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Abstract 
 
 
With the advances in electronics, digital dashboards are now becoming available for use 

in the automotive industry. The main difference between an analog dashboard and a 

digital dashboard configuration is that the later may easily be reconfigured.  

 

To accommodate the influx of digital graphical displays in vehicles, manufacturers have 

started to run micro Real Time Operating Systems (RTOS) inside their vehicles. Two 

options are offered to manufacturers when choosing a RTOS for their project; 

commercial OSs or open source OSs. Commercial OS contain many overheads which 

include an upfront capital investment and licensing fee for each unit produced.  While 

open source OS are royalty free and offer no such financial overheads. Any application 

software that is written by the manufacturer for a commercial OS, is seen as proprietary 

software, and hence is not accessible by other manufacturers. Whilst any software 

written and licensed for use with an open source OS would be accessible, therefore 

leading to reduction in manufacturing costs and time. 

 

The main objective of this research was to develop a flexible digital display using open 

source hardware and software for use in automotive applications. The development of a 

digital dashboard using these technologies can allow for individual customisation and in 

addition facilitate a significant reduction in the design cycle time. The designed display 

controller incorporated an Analog Devices Blackfin development board onto which an 

open source OS was ported. Automotive information was read from a CAN network 

and was used to manipulate the data displayed on the digital dashboard. 
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1.1 Introduction 
 
In the automotive industry an analog/mechanical dashboard display is still the standard. 

This type of dashboard contains basic dials which usually include a speedometer, 

tachometer, temperature gauge, fuel gauge and warning lamps which may include low 

oil level, low fuel level, Engine Management, ABS etc. One of the limitations with this 

type of dash display is that the positioning of all instrumentation is fixed and cannot be 

reconfigured [1]. 

 

With the advances in electronics, digital dashboards are now becoming available for use 

in the automotive industry. The main difference between analog and digital dashboards 

is that the digital dashboard may easily be reconfigured. With a digital dashboard, 

information can be displayed either numerically or via a digital representation of an 

analog/mechanical dial. Hence, any dial can be removed if it is required to display a 

warning signal to the driver [2]. An example of this is the Night Vision Assist system 

used in the Mercedes S-Class.  This system uses an infrared beam which goes beyond 

the reach of the head lights along with a special camera mounted in the rear view mirror 

which reads the infrared signals. The resulting image is displayed on the dashboard 

instead of the normal speedometer, which is reconfigured to be a bar graph at the 

bottom of the digital dashboard. This system is said to increase visibility by 125% while 

driving at night [3]. 

 

The Night View Assist system developed by Mercedes is just one example of the 

flexibility a digital dashboard has to offer. It could be used to display any information 

on the screen in real time. In a high-end sports car this type of dashboard could be used 

to display engine analysis and performance while in a family car it could display more 

safety-orientated information. 

 

To accommodate the influx of digital graphical displays in vehicles, manufacturers 

began to utilise micro Real Time Operating Systems (RTOS) on the controlling 

microprocessor system. The microprocessors derive the vehicles data by linking to the 

CAN network. 
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Currently there are two options for manufacturers when choosing an RTOS for their 

project; a commercial OS or an open source OS. Commercial OSs contain many 

overheads which include an upfront capital investment and licensing fee for each unit 

produced [4].  While open source OSs are royalty free and offer reduced financial 

overheads. 

 

 

Fig. 1.1 Currently used OSs 

 
In a recent survey undertaken by the website embedded.com, major global 

manufacturers were questioned on their use of RTOS in their embedded environments. 

The current trend is shown in Fig. 1.1. When questioned on future projects their 

responses were much different as can be seen in Fig. 1.2. 

 

 

Fig. 1.2  Planned Future use of OS 

 
Using the data in Fig. 1.1 and Fig. 1.2, it can be seen that the projected use of open 

source OSs will rise from 20% to 41%, with the potential to rise as high as 74%. The 

main reason cited for the move to open source is costs (savings) associated with it [5].  

 

This research investigates the development of a flexible digital display using open 

source hardware and software for use in automotive applications. The development of a 

digital-dashboard using these technologies can allow for individual customisation and in 

addition facilitate a significant reduction in the design cycle time and costs. 



 4

1.2 Thesis Contributions 
 
The material and information presented in this thesis has been compiled on the basis of: 

(i) A comprehensive technical literature review of the current innovations in 

dashboard technology. 

(ii) Design, configuration and implementation of a proposed digital display 

system using open source hardware and software. 

(iii) Testing and conclusions. 

 

The work presented in this thesis is laid out as follows: 

Chapter 2 gives an overview of the most relevant information from all technical 

literature reviewed during the research stage of this study. This chapter also outlines the 

possible choices available during the design of the proposed system. 

 
Chapter 3 provides an overview of the choices made and methods used to configure and 

design the proposed system. It also gives a complete explanation of the operation of the 

system with emphasis on the OS and application software. 

 

Chapter 4 discusses how the final system was implemented and fully tested. This 

includes the development of a CAN process, video process and Inter Process 

Communications. The testing of the final system is also described in this chapter. 

 

Chapter 5 outlines the conclusions made based on the research and testing. A discussion 

on further possibilities for research based on findings from this study is also provided. 
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2.1 Introduction 
 
The purpose of this chapter is to give an overview of the most relevant information from 

all technical literature reviewed during the research stage of this study. This chapter will 

also outline the possible choices available during the design of the proposed system. 

The information based on the literature review presented in this chapter is laid out as 

follows: 

• Section 2.2 outlines the choices available when selecting a processor for this 

project. This section covers the pros and cons of the processors under selected 

headings. It also includes the selection process and the reasons for use of a 

particular processor. 

• Section 2.3 provides the background information on the development host 

environment chosen for use in this project. 

• Section 2.4 gives an overview of the operating system (OS) chosen for the 

process used in this project. It also details the bootloader that was used in 

conjunction with the OS. 

• Section 2.6 discusses the possible options for Inter Process Communications and 

outlines each option and offers insight on the selection process. 

• Section 2.7 gives an overview of the Controller Area Network protocol required 

for communication between the selected processor and external electronic 

control modules.  

• Section 2.8 concludes the chapter with a brief summary. 

 

2.2 Selection of a Processor 
 
When selecting a processor for an automotive display application, key factors have to be 

taken into consideration. In an automotive environment the selected processor will have 

to endure very harsh conditions. The processor is required to perform at an optimal level 

to deal with the high computational needs of a graphical display along with the data 

transmission from the CAN network. It must also accommodate an appropriate 

operating system. The key considerations taken into account when selecting the 

processor are listed below: 
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• Automotive Conditions Compatibility 

• Controller Area Network (CAN) support 

• Graphical Display support 

• Clock capabilities 

• Memory 

 

As the project was designed to use open source hardware and software, all of the 

scrutinised processors fully supported the use of an open source operating system. The 

development boards below contain suitable processors for the completion of this project 

and were evaluated using the key considerations above to determine the most suitable. 

• Cogent CSB337 [6], [16], [17] 

• Analog Devices ADSP-BF548 EZ Kit [7], [8] 

• Atmel  AT91SAM9263 [9],  [10], [11] 

• Cirrus EDB9315 [12], [13] 

 

2.2.1 Automotive Conditions Specifications 
 
Many conditions inside the automotive environment act as a hindrance to electronic 

components, one of which is the working temperature range [14]. Each board’s 

temperature range was evaluated to ensure their durability in such an environment. The 

temperature range for Integrated Circuits (IC’s) in the automotive setting is -40°C to 

125°C [14]. Each board’s specified temperature range was compared to the typical 

temperature found in an automotive environment to evaluate their use, as shown in 

Table 2.1. 

 

Processor Temperature Range (°C) 
Cogent CSB337  0 to 70 

Analog Devices ADSP-BF548 - 40 to + 85 
Atmel  AT91SAM9263 - 40 to + 85 

Cirrus EDB9315 - 40 to + 85 

Table 2.1 Ambient Operating Temperatures of Selected Processors 
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All of the boards’ ambient operating temperatures are in the typical temperature range 

for an automotive setting, except for the Cogent CSB337. The Cogent CSB337 ambient 

operating temperature range is far less than the other three processors. 

2.2.2 CAN Support  
 
The CAN protocol is an automotive standard for vehicle communications, therefore, it 

was desirable to have an integrated CAN controller on the chosen development board. 

However if this was not possible, an SPI bus on the development board could be 

implemented for CAN communications [15]. This would lead to extra costs in designing 

and implementing a peripheral CAN controller, as well as having to implement a driver 

for the SPI CAN. 

 

 

Fig. 2.1 Integrated Vs Peripheral CAN 

 
As illustrated in Fig. 2.1, the use of peripheral CAN leads to an increase of components 

required. Also with a development board which supports an open source OS and has 

integrated CAN, it will be likely that the drivers for the integrated CAN will be 

contained in the kernel. When using the SPI port there will be no need for SPI-CAN 

drivers. The table below shows the CAN capabilities of the development boards under 

evaluation. 
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Processor Integrated CAN Total Number of Rx/Tx 
Buffers 

Cogent CSB337 Yes 2Rx 
2TX 

Analog Devices ADSP-
BF548 Yes 

8 Rx                   
8 Tx                   

16 Configurable 

Atmel  AT91SAM9263 Yes 16 Configurable 

Cirrus EDB9315 No N/A 

Table 2.2 CAN Capabilities of Selected Development Boards 

 
With reference to Table 2.2, it can be seen that three of the four boards contain 

integrated CAN ports. The Cirrus EDB9315 does not contain an integrated CAN port 

but it does however have an SPI port, therefore CAN communications could still be a 

possibility. Comparing the three evaluation boards that do contain integrated CAN, it 

can be seen that the ADSP-BF548 (BF548) contains more CAN buffers than its rivals 

and hence makes its CAN handling abilities more powerful than the others. 

 

2.2.3 Graphical Display Support  
 
As this project was designed to display automotive data, it was essential that the chosen 

development board had the capabilities to support a graphical display. Also as it was 

designed to replace the standard dash configuration in a vehicle, the graphical display 

had to be quite powerful and needed to be able to accommodate in-depth images. An 

LCD screen was essential and as with CAN, an integrated screen was ideal as the 

appropriate drivers would probably be contained in the kernel.  

 

 

 

 

 

 



 10

Processor LCD 
Controller 

Integrated 
LCD Screen Resolution (bpp) 

Cogent CSB337 Yes No 8  

Analog Devices ADSP-
BF548 Yes Yes 24 

Atmel  AT91SAM9263 Yes Yes 16                
(without limitation) 

Cirrus EDB9315  Yes Yes 24 

Table 2.3 Graphical Display Support of Selected Development Boards 

 
As illustrated in Table 2.3, all of the boards under evaluation do have an integrated LCD 

controller, however the Cogent CSB337 does not have an integrated LCD screen. If the 

CSB337 was to be used, an external LCD screen would have to be included, therefore 

increasing the cost of the project. Comparing the other three development boards, it can 

be seen that the Atmel AT91SAM9263 supports 16bpp (bits per pixel) without 

limitations, it can supports 24bpp but this is at the cost of losing the Ethernet port. This 

leaves the BF548 and EDB9315 on par in their capabilities of display graphics. 

 

2.2.4 Clock Capabilities 
 
As this project will have an OS running on the development board’s core along with 

application programmes running on top of the OS, it is desirable to have a processor 

with a relatively high clock frequency. As the OS used in the project is a Real Time OS 

(RTOS) and all application programmes will be run in real time, it is beneficial to have 

a high clock frequency. As in all cases, there are some tradeoffs in power consumption 

when using high frequency clocks, but a high bandwidth real time system is more 

important than power consumption for this application. 
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Processor Max. CPU Clock Frequency 
(MHz) 

Cogent CSB337 180 

Analog Devices ADSP-BF548 533 

Atmel  AT91SAM9263 200 

Cirrus EDB9315  200 

Table 2.4 CPU Frequency of Selected Development Boards 

 
Table 2.4 shows that the BF548 has considerably the highest clocking frequency of all 

the processors. The AT91SAM9263 and EDB9315 have the same processor clock 

frequency, with the CSB337 clock frequency being slightly lower. As speed is essential 

for the project, the BF548’s processor is the most desirable of the four boards. 

 

2.2.5 Memory 
 
As an OS is required, it is vital that the development board has a sizeable amount of 

memory. This memory is needed due to the fact that a boot loader, OS, application code 

and a number of images will all be stored on the development board.  

  

Processor SDRAM 
(MB) 

Flash 
(MB) 

Memory 
Card 

Support 
Hard Drive 

Cogent CSB337 32 8 No No 

Analog Devices ADSP-
BF548 64 32 Yes  Yes (40GB) 

Atmel  AT91SAM9263 64 256 Yes No (does have 
HDD Port) 

Cirrus EDB9315  64 32 No No 

Table 2.5 Available Memory of Selected Development Boards 

 



 12

As shown in Table 2.5, the Atmel AT91SAM9263 has a very large amount of flash 

memory when comparing it to any of the other development boards. It also supports a 

memory card (i.e. it has an SD memory card reader) and has a port to add a hard drive, 

however there is no HDD supplied. The BF548, while having less flash memory when 

comparing it to the AT91SAM9263, does however have a 40GB HDD supplied with its 

development board. The Cirrus EDB315 does have a substantial amount of integrated 

memory but does not offer any expansion on this, while the CDB337 has very little 

integrated memory. This leaves the BF548 and AT91SAM9263 equal, based on their 

size of memory. 

 

2.2.6 Synopsis of Reviewed Processors 
 
It was concluded from Table 2.6, that the Cogent CSB337 would not suffice for this 

project, as it did not contain the desired functionality needed. The BF548, 

AT91SAM9263 and EDB9315 are all sufficiently equipped for use in this project; 

however the BF548 was the processor of choice. 

 

Processor Auto. 
Spec. 

CAN 
Handling 
Abilities 

Graphical 
Display  

Clock 
Capability Memory 

Cogent 
CSB337 Poor Sufficient Poor Poor Poor 

Analog 
Devices 
ADSP-
BF548 

Sufficient Excellent Excellent Excellent Excellent 

Atmel  
AT91SAM

9263 
Sufficient Sufficient Sufficient Poor/ 

Sufficient Excellent  

Cirrus 
EDB9315  Sufficient Poor Excellent Poor/ 

Sufficient Sufficient 

Table 2.6 Synopsis of Reviewed Processors 
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This was due to the EDB9315 needing peripheral CAN to be added to the board and 

also its lower clock speed when comparing it to the BF548. Likewise, the 

AT91SAM9263 had lower clocking capabilities and graphical display resolution when 

compared to the BF548. As the BF548 had outstanding CAN handling abilities, along 

with very high screen resolution, a 533MHz processor and large amount of memory, 

including a 40GB hard drive, it was the obvious choice for use in this project. The next 

section will discuss the development host, which will be used to develop and compile 

the software to run on the BF548 processor. 

 

2.3 Development Host 
 
As the BF548 was selected as the processor of choice, it was recommended by Blackfin 

to use Cooperative Linux (coLinux) as the development host. Apart from coLinux, 

many other Linux operating systems could have been used, including Red Hat, Ubuntu, 

etc [18]. Along with the recommendation from the processor’s manufacturer, it offered 

many other merits for its use as explained in the following sections.  

 

2.3.1 coLinux 
 
Cooperative Linux (coLinux) is the first open source method used for optimally running 

a Linux kernel natively alongside another OS, including Microsoft Windows, as shown 

in Fig. 2.2. CoLinux is a port of the Linux kernel which can freely run without the use 

of any virtualisation software, in a way which is much more optimal than using any 

virtualisation software [19].    
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Fig. 2.2 coLinux running natively on Windows OS 

 
Special driver software is used so that the coLinux kernel runs in a privileged mode on 

the host OS. Due to its operation in privileged mode, and by constantly switching 

between the host OS state and the coLinux kernel state, full control of the machine 

Memory Management Unit (MMU) is granted to coLinux in its own allocated address 

space. Therefore, coLinux acts in accordance to a native Linux kernel, while achieving 

almost the same performance and functionality that would be expected from a 

standalone Linux machine [18], [19]. 

 

2.3.1.1 Pseudo Physical RAM 
 
As coLinux runs alongside Microsoft Windows, it does not work on the principle of the 

entire physical RAM being bestowed upon it during boot up, as is the case when 

Microsoft Windows boots. Instead coLinux is allocated a fixed set of physical pages 

and the translations needed to operate transparently in that set. This leads to coLinux 

considering the allocated pages to be the entire physical memory and this is known as 

Pseudo Physical RAM (PPRAM). 

 

The PPRAM is allocated to coLinux using the standard function calls in each OS such 

that it is not mapped in any address space on the host. These allocated pages will always 

be resident and will only be freed once coLinux is closed. To map the allocated pages in 

coLinux virtual address space, page tables are used, therefore its address space 

resembles that of a regular kernel. The coLinux address space also has its own special 
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fixmaps, such that the page tables themselves are mapped in order to provide the ability 

to translate from PPRAM addresses to physical addresses. Likewise, a special physical-

to-PPRAM map is allocated and mapped to decrease the time needed for handling 

events which require physical addresses to be translated into PPRAM addresses. Due to 

bi-directional memory address mapping, negligible overhead is achieved in page faults 

and user space mapping operations [20], [18], [19].  

 

2.3.1.2 Context Switching 
 
When coLinux is running on a host OS, it only uses one of the host processes to provide 

a context for itself and its process. This one process, which is named as the coLinux-

daemon, is known as a Super Process as it frequently calls the kernel driver to perform a 

context switch from the host OS to the coLinux kernel and back. This capability allows 

complete control of the CPU and MMU of the machine without affecting the host OS.  

 

For the Intel 386 architecture a complete context switch requires the top directory table 

pointer register (CR3) to be changed. However, both the instruction pointer (EIP) and 

CR3 cannot easily be changed in the one instruction. Therefore, CR3 has to be mapped 

in both contexts for the change to be possible. Design limitations make it problematic to 

map the code at the same virtual address in both contexts. However both contexts can 

divide the kernel and the user space differently, such that one virtual address can 

contain a user mapped page in one OS and a kernel mapped page in the other. When 

context switching coLinux uses an intermediate address space, known as the “passage 

page” as shown in Fig. 2.3. 
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Fig. 2.3 Address Space Transition used in Context Switching 

 
The “passage page” is defined by specially created page tables in both coLinux and the 

development host contexts. It maps the same code that is used for the switch at both of 

the virtual addresses that are involved. When a switch occurs, first CR3 is changed to 

point at the “passage page”. EIP is then relocated to the other mapping of the passage 

code using a jump. Finally CR3 is changed to point to the top page directory of coLinux 

[20], [19]. 

 

2.3.1.3 Interrupt Handling 
 
As a complete MMU context switch involves the Interrupt Descriptor Table Register 

(IDTR), coLinux sets an interrupt vector table to handle any hardware interrupts that 

occur while the system is in a running state. CoLinux will not act on these interrupts, 

but instead it will only forward the interrupts invocations to the host OS, with the host 

OS having to act on any interrupts for proper functionality. This enables the support of 

the coLinux-daemon itself.  

 

The interrupt vectors for the internal processor exceptions and system call vectors are 

not edited such that coLinux handles its own page faults and other exceptions. However, 

the other interrupt vectors point to a special proxy Interrupt Service Routines (ISRs). If 

an ISR is invoked during coLinux time on the processor by an external hardware 
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interrupt, a context switch is made to the host OS. On the host side, the address of the 

relevant ISR is determined by looking at its Interrupt Descriptor Table (IDT). With this 

an interrupt call stack is forged and a jump occurs to the address. The interrupt flag is 

disabled during the invocation of the ISR in coLinux and the handling of the interrupt 

on the host OS. The interrupt handling operation adds a minute latency in the interrupt 

handling of the host OS, but this is so small it can be neglected [20], [19]. 

 

2.3.1.4 Advantages of using coLinux 
 
The main advantage of using coLinux, with regards to this project, is that it can run on 

Microsoft Windows, therefore only one machine is needed to run Microsoft Windows 

and a Linux development suite. This substantially reduces development costs by the use 

of only one PC as well as coLinux being open source [19]. As coLinux is the same as 

using a Linux box, all the toolchains needed for this project can be installed and 

implemented within coLinux with all application software being written and compiled 

in the same environment [18]. 

 

2.3.1.5 Disadvantages of using coLinux 
 
As coLinux runs in tandem with Microsoft Windows this can also be one of its main 

disadvantages, due to the hardware abstraction layer being shared between both OSs. 

This abstraction layer does not have any hardware memory protection, as is the same 

between Microsoft Windows and coLinux and their device drivers. If coLinux violates 

Microsoft Windows address space, this will cause coLinux to crash along with 

Microsoft Windows and hence crash the machine [18].  

 

There are also some security implications when using coLinux. If a malicious user gains 

root access to coLinux, then this user could potentially compromise the security of the 

Microsoft Windows machine. CoLinux is password protected so there is a degree of 

protection to combat this problem [18], [19]. 

 

To load or use coLinux, the user must have administrator rights to the host OS. 

However, coLinux can be started as a service, and so it is possible to start coLinux as a 
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normal user, if the user has being granted the right to start the service [18], [19]. The 

next section will describe the OS and boot loader used in this project. 

 

2.4 uClinux 
 
uClinux (Micro (µ) Controller Linux) is an embedded port of the Linux Operating 

System. It was developed by Kenneth Albanowski and D. Jeff Dionne in January of 

1998 and was first demonstrated on a Palm PDA. In February 1999, it was ported to its 

first microprocessors, the Motorola MCF5206 and MCF5307 ColdFire. Since then it has 

been ported to an array of microprocessors including Analog Devices Blackfin 

processors. As with all ports of Linux, uClinux is free software and licensed under the 

GNU Public License [21].  

 

2.4.1 Differences between uClinux and Linux 
 
As stated above, uClinux is a micro OS, which was ported from the Linux OS, and runs 

on microprocessors. As this operating system is designed for embedded systems, with 

small amounts of memory, therefore a lot of functionality had to be taken from the 

Linux OS. The main differences between both OSs will now be described [22]. 

 

2.4.1.1 No Memory Management Unit 
 
The main difference between Linux and uClinux OSs is the absence of a memory 

management unit (MMU) in the latter. In Linux, memory management is achieved 

through the use of Virtual Memory (VM). However, uClinux was created for systems 

which do not support VM, and hence they can not implement memory management. 

 

With VM, all processes run at the same address, albeit a virtual one, with the VM 

system being responsible for the physical memory that is mapped to these locations. 

The VM process sees its memory to be contiguous, despite the physical memory it 

occupies usually being scattered. Using VM, arbitrarily located memory can be mapped 

to anywhere in the processes address space, making it possible to add memory to an 

already running process. Without VM, each process has to be located at a place in 
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memory where it can run, with this area of memory being contiguous. Generally, this 

memory can not be expanded as there may be other processes above and below it. 

