6588344 823543 102942 12873 1596 217 14 7 0 . . .

0 0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
...

. . .


Column 3 (starting from column 0) of this matrix then yields the weight distribution
of the [7, 5, 3] code. That is, we obtain the vector (1, 0, 0, 245, 1225, 5586, 12838, 12873),
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where we have made the adjustment A0 = 1. We moreover notice that the numbers
(0, 0, 0, 1, 5, 8, 38, 262), which correspond to the ratios Ai/((q − 1)

(
n
i

)
), are elements of the

sequence with ordinary generating function 1+x
1−7x

(
x

1+x

)3
. Hence they satisfy the recurrence

an = 4an−1 + 18an−2 + 20an−3 + 7an−4.

This last result leads us to define the weight ratios of a q-ary [n, k, d] MDS code to be
the ratios Ai/((q − 1)

(
n
i

)
).

We are now in a position to summarize the results of this paper.

Theorem 164. Let C be a q-ary [n, k, d] MDS code. The weight distribution of C, adjusted
for A0=1, is obtained from the d-th column of the matrix

(q − 1)Diag

{(
n

j

)}(
1 + x

1− (q − 1)x
,

x

1 + x

)
.

Moreover, the weight ratios of the code satisfy a recurrence defined by the ordinary generating
function 1+x

1−(q−1)x
( x

1+x
)d.

Proof. Inspection of the expressions for the general term Tq−1 and the formulas for Ai yield
the first statement. The second statement is a standard property of the columns of a Riordan
array.

Thus the weight ratios satisfy the recurrence

an =

(
(q − 1)

(
d

0

)
−
(
d

1

))
an−1 +

(
(q − 1)

(
d

1

)
−
(
d

2

))
an−2+

· · ·+
(

(q − 1)

(
d

d− 1

)
−
(
d

d

))
an−d + (q − 1)an−d−1.

Letting Ri = Ai/((q − 1)
(

n
i

)
), we therefore have

Rl =
d∑

j=0

(
(q − 1)

(
d

j

)
−
(

d

j + 1

))
Rl−j−1

where d = dmin = n− k + 1.

166



Chapter 8

Lah and Laguerre transforms of
integer sequences 1

In this chapter, we show how the simple application of exponential Riordan arrays can
bring a unity to the discussion of a number of related topics. Continuing a theme already
established, we show that there is a close link between certain simple Riordan arrays and
families of orthogonal polynomials (in this case, the Laguerre polynomials). By looking
at judicious factorizations and parameterizations, we define interesting transformations and
families of polynomials.

Example 165. The Permutation matrix P and its inverse. We consider the matrix

P =

[
1

1− x
, x

]
.

The general term P (n, k) of this matrix is easily found:

P (n, k) =
n!

k!
[xn]

xk

1− x

=
n!

k!
[xn−k]

1

1− x

=
n!

k!
[xn−k]

∞∑
j=0

xj

=
n!

k!
if n− k ≥ 0, = 0, otherwise,

= [k ≤ n]
n!

k!
.

Here, we have used the Iverson bracket notation [106], defined by [P ] = 1 if the proposition
P is true, and [P ] = 0 if P is false. For instance, δij = [i = j], while δn = [n = 0].

1This chapter reproduces and extends the content of the published article “P. Barry, Some observations
on the Lah and Laguerre transforms of integer sequences, J. Integer Seq., 10 (2007), Art. 07.4.6.” [18].
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Clearly, the inverse of this matrix is P−1 = [1 − x, x]. The general term of this matrix is
given by

P−1(n, k) =
n!

k!
[xn](1− x)xk

=
n!

k!
[xn−k](1− x)

=
n!

k!
(δn−k − δn−k−1)

= δn−k − (k + 1)δn−k−1.

Thus

P =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .


while

P−1 =



1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .


.

We can generalize the construction of P as follows :

P(α) =

[
1

(1− x)α
,

x

1− x

]
.

The general term of P(α) is equal to

n!

k!

(
n− k + α− 1

n− k

)
=
n!

k!

(
−α
n− k

)
(−1)n−k =

n!

k!

(α)n−k

(n− k)!
.

Clearly, P = P(1) and in general, Pα = P(α).

8.1 The Lah transform

Introduced by Jovovic (see, for instance, A103194), the Lah transform is the transformation
on integer sequences whose matrix is given by

Lah =

[
1,

x

1− x

]
.
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Properties of the matrix obtained from the n × n principal sub-matrix of Lah, and related
matrices have been studied in [162]. From the above definition, we see that the matrix Lah
has general term Lah(n, k) given by

Lah(n, k) =
n!

k!
[xn]

xk

(1− x)k

=
n!

k!
[xn−k]

∞∑
j=0

(
−k
j

)
(−1)jxj

=
n!

k!
[xn−k]

∑
j

(
k + j − 1

j

)
xj

=
n!

k!

(
n− 1

n− k

)
Thus if bn is the Lah transform of the sequence an, we have

bn =
n∑

k=0

n!

k!

(
n− 1

n− k

)
ak.

It is clear that the inverse of this matrix Lah−1 is given by
[
1, x

1+x

]
with general term

Lah(n, k)(−1)n−k. Thus

an =
n∑

k=0

(−1)n−kn!

k!

(
n− 1

n− k

)
bk.

Numerically, we have

Lah =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 6 6 1 0 0 . . .
0 24 36 12 1 0 . . .
0 120 240 120 20 1 . . .
...

...
...

...
...

...
. . .


Operating on the sequence with e.g.f. f(x), it produces the sequence with e.g.f. f( x

1−x
).

Example 166. The row sums of the matrix Lah, obtained by operating on the sequence
1, 1, 1 . . . with e.g.f. ex, is the sequence 1, 1, 3, 13, 73, 501, . . . (A000262) with e.g.f. e

x
1−x .

We observe that this is n!L(n,−1,−1) = n!L
(−1)
n (−1) (see Appendix to this chapter for

notation). This sequence counts the number of partitions of {1, .., n} into any number of
lists, where a list means an ordered subset.

8.2 The generalized Lah transform

Extending the definition in [162], we can define, for the parameter t, the generalized Lah
matrix

Lah[t] =

[
1,

x

1− tx

]
.
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It is immediate that Lah[0] = [1, x] = I, and Lah[1] = Lah. The general term of the matrix
Lah[t] is easily computed:

Lah[t](n, k) =
n!

k!
[xn]

xk

(1− tx)k

=
n!

k!
[xn−k]

∞∑
j=0

(
−k
j

)
(−1)jtjxj

=
n!

k!
[xn−k]

∑
j

(
k + j − 1

j

)
tjxj

=
n!

k!

(
n− 1

n− k

)
tn−k.

We can easily establish that

Lah[t]−1 =

[
1,

x

1 + tx

]
= Lah[−t]

with general term n!
k!

(
n−1
n−k

)
(−t)n−k. We also have

Lah[u+ v] = Lah[u] · Lah[v].

This follows since

Lah[u] · Lah[v] =

[
1,

x

1− ux

] [
1,

x

1− vx

]
=

[
1,

x
1−vx

1− ux
1−vx

]

=

[
1,

x
1−vx

1−vx−ux
1−vx

]

=

[
1,

x

1− (u+ v)x

]
= Lah[u+ v].

For integer m, it follows that
Lah[mt] = (Lah[t])m.

8.3 Laguerre related transforms

In this section, we will define the Laguerre transform on integer sequences to be the transform
with matrix given by

Lag =

[
1

1− x
,

x

1− x

]
.
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We favour this denomination through analogy with the Binomial transform, whose matrix
is given by (

1

1− x
,

x

1− x

)
.

Numerically, we have

Lag =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .


The inverse of the Laguerre transform, as we understand it in this section, is given by

Lag−1 =

[
1

1 + x
,

x

1 + x

]
.

Clearly, the general term Lag(n, k) of the matrix Lag is given by

Lag(n, k) =
n!

k!

(
n

k

)
.

Thus if bn is the Laguerre transform of the sequence an, we have

bn =
n∑

k=0

n!

k!

(
n

k

)
ak.

The e.g.f. of bn is given by 1
1−x

f( x
1−x

) where f(x) is the e.g.f. of an. The inverse matrix of

Lag has general term given by (−1)n−k n!
k!

(
n
k

)
. Thus

an =
n∑

k=0

(−1)n−kn!

k!

(
n

k

)
bk.

The relationship between the Lah transform with matrix Lah and the Laguerre transform
with matrix Lag is now clear:

Lag =

[
1

1− x
,

x

1− x

]
=

[
1

1− x
, x

] [
1,

x

1− x

]
= P · Lah.
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We note that this implies that

Lag(n, k) =
n!

k!

(
n

k

)
=

n∑
i=0

[i ≤ n]
n!

i!

i!

k!

(
i− 1

i− k

)
=

n∑
i=0

[k ≤ n]
n!

k!

(
i− 1

i− k

)
=

n!

k!

n∑
i=0

(
i− 1

i− k

)
which indeed is true since (

n

k

)
=

n∑
i=0

(
i− 1

i− k

)
.

Numerically, we have

P · Lah =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 6 6 1 0 0 . . .
0 24 36 12 1 0 . . .
0 120 240 120 20 1 . . .
...

...
...

...
...

...
. . .



=



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .


= Lag.

Similarly we have
Lag−1 = Lah−1 ·P−1,

which implies that

Lag−1(n, k) = (−1)n−kn!

k!

(
n

k

)
=

n∑
i=0

(−1)n−in!

i!

(
n− 1

n− i

)
(δi−k − (k + 1)δi−k−1).
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It is of course possible to pass from Lag to Lah by:

Lah = P−1 · Lag.

Thus

Lah(n, k) =
n!

k!

(
n− 1

n− k

)
=

n∑
i=0

(δn−i − (i+ 1)δn−i−1)
i!

k!

(
i

k

)
We note in passing that this gives us the identity

n!

(
n− 1

n− k

)
=

n∑
i=0

(δn−i − (i+ 1)δn−i−1)i!

(
i

k

)
.

Numerically, we have

P−1 · Lag =



1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .



=



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 6 6 1 0 0 . . .
0 24 36 12 1 0 . . .
0 120 240 120 20 1 . . .
...

...
...

...
...

...
. . .


= Lah.

Thus if the Laguerre transform of an has general term bn, then the general term of the Lah
transform of an will be given by

bn − nbn−1

(for n > 0).

Example 167. A simple consequence of the formula for the general term of the Laguerre
array is the following :

Proposition 168. The Laguerre transform of rnn! is (r + 1)nn!
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Proof. We have

n∑
k=0

n!

k!

(
n

k

)
rkk! =

n∑
k=0

n!

(
n

k

)
rk

= n!
n∑

k=0

(
n

k

)
rk

= n!(r + 1)n.

where we have used the fact that the binomial transform of rn is rn+1.

Example 169. The row sums of the matrix Lag, that is, the transform of the sequence
1, 1, 1, . . . with e.g.f. ex, is the sequence 1, 2, 7, 34, 209, 1546, 13327, . . . with e.g.f. 1

1−x
e

x
1−x .

This is A002720. Among other things, it counts the number of matchings in the bipartite
graph K(n, n). Its general term is

∑n
k=0

n!
k!

(
n
k

)
. This is equal to Ln(−1) where Ln(x) is the

n-th Laguerre polynomial.

Example 170. The row sums of the matrix Lag−1 yield the sequence

1, 0,−1, 4,−15, 56,−185, 204, . . .

with e.g.f. 1
1+x

e
x

1+x . It has general term

n∑
k=0

(−1)n−kn!

k!

(
n

k

)
which is equal to (−1)nLn(1).

8.4 The Associated Laguerre transforms

The Lah and Laguerre transforms, as defined above, are elements of a one-parameter family
of transforms, whose general element is given by

Lag(α) =

[
1

(1− x)α+1
,

x

1− x

]
.

We can calculate the general term of this matrix in the usual way:

Lag(α)(n, k) =
n!

k!
[xn](1− x)−(α+1)xk(1− x)−k

=
n!

k!
[xn−k](1− x)−(α+k+1)

=
n!

k!

∞∑
j=0

(
α+ k + j

j

)
xj

=
n!

k!

(
n+ α

n− k

)
.
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We note that Lah = Lag(−1) while Lag = Lag(0). We can factorize Lag(α) as follows:

Lag(α) =

[
1

(1− x)α
, x

] [
1

1− x
,

x

1− x

]
= P(α) · Lag.

Similarly,

Lag(α) =

[
1

(1− x)α+1
, x

] [
1,

x

1− x

]
= P(α+1) · Lah.

Now P(α+1) has general term n!
k!

(
n−k+α

n−k

)
and Lah has general term n!

k!

(
n−1
n−k

)
. We deduce the

following identity (
n+ α

n− k

)
=

n∑
j=0

(
n− j + α

n− j

)(
j − 1

j − k

)
.

The transform of the sequence an by the associated Laguerre transform for α is the sequence
bn with general term bn =

∑n
k=0

n!
k!

(
n+α
n−k

)
ak, which has e.g.f. 1

(1−x)α+1f( x
1−x

).

The exponential Riordan array Lag(α) has production matrix

1 + α 1 0 0 0 0 . . .
1 + α 3 + α 1 0 0 0 . . .

0 2(2 + α) 5 + α 1 0 0 . . .
0 0 3(3 + α) 7 + α 1 0 . . .
0 0 0 4(4 + α) 9 + α 1 . . .
0 0 0 0 5(5 + α) 11 + α . . .
...

...
...

...
...

...
. . .


or 

1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
0 4 5 1 0 0 . . .
0 0 9 7 1 0 . . .
0 0 0 16 9 1 . . .
0 0 0 0 25 11 . . .
...

...
...

...
...

...
. . .


+ α



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 0 3 1 0 0 . . .
0 0 0 4 1 0 . . .
0 0 0 0 5 1 . . .
...

...
...

...
...

...
. . .


.

We note that in the literature of Riordan arrays, the subset of matrices of the form (1, f(x))
forms a sub-group, called the associated group. We trust that this double use of the term
“associated” does not cause confusion.
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8.5 The Generalized Laguerre transform

We define, for the parameter t, the generalized Laguerre matrix Lag[t] to be

Lag[t] =

[
1

1− tx
,

x

1− tx

]
.

We immediately have

Lag[t] =

[
1

1− tx
,

x

1− tx

]
=

[
1

1− tx
, x

] [
1,

x

1− tx

]
= P[t] · Lah[t].

where the generalized permutation matrix P[t] has general term [k ≤ n]n!
k!
tn−k. It is clear

that

Lag[t]−1 = Lag[−t] =

[
1

1 + tx
,

x

1 + tx

]
.

It is possible to generalize the associated Laguerre transform matrices in similar fashion.

8.6 Transforming the expansion of x
1−µx−νx2

The e.g.f. of the expansion of x
1−µx−νx2 takes the form

f(x) = A(µ, ν)er1x +B(µ, ν)er2x

which follows immediately from the Binet form of the general term. Thus the transform of
this sequence by Lag(α) will have e.g.f.

A(µ, ν)

(1− x)α+1
e

r1x
1−x +

B(µ, ν)

(1− x)α+1
e

r2x
1−x .

In the case of the Lah transform (α = −1), we get the simple form

Ae
r1x
1−x +Be

r2x
1−x

while in the Laguerre case (α = 0) we get

A
e

r1x
1−x

1− x
+B

e
r2x
1−x

1− x
.

Now e
rx

1−x

1−x
is the e.g.f. of the sequence n!Ln(−r). Thus in this case, the transformed sequence

has general term
An!Ln(−r1) +Bn!Ln(−r2).
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Example 171. The Laguerre transform of the Fibonacci numbers

F (n) =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

is given by

1√
5
n!Ln

(
−1 +

√
5

2

)
− 1√

5
n!Ln

(
−1−

√
5

2

)
.

This is A105277. It begins 0, 1, 5, 29, 203, 1680, 16058, . . ..

Example 172. The Laguerre transform of the Jacobsthal numbers [11, 239] (expansions of
x

1−x−2x2 )

J(n) =
2n

3
− (−1)n

3

is given by
1

3
n!Ln(−2)− 1

3
n!Ln(1).

This is A129695. It begins 0, 1, 5, 30, 221, 1936, 19587, . . .. We can use this result to express
the Lah transform of the Jacobsthal numbers, since this is equal to bn − nbn−1 where bn is
the Laguerre transform of J(n). We find

n!

3
(Ln(−2)− Ln−1(−2)− (Ln(1)− Ln−1(1))).

Example 173. We calculate the Lag(1) transform of the Jacobsthal numbers J(n). Since
Lag(1) = P · Lag, we apply P to the Laguerre transform of J(n). This gives us

n∑
k=0

n!

k!
(k!Lk(−2)− k!Lk(1))/3 =

n!

3

n∑
k=0

(Lk(−2)− Lk(1)).

This sequence has e.g.f. 1
(1−x)2

e
2x

(1−x)−e
−x
1−x

3
.

8.7 The Lah and Laguerre transforms and Stirling num-

bers

In this section, we follow the notation of [106]. Thus the Stirling numbers of the first kind,
denoted by

[
n
k

]
, are the elements of the matrix

s =

[
1, ln

(
1

1− x

)]
.
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[
n
k

]
counts the number of ways to arrange n objects into k cycles. We have

s =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 2 3 1 0 0 . . .
0 6 11 6 1 0 . . .
0 24 50 35 10 1 . . .
...

...
...

...
...

...
. . .


.

The row sums of this array give n!.
The Stirling numbers of the second kind, denoted by

{
n
k

}
, count the number of ways to

partition a set of n things into k nonempty subsets.
{

n
k

}
are the elements of the matrix

S = [1, ex − 1].

This is the matrix
[0, 1, 0, 2, 0, 3, 0, . . .] ∆ [1, 0, 1, 0, 1, . . .],

with production matrix 

0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 2 1 0 0 . . .
0 0 0 3 1 0 . . .
0 0 0 0 4 1 . . .
0 0 0 0 0 5 . . .
...

...
...

...
...

...
. . .


.

We have {
n

k

}
=

1

k!

k∑
j=0

(−1)j

(
k

j

)
(k − j)n

=
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn

We note that the matrix [1, ex − 1] of Stirling numbers of the second kind is the inverse of
the matrix with elements (−1)n−k

[
n
k

]
, which is the matrix [1, ln(1 + x)].

Related matrices include [
1

1− x
, ln

(
1

1− x

)]
whose elements are given by

[
n+1
k+1

]
and its signed version,[

1

1 + x
, ln

(
1

1 + x

)]
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whose elements are given by (−1)n−k
[
n+1
k+1

]
, along with their inverses, given respectively by

[e−x, 1−e−x], with general element (−1)n−k
{

n+1
k+1

}
, and [ex, ex−1] with general element

{
n+1
k+1

}
.

We can generalize a result linking the Lah matrix to the Stirling numbers [162] to the
infinite matrix case as follows:

Lah = s · S.
This is because we have

s · S =

[
1, ln

(
1

1− x

)]
[1, ex − 1]

= [1, eln(
1

1−x) − 1]

=

[
1,

1

1− x
− 1

]
=

[
1,

x

1− x

]
= Lah.

Thus we have
S = s−1 · Lah, s = Lah · S−1.

We now observe that[
1

1− x
,

x

1− x

]
[1, ln(1 + x)] =

[
1

1− x
, ln

(
1 +

x

1− x

)]
=

[
1

1− x
, ln

(
1

1− x

)]
or

Lag ·
(

(−1)n−k

[
n

k

])
=

([
n+ 1

k + 1

])
.

We deduce the identity [
n+ 1

k + 1

]
=

n∑
j=0

n!

j!

(
n

j

)
(−1)j−k

[
j

k

]
.

Taking the inverse of the matrix identity above, we obtain([
n+ 1

k + 1

])−1

=

(
(−1)n−k

[
n

k

])−1

· Lag−1

which can be established alternatively by noting that

[1, ex − 1]

[
1

1 + x
,

x

1 + x

]
=

[
1.

1

1 + ex − 1
,

ex − 1

1 + ex − 1

]
= [e−x, 1− e−x].

This establishes the identity

(−1)n−k

{
n+ 1

k + 1

}
=

n∑
j=0

(−1)j−k

(
j

k

)
j!

k!

{
n

j

}
.
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Finally, from the matrix identity

Lag ·
(

(−1)n−k

[
n

k

])
=

([
n+ 1

k + 1

])
.

we deduce that

Lag =

([
n+ 1

k + 1

])
·
(

(−1)n−k

[
n

k

])−1

=

([
n+ 1

k + 1

])
·
({

n

k

})
.

Thus

Lag(n, k) =
n∑

j=0

[
n+ 1

j + 1

]{
j

k

}
.

This is equivalent to the factorization

Lag =

[
1

1− x
,

x

1− x

]
=

[
1

1− x
, ln

(
1

1− x

)]
[1, ex − 1].

This implies (see Appendix A) that

Ln(x) =
1

n!

n∑
k=0

n∑
j=0

[
n+ 1

j + 1

]{
j

k

}
(−x)k.

It is natural in this context to define as associated Stirling numbers of the first kind the
elements

[
n
k

]
α

of the matrices [
1

(1− x)α
, ln

(
1

1− x

)]
.

For instance,
[
n
k

]
0

=
[
n
k

]
and

[
n
k

]
1

=
[
n+1
k+1

]
. We note that signed versions of these numbers

have been documented by Lang (see for instance A049444 and A049458). To calculate
[
n
k

]
2
,

we proceed as follows: ([
n

k

]
2

)
=

[
1

(1− x)2
, ln

(
1

1− x

)]
= P ·

[
1

1− x
, ln

(
1

1− x

)]
=

(
[k ≤ n]

n!

k!

)([
n+ 1

k + 1

])
.

Thus [
n

k

]
2

=
n∑

j=0

n!

j!

[
j + 1

k + 1

]
=

n∑
j=0

n!

j!

[
j

k

]
1

.
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More generally, since [ 1
(1−x)α , ln( 1

1−x
)] = P[ 1

(1−x)α−1 , ln( 1
1−x

)], we have[
n

k

]
α

=
n∑

j=0

n!

j!

[
j

k

]
α−1

.

Lag(α)(n, k) =
n∑

j=0

[
n

j

]
α+1

{
j

k

}
.

For example,

Lag(1) =

[
1

(1− x)2
, ln

(
1

1− x

)]
[1, ex − 1]

=

(
n∑

j=0

[
n

j

]
2

{
j

k

})

=

(
n∑

j=0

n∑
i=0

n!

i!

[
n+ 1

j + 1

]{
j

k

})
.

In general, we have

Lag(α) =

[
1

(1− x)α+1
,

x

1− x

]
=

[
1

(1− x)α+1
, ln

(
1

1− x

)]
[1, ex − 1].

This implies that

Lag(α)(n, k) =
n∑

j=0

[
n

j

]
α+1

{
j

k

}
.

8.8 The generalized Lah, Laguerre and Stirling matri-

ces

Given a parameter t we define the generalized Stirling numbers of the first kind to be the
elements of the matrix

s[t] =

[
1,

1

t
ln

(
1

1− tx

)]
.

Similarly, we define the generalized Stirling numbers of the second kind to be the elements
of the matrix

S[t] =

[
1,
etx − 1

t

]
.

Then
S[t]−1 = s[−t].
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For instance,

s[−t] · S[t] =

[
1,−1

t
ln

(
1

1 + tx

)][
1,
etx − 1

t

]
=

[
1,−1

t
ln

(
1

1 + t etx−1
t

)]

=

[
1,−1

t
ln(

1

etx
)

]
=

[
1,

1

t
ln(etx)

]
= [1, x] = I.

The general term of s[t] is given by tn−k
[
n
j

]
and that of S[t] is given by tn−k

{
n
j

}
. An easy

calculation establishes that
Lah[t] = s[t]S[t].

From this we immediately deduce that

Lag[t] = P[t]s[t]S[t].

Similarly results for the generalized associated Laguerre transform matrices can be derived.

8.9 Stirling numbers and Charlier polynomials

We finish this chapter by noting a close relationship between the Stirling numbers of the
first kind s =

[
1, ln

(
1

1−x

)]
and the coefficient array of the (unsigned) Charlier polynomials.

In effect, we have [
ex, ln

(
1

1− x

)]
= [ex, x] ·

[
1, ln

(
1

1− x

)]
= B · s.

where the array on the LHS is the coefficient array of the unsigned Charlier polynomials.
These polynomials are equal to 2F0(−n, x;−1). The Charlier polynomials are normally
defined to be 2F0(−n,−x;−1/µ). Here, we define the unsigned Charlier polynomials by

Pn(x) =
n∑

k=0

(
n

k

)
(x)k,

where (x)k =
∏k−1

j=0(x+ j). Letting Ch = B · s =
[
ex, ln

(
1

1−x

)]
, we have for example

Lah = B−1 ·Ch · S

and
Lag = P ·B−1 ·Ch · S.
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8.10 Appendix A - the Laguerre and associated La-

guerre functions

The associated Laguerre polynomials [241] are defined by

L(α)
n (x) =

1

n!

n∑
k=0

n!

k!

(
n+ α

n− k

)
(−x)k

=
1

n!
exx−α dn

dxn
[xn+αe−x]

=
(α+ 1)n

n!
1F1(−n;α+ 1; x).

Their generating function is

e
−xz
1−z

(1− z)α+1
.

The Laguerre polynomials are given by Ln(x) = L
(0)
n (x). The associated Laguerre polynomi-

als are orthogonal on the interval [0,∞) for the weight e−xxα.
Using the notation developed above, we have

L(α)
n (x) =

1

n!

n∑
k=0

Lag(α)(n, k)(−x)k

=
1

n!

n∑
k=0

n∑
i=0

[
n

j

]
α+1

{
j

k

}
(−x)k.

In particular,

Ln(x) =
1

n!

n∑
k=0

n∑
i=0

[
n+ 1

j + 1

]{
j

k

}
(−x)k.

We finish this appendix by illustrating the use of Riordan arrays to establish a well known
identity for Laguerre polynomials [5], namely

L(β)
n (x) =

n∑
k=0

(β − α)n−k

(n− k)!
L

(α)
k (x).

To do this, we first note that

Lag(β) =

[
1

(1− x)β+1
,

x

1− x

]
=

[
1

(1− x)β−α
, x

]
·
[

1

(1− x)α+1
,

x

1− x

]
=

[
1

(1− x)β−α
, x

]
· Lag(α).
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Now the general term of the Riordan array
[

1
(1−x)β−α , x

]
is given by

n!

k!

(
α− β

n− k

)
(−1)n−k =

n!

k!

(β − α)n−k

(n− k)!
.

It follows that

L(β)
n (x) =

1

n!

n∑
k=0

Lag(β)(n, k)(−x)k

=
1

n!

n∑
k=0

n∑
j=0

n!

j!

(
α− β

n− j

)
(−1)n−jLag(α)(j, k)(−x)k

=
1

n!

n∑
j=0

n!

(
α− β

n− j

)
(−1)n−j 1

j!

j∑
k=0

Lag(α)(j, k)(−x)k

=
n∑

j=0

(
α− β

n− j

)
(−1)n−jL

(α)
j (x)

=
n∑

j=0

(β − α)n−j

(n− j)!
L

(α)
j (x).

8.11 Appendix B - Lah and Laguerre transforms in the

OEIS

Table 1. Table of Lah transforms

an Lah transform bn
A000012 A000262
A000027 A052852

A000027(n+ 1) A002720
A000079 A052897
A000085 A049376
A000110 A084357
A000262 A025168
A000290 A103194
A000670 A084358
A104600 A121020

1+(−1)n

2
(e.g.f. cosh(x)) A088312

1−(−1)n

2
(e.g.f. sinh(x)) A088313

Table 2. Table of Laguerre transforms
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an Laguerre transform bn
A000007 A000142
A000012 A002720

A000027(n+ 1) A000262(n+ 1)
A000045 A105277
A000079 A087912
A000142 A000165
A000165 A032031
A001045 A129695
A032031 A047053
A005442 A052574

(−1)n · A052554 A005442
(−1)n · A052598 A052585
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Chapter 9

Riordan arrays and Krawtchouk
polynomials1

9.1 Introduction

The Krawtchouk polynomials play an important role in various areas of mathematics. No-
table applications occur in coding theory [147, 144], association schemes [47], and in the
theory of group representations [224, 225].

In this chapter, we explore links between the Krawtchouk polynomials and Riordan
arrays, of both ordinary and exponential type, and we study integer sequences defined by
evaluating the Krawtchouk polynomials at different values of their parameters.

The link between Krawtchouk polynomials and exponential Riordan arrays is implicitly
contained in the umbral calculus approach to certain families of orthogonal polynomials. We
shall look at these links explicitly in the following.

We define the Krawtchouk polynomials, using exponential Riordan arrays, and look at
some general properties of these polynomials from this perspective. We then show that for
different values of the parameters used in the definition of the Krawtchouk polynomials,
there exist interesting families of (ordinary) Riordan arrays.

9.2 Krawtchouk polynomials

We follow [195] in defining the Krawtchouk polynomials. They form an important family of
orthogonal polynomials [53, 218, 240]. Thus the Krawtchouk polynomials will be considered
to be the special case β = −N , c = p

p−1
, p + q = 1 of the Meixner polynomials of the first

kind, which form the Sheffer sequence for

g(t) =

(
1− c

1− cet

)β

,

f(t) =
1− et

c−1 − et
.

1This chapter reproduces the content of the published article “P. Barry, A Note on Krawtchouk Polyno-
mials and Riordan Arrays, J. Integer Seq., 11 (2008), Art. 08.2.2.” [22].
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Essentially, this says that the Meixner polynomials of the first kind are obtained by operating
on the vector (1, x, x2, x3, . . .)′ by the exponential Riordan array [g(t), f(t)]−1, since

[g, f ]−1 =

[
1

g ◦ f̄
, f̄

]
and [

1

g ◦ f̄
, f̄

]
ext =

1

g ◦ f̄
exf̄(t)

which is the defining expression for the Sheffer sequence associated to g and f . In order to
work with this expression, we calculate [g, f ]−1 as follows. Firstly,

f̄ = log

(
t− c

c(t− 1)

)
since

1− eu

c−1 − u
= x =⇒ eu =

x− c

c(x− 1)

u = log

(
x− c

c(x− 1)

)
=⇒ f̄(t) = log

(
t− c

c(t− 1)

)
Then we have

g(f̄(t)) =

(
1− c

1− cef̄(t)

)β

=

(
1− c

1− t−c
t−1

)β

= (1− t)β.

and

exf̄(t) = ex log( t−c
c(t−1)) =

(
t− c

c(t− 1)

)x

.