Therefore, processes in uClinux cannot increase the size of its available memory during 

runtime [22], [23], [24]. 

 

2.4.1.2 Kernel Differences 
 
As uClinux does not support VM, all standard executable formats used in Linux are 

unsupported; instead, a new format is used, the flat format. The flat format is a 

condensed executable format that stores only executable code and data, along with the 

relocations needed to load the executable into any location in memory. 

 

The implementation of mmap, which is a function used when mapping between a 

process address space and a file, shared memory object or typed memory object, is also 

quite different. Though often transparent to the user, an understanding is needed to 

ensure it is not used inefficiently on an uClinux system. Unless the uClinux mmap can 

point directly to the file within the filesystem, thereby guaranteeing that it is sequential 

and contiguous, it must allocate memory and copy the data into the allocated memory. 

In uClinux only one filesystem, romfs, guarantees that files are stored contiguously, 

therefore this file system must be used. Only read-only mappings can be shared, which 

means a mapping must be read only to avoid the allocation of memory. The kernel must 

also consider the filesystem to be in ROM, i.e. nominally read-only area within the 

CPU’s address space. This is possible if the filesystem is present somewhere in RAM or 

ROM, however not if the filesystem is on a hard disk, as the contents are not directly 

addressable by the CPU. Device drivers also need to be edited when porting to uClinux, 

depending on the hardware the driver is used for [21], [22], [18], [25]. 

 

2.4.1.3 Memory Allocation (Kernel) 
 
uClinux offers a choice of two kernel memory allocators, the standard Linux allocator 

and kmalloc2 (or page_alloc2 depending on the kernel version). The standard linux 

allocator is not desirable for applications running on uClinux as its uses a power-of-two 

allocation method. This method allocates memory to the next power of two, e.g. if a 
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process required 33kB of memory, then it will be allocated 64kB of memory (26 = 64) 

as this is the next step up from 32 (25 = 32). Therefore, 31kB of memory is not used, 

hence leading to fragmented memory, as shown in Fig. 2.4. 

 

 

Fig. 2.4 Memory Allocation using Power-Of-Two Method 

 
Using this allocation method on a PC is sufficient as memory is usually not a major 

factor, but as uClinux is used in embedded applications, this amount of memory 

wastage is unacceptable. For this reason, the memory allocator kmalloc2 was developed 

for uClinux. 

 

In kmalloc2, the power-of-two memory allocation is used for allocations up to one page 

in size, where a page is 4kB. It then allocates memory to the nearest page. The previous 

example used 64kB, but with kmalloc2 only 36kB (9 pages) will be allocated, as shown 

in Fig. 2.5. 

 

Fig. 2.5 Memory Allocation using Kmalloc2 

 
Only 3kB of memory is now un-used when comparing it to the 33kB in the previous 

method. Kmalloc2 will also take steps to avoid fragmenting memory [21], [22], [18]. 

 

2.4.1.4 Memory Allocation (Application) 
 
The major difference between both OSs in terms of application memory allocation is the 

lack of a dynamic stack in uClinux. The programmer must now be aware of stack 

requirements as the uClinux toolchains allocate 4kB, by default, for the stack, which is 
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very small for modern applications. However, there are methods to increase the stack 

size.  

 

Another substantial difference in uClinux is the lack of a dynamic heap, which allows 

an application to increase its process size. Dynamic heaps are traditionally implemented 

using sbrk/brk system calls, which increase/decrease the size of a process’s address 

space. Due to uClinux being unable to implement the functionality of brk and sbrk, it 

instead implements a global memory pool. When using a global memory pool, the 

programmer must be very cautious as a runaway process can use all of the system’s 

available memory. Its use offers some advantages, as only the amount of memory 

actually required is used, unlike in a pre allocated heap. This is extremely important for 

uClinux systems, as they generally run with little memory [21], [22], [18].  

 

2.4.1.5 Applications and Processes 
 
Another difference with uClinux is the lack of the fork() system call, uClinux does 

however offer the vfork() system call. The system calls fork() and vfork() allow a 

process to split into two processes, a parent and child. A process can split many times to 

create multiple children. When a process calls fork(), the child is a duplicate of the 

parent in every way, however it shares nothing with the parent and can operate 

independently, as can the parent. When using vfork(), the parent is suspended and 

cannot continue executing until the child exits or calls exec(), the system call used to 

start a new application. The child, directly after returning from vfork(), is running on the 

parent's stack and is using the parent's memory and data. This means the child can 

corrupt the data structures or the stack in the parent, resulting in failure [21], [22], [18].  

 

2.4.2 Booting uClinux 
 
As with every operating system, uClinux needs a bootloader to start the kernel from its 

location in memory. A boot loader is a small piece of software that executes on power 

up of a CPU. Linux uses software called lilo or grub, which resides on the master boot 

record (MBR) of the machines hard drive. After the PC BIOS performs various system 
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initialisations, it will execute the boot loader in the MBR. The boot loader then passes 

system information to the kernel and then executes the kernel.   

 

In an embedded system the role of a boot loader is more complicated as it does not 

contain a BIOS to perform initial system configuration. The low level initialisation of 

microprocessors, memory controllers, and other board specific hardware varies from 

board to board and CPU to CPU. These initialisations must be performed before a 

uClinux kernel image can be executed. 

 

Depending on the application, the kernel may be stored in the processor’s memory or 

the boot loader may have to download the kernel from a remote server. The boot loader 

which is used for booting uClinux on Blackfin processors is “Das U-Boot” [26], [27]. 

 

2.4.2.1 U-Boot  
 
U-Boot is an open source, cross platform boot loader. It provides support for a large 

quantity of embedded development boards and a wide variety of CPUs including ARM, 

Coldfire, Blackfin, Microblaze and x86. U-Boot has its origins in the 8xxROM project, 

where it was called “PPCBoot”. In 2002 the PPCBoot team retired the project which led 

directly to the creation of U-Boot. 

 

U-Boot is a boot loader which is usually stored in the flash memory of an embedded 

system. It can load files from a variety peripherals including serial connections, Ethernet 

network connection, or flash memories.  U-Boot can parse many types of filesystems on 

many different storage devices. It is executed upon power up or reset of a CPU and is 

used to load another application (in this case a uClinux kernel) [18], [26], [27]. The next 

section discusses the graphical libraries selected to create the final system display. 

 

2.5 Graphics Libraries 
 
There are two different graphical libraries supported by the BF548 uClinux kernel: 

• DirectFB 

• SDL 
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Both of these are open source libraries and can be used with C programming language 

to create graphical displays. The merits of both libraries will be explained in the 

following sections. 

2.5.1 DirectFB 
 
DirectFB (Direct FrameBuffer) is a thin layer library, which provides input device and 

handling abstraction, hardware graphics acceleration, integrated windowing system with 

support for translucent windows and multiple display layers on top of the Linux 

Framebuffer Device. DirectFB is a complete hardware abstraction layer with software 

fallbacks for any graphics operation that is not supported by the underlying hardware. It 

was designed for use in embedded systems and offers maximum hardware accelerated 

performance with minimum resource usage and overhead [28], [31], [33]. The DirectFB 

system diagram is shown in Fig. 2.6. 

 

 

Fig. 2.6 DirectFB System Diagram 

2.5.1.1 Access to Graphics Hardware by DirectFB 
 
DirectFB relies on the existing kernel interface to access the graphics hardware and 

requires a working framebuffer to function. For some chipsets (including the BF548) 

there is a special framebuffer driver in the Linux kernel; however unsupported chipsets 

can use a VESA (Video Electronics Standards Association) framebuffer, although with 

some limitations. DirectFB uses the framebuffer device to perform the following tasks: 

• Initialising the video mode 

• Memory mapping of the development board’s framebuffer 

• Changing the viewpoint of the framebuffer 
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If DirectFB supports the development board and the framebuffer driver for the chipset is 

present in the Linux kernel, it will use the framebuffer device in addition to the tasks 

mentioned above to perform the following tasks: 

• Memory mapping of the development board’s memory mapped I/O ports 

• Disable the framebuffer driver’s internal acceleration 

 

To execute a specific graphics operation, the DirectFB chipset driver will access the 

memory mapped I/O ports of the graphics hardware to submit the command to the 

card’s acceleration engine. The actual hardware acceleration is completed entirely in 

user space [29], [32], as shown in Fig. 2.7. 

 

 

Fig. 2.7 DirectFB Access to the Framebuffer Device and the Graphics Hardware 

 

2.5.1.2 DirectFB Features 
 
DirectFB supports many different graphics operations, which can be done in hardware if 

supported by the chipset driver, or as a software fallback. The main features of DirectFB 

are as follows [30]: 

• Windowing System - DirectFB has a fast windowing system which supports 

translucent windows. Windows using ARGB (Alpha Red Green Blue) Surfaces 

can be blended on a per pixel basis, with each window having its own global 

transparency. 
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• Resource Management – DirectFB has its own resource management for video 

memory, where display layers or input drivers can be locked for exclusive 

access. It provides abstraction for the different graphics targets. 

• Graphic Drivers – DirectFB uses loadable driver modules for hardware 

acceleration. Many of the biggest driver card chipsets are supported including 

Matrox, ATI, NeoMagic, 3dfx and Intel. DirectFB will still run on unsupported 

chipsets, but there will be no acceleration support. 

• Input Drivers – DirectFB supports many input devices including standard 

keyboards, serial and PS2 mice, joysticks, devices using the Linux input layer, 

touch screens and infra red controls. It is also possible to use an event buffer or 

query the hardware directly.  

• Image Loading – DirectFB includes image providers, which allow for many 

image formats to be loaded directly into DirectFB surfaces. These image formats 

include JPEG, PNG and GIF among others. 

• Video Playback – DirectFB also includes video providers, which allow for the 

rendering of many video formats. These video formats include mpeg1/2, AVI, 

Macromedia Flash, MOV and video4linux. 

• Font Rendering – DirectFB supports anti-aliasing text drawings and includes 

font providers which allow for the loading of DirectFB bitmap fonts and 

TrueType fonts (TTF). 

 

2.5.2 SDL 
 
SDL (Simple Directmedia Layer) is a cross-platform multimedia library that has been 

used in commercial projects and video games. SDL works with a platform’s underlying 

multimedia capabilities to provide a consistent and open API across many OSs. It 

provides access to the computer’s multimedia capabilities where possible, and will 

attempt to compensate if the computer’s underlying support is missing in some areas. It 

is possible to use individual components of SDL separately, e.g. a game might use SDL 

for audio and another toolkit for graphics. The SDL library consists of several sub-APIs, 

which provide cross-platform support for video, audio, input handling, multithreading, 

OpenGL rendering contexts, and various other amenities [34], [35], [36]. The 

abstraction layers of Linux and Windows used in SDL are shown in Fig. 2.8. 
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Fig. 2.8 Abstraction Layer of Windows and Linux SDL Platforms 

 

2.5.2.1 SDL Libraries 
 
SDL was deliberately designed to provide the bare bones of creating a graphical 

program. Therefore, the most basic library (SDL.h) does not contain all the desired 

functionality. Hence more libraries have been developed and these can be included in 

any project to add extra functionality [37], [38]. The main SDL libraries are: 

 

• SDL Image – SDL Image (SDL_image.h) provides functionality such that many 

more image file types can be loaded, rather than the standard bitmap. The image 

files include PNM, XPM, GIF, JPEG, TIFF and PNG. It also adds support for 

alpha transparency. 

• SDL Mixer – SDL Mixer (SDL_mixer.h) adds the functionality of a simple 

multi-channel audio mixer. It supports eight channels of sixteen bit stereo audio, 

plus a single channel of music. It can currently load Microsoft WAV files, 

Creative Labs VOC files and MP3 files. 

• SDL Net – SDL Net (SDL_net.h) is a small networking library, with a sample 

chat client and server application. It offers a portable interface for TCP and UDP 

protocols. 

• SDL RTF – SDL RTF (SDL_rtf.h) allows the display of simple Rich Text 

Format (RTF) files in SDL applications. 
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• SDL TTF – SDL TTF (SDL_ttf.h) is a True Type font rendering library. It 

offers powerful outline fonts and anti-aliasing such that high quality text can be 

obtained in applications. 

 

2.5.2.2 SDL Features 
 
Along with the libraries explained above, SDL also has built in functions that are used 

in the creation of graphical applications [38], [40]. These are as follows: 

• Event Based Inputs – SDL provides inputs from the keyboard, mouse, joystick 

etc., using an event based model. As SDL is cross-platform, it has the same 

events for any OS. 

• Time and Timers – SDL provides a reliable time and timer API that is both 

machine and OS independent. The SDL timer APIs allow for the creation of 

thousands of timers. 

• Threads – SDL provides a thread API which acts as a simplified version of 

pthreads. These threads provide all the basic functionality desired from threads 

while masking the low level complicated details. These threads are supported on 

all OS that supports SDL and threads. 

• Graphics – As well as the capability of working at a raw pixel level, SDL also 

supports OpenGL software which allows for hardware accelerated 2D and 3D 

graphics. SDL can also support the machines framebuffer. 

 

Combining the aforementioned libraries with the features explained above can lead to 

very powerful graphical applications while using SDL. An example of an SDL 

application using these features and libraries is shown in Fig. 2.9. 
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Fig. 2.9 SDL Application 

 

2.5.3 Selecting the Graphical Library  
 
As the display and manipulation of data in accordance with messages received from a 

CAN network was the priority and not the standard of graphics used, it was decided that 

the graphical display would only need to display 2D graphics. As 3D graphics would 

not be used, there would be no need for a hardware graphic accelerator. 

 

As DirectFB uses a graphic accelerator and is mainly used in 3D applications, it was 

decided that this level of graphical display would exceed the requirements for the 

project [41]. SDL was chosen on the merits that it has been used in many commercial 

applications, as well as being natively written in C [34]. Also all of the required libraries 

were contained in the uClinux distribution that was selected as the OS for the BF548. If 

a graphic accelerator was needed later in the project, SDL supports OpenGL which 

could be used for this application, and SDL can also run on top of DirectFB [41]. For 

these reasons SDL was selected as the graphical library to be utilised. The next section 

will outline the options which can be implemented as the Inter Process Communications 

for this project. 
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2.6 Inter Process Communications 
 
Inter Process Communications (IPC) are used in uClinux to transfer data between 

running processes on the kernel, as shown in Fig. 2.10. These IPCs also offer 

concurrency when transferring data such that no data is desecrated during data transfer. 

This is achieved by only allowing one process to use the IPC at a time, i.e. that one 

process will not try read data while another process is writing data [42]. 

 

 

Fig. 2.10 IPC at process level 

 
The four main IPCs used in Linux are [48], [53]: 

• Semaphores 

• Shared Memory 

• Message Queues 

• Named Pipes 

 

2.6.1 Semaphores 
 
Semaphores can be best described as counters used to control access to shared resources 

by multiple processes. Semaphores are used as a locking mechanism to prevent 

processes from accessing a shared resource at the same time, i.e. leading to 

concurrency. 

 

A semaphore can be compared to a key to a locked room (shared resource), with a key 

keeper (uClinux) and many people who wish to gain access to the locked room 

(processes). As there is only one key (semaphore) for the room, once the key keeper has 

loaned the key to one of the people wishing to gain access to the room, every other 
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person has to wait until the key has been returned to the key keeper. If many people 

want access to the key at the one time, the key keeper will give the key to the person 

with the highest priority, as shown in Fig. 2.11. Systems calls are used to create and 

manipulate semaphores; these are included in the standard Linux “System V IPC 

commands” [49].  

 

 

Fig. 2.11 Semaphore Metaphor 

 

2.6.2 Shared Memory 

 
Like semaphores, shared memory is another form of IPC provided by the “System V” 

release of Linux. Shared memory can be described as the mapping of a segment of 

memory that will be mapped and shared by more than one process. In shared memory, 

one process will create the segment, with any number of processes being able to read or 

write from it [50], as shown in Fig. 2.12. 

 

Shared memory is the fastest method of IPC which could be used in the project, due to 

there being no intermediation. It can be employed to save on the amount of memory 

used by avoiding having two copies of shared pages in memory. If executable code is 

shared, then only one copy is needed in physical memory and those pages can be 

mapped into the address space of all other processes that are executing that code [43].    
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Fig. 2.12  Shared Memory 

 
A major drawback when using shared memory is that it does not offer concurrency. To 

establish concurrency when using shared memory, a mechanism like semaphores would 

also have to be utilised in conjunction with it [54]. 

 

2.6.3 Message Queues 
 
Message queues are best described as link lists within the kernel’s address space. 

Messages are sent to a message queue by the sending process, and can then be received 

from the queue by one or many reading processes, in several different ways. Each 

message queue can be identified by its unique IPC identifier, which is assigned to the 

message queue upon creation [51]. 

 

Message queues offer the benefits of being able to buffer the sent messages until the 

receiver is ready to receive them, therefore a process can send a message and it will be 

saved until the receiver is ready for the message. As the messages are buffered, any 

process can read the sent messages from it as long as it knows the message queues IPC 

identifier [44]. A small message queue configuration is shown in Fig. 2.13. 
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Fig. 2.13 Message Queue 

 

As with semaphores and shared memory, message queues are also implemented using 

“System V IPC commands”. 

 

2.6.4 Named Pipes 
 
A Named Pipe can be described as a FIFO (First In – First Out).  A Named Pipe is an 

object which allows for communications between processes, i.e. it is like a file, which 

bytes of data can be written to and read from. When reading from a pipe, the receiving 

process receives the same data bytes that were written in and in the same order that they 

were written by the sending process [45], [57]. 

 

When using Named Pipes, the pipe can be set to two different operating modes; 

blocking and non-blocking. In blocking mode, the pipe will block after being opened for 

a read, it will only unblock when the pipe is opened for a write or vice versa. If a 

process writes data into the pipe, it will be blocked until another process reads that data, 

the pipe will now be blocked until the first process writes more information into the 

pipe. In non-blocking mode, the pipe can be continually written to without a read and 

vice versa. However, if a process is reading from the pipe the other process will not be 

let write to the pipe until the read is complete [52]. These operating modes are shown in 

Fig. 2.14. Unlike the previous three methods of IPCs, Named Pipes do not use the 

“System V IPC commands” [55]. 
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Fig. 2.14 Blocking Vs. Non-Blocking Named Pipes 

 

2.6.5 Selecting an IPC 
 
As stated earlier, semaphores, shared memory and message queues all require the 

“System V IPC commands” for creation and operation. To support the “System V IPC 

commands” the OS being used requires a Memory Management Unit (MMU), which 

uClinux does not contain. However, since the 2006 release of the uClinux kernel, these 

system calls have been integrated. These calls have been implemented in some projects 

and appear to function as desired [58]. 

 

As shared memory does not offer any concurrency as an IPC, without using another 

mechanism, it was not a viable option for this project. To enable concurrency when 

using shared memory, semaphores would have to be used, which offered no benefits as 

semaphores could have been used without shared memory [46]. 

 

Upon further research of semaphores and message queues, it was discovered that both 

can lead to deadlock and starvation between processes. Deadlock occurs when two or 

more processes are waiting for a resource which one of the other processes holds. These 

processes will wait forever, as none of the processes can make any progress and release 

its resources until the other releases a resource, which it will not until it receives a 
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desired resource. Starvation occurs when a process is prevented from proceeding 

because of another process contains the resource it desires. It is different to deadlock as 

it is possible for the process to get the desired resource, but due to adversity in the 

timing of resource requests, it never receives the desired resource [47], [56]. 

 

As Named Pipes are a simpler mechanism for IPCs, and only use a file like system to 

read and write information, they can not lead to deadlock or starvation. Also using the 

blocking mode operation, it can be guaranteed that no information will be lost when 

communicating between two processes. With Named Pipes also being used as an IPC in 

uClinux since its creation, with the other methods only recently being supported in the 

kernel, it was decided that Named Pipes would be the best option for this particular 

project [45], [52].  The next section will discuss the external data network which will be 

used in this project, Controller Area Network. 

 

2.7 Controller Area Network 
 
The addition of electronic units in vehicles in the early ‘80s led to the need for real time 

communications within vehicles. The point-to-point wiring system was previously 

employed to connect all electronic units contained in the vehicles. With the addition of 

more electronic units, additional dedicated signal lines had to be added to the vehicle, 

which in turn increased the cost and decreased the reliability of each vehicle [60]. A 

point-to-point wiring system is shown in Fig. 2.15. 

 

 

Fig. 2.15 Point-to-Point Wiring System 
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To fulfil the need for multiplexed communications, and replace point-to-point wiring, 

Controller Area Network (CAN) was developed in the 1980s by the “Robert Bosch 

GmbH” company. With CAN, point-to-point wiring was replaced by a single serial bus 

connecting all control systems and electronic devices using NRZ bit coding (Non 

Return to Zero) on the network [61], [63]. A typical CAN network is shown in Fig. 

2.16.  

 

 

Fig. 2.16 CAN Network 

 

2.7.1 CAN Bit Encoding 

 
The CAN bus protocol uses NRZ bit encoding for data transmission. NRZ bit encoding 

uses logic 0 and logic 1 to represent the data. If two or more logic 1s occur in 

succession, the waveform does not return to logic 0 level until a logic 0 actually occurs, 

or vice versa. In the CAN protocol these two logical states are known as dominant 

(logic 0) and recessive (logic 1). ISO11898 defines a differential voltage, VDIFF, to 

represent these two logic states [60], [65]. 

 

Typically, a twisted pair configuration is used for the CAN bus, which prevents 

electromagnetic interference from other electrical devices internal or external to the 

vehicle. One of the wires is labeled as CAN High (CANH), while the other is labeled 

CAN Low (CANL). The differential signal between the voltages carried in each wire 

defines the bus state [63], [64], as can be calculated using the following equation (2.1) 

and shown in Fig. 2.17. 
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CANLCANHDIFF VVV −=   

(2.1) 

 
Where:  VDIFF is the Differential Voltage (V) 

VCANH and VCANL are the CANH and CANL Voltages respectively (V) 

 

 

Fig. 2.17 Differential Bus Signalling 

 
In the dominant state the differential voltage between CANH and CANL will be greater 

than a minimum threshold. Conversely, when in the recessive state the differential 

voltage is less than a minimum threshold. A dominant signal bit will always have 

precedence over a recessive bit, due to the fact that CAN uses a Wired-AND 

mechanism. Using this system, if any node transmits a dominant bit, the bus will be in 

the dominant state; the CAN network will stay in the dominant state until all nodes on 

the network transmit a recessive bit [61]. These threshold voltages adhere to the 

ISO11898 nominal bus levels as shown in Fig. 2.18. 
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Fig. 2.18 ISO11898 Nominal Bus Levels 

 

2.7.2 CAN Bit Rates and Timings 
 
The bit time of a CAN message is divided into four segments; The Synchronisation 

Segment (Synch Seg.), Propagation Time Segment (Prop Seg.), Phase Buffer Segment 1 

(Phase Seg. 1) and Phase Buffer Segment 2 (Phase Seg. 2) as shown in Fig. 2.19 and 

explained in Table 2.7 [68]. 