Thus we arrive at

[g, f ]−1 =

[
1

(1− t)β
, log

(
t− c

c(t− 1)

)]
and

exf̄(t)

g(f̄(t))
=

1

(1− t)β

(
t− c

c(t− 1)

)x

=
1

(1− t)β+x

(
c− t

c

)x

= (1− t)−β−x

(
1− t

c

)x

.

Specializing to the values β = −N and c = p
p−1

= −p
q
, we get

exf̄(t)

g(f̄(t))
= (1− t)N−x(1 +

q

p
t)x.
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Extracting the coefficient of tk in this expression, we obtain

[tk]
exf̄(t)

g(f̄(t))
= [tk]

∑
i=0

(
N − x

i

)
(−1)iti

∑
j=0

(
x

j

)(
q

p

)j

tj

=
k∑

j=0

(
N − x

k − j

)(
x

j

)
(−1)k−jqjp−j.

Scaling by pk, we thus obtain

pk[xk]
exf̄(t)

g(f̄(t))
=

k∑
j=0

(
N − x

k − j

)(
x

j

)
(−1)k−jqjpk−j.

We use the notation

κ(p)
n (x,N) =

n∑
j=0

(
N − x

n− j

)(
x

j

)
(−1)n−jqjpn−j

for the Krawtchouk polynomial with parameters N and p. This can be expressed in hyper-
geometric form as

κ(p)
n (x,N) = (−1)n

(
N

n

)
pn

2F1(−n,−x;−N ; 1/p).

The form of [g, f ]−1 allows us to make some interesting deductions. For instance, if we write

[g(t), f(t)]−1 =

[
1

(1− t)β
, log

(
1− t

c

1− t

)]
then setting β = −N and c = p

p−1
, we get

[g(t), f(t)]−1 =

[
1

(1− t)−N
, log

(
1− p−1

p
t

1− t

)]
.

Now we let t = ps, giving

[g(t), f(t)]−1 = Diag(1/pn) ∗
[
(1− ps)N , log

(
1− (p− 1)s

1− ps

)]
= Diag(1/pn) ∗ [(1− ps)N , s] ∗

[
1,

s

1− (p− 1)s

]
∗
[
1, log

(
1

1− s

)]
= Diag(1/pn) ∗P[p]−N ∗ Lah[p− 1] ∗ s.

where we have used the notation of [18] and where for instance s =
[
1, log

(
1

1−s

)]
is the

Stirling array of the first kind.
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The matrix P[p]−N ∗ Lah[p − 1] ∗ s =
[
(1− pt)N , log

(
1−(p−1)t

1−pt

)]
is of course a monic

exponential Riordan array. If its general term is T (n, k), then that of the corresponding
array [g, f ]−1 is given by T (n, k)/pn.

The above matrix factorization indicates that the Krawtchouk polynomials can be ex-
pressed as combinations of the Stirling polynomials of the first kind 1, x, x(x + 1), x(x2 +
3x+ 2), x(x3 + 6x2 + 11x+ 6), . . ..

Example 174. Taking N = −1 and p = 2 we exhibit an interesting property of the ma-

trix
[
(1− pt)N , log

(
1−(p−1)t

1−pt

)]
, which in this case is the matrix

[
1

1−2t
, log

(
1−t
1−2t

)]
. An easy

calculation shows that[
1

1− 2t
, log

(
1− t

1− 2t

)]−1

=

[
1

2et − 1
,
et − 1

2et − 1

]
.

We recall that the Binomial matrix with general term
(

n
k

)
is the Riordan array [et, t]. Now[

1

1− 2t
, log

(
1− t

1− 2t

)]
[et, t]

[
1

2et − 1
,
et − 1

2et − 1

]
=

[
1− t

1− 2t
, t

]
.

Hence the matrices [et, t] and
[

1−t
1−2t

, t
]

are similar, with
[

1
1−2t

, log
(

1−t
1−2t

)]
serving as matrix

of change of basis for the similarity.

9.3 Krawtchouk polynomials and Riordan arrays

In this section, we shall use the following notation, where we define a variant on the poly-
nomial family κ

(p)
n (x,N). Thus we let

K(n, k, x, q) =
k∑

j=0

(−1)j

(
x

j

)(
n− x

k − j

)
(q − 1)k−j.

We then have
K(n, k, x, q) = [tk](1− t)x(1 + (q − 1)t)n−x,

which implies that

K(N, k,N − x, q) = [tk](1− t)N−x(1 + (q − 1)t)x.

Letting P = 1/q and thus (1− P )/P = q − 1 we obtain

K(N, k,N − x, q) =
1

qn
κ(P )

n (x,N).

We shall see in the sequel that by varying the parameters n, k, x and q, we can obtain families
of (ordinary) Riordan arrays defined by the corresponding Krawtchouk expressions.
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Example 175. We first look at the term K(k, n− k, r, q). We have

K(k, n− k, r, q) =
n−k∑
j=0

(−1)j

(
r

j

)(
k − r

n− k − j

)
(q − 1)n−k−j

=
r∑

j=0

(−1)j

(
r

j

)(
k − r

n− k − j

)
(q − 1)n−k−j.

But this last term is the general term of the Riordan array((
1− x

1 + (q − 1)x

)r

, x(1 + (q − 1)x)

)
. (9.1)

The term (−1)n−kK(k, n − k, r, q) then represents the general term of the inverse of this
Riordan array, which is given by((

1 + x

1− (q − 1)x

)r

, x(1− (q − 1)x)

)
.

The A-sequence of the array (9.1) is given by

A(x) =
1 +

√
1 + 4(q − 1)x

2
.

Thus
a0 = 1, an = (−1)n−1(q − 1)nCn−1.

With these values, we therefore have

K(k+1, n−k, r, q) = K(k, n−k, r, q)+a1K(k+1, n−k−1, r, q)+a2K(k+2, n−k−2, r, q)+. . .

Example 176. We next look at the family defined by (−1)kK(n, k, k, q). We have

(−1)kK(n, k, k, q) = (−1)k

k∑
j=0

(−1)j

(
k

j

)(
n− k

k − j

)
(q − 1)k−j

=
k∑

j=0

(
k

j

)(
n− k

k − j

)
(1− q)k−j

=
n−k∑
j=0

(
k

j

)(
n− k

j

)
(1− q)j.

Using the results of [16] (see also Chapter 10) we see that these represent the family of
Riordan arrays (

1

1− x
,
x(1− qx)

1− x

)
.
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The A-sequence for this array is given by

A(x) =
1 + x+

√
1 + 2x(1− 2q) + x2

2
.

For example, the matrix with general term T (n, k) = (−1)kK(n, k, k,−3) is the Riordan

array
(

1
1−x

, x(1+3x)
1−x

)
, A081578 or

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 5 1 0 0 0 . . .
1 9 9 1 0 0 . . .
1 13 33 13 1 0 . . .
1 17 73 73 7 1 . . .
...

...
...

...
...

...
. . .


.

The A-sequence for this array has g.f. 1+x+
√

1+14x+x2

2
which expands to

1, 4,−12, 84,−732, 7140,−74604, . . .

Thus

(−1)k+1K(n+ 1, k + 1, k + 1,−3) = (−1)kK(n, k, k,−3)

+4(−1)k+1K(n, k + 1, k + 1,−3)

−12(−1)k+2K(n, k + 2, k + 2,−3) + . . .

The matrix with general term (−1)kK(n, k, k, 2) is the Riordan array
(

1
1−x

, x(1−2x)
1−x

)
or

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
1 −1 −1 1 0 0 . . .
1 −2 −2 −2 1 0 . . .
1 −3 −2 −2 −3 1 . . .
...

...
...

...
...

...
. . .


.

The rows of this matrix A098593 are the anti-diagonals (and a signed version of the diagonals)
of the so-called Krawtchouk matrices [90, 91] which are defined as the family of (N + 1) ×
(N + 1) matrices with general term

K
(N)
ij =

∑
k

(−1)k

(
j

k

)(
N − j

i− k

)
.
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The matrix with general term T (n, k) = (−1)kK(n, k, k,−1) is the well-known Delannoy

number triangle
(

1
1−x

, x(1+x)
1−x

)
A008288 given by

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 5 5 1 0 0 . . .
1 7 13 7 1 0 . . .
1 9 25 25 9 1 . . .
...

...
...

...
...

...
. . .


.

Thus in particular (−1)nK(2n, n, n,−1) is the general term of the sequence of Delannoy
numbers 1, 3, 13, 63, . . . A001850. We have

Proposition 177. The array with general term T (n, k) = [k ≤ n](−1)kK(n, k, k, q) is the

Riordan array
(

1
1−x

, x(1−qx)
1−x

)
.

Using results in [153], we have the following simple relationships between the terms of these

matrices, where T
(q)
n,k = T (q)(n, k) denotes the n, k-th element of

(
1

1−x
, x(1−qx)

1−x

)
:

T
(q)
n+1,k+1 = T

(q)
n,k + T

(q)
n,k+1 − qT

(q)
n−1,k.

Thus for instance the elements of the Delannoy matrix above satisfy

T
(−1)
n+1,k+1 = T

(−1)
n,k + T

(−1)
n,k+1 + T

(−1)
n−1,k.

Example 178. We now turn our attention to the expression (−1)n−kK(n− k, n− k, n, q).
We have

(−1)n−kK(n− k, n− k, n, q) = (−1)n−k

n−k∑
j=0

(−1)j

(
n

j

)(
n− k − n

n− k − j

)
(q − 1)n−k−j

= (−1)n−k

n−k∑
j=0

(−1)j

(
n

j

)(
−k

n− k − j

)
(q − 1)n−k−j

=
n−k∑
j=0

(−1)n−k−j

(
n

j

)(
n− j − 1

n− k − j

)
(q − 1)n−k−j

=
n−k∑
j=0

(
n− j − 1

n− k − j

)
qn−k−j

= [xn]
1

1− x

(
x

1− qx

)k

.
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Thus the matrix with the general term T (n, k; q) = (−1)n−kK(n−k, n−k, n, q) is the Riordan

array
(

1
1−x

, x
1−qx

)
. Taking the q-th inverse binomial transform of this array, we obtain(

1

1 + qx
,

x

1 + qx

)
∗
(

1

1− x
,

x

1− qx

)
=

(
1

1 + (q − 1)x
, x

)
.

Reversing this equality gives us(
1

1− x
,

x

1− qx

)
=

(
1

1− qx
,

x

1− qx

)
∗
(

1

1 + (q − 1)x
, x

)
.

Thus

(−1)n−kK(n− k, n− k, n, q) =
n∑

j=k

(
n

j

)
qn−j(1− q)j−k.

The row sums of the Riordan array
(

1
1−x

, x
1−qx

)
have generating function

1
1−x

1− x
1−qx

=
1− qx

(1− x)(1− (q + 1)x)
.

This is thus the generating function of the sum

n∑
k=0

(−1)n−kK(n− k, n− k, n, q) =
n∑

k=0

n∑
j=k

(
n

j

)
qn−j(1− q)j−k =

(1 + q)n − (1− q)

q
.

We remark that (−1)kK(k, k, n, q) is a triangle given by the reverse of the Riordan array(
1

1−x
, x

1−qx

)
, and will thus have the same row sums and central coefficients.

The A-sequence of this array is simply 1 + qx, which implies that

K(n− k, n− k, n+ 1, q) = −K(n− k − 1, n− k − 1, n, q) + qK(n− k − 2, n− k − 2, n, q).

Example 179. We now consider the expression (−1)n−kK(n− k, n− k, k, q). We have

(−1)n−kK(n− k, n− k, k, q) = (−1)n−k

n−k∑
j=0

(−1)j

(
k

j

)(
n− k − k

n− k − j

)
(q − 1)n−k−j

=
n−k∑
j=0

(
k

j

)(
n− 2k

n− k − j

)
(1− q)n−k−j.

This is the (n, k)-th element T (n, k; q) of the Riordan array(
1

1 + (q − 1)x
, x(1 + qx)

)
.
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Other expressions for T (n, k; q) include

T (n, k; q) =
n−k∑
j=0

(
k

n− k − j

)
(1− q)jqn−k−j

=
n−k∑
j=0

k∑
i=0

(
k

i

)(
k − i

n− k − i− j

)
(−1)j(q − 1)i+j,

hence these provide alternative expressions for (−1)n−kK(n− k, n− k, k, q).
We note that for q = 1, we obtain the Riordan array (1, x(1 + x)) whose inverse is the

array (1, xc(x)). The row sums of (1, x(1 + x)) are F (n+ 1), thus giving us

n∑
k=0

(−1)n−kK(n− k, n− k, k, 1) = F (n+ 1).

Similarly, we find
n∑

k=0

(−1)n−kK(n− k, n− k, k, 0) = n+ 1.

∑n
k=0(−1)n−kK(n − k, n − k, k,−1) is the sequence 1, 3, 6, 11, 21, 42, . . . A024495 with gen-

erating function 1
(1−x)3−x3 .

These matrices have the interesting property that T (2n, n; q) = 1. This is so since

T (2n, n; q) =
2n−n∑
j=0

(
n

2n− n− j

)
(1− q)jq2n−n−j

=
n∑

j=0

(
n

n− j

)
(1− q)jqn−j

=
n∑

j=0

(
n

j

)
(1− q)jqn−j

= (1− q + q)n = 1.

Thus we have
K(n, n, n, q) = (−1)n.

The A-sequence for these arrays has generating function

A(x) =
1 +

√
1 + 4qx

2

and thus we have
a0 = 1, an = (−1)n−1qnCn−1, n > 0.

With these values we therefore have

(−1)n−kK(n− k, n− k, k + 1, q) = (−1)n−kK(n− k, n− k, k, q)

+a1(−1)n−k−1K(n− k − 1, n− k − 1, k + 1, q) + . . .

194

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A024495


Example 180. We next look at the expression (−1)n−kK(n, n− k, k, q). We have

(−1)n−kK(n, n− k, k, q) = (−1)n−k

n−k∑
j=0

(−1)j

(
k

j

)(
n− k

n− k − j

)
(q − 1)n−k−j

=
n−k∑
j=0

(
k

j

)(
n− k

n− k − j

)
(1− q)n−k−j.

This is the general term T (n, k; q) of the Riordan array(
1

1 + (q − 1)x
,
x(1 + qx)

1 + (q − 1)x

)
.

Expressing T (n, k; q) differently allows us to write

n−k∑
j=0

(
k

j

)(
n− k

n− k − j

)
(1− q)n−k−j =

k∑
j=0

(
n

j

)(
n− j

n− k − j

)
qj(1− q)n−k−j.

The central coefficients of these arrays, T (2n, n; q), have generating function e(2−q)xI0(2
√

1− qx)
and represent the n-th terms in the expansion of (1 + (2− q)x+ (1− q)x2)n.

The A-sequence for this family of arrays has generating function

A(x) =
1 + (1− q)x+

√
1 + 2x(1 + q) + (q − 1)2x2

2
.

Example 181. The expression K(n, n− k,N, q) is the general term of the Riordan array(
(1− qx)N

1− (q − 1)x
,

x

1− (q − 1)x

)
.

This implies that

n−k∑
j=0

(
N

j

)(
n−N

n− k − j

)
(−1)j(q − 1)n−k−j =

n−k∑
j=0

(
N

j

)(
n− j

n− k − j

)
(−1)jqj(q − 1)n−k−j.

The A-sequence for this family of arrays is given by 1 + (q − 1)x. Thus we obtain

K(n+ 1, n− k,N, q) = K(n, n− k,N, q) + (q − 1)K(n, n− k − 1, N, q).

Example 182. In this example, we indicate that summing over one of the parameters can
still lead to a Riordan array. Thus the expression

n−k∑
i=0

(−1)iK(n− k, i, n, q)
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is equivalent to the general term of the Riordan array(
1

1− 2x
,

x

1− qx

)
while the expression

n−k∑
i=0

K(n− k, i, n, q)

is equivalent to the general term of the Riordan array(
1,

x

1 + qx

)
.

Thus

n−k∑
i=0

(−1)iK(n− k, i, n, q) =
n−k∑
i=0

i∑
j=0

(
n

j

)(
k + i− j − 1

i− j

)
(q − 1)i−j

=
n−k∑
j=0

(
j + k − 1

j

)
2n−k−jqj

and
n−k∑
i=0

K(n− k, i, n, q) =

(
n− 1

n− k

)
(−q)n−k.

The A-sequence for this example is given by 1 + qx, and so for example we have

n−k∑
i=0

(−1)iK(n− k, i, n+ 1, q) =
n−k∑
i=0

(−1)iK(n− k, i, n, q) + q
n−k−1∑

i=0

(−1)iK(n− k − 1, i, n, q).

Example 183. The Riordan arrays encountered so far have all been of an elementary nature.
The next example indicates that this is not always so. We make the simple change of 2n
for n in the third parameter in the previous example. We then find that

∑n−k
i=0 (−1)iK(n−

k, i, 2n, q) is the general term of the Riordan array(
1− 2x− q(2− q)x2

1 + qx
,

x

(1 + qx)2

)−1

.

For instance,
∑n−k

i=0 (−1)iK(n− k, i, 2n, 1) represents the general term of the Riordan array(
1

2

(
1

1− 4x
+

1√
1− 4x

)
,
1− 2x−

√
1− 4x

2x

)
while

∑n−k
i=0 (−1)iK(n− k, i, 2n, 2) represents the general term of(

1√
1− 8x

,
1− 4x−

√
1− 8x

2x

)
.
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The A-sequence for the first array above is (1 + x)2, so that we obtain

n−k∑
i=0

(−1)iK(n− k, i, 2(n+ 1), 1) =
n−k∑
i=0

(−1)iK(n− k, i, 2n, 1)

+2
n−k−1∑

i=0

(−1)iK(n− k − 1, i, 2n, 1)

+
n−k−2∑

i=0

(−1)iK(n− k − 2, i, 2n, 1)

while that of the second array is (1 + 2x)2 and so

n−k∑
i=0

(−1)iK(n− k, i, 2(n+ 1), 2) =
n−k∑
i=0

(−1)iK(n− k, i, 2n, 2)

+4
n−k−1∑

i=0

(−1)iK(n− k − 1, i, 2n, 2)

+4
n−k−2∑

i=0

(−1)iK(n− k − 2, i, 2n, 2).

We summarize these examples in the following table.

Table 1. Summary of Riordan arrays
Krawtchouk expression Riordan array g.f. for A-sequence

K(k, n− k, r, q)
((

1−x
1+(q−1)x

)r

, x(1 + (q − 1)x)
)

1+
√

1+4(q−1)x

2

(−1)n−kK(k, n− k, r, q)
((

1+x
1−(q−1)x

)r

, x(1− (q − 1)x)
)

1+
√

1−4(q−1)x

2

(−1)kK(n, k, k, q)
(

1
1−x

, x(1−qx)
1−x

)
1+x+

√
1+2x(1−2q)+x2

2

(−1)n−kK(n− k, n− k, k, q)
(

1
1−x

, x
1−qx

)
1 + qx

(−1)n−kK(n− k, n− k, k, q)
(

1
1+(q−1)x

, x(1 + qx)
)

1+
√

1+4qx
2

(−1)n−kK(n, n− k, k, q)
(

1
1+(q−1)x

, x(1+qx)
1+(q−1)x

)
1+(1−q)x+

√
1+2x(1+q)+(q−1)2x2

2

K(n, n− k,N, q)
(

(1−qx)N

1−(q−1)x
, x

1−(q−1)x

)
1 + (q − 1)x∑n−k

i=0 (−1)iK(n− k, i, n, q)
(

1
1−2x

, x
1−qx

)
1 + qx∑n−k

i=0 K(n− k, i, n, q)
(
1, x

1+qx

)
1− qx∑n−k

i=0 (−1)iK(n− k, i, 2n, q)
(

1−2x−q(2−q)x2

1+qx
, x

(1+qx)2

)−1

(1 + qx)2
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Chapter 10

On Integer-Sequence-Based
Constructions of Generalized Pascal
Triangles 1

10.1 Introduction

In this chapter, we look at two methods of using given integer sequences to construct gener-
alized Pascal matrices. In the first method, we look at the number triangle associated with
the square matrix BDB′, where B is the binomial matrix

(
n
k

)
and D is the diagonal matrix

defined by the given integer sequence. We study this construction in some depth, and char-
acterize the sequences related to the central coefficients of the resulting triangles in a special
case. We study the cases of the Fibonacci and Jacobsthal numbers in particular. The second
construction is defined in terms of a generalization of exp(M), where M is a sub-diagonal
matrix defined by the integer sequence in question. Our look at this construction is less
detailed. It is a measure of the ubiquity of the Narayana numbers that they arise in both
contexts.

The plan of the chapter is as follows. We begin with an introductory section, where
we define what we will understand as a generalized Pascal matrix, as well as looking briefly
at the binomial transform. The next section looks at the Narayana numbers, which will
be used in subsequent sections. The next preparatory section looks at the reversion of the
expressions x

1+αx+βx2 and x(1−ax)
1−bx

, which are closely related to subsequent work. We then
introduce the first family of generalized Pascal triangles, and follow this by looking at those
elements of this family that correspond to the “power” sequences n→ rn, while the section
after that takes the specific cases of the Fibonacci and Jacobsthal numbers. We close the
study of this family by looking at the generating functions of the columns of these triangles
in the general case.

The final sections briefly study an alternative construction based on a generalized matrix
exponential construction, as well as a generalized exponential Riordan array, and associated
generalized Stirling and Charlier arrays.

1This chapter reproduces and extends the content of the published article “P. Barry, On integer-sequence-
based constructions of generalized Pascal triangles, J. Integer Seq., 9 (2006), Art. 06.2.4.” [16].
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10.2 Preliminaries

Pascal’s triangle, with general term
(

n
k

)
, n, k ≥ 0, has fascinated mathematicians by its

wealth of properties since its discovery [77]. Viewed as an infinite lower-triangular matrix, it
is invertible, with an inverse whose general term is given by (−1)n−k

(
n
k

)
. Invertibility follows

from the fact that
(

n
n

)
= 1. It is centrally symmetric, since by definition,

(
n
k

)
=
(

n
n−k

)
. All

the terms of this matrix are integers.
By a generalized Pascal triangle we shall understand a lower-triangular infinite integer

matrix T = T (n, k) with T (n, 0) = T (n, n) = 1 and T (n, k) = T (n, n − k). We shall index
all matrices in this paper beginning at the (0, 0)-th element.

We shall use transformations that operate on integer sequences during the course of this
chapter. An example of such a transformation that is widely used in the study of integer
sequences is the so-called binomial transform [230], which associates to the sequence with
general term an the sequence with general term bn where

bn =
n∑

k=0

(
n

k

)
ak. (10.1)

If we consider the sequence with general term an to be the vector a = (a0, a1, . . .) then we
obtain the binomial transform of the sequence by multiplying this (infinite) vector by the
lower-triangle matrix B whose (n, k)-th element is equal to

(
n
k

)
:

B =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .


This transformation is invertible, with

an =
n∑

k=0

(
n

k

)
(−1)n−kbk. (10.2)

We note that B corresponds to Pascal’s triangle.

10.3 The Narayana Triangle

Example 184. An example of a well-known centrally symmetric invertible triangle that is
not an element of the Riordan group is the Narayana triangle [212, 214] Ñ, defined by

Ñ(n, k) =
1

k + 1

(
n

k

)(
n+ 1

k

)
=

1

n+ 1

(
n+ 1

k + 1

)(
n+ 1

k

)
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for n, k ≥ 0. Other expressions for Ñ(n, k) are given by

Ñ(n, k) =

(
n

k

)2

−
(

n

k + 1

)(
n

k − 1

)
=

(
n+ 1

k + 1

)(
n

k

)
−
(
n+ 1

k

)(
n

k + 1

)
.

This triangle (see A001263) begins

Ñ =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .


We shall characterize this matrix in terms of a generalized matrix exponential construction
later in this chapter. Note that in the literature, it is often the triangle Ñ(n − 1, k −
1) = 1

n

(
n
k

)(
n

k−1

)
that is referred to as the Narayana triangle. Alternatively, the triangle

Ñ(n − 1, k) = 1
k+1

(
n−1

k

)(
n
k

)
is referred to as the Narayana triangle. We shall denote this

latter triangle by N. We then have

N =



1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
...

...
...

...
...

...
. . .


with general term

N(n, k) =
1

k + 1

(
n− 1

k

)(
n

k

)
.

Note that for n, k ≥ 1, N(n, k) = 1
n

(
n
k

)(
n

k+1

)
. We have, for instance,

Ñ(n− 1, k − 1) =
1

n

(
n

k

)(
n

k − 1

)
=

(
n

k

)2

−
(
n− 1

k

)(
n+ 1

k

)
=

(
n

k

)(
n− 1

k − 1

)
−
(

n

k − 1

)(
n− 1

k

)
.

The last expression represents a 2× 2 determinant of adjacent elements in Pascal’s triangle.
The row sums of the Narayana triangle N give the Catalan numbers Cn =

(
2n
n

)
/(n + 1),

A000108.
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As we see from above, the Narayana triangle has several forms. Two principal ones can
be distinguished by both their Deleham representation as well as their continued fraction
generating functions. Thus N as defined above is the Deleham array

[1, 0, 1, 0, 1, 0, 1, . . .] ∆ [0, 1, 0, 1, 0, 1, . . .]

with generating function
1

1−
x

1−
xy

1−
x

1−
xy

1− · · ·
(corresponding to the series reversion of x(1−xy)

1−(y−1)x
). This generating function can also be

expressed as
1− (1− y)x−

√
1− 2x(1 + y) + (1− y)2x2

2xy
.

We have

N(n, k) = 0n+k +
1

n+ 0n

(
n

k

)(
n

k + 1

)
.

This triangle is A131198.

The Narayana triangle ˜̃N 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 6 6 1 0 . . .
0 1 10 20 10 1 . . .
...

...
...

...
...

...
. . .


with generating function

1 + (1− y)x−
√

1− 2x(1 + y) + (1− y)2x2

2x

is the Deleham array

[0, 1, 0, 1, 0, 1, . . .] ∆ [1, 0, 1, 0, 1, 0, 1, . . .]
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with generating function
1

1−
xy

1−
x

1−
xy

1−
x

1−
xy

1− · · ·
or

1

1− xy −
x2y

1− x(1 + y)−
x2y

1− x(1 + y)−
x2y

1− · · ·

. (10.3)

It has general term
˜̃N = 0n+k +

1

n+ 0nk

(
n

k

)(
n

k − 1

)
which corresponds to

[xn+1]Rev
x(1− x)

1− (1− y)x
.

The Narayana triangle Ñ

Ñ =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .


with general term

Ñ(n, k) =
1

n+ 1

(
n+ 1

k

)(
n+ 1

k + 1

)
= [xn+1yk]Rev

x

1 + (1 + y)x+ yx2

and generating function

1− x(1 + y)−
√

1− 2x(1 + y) + (1− y)2x2

2x2y

is then given by
[0, 1, 0, 1, 0, 1, . . .] ∆(1) [1, 0, 1, 0, 1, 0, 1, . . .].
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This is A090181. We can express its generating function as a continued fraction as

1

1− xy −
x

1−
xy

1−
x

1− · · ·

and as
1

1− x(1 + y)−
x2y

1− x(1 + y)−
x2y

1− x(1 + y)−
x2y

1− · · ·

. (10.4)

An interesting identity is the following, [50, 56]:

n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
xk =

bn−1
2
c∑

k=0

(
n− 1

2k

)
Ckx

k(1 + x)n−2k−1 (10.5)

where Cn is the n-th Catalan number. This identity can be interpreted in terms of Motzkin
paths, where by a Motzkin path of length n we mean a lattice path in Z2 between (0, 0) and
(n, 0) consisting of up-steps (1, 1), down-steps (1,−1) and horizontal steps (1, 0) which never
go below the x-axis. Similarly, a Dyck path of length 2n is a lattice path in Z2 between
(0, 0) and (2n, 0) consisting of up-paths (1, 1) and down-steps (1,−1) which never go below
the x-axis. Finally, a (large) Schröder path of length n is a lattice path from (0, 0) to (n, n)
containing no points above the line y = x, and composed only of steps (0, 1), (1, 0) and (1, 1).

For instance, the number of Schröder paths from (0, 0) to (n, n) is given by the large
Schröder numbers 1, 2, 6, 22, 90, . . . which correspond to z = 2 for the Narayana polynomials
[212, 214]

Nn(z) =
n∑

k=1

1

n

(
n

k − 1

)(
n

k

)
zk.

10.4 On the series reversion of x
1+αx+βx2 and x(1−ax)

1−bx

A number of the properties of the triangles that we will study are related to the special cases
of the series reversions of x

1+αx+βx2 and x(1−ax)
1−bx

where b = a − 1, α = a + 1 and β = b + 1.
We shall develop results relating to these reversions in full generality in this section and
specialize later at the appropriate places.

Solving the equation
y

1 + αy + βy2
= x
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yields

y1 =
1− αx−

√
1− 2αx+ (α2 − 4β)x2

2βx

while solving the equation
y(1− ay)

1− by
= x

leads to

y2 =
1 + bx−

√
(1 + bx)2 − 4ax

2a
.

We shall occasionally use the notation y1(α, β) and y2(a, b) where relevant for these functions.

Note for instance that y2(1,0)
x

= 1−
√

1−4x
2x

is the generating function of the Catalan numbers.

Proposition 185. Let α = a + 1, β = b + 1, and assume that b = a − 1 (and hence,
β = α− 1). Then

y2

x
− y1 = 1.

Proof. Straight-forward calculation.

Note that 1 is the generating function of 0n = 1, 0, 0, 0, . . ..

Example 186. Consider the case a = 2, b = 1. Let α = 3 and β = 2, so we are considering
x

1+3x+2x2 and x(1−2x)
1−x

. We obtain

y1(3, 2) =
1− 3x−

√
1− 6x+ x2

4x
y2(2, 1)

x
=

1 + x−
√

1− 6x+ x2

4x
y2(2, 1)

x
− y1(3, 2) = 1.

Thus y1(3, 2) is the generating function for 0, 1, 3, 11, 45, 197, 903, 4279, . . . while y2(2,1)
x

is
the generating function for 1, 1, 3, 11, 45, 197, 903, 4279, . . .. These are the little Schröder
numbers A001003.

Example 187. We consider the case a = 1, b = 1 − r, that is, the case of x(1−x)
1−(1−r)x

. We
obtain

y2(1, 1− r)

x
=

1− (r − 1)x−
√

(1 + (1− r)x)2 − 4x

2x

=
1− (r − 1)x−

√
1− 2(r + 1)x+ (r − 1)2x2

2x
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Example 188. We calculate the expression y2(1,1−r)
rx

− 1−r
r

. We get

y2(1, 1− r)

rx
− 1− r

r
=

1− (r − 1)x−
√

1− 2(r + 1)x+ (r − 1)2x2

2rx
+

2(r − 1)x

2rx

=
1 + (r − 1)x−

√
1− 2(r + 1)x+ (r − 1)2x2

2rx

=
y2(r, r − 1)

x
.

In other words,
y2(r, r − 1)

x
=
y2(1, 1− r)

rx
− 1− r

r
.

A well-known example of this is the case of the large Schröder numbers with generating func-
tion 1−x−

√
1−6x+x2

2x
and the little Schröder numbers with generating function 1+x−

√
1−6x+x2

4x
.

In this case, r = 2. Generalizations of this “pairing” for r > 2 will be studied in a later
section. For r = 1 both sequences coincide with the Catalan numbers Cn.

Proposition 189. The binomial transform of

y1

x
=

1− αx−
√

1− 2αx+ (α2 − 4β)x2

2βx2

is
1− (α+ 1)x−

√
1− 2(α+ 1)x+ ((α+ 1)2 − 4β)x2

2βx2
.

Proof. The binomial transform of y1

x
is

1

1− x

{
1− αx

1− x
−

√
1− 2αx

1− x
+ (α2 − 4β)

x2

(1− x)2

}
/(2β

x2

(1− x)2
)

= (1− x− αx−
√

(1− x)2 − 2αx(1− x) + (α2 − 4β)x2)/(2βx2)

= (1− (α+ 1)x−
√

1− 2(α+ 1)x+ (α2 + 2α+ 1− 4β2)x2)/(2βx2)

=
1− (α+ 1)x−

√
1− 2(α+ 1)x+ ((α+ 1)2 − 4β)x2

2βx2
.

In other words, the binomial transform of [xn+1]Rev x
1+ax+bx2 is given by [xn+1]Rev x

1+(a+1)x+bx2 .

Example 190. The binomial transform of 1, 3, 11, 45, 197, 903, . . . with generating function
1−3x−

√
1−6x+x2

4x2 is 1, 4, 18, 88, 456, 2464, 13736, . . ., A068764, with generating function
1−4x−

√
1−8x+8x2

4x2 . Thus the binomial transform links the series reversion of x/(1 + 3x + 2x2)
to that of x/(1 + 4x+ 2x2). We note that this can be interpreted in the context of Motzkin
paths as an incrementing of the colours available for the H(1, 0) steps.
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We now look at the general terms of the sequences generated by y1 and y2. We use the
technique of Lagrangian inversion for this. We begin with y1. In order to avoid notational
overload, we use a and b rather than α and β, hoping that confusion won’t arise.

Since for y1 we have y = x(1 + ay + by2) we can apply Lagrangian inversion to get the
following expression for the general term of the sequence generated by y1:

[tn]y1 =
1

n
[tn−1](1 + at+ bt2)n.

At this point we remark that there are many ways to develop the trinomial expression, and
the subsequent binomial expressions. Setting these different expressions equal for different
combinations of a and b and different relations between a and b can lead to many interesting
combinatorial identities, many of which can be interpreted in terms of Motzkin paths. We
shall confine ourselves to the derivation of two particular expressions. First of all,

[tn]y1 =
1

n
[tn−1](1 + at+ bt2)n

=
1

n
[tn−1]

n∑
k=0

(
n

k

)
(at+ bt2)k

=
1

n
[tn−1]

n∑
k=0

(
n

k

)
tk

k∑
j=0

(
k

j

)
ajbk−jtk−j

=
1

n
[tn−1]

n∑
k=0

k∑
j=0

(
n

k

)(
k

j

)
ajbk−jt2k−j

=
1

n

n∑
k=0

(
n

k

)(
k

n− k − 1

)
a2k−n+1bn−k−1

=
1

n

n∑
k=0

(
n

k

)(
k

2k − n+ 1

)
a2k−n+1bn−k−1.

Of the many other possible expressions for [tn]y1, we cite the following examples:

[tn]y1 =
1

n

n∑
k=0

(
n

k

)(
k + 1

2k − n− 1

)
a2k−n+1bn−k−1

=
1

n

n∑
k=0

(
n

k

)(
k

2k − n+ 1

)
bn−k−1a2k−n+1

=
1

n

n∑
k=0

(
n

k

)(
n− k

k − 1

)
bk−1an−2k+1

=
1

n

n∑
k=0

(
n

k + 1

)(
n− k − 1

k + 1

)
bkan−2k.

We shall be interested at a later stage in generalized Catalan sequences. The following
interpretation of [tn]y1 is therefore of interest.
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Proposition 191.

[tn]y1 =

bn−1
2
c∑

k=0

(
n− 1

2k

)
Cka

n−2k−1bk.

Proof.

[tn]y1 =
1

n
[tn−1](1 + at+ bt2)n

=
1

n
[tn−1](at+ (1 + bt2))n

=
1

n
[tn−1]

n∑
j=0

(
n

j

)
ajtj(1 + bt2)n−j

=
1

n
[tn−1]

n∑
j=0

n−j∑
k=0

(
n

j

)(
n− j

k

)
ajbkt2k+j

=
1

n

∑
k=0

(
n

n− 2k − 1

)(
2k + 1

k

)
an−2k−1bk

=
1

n

n∑
k=0

(
n

2k + 1

)(
2k + 1

k

)
an−2k−1bk

=
1

n

∑
k=0

n

2k + 1

(
n− 1

n− 2k − 1

)
2k + 1

k + 1

(
2k

k

)
an−2k−1bk

=
∑
k=0

(
n− 1

2k

)
Cka

n−2k−1bk.

Corollary 192.

Cn = 0n +

bn−1
2
c∑

k=0

(
n− 1

2k

)
Ck2

n−2k−1

Cn+1 =

bn
2
c∑

k=0

(
n

2k

)
Ck2

n−2k.

Proof. The sequence Cn − 0n, or 0, 1, 2, 5, 14, . . ., has generating function

1−
√

1− 4x

2x
− 1 =

1− 2x−
√

1− 4x

2x

which corresponds to y1(2, 1).

This is the formula of Touchard [220], with adjustment for the first term.
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Corollary 193.

[tn]y1(r + 1, r) =
n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
rk.

Proof. By the proposition, we have

[tn]y1(r + 1, r) =

bn−1
2
c∑

k=0

(
n− 1

2k

)
Ck(r + 1)n−2k−1rk.

The result then follows from identity (10.5).

This therefore establishes a link to the Narayana numbers.

Corollary 194.

[xn+1]Rev
x

1 + ax+ bx2
=

n∑
k=0

(
n

2k

)
Cka

n−2kbk.

We note that the generating function of [xn+1]Rev x
1+ax+bx2 has the following simple continued

fraction expansion :

1

1− ax−
bx2

1− ax−
bx2

1− ax−
bx2

1− ax−
bx2

1− ax− · · ·

We note that this indicates that [xn+1]Rev x
1+ax+bx2 is the a-th binomial transform of [xn+1]Rev x

1+bx2 .
More generally, we note that the generating function of the reversion of

x(1 + cx)

1 + ax+ bx2

is given by

x

1− (a− c)x−
(b− ac+ c2)x2

1− (a− 2c)−
(b− ac+ c2)x2

1− (a− 2c)−
(b− ac+ c2)x2

1− · · ·

(10.6)

Corollary 195. Let sn(a, b) be the sequence with general term

sn(a, b) =

bn
2
c∑

k=0

(
n

2k

)
Cka

n−2kbk.
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Then the binomial transform of this sequence is the sequence sn(a+ 1, b) with general term

sn(a+ 1, b) =

bn
2
c∑

k=0

(
n

2k

)
Ck(a+ 1)n−2kbk.

Proof. This is a re-interpretation of the results of Proposition 189.

We now examine the case of [tn]y2. In this case, we have

y = x
1− by

1− ay

so we can apply Lagrangian inversion. Again, various expressions arise depending on the
order of expansion of the binomial expressions involved. For instance,

[tn]y2 =
1

n
[tn−1]

(
1− bt

1− at

)n

=
1

n
[tn−1](1− bt)n(1− at)−n

=
1

n
[tn−1]

n∑
k=0

∑
j=0

(
n

k

)(
n+ j − 1

j

)
aj(−b)ktk+j

=
1

n

n∑
k=0

(
n

k

)(
2n− k − 2

n− 1

)
an−k−1(−b)k.

A more interesting development is given by the following.

[tn]
y2

x
= [tn+1]y2

=
1

n+ 1
[tn](1− bt)n+1(1− at)−(n+1)

=
1

n+ 1
[tn]

n+1∑
k=0

(
n+ 1

k

)
(−bt)n+1−k

∑
j=0

(
−n− 1

j

)
(−at)j

=
1

n+ 1
[tn]

n+1∑
k=0

∑
j=0

(
n+ 1

k

)(
n+ j

j

)
(−b)n−k+1ajtn+1−k+j

=
1

n+ 1

∑
j=0

(
n+ 1

j + 1

)(
n+ j

j

)
(−b)n−jaj

=
n∑

j=0

1

j + 1

(
n

j

)(
n+ j

j

)
aj(−b)n−j.

An alternative expression obtained by developing for k above is given by

[tn]
y2

x
=

n+1∑
k=0

1

n− k + 1

(
n

k

)(
n+ k − 1

k − 1

)
ak−1(−b)n−k+1.
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Note that the underlying matrix with general element 1
k+1

(
n
k

)(
n+k

k

)
is A088617, whose general

element gives the number of Schröder paths from (0, 0) to (2n, 0), having k U(1, 1) steps.
Recognizing that

∑n
j=0

1
j+1

(
n
j

)(
n+j

j

)
aj(−b)n−j is a convolution, we can also write

[tn]
y2

x
=

n∑
k=0

1

k + 1

(
n

k

)(
n+ k

k

)
ak(−b)n−k

=
n∑

k=0

1

n− k + 1

(
n

n− k

)(
2n− k

n− k

)
an−k(−b)k

=
n∑

k=0

1

n− k + 1

(
n

k

)(
2n− k

n

)
an−k(−b)k

=
n∑

k=0

1

n− k + 1

(
2n− k

k

)(
2n− k − k

n− k

)
an−k(−b)k

=
n∑

k=0

(
2n− k

k

)
1

n− k + 1

(
2n− 2k

n− k

)
an−k(−b)k

=
n∑

k=0

(
2n− k

k

)
Cn−ka

n−k(−b)k

=
n∑

k=0

(
n+ k

2k

)
Cka

k(−b)n−k.

Again we note that the matrix with general term
(

n
k

)(
2n−k

k

)
1

n−k+1
=
(
2n−k

k

)
Cn−k is A060693,

whose general term counts the number of Schröder paths from (0, 0) to (2n, 0), having k
peaks. This matrix can be expressed as

[1, 1, 1, 1, . . .] ∆ [1, 0, 1, 0, . . .].

This matrix is closely linked to the Narayana numbers. The reverse of this triangle, with
general term

(
n+k
2k

)
Ck is A088617. Gathering these results leads to the next proposition.

Proposition 196. [tn]y2(a,b)
x

=[tn+1]Revx(1−ax)
1−bx

is given by the equivalent expressions

n∑
k=0

1

k + 1

(
n

k

)(
n+ k

k

)
ak(−b)n−k

=
1

n+ 1

n∑
k=0

(
n+ 1

k

)(
2n− k

n

)
an−k(−b)k

=
n∑

k=0

1

n− k + 1

(
n

k

)(
2n− k

n

)
an−k(−b)k

=
n∑

k=0

(
n+ k

2k

)
Cka

k(−b)n−k

=
n∑

k=0

(
2n− k

k

)
Cn−ka

n−k(−b)k.
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A further equivalent expression is closely linked to the Narayana numbers. We have

[xn+1]Rev
x(1− ax)

1− bx
=

n∑
k=0

N(n, k)ak(a− b)n−k.

Further expressions include

[xn+1]Rev
x(1− ax)

1− bx
=

1

n+ 1

n∑
k=0

(
n− 1

n− k

)(
n+ k

k

)
(a− b)kbn−k

=
1

n+ 1

n∑
k=0

(
n− 1

k

)(
2n− k

n− k

)
(a− b)n−kbk.

The generating function of this sequence can in fact be realized as the following continued
fraction :

1

1−
(a− b)x

1−
ax

1−
(a− b)x

1−
ax

1− · · ·

.

We summarize some of these results in Table 1, where Cn = 1
n+1

(
2n
n

)
, and P (x) =

1 − 2(r + 1)x + (r − 1)2x2, and N(n, k) = 1
n

(
n
k

)(
n

k+1

)
. We use the terms “Little sequence”

and “large sequence” in analogy with the Schröder numbers. In [203] we note that the
terms “Little Schröder”, “Big Schröder” and “Bigger Schröder” are used. For instance, the
numbers 1, 3, 11, 45, . . . appear there as the “Bigger Schröder” numbers.

Table 1. Summary of section results
Little sequence, sn Large sequence, Sn Larger sequence sn − 0n

e.g. 1, 1, 3, 11, 45, . . . e.g. 1, 2, 6, 22, 90, . . . e.g. 0, 1, 3, 11, 45, . . .
x(1−rx)

1−(r−1)x
x(1−x)

1−(1−r)x
x

1+(r+1)x+rx2

1+(r−1)x−
√

P (x)

2rx

1−(r−1)x−
√

P (x)

2x

1−(r+1)x−
√

P (x)

2rx

a0 = 1, an =
∑n

k=0N(n, k)rk a0 = 1, an = 1
n

∑n
k=0

(
n
k

)(
n

k−1

)
rk

∑n−1
k=0 N(n, k)rk∑n

k=0

(
n+k
2k

)
Ckr

k(1− r)n−k
∑n

k=0

(
n+k
2k

)
Ck(r − 1)n−k

∑
k=0

(
n−1
2k

)
Ck(r + 1)n−2k−1rk∑n

k=0

(
2n−k

k

)
Cn−kr

n−k(1− r)k
∑n

k=0

(
2n−k

k

)
Cn−k(r − 1)k -

Table 2. Little and Large sequences in OEIS
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r sn Sn Triangle
0 A000012 A000007
1 A000108 A000180 A007318
2 A001003 A006318 A008288
3 A007564 A047891 A081577
4 A059231 A082298 A081578
5 A078009 A082301 A081579
6 A078018 A082302 A081580
7 A081178 A082305 A143679
8 A082147 A082366 A143681
9 A082181 A082367 A143683
10 A082148 A143749 A143684

Note that by Example 188 we can write

sn =
1

r
Sn +

(r − 1)0n

r
.

Also we have

Sn = rn
2F1

(
−n,−n+ 1; 2;

1

r

)
with generating function (see Example 25)

g(x; r) =
1

1− rx

1− x

1− rx

1− x

1− rx

1− . . .

or

g(x, r) =
1

1− rx−
rx2

1− x(r + 1)−
rx2

1− x(r + 1)−
rx2

1− · · ·

(10.7)

and

sn+1 = rn
2F1

(
−n,−n− 1; 2;

1

r

)
.

We also note that the Hankel transform of both sn = sn(r) and Sn = Sn(r) is given by r(
n+1

2 ).
We observe that the coefficient array associated with the sequence sn(r) is in fact the
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Riordan array
(

1
1+x

, x
(1+x)(1+rx)

)−1

. The production array of this matrix is given by

1 1 0 0 0 0 . . .
r r + 1 1 0 0 0 . . .
0 r r + 1 1 0 0 . . .
0 0 r r + 1 1 0 . . .
0 0 0 r r + 1 r . . .
0 0 0 0 r r + 1 . . .
...

...
...

...
...

...
. . .


which defines the sequence of orthogonal polynomials associated to this sequence.
In terms of moment representation, we find that

sn(r) =
1

2rπ

∫ −1+2
√

r−r

−1−2
√

r−r

xn

√
−x2 − 2x(1 + r)− (1− r)2

x
dx+

r − 1

r
0n.

Looking at the sequences S∗n(r), where

S∗n(r) =
n−1∑
k=0

(
n+ k − 1

2k

)
Ck(r − 1)n−k−1 = [xn]Rev

(
x(1− x)

1 + (r − 1)x

)
,

we obtain the following proposition :

Proposition 197. The Hankel transform H∗
n(r) of S∗n(r) is given by

H∗
n(r) =

1− rn

r − 1
r(

n
2).

In particular, H∗
n+1 is equal to the number of normalized polynomials of degree exactly r in

Fr[x, y] [34].

We note finally that

(r − 1)n
2F1(−n, n+ 3; 2;− 1

r − 1
) =

n∑
k=0

1

n+ 1

(
n+ 1

k

)(
n+ 1

k + 1

)
rk

=
n∑

k=0

Ñ(n, k)rk

= [xn+1]Rev
x

1 + (r + 1)x+ rx2

while

(r − 1)n
2F1(−n, n+ 2; 1;− 1

r − 1
) =

n∑
k=0

(
n

k

)(
n+ 1

k + 1

)
rk.

These latter sequences have e.g.f.

e(r+1)x(I0(2
√
rx) + I1(2

√
rx)/

√
r).
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The sequence with e.g.f. I0(2
√
rx) + I1(2

√
rx)/

√
r has general term

(
n
bn

2
c

)
rb

n
2
c and hence we

have

(r − 1)n
2F1

(
−n, n+ 2; 1;− 1

r − 1

)
=

n∑
k=0

(
n

k

)(
n+ 1

k + 1

)
rk

=
n∑

k=0

(n− k + 1)Ñ(n, k)rk

=
n∑

k=0

(
n

k

)(
k

bk
2
c

)
rb

k
2
c(r + 1)n−k.

The triangle with general term
(

n
k

)(
n+1
k+1

)
is A103371.

10.5 Introducing the family of centrally symmetric in-

vertible triangles

The motivation for the construction that follows comes from the following easily established
proposition.

Proposition 198. (
n

k

)
=

min(k,n−k)∑
j=0

(
k

j

)(
n− k

j

)
=

∞∑
j=0

(
k

j

)(
n− k

j

)
.

Proof. We consider identity 5.23 of [106]:(
r + s

r − p+ q

)
=
∑

j

(
r

p+ j

)(
s

q + j

)
itself a consequence of Vandermonde’s convolution identity. Setting r = k, s = n − k,
p = q = 0, we obtain (

n

k

)
=
∑

j

(
k

j

)(
n− k

j

)
.

Now let an represent a sequence of integers with a0 = 1. We define an infinite array of
numbers for n, k ≥ 0 by

T (n, k) =

min(k,n−k)∑
j=0

(
k

j

)(
n− k

j

)
aj.

and call it the triangle associated with the sequence an by this construction. That it is a
number triangle follows from the next proposition.
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Proposition 199. The matrix with general term T (n, k) is an integer-valued centrally sym-
metric invertible lower-triangular matrix.

Proof. All elements in the sum are integers, hence T (n, k) is an integer for all n, k ≥ 0.
T (n, k) = 0 for k > n since then n− k < 0 and hence the sum is 0. We have

T (n, n− k) =

min(n−k,n−(n−k))∑
k=0

(
n− k

j

)(
n− (n− k)

j

)
aj

=

min(n−k,k)∑
k=0

(
n− k

j

)(
k

j

)
aj.

It is clear that Pascal’s triangle corresponds to the case where an is the sequence 1, 1, 1, . . ..
Occasionally we shall use the above construction on sequences an for which a0 = 0. In

this case we still have a centrally symmetric triangle, but it is no longer invertible, since for
example T (0, 0) = 0 in this case.
By an abuse of notation, we shall often use T (n, k; an) to denote the triangle associated to
the sequence an by the above construction, when explicit mention of an is required.
The associated square symmetric matrix with general term

Tsq(n, k) =
n∑

j=0

(
k

j

)(
n

j

)
aj

is easy to describe. We let D = D(an) = diag(a0, a1, a2, . . .). Then

Tsq = BDB′

is the square symmetric (infinite) matrix associated to our construction. Note that when
an = 1 for all n, we get the square Binomial or Pascal matrix

(
n+k

k

)
.

Among the attributes of the triangles that we shall construct that interest us, the family of
central sequences (sequences associated to T (2n, n) and its close relatives) will be paramount.
The central binomial coefficients

(
2n
n

)
, A000984, play an important role in combinatorics. We

begin our examination of the generalized triangles by characterizing their ‘central coefficients’
T (2n, n). We obtain

T (2n, n) =
2n−n∑
j=0

(
2n− n

j

)(
n

j

)
aj

=
n∑

j=0

(
n

j

)2

aj.
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For the case of Pascal’s triangle with an given by 1, 1, 1, . . . we recognize the identity
(
2n
n

)
=∑n

j=0

(
n
j

)2
. In like fashion, we can characterize T (2n+ 1, n), for instance.

T (2n+ 1, n) =
2n+1−n∑

j=0

(
2n+ 1− n

j

)(
n

j

)
aj

=
n+1∑
j=0

(
n+ 1

j

)(
n

j

)
aj

which generalizes the identity
(
2n+1

n

)
=
∑n+1

j=0

(
n+1

j

)(
n
j

)
. This is A001700. We also have

T (2n− 1, n− 1) =
2n−1−n+1∑

j=0

(
2n− 1− n+ 1

j

)(
n− 1

j

)
aj

=
n∑

j=0

(
n− 1

j

)(
n

j

)
aj.

This generalizes the equation
(
2n−1
n−1

)
+ 0n =

∑n
j=0

(
n−1

j

)(
n
j

)
. See A088218.

In order to generalize the Catalan numbers Cn, A000108, in our context, we note that
Cn =

(
2n
n

)
/(n+ 1) has the alternative representation

Cn =

(
2n

n

)
−
(

2n

n− 1

)
=

(
2n

n

)
−
(

2n

n+ 1

)
.

This motivates us to look at T (2n, n)− T (2n, n− 1) = T (2n, n)− T (2n, n+ 1). We obtain

T (2n, n)− T (2n, n− 1) =
n∑

j=0

(
n

j

)2

aj −
2n−n+1∑

j=0

(
n− 1

j

)(
2n− n+ 1

j

)
aj

=
n∑

j=0

(
n

j

)2

aj −
n+1∑
j=0

(
n− 1

j

)(
n+ 1

j

)
aj

= δn,0an +
n∑

j=0

(

(
n

j

)2

−
(
n− 1

j

)(
n+ 1

j

)
)aj

= δn,0a0 +
n∑

j=0

Ñ(n− 1, j − 1)aj

where we use the formalism
(

n−1
n+1

)
= −1, for n = 0, and

(
n−1
n+1

)
= 0 for n > 0. We assume that

Ñ(n,−1) = 0 and Ñ(−1, k) =
(

1
k

)
−
(

0
k

)
in the above. For instance, in the case of Pascal’s

triangle, where an = 1 for all n, we retrieve the Catalan numbers. We have also established
a link between these generalized Catalan numbers and the Narayana numbers. We shall use
the notation

c(n; a(n)) = T (2n, n)− T (2n, n− 1) = T (2n, n)− T (2n, n+ 1)

for this sequence, which we regard as a sequence of generalized Catalan numbers.
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Example 200. We first look at the case an = 2n. Thus

T (n, k) =
∑
j=0

(
k

j

)(
n− k

j

)
2j

with matrix representation 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 5 5 1 0 0 . . .
1 7 13 7 1 0 . . .
1 9 25 25 9 1 . . .
...

...
...

...
...

...
. . .


which is the well-known Delannoy number triangle A008288. We have

T (n, k) =
k∑

j=0

(
k

j

)(
n− j

k

)
.

We shall generalize this identity later in this chapter.
As a Riordan array, this is given by(

1

1− x
,
x(1 + x)

1− x

)
.

Anticipating the general case, we examine the row sums of this triangle, given by

n∑
k=0

∑
j=0

(
k

j

)(
n− k

j

)
2j.

Using the formalism of the Riordan group, we see that this sum has generating function
given by

1
1−x

1− x(1+x)
1−x

=
1

1− 2x− x2
.

In other words, the row sums in this case are the numbers Pell(n+ 1), A000129, [245]. We
look at the inverse binomial transform of these numbers, which has generating function

1

1 + x

1

1− 2 x
1+x

− x2

(1+x)2

=
1 + x

1− 2x2
.

This is the generating function of the sequence 1, 1, 2, 2, 4, 4, . . ., A016116, which is the
doubled sequence of an = 2n.
Another way to see this result is to observe that we have the factorization(

1

1− x
,
x(1 + x)

1− x

)
=

(
1

1− x
,

x

1− x

)(
1,
x(1 + 2x)

1 + x

)
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where ( 1
1−x

, x
1−x

) represents the binomial transform. The row sums of the Riordan array

(1, x(1+2x)
1+x

) are 1, 1, 2, 2, 4, 4, . . ..
For this triangle, the central numbers T (2n, n) are the well-known central Delannoy num-
bers 1, 3, 13, 63, . . . or A001850, with ordinary generating function 1√

1−6x+x2 and exponential

generating function e3xI0(2
√

2x) where In is the n-th modified Bessel function of the first
kind [243]. They represent the coefficients of xn in the expansion of (1 + 3x + 2x2)n. We
have

T (2n, n; 2n) =
n∑

k=0

(
n

k

)2

2k =
n∑

k=0

(
n

k

)(
n+ k

k

)
.

The numbers T (2n + 1, n) in this case are A002002, with generating function ( 1−x√
1−6x+x2 −

1)/(2x) and exponential generating function e3x(I0(2
√

2x) +
√

2I1(2
√

2x)). We note that
T (2n− 1, n− 1) represents the coefficient of xn in ((1− x)/(1− 2x))n. It counts the number
of peaks in all Schröder paths from (0, 0) to (2n, 0).

The numbers T (2n, n)−T (2n, n−1) are 1, 2, 6, 22, 90, 394, 1806, . . . or the large Schröder

numbers. These are the series reversion of x(1−x)
1+x

. Thus the generating function of the

sequence 1
2
(T (2n, n; 2n)− T (2n, n− 1; 2n)) is

y2(1,−1) =
1− x−

√
1− 6x+ x2

2x
.

We remark that in [235], the author states that “The Schröder numbers bear the same
relation to the Delannoy numbers as the Catalan numbers do to the binomial coefficients.”
This note amplifies on this statement, defining generalized Catalan numbers for a family of
number triangles.

Example 201. We take the case an = (−1)n. Thus

T (n, k) =

min(k,n−k)∑
j=0

(
k

j

)(
n− k

j

)
(−1)j

with matrix representation 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
1 −1 −1 1 0 0 . . .
1 −2 −2 −2 1 0 . . .
1 −3 −2 −2 −3 1 . . .
...

...
...

...
...

...
. . .


.

As a Riordan array, this is given by(
1

1− x
,
x(1− 2x)

1− x

)
.
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Again, we look at the row sums of this triangle, given by

n∑
k=0

∑
j=0

(
k

j

)(
n− k

j

)
(−1)j.

Looking at generating functions, we see that this sum has generating function given by

1
1−x

1− x(1−2x)
1−x

=
1

1− 2x+ 2x2
.

In other words, the row sums in this case are the numbers 1, 2, 2, 0,−4,−8,−8, . . . with ex-
ponential generating function exp(x)(sin(x)+cos(x)), A009545. Taking the inverse binomial
transform of these numbers, we get the generating function

1

1 + x

1

1− 2 x
1+x

+ 2 x2

(1+x)2

=
1 + x

1 + x2
.

This is the generating function of the sequence 1, 1,−1,−1, 1, 1, . . . which is the doubled
sequence of an = (−1)n.

Another way to see this result is to observe that we have the factorization(
1

1− x
,
x(1− 2x)

1− x

)
=

(
1

1− x
,

x

1− x

)(
1,
x(1− x)

1 + x

)
where

(
1

1−x
, x

1−x

)
represents the binomial transform. The row sums of the Riordan array(

1, x(1−x)
1+x

)
are 1, 1,−1,−1, 1, 1, . . . with general term (−1)(

n
2).

The central terms T (2n, n) turn out to be an ‘aerated’ signed version of
(
2n
n

)
given by

1, 0,−2, 0, 6, 0,−20, . . . with ordinary generating function 1√
1+4x2 and exponential generating

function I0(2
√
−1x). They represent the coefficients of xn in (1− x2)n. We have

T (2n, n; (−1)n) =
n∑

k=0

(
n

k

)2

(−1)k =
n∑

k=0

(
n

k

)(
n+ k

k

)
(−1)k2n−k.

The terms T (2n+ 1, n) turn out to be a signed version of
(

n
bn/2c

)
, namely

1,−1,−2, 3, 6,−10,−20, 35, 70, . . .

with ordinary generating function ( 1+2x√
1+4x2 − 1)/(2x) and exponential generating function

I0(2
√
−1x) +

√
−1I1(2

√
−1x).

The generalized Catalan numbers T (2n, n)− T (2n, n− 1) are the numbers

1,−1, 0, 1, 0,−2, 0, 5, 0,−14, 0, . . .

with generating function y2(1, 2) = 1+2x−
√

1+4x2

2x
. This is the series reversion of x(1−x)

1−2x
.