 

Fig. 2.19 CAN Message Layout 
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Name Use Time Period (TQ) 

Sync. Seg 
To synchronize the nodes on the bus. Bit 
edges are expected to occur within the 
Sync Seg. 

1 

Prop. Seg. To compensate for physical delays 
between nodes. Programmable : 1 - 8 

Phase 
Seg.1 and 

2 

To compensate for edge phase errors on 
the bus. PS1 can be lengthened or PS2 
can be shortened by resynchronisation 

PS1- Programmable : 1 - 8 
PS2- Programmable : 2 - 8 

Table 2.7 Segments of a CAN Message 

 
As illustrated in Fig. 2.19, the Nominal Bit Time (NBT), or tbit, is made up of the four 

non-overlapping segments; therefore the NBT is the summation of the four segments 

[69]. 

21 PSPSPropSegSynchSegbit ttttt +++=    

(2.2) 

Where:  tbit is the bit period (seconds), 

  tSynchSeg is the synchronisation segment period (seconds), 

  tPropSeg is the propagation segment period (seconds), 

  tPS1 and tPS2 are the periods (seconds) for phase segment 1 and 2   

                        respectively. 

 
Each of the four segments are made up of integer units called Time Quanta (TQ). The 

length of each Time Quantum is based on the oscillator period, with the base TQ 

equalling twice the oscillator period. The TQ length equals one TQ clock period 

(tBRPCLK), which is programmable using the Prescaler named the Baud Rate Prescaler 

(BRP) [69], [68], as shown in the following equation (2.3). 

 

OSC
OSC F

BRP2TBRP2TQ *** ==  

(2.3) 
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Where:  TQ is the time quantum (seconds), 

  BRP is a user-configurable prescaler integer unit, 

  TOSC is the period of the oscillator used within a node (seconds), 

  FOSC is the frequency of the oscillator used within a node (Hertz). 

 
The Nominal Bit Rate (NBR), which is the number of bits per second transmitted by an 

ideal transmitter with no resynchronisation, can now be calculated using the following 

equation (2.4). 

bit
bit t

1fNBR ==  

(2.4) 

Where:  NBR is the nominal bit rate (seconds), 

  fbit is the frequency of a bit (hertz), 

  tbit is the bit period (seconds).   

 
Developing Fig. 2.19 using the preceding equations, it can be seen that NBT can be 

broken down further into a number of TQ. The Synch Seg. is always equal to 1 TQ 

(Table 2.7) and the other three segments being the programmer’s choice depending on 

the application and desired NBR, as shown in Fig. 2.20 [69]. 

 

 
Fig. 2.20 CAN Message in TQ 

 

2.7.3 Propagation Delay 
 
As the CAN protocol is implemented to use a non destructive bit-wise arbitration 

scheme, it is affected by propagation delays. If two nodes transmit their messages at the 

same time, they must arbitrate for control of the bus, with the arbitration only being 

effective if both nodes can sample the bit at the same time. Extreme propagation delays 

will result in invalid arbitration. The propagation delay of a CAN system can be 
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calculated as being a signal’s round trip time on the physical bus, and is represented 

mathematically as shown in the following equation (2.5) and illustrated in Fig. 2.21.  

 

)(* drvcmpbusprop ttt2t ++=  

(2.5) 

Where  tprop is the network propagation delay (seconds), 

  tbus is the time duration of a signal’s round-trip (seconds), 

  tcmp is the input comparator delay (seconds), 

  tdrv is the delay of the output driver (seconds). 

 

 

Fig. 2.21 Propagation Delay between Nodes 

 

2.7.4 Synchronisation 
 
In the CAN protocol, synchronisation occurs on the recessive to dominant edges and 

their purpose is to control the distance between edges and sample points. The Phase 

Buffer Segments (PS1 and PS2), along with the Synchronisation Jump Width (SJW) are 

used to compensate for the oscillator tolerances. Both PS1 and PS2 may be lengthened 

or shortened by synchronisation. There are two methods used for achieving and 

maintaining synchronisation; Hard Synchronisation and Resynchronisation [68]. 

 

2.7.4.1 Hard Synchronisation 
 

Hard Synchronisation only occurs on the first logic 1 to logic 0 (recessive to dominant) 

edge during a bus idle condition. This represents a Start-of-Frame (SOF) condition. 

Hard Synchronisation forces the edge to lie within the Synchronisation Segment by 
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causing the bit timing counter to reset to the Synchronisation Segment; hence, 

synchronising all receivers to the transmitter. Hard Synchronisation only occurs once 

during a message, and resynchronisation can not occur during the same bit time [68], 

[70]. 

 

2.7.4.2 Resynchronisation 
 
Resynchronisation is implemented to maintain the synchronisation achieved by Hard 

Synchronisation. Due to oscillator drift between nodes, the receiving nodes can lose 

synchronisation if resynchronisation was not employed after Hard Synchronisation. 

Resynchronisation is achieved by implementing a Digital Phase Lock Loop (DPLL) 

function which compares the position of the expected edge (within the Sync Seg.) to the 

actual position of a recessive-to-dominant edge on the bus. The DPLL will then adjust 

the bit time as necessary. The SJW is used to compensate for any phase error by the 

defined amount in resynchronisation. It is a value programmed by the user, in a range of 

1 to 4 TQ, by which the bit period can be lengthened or shortened [68], [70], as shown 

in Fig. 2.22. 

 

 
Fig. 2.22 SJW used in Resynchronisation 

 

2.7.5 CAN Message Framing 
 

The CAN protocol defines 4 different types of data frames: 

(i) Data Frame 

(ii) Remote Frame 

(iii) Overload Frame  

(iv) Error Frame 
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2.7.5.1 Data Frame 
 

As the data frame is the most commonly employed frame type, it will be discussed in 

greater detail than the other three message frames. A Standard CAN data frame is 

shown in Fig. 2.23. 

 

Fig. 2.23 Standard CAN Data Frame 

 
As illustrated in Fig. 2.23, the Standard CAN data frame consists of many different 

fields; this is also true for the other three frame types. Each field is comprised of a 

number of bits. The composition of the data frame is as describe below [59], [62], [64], 

[66]. 

 

• Start of Frame Field – The SOF marks the beginning of the Data Frames and 

the Remote Frames. It consists of a single ‘dominant’ bit. 

• Arbitration Field – The Arbitration Field consists of the Identifier Field and the 

Remote Transmission Request (RTR) Bit. The Identifier Field is 11bits in 

length, and transmitted in order of ID10 to ID0. The seven most significant bits 

(MSBs) (ID10 – ID4) must all not be ‘recessive’. For data frames, the RTR Bit 

must be ‘dominant’, and for a Remote Frame the RTR Bit has to be ‘recessive’. 
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• Control Field – The Control Field consists of 6 bits. 4 bits are used for the Data 

Length Code (DLC), which indicates the number of bytes in the Data Field, one 

bit is for the IDE, while the last bit is reserved for future expansion. 

• Data Field – The Data Field contains the data to be transmitted within the data 

frame. It can contain 0 to 8 bytes, which are transferred MSB first. 

• CRC Field – The CRC Field contains a cyclic redundancy check sequence, 

along with the CRC Delimiter which is set to be a single ‘recessive’ bit. 

• ACK Field – The ACK (Acknowledge) Field consists of two bits, one for the 

ACK Slot and another for the ACK Delimiter. A transmitting node will send two 

‘recessive’ bits, if a receiver receives the message correctly it will acknowledge 

this by sending a ‘dominant’ bit in the ACK Slot back to the transmitter. 

• End of Frame Field – The End of Frame Field consists of a sequence of seven 

‘recessive’ bits. 

 

The data frame described above is the Standard CAN Data Frame as outlined in the 

CAN2.0A specifications. There has been a subsequent protocol release (CAN2.0B) 

which describes the Extended Data Frame. The main difference between both frames is 

that the Extended Data Frame has the capacity to support a twenty nine bit Identifier 

Field as opposed to the Standard eleven bits. Thus the extended frame format offers a 

greater ID range [62], [66]. 

 

2.7.5.2 Remote Frame 
 
Remote Frames are used to request information between nodes. A node which desires 

information will transmit a Remote Frame on the CAN bus, on receiving the Remote 

Frame the node which contains the desired data will then transmitted it on the CAN bus. 

The Remote Frame’s composition is nearly identical to that of the Data Frame with the 

only exceptions being that its RTR bit is ‘recessive’ along with its DLC being set to 0, 

to indicate no data is being transmitted [62], [67]. 
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2.7.5.3 Overload Frame 
 
The Overload Frame is comprised of an Overload Flag and an Error Delimiter. It is used 

for to tell the network that it is currently occupied and it is not ready to receive any 

further messages [61], [67]. 

 

2.7.5.4 Error Frame 
 
An Error Frame consists of two fields; an Error Flag Field and an Error Delimiter Field.  

The content of the Error Flag Field is dependent on the error status of the node which 

has detected the error. The Error Delimiter consists of eight ‘recessive’ bits. If any node 

on the CAN bus detects a bus error, it will generate an Error Frame. Once the Error 

frame has been formed bus activity will return to normal and the node in which the error 

occurs will attempt to re-transmit any aborted messages [61], [67]. 

 

2.8 Summary 
 
This chapter reviewed the literature needed to successfully design and implement the 

project. The main points covered in this chapter were: 

• The selection of the processor to be used in this project, the Blackfin ADSP 

BF548 EZ-KIT 

• The development host to be used to write and compile applications, boot 

loaders and kernels. In this case coLinux was selected as the development host.  

• The OS to be used on the selected processor, in this case uClinux, along with 

the boot loader, U-Boot. 

• The selection of SDL as the graphical library which will be used to generate the 

graphical display. 

• The method of Inter Process Communication to be used in the project. 

• The operation and implementation of the CAN protocol.  

The next chapter will discuss the configuration of the development host and 

environment as discussed in this section. 
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3 System Configuration and Design 
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3.1 Introduction 
 
This chapter details the configuration and design of the complete system. All choices 

made and methods used were based on the findings from the literature review. To 

explain the system’s configuration and design process undertaken for this study the 

chapter is divided into the following sections: 

• Section 3.2 illustrates the configured system. It introduces all of the individual 

components needed. These components will be explained in further detail in the 

following sections. 

• Section 3.3 outlines the configuration of the development host, coLinux. This 

section describes the steps needed to install and configure coLinux, such that it 

can be used to develop and compile U-boot, the uClinux kernel and any 

application code for the BF548. 

• Section 3.4 describes the compilation and porting of the boot loader, U-Boot and 

also details the saving of U-Boot to flash memory. 

• Section 3.5 covers the compiling and porting of the evaluation boards OS, 

uClinux. The configuration of the uClinux kernel is also covered and describes 

the inclusion and exclusion of functionality in the kernel. 

• Section 3.6 outlines the configuration and modification of the CAN drivers, as 

well as testing of sample code. It describes the problems encountered and 

solutions faced while designing the CAN software on the BF548. 

• Section 3.7 details the design principles for the graphical display used in the 

project. It covers the design principles and development of basic SDL code, 

along with the testing of this code. 

• Section 3.8 outlines the method used for Inter Process Communications in the 

project. It details the initial development and testing of the Named Pipes.  

• Section 3.9 provides a summary of information presented in this chapter. 
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3.2 System Configuration Overview 
 
This chapter describes the configuration of the development host (PC) and evaluation 

board (BF548). A complete overview of the system is shown in Fig. 3.1. Each section of 

the diagram will be explained in more detail in the following sections. 

 

 

Fig. 3.1 System Configuration Overview 

 

3.3 coLinux 
 
When developing software for a uClinux based project, a Linux development host is 

required. This development host is used to compile the boot loader (U-Boot), the 

board’s OS (uClinux) and any applications that are run on the BF548. coLinux was 

chosen as the development host for the project, as it can operate on top of a Windows 
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OS, and hence a full Linux box was not needed. The installation and configuring of 

coLinux will be explained in the next section. 

 

3.3.1 Installing coLinux    
 
The Debian version of coLinux was used in the project. The Debian installer file was 

downloaded from the Blackfin website [71]. When the installer file was run on the 

Windows machine, it set up a one gigabyte (1GB) partition that was then used for all 

coLinux files. When the installation was complete, the partition contained all of the 

standard directories associated with any Linux machine. Finally a batch file was written 

to create a Windows shortcut for coLinux. 

 

3.3.2 Configuring coLinux 
 
coLinux had to be configured such that the Windows partition and the coLinux partition 

could communicate with each other. This was achieved by configuring a network 

connection such that coLinux could use the Windows Ethernet network connection for 

downloading new packages, and also for transferring files between both operating 

systems. 

 

3.3.2.1 Configuring the Network 
 
During the installation of coLinux, a TAP interface was automatically created in the 

network connections folder of Windows. It is this interface that is used to connect both 

the coLinux and the Windows OSs to the Ethernet. To allow connections, the Windows 

Ethernet connection had to be shared as shown in Fig. 3.2 [72]. 
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Fig. 3.2 Sharing Ethernet Connection 

 
This TAP interface was configured to have an IP address of 192.168.0.1 and a subnet 

mask of 255.255.255.0 as shown in Fig. 3.3. 

 

 

Fig. 3.3 Configuring the coLinux TAP Interface 

 

The Windows side of the network configuration was now complete. To configure the 

network on coLinux the resolv.conf and interfaces files had to be edited to include the 

IP address, subnet mask, gateway IP and the name server [73]. The interfaces file was 

edited to contain the information shown in Table 3.1 and edited interfaces file is shown 

in Fig. 3.4. 

. 
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Name Address 
IP Address  192.168.0.100 
Gateway IP 192.168.0.1 
Subnet Mask 255.255.255.0 

Table 3.1 coLinux Network Configurations 

 

 

Fig. 3.4 Edited coLinux Interfaces File 

 
When editing the resolv.conf file, the IP address set for the TAP interface is set as the 

name server as shown in Fig. 3.5. 

 

  

Fig. 3.5 Edited coLinux Resolv.conf File 

 
coLinux was now configured to connect to the Ethernet. To test these connections ping 

was used as shown in Fig. 3.6 and Fig. 3.7. 
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Fig. 3.6 Pinging coLinux from Windows 

 

 

Fig. 3.7 Pinging Windows from coLinux 

 
Finally communications between coLinux and the World Wide Web were verified by 

using the “apt-get update” command. This command connects to the Web and updates 

any coLinux packages that are not the latest revision. The web addresses which are used 

for the updates were configured during the installation of coLinux. When the command 

was run, each package currently installed in coLinux was checked and updated if a 

newer version was available; hence proving that coLinux connected to the web. With 

coLinux and Windows communicating, a method was needed to transfer files between 

both OSs. This was accomplished using an FTP (File Transfer Protocol) server. 

 

3.3.2.2 Configuring the FTP server 
 
The FTP server used in the project was Serv-U. This server was downloaded and 

configured such that a folder called FTP Documents was created on the Windows OS. 

This folder was the used to send and receive files from coLinux. As the folder was 
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situated on the Windows OS, the Domain IP of the server had to be set to the IP address 

of the Windows OS, 10.9.100.134. The configured server is shown in Fig. 3.8. 

 

 

Fig. 3.8 Configured FTP Server 

 
To send and receive files from coLinux, the command “ftp 10.9.100.134” is used to log 

on to the server. The user is asked to enter a username and password, once these are 

entered properly, the user can receive files from the folder in the Windows environment 

using the “get filename” command. To send files from coLinux to Windows the “put 

filename” command is used. With the FTP server functioning correctly, full 

communications were established between coLinux and Windows. Next the Blackfin 

toolchains had to be installed in coLinux. 

 

3.3.2.3 Installing the Blackfin Toolchains 
 
The Blackfin toolchains contain all the necessary library files and cross compilers 

needed to compile code that is to be run on a Blackfin BF548 board, including U-Boot, 

uClinux and any application programmes. There are two toolchains which need to be 

installed, blackfin-uclinux and blackfin-linux-uclibc. Both of these toolchains were 

downloaded from the Blackfin website [74]. The rpm (RPM Package Manager) versions 
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of the toolchains were downloaded to coLinux and were installed using the “alien –i 

filename” command [18].   

 

With the toolchains installed in coLinux, the path had to be edited such that it includes 

the Blackfin toolchains. The path is used while compiling any code, to point to the 

appropriate cross compiler, i.e. if compiling a uClinux kernel, without editing the path 

to include the appropriate cross compilers, an error will be received. To edit the path the 

following command is used; 

 

“export PATH=$PATH:/opt/uClinux/bfin-uclinux/bin:/opt/uClinux/bfin-linux-

uclibc/bin”  

 

With the path edited to include the Blackfin toolchains, coLinux can now be used to 

compile programmes to run on the BF548. As a boot loader is needed to boot the 

uClinux kernel on the board, U-Boot had to be compiled first. 

 

3.4 U-Boot 
 

U-Boot is the boot loader used when running uClinux on a Blackfin platform. Its job is 

to point the CPU to the starting address of the OS, in this case a uClinux Kernel. To 

accomplish this, the latest version of U-Boot was compiled and then saved into flash 

memory such that it will run every time the BF548 board is powered up. When 

compiling and porting U-Boot to the BF548, the steps given by Blackfin were closely 

followed [18]. 

 

3.4.1 Compiling U-Boot 
 
To compile U-Boot the Blackfin toolchains must be installed in the development host, 

coLinux, as stated earlier. The latest version of U-Boot was downloaded and 

uncompressed using the command, “tar jxf U-Boot-1.1.6-2008R1.tar.bz2”. This 

command will unpack U-Boot and put it into a directory with the same name, i.e. the 

directory U-Boot-1.1.6-2008R1 will be created in coLinux. With the source code 

installed in coLinux, U-Boot was then compiled. 
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3.4.1.1 Compiling U-Boot for Loading over the UART 
 
As the compiled version of U-Boot was to be loaded to the BF548 using the UART, this 

had to be set in the header file for the device. To accomplish this, the Blackfin boot 

mode must be set to Blackfin boot UART in the BF548-ezkit header file, as shown 

below [18]. This edited header file is shown in Fig. 3.9. 

 

#define BFIN_BOOT_MODE   BFIN_BOOT_UART 

 

 

Fig. 3.9 Setting Boot Mode to UART 

 
After setting the boot mode to UART in the header file, the edited configuration file had 

to be compiled for the changes to take affect. The command “make bf548-ezkit_config” 

was used to compile the configuration file, as shown in Fig. 3.10. 

 

 

Fig. 3.10 Configuring and Compiling U-Boot 
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Once U-Boot has compiled successfully the following files are created in the U-Boot 

directory, as shown in Table 3.2. 

 

File Description  
u-boot Compiled ELF image 
u-boot.bin u-boot converted to a raw binary 
u-boot.hex u-boot.bin converted to Intel Hex format 
u-boot.srec u-boot.bin converted to Motorola S-records format 
u-boot.ldr u-boot converted to Blackfin Loader format 
u-boot.ldr.hex u-boot.ldr converted to Intel Hex format 
u-boot.ldr.srec u-boot.ldr converted to Motorola S-records format 

Table 3.2 Created Files from U-Boot Compilation 

 

U-Boot was loaded on the BF548 using a UART loader (LdrViewer), and the file 

required was “u-boot-ldr”.  

 

3.4.2 Loading U-Boot onto the BF548 
 
LdrViewer was used to load U-Boot, through the UART to the BF548 evaluation board. 

This was achieved by connecting an RS232 cable from COM1 on the development 

machine to the BF548 board and setting switch 1 on the BF548 to 7 (UART boot). The 

U-Boot file (u-boot-ldr) was then opened and both the baud rate and com port were set 

in LdrViewer. The port was then tested using the “test port” button as shown in Fig. 

3.11. 

 

 

Fig. 3.11 Configuring LdrViewer 
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When testing the port, if the message highlighted in Fig. 3.11 is received then the 

LdrViewer can successfully talk to the port. The “Autobaud” button was then used to 

test the connections between LdrViewer and the BF548 as shown in Fig. 3.12. 

 

 
Fig. 3.12 Testing Communications between LdrViewer and BF548 

 

If the message highlighted in Fig. 3.12 is received after running the “Autobaud”, the 

BF548 is ready to receive the U-Boot file over the UART. This was achieved by 

pressing the “Send DXE” button. When the U-Boot file had been successfully sent, the 

feedback from the target was displayed in LdrViewer as shown in Fig. 3.13.  

 

 

Fig. 3.13 U-Boot Transferred Successfully 
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3.4.3 Saving U-Boot to Flash  
 
When storing U-Boot into the flash memory, it was written into the serial flash on the 

BF548. However when booting from flash, the boot mode will be set SPI boot. This 

meant that U-Boot had to be recompiled, this time setting the boot mode to be SPI. To 

accomplish this, the BF548 U-Boot header had to be edited as shown below. With the 

following line replacing the previous boot mode, U-Boot was recompiled and ported to 

the BF548 as explained above. 

 

#define BFIN_BOOT_MODE   BFIN_BOOT_SPI_MASTER 

 

This new version of U-Boot was then written into the serial flash, giving the BF548 the 

capabilities to boot from flash. When writing to the flash the following command was 

entered into the virtual console (HyperTerminal) when connected to the board [18]. 

 

eeprom write 0x1000000 0 $(filesize)  

 

The command above writes U-Boot into the serial flash of the board at address 

0x1000000. When using the command the variable filesize will be replaced by the 

actual size of the U-Boot file. The boot mode switch (switch 1) was then set to 3 (SPI 

boot mode) and the board was reset. Now and every time the board is reset, U-Boot will 

run automatically from the serial flash. 

 

3.4.4 Configuring the Network Settings in U-Boot 
 
U-Boot is used to boot the uClinux kernel, which for this project was stored on the 

development host. U-Boot will have to be able to connect to Ethernet so that it can port 

the uClinux kernel from the development host. To configure the network settings on the 

BF548, the network settings of the development host had to be established.  These 

settings were established using the command “ipconfig” in DOS, Fig. 3.14. 
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Fig. 3.14 Network Configuration of Development Host 

 
From Fig. 3.14 it can be seen that the development host’s IP address is 10.9.100.134. As 

the development host is used as a server for the board to port the uClinux kernel from, 

this address was used for the server IP. The default gateway, 10.9.251.251, was used by 

the board to connect to the network; hence this will be used for the gateway IP. Lastly 

the board itself must be given an IP address, as the address 10.9.100.89 was not being 

used on the network; this was assigned to the board. These settings were applied to the 

board by entering the following commands in U-Boot. 

 

set serverip 10.9.100.134 

set ipaddr 10.9.100.89 

set gatewayip 10.9.251.251 

 

These settings were then saved by writing their values into the U-Boot that is stored in 

flash using the command “save;” as can be seen in Fig. 3.15. 

 

 

Fig. 3.15 Configuring the Network in U-Boot 
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Now every time the BF548 is booted, these network configurations will be used, so that 

U-Boot will be able to connect to the network. 

 

3.4.5 Testing U-Boot  
 
To test U-Boot a pre-compiled version of a uClinux kernel (uImage) was downloaded 

from the Blackfin website [76]. This uImage was then stored on the development host 

so that U-Boot would be able to access it through the network. To port the uImage to 

the board, the “tftp 0x1000000 uImage” command was used in U-Boot, where tftp is 

the command used to transfer the file using ftp, 0x1000000 is the starting address in 

RAM where the file is to be placed and uImage is the actual kernel. When the command 

was entered, the following was displayed on the virtual console (Fig. 3.16). 

 

 
Fig. 3.16 Downloading the uImage 

 
When the uImage is downloaded, it can be then booted using the command “bootm”. 

Fig. 3.17 shows that the uClinux kernel has booted successfully and therefore proves U-

Boot is functioning correctly using the pre-compiled kernel. However, this pre-

compiled kernel does not have the desired functionality required for the project; hence a 

new kernel has to be configured compiled using coLinux. 
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Fig. 3.17 Booted Kernel 

 

3.5 The uClinux Kernel 
 
As the uClinux kernel contains a lot of different functionality, some of which was 

required and some which was not, an optimum kernel had to be configured and 

complied for use in this project. 

 

3.5.1 Configuring and Compiling the uClinux Kernel 
 
The latest version of uClinux for the BF548 was downloaded from the Blackfin website 

[76]. This source code was unpacked in coLinux using the “tar” command as explained 

earlier. To configure the uClinux kernel to be compiled, the “make menuconfig” 

command was used in coLinux whilst inside the uClinux directory. This command runs 

a menu script; this menu script is then used to configure the uClinux kernel, as shown in 

Fig. 3.18.  
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Fig. 3.18 Main Menu for Configuring the uClinux Kernel 

  
As can be seen in Fig. 3.18, the main menu offers four options, Vendor/ Product and 

Kernel/ Library selections, and the option to load or save configurations files. The first 

option is used to set which vendor of board being used, i.e. Analog Devices, and which 

product, i.e. BF548. As the uClinux kernel can be compiled for many different types of 

processors, it is essential to select the correct vendor and product to ensure operation. 

The selection used in this project is shown in Fig. 3.19. 

 

 

Fig. 3.19 Selecting Vendor and Product 
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The second option offered on the main screen is used to configure the libraries and 

functionality included in the uClinux kernel. Inside this option, the choice to 

reconfigure the current kernel configuration is offered. If the user chooses to 

reconfigure the current kernel configuration, many pages of options will be displayed. 

Using these options the user can select the desired functionality in the kernel.  

 

 

Fig. 3.20 Including SDL Library Files 

 
As explained in the literature review, SDL and CAN were required for the final system 

in this project. It was, therefore, important that all of the available SDL and CAN 

functionality were included in the new kernel as shown in Fig. 3.20 and Fig. 3.21. 

 

Fig. 3.21 Including SDL and CAN Examples 
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After including all desired functionality, the new configuration was then saved and the 

“make” command is used to compile the new uClinux kernel as shown in Fig. 3.22. 

 

 

Fig. 3.22 Compiling New Kernel 

 

Once the kernel has compiled successfully, a new directory is created inside the uClinux 

directory. The new directory was named “images” and contained the newly compiled 

uClinux kernel (uImage). This uImage was then ported to the board and booted using U-

Boot as before. With the new uClinux kernel running on the BF548 board a simple 

“hello world” program was used to test the new kernel’s functionality. 

 

3.5.2 Testing the new uClinux Kernel 
 
The code for the “hello world” program was written in ‘C’. This program was compiled 

and ported to the BF548. After porting the program to the board, its permissions had to 

be changed, such that the OS has permission to execute the file. To achieve this, the 

command “chmod 777 hello_world_test” is used. The chmod (change mode) command 

is used to change the access permissions of the file, 777 is a numerical way of settings 

all users’ access rights to read, write and execute. The hello_world_test is the name of 

the compiled file.  

 

After changing the access rights of the file, it was then run using the 

“./hello_world_test” command. When the program was run, its displayed “Hello 
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World!!” on the virtual console and hence proved that the new kernel was functioning 

properly, as seen in Fig. 3.23. After successfully testing the new uClinux kernel on the 

board, other programmes were then developed to run on the BF548 to check full 

functionality.  

 

 

Fig. 3.23 Running Hello World Test Program 

 

3.6 CAN Functionality 
 
The design and operation of the CAN program for this project, included editing the 

drivers in the kernel for the successful operation on the board. This is explained in the 

next sections. 

 

3.6.1 Initial CAN Setup 
 
The BF548 contains two CAN ports (CAN0 and CAN1); which are used to connect the 

board to an external CAN network. To access these ports, their drivers were included in 

the compiled uClinux kernel. As stated earlier, the BF548 board was the latest 

generation of Blackfin boards and therefore all of its functionality had not been fully 

tested. This became apparent when the CAN drivers failed to initialise the CAN ports. 

This lead to the CAN driver files being edited. It transpired that the kconfig file did not 

include the BF548 which lead to there been no CAN drivers included in this processor’s 
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kernel. Investigating the kconfig file, it was noticed that the file contained three 

different Blackfin model numbers, none of which were the BF548 as shown below. 

 

depends on CAN4LINUX && EMBEDDED && (BF534 || BF536 || 

BF537) 

 

This observation was then passed back to Blackfin and it was discovered that the BF548 

CAN driver was not actually included in the new kernel. Blackfin suggested making the 

following edits to the kconfig file of the CAN driver [58]. 

 

depends on CAN4LINUX && EMBEDDED && (BF534 || BF536 || 

BF537 || BF548) 

 

After this change was made the driver was now available in the BF548 configuration 

file as shown below. 

 
Character devices ---> 
    CAN, the car bus and industrial fieldbus  ---> 
     [*] can4linux support, the car bus and industrial fieldbus 
     <M>   Analog Devices BlackFin CAN Controller 
 
Note: The <M> means the driver will be a module in the kernel 
 

With the “Analog Devices BlackFin CAN Controller” driver selected, the kernel was 

recompiled. During this compilation different errors were encountered. These errors 

were associated with one of the Blackfin CAN C programs (core.c). After investigating 

the program file it was noticed that the section for the BF548 looked incomplete and the 

missing values were consistent with the errors received. These results were passed to a 

moderator of the Blackfin website, who implemented the required changes such that the 

driver would work for the BF548.  

 

3.6.1.1 Activating the CAN Driver  
 
As the CAN driver is a module driver, it has to be loaded into the kernel. To do this the 

kernel must first be fully booted, and then the command “modprobe can” is used. 

Where “modprobe” is a program used to add and remove modules from the uClinux 
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Kernel [18]. After entering the command the CAN driver was activated and the 

confirmation of this was shown on the virtual console, Fig. 3.24. With this the CAN on 

the BF548 was ready for initial testing. 

 

 

Fig. 3.24 Activating the CAN driver 

 

3.6.2 Initial Testing 
 
CAN sample code, with a baud rate of 125kbps, was provided in the uClinux kernel and 

was used to test the CAN communications between the BF548 and a mikroElektronica 

EasyPIC 4 board. On initial testing it was found that no communication was achieved 

between both devices. CANalyzer, the automotive industries standard tool for CAN 

network development and analysis, was used to monitor the traffic on the CAN bus. It 

was first connected to the EasyPIC 4 board at the specified baud rate (125kbps) and 

communications without errors was achieved. When CANalyzer was connected to the 

BF548 at the specified baud rate, error messages were detected on the CAN bus, Fig. 

3.25. 
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Fig. 3.25 Error Frames at 125kbaud 

 
It was believed that these errors were due to the baud rate setting on the BF548 being 

incorrect. 

 

3.6.2.1 Baud Rate Error 
 
The bus between the BF548 and CANalyzer was probed using an oscilloscope to look at 

the signal voltage and frequency, as seen in Fig. 3.26. 

 

 
Fig. 3.26 CAN signal from BF548 

 

With the value of the time period of the CAN signal determined to be approximately 

7.5µs, the value of frequency was then calculated. 
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133.33Kbps
7.5*10

1
T
1f 6 === −  

(3.1) 

 

Setting the baud rate on CANalyzer to the calculated frequency, 133kbps, allowed 

communications without errors between the two devices, Fig. 3.27. 

 

 

Fig. 3.27 CAN RX at 133kbps 

 

3.6.2.2 CAN Header Files 
 
With the baud rate established to around 133kbps and not the desired 125kbps, the CAN 

header files for the BF548 were checked to ensure that the CAN variables were set to 

the correct values. The section of code which configured the CAN for 125kbps was 

found at line 480 of the header file. 

 
#if CAN_SYSCLK == 125 
{----- lines cut -----} 

#define CAN_BRP_125K  49 
#define CAN_TSEG_125K      0x002f      
 

From the code above it can be seen that the BRP (Baud Rate Prescaler) is set to 49, also 

it can be seen that the value for TSEG is set to 0x002f. This hex number breaks down as 

follows,                                         

                                         TSEG2                  TSEG1 

TSEG = 0x 0 0                2                           F 
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The hex number above, shows that the value of TSEG2 is 0x2 (210) and the value of 

TSEG1 is 0xF (1510). With these two values and the value of the propagation segment, 

which was set in the header file, the value of the NTQ (Number of Time Quanta) was 

established. 

NTQ = prop_seg + TSEG1 + TSEG2      

(3.2) 
     =          3     +     15     +       2 

             =    20   

 

Using the information ascertained from above and a system clock (SCLK) of 125MHz, 

as stated in product documentation, the baud rate was found as follows.  

 

)*)(( NTQ1BRP
SCLKRateBaud
+

=  

(3.3) 

                           Baud Rate = 
20)*(50
10*125 6

 

                          Baud Rate = 125kbps 

 

From above, the settings in the CAN configuration file should warrant the desired baud 

rate. Also from the header file, the values of the BRP and NTQ are known to be correct. 

From this information, it can be seen that the only variable not confirmed, and would 

cause the baud rate to be incorrect, is the system clock. Therefore the system clock must 

not be operating at 125MHz.  

 

3.6.2.3 Editing the System Clock 
 
Once it was discovered that SCLK was not running at the desired speed and after 

researching the Blackfin site yielded no answers, a post was placed on the Blackfin 

website [58]. From the replies received, it was discovered that the clock might have not 

been set correctly in the kernel. The easiest fix for this was to edit the system clock on 

boot up such that each time the kernel boots it sets all its clocks to 125Mhz, this in turn 

will set the correct baud rate. To do this, changes had to be made to the kernel 



 70

configuration file. The system clock is determined using the following equation (3.4), 

[18]. 

DIVSCLK

MULTVCO
2

CLKIN((
  SCLK

CLKIN_HALF

_

)_*)
=

 
(3.4) 

4

)20*)10*25
0

6

2
((

  SCLK =  

4
500*10 SCLK 

6

= =125*106 

SCLK=125MHz  

Where:             CLKIN - The clock input frequency 

   CLKIN_HALF - Cut input frequency in half 

VCO_MULT - Clock input multiplier 

CCLK_DIV - Core clock divider 

SCLK_DIV - System clock divider 

Note: CLKIN_HALF can only be 1 or 0. 

 

Once the changes were made in the kernel configuration file, it was recompiled and 

downloaded to the BF548. When the new kernel was booted, it froze. The kernel was 

recompiled, downloaded and booted once more yielding the same result but eliminating 

compilation errors. On researching this new issue it was discovered that the kernel 

version (2008R1) used contained a bug which caused the kernel to freeze while re-

programming the clocks on boot-up.  

 

This left two possible options;  

 

(i) Upgrade to the latest kernel release  

 

(ii) Edit the system clock in the current kernel 
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Careful deliberation resulted in the use of the second option, with a major factor being 

all previous development in the project to this time had worked with the current version 

of the kernel, and the newer kernel might involve newer problems. 

 

There were two possible options in which to achieve the desired CAN baud rate; 

 

(i) Change the clock in U-Boot and recompile it, so that it sets the system clock to 

125MHz. 

 

(ii) Edit the kernel’s CAN header files so that it could take the current system 

clock and manipulate it to get the desired 125kbps baud rate.  

 

It was decided that the second option would be the best, as all previous development 

had been working fine in the current kernel, and changing the system clock in U-Boot 

might lead to other problems. This option offered the benefits of a deeper understanding 

of CAN in uClinux. 

 

To edit the CAN header files, the actual system clock frequency was required. This was 

established by checking the parameters in U-Boot. These parameters were stored in the 

BF548 U-Boot header file and were used in the following equation (3.5) to calculate the 

actual system clock. 

DIVSCLK

MULTVCO
2

CLKIN((
  SCLK

CLKIN_HALF

_

)_*)
=

 
(3.5) 

4

)21*)10*25
0

6

2
((

  SCLK =  

4
*105 SCLK 

625
= =131.25*106 

SCLK=131.25MHz 
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With the correct value of the system clock, equation 3.3 can now be used to find the 

value of the CAN baud rate. 

 

*NTQ)1((BRP
SCLKBaudrate 

)+
=

 
(3.6) 

2))151)*(3((49
131.25*106

+++
=  

50*20
131.25*106

=  

= 131.25kbps 
 

From above it can be seen that CAN was actually running at 131.25kbps instead the 

desired 125kbps. With the value of the system clock at 131.25MHz and the desired 

CAN baud rate of 125kbps. Using these values, and using the initial value of BRP (49), 

as set in the CAN header file, then the value for NTQ can be established. 

 

1)*NTQ)((49
131.25*10 125*10

6
3

+
=  

(3.7) 

(50*NTQ)
131.25*10 125*10

6
3 =⇒  

1050NTQ*50 =⇒  

21NTQ =⇒  

 

The desired NTQ was accomplished by setting TSEG1 = 15 and TSEG2 = 3 such that. 

NTQ = 3 + 15 + 3 

(3.8) 
   21 = 3 + 15 + 3 

                                                           21 = 21       

 

The value of TSEG_125K in the CAN header file was then set to 0x003F, instead of 

0x002F as shown below. 

 

 



 73

#if CAN_SYSCLK == 125 
{----- lines cut -----} 

#define CAN_BRP_125K  49 
#define CAN_TSEG_125K      0x003f      
 
 
The kernel was recompiled with the new edited header files and downloaded to the 

evaluation board resulting in the CAN network running at the desired 125kbps. Fig. 

3.28 shows the output from the BF548 CAN port when connected to CANalyzer 

 

 

Fig. 3.28 CAN RX from BF548 at 125kbps 

 

3.6.3 Testing CAN on the BF548 
 

To test CAN on the BF548, the sample code inside the uClinux kernel was used. This 

sample code contained two programmes; 

 

(i) can_send –  This program is used to send CAN messages from the BF548 and 

has many different options for sending CAN messages. 

 

(ii) receive    –  A program which is used to listen for CAN messages on the 

network. If a CAN message is received, it is displayed in the 

virtual console. 

 

Each of the above programmes were tested individually and their results are explained 

below. 
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3.6.3.1 Testing the can_send program 
 
To test the can_send program, the BF548 was connected to CANalyzer. Both 

CANalyzer and the BF548 baud rates were set to 125kbps. The can_send program 

offers many options to send CAN messages, including bursts of 10 or 20 messages, but 

for initial testing, single messages were sent using the command line. This method was 

chosen so that the user knows exactly what messages are sent and hence confirming the 

operation of can_send. The command used to send CAN messages is shown in Fig. 

3.29. 

 

Fig. 3.29 can_send Command 

 
To test can_send, seven different CAN messages were sent from the BF548 using the 

command line as shown in Fig. 3.30. 

 

 
 

Fig. 3.30 Sending CAN messages using can_send 

 
While sending the messages shown above, the following data was received by the 

CANalyzer, Fig. 3.31. 
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Fig. 3.31 Messages received on CANalyzer 

 
Fig. 3.31 shows that all CAN messages that were sent from the BF548 were transmitted 

on the bus and received by CANalyzer correctly. The testing of the can_send program 

was complete, and was proved that the CAN communication was working successfully. 

 

3.6.3.2 Testing the receive program 
 
To test the receive program, both the BF548 and CANalyzer were connected and set to 

125kbps. The receive program was then run on the BF548, whilst messages were 

transmitted on the CAN network using CANalyzer. The receive program monitored the 

CAN network and if any CAN messages were received, these were displayed on the 

virtual console. An example of a typical display is shown in Fig. 3.32. 

 

 

Fig. 3.32 Example of Received Message 
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The received messages comprises of six different parts; 

 

(i) Received with ret – Used to signal if a message has been received. If a 
message is received with no errors this will equal 1, if 
there is errors it will equal -1 

 
(ii) Receive time        –  Displays the board’s  time stamp when the message 

was received 
 

(iii) CAN ID               – Displays the CAN ID. The CAN ID for this program 
was displayed in decimal 

 
(iv) Data Length         –  Displays the data length of the CAN message 

 
(v) Data Bytes           –  Display the data contained in the CAN message, this 

was displayed in hex 
 

(vi) Flags                    –  Displays flags associated with the CAN message 
 

 

Fig. 3.33 Messages used to Test the Receive Program 

 
To test the receive program, messages were sent using CANalyzer, as shown in Fig. 

3.33, these were received by the BF548 and displayed on the virtual console, Fig. 3.34. 

 

 

Fig. 3.34 Messages Received using receive program 
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All the messages sent using CANalyzer were received, with no errors, on the BF548. 

With testing complete, an edited version of the receive program was used later in this 

project. This edited program uses the data received in the CAN messages to change the 

information displayed on the BF548’s LCD Panel (Implementation and Testing 

chapter). 

 

3.7 Simple Directmedia Layer 
 
Initial testing of the Simple Directmedia Layer (SDL) was performed using the SDL 

software provided in the uClinux kernel.  

 

3.7.1 Graphical Representations 

 
The objective of this project was to create a flexible digital display, therefore it was 

decided that two different forms of graphical representations would be used to display 

information. 

 

(i) A digital representation of a standard instrument display configuration. This 

configuration contained two dials, a speedometer (speed) and a tachometer 

(rpm). 

 

(ii) A digital bar chart. This would display the speed in the form of a bar chart 

along with any error messages that were ascertained from the CAN network. 

 

During early development and testing of both SDL programs, a random number 

generator was used to change both the speed and rpm. Both programmes were written 

and tested individually. Later in the project, both programmes were combined with the 

data from the CAN network being used to dictate the variables currently dictated by the 

random number generator (see Implementation and Testing section). 
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3.7.2 Digital Representation of a Standard Dash Configuration 
 
The Digital Dash configuration was based on the analog dials used in the majority of 

cars presently. This configuration contained both a speed dial and an rpm dial.   

 

3.7.2.1 Graphics Creation 
 
The two dials were created using a graphics editor. However some considerations had to 

be assessed before creating the graphics for the dash configuration. After researching 

the available options, key decisions were made with the design layout such that: 

 

(i) An image file would be created for each increment in speed or rpm for each 

dial. This decision was made due to the heavy computational needs of SDL 

to rotate an image. To overcome the amount of memory required to store all 

the images, each image was stored as a PNG (Portable Network Graphics) 

file, which offers very good compression ratios when compared to other 

standard image file types. 

 

(ii) The speed dial would also be in a separate file to that of the rpm dial such 

that one of each would be called by SDL, thus reducing the memory used to 

store the files. If both dials were in the same image, then multiple versions of 

the fixed speed with different rpm would be required and vice versa.  

 

Once these decisions were made, the dials were then created. Each incremental image of 

a dial was achieved by rotating the needle by one degree in the image editing software. 

The following diagram is the image used to represent the speed at 0 mph, Fig. 3.35. 

 

 

Fig. 3.35 Speed dial at 0 mph 
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The rpm dials were created such that they would be slightly smaller in size and also 

using a different background colour. This was merely for variation on the screen. The 

following diagram is the image used to represent rpm at 0 rpm, Fig. 3.36. 

 

 

Fig. 3.36 rpm dial at 0 rpm 

 
The SDL code called one image of each dial. Fig. 3.37 shows the display for a speed of 

0 mph and rpm of 0 rpm. 

 

 

Fig. 3.37 End users display 

 

3.7.2.2 Initial SDL Code (Analog Dials) 
 
Initial SDL code was very basic and only included one dial, the speed dial at first. This 

program used a for loop to go from 0mph to 5mph. The speed was set using a variable 

in the for loop i.e. if the variable “i” is equal to zero then the speed displayed on the 

screen was 0 mph. A flow chart for the program is shown in Fig. 3.38. 
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Fig. 3.38 Flow Chart of Basic SDL Dial program 

 
To implement the flow chart above, the following code was used. 

 

for (i=0;i<=5;i++) 

{ 

sprintf(mph, "%d.png", i); 

     message1 = IMG_Load( mph ); 

     apply_surface( 0, 0, message1, screen ); 

     if( SDL_Flip( screen ) == -1 ) 

            { 

            return 1; 

            } 

 SDL_delay(del); 

     SDL_FreeSurface( message1 ); 

} 

 



 81

The variable message1 is initialised as an SDL surface, the desired image is then loaded 

into a variable. The 2nd line of the code places the string x.png into the variable mph, 

where x is equal to the value of i, e.g. if i = 3, then 3.png is stored in the variable. It is 

the variable mph which is then used to load the desired image. This image is then 

applied to the screen surface, where the variable screen is an SDL surface which is set 

to the dimensions of the actual screen on the BF548 evaluation board. The two zeros in 

the “apply_surface” function, represent where the image is applied, pixel 0 horizontally 

and pixel 0 vertically i.e. the top left hand corner of the screen. The “SDL_Flip” 

function displays the image in memory onto the evaluation board’s screen. If this 

returns “-1” then the code will exit. A delay was introduced when displaying each 

image, such that the images do not change so abruptly that the human eye can not 

distinguish each step of the needle. Lastly the surface is freed to facilitate the loading of 

the next image into the variable message1. 

 

3.7.2.3 Using a Random Number Generator to Vary the Speed 
 
As the speed will not vary linearly in reality, it was necessary to test the code using a 

random number generator. The two major differences needed in the code when using a 

random number generator are: 

 

(i) As a random number generator will not vary linearly in a given direction, the 

code requires the capability to both increase and decrease the speed displayed 

relative to the previous number generated. 

 

(ii) The code will have to increment/decrement the speed on the screen so that the 

dial doesn’t just jump, for example, from 25mph to 12mph, hence the code 

will have to include some form of stepping mechanism. 

 

To overcome the issues explained above an “if else” statement was used to distinguish 

the direction of the speed and is shown below. 