We note that the sequence T (2(n+1), n)−T (2(n+1), n+1) is (−1)n/2Cn
2
(1+ (−1)n)/2

with exponential generating function I1(2
√
−1x)/(

√
−1x).
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10.6 A one-parameter sub-family of triangles

The above examples motivate us to look at the one-parameter subfamily given by the set of
triangles defined by the power sequences n→ rn, for r ∈ Z. The case r = 1 corresponds to
Pascal’s triangle, while the case r = 0 corresponds to the ‘partial summing’ triangle with 1s
on and below the diagonal.

Proposition 202. The matrix associated to the sequences n → rn, r ∈ Z, is given by the
Riordan array (

1

1− x
,
x(1 + (r − 1)x)

1− x

)
.

Proof. The general term T (n, k) of the above matrix is given by

T (n, k) = [xn](1 + (r − 1)x)kxk(1− x)−(k+1)

= [xn−k](1 + (r − 1)x)k(1− x)−(k+1)

= [xn−k]
k∑

j=0

(
k

j

)
(r − 1)jxj

∑
i=0

(
k + i

i

)
xi

= [xn−k]
k∑

j=0

∑
i=0

(
k

j

)(
k + i

i

)
(r − 1)jxi+j

=
k∑

j=0

(
k

j

)(
k + n− k − j

n− k − j

)
(r − 1)j

=
k∑

j=0

(
k

j

)(
n− j

k

)
(r − 1)j

=
k∑

j=0

(
k

j

)(
n− k

j

)
rj.

where the last equality is a consequence of identity (3.17) in [209].

Corollary 203. The row sums of the triangle defined by n→ rn are the binomial transforms
of the doubled sequence n→ 1, 1, r, r, r2, r2, . . ., i.e., n→ rb

n
2
c.

Proof. The row sums of
(

1
1−x

, x(1+(r−1)x)
1−x

)
are the binomial transform of the row sums of its

product with the inverse of the binomial matrix. This product is(
1

1 + x
,

x

1 + x

)(
1

1− x
,
x(1 + (r − 1)x)

1− x

)
=

(
1,
x(1 + rx)

1 + x

)
.

The row sums of this product have generating function given by

1

1− x(1+rx)
1+x

=
1 + x

1− rx2
.

This is the generating function of 1, 1, r, r, r2, r2 . . . as required.
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We note that the generating function for the row sums of the triangle corresponding to rn

is 1
1−2x−(r−1)x2 .

We now look at the term T (2n, n) for this subfamily.

Proposition 204. T (2n, n; rn) is the coefficient of xn in (1 + (r + 1)x+ rx2)n.

Proof. We have (1 + (r + 1)x+ rx2) = (1 + x)(1 + rx). Hence

[xn](1 + (r + 1)x+ rx2)n = [xn](1 + x)n(1 + rx)n

= [xn]
n∑

k=0

n∑
j=0

(
n

k

)(
n

j

)
rjxk+j

=
n∑

j=0

(
n

n− j

)(
n

j

)
rj

=
n∑

j=0

(
n

j

)2

rj.

Corollary 205. The generating function of T (2n, n; rn) is

1√
1− 2(r + 1)x+ (r − 1)2x2

.

Proof. Using Lagrangian inversion, we can show that

[xn](1 + ax+ bx2)n = [tn]
1√

1− 2at+ (a2 − 4b)t2

(see exercises 5.3 and 5.4 in [250]). Then

[xn](1 + (r + 1)x+ rx2)n = [tn]
1√

1− 2(r + 1)t+ ((r + 1)2 − 4r)t2

= [tn]
1√

1− 2(r + 1)t+ (r − 1)2t2

Corollary 206.

n∑
k=0

(
n

k

)2

rk =
n∑

k=0

(
n

2k

)(
2k

k

)
(r + 1)n−2krk =

n∑
k=0

(
n

k

)(
n− k

k

)
(r + 1)n−2krk.

Proof. This follows since the coefficient of xn in (1 + ax+ bx2)n is given by [171]

n∑
k=0

(
n

2k

)(
2k

k

)
an−2kbk =

n∑
k=0

(
n

k

)(
n− k

k

)
an−2kbk.

Hence each term is equal to T (2n, n; rn).
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We now look at the sequence T (2n− 1, n− 1).

Proposition 207. T (2n− 1, n− 1; rn) is the coefficient of xn in
(

1−(r−1)x
1−rx

)n

Proof. We have 1−(r−1)x
1−rx

= 1−rx+x
1−rx

= 1 + x
1−rx

. Hence

[xn]

(
1− (r − 1)x

1− rx

)n

= [xn]

(
1 +

x

1− rx

)n

= [xn]
n∑

k=0

n∑
k=0

(
n

k

)
xk
∑
j=0

(
k + j − 1

j

)
rjxj

=
∑
j=0

(
n

n− j

)(
n− 1

j

)
rj

=
∑
j=0

(
n

j

)(
n− 1

j

)
rj.

Corollary 208.

n∑
k=0

(
n

k

)(
n− 1

k

)
rk =

n∑
k=0

(
n

k

)(
n+ k − 1

k

)
(1− r)n−krk

=
n∑

k=0

(
n

k

)(
2n− k − 1

n− k

)
(1− r)krn−k.

Proof. The coefficient of xn in (1−ax
1−bx

)n is seen to be

n∑
k=0

(
n

k

)(
n+ k − 1

k

)
(−a)n−krk =

n∑
k=0

(
n

k

)(
2n− k − 1

n− k

)
(−a)krn−k.

Hence all three terms in the statement are equal to T (2n− 1, n− 1; rn).

We can generalize the results seen above for T (2n, n), T (2n+ 1, n), T (2n− 1, n− 1) and
T (2n, n)− T (2n, n− 1) as follows.

Proposition 209. Let T (n, k) =
∑n−k

k=0

(
k
j

)(
n−k

j

)
rj be the general term of the triangle asso-

ciated to the power sequence n→ rn.

1. The sequence T (2n, n) has ordinary generating function 1√
1−2(r+1)x+(r−1)2x2

, exponen-

tial generating function e(r+1)xI0(2
√
rx), and corresponds to the coefficients of xn in

(1 + (r + 1)x+ rx2)n.

2. The numbers T (2n+ 1, n) have generating function ( 1−(r−1)x√
1−2(r+1)x+(r−1)2x2

− 1)/(2x) and

exponential generating function e(r+1)x(I0(2
√
rx) +

√
rI1(2

√
rx)).

222



3. T (2n− 1, n− 1) represents the coefficient of xn in ((1− (r − 1)x)/(1− rx))n.

4. The generalized Catalan numbers c(n; rn) = T (2n, n) − T (2n, n − 1) associated to the

triangle have ordinary generating function
1−(r−1)x−

√
1−2(r+1)x+(r−1)2x2

2x
.

5. The sequence c(n+ 1; rn) has exponential generating function 1√
rx
e(r+1)xI1(2

√
rx).

6. The sequence nc(n; rn) =
∑n

k=0

(
n
k

)(
n+k
k+1

)
rn−k

r+1
has exponential generating function

1√
rx
e(r+1)xI1(2

√
r).

7. The sequence c(n; rn)− 0n is expressible as
∑bn−1

2
c

k=0

(
n−1
2k

)
Ck(r + 1)n−2k−1rk and counts

the number of Motzkin paths of length n in which the level steps have r+1 colours and
the up steps have r colours. It is the series reversion of x

1+(r+1)x+rx2 .

Pascal’s triangle can be generated by the well-know recurrence(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

The following proposition gives the corresponding recurrence for the case of the triangle
associated to the sequence n→ rn.

Proposition 210. Let T (n, k) =
∑n−k

k=0

(
k
j

)(
n−k

j

)
rj. Then

T (n, k) = T (n− 1, k − 1) + (r − 1)T (n− 2, k − 1) + T (n− 1, k).

Proof. The triangle in question has Riordan array representation(
1

1− x
,
x(1 + (r − 1)x)

1− x

)
.

Thus the bivariate generating function of this triangle is given by

F (x, y) =
1

1− x

1

1− y x(1+(r−1)x)
1−x

=
1

1− x− xy − (r − 1)x2y
.

In this simple case, it is possible to characterize the inverse of the triangle. We have

Proposition 211. The inverse of the triangle associated to the sequence n→ rn is given by
the Riordan array (1− u, u) where

u =

√
1 + 2(2r − 1)x+ x2 − x− 1

2(r − 1)
.
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Proof. Let (g∗, f̄) = ( 1
1−x

, x(1+(r−1)x)
1−x

)−1. Then

f̄(1 + (r − 1)f̄)

1− f̄
= x⇒ f̄ =

√
1 + 2(2r − 1)x+ x2 − x− 1

2(r − 1)
.

Since g∗ = 1
g◦f̄ = 1− f̄ we obtain the result.

Corollary 212. The row sums of the inverse of the triangle associated with n → rn are
1, 0, 0, 0, . . ..

Proof. The row sums of the inverse (1− u, u) have generating function given by 1−u
1−u

= 1. In
other words, the row sums of the inverse are 0n = 1, 0, 0, 0, . . ..

Other examples of these triangles are given by A081577, A081578, A081579, and A081580.

10.7 The Jacobsthal and the Fibonacci cases

We now look at the triangles generated by sequences whose elements can be expressed in
Binet form as a simple sum of powers. In the first example of this section, the powers are of
integers, while in the second case (Fibonacci numbers) we indicate that the formalism can
be extended to non-integers under the appropriate conditions.

Example 213. The Jacobsthal numbers J(n+1), A001045, have generating function 1
1−x−2x2

and general term J(n + 1) = 2.2n/3 + (−1)n/3. Using our previous examples, we see that
the triangle defined by J(n+ 1)

1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
1 3 3 1 0 0 0 . . .
1 4 8 4 1 0 0 . . .
1 5 16 16 5 1 0 . . .
1 6 27 42 27 6 1 . . .
...

...
...

...
...

...
...

. . .


or A114202, is the scaled sum of the Riordan arrays discussed above, given by

2

3

(
1

1− x
,
x(1 + x)

1− x

)
+

1

3

(
1

1− x
,
x(1− 2x)

1− x

)
.

In particular, the k-th column of the triangle has generating function

gk(x) =
xk

(1− x)k+1

(
2

3
(1 + x)k +

1

3
(1− 2x)k

)
=

xk

(1− x)k+1

k∑
j=0

(
k

j

)
1

3
(2 + (−2)j)xj.
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We recognize in the sequence 1
3
(2 + (−2)n) the inverse binomial transform of J(n+ 1).

Obviously, the inverse binomial transform of the row sums of the matrix are given by

2

3
2b

n
2
c +

1

3
(−1)b

n
2
c

or 1, 1, 1, 1, 3, 3, 5, 5, . . ., the doubled sequence of J(n+ 1).
The terms T (2n, n) for this triangle can be seen to have generating function 2

3
1√

1−6x+x2 +
1
3

1√
1+4x2 and exponential generating function 2

3
e3xI0(2

√
2x) + 1

3
I0(2

√
−1x).

The generalized Catalan numbers for this triangle are

1, 1, 4, 15, 60, 262, 1204, 5707, 27724, . . .

whose generating function is 3−
√

1+4x2−2
√

1−6x+x2

6x
.

To find the relationship between T (n, k) and its ‘previous’ elements, we proceed as follows,
where we write T (n, k) = T (n, k; J(n+ 1)) to indicate its dependence on J(n+ 1).

T (n, k; J(n+ 1)) =
∑
j=0

(
k

j

)(
n− k

j

)
(
2

3
2j +

1

3
(−1)j)

=
2

3

∑
j=0

(
k

j

)(
n− k

j

)
2j +

1

3

∑
j=0

(
k

j

)(
n− k

j

)
(−1)j

=
2

3
T (n, k; 2n) +

1

3
T (n, k; (−1)n)

=
2

3
(T (n− 1, k − 1; 2n) + T (n− 2, k − 1; 2n) + T (n− 1, k; 2n))

+
1

3
(T (n− 1, k − 1; (−1)n)− 2T (n− 2, k − 1; (−1)n) + T (n− 1, k; (−1)n))

=
2

3
T (n− 1, k − 1; 2n) +

1

3
T (n− 1, k − 1; (−1)n)

+
2

3
(T (n− 2, k − 1; 2n)− T (n− 2, k − 1; (−1)n))

+
2

3
T (n− 1, k; 2n) +

1

3
T (n− 1, k; (−1)n)

= T (n− 1, k − 1; J(n+ 1)) + 2T (n− 2, k − 1; J(n)) + T (n− 1, k; J(n+ 1)).

We see here the appearance of the non-invertible matrix based on J(n). This begins as

0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 . . .
0 2 2 0 0 0 0 . . .
0 3 5 3 0 0 0 . . .
0 4 9 9 4 0 0 . . .
0 5 14 21 14 5 0 . . .
...

...
...

...
...

...
...

. . .


.
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Example 214. We briefly look at the case of the Fibonacci sequence

F (n+ 1) =

((
1 +

√
5

2

)(
1 +

√
5

2

)n

−

(
1−

√
5

2

)(
1−

√
5

2

)n)
/
√

5.

Again, we can display the associated triangle

1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
1 3 3 1 0 0 0 . . .
1 4 7 4 1 0 0 . . .
1 5 13 13 5 1 0 . . .
1 6 21 31 21 6 1 . . .
...

...
...

...
...

...
...

. . .


or A114197 as a sum of scaled ‘Riordan arrays’ as follows:

1 +
√

5

2

(
1

1− x
,
x(1 + (1+

√
5

2
− 1)x)

1− x

)
− 1−

√
5

2

(
1

1− x
,
x(1 + (1−

√
5

2
− 1)x)

1− x

)
.

Hence the k-th column of the associated triangle has generating function given by

xk

(1− x)k+1

1 +
√

5

2

(
1 +

(
1 +

√
5

2
− 1

)
x

)k

+
1−

√
5

2

(
1 +

(
1−

√
5

2
− 1

)
x

)k
 .

Expanding, we find that the generating function of the k-th column of the triangle associated
to F (n+ 1) is given by

xk

(1− x)k+1

k∑
j=0

(
k

j

)
bjx

j

where the sequence bn is the inverse binomial transform of F (n+ 1). That is, we have

bn =
n∑

k=0

(
n

k

)
(−1)n−kF (k + 1) =

(
φ(φ− 1)n +

1

φ

(
−1

φ
− 1

)n)
/
√

5

where φ = 1+
√

5
2

.
Again, the inverse binomial transform of the row sums is given by F (bn

2
c+ 1).

The term T (2n, n) in this case is
∑n

k=0

(
n
k

)2
F (k + 1), or 1, 2, 7, 31, 142, 659, . . . (A114198).

This has ordinary generating function given by

1+
√

5
2
√

5√
1− 2(1+

√
5

2
+ 1)x+ (1+

√
5

2
− 1)2x2

−
1−

√
5

2
√

5√
1− 2(1−

√
5

2
+ 1)x+ (1−

√
5

2
− 1)2x2
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and exponential generating function

1 +
√

5

2
√

5
exp

(
3 +

√
5

2
x

)
I0

2

√
1 +

√
5

2
x

− 1−
√

5

2
√

5
exp

(
3−

√
5

2
x

)
I0

2

√
1−

√
5

2
x

 .

T (n, k) satisfies the following recurrence

T (n, k;F (n+ 1)) = T (n− 1, k− 1;F (n+ 1)) + T (n− 2, k− 1;F (n)) + T (n− 1, k;F (n+ 1))

where the triangle associated to F (n) begins

0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 . . .
0 2 2 0 0 0 0 . . .
0 3 5 3 0 0 0 . . .
0 4 9 9 4 0 0 . . .
0 5 14 20 14 5 0 . . .
...

...
...

...
...

...
...

. . .


.

We note that all Lucas sequences [242] can be treated in similar fashion.

10.8 The general case

Proposition 215. Given an integer sequence an with a0 = 1, the centrally symmetric invert-
ible triangle associated to it by the above construction has the following generating function
for its k-th column:

xk

1− x

k∑
j=0

(
k

j

)
aj

(
x

1− x

)j

=
xk

(1− x)k+1

k∑
j=0

(
k

j

)
bjx

j

where bn is the inverse binomial transform of an.
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Proof. We have

[xn]
xk

1− x

k∑
j=0

(
k

j

)
aj

(
x

1− x

)j

= [xn−k]
k∑

j=0

(
k

j

)
aj

xj

(1− x)j+1

=
∑

j

(
k

j

)
aj[x

n−k−j](1− x)−(j+1)

=
∑

j

(
k

j

)
aj[x

n−k−j]
∑

i

(
j + i

i

)
xi

=
∑

j

(
k

j

)
aj

(
j + n− k − j

n− k − j

)
=

∑
j

(
k

j

)(
n− k

j

)
aj

= T (n, k).

Similarly,

[xn]
xk

(1− x)k+1

k∑
j=0

(
k

j

)
bjx

j =
∑

j

(
k

j

)
bj[x

n−k−j](1− x)−(k+1)

=
∑

j

(
k

j

)
bj[x

n−k−j]
∑

i

(
k + i

i

)
xi

=
∑

j

(
k

j

)
bj

(
k + n− k − j

n− k − j

)
=

∑
j

(
k

j

)(
n− j

k

)
bj.
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Now

∑
j=0

(
k

j

)(
n− k

j

)
aj =

∑
j=0

(
k

j

)(
n− k

j

) j∑
i=0

(
j

i

)
bi

=
∑

j

∑
i

(
k

j

)(
n− k

j

)(
j

i

)
bi

=
∑

j

∑
i

(
k

j

)(
j

i

)(
n− k

j

)
bi

=
∑

j

∑
i

(
k

i

)(
k − i

j − i

)(
n− k

j

)
bi

=
∑

i

(
k

i

)
bi
∑

j

(
k − i

k − j

)(
n− k

j

)
=

∑
i

(
k

i

)
bi

(
n− i

k

)
=

∑
j

(
k

j

)(
n− j

k

)
bj.

Corollary 216. The following relationship exists between a sequence an and its inverse
binomial transform bn: ∑

j

(
k

j

)(
n− k

j

)
aj =

∑
j

(
k

j

)(
n− j

k

)
bj.

It is possible of course to reverse the above proposition to give us the following:

Proposition 217. Given a sequence bn, the product of the triangle whose k-th column has
ordinary generating function

xk

(1− x)k+1

k∑
j=0

(
k

j

)
bjx

j

by the binomial matrix is the centrally symmetric invertible triangle associated to the binomial
transform of bn.

10.9 Exponential-factorial triangles

In this section, we briefly describe an alternative method that produces generalized Pascal
matrices, based on suitably chosen sequences. For this, we recall that the binomial matrix

229



B may be represented as

B = exp



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
0 0 3 0 0 0 . . .
0 0 0 4 0 0 . . .
0 0 0 0 5 0 . . .
...

...
...

...
...

...
. . .


while if we write a(n) = n then the general term

(
n
k

)
of this matrix can be written as(

n

k

)
=

∏k
j=1 a(n− j + 1)∏k

j=1 a(j)
=

∏n
j=1 a(j)∏k

j=1 a(j)
∏n−k

j=1 a(j)
.

Furthermore,

B =
∑
k=0

Mk∏k
j=1 a(j)

where M is the sub-diagonal matrix formed from the elements of a(n).
We shall see that by generalizing this construction to suitably chosen sequences a(n)

where a(0) = 0 and a(1) = 1, we can obtain generalized Pascal triangles, some of which are
well documented in the literature. Thus we let T (n, k) denote the matrix with general term

T (n, k) =

∏k
j=1 a(n− j + 1)∏k

j=1 a(j)
=

∏n
j=1 a(j)∏k

j=1 a(j)
∏n−k

j=1 a(j)
=

(
n

k

)
a

.

Proposition 218. T (n, n−k) = T (n, k), T (n, 1) = a(n), T (n+1, 1) = T (n+1, n) = a(n+1)

Proof. To prove the first assertion, we assume first that k ≤ n− k. Then

T (n, k) =
a(n) . . . a(n− k + 1)

a(1) . . . a(k)

=
a(n) . . . a(n− k + 1)

a(1) . . . a(k)

a(n− k) . . . a(k + 1)

a(k + 1) . . . a(n− k)

= T (n, n− k).

Secondly, if k > n− k, we have

T (n, n− k) =
a(n) . . . a(k + 1)

a(1) . . . a(n− k)

=
a(n) . . . a(k + 1)

a(1) . . . a(n− k)

a(k) . . . a(n− k + 1)

a(n− k + 1) . . . a(k)

= T (n, k).
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Next, we have

T (n, 1) =

∏1
j=1 a(n− j + 1)∏1

j=1 a(j)

=
a(n− 1 + 1)

a(1)
= a(n).

since a(1) = 1. Similarly,

T (n+ 1, 1) =

∏1
j=1 a(n+ 1− j + 1)∏1

j=1 a(j)

=
a(n+ 1− 1 + 1)

a(1)
= a(n+ 1).

Introducing the notation

a!(n) =
n∏

k=1

a(j)

we can write (
n

k

)
a

=
a!(n)

a!(k)a!(n− k)
.

We have (
n

k

)
a

=
a!(n)

a!(k)a!(n− k)

=

∏k
j=1 a(n− j + 1)∏k

j=1 a(j)

=

∏k
j=1 a(n− k + j)∏k

j=1 a(j)
.

Along with the notation a!(n), we find it convenient to define the a−exponential as the power
series

Ea(x) =
∞∑

k=0

xk

a!(k)
.

Thus for those choices of the sequence a(n) for which the values of T (n, k) are integers,
T (n, k) represents a generalized Pascal triangle with T (n, 1) = a(n + 1). We shall use the
notation Pa(n) to denote the triangle constructed as above.

We define the generalized Catalan sequence associated to a(n) by this construction to be
the sequence with general term

T (2n, n)

a(n+ 1)
.
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Example 219. The Fibonacci numbers. The matrix PF (n) with general term∏k
j=1 F (n− j + 1)∏k

j=1 F (j)

which can be expressed as ∑
k=0

Mk
F∏k

j=1 F (j)
= EF (MF )

where MF is the sub-diagonal matrix generated by F (n):

MF =



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 2 0 0 0 . . .
0 0 0 3 0 0 . . .
0 0 0 0 5 0 . . .
...

...
...

...
...

...
. . .


is the much studied Fibonomial matrix, A010048, [127, 135, 190, 236]. For instance, the
generalized Catalan numbers associated to this triangle are the Fibonomial Catalan numbers,
A003150.

Example 220. Let a(n) = 2n

2
− 0n

2
. The matrix Pa(n) with general term∏k

j=1 a(n− j + 1)∏k
j=1 a(j)

which can be expressed as ∑
k=0

Mk∏k
j=1 a(j)

= Ea(M)

where M is the sub-diagonal matrix generated by a(n)

M =



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
0 0 4 0 0 0 . . .
0 0 0 8 0 0 . . .
0 0 0 0 16 0 . . .
...

...
...

...
...

...
. . .


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is given by 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 4 4 1 0 0 . . .
1 8 16 8 1 0 . . .
1 16 64 64 16 1 . . .
...

...
...

...
...

...
. . .


.

This is A117401. For this matrix, we have T (2n, n) = 2n2
and c(n; a(n)) = 2n(n−1). This is

easily generalized to the sequence n→ kn

k
− 0n

k
. For this sequence, we obtain T (2n, n) = kn2

and c(n) = kn(n−1).

Example 221. We take the case a(n) = bn+1
2
c. In this case, we obtain the matrix

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 2 2 1 0 0 . . .
1 2 4 2 1 0 . . .
1 3 6 6 3 1 . . .
...

...
...

...
...

...
. . .


which has general term (bn

2
c

bk
2
c

)(dn
2
e

dk
2
e

)
.

This is the triangle

[0, 1, 0,−1, 0, 1, 0,−1, . . .] ∆(1) [1, 0,−1, 0, 1, 0,−1, . . .].

This triangle counts the number of symmetric Dyck paths of semi-length n with k peaks
(A088855). The row sums of this array are given by

(
n+1
bn+1

2
c

)
(which has Hankel transform

(−1)(
n+1

2 )). We note that for this triangle, T (2n, n) is
(

n
bn

2
c

)2
while T (2n, n) − T (2n, n − 1)

is the sequence
1, 0, 2, 0, 12, 0, 100, 0, 980, 0, 10584 . . .

(A000888 aerated). We note that the triangle

[0, 1, 0,−1, 0, 1, 0,−1, . . .] ∆ [1, 0,−1, 0, 1, 0,−1, . . .]

begins 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 1 1 0 0 . . .
0 1 2 2 1 0 . . .
0 1 2 4 2 1 . . .
...

...
...

...
...

...
. . .


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and has row sums equal to
(

n
bn

2
c

)
.

Example 222. The Jacobsthal numbers. Let a(n) = J(n) = 2n

3
− (−1)n

3
. We form the matrix

with general term ∏k
j=1 J(n− j + 1)∏k

j=1 J(j)

which can be expressed as ∑
k=0

Mk
J∏k

j=1 J(j)
= EJ(MJ)

where MJ is the sub-diagonal matrix generated by J(n) :

MJ =



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 3 0 0 0 . . .
0 0 0 5 0 0 . . .
0 0 0 0 11 0 . . .
...

...
...

...
...

...
. . .


.

We obtain the matrix

PJ(n) =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 5 15 5 1 0 . . .
1 11 55 55 11 1 . . .
...

...
...

...
...

...
. . .


.

We recognize in this triangle the unsigned version of the q-binomial triangle for q = −2,
A015109, whose k-th column has generating function

xk 1∏k
j=0(1− (−2)jx)

.

Using the above notation, this latter signed triangle is therefore P(−1)nJ(n). Note that

x

(1− x)(1 + 2x)
=

x

1 + x− 2x2

is the generating function for (−1)nJ(n).
The generating function of the k-th column of PJ(n) is given by

xk

k∏
j=0

1

(1− (−1)(j+k mod 2)2jx)
.
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The generalized Catalan numbers for PJ(n) are given by
PJ(n)(2n,n)

J(n+1)
. These are A015056

1, 1, 5, 77, 5117, 1291677, . . .

We can generalize these results to the following:

Proposition 223. Let a(n) be the solution to the recurrence

a(n) = (r − 1)a(n− 1) + r2a(n− 2), a(0) = 0, a(1) = 1.

Then Pa(n) is a generalized Pascal triangle whose k-th column has generating function given
by

xk

k∏
j=0

1

(1− (−1)(j+k mod 2)rjx)
.

Example 224. The Narayana and related triangles. The Narayana triangle Ñ is a
generalized Pascal triangle in the sense of this section. It is known that the generating
function of its k-th column is given by

xk

∑k
j=0N(k, j)xj

(1− x)2k+1
.

Now a(n) = Ñ(n, 1) =
(

n+1
2

)
satisfies a(0) = 0, a(1) = 1. It is not difficult to see that,

in fact, Ñ = P(n+1
2 ). See [115]. T (2n, n) for this triangle is A000891, with exponential

generating function I0(2x)I1(2x)/x. We note that in this case, the numbers generated by
Ñ(2n, n)/a(n+ 1) do not produce integers. However the sequence Ñ(2n, n)− Ñ(2n, n+ 1)
turns out to be the product of successive Catalan numbers CnCn+1. This is A005568. Note
also that by the definition of

(
n
k

)
a
, the sequence

(
n+1

2

)
= n(n+1)

2
can be replaced by any

multiple of n(n+ 1).
The triangle P(n+2

3 ) is A056939 with matrix

P(n+2
3 ) =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 10 10 1 0 0 . . .
1 20 50 20 1 0 . . .
1 35 175 175 35 1 . . .
...

...
...

...
...

...
. . .


.

The k-th column of this matrix has generating function

xk

∑k
j=0N3(k, j)x

j

(1− x)3k+1

where N3(n, k) is the triangle of 3-Narayana numbers, [214], A087647. P(n+3
4 ) is the number

triangle A056940.
The product P(n+1

2 )P(n
1)

= ÑB is A126216 which counts certain Schröder paths.
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10.10 A generalized Riordan array

In Chapter 11, we will study generalized Pascal triangles defined by exponential Riordan
arrays. The basic example it that of Pascal’s triangle itself, which is defined by

B = [ex, x].

In this section, we generalize this notation to the case of Ea(x) defined above as

Ea(x) =
∞∑

k=0

xk

a!(k)
.

For this, we define the notation
[g(x), f(x)]a

to represent the array whose (n, k)−th element is given by

a!(n)

a!(k)
[xn]g(x)f(x)k.

Proposition 225.
(

n
k

)
a

is the (n, k)−th element of [Ea(x), x]a.

Proof. We have

a!(n)

a!(k)
[xn]Ea(x)x

k =
a!(n)

a!(k)
[xn−k]

∞∑
j=0

xj

a!(j)

=
a!(n)

a!(k)

1

a!(n− k)

=

(
n

k

)
a

.

Using this notation, we can for example write

[EF (x), x]F = EF (MF ).

Example 226. The Narayana triangle Ñ can be defined as

Ñ = [E(n+1
2 ), x](n+1

2 ) =

(
n

k

)
(n+1

2 )
.

The foregoing suggests the following extension to our methods for constructing Pascal-like
matrices.

Proposition 227. The array with general (n, k)−th element

a!(n)

a!(k)
[xn]Ea(x)(1 + αa(k)x),

for general integer α, is Pascal-like.
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Proof. We have

a!(n)

a!(k)
[xn]Ea(x)(1 + αa(k)x) =

a!(n)

a!(k)a!(n− k)
+
αa!(n)

a!(k)
[xn−k−1]

∑
j=0

xj

a!(j)

=
a!(n)

a!(k)a!(n− k)
+ α

a!(n)

a!(k)

1

a!(n− k − 1)

=
a!(n)

a!(k)a!(n− k)
(1 + αa(k)a(n− k)).

Thus each Pascal-like triangle Pa, for suitable a(n), defines a family of Pascal-like triangles
Pa,α with general term

a!(n)

a!(k)a!(n− k)
(1 + αa(k)a(n− k)).