 

mph_value = rand() % 140; 

if(mph_value < last_mph) 

               { 
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               last_mph = last_mph - 1; 

               } 

else if (mph_value > last_mph) 

               { 

               last_mph = last_mph + 1; 

               } 

sprintf(mph, "%d.png", last_mph); 

 

The value of mph_value is set by the random number generator, where %140 sets 140 

as its maximum value. The value of last_mph is initially set to zero. On the first 

iteration of the loop, mph_value will always be greater than last_mph, so the speed will 

increase, in steps of 1mph, until the value of last_mph equals that of mph_value. When 

this occurs a new value will be generated for mph_value and depending on whether it is 

greater or smaller than last_mph, the speed will either increase or decrease. 

 
After fully testing the code used to display the speed dial, the same code was 

implemented for the rpm dial. With both programmes running as desired independently, 

the next step was to integrate both programmes into one. 

 

3.7.2.4 Integrated Dial Code 
 
As SDL is a sequential language, the code needs to run such that each dial will rotate 

concurrently rather than the speed dial running to completion, then the rpm dial running. 

As seen in Fig. 3.39 the code still runs sequentially, however each needle will only 

rotate one increment and then the next needle will rotate one increment, and so on. 

When one needle has run to completion and the dial displays the desired information, 

the other needle will then run constantly until it has completed. When both dials display 

the information received from the random number generator, new values for the speed 

and the rpm are then generated. Due to the delay between each needle rotation being so 

diminutive, the human eye can not distinguish when one needle is rotating and the other 

isn’t. This visually leads to concurrency in both the dials. To achieve this, a “do – 

while” loop was used. 
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Fig. 3.39 Flow Chart for Integrated Dial Code



 84

do{ 
        if(rpm_finished != 1) 
        { 
         // Display rpm 
 
         if(last_rpm == rpm_value) 
               { 
               rpm_finished = 1; 
               } 
         } 
 
         if(mph_finished != 1) 
         { 
          // Display mph 
 
         if(last_mph == mph_value) 
               { 
               mph_finished = 1; 
               } 
         } 
 
  } 
while((rpm_finished != 1) || (mph_finished != 1)); 
 

The code uses two variables; mph_finished and rpm_finished, both of which are 

initialised to zero. These variables were used to flag when the corresponding needle had 

run to completion, i.e. when the mph dial displays the desired speed, mph_finished is 

then set to 1. To accomplish this an “if” statement was used such that, if the variable 

last_mph was equal to the variable mph_value, set by the random number generator, 

then mph_finished is set. When this occurs the rpm needle will now rotate to completion 

and hence set rpm_finished to 1. The ending expression for the “do-while” states that 

when rpm_finished is set, OR (||) mph_finished is set then exit the loop. A truth table for 

a logical OR is shown below, where A and B are inputs and X is the output. 

  

A B X 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Table 3.3 Logical OR Truth Table 
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The truth table above shows that only when both A and B are false, will X also be false. 

This is the same principle in the code, only when rpm_finished is false and 

mph_finished is false, will the ending expression be false and hence the code will exit 

the “do-while” loop. In the code the ending expression states “rpm_finished != 1”, this 

statement is always true (1) until the rpm needle has reached the desired rpm. When the 

needle has run to completion it will then set rpm_finished to 1 and hence make the rpm 

side of the ending expression false (0). When the mph needle has run to completion it 

will do the same and set the ending expression to be false thus exit the “do-while” loop. 

 

The dials code was now successfully running as desired using the random number 

generator. This code was later used with CAN messages, so that the CAN message 

varied the speed and rpm on the dials rather than the random number generator. This 

will be discussed later in this document (Implementation and Testing chapter). 

 

3.7.3 Digital Bar Chart Representation 
 
The digital bar chart contained both a bar chart that represented the speed and also an 

error message area, which would display any faults transmitted on the CAN network. 

The idea being, if there were no faults requiring the user’s attention then the dials 

display would be used. However, if a fault was introduced then the screen would drop 

its dials configuration (speed and rpm), and display just the speed using the bar chart 

configuration with its error message area clearly displaying the fault. In this section all 

testing was preformed using the bar chart and later in this document, testing will be 

performed on the dials and bar chart combined (Implementation and Testing chapter). 

 

3.7.3.1 Graphics Creation 
 
The approach used to create the bar chart in SDL was slightly different than that used 

for the dials. The bar chart configuration required a background bar chart with tiny 

coloured bars placed on top to represent the speed. An advantage of this approach is it 

required a very small amount of memory to save the images as the coloured bars are 

minute. By displaying the bar chart in this fashion it proved that there are many 
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different ways to program the display. The bar chart design used for the project can be 

seen in Fig. 3.40. 

 

 

Fig. 3.40 Bar Chart 

 

It was decided that as the speed increased the bars on the display would change colour 

such that;  

 

(i) Any speed less than 70 mph was displayed in green (Fig. 3.41) 

 

 

Fig. 3.41 Speed below 70mph 

 

(ii) Any speed less than 100 mph but greater than 70 mph was displayed in yellow 

(Fig. 3.42) 

 

 

Fig. 3.42 Speed greater than 70mph and below 100mph 

 

(iii) Any speed over 100 mph was displayed in red (Fig. 3.43) 

 

 

Fig. 3.43 Speed greater than 100mph 
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To fill the bar chart the same coloured bar is placed multiple times over the background, 

therefore instead of creating an image for each speed as in the dials code, only one red, 

one green and one yellow bar was required. When displaying error messages it was 

decided to place the error message in the same image as the background bar chart such 

that, if an error was to be displayed it would be part of the background. Three different 

errors were created for testing purposes and an example of one is shown in Fig. 3.44.  

 

 

Fig. 3.44 Bar Chart with Error Message 

 

3.7.3.2 Initial SDL Code (Bar Chart) 
 
Initial code written for the bar chart design, was used to prove that using one image as a 

background and imposing another image on top to represent the speed was possible. 

The implemented code was as follows. 

 

message = IMG_Load( "green.PNG" ); 

background = IMG_Load( "basic_dial_black.PNG" ); 

 

    //Apply the background to the screen 

apply_surface( 0, 0, background, screen );   

    //Apply the message to the screen 

apply_surface( 50, 122, message, screen ); 

apply_surface( 54, 122, message, screen ); 

apply_surface( 58, 122, message, screen ); 

apply_surface( 62, 122, message, screen ); 
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The program code above loads two images, the bar chart (“background”) and the green 

coloured bar (“message”). The background is placed at location 0, 0 of the screen (top 

left hand corner) and then the green bar is placed in 4 different locations, each of which 

are 4 pixel apart horizontally. This 4 pixels shift represents the distance between each 

bar in the bar chart, as shown in Fig. 3.45. 

 

 

Fig. 3.45 Output from Initial Code 

 

The code implementation and testing above proved that it was possible to layer images 

on top of other images in SDL. 

 

3.7.3.3 Basic Bar Chart Code 
 
Initial development and testing of the bar chart used a “for” loop to vary the speed. The 

“for” loop was used to vary the required number of bars to be displayed rather than each 

mph increment i.e. due to the scale on the bar graph, each bar represents 1.6mph. 

During initial testing the bar chart background with no error messages was used, these 

will be introduced later in this section. The objective of the basic code was to increment 

the speed from 0 bars to 5 bars, i.e. 8mph. A flow chart for the program is shown in Fig. 

3.46. 

 

When writing the program code it was decided that each time the speed was updated 

and displayed on the bar chart, the background would also be reloaded. This was to 

accommodate later error message development i.e. when errors are introduced, the code 

will check for errors between increments/decrements of the speed. If an error occurs, the 

background representing that particular error message would then be displayed. No 

delay was introduced when reloading the background; therefore the human eye could 

not observe this. Similarly when the speed is incrementing/decrementing each bar is 

refreshed on the screen but again due to the refresh rate the human eye can not identify 

this. A flowchart of the program code is shown in Fig. 3.46. 
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Fig. 3.46 Basic Bar Chart Flow Chart 

 

The code used to implement the flow chart in Fig. 3.46 is shown below. 

 

for (s=0;s<=5;s++) 

    { 

    background = IMG_Load( “bground.PNG” ); 

    message1 = IMG_Load( "green.PNG" ); 

    apply_surface( 0, 0, background, screen ); 

    for (k=0;k<=s;k++) 

    { 
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    apply_surface( j, 212, message1, screen ); 

    j=j+4; 

    } 

    if( SDL_Flip( screen ) == -1 ) 

    { 

        return 1; 

    } 

    SDL_Delay( del ); 

    SDL_FreeSurface( message1 ); 

    SDL_FreeSurface( background ); 

    j = 56; 

    } 

 

The code above contains two “for” loops. The first “for” loop was used to generate the 

speed, and the second “for” loop was used to display the desired speed. The code uses 

the variable k to count from 0 to the value of the variable s, which holds the value of the 

desired speed. The value stored in k is the number of bars required to represent the 

speed. Inside the loop the variable j is used to distinguish where each bar is to be placed 

on the screen. j is initialised to 56, which is the starting point of the bar chart, and each 

time a new bar is placed onto the screen, 4 is added to j such that the next bar will be 

placed 4 pixels to the right of the last. This loop will then run until the value in k is 

equal to that in s. When this occurs the code displays the desired speed and then delays 

so that the eye can see the change in speed.   

 

3.7.3.4 Changing the Bar Colour with Speed 
 
As mentioned earlier the bar chart design required different ranges of speeds to be 

displayed with different coloured bars. To accomplish this, the change over values in 

speed and bars was required. This information is represented in Table 3.4. 

 

Bar Colour Green Yellow Red 
Speed (mph) 0 - 70 70 - 100 100 – 145 
No. of Bars 0 - 41 42 - 59 59 – 88 

Table 3.4 Change Over Values of Coloured Bars 
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With the information above, “if” statements were used in the code so that the colour of 

the bars used to display the speed, changed for different ranges of speed. These 

statements are shown below:  

 

if ((s>=0) && (s<42)) 

                       { 

                       //use green bars 

                       } 

else if ((s>=42) && (s<60)) 

                       { 

                       //use yellow bars 

                       } 

else if ((s>=60) && (s<88)) 

                       { 

                       //use red bars 

                       } 

 

The only additional change now needed to the basic code was to load the appropriate 

coloured bar, i.e. change the image to be loaded (e.g. yellow.PNG or red.PNG) in the 

following line of code:  

 

message1 = IMG_Load( "green.PNG" ); 

 

3.7.3.5 Decrementing the Speed 
 
With the speed bars incrementing and changing bar colour as desired, the code would be 

required to decrement the speed also. This was achieved by editing the basic code 

previously discussed in this document to add the decrementing functionality. The 

changes made to the code are shown below. 

 

for (s=5;s>=0;s--) 

      { 

      background = IMG_Load( bground ); 

      message1 = IMG_Load( "green.PNG" ); 
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      apply_surface( 0, 0, background, screen ); 

      for (m=1;m<s;m++) 

      { 

      apply_surface( j, 212, message1, screen ); 

      j=j+4; 

      } 

    

The code above sets the initial speed to 5 and decrements to zero; it is the first “for” 

loop, based on the variable s, which sets the speed. The second “for” loop, based on the 

variable m, sets how many coloured bars are used to display the speed. Comparing this 

loop to that used for incrementing the speed there is a slight change. The variable m 

“for” loop sets the number of bars to be displayed; therefore if the loop used for 

incrementing was the same as that for decrementing, then the actual speed displayed 

would be two bars off the actual speed. To eliminate this problem, m was set equal to 1 

rather than zero, and the loop was set to terminate when m is equal to s. 

 

3.7.3.6 Using a Random Number Generator to Vary the Speed 
 
As speed does not vary linearly in a vehicle, it was necessary to test the code using a 

random number generator. When using a random number generator the code must be 

capable of increasing and decreasing the speed accordingly. This was accomplished as 

shown in the flow chart in Fig. 3.47. 
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Fig. 3.47 Flow Chart for Bar Chart Representation of Speed



 94

The flow chart illustrates that several conditions must be met before choosing which 

function to run in the code. To accomplish this “if” statements were used and are shown 

below: 

 

if ((i>=0) && (i<42) && (t>i)) 

                       { 

                       green_up; 

                       } 

              else if ((i>=0) && (i<42) && (t<i)) 

                       { 

                       green_down; 

                       } 

              else if ((i>=42) && (i<60) && (t>i)) 

                       { 

                       yellow_up; 

                       } 

              else if ((i>=42) && (i<60) && (t<i)) 

                       { 

                       yellow_down; 

                       } 

              else if ((i>=60) && (i<88) && (t>i)) 

                      { 

                       red_up; 

                       } 

               else if ((i>=60) && (i<88) && (t<i)) 

                       { 

                       red_down; 

                       } 

 

In the code the variable i represents the value last_speed and the variable t represents 

the value new_speed.  

 

else if ((i>=42) && (i<60) && (t>i)) 
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The line of code above states, that if the last speed is greater than or equal to 42 

(minimum value for the bar colour to be yellow) and less than 60 (maximum value for 

the bar colour to be yellow), and if the new speed is greater than the last speed, then use 

the function ‘yellow_up’. It can be seen in the last condition, if the new speed is greater 

than the last speed displayed, then the number of bars must be incremented to display 

the new speed. Also with the values falling inside the yellow range, the function 

executed will be the ‘yellow_up’ function. 

 

The “for” loop now had an added stipulation requiring it to perform the loop until the 

correct speed is reached. The “for” loop below is taken from the ‘yellow_up’ function, 

but each function has their own appropriate “for” loop. 

 

for (s=i;((s<60)&&(s<t));s++) 

 

The “for” loops inside the functions, use the variables set by the random number 

generator. When the program enters a function, in this case ‘yellow_up’, it first sets the 

variable s to the value of the last speed, this value of s can be anything from 42 to 60 as 

the program is inside this particular function. Next the “for” loop checks that the last 

speed is less than 60 (max. yellow value) and less than the new speed. To accomplish 

this, a logical AND was used, for which a truth table is shown in Table 3.5, where A 

and B are inputs and X is the output. 

 

A B X 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Table 3.5 Logical AND Truth Table 

 
Using this in the “for” loop inside the condition, when the value of the variable s 

increases above the maximum value of the yellow bars (60) then the first stipulation 

(s<60) becomes false and hence the program exits this conditional statement. Also if the 

value of the variable s is not less than the value of variable t, i.e. last speed is equal to 
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the new speed, then the code will also exit the function. Looking at the flow chart in 

Fig. 3.47 it can be seen that if the value of last speed (variable s) is greater than the 

maximum value for the yellow bars then the code will enter the ‘red_up’ function. Once 

the value of last speed (variable s) is equal to that of the new speed (variable t), then the 

random number generator will generate a new speed. 

 

3.7.3.7 Displaying Error Messages with the Bar Chart 
 
With the bar chart displaying the speed as desired from the random number generator, 

the last functional requirement to be met for the bar chart was to display error messages 

on the screen. Using the random number generator to generate the speed, it was decided 

to prompt the user to select the error message at the start of the program. This decision 

was made due to only a small number of error message screens being created for testing 

purposes. The code to select the error messages is shown below. 

 

printf("Please select error (1-3)\n"); 

scanf("%d", &err); 

sprintf(bground, "err%d.PNG", err); 

printf("%s will be displayed as background\n",     

bground); 

 

The program code above prompts the user to select an error message between 1 and 3. 

The value entered by the user is then initialised to an integer. This integer sets the 

number of the error file, i.e. if the user enters the number 2, then the string err2.PNG 

will be saved in the variable bground. A table of the error messages is shown in Table 

3.6. 

 

Filename Description 

err1.PNG Basic Bar Chart with no errors 

err2.PNG Back left tyre pressure low 

err3.PNG ABS Failure 

Table 3.6 Bar Chart Error Screens 
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When executing the code, the following was displayed on the virtual console.  

 

 
Fig. 3.48 Users Prompt for Selecting Errors 

 
From Fig. 3.48, the error selected was error 2; this in turn was displayed on the BF548’s 

screen, as shown in Fig. 3.49. 

 

   

Fig. 3.49 Background set as Error 2 

 
The bar chart code was now producing the desired functionality using the random 

number generator. This program code was then used with CAN messages, such that the 

CAN message would vary the speed on the bar chart rather than the random number 

generator and the CAN ID would set the error message to be displayed. This is 

discussed later in this document (Implementation and Testing chapter). 

 

3.8 Inter Process Communications 
 
The Inter Process Communications (IPC) used in this project is called Named Pipes, 

which allows for communications between running processes in the uClinux kernel, 

namely, the CAN and the SDL processes. When using pipes, one has to be able to write 
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to a pipe and read from the same pipe. This involves writing two different pieces of 

code as explained below. 

 

3.8.1 Writing to a Pipe  
 
As Named Pipes was used in the project the first thing that had to be accomplished was 

to name and create the actual pipe used. 

 

3.8.1.1 Naming and Creating a Pipe 
 
The name of the pipe is created by using a “#define” in C code. The name of the pipe 

being used for the initial test was “RECFIFO”; receive FIFO (First In First Out). To 

name the pipe, the following line of code was used: 

 

#define RFIFO_FILE "RECFIFO" 

 

The line above sets the name of RFIFO_FILE to be “RECFIFO”; this was then used to 

create the Named Pipe, to name the actual pipe. To create the pipe the following line of 

code was used: 

 

mknod(RFIFO_FILE, S_IFIFO | 0666, 0); 

 

To create a Named Pipe the mknod() function must be used. When using the mknod(), 

three arguments have to be passed to the function; the first argument is the desired name 

of the Named Pipe. As RFIFO_FILE is defined as the desired name for this pipe, it is 

passed as the first argument. The second argument is the creation mode, in the example 

above the second argument is “S_IFIFO | 0666”, this line tells the mknod() function to 

create a Named Pipe (S_IFIFO) and sets the access permissions. In this case the access 

permission is 0666 which sets all users permissions to read and write. The last argument 

passed is a device number, as this is not used in Named Pipes it is set to zero [52]. 
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3.8.1.2 Writing to the Created Pipe 
 
When writing to a pipe, data is required to be put into the pipe. Later in the project this 

data was taken from the CAN network, but in the interim a simple string was used. To 

create the string the following line of code was used.  

 

char mes[] = "Hello World\n"; 

 

The line of code above sets up a string called mes containing “Hello World”. To write 

the string to the pipe it first has to be opened. 

 

fp = open(RFIFO_FILE, O_WRONLY); 

 

The line above opens the pipe, RFIFO_FILE, and sets it to write only (O_WRONLY). 

A third argument can be added to the code above, known as the non-blocking option 

(O_NONBLOCK). This option allows the pipe to be opened for another write even if 

the current data has not been read. This option was not desired in this case and was not 

enabled in the code [52]. With the pipe open, it can be written to by using the following: 

 

write(fp, mes, 12); 

 

The write function above takes three arguments; firstly the file that the write function is 

to write to, in this case this is fp, which is the opened pipe. The second argument is the 

buffer the function has to write from; in this case the buffer will be the string mes. The 

last argument is the number of bytes of data to be written from the buffer, in this case 

12. Lastly the pipe must be closed; this accomplished using the following: 

 

close(fp); 

 

Since the non blocking option was not enabled, this pipe can not be opened again until 

the data has been read from the pipe. This was desired for the project as it prevents any 

data being lost. 

Once the program was ported to the BF548, its access rights were changed to make the 

program executable. The contents of the directory were then listed to show the write 
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program was on the evaluation board (wrpipes_test). The program was then run as 

shown in Fig. 3.50. 

 

 

Fig. 3.50 Running Write to Pipes code on BF548 

 

When the program was executed, it created a pipe and wrote the string into it. The 

program waited until the pipe was read from, and then exited. As of yet no code had 

been written to read form the pipe. Instead the “cat” command was used to display the 

contents of a file; in this case the Named Pipe (RECFIFO). To display the contents of 

the Named Pipe the command “cat < RECFIFO” was used. The command was run on 

PuTTY to display the contents of the pipe, as the write pipes program was still running 

on the virtual console. The following was shown on the PuTTY screen, Fig. 3.51. 

 

 

Fig. 3.51 Displaying the Contents of the Named Pipe 

 
From Fig. 3.51, it can be seen that the pipe contained the string “Hello World”, which 

was written to the pipe by the write to pipes program (wrpipes_test). This test proved 

that the write to pipes program was working correctly. Next code had to be written to 

read from a Named Pipe. 

 

3.8.2 Reading from a Pipe 
 
Reading from a Named Pipe is less difficult than writing to a Named Pipe, but both 

follow the same methodologies with the exception of a few minor steps. When reading 

from a Named Pipe the pipes name has to be defined in the code as explained earlier. 
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No Named Pipe has to be created when reading, however, the Named Pipe must be 

reopened. To open a Named Pipe for reading the following code is used. 

 

fp1 = open(RFIFO_FILE, O_RDONLY);  

 

This Named Pipe was now set to be read only (O_RDONLY) when opening and again it 

can be seen that the non blocking option was not set, therefore the Named Pipe will be 

in blocking mode. With the Named Pipe open, the program can now read the file. This 

is accomplished using the following: 

 

read(fp1, readbuf1, 12); 

 

The line of code above read 12 bytes of data from the open pipe, fp1, and then placed 

the data in the buffer readbuf1, which was initialised as an array of 12 characters. After 

reading from the pipe, the pipe was again closed using the close function. Lastly, the 

contents of readbuf1 were displayed to the user using: 

 

printf("%s",readbuf1); 

 

The code was compiled and ported, along with the write program (wrpipes_test) to the 

BF548 and the access permission of both programmes were changed. The contents of 

the directory were listed to show that both programmes were in the directory. The write 

program (wrpipes_test) was then executed using the virtual console as shown in Fig. 

3.52. 

 

 

Fig. 3.52 Running Write program in conjunction with Read program 
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At the same time, the read program (rdpipes_test) was run on PuTTY, the results of 

which are shown in Fig. 3.53. 

 

 

Fig. 3.53 Read from Pipes 

 
Fig. 3.53 shows that the read program (rdpipes_test) functioned properly and the string 

that was written into the pipe using the write program (wrpipes_test) was successfully 

read from the pipe. These methodologies were applied to the CAN and display 

programmes as discussed later in this document (Implementation and Testing chapter). 

 

3.8.3 Disadvantages of Named Pipes 
 
The main disadvantage of using Named Pipes is that integers can not be sent 

successfully through the pipe, instead the ASCII equivalent of the integers are sent. To 

send integers using a Named Pipe, the integers had to be converted into a string. This 

was not an issue in the example programs above as the only data sent were strings. To 

overcome this issue some extra lines of code had to be added to both the read and write 

programs. 

 

3.8.3.1 Editing the Write Program to allow the Transmission of Integers  
 
To send an integer using a Named Pipe, it must first be converted into a string and then 

sent through the pipe. To do this, the “sprintf” function was used. 

 

int x; 

char y[3];  

sprintf(y, "%d", x); 

 

The code initialises x as an integer and y as an array of 3 characters (string). The 

“sprintf” function, prints the integer value stored in x into the string y, i.e. if x was equal 
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to 10, then 10 would be stored in the form of a string in y. Therefore y will contain 10 in 

string format. This format can now be sent using a Named Pipe. 

 

3.8.4 Editing the Read Program to allow the Manipulation of Integers 
 
The read program does not need to be edited to receive the integers in the string format. 

However the read program will only be able to display the integer in its string format. 

The string format of an integer was not the desired format; therefore the read program 

had to change the string version of the integer to an actual integer. This is accomplished 

using following line of code. 

 

t = atoi(y); 

 

The variable t is initialised to be an integer. The line of code above uses the “atoi” 

function to convert the string contained in y into an integer and then places into the 

variable t. 

 

3.8.5 Testing the Transmission and Reception of Integers  
 
To test the transmission and reception of integers using Named Pipes, the example code 

used in sections 3.8.1  and 3.8.2 were edited.  

 

3.8.5.1 Editing the Write Program 
 
The write program (wrpipes_test) was edited such that the user was prompted to enter 

an integer between 0 and 100. This integer was then converted into a string and written 

into the Named Pipe, RECFIFO, as shown below. 

 

printf("Please enter a number between 0 and 100.\n"); 

scanf("%d", &i); 

sprintf(mes, "%d", i); 

fp = open(RFIFO_FILE, O_WRONLY); 

write(fp, mes, 3); 
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close(fp); 

 

The integer inputted by the user was stored in the variable i, which is then converted 

into a string and written into the Named Pipe. 

 

3.8.5.2 Editing the Read Program 
 
The read program (rdpipes_test) was also edited; such that the number the user entered 

in the write program would be displayed on the virtual console. This was achieved using 

the following: 

 

fp1 = open(RFIFO_FILE, O_RDONLY); 

read(fp1, readbuf1, 3); 

close(fp1); 

j = atoi(readbuf1); 

printf("String: %s\n",readbuf1); 

printf("Integer: %d\n",j); 

 

This code reads the string from the Named Pipe, RECFIFO, and then stores it in the 

variable readbuf1. The contents of readbuf1 is then converted into an integer and stored 

in the variable j. The string, readbuf1, and the integer, j, were both displayed on the 

virtual console to show the user that they were the same.  

 

3.8.5.3 Running the Test Programmes 
 
After editing the write and read programmes both were run on the BF548 evaluation 

board. The write program (wrpipes_int) was executed on the virtual console as shown 

below, Fig. 3.54. 
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Fig. 3.54 User Prompt to enter Integer 

 
As the write program was running on the virtual console, the read program (rdpipes_int) 

was running on PuTTY as shown, Fig. 3.55. 

 

 
Fig. 3.55 Output from Read Program 

 

From Fig. 3.55, the number the user had entered in the write program i.e. 64, has been 

successfully sent through the pipe and converted back into an integer. 

 

3.9 Summary 
 
In this chapter the system design was taken from the problem definition and 

requirements, to a final system design. This chapter reviewed the methods used and 

choices made when configuring and designing the proposed system. The main points 

covered in this chapter were: 

• The configuration of the development host, coLinux, which was used to compile 

all code that ran on the BF548. 

• The compilation and porting of both U-Boot and uClinux to the evaluation 

board. 
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• The changes made to the CAN driver for proper execution on the BF548, along 

with the testing of the CAN sample code. 

• The design of the display programmes in SDL, including the testing of the both 

the Analog Display and the Bar Chart configurations.  

• The design methods used for Named Pipes as the IPC for the system, which 

included testing of basic Named Pipes programs. 

 

The next chapter will discuss the implementation and testing of the final system using 

the design processes discussed in this chapter. 
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4 System Implementation and Testing 
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4.1 Introduction 
 
This chapter outlines and explains all methods used during the system implementation 

and testing stage of this study. The chapter is divided into the following sections: 

• Section 4.2 outlines the methods used when implementing the CAN process for 

the final system. This will include the manipulation of received data from the 

CAN network and the addition of Named Pipes to the CAN code. 

• Section 4.3 describes the methodologies applied when implementing the SDL 

process in the final system. This included the integration of both SDL programs 

explained earlier. Also IPC were added to the SDL code to allow 

communications between the display and CAN processes 

• Section 4.4 details the results found while testing the final system, and 

comments on these results. 

• Section 4.5 shows the results found from stress testing the final system, and 

comments on these results. 

• Section 4.6 provides a summary of information presented in this chapter. 

 

4.2 CAN Implementation 
 
The sample code supplied with the uClinux kernel was used to receive data from a CAN 

network. This code was edited such that the desired parts of the message would be 

parsed from the CAN message and, using Named Pipes, be sent to the SDL code. This 

sent data would then be manipulated and displayed on the BF548’s LCD screen.  

 

4.2.1 CAN Message Breakdown 
 
The first step was to design the CAN message strategy to be used in conjunction with 

the SDL code. After some research it was discovered that there were no set standards or 

practices concerning CAN message data and the displaying of information. From this 

research it was discovered that automotive manufacturers use different bytes of the 

CAN message data to represent the speed, i.e. one manufacturer might use byte 4 and 5, 

while another might use byte 1 and 2. With no standard to adhere too, the selection of 
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which bytes to use was completely the programmer’s choice. The data bytes chosen for 

this project are shown in Fig. 4.1. 

 

 

Fig. 4.1 Breakdown of CAN message 

 
The CAN ID was used to configure the screen layout e.g. to display either the digital 

dash or the bar chart configuration. The CAN ID would also set the error screen to be 

displayed if the bar chart configuration was chosen. Both bytes 0 and 1 were used to 

represent the speed and byte 2 was used to represent the rpm. 

 

4.2.2 CAN Sample Code 
 
The CAN sample code (receive) provided in the uClinux kernel was used for CAN 

communications between the BF548 and the CAN network. This code was already fully 

tested as explained earlier (CAN design section). A flow diagram for the receive 

program is shown in Fig. 4.2. 

 

The receive program extracts both the CAN ID and the data length from the CAN 

message. Using the data length, the program executes a “for” loop to obtain each data 

byte from the received CAN message. When the variable i is equal to the data length, all 

the data bytes have been extracted from the message and the code will then await the 

next message. 

 

Due to the layout of the code, it allows for easy extraction of the desired data for this 

project. As the CAN ID is stored in its own variable, this variable can be used to write 

the CAN ID into a Named Pipe. Likewise due to each data byte being stored in 

individual variables, e.g. data byte 0 from the first received CAN Message will be 

stored in the variable rx[0].data[0], this allows for the insertion of individual data bytes 

into a Named Pipes with relative ease.  
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Using the information gained above, the CAN receive sample code was then edited to 

add Named Pipes, so as to allow for Inter Process Communications (IPCs) between the 

CAN program and the SDL program. 

 

 

 

Fig. 4.2 Receive Flow Chart 

 

4.2.3 Editing the Sample Code 
 
The CAN receive sample code had to be edited such that the values of the CAN ID, of 

both byte 0 and 1 (speed) and byte 2 (rpm) be put into three different pipes IDFIFO, 

SPEEDFIFO and RPMFIFO respectively. To accomplish this, the same methodology 
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used when developing the write to pipes program (wrpipes_test) was applied. A flow 

chart for the edited receive program is shown in Fig. 4.3. 

 

 

Fig. 4.3 Receive with Named Pipes Flow Chart 
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4.2.3.1 Creating the Named Pipes 
 
To add Named Pipes to the receive code; firstly the three pipes must be defined. 

 

#define SPEEDFIFO_FILE "SPEEDFIFO" 

#define IDFIFO_FILE "IDFIFO" 

#define RPMFIFO_FILE "RPMFIFO" 

 

The Named Pipes are then created using the mknod() function as explained earlier (see 

IPC section). 

 

mknod(SPEEDFIFO_FILE, S_IFIFO|0666, 0);       

mknod(IDFIFO_FILE, S_IFIFO|0666, 0);       

mknod(RPMFIFO_FILE, S_IFIFO|0666, 0); 

 

With the Named Pipes created, the variables used to populate these must be developed.  

 

4.2.3.2 Populating the Variables used when Writing to the Named Pipes 
 
The receive code required two “for” loops to obtain the CAN messages. The first “for” 

loop is used to monitor the number of CAN messages received from the network, while, 

the second monitored the data sent in each message. Both “for” loops are also used to 

populate a 2D array. The first “for” loop uses the variable i as one coordinate of the 

array. The variable i stores the number of messages received. The second “for” loop 

uses j to count the data bytes from 0 to the data length for each message, for each 

increment the value of the equivalent data byte is stored in the array location 

rx[i].data[j]. An example of a 2D array is shown in Table 4.1. Looking at the table, it 

can be seen that the value of data byte stored in rx[2].data[1] is 3, where 2 is the value 

of i and 1 is the value of j. 
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Table 4.1 2D Array used in Receive Program 

 

4.2.3.3 Populating the Variable used for the CAN ID 
 
The CAN ID array location was then used to populate the variable for the CAN ID; this 

was accomplished using the code below. 

 

sprintf(id, "%d", rx[i].id); 

 

The line of code above, copies the value from the array location, rx[i].id, into the string 

id. The i variable in the array rx[i].id distinguishes which CAN message the ID is taken 

from, e.g. if the CAN message was the first received message then its ID would be 

stored in rx[0].id. The CAN ID variable is now populated and ready to write to the 

Named Pipe. Next the speed and the rpm variables must also be populated. 

 

4.2.3.4 Populating the Speed Variable 
 
As mentioned earlier, the speed may be varied using two data bytes, data byte 0 and 

data byte 1, as shown in Fig. 4.1. Therefore, a decision had to be made whether to send 

each data byte through its own pipe, or to send both data bytes through one pipe. As the 

SDL program will have to manipulate both data bytes mutually to display the speed, it 

was decided that both would be sent using one pipe. Prior to writing the speed value to 

the pipe, both bytes were combined to represent a single decimal value. 

 

Due to the fact that both data bytes are in hex format, the decimal equivalent of each 

data byte was obtained, and then added to give an overall decimal value. When 

obtaining the decimal equivalent, the value of data byte 1 was seen as the least 
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significant bit (LSB) while the value of data byte 0 was seen as the most significant bit 

(MSB). The following lines of code were used to accomplish this. 

 

byte0 = ("%d", rx[i].data[0]);     

byte1 = ("%d", rx[i].data[1]);  

 

The code above, sets the value of byte 0 and byte 1 to be the decimal equivalent of the 

hex numbers stored in the 2D array, rx[i].data[0] and rx[i].data[1] respectively. With the 

decimal equivalent of each byte, the following line of code was used to establish their 

combined value. 

 

speed = byte0*pow(16,2) + byte1; 

 

With the equivalent value calculated it is then stored in the variable, mes, which is 

initialised as a string. This is accomplished using the line of code shown below. 

 

sprintf(mes, "%d", speed); 

 

With the CAN ID and speed variables populated, the rpm variable is the last to be 

populated. 

 

4.2.3.5 Populating the rpm Variable 

 
As the rpm value is only one data byte of the CAN message, less manipulation is 

required in comparison to the speed value. Firstly, the decimal value of data byte 2 had 

to be obtained. This was achieved using the following line of code. 

 

byte2 = ("%d", rx[i].data[2]); 

 

With the value of data byte 2 obtained, the rpm variable was populated by using the 

following line of code. 

 

sprintf(rpm, "%d", byte2); 
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4.2.3.6 Writing the Populated Variables to their Named Pipes 
 
Once all three variables had been populated, they were copied to their equivalent 

Named Pipes. This was accomplished using the same methodologies as explained 

earlier (IPC section). The code used to write the CAN ID to the pipes is shown below. 

 

fp1 = open(IDFIFO_FILE, O_WRONLY); 

write(fp2, id, 10);                 

close(fp2); 

printf("id = %s\n", id); 

 

The code above is similar to that utilised in the IPC section. The only difference being 

that after each variable is written to it’s pipe it is then displayed to the user, using a 

“printf”; this was used for testing purposes, as will be described later in the testing 

section. 

 

4.2.4 Testing the CAN with Named Pipes Code 
 
To test the CAN code (receive_pipes), the read pipes program (rdpipes_test) was edited 

such that it would open the three Named Pipes, IDFIFO, SPEEDFIFO and RPMFIFO 

and display the information contained in them to the user.  

 

CANalyzer was used to transmit CAN messages to the BF548, while the receive 

program (receive_pipes) ran in the virtual console, and the read pipes program 

(rdpipes_can) ran in PuTTY. The messages transmitted using CANalyzer are shown in 

Fig. 4.4. 

 

 

Fig. 4.4 Test Messages sent using CANalyzer 
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These messages were then received by the receive program (receive_pipes). Fig. 4.5 

displays the values of the variables copied to the Named Pipes. These values were then 

checked against the values received in the read pipes program (rdpipes_can) to prove 

that the communications were successful. 

 

 
 

Fig. 4.5 Messages received and Wrote into Named Pipes 

 

 
 

Fig. 4.6 Read Pipes Program Displays Sent Data 

 
Comparing the values copied to the Named Pipes (Fig. 4.5) to those read from the 

Named Pipes (Fig. 4.6) it can be seen that the IPC was successful. Therefore, all of the 

values sent using CANalyzer had been received by the receive program (receive_pipes), 

and then been successfully transmitted using Named Pipes to another process 

(rdpipes_test). This confirms that the CAN code with Named Pipes executed as desired. 

Next, the SDL program required editing such that it could read values from the Named 

Pipes and display the desired information. 
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4.3 SDL Implementation 
 
To implement SDL, both the digital dash and bar chart code were merged. The CAN ID 

was then used to select the display configuration, with the speed and rpm data affecting 

the displayed speed and rpm on the LCD screen. 

 

4.3.1 Merging the Digital Dash and Bar Chart Code 
 
As stated earlier, it was decided that the CAN ID would be used to change the 

configuration of display. If the CAN ID was equal to zero, then the digital dash 

configuration would be displayed. If the CAN ID was not equal to zero, then the bar 

chart configuration would be displayed, with the error messages being dependent on the 

actual value of the CAN ID. A flow chart of the selection process is shown in Fig. 4.7. 

 

 

Fig. 4.7 CAN ID used to select Display Configuration 

 
To implement the flow chart shown above in the SDL code an “if” statement was used 

as shown below.  

 

if(id == 0) 

     { 

 // Use Dials 

} 

else if(id != 0) 

 { 

  // Use bar chart 

}  
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The code shown simply states that if the value of the CAN ID is equal to 0, then use the 

dial configuration, otherwise if the value of the CAN ID is not equal to 0, use the bar 

chart configuration. To test the merged code, the SDL had to be able to communicate 

with the CAN network, through the Named Pipes IDFIFO, SPEEDFIFO and 

RPMFIFO. 

 

4.3.2 Opening and Reading Named Pipes in SDL 
 
To open and read from the three Named Pipes in SDL, the same methodology as used in 

the original read program (rdpipes_test) was implemented. Firstly the Named Pipes 

were defined in the SDL code, these definitions had to be exactly the same as those 

defined in the CAN code. After defining the Named Pipes, the code will then open each 

pipe in turn and read their contents. The CAN ID code is shown below. 

 

fp1 = open(IDFIFO_FILE, O_RDONLY); 

read(fp1, readbuf1, 10); 

close(fp1); 

 

The section of code opens a Named Pipe and sets its permissions to be read only before 

reading its contents. The read values are stored it in the variable readbuf. The Named 

Pipe is then closed. 

 

The SDL code now had the ability to read from the Named Pipes, containing the desired 

data from the CAN network. This data must then be manipulated by the SDL code prior 

to displaying it on the LCD screen. 

 

4.3.3 Manipulating the Received Data 
 
The data from each pipe had to be manipulated in some way before it was represented 

on the display. The CAN ID was used to select the configuration, and/or the error 

message displayed. Bytes 0 and 1 of the CAN message data were used to vary the speed 

displayed and byte 2 was used to vary the rpm displayed. A broad outline of the system 

is shown in Fig. 4.8. 
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Fig. 4.8 Communications between both Processes 

 
The data in each pipe was in string format, which must be converted into an integer 

prior to manipulation. Also, depending on the data’s application, further manipulation 

may be needed. The error, speed and rpm manipulation will be explained in the 

following sections. 

 

4.3.3.1 Manipulating the CAN ID 
 
The CAN ID was used to select the display configuration, and the error message 

displayed, if one is received. The configuration displayed, e.g. dash or bar chart, was 

selected from the value of the CAN ID as stated earlier. To select which configuration 

was displayed, the value of the CAN ID must be converted to an integer. This is 

accomplished using the following line of code. 

 

id = atoi(readbuf1); 

 

As the CAN ID was also used to select the error message displayed for the bar chart 

configuration, its manipulation was not complete. Each error message was saved as a 

different background in the form errX.PNG, where the value of X is a decimal number. 

The value of the CAN ID is then used to set the decimal number X. For example, if the 

CAN ID was 4 then the displayed background would be the file err4.PNG. To 

accomplish this, the following line of code is used. 
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sprintf(bground, "err%d.PNG", id); 

 

The code prints the string errX.PNG, where the value of X is set by the CAN ID, into 

the variable bground. The variable bground was then used to display the background 

inside the bar chart function. This was achieved using the following lines of code. 

 

background = IMG_Load( bground ); 

apply_surface( 0, 0, background, screen ); 

 

This method will not affect the digital dash configuration if the CAN ID is equal to 

zero, as the digital dash does not use a background; it prints a new dial for each 

increment of a dial. Hence the variable bground is only ever used in the bar chart 

configuration. Lastly the value of the CAN ID is printed to the screen for testing 

purposes, as will be explained later. 

 

4.3.3.2 Manipulating the Speed Data  
 
The speed was displayed in two different forms; a dial form and a bar chart form, each 

of which has their own scale. Therefore each display required a different method to set 

the appropriate scale.  

 

4.3.3.2.1 Setting the Scale for each Configuration 
 
As the speed displayed on either configuration must be the same at all times, the scale 

used in one configuration had to be consistent with the other. This was achieved by 

choosing a denominator to divide the data received into each speed increment for one 

configuration; this denominator was then used in every other calculation. This led to full 

consistency in speed when changing from one configuration to the next.  

 

The denominator chosen for the bar chart configuration was such that for every 30 

increments/decrements of the speed value read from the Named Pipe, one bar would be 

added to/subtracted from the current speed. For example, if the data sent through the 

SPEEDFIFO pipe was 0, the bar chart would display 0 mph, when the data in 
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SPEEDFIFO increased to 30 (0x1E) then 1 bar (1.67 mph) would be displayed on the 

bar chart. 

 

With the denominator chosen for the bar chart, the value for the dial had to be 

calculated using the chosen denominator. As 6 bars represent 10mph on the bar chart, 

each bar represents 1.67mph. Each step of the dial represents 1mph, therefore the dial 

will vary more than the bar chart and hence the dials denominator will be different to 

that of the bars. To calculate the dial denominator the following equation (4.1) was 

used. 

Speed Dial Denominator = 
1.67
30  = 18 

(4.1) 

 
These denominator values were then tested to prove their viability. It was decided that 

the maximum speed to be displayed would be 145mph. Using this as an example, it can 

be shown that both denominators equate to a consistent speed for each configuration.  

The values of byte 0 and 1 of the CAN message were calculated for the maximum 

speed, 145mph, which is the equivalent of 87 bars, using the following equation. 

 

Bar Chart Denominator * Max. Num. of Bars = Max. Speed CAN message 

(4.2) 

30        *                87             =                  2610 

 

Therefore, to display the maximum speed byte 0 and 1 would have to be equal or 

greater than 2610 (0x0A32). Using this value with the speed dial denominator, the 

speed to be displayed on the dials was calculated as shown. 

 

Speed Displayed = 
DivisorDialSpeed

MessageCANSpeedMax.  

(4.3) 

Speed Displayed = 
18

2610  

Speed Displayed = 145 
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As can be seen from above, the displayed speed is consistent for both the bar chart and 

dial configuration. These values were then used in the code to the display the speed. 

 

4.3.3.2.2 Manipulating the Speed Data for use with the Bar Chart 
 
When manipulating the speed data received for use on the bar chart, the value of 

denominator was set to 30 and was implemented by the use of the following lines of 

code. 

 

z = atoi(readbuf2); 

t = ceil(z/30); 

 

The variable z contains the integer value read from the Named Pipe. The variable t 

contains the value, in bars, of the received speed. The function ceil outputs smallest 

integral value not less than the input, e.g. the ceil of 2.8 is equal to 3, basically it rounds 

the input to the nearest whole number. The value of the variable t is then used to vary 

the speed on the bar chart. 

 

Due to the CAN messages being simulated for the testing of the project, a fail safe was 

also introduced to the code. The reason for this fail safe was due to the fact that when 

testing the system, the tester can simulate a speed message up to 65535 (0xFFFF). 

Therefore, the maximum speed would far extend the maximum displayable value on the 

screen and hence cause system errors. To eradicate this problem the following code was 

used. The code sets t equal to 87 (maximum speed in bars) if the received data exceeds 

the maximum value.  

 

if (t > 87) 

    { 

    t = 87; 

    } 
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4.3.3.2.3 Manipulating the Speed data for use with the Speed Dial 
 
When manipulating the speed data received, the value of denominator was set to 18 as 

explained earlier. To accomplish this, the following line of code was used. 

 

mph_value = ceil(z/18); 

 

In the code above, the variable mph_value is the value, in mph, of the received speed. 

This value is calculated using the ceil function, as explained earlier. The value of 

mph_value is then used to vary the speed. A fail safe was also used for the speed dial, 

this fail safe is accomplished using the similar code as above. Lastly the value of the 

value of the speed is printed to the virtual console for testing purposes. To implement 

this, the line of code below was used. 

 

printf("mph_value = %d\n",mph_value); 

 

4.3.3.2.4 Variable Consistency when changing between Configurations 
 
If the speed dial has operated from the start and is now displaying a speed of 80mph, 

then the variable last_mph, which is used in varying the speed for the dial, will be equal 

to 80. However, the variable i, which is used in varying the speed for the bar chart, will 

be equal to zero, as it has never operated. Thus if an error was introduced, causing the 

bar chart to be displayed,  the bar chart would show an initial speed of 0mph rather than 

the current speed which is 80mph. To overcome this problem the following line of code 

was added, such that it will run every time the speed dial has updated, i.e. last_mph 

equals mph_value. 

 

i = ((last_mph*18)/30); 

 

This sets the variable i equal to the value of the variable last_mph multiplied by 18, all 

of which is then divided by 30. This will set i to the corresponding value, in bars, of the 

current speed in mph. Using 80mph as an example it can be seen that the value of i is 

now correct. 
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i = 
30

80*18 = 48 

(4.4) 

 
The resultant value of i is 48 bars and as each bar is equal to 1.67mph, the value of i in 

mph can be found as follows. 