Example 228. We take the simple sequence a(n) where a(0) = 0, a(1) = 1 and a(n) = 2
for n > 1. Letting α = 0 . . . 5, we get the following family of Pascal-like triangles :

1 1 1
1 1 1 1 1 1
1 2 1 1 4 1 1 6 1
1 2 2 1 1 6 6 1 1 10 10 1
1 2 2 2 1 1 6 10 6 1 1 10 18 10 1
1 2 2 2 2 1 1 6 10 10 6 1 1 10 18 18 10 1

1 1 1
1 1 1 1 1 1
1 8 1 1 10 1 1 12 1
1 14 14 1 1 18 18 1 1 22 22 1
1 14 26 14 1 1 18 34 18 1 1 22 42 22 1
1 14 26 26 14 1 1 18 34 34 18 1 1 22 42 42 22 1

Example 229. For the Fibonomial matrix PF (n) = PF,0 (A010048) given by

PF (n) =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 2 2 1 0 0 . . .
1 3 6 3 1 0 . . .
1 5 15 15 5 1 . . .
...

...
...

...
...

...
. . .


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we have as the next member of the family the matrix

PF,1 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 4 4 1 0 0 . . .
1 9 12 9 1 0 . . .
1 20 45 45 20 1 . . .
...

...
...

...
...

...
. . .


.

This is A154218.

Proposition 230. We have
Pa,α = PaLa,α

where La,α is the matrix

La,α =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 αa(1)a(2) 1 0 0 0 . . .
0 0 αa(2)a(3) 1 0 0 . . .
0 0 0 αa(3)a(4) 1 0 . . .
0 0 0 0 αa(4)a(5) 1 . . .
...

...
...

...
...

...
. . .


.

Example 231. We can define Pascal’s triangle B as Pa where a(n) = n. In this case La,1

is given by

Ln,1 =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 0 6 1 0 0 . . .
0 0 0 10 1 0 . . .
0 0 0 0 20 1 . . .
...

...
...

...
...

...
. . .


which gives us

Pn,1 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 9 9 1 0 0 . . .
1 16 30 16 1 0 . . .
1 25 70 70 25 1 . . .
...

...
...

...
...

...
. . .


.
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We now note that a(n) = n/2 will also produce B. However, in this case

Ln/2,1 =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 3 1 0 0 . . .
0 0 0 5 1 0 . . .
0 0 0 0 10 1 . . .
...

...
...

...
...

...
. . .


which yields

Pn/2,1 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 18 10 1 0 . . .
1 15 40 40 15 1 . . .
...

...
...

...
...

...
. . .


.

10.11 A note on generalized Stirling matrices

We have seen that the (signed) Stirling numbers of the first kind are elements of the expo-
nential Riordan array [1, ln(1 + x)] which begins

s̃ =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 2 −3 1 0 0 . . .
0 −6 11 −6 1 0 . . .
0 24 −50 35 −10 1 . . .
...

...
...

...
...

...
. . .


with inverse given by [1, ex − 1] which begins

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 7 6 1 0 . . .
0 1 15 25 10 1 . . .
...

...
...

...
...

...
. . .


.

s̃ is the coefficient array of the polynomials Pn(x) defined by the falling factorials

Pn(x) = (x)n =
n−1∏
k=0

(x− k).
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We now wish to extend these results to the polynomial family Pn(x; a) that depends on a
sequence a(n) (always with a(0) = 0, a(1) = 1), defined by

Pn(x; a) =
n−1∏
k=0

(x− a(k)).

Example 232. We let a(n) = 2n−1 − 0n/2. We find that the coefficient array of Pn(x; a),
which begins

s̃a =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 2 −3 1 0 0 . . .
0 −8 14 −7 1 0 . . .
0 64 −120 70 −15 1 . . .
...

...
...

...
...

...
. . .


has inverse which begins 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 7 7 1 0 . . .
0 1 15 35 15 1 . . .
...

...
...

...
...

...
. . .


which is an augmented version of the matrix of Gaussian binomial coefficients

[
n
k

]
q

for q = 2,

A022166. If Tn,k denotes the general term of this array then we have

Tn,k = Tn−1,k−1 +
2k − 0k

2
Tn−1,k

and

Tn,k = [xn]
xk∏k

j=0(1− (2j−1 − 0j/2)x)
.

This matrix has production matrix

0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 2 1 0 0 . . .
0 0 0 4 1 0 . . .
0 0 0 0 8 1 . . .
0 0 0 0 0 16 . . .
...

...
...

...
...

...
. . .


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The production matrix for the internal triangle A022166 is

1 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 0 4 1 0 0 . . .
0 0 0 8 1 0 . . .
0 0 0 0 16 1 . . .
0 0 0 0 0 32 . . .
...

...
...

...
...

...
. . .


This triangle is the inverse of the coefficient array of

n∏
k=1

(x− a(k)).

We have in general the result

Proposition 233. Let a(n; q) = qn−0n

q
. Then the inverse coefficient array of the polynomial

family Pn(x; a) =
∏n−1

k=0(x− a(k; q)) is the array with general term
[
n
k

]
q

augmented as above.

Furthermore, this matrix has production matrix

0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 q 1 0 0 . . .
0 0 0 q2 1 0 . . .
0 0 0 0 q3 1 . . .
0 0 0 0 0 q4 . . .
...

...
...

...
...

...
. . .


Thus if Tn,k denotes the general element of the inverse coefficient array of the family of
polynomials Pn(x; a) we have

Tn+1,k+1 =

[
n

k

]
q

.

We also have
Tn,k = Tn−1,k−1 + a(k; q)Tn−1,k

and

Tn,k = [xn]
xk∏k

j=0(1− a(j; q)x)
.

We note that in general this matrix is not equal to the matrix [1, Ea(x) − 1]a, using the
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notation of the previous section. For example, when q = 2, the matrix [1, Ea(x)− 1]a begins

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 4 1 0 0 . . .
0 1 16 12 1 0 . . .
0 1 80 144 32 1 . . .
...

...
...

...
...

...
. . .


.

Example 234. We take the example of the Fibonacci numbers, i.e., a(n) = F (n). We find
that the polynomial coefficient array for Pn(x, F ), which begins

s̃F =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 1 −2 1 0 0 . . .
0 −2 5 −4 1 0 . . .
0 6 −17 17 −7 1 . . .
...

...
...

...
...

...
. . .


has inverse

S̃F =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 2 1 0 0 . . .
0 1 3 4 1 0 . . .
0 1 4 11 7 1 . . .
...

...
...

...
...

...
. . .


which is an augmented version of A111669. This matrix therefore satisfies

Tn,k = Tn−1,k−1 + F (k)Tn−1,k.

We have

Tn,k = [xn]
xk∏k

j=0(1− F (j)x)
.

The production matrix is 

0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 2 1 0 . . .
0 0 0 0 3 1 . . .
0 0 0 0 0 5 . . .
...

...
...

...
...

...
. . .


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while that of the internal triangle, A111669, is

1 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 2 1 0 0 . . .
0 0 0 3 1 0 . . .
0 0 0 0 5 1 . . .
0 0 0 0 0 8 . . .
...

...
...

...
...

...
. . .


.

10.12 Generalized Charlier polynomials

In section 8.9 we defined the (unsigned) Charlier array to be

Ch = B · s.

We now assume that an is an integer sequence, with a0 = 0 and a1 = 1. We define the
generalized Charlier array associated to an to be the array

Cha = Ba · s

where Ba is the Pascal-like array with general term
(

n
k

)
a
. We then define the generalized

Charlier polynomials associated to an to be the polynomials with coefficient array Cha. By
the properties of s and Ba, we easily obtain the following :

Proposition 235. Let P
(a)
n (x) be the generalized Charlier polynomials associated to the

sequence an. Then

P (a)
n (x) =

n∑
k=0

(
n

k

)
a

(x)k.

The n-th term of the row sums of Cha is given by

P (a)
n (1) =

n∑
k=0

(
n

k

)
a

k!

Example 236. We take the case of an equal to the sequence 0, 1, 2, 2, 2, 2, . . .. We find that
Cha begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 5 1 0 0 . . .
1 14 19 8 1 0 . . .
1 44 80 49 12 1 . . .
...

...
...

...
...

...
. . .


.
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This has row sums
∑n

k=0

(
n
k

)
a
k! where Ba = (

(
n
k

)
a
) begins

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 2 2 1 0 0 . . .
1 2 2 2 1 0 . . .
1 2 2 2 2 1 . . .
...

...
...

...
...

...
. . .


.

This is the sequence 1, 2, 5, 13, 43, 187, 1027, . . .. The first differences of this sequence yield
the sequence 1, 1, 3, 8, 30, 144, . . . or A059171, the size of the largest conjugacy class in Sn,
the symmetric group on n symbols. Now we note that

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 0 −1 1 0 0 . . .
0 0 0 −1 1 0 . . .
0 0 0 0 −1 1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 2 2 1 0 0 . . .
1 2 2 2 1 0 . . .
1 2 2 2 2 1 . . .
...

...
...

...
...

...
. . .


=



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 1 1 0 . . .
0 0 0 0 1 1 . . .
...

...
...

...
...

...
. . .


.

Thus if we denote the sequence 1, 1, 3, 8, 30, 144, . . . by dn, we have

d0 = 1, dn = (n− 1)! + n!−
(

1

n

)
, n ≥ 1.

This implies that the row sums of Cha are given by

P (a)
n (1) = 0n +

n∑
k=1

(k! + (k − 1)!).

We can generalize this result to cover the sequence an given by 0, 1, r, r, r, . . .. We find that
the row sums of Cha in this case are given by

P (a)
n (1) = (r − 1)0n +

n∑
k=1

(k! + (r − 1)(k − 1)!)− (r − 2).

The first differences dn of this sequence are then given by

d0 = 1, dn = (r − 1)(n− 1)! + n!− (r − 1)

(
1

n

)
, n ≥ 1.
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Chapter 11

Generalized Pascal Triangles Defined
by Exponential Riordan Arrays 1

11.1 Introduction

In the Chapter 10 (and see [17]), we studied a family of generalized Pascal triangles whose
elements were defined by Riordan arrays, in the sense of [202, 208]. In this chapter, we
use so-called “exponential Riordan arrays” to define another family of generalized Pascal
triangles. These number triangles are easy to describe, and important number sequences
derived from them are linked to both the Hermite and Laguerre polynomials, as well as
being related to the Narayana and Lah numbers.

We begin by looking at Pascal’s triangle, the binomial transform, the Narayana numbers,
and briefly summarize those features of the Hermite and Laguerre polynomials that we will
require. We then introduce the family of generalized Pascal triangles based on exponential
Riordan arrays, and look at a simple case in depth. We finish by enunciating a set of general
results concerning row sums, central coefficients and generalized Catalan numbers for these
triangles.

11.2 Preliminaries

Pascal’s triangle, with general term C(n, k) =
(

n
k

)
, n, k ≥ 0, has fascinated mathematicians

by its wealth of properties since its discovery [77]. Viewed as an infinite lower-triangular ma-
trix, it is invertible, with an inverse whose general term is given by (−1)n−k

(
n
k

)
. Invertibility

follows from the fact that
(

n
n

)
= 1. It is centrally symmetric, since by definition,

(
n
k

)
=
(

n
n−k

)
.

All the terms of this matrix are integers.
By a generalized Pascal triangle (or Pascal-like triangle) we shall understand a lower-

triangular infinite integer matrix T = T (n, k) with T (n, 0) = T (n, n) = 1 and T (n, k) =
T (n, n− k). We index all matrices in this paper beginning at the (0, 0)-th element.

1This chapter reproduces and extends the content of the published article “P. Barry, On a family of
generalized Pascal triangles defined by exponential Riordan arrays, J. Integer Seq., 10 (2007), Art. 7.3.5.”
[17].
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We shall encounter transformations that operate on integer sequences during the course
of this chapter. An example of such a transformation that is widely used in the study of
integer sequences is the so-called Binomial transform [230], which associates to the sequence
with general term an the sequence with general term bn where

bn =
n∑

k=0

(
n

k

)
ak. (11.1)

If we consider the sequence with general term an to be the vector a = (a0, a1, . . .) then we
obtain the binomial transform of the sequence by multiplying this (infinite) vector by the
lower-triangle matrix B whose (n, k)-th element is equal to

(
n
k

)
:

B =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .


.

This transformation is invertible, with

an =
n∑

k=0

(
n

k

)
(−1)n−kbk. (11.2)

We note that B corresponds to Pascal’s triangle. Its row sums are 2n, while its diagonal
sums are the Fibonacci numbers F (n + 1). If Bm denotes the m−th power of B, then the
n−th term of Bma where a = (an)n≥0 is given by

∑n
k=0m

n−k
(

n
k

)
ak.

As an exponential Riordan array, B represents the element [ex, x].
We note at this juncture that the exponential Riordan group, as well as the group of

‘standard’ Riordan arrays [202] can be cast in the more general context of matrices of type
Rq(αn, βk;φ, f, ψ) as found in [81, 83, 82]. Specifically, a matrix C = (cnk)n,k=0,1,2,... is of
type Rq(αn, βk;φ, f, ψ) if its general term is defined by the formula

cnk =
βk

αn

resx(φ(x)fk(x)ψn(x)x−n+qk−1)

where resxA(x) = a−1 for a given formal power series A(x) =
∑

j ajx
j is the formal residue

of the series.
For the exponential Riordan arrays in this chapter, we have αn = 1

n!
, βk = 1

k!
, and q = 1.

Example 237. The Binomial matrix B is the element [ex, x] of the exponential Riordan
group. More generally, Bm is the element [emx, x] of the Riordan group. It is easy to show
that the inverse B−m of Bm is given by [e−mx, x].
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Example 238. The exponential generating function of the row sums of the matrix [g, f ] is
obtained by applying [g, f ] to ex, the e.g.f. of the sequence 1, 1, 1, . . .. Hence the row sums
of [g, f ] have e.g.f. g(x)ef(x).

Example 239. An example of a well-known centrally symmetric invertible triangle is the
Narayana triangle Ñ, [212, 213], defined by

Ñ(n, k) =
1

k + 1

(
n

k

)(
n+ 1

k

)
=

1

n+ 1

(
n+ 1

k + 1

)(
n+ 1

k

)
for n, k ≥ 0. Other expressions for Ñ(n, k) are given by

Ñ(n, k) =

(
n

k

)2

−
(

n

k + 1

)(
n

k − 1

)
=

(
n+ 1

k + 1

)(
n

k

)
−
(
n+ 1

k

)(
n

k + 1

)
.

This triangle begins

Ñ =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .


.

Note that in the literature, it is often the triangle Ñ(n−1, k−1) = 1
n

(
n
k

)(
n

k−1

)
that is referred

to as the Narayana triangle. Alternatively, the triangle Ñ(n−1, k) = 1
k+1

(
n−1

k

)(
n
k

)
is referred

to as the Narayana triangle. We shall denote this latter triangle by N(n, k). We then have

N =



1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
...

...
...

...
...

...
. . .


with row sums equal to the Catalan numbers Cn.

Note that for n, k ≥ 1, N(n, k) = 1
n

(
n
k

)(
n

k+1

)
. We have, for instance,

Ñ(n− 1, k − 1) =
1

n

(
n

k

)(
n

k − 1

)
=

(
n

k

)2

−
(
n− 1

k

)(
n+ 1

k

)
=

(
n

k

)(
n− 1

k − 1

)
−
(

n

k − 1

)(
n− 1

k

)
.
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The last expression represents a 2× 2 determinant of adjacent elements in Pascal’s triangle.
Further details on the Narayana triangle are in Chapter 10.

The Hermite polynomials Hn(x) [238] are defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2

.

They obey Hn(−x) = (−1)nHn(x) and can be defined by the recurrence

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (11.3)

They have a generating function given by

e2tx−x2

=
∞∑

n=0

Hn(t)

n!
xn.

We have

Hn(x) =

bn
2
c∑

k=0

(
n

2k

)
(−2)k (2k)!

2kk!
(2x)n−2k =

bn
2
c∑

k=0

(
n

2k

)
(−1)k (2k)!

k!
(2x)n−2k.

A property that is related to the binomial transform is the following:
n∑

k=0

(
n

k

)
Hk(x)(2z)

n−k = Hn(x+ z).

From this, we can deduce the following proposition.

Proposition 240. For fixed x and y 6= 0, the binomial transform of the sequence n →
Hn(x)yn is the sequence n→ ynHn(x+ 1

2y
).

Proof. Let z = 1
2y

. Then 2z = 1
y

and hence

n∑
k=0

(
n

k

)
Hk(x)(y)

k−n = Hn

(
x+

1

2y

)
.

That is,
n∑

k=0

(
n

k

)
Hk(x)y

k = ynHn

(
x+

1

2y

)
as required.

The Laguerre polynomials Ln(x) [241] are defined by

Ln(x) =
ex

n!

dn

dxn
xne−x.

They have generating function

exp(− tx
1−x

)

1− x
=

∞∑
n=0

Ln(t)

n!
xn.

They are governed by the following recurrence relationship:

(n+ 1)Ln+1(t) = (2n+ 1− t)Ln(t)− nLn−1(t). (11.4)
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11.3 Introducing the family of centrally symmetric in-

vertible triangles

We recall that the Binomial matrix B, or Pascal’s triangle, is the element [ex, x] of the
Riordan group. For a given integer r, we shall denote by Br the element [ex, x(1 + rx)] of
the Riordan group. We note that B = B0. We can characterize the general element of Br

as follows.

Proposition 241. The general term Br(n, k) of the matrix Br is given by

Br(n, k) =
n!

k!

k∑
j=0

(
k

j

)
rj

(n− k − j)!
.

Proof. We have

Br(n, k) =
n!

k!
[xn](ex(x(1 + rx)k)

=
n!

k!
[xn]

∞∑
i=0

xi

i!
xk

k∑
j=0

(
k

j

)
rjxj

=
n!

k!
[xn−k]

∞∑
i=0

k∑
j=0

(
k

j

)
rj

i!
xi+j

=
n!

k!

k∑
j=0

(
k

j

)
rj

(n− k − j)!
.

From the above expression we can easily establish that Br(n, k) = Br(n, n−k) and Br(n, 0) =
Br(n, n) = 1. We also have

Proposition 242.

Br(n, k) =
n∑

j=0

j!

k!

(
n

j

)(
k

j − k

)
rj−k.

Proof. By definition, Br is the Riordan array [ex, x(1 + rx)] = [ex, x][1, x(1 + rx)]. But the
general term of [1, x(1 + rx)] is easily seen to be n!

k!

(
k

n−k

)
rn−k. The result follows since the

general term of [ex, x] is
(

n
k

)
.

An alternative derivation of these results can be obtained be observing that the matrix Br
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may be defined as the array R1( 1
n!
, 1

k!
; ex, (1 + rx), 1). Then we have

Br(n, k) =
1/k!

1/n!
resx(e

x(1 + rx)kx−n+k−1)

=
n!

k!
resx(

∞∑
i=0

xi

i!

k∑
j=0

(
k

j

)
rjxjx−n+k−1)

=
n!

k!
resx(

∞∑
i=0

k∑
j=0

(
k

j

)
rj

i!
xi+j−n+k−1)

=
n!

k!

k∑
j=0

(
k

j

)
rj

(n− k − j)!
.

Thus Br is a centrally symmetric lower-triangular matrix with Br(n, 0) = Br(n, n) = 1. In
this sense Br can be regarded as a generalized Pascal matrix. Note that by the last property,
this matrix is invertible.

Proposition 243. The inverse of Br is the element [e−u, u] of the Riordan group, where

u =

√
1 + 4rx− 1

2r
.

Proof. Let [g∗, f̄ ] be the inverse of [ex, x(1 + rx)]. Then

[g∗, f̄ ][ex, x(1 + rx)] = [1, x] ⇒ f̄(1 + rf̄) = x.

Solving for f̄ we get

f̄ =

√
1 + 4rx− 1

2r
.

But g∗ = 1
g◦f̄ = e−f̄ .

This result allows us to easily characterize the row sums of the inverse B−1
r .

Corollary 244. The row sums of the inverse triangle B−1
r are given by 0n = 1, 0, 0, 0, . . ..

Proof. We have B−1
r = [e−u, u] as above. Hence the e.g.f. of the row sums of B−1

r is
e−ueu = 1. The result follows from this.

Example 245. B1 = [ex, x(1 + x)] is given by

B1 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 9 9 1 0 0 . . .
1 16 42 16 1 0 . . .
1 25 130 130 25 1 . . .
...

...
...

...
...

...
. . .


250



The row sums of B1 are

1, 2, 6, 20, 76, 312, 1384, 6512, 32400, . . .

or A000898.
From the above, the terms of this sequence are given by

s1(n) =
n∑

k=0

n!

k!

k∑
j=0

(
k

j

)
1

(n− k − j)!

with e.g.f. g(x)ef(x) = exex(1+x) = e2x+x2
. What is less evident is that

s1(n) = Hn(−i)in

where i =
√
−1. This follows since

e2x+x2

= e2(−i)(ix)−(ix)2

=
∑
n=0

Hn(−i)
n!

(ix)n

=
∑
n=0

Hn(−i)in

n!
xn

and hence e2x+x2
is the e.g.f. of Hn(−i)in. We therefore obtain the identity

Hn(−i)in =
n∑

k=0

n!

k!

k∑
j=0

(
k

j

)
1

(n− k − j)!
.

We can characterize the row sums of B1 in terms of the diagonal sums of another related
special matrix. For this, we recall [231] that

Bessel(n, k) =
(n+ k)!

2k(n− k)!k!
=

(
n+ k

2k

)
(2k)!

2kk!
=

(
n+ k

2k

)
(2k − 1)!!

defines the triangle A001498 of coefficients of Bessel polynomials that begins

Bessel =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 3 0 0 0 . . .
1 6 15 15 0 0 . . .
1 10 45 105 105 0 . . .
1 15 105 420 945 945 . . .
...

...
...

...
...

...
. . .


.
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This triangle has bi-variate o.g.f. given by the continued fraction

1

1− x−
xy

1− x−
2xy

1− x−
3xy

1− x−
4xy

1− x− · · ·
We then have

Proposition 246. The row sums of the matrix B1 are equal to the diagonal sums of the
matrix with general term Bessel(n, k)2n. That is

Hn(−i)in =
n∑

k=0

n!

k!

k∑
j=0

(
k

j

)
1

(n− k − j)!
=

bn
2
c∑

k=0

Bessel(n− k, k)2n−k.

Proof. We shall prove this in two steps. First, we shall show that

bn
2
c∑

k=0

Bessel(n− k, k)2n−k =

bn
2
c∑

k=0

(2k)!

k!

(
n

2k

)
2n−2k =

bn
2
c∑

k=0

(2k − 1)!!

(
n

2k

)
2n−k.

We shall then show that this is equal to Hn(−i)in. Now

bn
2
c∑

k=0

Bessel(n− k, k)2n−k =
n∑

k=0

Bessel

(
n− k

2
,
k

2

)
2n− k

2 (1 + (−1)k)/2

=
n∑

k=0

(n− k
2

+ k
2
)!2n− k

2

2
k
2 (n− k

2
− k

2
)!(k

2
)!

(1 + (−1)k)/2

=
n∑

k=0

n!

(n− k)!

2n−k

(k
2
)!

(1 + (−1)k)/2

=
n∑

k=0

k!

(k
2
)!

(
n

k

)
2n−k(1 + (−1)k)/2

=

bn
2
c∑

k=0

(2k)!

k!

(
n

2k

)
2n−2k

=

bn
2
c∑

k=0

(2k)!

2kk!

(
n

2k

)
2n−k

=

bn
2
c∑

k=0

(2k − 1)!!

(
n

2k

)
2n−k.

establishes the first part of the proof. The second part of the proof is a consequence of the
following more general result, when we set a = 2 and b = 1.
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Proposition 247. The sequence with e.g.f. eax+bx2
has general term un given by

un =

bn
2
c∑

k=0

(
n

2k

)
(2k)!

k!
an−2kbk =

bn
2
c∑

k=0

(
n

2k

)
Ck(k + 1)!an−2kbk.

Proof. We have

n![xn]eax+bx2

= n![xn]eaxebx2

= n![xn]
∞∑
i=0

aixi

i!

∞∑
k=0

bkx2k

k!

= n![xn]
∞∑
i=0

∞∑
k=0

aibk

i!k!
xi+2k

= n!
∞∑

k=0

an−2kbk

(n− 2k)!k!

=
∞∑

k=0

n!

(n− 2k)!(2k)!

(2k)!

k!
an−2kbk

=

bn
2
c∑

k=0

(
n

2k

)
(2k)!

k!
an−2kbk.

Corollary 248.

Hn(− a

2
√
b
i)(
√
bi)n =

bn
2
c∑

k=0

(
n

2k

)
(2k)!

k!
an−2kbk.

Corollary 249. Let un be the sequence with e.g.f. eax+bx2
. Then un satisfies the recurrence

un = aun−1 + 2(n− 1)bun−2

with u0 = 1, u1 = a.

Proof. Equation 11.3 implies that

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x).

Thus

Hn

(
− a

2
√
b
i

)
= −2

a

2
√
b
iHn−1

(
− a

2
√
b
i

)
− 2(n− 1)Hn−2

(
− a

2
√
b
i

)
.

Now multiply both sides by (
√
bi)n to obtain

un = aun−1 + 2(n− 1)bun−2.

Since

un =

bn
2
c∑

k=0

(
n

2k

)
(2k)!

k!
an−2kbk

we obtain the initial values u0 = 1, u1 = a.
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Corollary 250. The binomial transform of
∑bn

2
c

k=0

(
n
2k

) (2k)!
k!
an−2kbk is given by

bn
2
c∑

k=0

(
n

2k

)
(2k)!

k!
(a+ 1)n−2kbk.

Proof. The e.g.f. of the binomial transform of the sequence with e.g.f. eax+cx2
is exeax+bx2

=
e(a+1)x+bx2

.

Equivalently, the binomial transform of
∑bn

2
c

k=0

(
n
2k

)
Ck(k + 1)!an−2kbk is given by

bn
2
c∑

k=0

(
n

2k

)
Ck(k + 1)!(a+ 1)n−2kbk.

We note that in the last chapter, we showed that the binomial transform of
∑bn

2
c

k=0

(
n
2k

)
Cka

n−2kbk

is given by
bn

2
c∑

k=0

(
n

2k

)
Ck(a+ 1)n−2kbk.

Corollary 251. The row sums of B1 satisfy the recurrence equation

un = 2un−1 + 2(n− 1)un−2

with u0 = 1, u1 = 2.

Since the triangle with general term Bessel(n, k)2n has g.f.

1

1− 2x−
2xy

1− 2x−
4xy

1− 2x−
6xy

1− 2x−
8xy

1− 2x− · · ·

we see that the row sums of B1 have g.f. given by the continued fraction

1

1− 2x−
2x2

1− 2x−
4x2

1− 2x−
6x2

1− 2x−
8x2

1− 2x− · · ·
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We note that this is the second binomial transform of the aerated quadruple factorial numbers
(2n)!

n!
= (n+ 1)!Cn = n!

(
2n
n

)
, whose g.f. is given by

1

1−
2x

1−
4x

1−
6x

1−
8x

1− · · ·
The row sums of B1 can thus be expressed as

sn =
n∑

k=0

(
n

k

)
2n−k k!

(k/2)!

1 + (−1)k

2

=
n∑

k=0

(
n

k

)
2n−k(k/2)!

(
k

k/2

)
1 + (−1)k

2

=
n∑

k=0

(
n

k

)
2n−k(k/2 + 1)!C k

2

1 + (−1)k

2
.

We can use Proposition 240 to study the inverse binomial transform of s1(n). By that
proposition, the inverse binomial transform ofHn(−i)in is given by inHn(−i+ 1

2i
) = Hn(− i

2
)in.

This is the sequence
1, 1, 3, 7, 25, 81, 331, 1303, 5937, . . .

with e.g.f. ex+x2
. This is A047974 which satisfies the recurrence an = an−1 +2(n−1)an−2. It

is in fact equal to
∑bn

2
c

k=0 Bessel(n− k, k)2k. The second inverse binomial transform of s1(n)
is the sequence

1, 0, 2, 0, 12, 0, 120, 0, 1680, 0, 30240, . . .

with e.g.f. ex2
. This is an “aerated” version of the quadruple factorial numbers Cn(n+1)! =

(2n)!
n!

, or A001813.
We now look at the central coefficients B1(2n, n) of B1. We have

B1(2n, n) =
(2n)!

n!

n∑
j=0

(
n

j

)
1

(n− j)!

= Cn(n+ 1)!
n∑

j=0

(
n

j

)
1

(n− j)!

= Cn(n+ 1)
n∑

j=0

(
n

j

)2

j!

= Cn(n+ 1)!Ln(−1).

Hence
B1(2n, n)

Cn(n+ 1)!
= Ln(−1).
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We note that this is the rational sequence 1, 2, 7
2
, 17

3
, 209

24
, . . .. Two other ratios are of interest.

1. B1(2n,n)
C(2n,n)

= n!Ln(−1) is A002720. It has e.g.f. 1
1−x

exp
(

x
1−x

)
. It is equal to the number

of partial permutations of an n-set, as well as the number of matchings in the bipartite
graph K(n, n). Using Equation (11.4) we can show that these numbers obey the
following recurrence:

un = 2nun−1 − (n− 1)2un−2

with u0 = 1, u1 = 2.

2. B1(2n,n)
Cn

= (n+ 1)!Ln(−1) is A052852(n+ 1). It has e.g.f. given by

d

dx

x

1− x
exp

(
x

1− x

)
=

1

(1− x)3
exp

(
x

1− x

)
.

Again using Equation (11.4) we can show that these numbers obey the following re-
currence:

vn = 2(n+ 1)vn−1 − (n2 − 1)vn−2

with v0 = 1, v1 = 4.

This sequence counts the number of (121, 212)-avoiding n-ary words of length n. Specif-
ically,

B1(2n, n)

Cn

= f121,212(n+ 1, n+ 1)

where

f121,212(n, k) =
k∑

j=0

(
k

j

)(
n− 1

j − 1

)
j!

is defined in [45].

From this last point, we find the following expression

B1(2n, n) = Cn

n+1∑
j=0

(
n+ 1

j

)(
n

j − 1

)
j!. (11.5)

Based on the fact that

Cn =

(
2n

n

)
−
(

2n

n− 1

)
we define

C1(n) = B1(2n, n)−B1(2n, n− 1) = B1(2n, n)−B1(2n, n+ 1).
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We call C1(n) the the generalized Catalan numbers associated with the triangle B1. We
calculate B1(2n, n− 1) as follows:

B1(2n, n− 1) =
(2n)!

(n− 1)!

n−1∑
j=0

(
n− 1

j

)
1

(n− j + 1)!

=
(2n)!

(n− 1)!

n−1∑
j=0

(
n

j

)
n− j

n

1

(n− j + 1)!

=
(2n)!

n!

n∑
j=0

(
n

j

)
1

(n− j)!

n− j

n− j + 1
.

Hence

B1(2n, n)−B1(2n, n− 1) =
(2n)!

n!

n∑
j=0

(
n

j

)
1

(n− j)!
(1− n− j

n− j + 1
)

=
(2n)!

n!

n∑
j=0

(
n

j

)
1

(n− j)!

1

n− j + 1

=
(2n)!

n!

n∑
j=0

(
n

j

)
1

(n− j + 1)!
.

Starting from the above, we can find many expressions for C1(n). For example,

C1(n) =
(2n)!

n!

n∑
j=0

(
n

j

)
1

(n− j + 1)!

= Cn

n∑
j=0

(
n

j

)
(n+ 1)!

(n+ 1− j)!

= Cn

n∑
j=0

(
n

j

)(
n+ 1

j

)
j!

= Cn

n∑
j=0

(
n

j

)2
n+ 1

n− j + 1
j!

= Cn

n∑
j=0

(
n

j

)(
n+ 1

j + 1

)
(j + 1)!

n− j + 1

where we have used the fact that (2n)!
n!

= Cn(n + 1)!. This is the sequence A001813 of
quadruple factorial numbers with e.g.f. 1√

1−4x
.
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Recognizing that the terms after Cn represent convolutions, we can also write

C1(n) = Cn

n∑
j=0

(
n

j

)
(n+ 1)!

(j + 1)!

= Cn

n∑
j=0

(
n

j

)(
n+ 1

j + 1

)
(n− j)!

= Cn

n∑
j=0

(
n

j

)2
n+ 1

j + 1
(n− j)!.

We note that the first expression immediately above links C1(n) to the Lah numbers A008297
(see Chapter 8).

The ratio C1(n)
Cn

, or
∑n

j=0

(
n
j

)
(n+1)!
(k+1)!

, is the sequence

1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, . . .

or A000262(n + 1). This is related to the number of partitions of [n] = {1, 2, 3, . . . , n}
into any number of lists, where a list means an ordered subset. It also has applications in
quantum physics [31]. The sequence has e.g.f.

d

dx
e

x
1−x =

e
x

1−x

(1− x)2
,

which represents the row sums of the Riordan array
[

1
(1−x)2

, x
1−x

]
= Lag(1). We can in fact

describe this ratio in terms of the Narayana numbers Ñ(n, k) as follows:

C1(n)

Cn

=
n∑

j=0

(
n

j

)(
n+ 1

j + 1

)
(n− j)!

=
n∑

j=0

n− j + 1

n+ 1

(
n+ 1

j

)(
n+ 1

j + 1

)
(n− j)!

=
n∑

j=0

1

n+ 1

(
n+ 1

j

)(
n+ 1

j + 1

)
(n− j + 1)!

=
n∑

j=0

Ñ(n, j)(n− j + 1)!

=
n∑

j=0

Ñ(n, n− j)(j + 1)!

=
n∑

j=0

Ñ(n, j)(j + 1)!

Hence we have

C1(n)

Cn

=
n∑

j=0

Ñ(n, j)(n− j + 1)! =
n∑

j=0

Ñ(n, j)(j + 1)! =
n∑

j=0

(
n

j

)
(n+ 1)!

(j + 1)!
.
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We can generalize Proposition 247 as follows :

Proposition 252. The sequence with e.g.f. eax+bx2/2 has general term un given by

un =

bn
2
c∑

k=0

Bessel(n− k, k)an−2kbk.

Proof. We have

n![xn]eax+bx2/2 = n![xn]
∞∑
i=0

aixi

i!

∞∑
k=0

bkxk

2kk!

=

bn
2
c∑

k=0

(
n

2k

)
(2k)!

2kk!
an−2kbk

=

bn
2
c∑

k=0

Bessel(n− k, k)an−2kbk

=
n∑

k=0

Bessel(k, n− k)a2k−nbn−k.

Corollary 253. Let un be the sequence with e.g.f. eax+bx2/2. Then un satisfies the recurrence

un = aun−1 + (n− 1)bun−2

with u0 = 1, u1 = a.

Corollary 254. Let un be the sequence with e.g.f. eax+bx2/2. Then

un =
n∑

k=0

Bessel(k, n− k)a2k−nbn−k.

Corollary 255. Let un be the sequence with e.g.f. eax+bx2/2. Then un has generating function
expressible as the continued fraction

1

1− ax−
bx2

1− ax−
2bx2

1− ax−
3bx2

1− ax− · · ·

.

We close this section by remarking that the triangle A001497 with general term

[k ≤ n]Bessel(n, n− k)
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has bi-variate g.f. given by

1

1− xy −
x

1− xy −
2x

1− xy −
3x

1− · · ·
This triangle begins

(Bessel(n, n− k)) =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
3 3 1 0 0 0 . . .
15 15 6 1 0 0 . . .
105 105 45 10 1 0 . . .
945 945 420 105 15 1 . . .
...

...
...

...
...

...
. . .


.

11.4 The General Case

We shall now look at the row sums, central coefficients and generalized Catalan numbers
associated with the general matrix Br. In what follows, proofs follow the methods developed
in the last section.

Proposition 256. The row sums sr(n) of Br are given by Hn(− i√
r
)(
√
ri)n.

Proof. The row sums of Br are given by the sequence

n∑
k=0

n!

k!

k∑
j=0

(
k

j

)
rj

(n− k − j)!

with e.g.f. g(x)ef(x) = exex(1+rx) = e2x+rx2
. Now

e2x+rx2

= e
2( −i√

r
)(i
√

rx)−(i
√

rx)2

=
∞∑

n=0

Hn(− i√
r
)

n!
(i
√
rx)n

=
∞∑

n=0

Hn(− i√
r
)(i
√
r)n

n!
xn

Corollary 257. We have the identity

n∑
k=0

n!

k!

k∑
j=0

(
k

j

)
rj

(n− k − j)!
= Hn

(
− i√

r

)
(
√
ri)n =

bn
2
c∑

k=0

(
n

2k

)
(2k)!

k!
2n−2krk.
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As before, we can rewrite this using the fact that (2k)!
k!

= C(k)(k + 1)! = 2k(2k − 1)!!.

We note that the second inverse binomial transform of sr(n) has e.g.f. erx2
.

Proposition 258. The row sums of Br are equal to the diagonal sums of the matrix with
general term Bessel(n, k)2nrk. That is,

n∑
k=0

n!

k!

k∑
j=0

(
k

j

)
rj

(n− k − j)!
= Hn

(
− i√

r

)
(
√
ri)n =

bn
2
c∑

k=0

Bessel(n− k, k)2n−krk.

Proposition 259. The row sums of Br obey the recurrence

un = 2un−1 + 2r(n− 1)un−2

with u0 = 1, u1 = 2.

We now turn our attention to the central coefficients of Br.

Proposition 260. Br(2n, n) = Cn(n+ 1)!
∑n

j=0

(
k
j

)2
j!rj

Proof. The proof is the same as the calculation for B1(2n, n) in Example 245, with the extra
factor of rj to be taken into account.

Corollary 261.
Br(2n, n)

Cn(n+ 1)!
= rnLn

(
−1

r

)
=

n∑
j=0

(
n

j

)
rj

(n− j)!

for r 6= 0.

We note that the above expressions are not integers in general.
For instance, B2(2n,n)

C(2n,n)
= n!2nLn

(
−1

2

)
is A025167, and B3(2n,n)

C(2n,n)
= n!3nLn

(
−1

3

)
is A102757.

In general, we have

Proposition 262. Br(2n,n)
C(2n,n)

= n!rnLn(−1/r) has e.g.f. 1
1−rx

exp( x
1−rx

), and satisfies the re-
currence relation

un = ((2n− 1)r + 1)un−1 − r2(n− 1)2un−2

with u0 = 1, u1 = r + 1.
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Proof. We have

n![xn]
e

x
1−rx

(1− rx)
= n![xn]

∞∑
i=0

1

i!

xi

(1− rx)i
(1− rx)−1

= n![xn]
∞∑
i=0

1

i!
xi(1− rx)−i(1− rx)−1

= n![xn]
∞∑
i=0

1

i!
xi(1− rx)−(i+1)

= n![xn]
∞∑
i=0

1

i!
xi
∑
j=0

(
−(i+ 1)

j

)
(−1)jrjxj

= n![xn]
∞∑
i=0

1

i!

∑
j=0

(
i+ j

j

)
rjxi+j

= n!
n∑

j=0

(
n

j

)
rj

(n− j)!
.

To prove the second assertion, we use Equation (11.4) with t = −1
r
. Multiplying by n!rn+1,

we obtain

(n+ 1)!rn+1Ln+1

(
−1

r

)
= (2n+ 1 +

1

r
)rn+1n!Ln

(
−1

r

)
− rn+1n2(n− 1)!Ln−1

(
−1

r

)
.

Simplifying, and letting n→ n− 1, gives the result.

Corollary 263. Br(2n,n)
Cn

= (n+ 1)!rnLn(−1/r) has e.g.f. d
dx

x
1−rx

exp( x
1−rx

), and satisfies the
recurrence

wn = ((2n− 1) + r)
n+ 1

n
wn−1 − r2(n2 − 1)wn−2

for n > 1, with w0 = 1 and w1 = 2r + 2.

We can generalize Equation (11.5) to get

Br(2n, n) = Cn

n+1∑
j=0

(
n+ 1

j

)(
n

j − 1

)
j!rj−1.

We define the generalized Catalan numbers associated with the triangles Br to be the numbers

Cr(n) = Br(2n, n)−Br(2n, n− 1).

Using the methods of Example 245, we have
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Proposition 264. We have the following equivalent expressions for Cr(n):

Cr(n) =
(2n)!

n!

n∑
j=0

(
n

j

)
rj

(n− j + 1)!

= Cn

n∑
j=0

(
n

j

)
(n+ 1)!

(j + 1)!
rn−j

= Cn

n∑
j=0

(
n

j

)(
n+ 1

j + 1

)
(n− j)!rn−j

= Cn

n∑
j=0

n+ 1

j + 1

(
n

j

)2

(n− j)!rn−j

= Cn

n∑
j=0

Ñ(n, j)(j + 1)!rj.

For instance, C2(n)/Cn is A025168.

Proposition 265. Cr(n)
Cn

has e.g.f.

d

dx
e

x
1−rx =

e
x

1−rx

(1− rx)2
.

Proof. We have

n![xn]
e

x
1−rx

(1− rx)2
= n![xn]

∞∑
i=0

1

i!

xi

(1− rx)i
(1− rx)−2

= n![xn]
∞∑
i=0

1

i!
xi(1− rx)−i(1− rx)−2

= n![xn]
∞∑
i=0

1

i!
xi(1− rx)−(i+2)

= n![xn]
∞∑
i=0

1

i!
xi

∞∑
j=0

(
−(i+ 2)

j

)
(−1)jrjxj

= n![xn]
∞∑
i=0

1

i!

∞∑
j=0

(
i+ j + 1

j

)
rjxi+j

= n!
∞∑

j=0

(
n+ 1

j

)
rj

(n− j)!

= (n+ 1)!
n∑

j=0

(
n

j

)
rj

(n− j + 1)!
.
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11.5 The case r = 1
2

The assumption so far has been that r is an integer. In this section, we indicate that r = 1
2

also produces a generalized Pascal triangle. We have B 1
2

= (ex, x(1 + x/2)). This begins

B 1
2

=



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 21 10 1 0 . . .
1 15 55 55 15 1 . . .
...

...
...

...
...

...
. . .


This is triangle A100862. Quoting from A100862, B 1

2
(n, k) “is the number of k-matchings of

the corona K ′(n) of the complete graph K(n) and the complete graph K(1); in other words,
K ′(n) is the graph constructed from K(n) by adding for each vertex v a new vertex v′ and
the edge vv′”. The row sums of this triangle, A005425, are given by

1, 2, 5, 14, 43, 142, 499, 1850, 7193, . . .

These have e.g.f. e2x+x2/2 and general term

Hn(−
√

2i)(i/
√

2)n =

bn
2
c∑

k=0

(
n

2k

)
(2k)!

k!
2n−3k.

They obey the recurrence
un = 2un−1 + (n− 1)un−2

with u0 = 1, u1 = 2. This sequence is thus the second binomial transform of the aerated
double factorial numbers (see A001147) and the binomial transform of the involution numbers
A000085. They have g.f. given by the continued fraction

1

1− 2x−
x2

1− 2x−
2x2

1− 2x−
3x2

1− 2x−
4x2

1− 2x− · · ·

[32] provides an example of their use in quantum physics. Using Proposition 240 or otherwise,
we see that the inverse binomial transform of this sequence, with e.g.f. ex+x2/2, is given by

Hn

(
−
√

2i+
i√
2

)
(i/
√

2)n = Hn

(
− i√

2

)
(i/
√

2)n.
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This is the sequence
1, 1, 2, 4, 10, 26, 76, 232, 765, . . .

or A000085. It has many combinatorial interpretations, including for instance the number of
matchings in the complete graph K(n). These numbers are the diagonal sums of the Bessel
triangle Bessel:

Hn

(
− i√

2

)
(i/
√

2)n =

bn
2
c∑

k=0

Bessel(n− k, k).

Alternatively they are the row sums of the aerated Bessel triangle beginning

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 3 0 1 0 0 . . .
3 0 6 0 1 0 . . .
0 15 0 10 0 1 . . .
...

...
...

...
...

...
. . .


with general term

Bessel∗
(
n+ k

2
, k

)
1 + (−1)n+k

2

where

Bessel∗(n, k) =
(2n− k)!

k!(n− k)!2n−k
.

This sequence has g.f. given by the continued fraction

1

1− x−
x2

1− x−
2x2

1− x−
3x2

1− x−
4x2

1− x− · · ·
The aerated triangle above has g.f. given by the bi-variate continued fraction

1

1− xy −
x2

1− xy −
2x2

1− xy −
3x2

1− xy −
4x2

1− xy − · · ·
As we have seen, the row sums of B 1

2
are the second binomial transform of the sequence

1, 0, 1, 0, 3, 0, 15, 0, 105, 0, . . .
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with e.g.f. ex2/2 and o.g.f. equal to

1

1−
x2

1−
2x2

1−
3x2

1−
4x2

1− · · ·

This is an “aerated” version of the double factorial numbers (2n − 1)!!, or A001147. These
count the number of perfect matchings in the complete graph K(2n). The row sums count
the number of 12−3 and 214−3-avoiding permutations, as well as the number of matchings
of the corona K ′(n) of the complete graph K(n) and the complete graph K(1). We note
that the exponential Riordan array [1, x(1 + x

2
)] has general term

Bessel(k, n− k).

This array starts 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 3 1 0 0 . . .
0 0 3 6 1 0 . . .
0 0 0 15 10 1 . . .
...

...
...

...
...

...
. . .


.

This is 122848. The product of B and this matrix is then equal to B 1
2
, that is,

B 1
2

= B · (Bessel(k, n− k)) .

The example of B 1
2

prompts us to define a new family B̃r where B̃r is the element

[ex, x(1 + rx
2
)] of the exponential Riordan group. Then we have B̃0 = B, B̃1 = B 1

2
, B̃2 = B1

etc. We can then show that B̃r is the product of the binomial matrix B and the matrix with
general term Bessel(k, n− k)rn−k :

B̃r = B ·
(
Bessel(k, n− k)rn−k

)
.

We have

B̃r(n, k) =
n!

k!

k∑
j=0

1

2j

(
n

k

)
rj

(n− k − j)!
=

n∑
j=0

(
n

j

)
j!rj−k

(2k − j)!2j−k(j − k)!
.

Thus

B̃r(n, k) =

(
n

k

) n∑
j=0

(
n− k

n− j

)
k!

(2k − j)!

rj−k

2j−k
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and in particular

B̃r(2n, n) =

(
2n

n

) 2n∑
j=0

(
n

j − n

)
n!

(2n− j)!

rj−n

2j−n
.

Finally,

B̃r(n, k) = B̃r(n− 1, k − 1) + B̃r(n− 1, k) + r(n− 1)B̃r(n− 2, k − 1).

The foregoing has shown that the triangles Br, and more generally B̃r, defined in terms
of exponential Riordan arrays, are worthy of further study. Many of the sequences linked
to them have significant combinatorial interpretations. B 1

2
as documented in A100862 by

Deutsch has a clear combinatorial meaning. This leaves us with the challenge of finding
combinatorial interpretations for the general arrays B̃r, r ∈ Z.

11.6 A family of generalized Narayana triangles

We can use the mechanism of generalized factorials to develop a family of generalized
Narayana triangles in a manner similar to the foregoing. We recall that Ñ = P(n+1

2 ). In

other words,

Ñn,k = [k ≤ n]
a!(n)

a!(k)a!(n− k)

where a(n) =
(

n+1
2

)
. We now form the matrix Ñs with general term

N s
n,k = [k ≤ n]

a!(k)

a!(n− k)a!(2k − n)
.

This matrix therefore begins

Ñs =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 3 1 0 0 . . .
0 0 1 6 1 0 . . .
0 0 0 6 10 1 . . .
...

...
...

...
...

...
. . .


.

Then the product ÑÑs is again a Pascal-like matrix, which begins

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 6 1 0 0 0 . . .
1 24 24 1 0 0 . . .
1 70 260 70 1 0 . . .
1 165 1850 1850 165 1 . . .
...

...
...

...
...

...
. . .


.
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In general, we have the result

Proposition 266. Let Ñs(r) be the matrix with general element

N s
n,k(r) = [k ≤ n]

a!(k)

a!(n− k)a!(2k − n)
rn−k.

Then the product
ÑÑs(r)

is a Pascal-like triangle.

Thus we have another one-parameter family of Pascal-like triangles, for which the case r = 0
is the Narayana triangle Ñ. The general term of the product matrix is given by

n∑
j=0

[j ≤ n]
a!(n)

a!(j)a!(n− j)
[k ≤ j]

a!(k)rj−k

a!(j − k)a!(2k − j)

where a(n) =
(

n+1
2

)
. We can in fact show that this is equal to

a!(n)
k∑

j=0

rj

a!(j)a!(k − j)a!(n− k − j)
.
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Chapter 12

The Hankel transform of integer
sequences

In recent years, the Hankel transform of integer sequences has been the centre of much
attention [61, 78, 80, 85, 121, 139, 163, 188, 184, 187, 182, 186, 183, 181, 207]. Although the
transform is easy to define, by means of special determinants, it is possible to describe its
effect on specific sequences by means of a closed formula only in a small number of cases.
Even where such formulas are known, it is not normally easy to relate these formulas to a
clear combinatorial interpretation. Techniques used to elucidate the nature of many Hankel
transforms rely heavily on the theory of determinants, the theory orthogonal polynomials,
measure theory, the theory of continued fractions, the theory of plane partitions and lattice
paths ([100, 223]). Hankel transforms have appeared in some seminal works e.g. [160].

12.1 The Hankel transform

The Hankel transform of a given sequence A = {a0, a1, a2, ...} is the sequence of Hankel
determinants {h0, h1, h2, . . . } where hn = |ai+j|ni,j=0, i.e

A = {an}n∈N0 → h = {hn}n∈N0 : hn =

∣∣∣∣∣∣∣∣∣
a0 a1 · · · an

a1 a2 an+1
...

. . .

an an+1 a2n

∣∣∣∣∣∣∣∣∣ (12.1)

The Hankel transform of a sequence an and its binomial transform are equal.
It is known (for example, see [132, 227]) that the Hankel determinant hn of order n of

the sequence (an)n≥0 equals

hn = an+1
0 βn

1 β
n−1
2 · · · β2

n−1βn , (12.2)
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where (βn)n≥1 is the sequence given by:

G(x) =
∞∑

n=0

anx
n =

a0

1 + α0x−
β1x

2

1 + α1x− β2x
2

1 + α2x− · · ·

. (12.3)

The sequences (αn)n≥0 and (βn)n≥1 are the coefficients in the recurrence relation

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x) , (12.4)

where (Pn(x))n≥0 is the monic polynomial sequence orthogonal with respect to the functional
L determined by

an = L[xn] (n = 0, 1, 2, . . .) . (12.5)

In some cases, there exists a weight function w(x) such that the functional L can be expressed
by

L[f ] =

∫
R
f(x) w(x) dx

(
f(x) ∈ C(R); w(x) ≥ 0

)
. (12.6)

Thus we can associate to every weight w(x) two sequences of coefficients, i.e.

w(x) 7→ {αn, βn}n∈N0 , (12.7)

by

αn =
L[x P 2

n(x)]

L[P 2
n(x)]

, βn =
L[P 2

n(x)]

L[P 2
n−1(x)]

(n ∈ N0) . (12.8)

For a family of monic orthogonal polynomials (Pn)n≥0 we can write

Pn(x) =
n∑

k=0

an,kx
k,

where an,n = 1. Then the coefficient array (an,k)n,k≥0 forms a lower-triangular matrix.

12.2 Examples of the Hankel transform of an integer

sequence

Example 267. We consider generalized Fibonacci sequences of the form

an = ran−1 + san−2

for given integers r and s, where a0 = 1, a1 = 1. The case r = s = 1 is the case of the
Fibonacci numbers F (n + 1). The order of this recurrence is clearly 2. If we denote by Hn

j

the j-th column of the determinant hn, then we see that

Hn
j = rHn

j−1 + sHn
j−2
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corresponding to the recurrence that determines the sequence an. Thus after n > 1, there
is a linear dependence between columns of the determinants and hence their value is 0. We
find that the Hankel transform of an is equal to the sequence

1, r + s− 1, 0, 0, 0, . . .

h0 =
∣∣ 1

∣∣ = 1, h1 =

∣∣∣∣ 1 1
1 r + s

∣∣∣∣ = r + s− 1.

Since many pairs (r, s) have sum r+s we see that many sequences can have the same Hankel
transform. Thus the Hankel transform is not unique and therefore is not invertible.

More generally, if

an = ran−1 + san−2, a0 = t0, a1 = t1,

then the Hankel transform of an is given by

t0, rt0t1 + st20 − t21, 0, 0, 0, . . .

Similarly, if

an = ran−1 + san−2 + tan−3, a0 = 1, a1 = 1, a2 = 1,

then the Hankel transform of an is given by

1, 0, 2(1− rs− rt− st)− (r − 1)2 − (s− 1)2 − (t− 1)2, 0, 0, 0, . . .

Example 268. The Catalan numbers have many remarkable properties. Their Hankel
transform is no exception to this. We can in fact characterize the Catalan numbers as the
unique integer sequence Cn such that both Cn and Cn+1 have the all 1’s sequence 1, 1, 1, . . .
as Hankel transforms.

|1| = 1,

∣∣∣∣ 1 1
1 2

∣∣∣∣ = 1,

∣∣∣∣∣∣
1 1 2
1 2 5
2 5 14

∣∣∣∣∣∣ = 1, . . .

and

|1| = 1,

∣∣∣∣ 1 2
2 5

∣∣∣∣ = 1,

∣∣∣∣∣∣
1 2 5
2 5 14
5 14 42

∣∣∣∣∣∣ = 1, . . .

Many proofs of this result exist. For instance, to show the necessity, we can cite the following
result [100] :

| Ci+αj |n0 =
∏

0≤i<j≤n

(αj − αi)
n∏

j=0

(2αj)!

αj!(n+ αj + 1)!

n∏
i=0

(2i+ 1)!

i!
.

Allowing αj = j and αj = j + 1 yields the sequence 1, 1, 1, . . . in both cases.

271



In order to illustrate techniques that will be employed in later chapters, we provide two
different proofs of the fact that the Hankel transform of Cn is 1, 1, 1, . . ..

Proof 1. We have

Cn =
1

2π

∫ 4

0

xn

√
x(4− x)

x
dx.

Thus the measure for which the Catalan numbers are moments is given by

µ(x) = w(x)dx =
1

2π

√
x(4− x)

x
dx =

1

2π

√
4− x

x
dx.

Making the change of variable x = 2 + 2t we obtain√
4− x

x
=

√
2− 2t

2 + 2t
=

√
1− t

1 + t

and dx = 2dt. Thus

µ = 2

√
1− t

1 + t
dt,

or 2 times the measure for Wn, the Chebyshev polynomials of the fourth kind. For these
polynomials, we have [99]

β0 = π, βn =
1

4
, n ≥ 1.

Applying (i) and (ii) of the following lemma [99] now allows us to conclude that hn = 1.

Lemma 269. Let

w(x) 7→ {αn, βn}n∈N0 , w̃(x) 7→ {α̃n, β̃n}n∈N0 . (12.9)

Then

(i) w̃(x) = Cw(x) ⇒ {α̃n = αn, β̃0 = Cβ0, β̃n = βn (n ∈ N)} ; (12.10)

(ii) w̃(x) = w(ax+ b) ⇒ {α̃n =
αn − b

a
, β̃0 =

β0

a
, β̃n =

βn

a2
(n ∈ N)} ; (12.11)

(iii) If

wc(x) =
w̃(x)

x− c
(c /∈ supp(w̃)) , (12.12)

then
αc,0 = α̃0 + r0 , αc,k = α̃k + rk − rk−1,

βc,0 = −r−1, βc,k = β̃k−1
rk−1

rk−2

(k ∈ N) ,
(12.13)

where

r−1 = −
∫

R
wc(x) dx, rn = c− α̃n −

β̃n

rn−1

(n = 0, 1, . . .) . (12.14)
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Proof 2. We use the following result from [121]

Theorem 270. Consider an o.g.f. Φ(x) = 1
1−Ψ(x)

of a sequence (an), with Ψ(0) = 0 and
suppose that

ξ(x) =
Ψ(x)

x
−Ψ′(0)

satisfies
ξ(x) = x(λ+ µξ(x) + νξ2(x)).

Then the Hankel transform (hn) of (an) is given by

hn = λn(n+1)/2νn(n−1)/2.

Thus we let c(x) = 1−
√

1−4x
2x

be the o.g.f. of the Catalan numbers, and let

Φ(x) = c(x) =
1−

√
1− 4x

2x
,

and

Ψ(x) = 1− 1

Φ(x)
=

1−
√

1− 4x

2
.

We note that Ψ′(0) = 1 and so we can define

ξ(x) =
Ψ(x)

x
−Ψ′(0) =

1− 2x−
√

1− 4x

2x
.

We now seek λ, µ and ν such that if

g(x) = λ+ µξ(x) + νξ2(x)

then we have

g(x) =
ξ(x)

x
.

In this case, we find that
λ = 1, µ = 2, ν = 1.

Thus the Hankel transform of Cn is given by

λn(n+1)/2νn(n−1)/2 = 1.

Now let

Φ(x) =
1− 2x−

√
1− 4x

2x2

be the o.g.f. of Cn+1. Then

Ψ(x) = 1− 1

Φ(x)
=

1 + 2x−
√

1− 4x

2
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with Ψ′(0) = 2. Thus we can define

ξ(x) =
Ψ(x)

x
−Ψ′(0) =

1− 2x−
√

1− 4x

2x
.

As in the previous case, we find that for

g(x) = λ+ µξ(x) + νξ2(x)

with

g(x) =
ξ(x)

x
,

we have
λ = 1, µ = 2, ν = 1.

Hence again we find that the Hankel transform of Cn+1 is the all 1’s sequence.

12.3 A family of Hankel transforms defined by the

Catalan numbers

We now study a family of Hankel transforms that give rise to sequences that have been much
studied in the literature. This family will be defined by the Hankel transforms of the columns
of the sequence array of the Catalan numbers. Thus we consider the array (c(x), x)) with
general term Tn,k := Cn−k[k ≤ n]. We define the array with general term Hn,k = |Ti+j,k|ni,j=0.
Thus the matrix 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
5 2 1 1 0 0 . . .
14 5 2 1 1 0 . . .
42 14 5 2 1 1 . . .
...

...
...

...
...

...
. . .


is mapped onto the matrix of Hankel transforms

1 0 0 0 0 0 . . .
1 −1 0 0 0 0 . . .
1 −2 −1 0 0 0 . . .
1 −3 −5 1 0 0 . . .
1 −4 −14 14 1 0 . . .
1 −5 −30 84 42 −1 . . .
...

...
...

...
...

...
. . .


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Multiplying by (−1)(
k+1
2 ), we obtain the positive matrix

((−1)(
k+1
2 )Hn,k) =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 5 1 0 0 . . .
1 4 14 14 1 0 . . .
1 5 30 84 42 1 . . .
...

...
...

...
...

...
. . .


The corresponding square array ((−1)(

k+1
2 )Hn+k,k) is given by

((−1)(
k+1
2 )Hn+k,k) =



1 1 1 1 1 1 . . .
1 2 5 14 42 132 . . .
1 3 14 84 594 4719 . . .
1 4 30 330 4719 81796 . . .
1 5 55 101 26026 884884 . . .
1 6 91 2548 111384 6852768 . . .
...

...
...

...
...

...
. . .


This last array plays an important role in several theories :

1. It enumerates the number of Kekulé structures for certain prolate pentagons (special
pentagon-shaped benzenoid hydrocarbons) [62].

2. It corresponds to the transpose of the matrix with general element
n∏

i=1

n∏
j=1

i+ j + 2k

i+ j
=

n∏
i=1

(
2i+2k

i

)(
2i
i

)
which enumerates certain plane partitions [95].

3. This array can be embedded into the more general array

1 1 1 1 1 1 . . .
1 1 2 5 14 42 . . .
1 1 3 14 84 594 . . .
1 1 4 30 330 4719 . . .
1 1 5 55 101 26026 . . .
1 1 6 91 2548 111384 . . .
...

...
...