 

i (mph) = 48 * 1.67 = 80mph 

(4.5) 

 
Also when the bar chart was running, the following line of code was added, such that it 

will run every time the bar chart has updated speed, i.e. i equals t. With the addition of 

the code below, the two speed variables were now consistent no matter which display 

was used. 

 

last_mph = ((i*30)/18); 

 

4.3.3.3 Manipulating the rpm data  
 
As the rpm data is only one byte of the CAN message its manipulation was not as 

complex as that used for the speed data. Also the rpm data was only ever used while 

using the dial configuration; therefore only one scale is required. When manipulating 

the rpm data, it first had to be converted to an integer using the same line of code as 

before. 

 

rpm_value = atoi(readbuf3); 

 

This sets the variable rpm_value to the integer value of the string contained in readbuf3. 

As rpm dial changes in increments of 20rpm, the received data had to be manipulated to 

match these increments. This was accomplished using the line of code below. 

 

rpm_value = rpm_value * 20; 
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This code sets the value contained in rpm_value to be twenty times its original. This 

value is then used to display the desired revs on the rpm dial. Lastly the value of the 

rpm is printed to the virtual console for testing purposes using following line of code 

below. 

 

printf("rpm_value = %d\n\n",rpm_value); 

 

4.3.3.3.5 Variable Consistency when changing between Configurations  
 
When the bar chart configuration is running on the screen, the rpm data is not used as it 

is not displayed. This leads to the variable last_rpm, which stores the value of the last 

rpm displayed and is used in displaying the next rpm, not being set to the latest value of 

the rpm data. If the dash configuration was then displayed it would lead to the initial 

value of the rpm displayed being inconsistent with the actual value. To overcome this 

problem the following line of code was added, which is executed when the bar chart 

code has run to completion for each new message. 

 

last_rpm = rpm_value; 

 

The sole purpose of the line above is to keep the variable last_rpm up to date with the 

actual value of rpm data received when the dial configuration is not in use. If the dial 

configuration is being used, then this line will neither run, nor be required, due to the 

fact that rpm data will be used, and hence the variable will be up to date. 

 

4.4 Testing the Final System 
 
In adding the Named Pipes to both the CAN and SDL programs, these two processes 

could now communicate with each other. Also, with the data received in the SDL code 

being manipulated as desired, the system was now complete and is shown in Fig. 4.9. 

When testing the final system, CANalyzer was used to simulate the CAN messages 

transmitted from the CAN nodes on the network. 
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Fig. 4.9 Final System 

 

4.4.1 Initial Testing 
 
During the initial testing, the dials displayed the correct data for each CAN message. 

When an error was introduced, the display changed to the bar chart and it too displayed 

the correct data for each CAN message. However, when the CAN ID was set to zero, 

hence the display changed back to the dials from the bar chart configuration, a visual 

error occurred on the LCD screen, as shown in Fig. 4.10.  

 

 

Fig. 4.10 Error displayed during Initial Testing 

 
This error was due to the bar chart using the full LCD screen while running i.e. the 

background is the same size as the actual LCD screen. When the dials were running, 
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each dial only uses a section of the screen. Due to the fact that the screen was initialised 

to be black, this error was never observed before. To explain this error in more detail, 

coloured blocks are used as shown below, where black represents the initial screen, 

white represents the dials and red represents the bar chart.  

 

(i) The screen is initialised to be fully black. 
 

 

Fig. 4.11 Initialised Screen 

 
(ii) The dials are applied to the top left and right corners of the screen. As the 

background of each dial is black, this lead to no visuals errors on the screen 

 

 
Fig. 4.12 Applying the Dials to the Screen 

 
(iii) The bar chart uses the full screen, so hence the screen is now fully covered by 

the bar chart’s background. 

 

 

Fig. 4.13 Applying the Bar Chart to the Screen 
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(iv) When changing back to the dials from the bar chart, the dials are again placed 

in the top left and right corners. However, nothing is applied to the rest of the 

screen, so whatever is currently displayed will stay on the screen and hence the 

error shown in Fig. 4.10. 

 
 

 

Fig. 4.14 Changing to the Dials from the Bar Chart 

 

To overcome this error, a mask must be applied to the screen when changing to the dials 

from the bar chart, such that the mask will cover the bar chart background. To do this an 

image file was created to mask off the bar charts background, and was set to be 

completely black. Hence when the mask is applied to the screen it will blacken out the 

bar chart background, while leaving the area for the dials empty.  

 

A variable lastid was created and set to the current value of the CAN ID before reading 

the new value of the CAN ID from the pipes. The new and old CAN IDs were then 

compared such that, if the last ID was not equal to 0 (use bar chart) and the new ID was 

equal to 0 (use dials) then the screen had to be masked. To achieve this, the following 

lines of code were used. 

 

if((lastid != 0) && (id == 0)) 

      { 

      //mask screen 

      }  

 

Due to no delay being introduced in the SDL code when placing the mask, the human 

eye will not be able to see the mask being applied to the screen. Instead the end user 

will see a clean transition from the bar chart to the dials as shown in Fig. 4.15, Fig. 4.16 

and Fig. 4.17. 
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(i) The full screen is used when running the bar chart 

 

 

Fig. 4.15 Applying the Bar Chart to the Screen 

 
 

(ii) When changing from the bar chart to the dials the mask is applied 
 
 

 

Fig. 4.16 Applying the mask 

 

(iii) Now when the dials are applied over the mask, no visual errors are seen on 
the screen. 

 

 
Fig. 4.17 Applying the Dials to the Screen with the Mask 

 

4.4.2 Testing the Final System 
 
With the error free SDL code, the system was again tested. To test the system, CAN 

messages were sent using CANalyzer as shown in Fig. 4.18. 
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Fig. 4.18 Messages sent using CANalyzer 

 
These messages were then received and the desired information was placed into the 

Named Pipes using the CAN program (receive_pipes). The received messages can be 

seen in Fig. 4.19. 

 

 

Fig. 4.19 Messages Received by the CAN program 

 
The CAN program prints the values written into each pipe. These values are then used 

to test if the data was successfully read from the pipes in the SDL program (dials_bar) 

as shown in Fig. 4.20. 

 

 

Fig. 4.20 SDL program Reading Data from Pipes 



 131

As can be seen from above, the SDL program has successfully read the data from the 

pipes. The manipulated data was then displayed on the LCD screen; this data was then 

used to confirm that the right values are displayed on the screen. Fig. 4.21 shows the 

display for the first message as shown in Fig. 4.20. 

 

 

Fig. 4.21 Output on the LCD Screen for Message 1 

 
From Fig. 4.20, the CAN ID is equal to zero, hence the dial configuration was used, also 

it can be seen that displayed speed and rpm should be 56mph and 2000rpm respectively. 

Fig. 4.21 shows that all these conditions have being displayed successfully on the 

screen. 

 

The following was displayed on the screen for the second message. As shown in Fig. 

4.20, it can be seen that the CAN ID is equal to 1; hence an error has occurred and the 

bar chart configuration should be used. Also the speed should be 99mph and the 

background used should be the tyre pressure warning (error 1). Fig. 4.22 shows that all 

these conditions have been displayed successfully on the LCD screen. 

 

 

Fig. 4.22 Output on the LCD Screen for Message 2 
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The following was displayed on the screen for the third message. As shown in the third 

message in Fig. 4.20, it can be seen that the CAN ID is equal to 15; hence another error 

has occurred so the bar chart configuration will be again used. The speed should be 

145mph and the background used should be the ABS warning (error 15). Fig. 4.23 

shows that all these conditions have been displayed successfully. 

 

 

Fig. 4.23 Output on the LCD Screen for Message 3 

 
After transmitting many different CAN messages from CANalyzer it was confirmed 

that the final system was functioning as desired. A flow chart of the finished system is 

shown in Fig. 4.24. 
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Fig. 4.24 Flow Chart of End System 

 

4.5 Stress Testing the End System 
 
One of the design criteria used was that the speedometer should be capable of 

displaying a speed variation of 0 to 60 mph in six seconds. This constraint was used as 

most vehicles cannot achieve this standard. When stress testing the final system, CAN 

messages were transmitted with different time periods to:  



 134

(i) Test if the system could achieve the initial goals. 

 

(ii) Test the system for any limitations. 

 

4.5.1 Testing System for Initial Goals 
 
As mentioned previously, the system was designed such that it could achieve the 

display of 0 to 60mph in six seconds. It was decided that each CAN message would 

increment the speed by 1mph, therefore to go from 0 to 60mph, 60 CAN messages 

would be needed. To calculate the desired period for each CAN message to achieve 0 to 

60mph in six seconds, in the following equation (4.6) was used. 

 

100ms0.1s
60
6

speed
timeperiod ====  

(4.6) 

 
Using the calculated period for each message, the system was then tested for successful 

operation. The period of each message was set to 100ms in CANalyzer, as shown in 

Fig. 4.25. 

 

 

Fig. 4.25 Setting the Period of each CAN Message to 100ms in CANalyzer 

 
With the period of each CAN message set to 100ms, with a variation of 1 mph per 

message, the speed was varied from 0 to 20mph and back down again repetitively using 

the CAN messages. If the system was capable of displaying these variations in speed, 
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this would hence prove that the system was capable of a 0 to 60mph change in 6 

seconds. The sent messages are shown in Fig. 4.26, with a time period of 100ms. 

 

 

Fig. 4.26 Messages when Stress Testing the End System 

 
Each CAN message also increments/decrements the rpm (data byte 2) as well as the 

speed (data byte 0 and 1). As the speed and rpm dials are edited using the same “do-

while” loop, hence if both were changing, the loop’s iteration time would be longer than 

if only one was changing. 

 

During this testing no errors were received on the virtual console or no glitches were 

observed on the actual LCD display. Hence this proved that the final system can operate 

correctly with a period of 100ms for each CAN message and therefore can display a 

variation in speed of 0 to 60mph in 6 seconds. 
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4.5.2 Testing the System for Limitations 
 
As nearly all road vehicles can not achieve 0 to 60mph in 3 seconds, with the exception 

of a very small number of high end sports cars, the system was then tested for correct 

functionality at this data rate. The equation (4.7) was used to calculate the period of 

each message for a variation of 0 to 60mph in 3 seconds. 

 

50ms0.05s
60
3

speed
timeperiod ====  

(4.7) 

The period of each message was then set to 50 ms in CANalyzer. 

 

 

Fig. 4.27 Setting the Period of each CAN Message to 50ms in CANalyzer 

 
The same message sets that had been sent previously were used again, this time with 

each messages period being 50ms, as seen in Fig. 4.26. While testing the final system 

using a period of 50ms and the messages shown in Fig. 4.26, with both the dials and bar 

chart configurations, errors were received on the virtual console and glitches were 

observed on the actual display. The error received on the virtual console is shown in 

Fig. 4.28. 

 

 

Fig. 4.28 Received Error using a Message Period of 50ms 
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Despite the message shown in Fig. 4.28 identifying that the error was caused by the 

receiving CAN0 port’s FIFO (Named Pipe) being overrun, it was believed that this error 

was due to the screen not updating at a fast enough rate. This theory was established due 

to the fact that the Named Pipes used in this project were set to be blocking, i.e. a 

process can not write new data into the Named Pipe until the previous data had been 

read from the Named Pipe by a different process. It was believed that the display code 

(dials_bar) was not capable of updating the screen and reading the new data from the 

Named Pipe at a fast enough rate such that the CAN code (receive_pipes) is not waiting 

to write new information into the Named Pipe. If this was the case then the CAN code 

would get an overrun error as it trying to write information into the Named Pipe but it is 

still blocked. To test this theory, the Named Pipes in this project were changed to be 

non-blocking by editing the CAN code (receive_pipes), the CAN ID section is shown 

below. 

 

fp1 = open(SPEEDFIFO_FILE, O_WRONLY | O_NONBLOCK); 

write(fp1, mes, 100); 

close(fp1); 

         

With the Named Pipes set to be non-blocking, the CAN code could overwrite the data 

contained in the Named Pipe if it was not read by the display code. When the system 

was re-tested using the non-block Named Pipes, the error was not received in the virtual 

console, however glitches were still seen on the display. These glitches were caused by 

the screen not being able to keep up with the volume of CAN messages being received. 

This showed the display code was responsible for the error message received earlier. 

 

From the stress testing it can be seen that the system is not functioning correctly when 

the CAN messages were sent with a period of 50ms, hence the final system does contain 

some limitations. However it is believed that these limitations could be 

reduced/eradicated by tweaking the current SDL code or by enabling a different 

sampling system for the CAN messages. 
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4.6 Summary 
 
This chapter reviewed the methods used and choices made when implementing the 

proposed system. In this chapter the system implementation was outlined from the 

design to the final system. The main points covered in this chapter were: 

• The implementation of the CAN code, including the capabilities of writing to 

Named Pipes which were used to pass the received data to the graphical display 

process. 

• The implementation of the graphical display process in SDL, this included the 

capabilities of reading from Named Pipes in order to receive the data from the 

CAN network. 

• The testing of the final system and the eradication of any errors that may have 

being present. 

• The stress testing of the final system and any comments made on the outcomes 

of this testing. 
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5 Conclusion 
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5.1 Introduction 
 
This chapter summarises the research and methodologies carried out for this thesis. It 

outlines the results and conclusions that have been drawn from the project and offers 

suggestions on how to possibly further the research. 

• Chapter 2 outlined the researched literature used in the design of this project. 

This chapter described the selection of a processing system, along with the OS 

to run on top of the selected processor. The display technologies and IPC used in 

the project were also outlined. Finally the CAN protocol was investigated. 

• Chapter 3 described the configuration and design of the final system. The first 

part of the chapter described the configuring of the development host, coLinux, 

and the configuration and compilation of the OS and bootloader, uClinux and U-

Boot respectively. The second part of the chapter outlined the system synthesis. 

This included the design of the CAN process, video processes and IPCs. 

• Chapter 4 documented the implementation and testing of the final system. This 

included the development of communications between the CAN network and 

video processes using Named Pipes as the IPC. The testing and elimination of 

any errors encountered was also outlined. Finally the system was stress tested to 

observe any limitations. 

 

5.2 Conclusions 
 
With the advances in electronics digital dashboards are now becoming available for use 

in the automotive industry. The main difference between analog dashboard and digital 

dashboard configurations is that the latter may easily be reconfigured. In the digital type 

of configuration information can be displayed either numerically or via a digital 

representation of an analog dial. 

 

The criterion was to create a flexible digital display for use in an automotive setting 

using open source hardware and software. The hardware used was an off the shelf 

development board, in this case the Analog Devices Blackfin BF548. This was 

combined with open source software, which included an OS, uClinux, and graphical 

libraries, SDL. The system received its data from a CAN network, which was simulated 

using the automotive industry standard tool “CANalyzer”. 
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To develop and compile the OS and application software, a Linux derivative, coLinux, 

was used. CoLinux was selected for use in the project as it is the first Linux release to 

run natively on a Windows machine. This offered many benefits, principally among 

them being that only one PC was needed for all software development in Linux, while 

still operating on the Windows OS. The configuration of coLinux included configuring 

the network for communications between both OS and the Ethernet. The appropriate 

toolchains for the compilation of uClinux, U-Boot and application code were also 

installed. Lastly the “PATH” was set in coLinux to point to the proper library and linker 

files when compiling any program code. 

 

Both uClinux and U-Boot were compiled under coLinux. In the project, U-Boot was 

first compiled to boot using the UART. After successfully porting this version of U-

Boot to the BF548, a second version was compiled. This version was compiled to boot 

from flash memory. Using the UART U-Boot which was ported to the development 

board, the flash U-Boot was saved in the BF548 flash memory. This version of U-Boot 

now runs on power up. Lastly, an Ethernet connection was established in U-Boot such 

that it can download the kernel on boot up. The fully configured Development Host and 

Environment are shown in Fig. 5.1. For uClinux, this involved configuring a kernel to 

be executable for the BF548, as well as to include all desired functionality. 
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Fig. 5.1 System Configuration Overview 

 
Due to BF548 being the latest generation of Blackfin development boards, some of the 

functionality had not been fully tested in the uClinux kernel. For example, the CAN 

drivers had to be edited such that the uClinux kernel would support the CAN network. 

These problems were eliminated through the combination of the review of pertinent 

literature, consultation with the relevant bodies and software debugging. After 

correcting the errors contained in the drivers, initial testing of the CAN network 

revealed that the CAN timings were also incorrect. To correct this, new CAN variable 

values were calculated, with the CAN header file been edited to include these new 

calculated values. After all problems in relation to the CAN network were rectified, 

application code was developed in ANSI C for the CAN process. The implemented 
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code was used to receive data from the CAN network, parse the desired information 

from the received CAN data and transmit it to the SDL process. 

 

The graphical representation of the CAN data was implemented using SDL program 

code. When implementing the video process, two programmes were initially developed. 

The first implemented a digital representation of a standard analog display, which 

included a speedometer and a tachometer. The second implemented a digital bar chart 

configuration which also displayed any error messages. After testing the two initial 

programs, these were then integrated to make one video process. With the output 

display configuration depending on the information received from the CAN network. 

 

To allow communications between the CAN process and the video process, Inter 

Process Communications were used, with the IPC chosen for this project being Named 

Pipes. The design of the Named Pipes was achieved by writing programme code to read 

and write between two processes. After fully testing this code, the same methodologies 

were use to transmit information between the SDL and video processes. A basic block 

diagram of the final system is shown in Fig. 5.2. 

 

 

Fig. 5.2 Final System 

 
In conclusion, it is believed that the devised system, should; (i) facilitate a significant 

reduction in the design cycle time and manufacturing costs of such systems, (ii) 

significantly add to the body of  research and development reported to date in this field. 
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An actual implementation of this system could lead to a standardised LCD display 

installed in every vehicle. Style variations between models can be easily maintained by 

simply changing the images used in the video process (SDL code). Due to the open 

source nature of the project, it is also believed, that its implementation would lead to 

reduction in manufacturing costs and time. 

 

5.3 Recommendations for further Research and Development 
 
While stress testing the final system, glitches were observed on the LCD screen when 

transmitting CAN data with a small time period. After some investigation into the errors 

it was discovered that these glitches were due to the video process not being able to 

respond fast enough to the incoming data. A recommendation to improve the response 

time of the video process could be to use a graphic accelerator. 

 

A graphic accelerator can be achieved in two ways on the BF548. The first option 

would be to use the open GL libraries in conjunction with the current SDL code. The 

second option would be to implement DirectFB on the BF548. The video code could 

then be re-written to run on DirectFB or the current SDL code can run on top of 

DirectFB. Either option should improve the response time of the current SDL code. 
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Appendix A – Write to Pipes Program 

 

wrpipes_test.c 

 
// The headers 1 

#include <stdio.h> 2 

#include <stdlib.h> 3 

#include <sys/types.h> 4 

#include <sys/stat.h> 5 

#include <sys/time.h> 6 

#include <sys/ioctl.h> 7 

#include <fcntl.h> 8 

#include <unistd.h> 9 

#include <string.h> 10 

 11 

//define pipe 12 

#define RFIFO_FILE "RECFIFO" 13 

 14 

int main () 15 

{ 16 

 int fp, i; 17 

 //char mes[21]; 18 

  19 

// create pipe 20 

mknod(RFIFO_FILE, S_IFIFO|0666, 0); 21 

 22 

 23 

// open and write to pipe 24 

  char mes[] = "Hello World\n"; 25 

  fp = open(RFIFO_FILE, O_WRONLY); 26 

  write(fp, mes, 16); 27 

  close(fp); 28 



 153

   29 

  printf("%c", mes[40]); 30 

 31 

   32 

return 0; 33 

 34 

} 35 
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Appendix B – Read from Pipes Program 

 

rdpipes_test.c  

 
// The headers 1 

#include <stdio.h> 2 

#include <stdlib.h> 3 

#include <sys/types.h> 4 

#include <sys/stat.h> 5 

#include <sys/time.h> 6 

#include <sys/ioctl.h> 7 

#include <fcntl.h> 8 

#include <unistd.h> 9 

#include <string.h> 10 

 11 

// define pipe 12 

#define RFIFO_FILE "RECFIFO" 13 

 14 

int main () 15 

{ 16 

 int fp1; 17 

 char readbuf1[16]; 18 

 19 

    // open and read pipe 20 

    fp1 = open(RFIFO_FILE, O_RDONLY); 21 

    read(fp1, readbuf1, 16); 22 

    close(fp1); 23 

    printf("%s",readbuf1);  24 

 25 

return 0; 26 

}27 
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Appendix C – CAN Program 

 

receive_pipes.c 

 
//The headers 1 

#include <stdio.h> 2 

#include <stdlib.h> 3 

#include <sys/types.h> 4 

#include <sys/stat.h> 5 

#include <sys/time.h> 6 

#include <sys/ioctl.h> 7 

#include <fcntl.h> 8 

#include <unistd.h> 9 

#include <string.h> 10 

#include <math.h> 11 

 12 

#include </uClinux-dist-2008R1-RC8/linux-2.6.x/drivers/char/can4linux/can4linux.h> 13 

 14 

#define STDDEV "can0" 15 

#define COMMANDNAME "receive" 16 

#define VERSION "1.2" 17 

 18 

#define RXBUFFERSIZE 100 19 

 20 

#define SPEEDFIFO_FILE "SPEEDFIFO" 21 

#define IDFIFO_FILE "IDFIFO" 22 

#define REVFIFO_FILE "REVFIFO" 23 

 24 

#ifndef TRUE 25 

# define TRUE  1 26 

# define FALSE 0 27 

#endif 28 



 156

 29 

int sleeptime            = 1000; /* standard sleep time */ 30 

int debug                = FALSE; 31 

int baud   = -1;  /* dont change baud rate */ 32 

int blocking   = TRUE; /* open() mode */ 33 

 34 

/* ----------------------------------------------------------------------- */ 35 

 36 

void usage(char *s) 37 

{ 38 

static char *usage_text  = "\ 39 

 Open CAN device and display read messages\n\ 40 

 Default device is /dev/can0. \n\ 41 

Options:\n\ 42 

-d   - debug On\n\ 43 

       swich on additional debugging\n\ 44 

-b baudrate (Standard uses value of /proc/sys/Can/baud)\n\ 45 

-n   - non-blocking mode (default blocking)\n\ 46 

-s sleep sleep in ms between read() calls in non-blocking mode\n\ 47 

-V   version\n\ 48 

\n\ 49 

"; 50 

    fprintf(stderr, "usage: %s [options] [device]\n", s); 51 

    fprintf(stderr, usage_text); 52 

} 53 

 54 

 55 

 56 

/**********************************************************************57 

* 58 

* 59 

* set_bitrate - sets the CAN bit rate 60 

* 61 

* 62 
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* Changing these registers only possible in Reset mode. 63 