...
...

...
. . .


where we conjecture that the o.g.f. of the n-th row is given by

n+1Fn(1, 1/2, 3/2, . . . , (2n− 1)/2;n+ 1, n+ 2, . . . , 2n; 22nx).

The transpose of this array has general term

n−1∏
i=1

(
2i+2k

i

)(
2i
i

) .
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12.4 Krattenthaler’s results

It is useful to summarize the results of Krattenthaler on Hankel transforms of integer se-
quences. These can be derived from the interpretation of the Hankel transform that is based
on a study of appropriate non-intersecting Motzkin paths, first found in [223].

Proposition 271. [131, 132, 134] Let (µk)k≥0 be a sequence of numbers with generating
function

∑∞
k=0 µkx

k written in the form

∞∑
k=0

µkx
k =

µ0

1− a0x−
b1x

2

1− a1x−
b2x

2

1− a2x−
b3x

2

1− a3x− . . .

Then

1.
det(µk+j)0≤i,j≤n−1 = µn

0b
n−1
1 bn−2

2 · · · b2n−2bn−1.

2. If (qn)n≥0 is the sequence recursively defined by q0 = 1, q1 = −a0, and

qn+1 = anqn − bnqn−1, (12.15)

then
det(µi+j+1)0≤i,j≤n−1 = µn

0b
n−1
1 bn−2

2 · · · b2n−2bn−1qn

and

det(µi+j+2)0≤i,j≤n−1 = µn
0b

n−1
1 bn−2

2 · · · b2n−2bn−1

n∑
k=0

q2
kbk+1 · · · bn−1bn.

3. Letting µ−1 = 0, for n ≥ 2 we have

det(µi+j−1)0≤i,j≤n−1 = −µ2
0b

n−2
0 det(µ̃i+j+1)0≤i,j≤n−3,

where the µ̃k’s are given by the generating function

∞∑
k=0

µ̃kx
k =

µ0

1− a1x−
b2x

2

1− a2x−
b3x

2

1− a3x−
b4x

2

1− a4x− . . .

.

Example 272. We illustrate (2) in the above with the sequence un given by 1, 1, 2, 6, 21, 79, 311, . . .,
A033321, the binomial transform of the Fine numbers A000957. The g.f. of the sequence is
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given by

g(x) =
1

1− x− x2

1− 3x− x2

1− 3x− x2

1− 3x− . . .

or 2
1+x+

√
1−6x+5x2 = 1+x−

√
1−6x+5x2

2x(2−x)
. It is given by the first column of the Riordan array(

1 + 2x

1 + 3x+ x2
,

x

1 + 3x+ x2

)−1

=

(
1 + x−

√
1− 6x+ 5x2

2x(2− x)
,
1− 3x−

√
1− 6x+ 5x2

2x

)
,

which has production array 

1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 0 1 3 1 0 . . .
0 0 0 1 3 1 . . .
0 0 0 0 1 3 . . .
...

...
...

...
...

...
. . .


.

We see immediately that hn = 1. We now wish to calculate the Hankel transform of un+1.
Thus we must find qn such that q0 = 1, q1 = −a0, and

qn+1 = anqn − bnqn−1,

where an = 1 and bn = 3− 2 · 0n

We find that q(n) is the sequence F (2n − 1) or 1, 1, 2, 5, 13, 34, 89, . . .. Thus the Hankel
transform of un+1 is F (2n+ 1). Now the Riordan array

(
1+2x

1+3x+x2 ,
x

1+3x+x2

)
begins

1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
2 −4 1 0 0 0 . . .
−5 13 −7 1 0 0 . . .
13 −40 33 −10 1 0 . . .
−34 120 −132 62 −13 1 . . .

...
...

...
...

...
...

. . .


.

Inspecting equations 2.1 and 12.15, we see that we in fact have qn = (−1)ntn, where tn is the
sequence in the first column of the coefficient array for the orthogonal polynomials associated
to un. In this case, this is the Riordan array

(
1+2x

1+3x+x2 ,
x

1+3x+x2

)
. We thus have the following

result : the Hankel transform of the sequence un+1, where un is the binomial transform of
the Fine numbers, is the sequence F (2n+ 1) with g.f. 1−x

1−3x+x2 .
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It is instructive to carry out the same analysis for the Fine numbers. We can easily derive
the following : The Fine numbers are defined as the first column of the Riordan array(

1 + 2x

(1 + x)2
,

1

(1 + x)2

)−1

=

(
1

1− (xc(x))2
, c(x)− 1

)
,

which has production array 

0 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
0 1 2 1 0 0 . . .
0 0 1 2 1 0 . . .
0 0 0 1 2 1 . . .
0 0 0 0 1 2 . . .
...

...
...

...
...

...
. . .


.

The array
(

1+2x
(1+x)2

, 1
(1+x)2

)
begins

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
−1 −2 1 0 0 0 . . .
2 2 −4 1 0 0 . . .
−3 0 9 −6 1 0 . . .
4 −5 −14 20 −8 1 . . .
...

...
...

...
...

...
. . .


.

We deduce that the Hankel transform of the Fine numbers is hn = 1, while that of the once
shifted Fine sequence is −n.
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Chapter 13

Row sum and central coefficient
sequences of Pascal triangles defined
by exponential Riordan arrays

In this chapter, we study sequences associated to two closely linked families of Pascal-like
matrices. We derive expressions for the Hankel transform of the row sums of one of the fam-
ilies, and we characterize sequences of central coefficients in terms of the associated Laguerre
polynomials. Links to the Narayana numbers are made explicit.

In Chapter 11 (and see [17]) we studied a family of Pascal-like matrices Br, and gave a
characterization of their central coefficients and associated analogues of the Catalan num-
bers. It was indicated that a family B̃ of matrices was the more fundamental family further.
We now investigate aspects of these two families. In doing so, we introduce a new family of
Pascal-like triangles, and study properties of this new family. This allows us to re-interpret
and extend some results in Chapter 11.

We use the vehicle of exponential Riordan arrays to give a unifying theme to methods
employed in this chapter.

The Laguerre and Hermite polynomials will be seen to play an important role in this
chapter. We follow the notation of Chapter 11.

The associated Laguerre polynomials [241] are defined by

L(α)
n (x) =

1

n!

n∑
k=0

n!

k!

(
n+ α

n− k

)
(−x)k.

Their generating function is

e
−xz
1−z

(1− z)α+1
.

The Laguerre polynomials are given by Ln(x) = L
(0)
n (x). The associated Laguerre polynomi-

als are closed linked to the exponential Riordan array

Lag(α)[t] =

[
1

(1− tx)α+1
,

x

1− tx

]
279



where we have followed the notation of Chapter 11. The general term of this matrix is

Lag(α)[t](n, k) =
n!

k!

(
n+ α

n− k

)
tn−k

The Hermite polynomials Hn(x) [238] are defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2

.

They obey Hn(−x) = (−1)nHn(x) and can be defined by the recurrence

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (13.1)

They have a generating function given by

e2tx−x2

=
∞∑

n=0

Hn(t)

n!
xn.

These polynomials are closely related to the generalized exponential Riordan array

[e−x2

, 2x],

which is A060821.
We shall be interested in the Hankel transform of certain sequences in this chapter.

Example 273. A well-known Hankel transform [183] is that of the Bell numbers Bn (see
Example 33), defined by

Bn =
n∑

k=0

S(n, k)

where S(n, k) represents the Stirling numbers of the second kind, elements of the matrix

S = [1, ex − 1].

This is the sequence 1, 2, 5, 15, 52 . . ., A000110. Its Hankel transform is given by

n∏
k=1

k!

One way of making this explicit is to calculate the LDLt decomposition of the Hankel matrix
with general term Bi+j. We let D = diag(n!) be the diagonal matrix with diagonal elements
1, 1, 2, 6, 24, . . .. Then we find that

(Bi+j)i,j≥0 = S ·B ·D ·Bt · St.

Since S and B are lower-triangular with 1’s on the diagonal, we see that

det(Bi+j)0≤i,j≤n =
n∏

k=0

k!
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as required.
The internal matrix B ·D ·Bt has general term

∑
j

(
n
j

)(
k
j

)
j!. We have

B ·D ·Bt =



1 1 1 1 1 1 . . .
1 2 3 4 5 6 . . .
1 3 7 13 21 31 . . .
1 4 13 34 73 136 . . .
1 5 21 73 209 501 . . .
1 6 31 136 501 1546 . . .
...

...
...

...
...

...
. . .


This is A088699, with e.g.f. ex

1−y−xy
. The lower triangular matrix associated to this infinite

square matrix thus has general term

T (n, k) = [k ≤ n]
n∑

j=0

(
n− k

j

)(
k

j

)
j!

where we have used the Iverson bracket notation [106], defined by [P ] = 1 if the proposition
P is true, and [P ] = 0 if P is false. This matrix is directly related to matrices in which we
will be interested in the next section.

13.1 The family B̃r of Pascal-like matrices

Following Chapter 11 (see also [17]), we define the family B̃r of Pascal-like matrices by

B̃r =
[
ex, x

(
1 +

r

2
x
)]
.

The general term B̃r(n, k) of this matrix is seen to be

B̃r(n, k) =
n!

k!

k∑
j=0

(
k

j

)
rj

2j(n− k − j)!

=

(
n

k

) k∑
j=0

(
k

j

)
(n− j)!rj

2j(n− k − j)!

=

(
n

k

) k∑
j=0

(
k

j

)(
n− k

j

)
j!
(r

2

)j

=

(
n

k

)
T̃r(n, k)

where

T̃r(n, k) =
k∑

j=0

(
n− k

j

)(
k

j

)
j!
(r

2

)j

.
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Note that T̃1(n, k) is not an integer matrix.
We are interested in the row sums of B̃r. By the theory of exponential Riordan arrays,

these row sums have e.g.f.
exex(1+ r

2
x) = e2x+ r

2
x2

.

By the invariance of the Hankel transform under the binomial transform, this means that
the Hankel transform of the row sums of B̃r is the same as the Hankel transform of the
sequence with e.g.f. e

r
2
x2

. Now we have

n![xn]ebx2

= n![xn]
∞∑

k=0

bk

k!
x2k

= n!
b

n
2

(n
2
)!

1 + (−1)n

2
,

hence the sequence with e.g.f. e
r
2
x2

has n-th term

n!
( r

2
)

n
2

(n
2
)!

1 + (−1)n

2
.

Rather than working with this sequence directly, we use a result of Radoux, [186, 181, 183],
namely that the Hankel transform of the sequence of involutions A000085 with e.g.f. ex+x2/2

is equal to
∏n

k=1 k!. An easy modification of the proof method in [183], or an appeal to the
multilinearity of the determinant function, shows that the Hankel transform of the sequence
with e.g.f. ex+ r

2
x2

is given by
n∏

k=1

rkk! = r(
n+1

2 )
n∏

k=1

k!

Thus we obtain

Proposition 274. The Hankel transform of the row sums of the matrix B̃r is the sequence

n∏
k=1

rkk! = r(
n+1

2 )
n∏

k=1

k!

We can also use this to extend a result of [17] (see Proposition 252 of Chapter 11).

Proposition 275. The sequence with e.g.f. eax+ b
2
x2

has general term un given by

un =

bn
2
c∑

k=0

(
n

2k

)
(2k)!

2kk!
an−2kbk =

bn
2
c∑

k=0

(
n

2k

)
Ck

2k
(k + 1)!an−2kbk

and Hankel transform given by
n∏

k=1

bkk!
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We finish this section by relating this row sum to the Hermite polynomials. We have

e2x+ r
2
x2

= e2(−i
√

2
r
)(i
√

r
2
x)−(i

√
r
2
x)2

=
∞∑

n=0

1

n!
Hn

(
−i
√

2

r

)(
i

√
r

2
x

)n

=
∞∑

n=0

Hn

(
−i
√

2

r

)(
i

√
r

2

)n
xn

n!
.

We conclude that the row sums of B̃r are given by

n∑
k=0

n!

k!

k∑
j=0

(
k

j

)
rj

2j(n− k − j)!
= Hn

(
−i
√

2

r

)(
i

√
r

2

)n

.

We can of course reverse this identity to solve for Hn(x) in terms of B̃r(n, k). Writing
Tn,k(r) = B̃r(n, k) where now r can take on complex values, we obtain

Hn(x) =
n∑

k=0

n!

k!

k∑
j=0

(
k

j

)
(−1)jxn−2j

(n− k − j)!
=

n∑
k=0

xnTn,k

(
− 2

x2

)
. (13.2)

This now allows us to define, for an integer m, the generalized Hermite polynomials

H(m)
n (x) =

n∑
k=0

xnTn,k

(
−m
x2

)
. (13.3)

13.2 Central sequences related to the family Tr

In this section, we will use the notation Br to represent the matrix [ex, x(1 + rx)]. Thus
we have, for instance, B 1

2
= B̃1. It is evident from the last section that the general term

Br(n, k) of the matrix Br is given by

Br(n, k) =

(
n

k

)
Tr(n, k)

where

Tr(n, k) =
k∑

j=0

(
n− k

j

)(
k

j

)
j!rj.

We therefor define the matrix Tr to be the matrix with general term [k ≤ n]
∑k

j=0

(
n−k

j

)(
k
j

)
j!rj.

We note that

Tr(n, k) =
k∑

j=0

(
n− k

k − j

)
k!

j!
rj.
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We have, for instance,

T1 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 7 4 1 0 . . .
1 5 13 13 5 1 . . .
...

...
...

...
...

...
. . .


The row sums of this matrix are given by A081124, the binomial transform of bn

2
c!. Similarly,

T2 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 5 5 1 0 0 . . .
1 7 17 7 1 0 . . .
1 9 37 37 9 1 . . .
...

...
...

...
...

...
. . .


We note that T0 is the partial sum matrix, with 1’s in all the non-zero locations.

We now turn our attention to the central coefficients of Tr. Thus we have

Tr(2n, n) =
n∑

j=0

(
2n− n

j

)(
n

j

)
j!rj

=
n∑

j=0

(
n

j

)2

j!rj

Alternatively,

Tr(2n, n) =
n∑

j=0

(
n

n− j

)
n!

j!
rj

=
n∑

j=0

(
n

j

)
n!

j!
rj.

Clearly, we have

Tr(2n, n+ 1) =
n−1∑
j=0

(
n− 1

j

)(
n+ 1

j

)
j!rj.

We define the generalized Catalan numbers associated to Tr to be the numbers

CT
r (n) = Tr(2n, n)− Tr(2n, n+ 1)

in analogy to the usual Catalan numbers which are equal to
(
2n
n

)
−
(

2n
n+1

)
. Then we have

CT
r (n) =

n∑
j=0

(
n

j

)2

j!rj −
n−1∑
j=0

(
n− 1

j

)(
n+ 1

j

)
j!rj.
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It is easy to characterize the central coefficients Tr(2n, n).

Proposition 276. Tr(2n, n) are the row sums of the matrix Lag[r].

Proof. We have

Lag[r] =

[
1

1− rx
,

x

1− rx

]
.

This matrix has row sums with e.g.f. 1
1−rx

e
x

1−rx . Expanding this expression, we find the
general term to be

n![xn]
1

1− rx
e

x
1−rx = n!

n∑
j=0

(
n

j

)
rj

(n− j)!

=
n∑

j=0

(
n

j

)
n!

(n− j)!
rj

=
n∑

j=0

(
n

j

)2

j!rj

From the above, this is precisely Tr(2n, n).

Corollary 277. Tr(2n, n) = n!rnLn(−1/r).

Proof. We have

Tr(2n, n) =
n∑

j=0

(
n

j

)
n!

(n− j)!
rj

=
n∑

j=0

(
n

n− j

)
n!

j!
rn−j

= rn

n∑
j=0

(
n

j

)
n!

j!

(
−
(
−1

r

))j

= n!rnLn

(
−1

r

)
.

We now wish to study Tr(2n, n+1) = Tr(2n, n−1). To this end, we let an = Tr(2n, n+1)
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and examine the shifted sequence an+1 first. We have

an+1 =
n∑

j=0

(
n

j

)(
n+ 2

j

)
j!rj

=
n∑

j=0

(
n+ 2

j

)
n!

(n− j)!
rj

=
n∑

j=0

(
n+ 2

n− j

)
n!

j!
rn−j

= n!rnL(2)
n

(
−1

r

)
.

Thus we obtain

Proposition 278. The generalized Catalan numbers CT
r (n) are given by CT

r (0) = 1, and

CT
r (n) = n!rnLn

(
−1

r

)
− (n− 1)!rn−1L

(2)
n−1

(
−1

r

)
, n > 0.

We can also characterize these numbers in term of the Narayana numbers [212], [213]

N(n, k) =
1

k + 1

(
n

k

)(
n− 1

k

)
.

This follows from the fact - shown after the next proposition - that their e.g.f. is given by

re
x

1−rx − (r − 1).

Proposition 279.

CT
r (n) =

n∑
k=0

N(n, k)rk+1(k + 1)!− (r − 1)0n.

Proof. We have

n![xn]e
x

1−rx = n![xn]
∞∑
i=0

1

i!

xi

(1− rx)i

= n![xn]
n∑

i=0

xi

i!

∑
k=0

(
i+ k − 1

k

)
rkxk

= n!
n−1∑
k=0

1

(n− k)!

(
n− 1

k

)
rk

=
n∑

k=0

n!

(n− k)!

(
n− 1

k

)
rk

=
n∑

k=0

(
n

k

)(
n− 1

k

)
k!rk

=
n∑

k=0

1

k + 1

(
n

k

)(
n− 1

k

)
(k + 1)!rk.

286



Thus the general term in the expansion of re
x

1−rx − (r − 1) is given by

n∑
k=0

1

k + 1

(
n

k

)(
n− 1

k

)
(k + 1)!rk+1 − (r − 1)0n.

We note that the e.g.f. of Tr(2n, n + 1) is given by e
x

1−rx (1−r+r2x)
1−rx

+ (r − 1). This is
essentially the statement that the e.g.f. of an+1 = Tr(2n+ 2, n+ 2) is given by

e
x

1−rx

(1− rx)3
,

which follows immediately from the fact that

an+1 =
n∑

k=0

n!

k!

(
n+ 2

n− k

)
rn−k.

In other words, an+1 represents the row sums of the matrix

Lag(2)[r] =

[
1

(1− rx)3
,

x

1− rx

]
.

Thus the e.g.f. of CT
r (n) is given by

1

1− rx
e

x
1−x − e

x
1−rx (1− r + r2x)

1− rx
− (r − 1),

which is re
x

1−rx − (r − 1).

13.3 Central coefficient sequences of the family Br

The results of the last section now allow us to re-examine and extend some results of Chapter
11 (see also [17]) concerning the central coefficients of Br. We have

Br(2n, n) =

(
2n

n

)
Tr(2n, n)

=

(
2n

n

)
rnn!Ln

(
−1

r

)
=

(2n)!

n!
rnLn

(
−1

r

)
.

Similarly, we have

Br(2n, n+ 1) = Br(2n, n− 1)

=

(
2n

2n− 1

)
rn−1(n− 1)!L

(2)
n−1

(
−1

r

)
=

(2n)!

(n+ 1)!
rn−1L

(2)
n−1

(
−1

r

)
.
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Hence we have

CB
r (n) = Br(2n, n)−Br(2n, n+ 1) =

(2n)!

n!

[
rnLn

(
−1

r

)
− 1

n+ 1
rn−1L

(2)
n−1

(
−1

r

)]
.

In Chapter 11 (see also [17]), we studied the ratio of the generalized Catalan numbers CB
r (n)

and Cn, the Catalan numbers. Using the above expression, we obtain

CB
r (n)

Cn

= (n+ 1)!rnLn

(
−1

r

)
− n!L

(2)
n−1

(
−1

r

)
.

In the notation of Chapter 10, this is equal to

n∑
k=0

Ñ(n, k)(k + 1)!rk

where Ñ(n, k) = 1
k+1

(
n
k

)(
n+1

k

)
. We immediately obtain

Proposition 280.

CB
r (n) =

CnC
T
r (n+ 1)

r
, r 6= 0.

13.4 A note on the construction of Tr

As noted in A108350, the method of construction of the matrices Tr is quite general. This
becomes clear when we realize that it is the lower triangular version of the symmetric matrix

B ·D ·Bt

where for Tr, D = diag(n!rn). A108350 is similarly constructed with D = diag(n+1 mod 2).
For D = diag(kn) we get a series of “(1, k, 1)-Pascal” matrices, with k = 1 giving Pascal’s
triangle A007318, and k = 2 giving the Delannoy triangle A008288. A086617 corresponds,
for instance, to D = diag(Cn).

288

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A108350
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A108350
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A007318
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A008288
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A086617


Chapter 14

Generalized trinomial numbers,
orthogonal polynomials and Hankel
transforms 1

14.1 Introduction

This chapter takes the generalized central trinomial numbers [171] as a vehicle to explore
the links that exist between certain sequences of integers, orthogonal polynomials, Riordan
arrays and Hankel transforms.
We recall that the central binomial coefficients 1, 2, 6, 20, 70, 252 . . . with general term

(
2n
n

)
are the sequence A000984. They have g.f. 1√

1−4x
. The aerated sequence 1, 0, 2, 0, 6, 0, 20, . . .

with g.f. 1√
1−4x2 has general term equal to [xn](1 + x2)n. Similarly, the central trinomial

coefficients tn = [xn](1+x+x2)n which begin 1, 1, 3, 7, 19, 51, . . . have g.f. equal to 1√
1−2x−3x2 .

The study of integer sequences often involves looking at transformations that send one
integer sequence into another one. For instance, we know that the binomial transform [230]
of the sequence with general term an returns the sequence with general term bn defined by

bn =
n∑

k=0

(
n

k

)
ak.

This transformation is invertible, with inversion formula

an =
∑
k=0

(−1)n−k

(
n

k

)
bk.

If we regard the sequence (an)n≥0 as the column vector (a0, a1, a2, . . .)
T then this transfor-

mation can be represented by the matrix B with general term
(

n
k

)
(where we take the top

1This chapter reproduces the content of the conference paper “P. Barry, P. M. Rajkovic and
M. D. Markovic, Generalized trinomial numbers, orthogonal polynomials and Hankel transforms, ALA2008,
Novi Sad, Serbia.” [23].
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left term of the matrix to have index (0, 0)) multiplying the vector on the left. For instance,
we have 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .





1
0
2
0
6
0
...


=



1
1
3
7
19
51
...


.

That is, the central trinomial numbers are the binomial transform of the aerated central
binomial coefficients. We note that the matrix B is in fact Pascal’s triangle.
In particular, we have

1

1− x

1√
1− 4( x

1−x
)2

=
1√

1− 2x− 3x2
.

14.2 The central trinomial coefficients, orthogonal poly-

nomials and Hankel transform

In this section, we shall look at the specific example of the central trinomial coefficients to
exhibit links between an integer sequence, Riordan arrays, orthogonal polynomials and the
Hankel transform.

Thus we let tn denote the general term of the sequence with g.f. 1√
1−2x−3x2 . Many

formulas are known for tn, including

tn =
n∑

k=0

(
n

2k

)(
2k

k

)
=

n∑
k=0

(
n

k

)(
k

n− k

)
=

n∑
k=0

(
n

k

)(
k

k/2

)
(1 + (−1)k)/2

=
n∑

k=0

(−1)n−k

(
n

k

)(
2k

k

)
.

These equations show that tn is both the binomial transform of the aerated central binomial
coefficients

(
n

n/2

)
(1 + (−1)n)/2 or 1, 0, 2, 0, 6, 0, 20, . . . and the inverse binomial transform of

the central binomial coefficients
(
2n
n

)
. It is easy to verify these algebraically by means of the

Riordan array representation of B =
(

1
1−x

, x
1−x

)
and the generating functions of

(
2n
n

)
and its

aeration. Thus we have

1

1− x

1√
1− 4( x

1−x
)2

=
1√

1− 2x− 3x2
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while
1

1 + x

1√
1− 4 x

1+x

=
1√

1− 2x− 3x2
.

We now wish to represent the central trinomial numbers in moment form:

tn =

∫
R
xnw(x)dx

for the appropriate weight function w(x). Using the Sieltjes transform on the g.f. 1√
1−2x−3x2 ,

we find that

tn =
1

π

∫ 3

−1

xn 1√
−x2 + 2x+ 3

dx

and hence w(x) = 1
π

1√
−x2+2x+3

1[−1,3].

We can now use this to calculate the sequences (αn) and (βn), and from these we can con-
struct both the associated family of orthogonal polynomials Pn(x), and the Hankel transform
of tn.

We start with the weight function w0(x) = 1√
1−x2 of the Chebyshev polynomials of the

first kind Tn(x). For these polynomials, we have

α(0)
n = 0, β

(0)
0 = π, β

(0)
1 =

1

2
, β(0)

n =
1

4
, (n > 1).

Now

w1(x) =
1√

−x2 + 2x+ 3
=

1

2

1√
1− (x−1

2
)2

=
1

2
w0(

x− 1

2
).

Hence by Lemma 269 we have

α(1)
n =

0 + 1/2

1/2
= 1, β

(1)
0 =

1

2
2π = π, β

(1)
1 = 4

1

2
= 2, β(1)

n = 4
1

4
= 1, (n > 1).

Finally w(x) = 1
π
w1(x) and so

αn = 1, β0 =
1

π
π = 1, β1 = 2, βn = 1, (n > 1).

We immediately see that the Hankel transform of tn is given by hn = 2n.
Also, the family of orthogonal polynomials Pn(x) associated to the sequence tn, which

satisfy the recurrence

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x), P−1 = 0, P0 = 1,

can be calculated as follows:

P1(x) = (x− 1)P0(x)− P−1(x) = x− 1;

P2(x) = (x− 1)P1(x)− 2P0(x) = (x− 1)2 − 2 = x2 − 2x− 1;

P3(x) = (x− 1)P2(x)− P1(x) = (x− 1)(x2 − 2x− 1)− (x− 1) = x3 − 3x2 + 2;

. . .
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This implies that the coefficient array for the polynomials Pn(x) takes the form

(an,k) =



1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
−1 −2 1 0 0 0 . . .
2 0 −3 1 0 0 . . .
−1 4 2 −4 1 0 . . .
−1 −5 5 5 −5 1 . . .
...

...
...

...
...

...
. . .


.

In terms of Riordan arrays, we have

(an,k) =

(
1− x2

1 + x+ x2
,

x

1 + x+ x2

)
.

We note that(
1− x2

1 + x+ x2
,

x

1 + x+ x2

)
=

(
1− x2

1 + x2
,

x

1 + x2

)(
1

1 + x
,

x

1 + x

)
,

where the first array on the RHS is closely associated to the Chebyshev polynomials of the
first kind (it is the coefficient array for 2Tn(x/2)). We can deduce from the last equation
that

an,k =
n∑

j=0

2n+ 0n+j

n+ j + 0n+j

(n+j
2

n−j
2

)
(−1)(n−j)/2 (1 + (−1)n−j)

2
(−1)j−k

(
j

k

)
.

Equivalently, we have
Pn(x) = 2Tn((x− 1)/2).

We have the following equality of Riordan arrays(
1− x2

1 + x+ x2
,

x

1 + x+ x2

)−1

=

(
1√

1− 2x− 3x2
,
1− x−

√
1− 2x− 3x2

2x

)
which shows an explicit link to the numbers tn, which appear as the first column of the
inverse. Writing

L =

(
1− x2

1 + x+ x2
,

x

1 + x+ x2

)−1

we obtain the following factorization of the (infinite) Hankel matrix H = (ti+j)i,j≥:

H = L ·D · LT

where D is the diagonal matrix with entries 1, 2, 2, 2, . . .. In detail, we have

1 1 3 7 19 51 . . .
1 3 7 19 51 141 . . .
3 7 19 51 141 393 . . .
7 19 51 141 393 1107 . . .
19 51 141 393 1107 3139 . . .
51 141 393 1107 3139 8953 . . .
...

...
...

...
...

...
. . .


=
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

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
3 2 1 0 0 0 . . .
7 6 3 1 0 0 . . .
19 16 10 4 1 0 . . .
51 45 30 15 5 1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
0 0 2 0 0 0 . . .
0 0 0 2 0 0 . . .
0 0 0 0 2 0 . . .
0 0 0 0 0 2 . . .
...

...
...

...
...

...
. . .





1 1 3 7 19 51 . . .
0 1 2 6 16 45 . . .
0 0 1 3 10 30 . . .
0 0 0 1 4 15 . . .
0 0 0 0 1 5 . . .
0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .


.

We note that as expected the production matrix of L is given by

1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
0 1 1 1 0 0 . . .
0 0 1 1 1 0 . . .
0 0 0 1 1 1 . . .
0 0 0 0 1 1 . . .
...

...
...

...
...

...
. . .


.

14.3 Generalized central trinomial coefficients, orthog-

onal polynomials and Hankel transforms

In this section, we turn our attention to the general case of the central coefficients of the
expression (1 +αx+ βx2)n. Following [171], we call these numbers generalized central trino-
mial coefficients, with integer parameters α and β. We will use the notation tn(α, β) when
it is necessary to specify the dependence on α and β. Thus

tn(α, β) = [xn](1 + αx+ βx2)n.

We have

tn(α, β) =

bn
2
c∑

k=0

(
n

2k

)(
2k

k

)
αn−2kβk.

The generating function for tn(α, β) is given by

1√
1− 2αx+ (α2 − 4β)x2

.

This can be obtained through an application of the Lagrange inversion formula (see Example
12). Applying the Stieltjes transform, we find the moment representation

tn(α, β) =
1

π

∫ α+2
√

β

α−2
√

β

xn 1√
(4β − α2) + 2αx− x2

dx

=
1

π

∫ α+2
√

β

α−2
√

β

xn 1√
4β − (x− α)2

dx.
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Proposition 281. The Hankel transform of tn(α, β) is given by hn = 2nβ(n+1
2 ).

Proof. We have

w(x) =
1

π

1√
4β − (x− α)2

1[α−2
√

β,α+2
√

β].

We start with the weight function w0(x) = 1√
1−x2 of the Chebyshev polynomials of the

first kind Tn(x). For these polynomials, we have

α(0)
n = 0, β

(0)
0 = π, β

(0)
1 =

1

2
, β(0)

n =
1

4
, (n > 1).

Now

w1(x) =
1√

4β − (x− α)2
=

1

2
√
β

1√
1− (x−α

2
√

β
)2

=
1

2
√
β
w0(

x− α

2
√
β

).

Hence by Lemma 269 we have

α(1)
n =

0 + α/2
√
β

1/2
√
β

= α, β
(1)
0 =

1

2
√
β

2
√
βπ = π,

β
(1)
1 = 4β

1

2
= 2β, β(1)

n = 4β
1

4
= β, (n > 1).

Finally w(x) = 1
π
w1(x) and so

αn = α, β0 =
1

π
π = 1, β1 = 2β, βn = β, (n > 1).

Hence hn = 2β(n+1
2 ) as required.

The family of orthogonal polynomials Pn(x) associated to the sequence tn, which satisfy
the recurrence

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x), P−1 = 0, P0 = 1,

can be calculated as follows:

P1(x) = (x− α)P0(x)− P−1(x) = x− α;

P2(x) = (x− α)P1(x)− 2βP0(x) = (x− α)2 − 2β = x2 − 2αx+ α2 − 2β;

P3(x) = (x− α)P2(x)− βP1(x) = x3 − 3αx2 + (3α2 − 3β)x+ α(3β − α2);

. . .

This implies that the coefficient array for the polynomials Pn(x;α, β) takes the form

(an,k) =



1 0 0 0 0 0 . . .
−α 1 0 0 0 0 . . .

α2 − 2β −2α 1 0 0 0 . . .
α(3β − α2) 3(α2 − β) −3α 1 0 0 . . .

α4 − 4α2β + 2β2 4α(2β − α2) 2(3α2 − 2β) −4α 1 0 . . .
−α(α4 − 5α2β + 5β2) 5(α4 − 3α2β + β2) 5α(3β − 2α2) 5(2α2 − β) −5α 1 . . .

...
...

...
...

...
...

. . .


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That is,

(an,k) =

(
1− βx2

1 + αx+ βx2
,

x

1 + αx+ βx2

)
.

We now note that(
1− βx2

1 + αx+ βx2
,

x

1 + αx+ βx2

)
=

(
1− βx2

1 + βx2
,

x

1 + βx2

)(
1

1 + αx
,

x

1 + αx

)
.

We deduce that the family of orthogonal polynomials (Pn(x;α, β))n≥0 associated to the
generalized trinomial numbers is related to the Chebyshev polynomials of the first kind Tn

as follows:

Pn(x;α, β) = 2βnTn

(
x− α

2β

)
.

The production array of L = (an,k)
−1 is given by

α 1 0 0 0 0 . . .
2β α 1 0 0 0 . . .
0 β α 1 0 0 . . .
0 0 β α 1 0 . . .
0 0 0 β α 1 . . .
0 0 0 0 β α . . .
...

...
...

...
...

...
. . .


.

14.4 A conjecture

The simple expression obtained for the Hankel transform of the expression tn(α, β) might
lead one to conclude that the sequence

rn(α, β) = [xn−1](1 + αx+ βx2)n

should also have a relatively simple expression. This sequence has r0 = 0. We can conjecture
the following format for the Hankel transform of the sequence rn+1:

Conjecture 282. If
rn = [xn−1](1 + αx+ βx2)n,

then the Hankel transform of rn+1(α, β) is given by

β(n
2)[xn]

1− (α2 − 3β)x+ β2x2 − β3x3

1 + β(α2 − 2β)x2 + β4x4
.

Example 283. The sequence rn(−1,−1) with general term [xn−1](1− x− x2)n begins

0, 1,−2, 0, 8,−15,−6, 77, . . .
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This sequence has Hankel transform 0,−1, 0, 1, 0,−1, . . . with generating function −x
1+x2 . The

Hankel transform of rn+1(−1,−1) is the sequence starting

1,−4,−4, 11, 11,−29,−29, . . . ,

with general term

(−1)(
n
2)[xn]

1− 4x+ x2 + x3

1− 3x2 + x4
.

Thus based on the conjecture, the generating function of the Hankel transform of
rn+1(−1,−1) is

1− 4x− x2 − x3

1 + 3x2 + x4
.

14.5 On the row sums of L(α, β) = (an,k)
−1

In this section, we shall be interested in the row sums of the matrix L where

L(α, β) =

(
1− βx2

1 + αx+ βx2
,

x

1 + αx+ βx2

)−1

=

(
1√

1− 2αx+ (α2 − 4β)x2
,
1− αx−

√
1− 2αx+ (α2 − 4β)x2

2βx

)
.

We recall that the row sums of the Riordan array (g(x), f(x)) have generating function
g(x)/(1−f(x)). Applying this in our case, and simplifying, we obtain the following generating
function for the row sums:

s(x;α, β) =
1

2

1

1− (α+ β + 1)x
+

1

2

1− (α+ 2β)x

1− (α+ β + 1)x

1√
1− 2αx+ (α2 − 4β)x2

.

Now 1−(α+2β)x
1−(α+β+1)x

is the generating function of the sequence with general term

(1− β)(α+ β + 1)n−1 +
α+ 2β

1 + α+ β
· 0n. (14.1)

Thus the row sums are the mean of the function (α + β + 1)n and the convolution of the
function above (14.1) and tn(α, β).

We can characterize these sums in another way, be first recalling that(
1− βx2

1 + αx+ βx2
,

x

1 + αx+ βx2

)
=

(
1− βx2

1 + βx2
,

x

1 + βx2

)(
1

1 + αx
,

x

1 + αx

)
.
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Hence

L =

(
1− βx2

1 + αx+ βx2
,

x

1 + αx+ βx2

)−1

=

(
1

1 + αx
,

x

1 + αx

)−1(
1− βx2

1 + βx2
,

x

1 + βx2

)−1

=

(
1

1− αx
,

x

1− αx

)(
1√

1− 4βx2
,
1−

√
1− 4βx2

2βx

)

=

(
1

1− αx
,

x

1− αx

)(
1√

1− 4βx2
, xc(βx2)

)

where c(x) = 1−
√

1−4x
2x

is the g.f. of the Catalan numbers Cn =
(
2n
n

)
/(n+1), A000108. Hence

the row sums of L are given by the α-th binomial transform of the row sums of the Riordan
array (

1√
1− 4βx2

, xc(βx2)

)
.

These latter row sums have generating function

s(x; 0, β) =
1

2
· 1

1− (β + 1)x
+

1

2
· 1− 2βx

1− (β + 1)x
· 1√

1− 4βx2
.

We now wish to calculate the Hankel transform of the row sums of L(α, β). By the binomial
invariance property of the Hankel transform, it suffices to calculate that of L(0, β). Thus
the Hankel transform is independent of α.
It is clear that the general element of the sum, sn(0, β), is given by

sn(0, β) =
1

2π

∫ 2
√

β

−2
√

β

xn 2β − x

1 + β − x

1√
4β − x2

dx.

The following may now be conjectured.

Conjecture 284. The Hankel transform hn(α, β) = hn(β) of the row sums of L(α, β) is
given by

hn = βd
n2

2
e−0n

un

where un is the n-th term of the sequence with generating function

(1 + x)2

1− (4β − 2)x2 + x4
.
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14.6 Pascal-like triangles

In Chapter 10, we studied a family of Pascal-like triangles, parameterized by r, whose general
term was given by

T
(r)
n,k =

∑
j=0

(
k

j

)(
n− k

j

)
rj.

We note that the central terms of this matrix are given by

T
(r)
2n,n =

n∑
j=0

(
n

j

)2

rj.

We now note that we have the identity

T
(r)
2n,n =

n∑
j=0

(
n

j

)2

rj =
n∑

k=0

(
n

k

)(
n− k

k

)
rk(r + 1)n−2k.

We now associate these observations to our above results by means of the following propo-
sition.

Proposition 285.

[xn](1 + ax+ bx2)n =
n∑

k=0

(
n

k

)(
n− k

k

)
akbn−2k.

Proof. We have

[xn](1 + ax+ bx2)n = [xn]
n∑

j=0

(
k

j

)
xj(a+ bx)j

= [xn]
n∑

j=0

(
k

j

)
xj

j∑
i=0

(
j

i

)
xiaibj−i

= [xn]
n∑

j=0

j∑
i=0

(
k

j

)(
j

i

)
aibj−ixi+j

=
n∑

i=0

(
n

n− i

)(
n− i

i

)
aibn−2i

=
n∑

i=0

(
n

i

)(
n− i

i

)
aibn−2i.

Corollary 286.
T

(r)
2n,n = [xn](1 + (r + 1)x+ rx2)n.
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Corollary 287. The Hankel transform of T
(r)
2n,n is equal to 2nr(

n+1
2 ).

It is instructive to relate this result to the LDLT decomposition of the Hankel matrix
H(r) of T

(r)
2n,n. We take the example of r = 2. In this case,

H(2) =


1 3 13 63 . . .
3 13 63 321 . . .
13 63 321 1683 . . .
63 321 1683 8989 . . .
...

...
...

...
. . .


Then

H(2) = L(2)D(2)L(2)T

=


1 0 0 0 . . .
3 1 0 0 . . .
13 6 1 0 . . .
63 33 9 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 4 0 0 . . .
0 0 8 0 . . .
0 0 0 16 . . .
...

...
...

...
. . .




1 3 13 63 . . .
0 1 6 33 . . .
0 0 1 9 . . .
0 0 0 1 . . .
...

...
...

...
. . .


Hence the Hankel transform of T (2n, n, 2) is equal to the sequence with general term

n∏
k=0

(2.2k − 0k) = 2n2(n+1
2 ).

L(2) is in fact the Riordan array(
1√

1− 6x+ x2
,
1− 3x−

√
1− 6x+ x2

4x

)
or (

1− 2x2

1 + 3x+ 2x2
,

x

1 + 3x+ 2x2

)−1

.

In general, we can show that H(r) = L(r)D(r)L(r)T where L(r) is the Riordan array(
1√

1− 2(r + 1)x+ (r − 1)2x2
,
1− (r + 1)x−

√
1− 2(r + 1)x+ (r − 1)2x2

2rx

)
and D(r) is the diagonal matrix with n-th term 2.rn − 0n. Hence the Hankel transform of
T (2n, n, r) is given by

n∏
k=0

(2.rk − 0k) = 2nr(
n+1

2 ).

We note that the Riordan array L(r)(
1√

1− 2(r + 1)x+ (r − 1)2x2
,
1− (r + 1)x−

√
1− 2(r + 1)x+ (r − 1)2x2

2rx

)
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is the inverse of the Riordan array(
1− rx2

1 + (r + 1)x+ rx2
,

x

1 + (r + 1)x+ rx2

)
.

Its general term is given by

n∑
j=0

(
n

j

)(
n

j − k

)
rj−k =

n∑
j=0

(
n

j

)(
j

n− k − j

)
rn−k−j(r + 1)2j−(n−k).

Its k-th column has exponential generating function given by

e(r+1)xIk(2
√
rx)/

√
r

k
.

Corollary 288. The sequences with e.g.f. I0(2
√
rx) have Hankel transforms given by 2nr(

n+1
2 ).

Proof. By [17] or otherwise, we know that the sequences T (2n, n, r) have e.g.f.

e(r+1)xI0(2
√
rx).

By the above proposition and the binomial invariance property of the Hankel transform [139],
B−r−1T (2n, n, r) has the desired Hankel transform. But B−r−1T (2n, n, r) has e.g.f. given by

e−(r+1)xe(r+1)xI0(2
√
rx) = I0(2

√
rx).

We have in fact the following general result :

Proposition 289.

[xn−k](1 + ax+ bx2)n =
n∑

i=0

(
n

n− k − i

)(
n− k − i

i

)
an−2k−ibi

is the general term of the Riordan array(
1− bx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)−1

=

(
1√

1− 2ax+ x2(a2 − 4b)
,
1− ax−

√
1− 2ax+ x2(a2 − 4b)

2bx

)
.

14.7 Hankel transform of generalized Catalan numbers

Following [17], we denote by c(n; r) the sequence of numbers

c(n; r) = T (2n, n, r)− T (2n, n+ 1, r).

For instance, c(n; 1) = Cn, the sequence of Catalan numbers. We have

Proposition 290. The Hankel transform of c(n; r) is r(
n+1

2 ).

300



Proof. Again, we use the LDLT decomposition of the associated Hankel matrices. For
instance, when r = 3, we obtain

H(3) =


1 3 12 57 . . .
3 12 57 300 . . .
12 57 300 1686 . . .
57 300 1686 9912 . . .
...

...
...

...
. . .


Then

H(3) = L(3)D(3)L(3)T

=


1 0 0 0 . . .
3 1 0 0 . . .
12 7 1 0 . . .
57 43 11 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 3 0 0 . . .
0 0 9 0 . . .
0 0 0 27 . . .
...

...
...

...
. . .




1 3 12 57 . . .
0 1 7 43 . . .
0 0 1 11 . . .
0 0 0 1 . . .
...

...
...

...
. . .


Hence the Hankel transform of c(n; 3) is

n∏
k=0

3k = 3(n+1
2 ).

In this case, L(3) is the Riordan array(
1

1 + 3x
,

x

1 + 4x+ 3x2

)−1

.

In general, we can show that H(r) = L(r)D(r)L(r)T where

L(r) =

(
1

1 + rx
,

x

1 + (r + 1)x+ rx2

)−1

and D(r) has n-th term rn. Hence the Hankel transform of c(n; r) is given by

n∏
k=0

rk = r(
n+1

2 ).

We finish this section with some notes concerning production matrices as found, for
instance, in [75]. It is well known that the production matrix P (1) for the Catalan numbers
Cn = c(n, 1) is given by

P (1) =


0 1 0 0 . . .
0 1 1 0 . . .
0 1 1 1 . . .
...

...
...

...
. . .


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Following [75], we can associate a Riordan array AP (1) to P (1) as follows. The second
column of P has generating function 1

1−x
. Solving the equation

u =
1

1− xu

we obtain u(x) = 1−
√

1−4x
2x

= c(x). Since the first column is all 0’s, this means that AP (1) is
the Riordan array (1, xc(x)). This is the inverse of (1, x(1− x)). We have

AP (1) =


1 0 0 0 . . .
0 1 0 0 . . .
0 1 1 0 . . .
0 2 2 1 . . .
...

...
...

...
. . .


Multiplying on the right by B, the binomial matrix, we obtain

AP (1)B =


1 0 0 0 . . .
1 1 0 0 . . .
2 3 1 0 . . .
5 9 5 1 . . .
...

...
...

...
. . .

 = L(1)

which is the Riordan array(
1

1− x
, xc(x)2

)
=

(
1

1 + x
,

1

1 + 2x+ x2

)−1

.

Similarly the production matrix for the c(n; 2), or the large Schröder numbers, is given
by

P (2) =


0 2 0 0 . . .
0 1 2 0 . . .
0 1 1 2 . . .
...

...
...

...
. . .


Here, the generating function for the second column is 2−x

1−x
. Now solving

u =
2− xu

1− xu

which gives u = 1+x−
√

1−6x+x2

2x
. Hence in this case, AP (2) is the Riordan array

(
1, 1+x−

√
1−6x+x2

2

)
.

That is,

AP (2) =


1 0 0 0 . . .
0 2 0 0 . . .
0 2 4 0 . . .
0 6 8 8 . . .
...

...
...

...
. . .

 =

(
1,
x(1− x)

2− x

)−1

.
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The row sums of this matrix are 1, 2, 6, 22, 90, . . . as expected. Multiplying AP (2) on the
right by the binomial matrix B, we obtain

AP (2)B =


1 0 0 0 . . .
2 2 0 0 . . .
6 10 4 0 . . .
22 46 32 8 . . .
...

...
...

...
. . .


which is the array (

1− x−
√

1− 6x+ x2

2x
,
1− 3x−

√
1− 6x+ x2

2x

)
.

Finally

APB


1 0 0 0 . . .
0 1

2
0 0 . . .

0 0 1
4

0 . . .
0 0 0 1

8
. . .

...
...

...
...

. . .

 = APB(1,
x

2
) =


1 0 0 0 . . .
2 1 0 0 . . .
6 5 1 0 . . .
22 23 8 1 . . .
...

...
...

...
. . .

 = L(2)

which is (
1− x−

√
1− 6x+ x2

2x
,
1− 3x−

√
1− 6x+ x2

4x

)
or

L(2) =

(
1

1 + 2x
,

x

1 + 3x+ 2x2

)−1

.

We can generalize these results to give the following proposition.

Proposition 291. The production matrix for the generalized Catalan sequence c(n; r) is
given by

P (r) =


0 r 0 0 . . .
0 1 r 0 . . .
0 1 1 r . . .
...

...
...

...
. . .


The associated matrix AP (r) is given by

AP (r) =

(
1,

x(1− x)

r − (r − 1)x

)−1

=

(
1,

1 + (r − 1)x−
√

1− 2(r + 1)x+ (r − 1)2x2

2

)
.

The matrix L(r) in the decomposition L(r)D(r)L(r)T of the Hankel matrix H(r) for c(n; r),
which is equal to AP (r)B(1, x/r), is given by

L(r) =

(
1− (r − 1)x−

√
1− 2(r + 1)x+ (r − 1)2x2

2x
,
1− (r + 1)x−

√
1− 2(r + 1)x+ (r − 1)2x2

2rx

)
.
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We have

L(r) =

(
1

1 + rx
,

x

1 + (r + 1)x+ rx2

)−1

.

We note that the elements of L(r)−1 are in fact the coefficients of the orthogonal poly-
nomials associated to H(r).

Proposition 292. The elements of the rows of the Riordan array
(

1
1+rx

, x
1+(r+1)x+rx2

)
are

the coefficients of the orthogonal polynomials associated to the Hankel matrix determined by
the generalized Catalan numbers c(n; r).

14.8 Hankel transform of the sum of consecutive gen-

eralized Catalan numbers

We now look at the Hankel transform of the sum of two consecutive generalized Catalan
numbers. That is, we study the Hankel transform of c(n; r) + c(n + 1; r). For the case
r = 1 (the ordinary Catalan numbers) this was dealt with in [61], while the general case was
studied in [188]. We use the methods developed above to gain greater insight. We start with
the case r = 1. For this, the Hankel matrix for Cn + Cn+1 is given by

H =


2 3 7 19 . . .
3 7 19 56 . . .
7 19 56 174 . . .
19 56 174 561 . . .
...

...
...

...
. . .


Proceeding to the LDLT decomposition, we get

H = LDLT

=


1 0 0 0 . . .
3
2

1 0 0 . . .
7
2

17
5

1 0 . . .
19
2

11 70
13

1 . . .
...

...
...

...
. . .




2 0 0 0 . . .
0 5

2
0 0 . . .

0 0 13
5

0 . . .
0 0 0 34

13
. . .

...
...

...
...

. . .




1 3

2
7
2

19
2

. . .
0 1 17

5
11 . . .

0 0 1 70
13

. . .
0 0 0 1 . . .
...

...
...

...
. . .


This indicates that the Hankel transform of Cn + Cn+1 is given by

n∏
k=0

F (2k + 3)

F (2k + 1)
= F (2n+ 3).

This is in agreement with [61]. We note that in this case, L−1 takes the form

L−1 =


1 0 0 0 . . .
−3

2
1 0 0 . . .

8
5

−17
5

1 0 . . .
−21

13
95
13

−70
13

1 . . .
...

...
...

...
. . .

 =


1 0 0 0 . . .
0 1

2
0 0 . . .

0 0 1
5

0 . . .
0 0 0 1

13
. . .

...
...

...
...

. . .




1 0 0 0 . . .
−3 2 0 0 . . .
8 −17 5 0 . . .
−21 95 −70 13 . . .

...
...

...
...

. . .


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where we see the sequences F (2n+ 1) and (−1)nF (2n+ 2) in evidence.
Now looking at the case r = 2, we get

H =


3 8 28 112 . . .
8 28 112 484 . . .
28 112 484 2200 . . .
112 484 2200 10364 . . .
...

...
...

...
. . .


Proceeding to the LDLT decomposition, we obtain

H = LDLT

=


1 0 0 0 . . .
8
3

1 0 0 . . .
28
3

28
5

1 0 . . .
112
3

139
5

146
17

1 . . .
...

...
...

...
. . .




3 0 0 0 . . .
0 20

3
0 0 . . .

0 0 272
20

0 . . .
0 0 0 7424

272
. . .

...
...

...
...

. . .




1 8

2
28
3

112
3

. . .
0 1 28

5
139
5

. . .
0 0 1 146

17
. . .

0 0 0 1 . . .
...

...
...

...
. . .


Thus the Hankel transform of c(n; 2) + c(n+ 1; 2) is 3, 20, 272, 7424 . . .. This is in agreement
with [188]. We note that different factorizations of L−1 can lead to different formulas for
hn(2), the Hankel transform of c(n; 2) + c(n+ 1; 2). For instance, we can show that

L−1 =


1 0 0 0 . . .
−8

3
1 0 0 . . .

28
5

−28
5

1 0 . . .
−192

17
345
17

−146
17

1 . . .
...

...
...

...
. . .

 =


1 0 0 0 . . .
0 1

3
0 0 . . .

0 0 1
5

0 . . .
0 0 0 1

17
. . .

...
...

...
...

. . .




1 0 0 0 . . .
−8 3 0 0 . . .
28 −28 5 0 . . .
−192 345 −146 17 . . .

...
...

...
...

. . .


We note that the diagonal elements of the last matrix correspond to the sequence a(n) of
terms 1, 3, 5, 17, 29, 99, . . . with generating function

1 + 3x− x2 − x3

1− 6x2 + x4
.

This is A079496. It is the interleaving of bisections of the Pell numbers A000129 and their
associated numbers A001333. We have

a(n) =

bn+1
2
c∑

k=0

(
n+ 1

2k

)
2n+1−k−bn+2

2
c

= −(
√

2− 1)n

((√
2

8
− 1

4

)
(−1)n −

√
2

8
− 1

4

)
− (

√
2 + 1)n

((√
2

8
− 1

4

)
(−1)n −

√
2

8
− 1/4

)
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Multiplying a(n) by 4b
(n+1)2

4
c, we obtain 1, 3, 20, 272, 7424, . . .. Hence

1, 3, 20, 272, . . . = 4b
(n+1)2

4
c
bn+1

2
c∑

k=0

(
n+ 1

2k

)
2n+1−k−bn+2

2
c

= 4b
(n+1)2

4
c2n+1−bn+2

2
c
bn+1

2
c∑

k=0

(
n+ 1

2k

)
2−k

= 2(n+1
2 )

bn+1
2
c∑

k=0

(
n+ 1

2k

)
2−k

That is, the Hankel transform hn(2) of c(n; 2) + c(n+ 1; 2) is given by

hn(2) = 2(n+2
2 )

bn+2
2
c∑

k=0

(
n+ 2

2k

)
2−k.

For our purposes, the following factorization of L−1 is more convenient.

L−1 =


1 0 0 0 . . .
−8

3
1 0 0 . . .

56
10

−56
10

1 0 . . .
−384

34
690
34

−292
34

1 . . .
...

...
...

...
. . .

 =


1 0 0 0 . . .
0 1

3
0 0 . . .

0 0 1
10

0 . . .
0 0 0 1

34
. . .

...
...

...
...

. . .




1 0 0 0 . . .
−8 3 0 0 . . .
56 −56 10 0 . . .
−384 690 −292 34 . . .

...
...

...
...

. . .


We now note that the sequence hn(2)

2(
n+1

2 )
is the sequence b2(n + 1), where b2(n) is the

sequence 1, 3, 10, 34, 116, . . . with generating function 1−x
1−4x+2x2 and general term

b2(n) =

bn
2
c∑

k=0

(
n− k

k

)
(−2)k4n−2k −

bn−1
2
c∑

k=0

(
n− k − 1

k

)
(−2)k4n−2k−1.

Hence
hn(2) = 2(n+1

2 )b2(n+ 1).

Noting that b2(n) is the binomial transform of the Pell A000129(n + 1) numbers whose
generating function is 1

1−2x−x2 , we have the following alternative expressions for b2(n):

b2(n) =
n∑

k=0

(
n

k

) k∑
j=0

(
j

k − j

)
22j−k

=
n∑

k=0

(
n

k

) b k
2
c∑

j=0

(
k − j

j

)
2k−2j.
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For r = 3, we have

H =


4 15 69 357 . . .
15 69 357 1986 . . .
69 357 1986 11598 . . .
357 1986 11598 70125 . . .
...

...
...

...
. . .


We find that

L−1 =


1 0 0 0 . . .
0 1

4
0 0 . . .

0 0 1
17

0 . . .
0 0 0 1

73
. . .

...
...

...
...

. . .




1 0 0 0 . . .
−15 4 0 0 . . .
198 −131 17 0 . . .
−2565 2875 −854 73 . . .

...
...

...
...

. . .


where the sequence b3(n) or 1, 4, 17, 73, 314, . . . has generating function 1−x

1−5x+3x2 and

b3(n) =

bn
2
c∑

k=0

(
n− k

k

)
(−3)k5n−2k −

bn−1
2
c∑

k=0

(
n− k − 1

k

)
(−3)k5n−2k−1

=
n∑

k=0

(
n

k

) k∑
j=0

(
j

k − j

)
32j−k

=
n∑

k=0

(
n

k

) b k
2
c∑

j=0

(
k − j

j

)
3k−2j.

Then 3(n
2)b3(n) is the sequence 1, 4, 51, 1971, 228906, . . .. In other words, we have

hn(3) = 3(n+1
2 )b3(n+ 1).

We now note that F (2n+ 1) has generating function 1−x
1−3x+x2 with

F (2n+ 1) =

bn
2
c∑

k=0

(
n− k

k

)
(−1)k3n−2k −

bn−1
2
c∑

k=0

(
n− k − 1

k

)
(−1)k3n−2k−1.

We can generalize this result as follows.

Proposition 293. Let hn(r) be the Hankel transform of the sum of the consecutive general-
ized Catalan numbers c(n; r) + c(n+ 1; r). Then

hn(r) = r(
n+1

2 )(

bn+1
2
c∑

k=0

(
n− k + 1

k

)
(−r)k(r + 2)n−2k+1 −

bn
2
c∑

k=0

(
n− k

k

)
(−r)k(r + 2)n−2k).
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In other words, hn(r) is the product of r(
n+1

2 ) and the (n + 1)-st term of the sequence with
generating function 1−x

1−(r+2)x+rx2 . Equivalently,

hn(r) = r(
n+1

2 )(
n+1∑
k=0

(
k

n− k + 1

)
(r + 2)2k−n−1(−r)n−k+1 −

n∑
k=0

(
k

n− k

)
(r + 2)2k−n(−r)n−k)

= r(
n+1

2 )
n+1∑
k=0

(
n+ 1

k

) k∑
j=0

(
j

k − j

)
r2j−k

= r(
n+1

2 )
n+1∑
k=0

(
n+ 1

k

) b k
2
c∑

j=0

(
k − j

j

)
rk−2j.

The two last expressions are a result of the fact that 1−x
1−(r+2)x+rx2 is the binomial transform

of 1
1−rx−x2 .
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[123] S. Karlin, G. Szegö, On certain determinants whose elements are orthogonal polyno-
mials, J. d’Analyse Math. 8 (1960-1961) pp. 1–157.

[124] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92 (1959),
pp. 336–354.

[125] D. Kim, D. Stanton & J. Zeng, The combinatorics of the Al-Salam-Chihara q-Charlier
polynomials, Seminaire Lotharingien de Combinatoire 54 (2006), Article B54i

[126] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal poly-
nomials and its q-analogue, TU Delft, The Netherlands, 1998; available electronically
at http://aw.twi.tudelft.nl/ koekoek/research.html, (p. 43), 2008.

[127] D. E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, Vol.
1, pp. 84,492.

[128] C. Krattenthaler, The Major Counting of Nonintersecting Lattice Paths and Generat-
ing Functions for Tableaux, American Mathematical Society, 1995.

316

http://141.51.96.22/files/PascalDreieckMatrixLog.pdf
http://aw.twi.tudelft.nl/~koekoek/research.html


[129] C. Krattenthaler, Permutations with Restricted Patterns and Dyck Paths, Advances
in Applied Mathematics, 27 (2001) pp. 510–530.

[130] C. Krattenthaler, Determinants of (generalised) Catalan numbers, Preprint.

[131] C. Krattenthaler, Advanced Determinant Calculus, available electronically at
http://arxiv.org/PS cache/math/pdf/9902/9902004.pdf, 2006

[132] C. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra and
its Applications 411 (2005) 68166.

[133] C. Krattenthaler, S. G. Mohanty, Lattice Path Combinatorics - Applications to Prob-
ability and Statistics, Encyclopedia of Statistical Sciences, S. Kotz, N.L. Johnson, C.B.
Read, N. Balakrhishnan, B. Vidakovic, eds., Wiley, New York, 2003.

[134] C. Krattenthaler, Personal communication, 2007.

[135] E. Krot, An Introduction to Finite Fibonomial Calculus, published electronically at
http://arxiv.org/pdf/math.CO/0503210.pdf, 2006.

[136] S. Khrushchev, Orthogonal Polynomials and Continued Fractions, Encyclopedia of
Mathematics, Cambridge University Press, Cambridge, 2008.

[137] W. Lang, On Polynomials Related to Powers of the Generating Function of Catalan’s
Numbers, Fibonacci Quarterly 38 (2000) pp. 408–419.

[138] A. Lascoux, Symmetric Functions and Combinatorial Operators on Polynomials AMS,
2001.1

[139] J. W. Layman, The Hankel Transform and Some of Its Properties, Journal of Integer
Sequences, 4, Article 01.1.5, 2001.

[140] M. E. Larsen, Wronskian Harmony, Mathematics Magazine, 63 1 (1990), pp. 33–37.

[141] N. N. Lebedev, Special Functions & Their Applications, trans. R. Silverman, Dover
Publications, Inc. New York, 1972.

[142] B. Leclerc, On certain formulas of Karlin and Szegö, Preprint, availabel electronically
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