* 64 

* RETURN: 65 

* 66 

*/ 67 

 68 

int set_bitrate( 69 

 int fd,   /* device descriptor */ 70 

 int baud  /* bit rate */ 71 

 ) 72 

{ 73 

Config_par_t  cfg; 74 

volatile Command_par_t cmd; 75 

 76 

 77 

    cmd.cmd = CMD_STOP; 78 

    ioctl(fd, CAN_IOCTL_COMMAND, &cmd); 79 

 80 

    cfg.target = CONF_TIMING;  81 

    cfg.val1   = baud; 82 

    ioctl(fd, CAN_IOCTL_CONFIG, &cfg); 83 

 84 

    cmd.cmd = CMD_START; 85 

    ioctl(fd, CAN_IOCTL_COMMAND, &cmd); 86 

    return 0; 87 

} 88 

 89 

 90 

/**********************************************************************91 

* 92 

* 93 

* main -  94 

* 95 

* 96 
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*/ 97 

 98 

int main(int argc,char **argv) 99 

{ 100 

int fd; 101 

int got; 102 

int c; 103 

char *pname; 104 

extern char *optarg; 105 

extern int optind; 106 

 107 

canmsg_t rx[RXBUFFERSIZE]; 108 

char device[50]; 109 

int messages_to_read = 1; 110 

 111 

    pname = *argv; 112 

 113 

    /* parse command line */ 114 

    while ((c = getopt(argc, argv, "b:dhs:nV")) != EOF) { 115 

 switch (c) { 116 

     case 'b': 117 

  baud = atoi(optarg); 118 

  break; 119 

     case 's': 120 

  sleeptime = atoi(optarg); 121 

  break; 122 

     case 'd': 123 

  debug = TRUE; 124 

  break; 125 

     case 'n': 126 

  blocking = FALSE; 127 

  messages_to_read = RXBUFFERSIZE; 128 

  break; 129 

     case 'V': 130 
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  printf("%s %s\n", argv[0], " V " VERSION ", " __DATE__ ); 131 

  exit(0); 132 

  break; 133 

 134 

  /* not used, devicename is parameter */  135 

     case 'D': 136 

  if ( 137 

      /* path ist starting with '.' or '/', use it as it is */ 138 

   optarg[0] == '.' 139 

   ||  140 

   optarg[0] == '/' 141 

   ) { 142 

      sprintf(device, "%s", optarg); 143 

 144 

         } else { 145 

      sprintf(device, "/dev/%s", optarg); 146 

  } 147 

  break; 148 

     case 'h': 149 

     default: usage(pname); exit(0); 150 

 } 151 

    } 152 

 153 

    /* look for additional arguments given on the command line */ 154 

    if ( argc - optind > 0 ) { 155 

        /* at least one additional argument, the device name is given */ 156 

        char *darg = argv[optind]; 157 

 158 

 if ( 159 

     /* path ist starting with '.' or '/', use it as it is */ 160 

      darg[0] == '.' 161 

      ||  162 

      darg[0] == '/' 163 

      ) { 164 



 160

  sprintf(device, "%s", darg); 165 

 } else { 166 

 sprintf(device, "/dev/%s", darg); 167 

 } 168 

    } else { 169 

 sprintf(device, "/dev/%s", STDDEV); 170 

    } 171 

 172 

    if ( debug == TRUE ) { 173 

 printf("%s %s\n", argv[0], " V " VERSION ", " __DATE__ ); 174 

 printf("(c) 1996-2006 port GmbH\n"); 175 

 printf(" using canmsg_t with %d bytes\n", sizeof(canmsg_t)); 176 

 printf(" CAN device %s opened in %sblocking mode\n", 177 

  device, blocking ? "" : "non-"); 178 

 179 

    } 180 

 181 

    sleeptime *= 1000; 182 

     183 

    if(blocking == TRUE) { 184 

 /* fd = open(device, O_RDWR); */ 185 

 fd = open(device, O_RDONLY); 186 

    } else { 187 

 fd = open(device, O_RDONLY | O_NONBLOCK); 188 

    } 189 

    if( fd < 0 ) { 190 

 fprintf(stderr,"Error opening CAN device %s\n", device); 191 

 perror("open"); 192 

 exit(1); 193 

    } 194 

    if (baud > 0) { 195 

 if ( debug == TRUE ) { 196 

     printf("change Bit-Rate to %d Kbit/s\n", baud); 197 

 } 198 
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 set_bitrate(fd, baud); 199 

    } 200 

 201 

    /* printf("waiting for msg at %s\n", device); */ 202 

 203 

    ////////////// Start Of Edit ///////////////// 204 

    while(1) { 205 

      got=read(fd, &rx, messages_to_read); 206 

      int fp1, fp2, fp3; 207 

      umask(0); 208 

      mknod(SPEEDFIFO_FILE, S_IFIFO|0666, 0); 209 

      mknod(IDFIFO_FILE, S_IFIFO|0666, 0); 210 

      mknod(REVFIFO_FILE, S_IFIFO|0666, 0); 211 

      char x[10]; 212 

      char w[10]; 213 

      char id[10]; 214 

      char mes[10]; 215 

      char y[10]; 216 

      char rev[10]; 217 

      int byte1, byte2, speed, byte3; 218 

       219 

      if( got > 0) { 220 

        int i; 221 

        int j; 222 

 223 

        for(i = 0; i < got; i++) { 224 

     printf("Received with ret=%d: %12lu.%06lu id=%ld\n", 225 

      got,  226 

      rx[i].timestamp.tv_sec, 227 

      rx[i].timestamp.tv_usec, 228 

      rx[i].id); 229 

       230 

      sprintf(w, "%d", rx[i].id); 231 

        strcpy(id, w); 232 
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 233 

 234 

     printf("\tlen=%d msg=", rx[i].length); 235 

     for(j = 0; j < rx[i].length; j++) { 236 

  printf(" %02x", rx[i].data[j]); 237 

     } 238 

      239 

        byte1 = ("%d", rx[i].data[0]); 240 

         byte2 = ("%d", rx[i].data[1]); 241 

         byte3 = ("%d", rx[i].data[2]); 242 

 243 

         speed = byte1*pow(16,2) + byte2; 244 

 245 

        sprintf(x, "%d", speed); 246 

        strcpy(mes, x); 247 

         248 

        sprintf(y, "%d", byte3); 249 

        strcpy(rev, y); 250 

      251 

     printf(" flags=0x%02x\n", rx[i].flags ); 252 

     fflush(stdout); 253 

 } 254 

      } else { 255 

 printf("Received with ret=%d\n", got); 256 

 fflush(stdout); 257 

      } 258 

      if(blocking == FALSE) { 259 

   /* wait some time before doing the next read() */ 260 

   usleep(sleeptime); 261 

      } 262 

 263 

        fp1 = open(SPEEDFIFO_FILE, O_WRONLY); 264 

        write(fp1, mes, 100); 265 

        close(fp1); 266 
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        printf("mes = %s\n", mes); 267 

         268 

        fp2 = open(IDFIFO_FILE, O_WRONLY); 269 

        write(fp2, id, 100); 270 

        close(fp2); 271 

        printf("id = %s\n", id); 272 

         273 

        fp3 = open(REVFIFO_FILE, O_WRONLY); 274 

        write(fp3, rev, 100); 275 

        close(fp3); 276 

        printf("rev = %s\n", rev); 277 

         278 

    } 279 

    ////////// End Of Edit //////////////// 280 

 281 

    close(fd); 282 

    return 0; 283 

}284 
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Appendix D – Video Program 

 

dials_bar.c 
 

//The headers 1 

#include "SDL.h" 2 

#include "SDL_image.h" 3 

#include "stdlib.h" 4 

#include "stdbool.h" 5 

#include <stdio.h> 6 

#include <stdlib.h> 7 

#include <sys/types.h> 8 

#include <sys/stat.h> 9 

#include <sys/time.h> 10 

#include <sys/ioctl.h> 11 

#include <fcntl.h> 12 

#include <unistd.h> 13 

#include <string.h> 14 

#include <math.h> 15 

 16 

#define SPEEDFIFO_FILE "SPEEDFIFO" 17 

#define IDFIFO_FILE "IDFIFO" 18 

#define REVFIFO_FILE "REVFIFO" 19 

 20 

char readbuf1[10]; 21 

char readbuf2[10]; 22 

char readbuf3[10]; 23 

 24 

//The attributes of the screen 25 

const int SCREEN_WIDTH = 480; 26 

const int SCREEN_HEIGHT = 272; 27 

const int SCREEN_BPP = 16; 28 
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 29 

//The surfaces that will be used 30 

SDL_Surface *message1 = NULL; 31 

SDL_Surface *message2 = NULL; 32 

SDL_Surface *message3 = NULL; 33 

SDL_Surface *background = NULL; 34 

SDL_Surface *mask = NULL; 35 

SDL_Surface *screen = NULL; 36 

 37 

bool quit = false; 38 

int fp1,fp2,id,fp3,z,t,m,j,i,k,s,lastid; 39 

int del = 5; 40 

int rpm_value; 41 

int last_rpm = 0; 42 

int mph_value; 43 

int last_mph = 0; 44 

int rpm_finished = 0; 45 

int mph_finished = 0; 46 

char rpm[25]; 47 

char mph[25]; 48 

char c[25]; 49 

char d[25]; 50 

char bground[50]; 51 

char mk[25]= "images/mph/mask.PNG"; 52 

 53 

 54 

 55 

//The event structure 56 

SDL_Event event; 57 

 58 

void apply_surface( int x, int y, SDL_Surface* source, SDL_Surface* destination ) 59 

{ 60 

    //Make a temporary rectangle to hold the offsets 61 

    SDL_Rect offset; 62 
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 63 

    //Give the offsets to the rectangle 64 

    offset.x = x; 65 

    offset.y = y; 66 

 67 

    //Blit the surface 68 

    SDL_BlitSurface( source, NULL, destination, &offset ); 69 

} 70 

 71 

bool init() 72 

{ 73 

    //Initialize all SDL subsystems 74 

    if( SDL_Init( SDL_INIT_EVERYTHING ) == -1 ) 75 

    { 76 

        return false; 77 

    } 78 

 79 

    //Set up the screen 80 

    screen = SDL_SetVideoMode( SCREEN_WIDTH, SCREEN_HEIGHT, 81 

SCREEN_BPP, SDL_SWSURFACE ); 82 

 83 

    //If there was an error in setting up the screen 84 

    if( screen == NULL ) 85 

    { 86 

        return false; 87 

    } 88 

 89 

    //If everything initialized fine 90 

    return true; 91 

} 92 

 93 

void quit_prog() 94 

{ 95 

   // SDL_FreeSurface( message1 ); 96 



 167

    //Quit SDL 97 

    SDL_Quit(); 98 

    exit(0); 99 

} 100 

 101 

void mask_screen() 102 

{ 103 

    mask = IMG_Load( mk ); 104 

    apply_surface( 0, 0, mask, screen ); 105 

    SDL_FreeSurface( mask ); 106 

} 107 

 108 

int get_can(t, mph_value, id, lastid, rpm_value) 109 

int *t, *mph_value, *id, *rpm_value, *lastid; 110 

{ 111 

              //////////// Speed Pipe ///////////// 112 

              fp1 = open(SPEEDFIFO_FILE, O_RDONLY); 113 

             read(fp1, readbuf1, 10); 114 

            close(fp1); 115 

 116 

            z = atoi(readbuf1); 117 

              *mph_value = ceil(z/18); 118 

              printf("mph_value = %d\n",*mph_value); 119 

              if (*mph_value > 145) 120 

                 { 121 

                 *mph_value = 145; 122 

                 } 123 

 124 

              *t = ceil(z/30); 125 

              if (*t > 87) 126 

                 { 127 

                 *t = 87; 128 

                 } 129 

 130 



 168

              ////////// ID Pipe ///////////////// 131 

              fp2 = open(IDFIFO_FILE, O_RDONLY); 132 

            read(fp2, readbuf2, 10); 133 

            close(fp2); 134 

            *lastid = *id; 135 

            *id = atoi(readbuf2); 136 

            printf("id = %d\n",*id); 137 

              sprintf(bground, "images/bar/err%d.PNG", *id); 138 

 139 

 140 

 141 

  ///////////// RPM Pipe /////////////////// 142 

  fp3 = open(REVFIFO_FILE, O_RDONLY); 143 

  read(fp3, readbuf3, 10); 144 

  close(fp3); 145 

  *rpm_value = atoi(readbuf3); 146 

 147 

   if (*rpm_value > 300) 148 

                  { 149 

                       *rpm_value = 300; 150 

                       } 151 

              *rpm_value = *rpm_value * 20; 152 

              printf("rpm_value = %d\n\n",*rpm_value); 153 

} 154 

 155 

 156 

int dials(rpm_value, last_rpm , mph_value, last_mph, rpm_finished, mph_finished) 157 

int  *rpm_value, *last_rpm, *mph_value, *last_mph, *rpm_finished, *mph_finished; 158 

{ 159 

   do{ 160 

        if(*rpm_finished != 1) 161 

        { 162 

         if(*rpm_value > *last_rpm) 163 

               { 164 
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               *last_rpm = *last_rpm + 20; 165 

               } 166 

         else if(*rpm_value < *last_rpm) 167 

               { 168 

               *last_rpm = *last_rpm - 20; 169 

               } 170 

               sprintf(rpm, "images/rpm/%d.png", *last_rpm); 171 

 172 

               message2 = IMG_Load( rpm ); 173 

               apply_surface( 280, 0, message2, screen ); 174 

               if( SDL_Flip( screen ) == -1 ) 175 

                   { 176 

                   return 1; 177 

                   } 178 

                   SDL_FreeSurface( message2 ); 179 

 180 

         if(*last_rpm == *rpm_value) 181 

               { 182 

               *rpm_finished = 1; 183 

               } 184 

         } 185 

         if(*mph_finished != 1) 186 

         { 187 

         if(*mph_value < *last_mph) 188 

               { 189 

               *last_mph = *last_mph - 1; 190 

               } 191 

        else if (*mph_value > *last_mph) 192 

               { 193 

               *last_mph = *last_mph + 1; 194 

               } 195 

               sprintf(mph, "images/mph/%d.png", *last_mph); 196 

 197 

               message1 = IMG_Load( mph ); 198 
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               apply_surface( 0, 0, message1, screen ); 199 

               if( SDL_Flip( screen ) == -1 ) 200 

                   { 201 

                   return 1; 202 

                   } 203 

               SDL_FreeSurface( message1 ); 204 

 205 

         if(*last_mph == *mph_value) 206 

               { 207 

               *mph_finished = 1; 208 

               } 209 

         } 210 

         } 211 

         while((*rpm_finished != 1) || (*mph_finished != 1)); 212 

 } 213 

 214 

int green_up(i,t) 215 

int *i,*t; 216 

{ 217 

s = *i; 218 

    if (s <= *t) 219 

    { 220 

    for (s=*i;((s<42)&&(s<*t));s++) 221 

    { 222 

    background = IMG_Load( bground ); 223 

    message1 = IMG_Load( "images/bar/green.PNG" ); 224 

    apply_surface( 0, 0, background, screen ); 225 

    for (k=0;k<=s;k++) 226 

    { 227 

    apply_surface( j, 212, message1, screen ); 228 

    j=j+4; 229 

    } 230 

    if( SDL_Flip( screen ) == -1 ) 231 

    { 232 
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        return 1; 233 

    } 234 

    SDL_Delay( del ); 235 

    SDL_FreeSurface( message1 ); 236 

    SDL_FreeSurface( background ); 237 

    j = 56; 238 

    } 239 

    *i=s; 240 

    } 241 

} 242 

 243 

int yellow_up(i,t) 244 

int *i,*t; 245 

{ 246 

s = *i; 247 

    if (s <= *t) 248 

    { 249 

    for (s=*i;((s<60)&&(s<*t));s++) 250 

    { 251 

    background = IMG_Load( bground ); 252 

    message2 = IMG_Load( "images/bar/yellow.PNG" ); 253 

    apply_surface( 0, 0, background, screen ); 254 

    for (k=0;k<=s;k++) 255 

    { 256 

    apply_surface( j, 212, message2, screen ); 257 

    j=j+4; 258 

 259 

    } 260 

    if( SDL_Flip( screen ) == -1 ) 261 

    { 262 

        return 1; 263 

    } 264 

    SDL_Delay( del ); 265 

    SDL_FreeSurface( message2 ); 266 
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    SDL_FreeSurface( background ); 267 

    j = 56; 268 

    } 269 

    *i=s; 270 

    } 271 

} 272 

 273 

 274 

int red_up(i,t) 275 

int *i,*t; 276 

{ 277 

s = *i; 278 

    if (s <= *t) 279 

    { 280 

    for (s=*i;((s<88)&&(s<*t));s++) 281 

    { 282 

    background = IMG_Load( bground ); 283 

    message3 = IMG_Load( "images/bar/red.PNG" ); 284 

    apply_surface( 0, 0, background, screen ); 285 

    for (k=0;k<=s;k++) 286 

    { 287 

    apply_surface( j, 212, message3, screen ); 288 

    j=j+4; 289 

 290 

    } 291 

    if( SDL_Flip( screen ) == -1 ) 292 

    { 293 

        return 1; 294 

    } 295 

    SDL_Delay( del ); 296 

    SDL_FreeSurface( message3 ); 297 

    SDL_FreeSurface( background ); 298 

    j = 56; 299 

    } 300 



 173

    *i=s; 301 

    } 302 

} 303 

 304 

int red_down(i,t) 305 

int  *i, *t; 306 

{ 307 

s = *i; 308 

    if (s >= *t) 309 

    { 310 

    for (s=*i;((s>=60)&&(s>*t));s--) 311 

    { 312 

    background = IMG_Load( bground ); 313 

    message3 = IMG_Load( "images/bar/red.PNG" ); 314 

    apply_surface( 0, 0, background, screen ); 315 

    for (m=1;m<s;m++) 316 

    { 317 

    apply_surface( j, 212, message3, screen ); 318 

    j=j+4; 319 

 320 

    } 321 

    if( SDL_Flip( screen ) == -1 ) 322 

    { 323 

        return 1; 324 

    } 325 

    SDL_Delay( del ); 326 

    SDL_FreeSurface( message3 ); 327 

    SDL_FreeSurface( background ); 328 

    j = 56; 329 

    } 330 

    *i=s; 331 

    } 332 

 333 

 } 334 
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 335 

int yellow_down(i,t) 336 

int  *i, *t; 337 

{ 338 

s = *i; 339 

    if (s >= *t) 340 

    { 341 

    for (s=*i;((s>=42)&&(s>*t));s--) 342 

    { 343 

    background = IMG_Load( bground ); 344 

    message2 = IMG_Load( "images/bar/yellow.PNG" ); 345 

    apply_surface( 0, 0, background, screen ); 346 

    for (m=1;m<s;m++) 347 

    { 348 

    apply_surface( j, 212, message2, screen ); 349 

    j=j+4; 350 

 351 

    } 352 

    if( SDL_Flip( screen ) == -1 ) 353 

    { 354 

        return 1; 355 

    } 356 

    SDL_Delay( del ); 357 

    SDL_FreeSurface( message2 ); 358 

    SDL_FreeSurface( background ); 359 

    j = 56; 360 

    } 361 

    *i=s; 362 

    } 363 

 } 364 

 365 

int green_down(i,t) 366 

int  *i, *t; 367 

{ 368 
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 369 

s = *i; 370 

    if (s >= *t) 371 

    { 372 

    for (s=*i;((s>=0)&&(s>*t));s--) 373 

      { 374 

      background = IMG_Load( bground ); 375 

      message1 = IMG_Load( "images/bar/green.PNG" ); 376 

      apply_surface( 0, 0, background, screen ); 377 

      for (m=1;m<s;m++) 378 

      { 379 

      apply_surface( j, 212, message1, screen ); 380 

      j=j+4; 381 

      } 382 

      if( SDL_Flip( screen ) == -1 ) 383 

      { 384 

          return 1; 385 

      } 386 

      SDL_Delay( del ); 387 

      SDL_FreeSurface( message1 ); 388 

      SDL_FreeSurface( background ); 389 

      j = 56; 390 

      } 391 

      *i=s; 392 

      } 393 

 394 

} 395 

 396 

int main( int argc, char* args[] ) 397 

{ 398 

    //Make sure the program waits for a quit /////////////// 399 

    bool quit = false; 400 

 401 

    ////////////Initialize ///////////////// 402 
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    if( init() == false ) 403 

    { 404 

        return 1; 405 

    } 406 

     407 

    while( quit == false ) 408 

    { 409 

 410 

    /////mask screen when going from bar graph to dials////////// 411 

    if((lastid != 0) && (id == 0)) 412 

      { 413 

      mask_screen(); 414 

      } 415 

 416 

    ///// id = 0; no errors; use dials /////////////////////// 417 

    if(id == 0) 418 

      { 419 

      dials(&rpm_value, &last_rpm ,&mph_value, &last_mph, &rpm_finished, 420 

&mph_finished); 421 

 422 

      rpm_finished = 0; 423 

      mph_finished = 0; 424 

      i = ((last_mph*18)/30); 425 

      } 426 

     427 

    ///// id != 0; errors; use bar graph and dispaly error /////////////////////// 428 

    else if (id != 0) 429 

              { 430 

              do{ 431 

              j=56; 432 

              if ((i>=0) && (i<42) && (t>i)) 433 

                       { 434 

                       green_up(&i, &t); 435 

                       } 436 
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              else if ((i>=0) && (i<42) && (t<i)) 437 

                       { 438 

                       green_down(&i, &t); 439 

                       } 440 

              else if ((i>=42) && (i<60) && (t>i)) 441 

                       { 442 

                       yellow_up(&i, &t); 443 

                       } 444 

              else if ((i>=42) && (i<60) && (t<i)) 445 

                       { 446 

                       yellow_down(&i, &t); 447 

                       } 448 

              else if ((i>=60) && (i<88) && (t>i)) 449 

                      { 450 

                       red_up(&i, &t); 451 

                       } 452 

               else if ((i>=60) && (i<88) && (t<i)) 453 

                       { 454 

                       red_down(&i, &t); 455 

                       } 456 

                } 457 

                while (t != i); 458 

                last_mph = ((i*30)/18); 459 

                last_rpm = rpm_value; 460 

              } 461 

 462 

  /////////// Get Info from CAN ////////////////// 463 

  get_can(&t,&mph_value, &id, &lastid, &rpm_value); 464 

               465 

  while( SDL_PollEvent( &event ) ) 466 

        { 467 

           //If the user has Xed out the window 468 

            if( event.type == SDL_QUIT ) 469 

            { 470 
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                //Quit the program 471 

                quit_prog(); 472 

            } 473 

       } 474 

    } 475 

 476 

 477 

    return 0; 478 


