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Abstract

Abstract

One of the first electronics components used in an automobile was the fuse. Additional
features were developed such as engine management systems. These additional
features increased the amount of wiring in a wiring harness. This contributed towards
the necessity to develop the bus structure in the 1980s. The de-facto bus structure in
the automotive industry became CAN (Controller Area Network). By using a bus
structure this resulted in less hard wiring being required in the production of an
automobile which further lead to a reduction in production cost. CAN is an event-
triggered protocol which denotes it is non-deterministic and it has a theoretical
bandwidth limit of 1Mbit\s. The practical limit is nearer 500kbit\s. During the 80’s and
90’s, automotive electronics development increased; this was primarily driven by
increased development of safety features such as ABS (Anti-lock Braking System). The
increase in the number of features and nodes caused increased traffic on the bus. The

CAN protocol will be unable to meet the requirements for the extra applications.

This resulted in the development of FlexRay in 2000 by a consortium originally
consisting of amongst others BMW, Daimler Chrysler, Freescale and Philips. This
protocol can implement both time-triggered and event-triggered messages,
determinism, fault tolerance, redundancy and can operate at 10Mbit\s. Newly
developed technologies have high initial costs therefore being initially more expensive
than established technologies. This could result in it being financially unworkable to
replace a complete automotive bus with FlexRay. FlexRay can possibly be used for
mission critical applications such as powertrain applications, while other protocols
such as CAN and LIN (Local Interconnect Network) may possibly be used for less critical

applications.

The aim of this research is to design and develop a framework that allows the
implementation of a CAN application on the FlexRay protocol, without degrading the

applications performance.
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Thesis Overview

1 Thesis Overview:

1.1 Problem Specification

The aim of this research is to develop a framework to migrate an application from
CAN, an event driven network protocol, used principally in automotive applications to
FlexRay, a time-triggered protocol. Within the automotive industry the predominant
network has been CAN (Controller Area Network) and this is discussed in greater detail
in Chapter 3. In the past eight to ten years it has been realised by automobile
manufacturers that the CAN protocol will not be sufficient for future application
requirements (Thomas Noltey, 2005). This is the main reason behind FlexRay’s
development. The FlexRay protocol is not intended necessarily to replace CAN.
Through being able to operate a single protocol for an application this can reduce the
complexity associated with operating multiple protocols via gateway/s. Consideration
of various aspects of each protocol are to be take into account such as cost, knowledge
of all protocols and the time required to implement these protocols are some

examples of some of the possible issues encountered.

As consumers expect higher luxury levels in automobiles, this increases the loads on
the current network protocols (Schedl, 2007). This, combined with the ever increasing
amount of safety applications being developed, has resulted in predictions by Dr Anton
Schedl at the Vector FlexRay Symposium 2007 amongst others, that current network
protocols will not be able to cope with this demand in the near future (Schedl, 2007).
In 2000 the FlexRay consortium was founded by automobile manufacturers BMW,
Daimler Chrysler and semiconductor manufacturers Motorola semiconductors
products sector (now Freescale semiconductors) and Philips semiconductors. Other

leading companies in the automotive industry soon joined. It is anticipated that
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FlexRay will replace CAN (as the de-facto automobile network) for critical and safety

applications.

While FlexRay is anticipated as the solution to safety critical high speed applications, it
is also anticipated that CAN technology will continue to be used in less critical
applications. A migration from the CAN network to the FlexRay network would be
required where CAN has reached maximum capacity or new features are added to an
application that requires some of the features provided for on the FlexRay network.
This research aims to provide a framework that will allow applications that have
previously operated on the CAN network, to successfully operate on the FlexRay

network.

1.2 Specified Solution

One solution is to develop a framework to migrate from the CAN network to the
FlexRay network. To achieve a successful migration a minimum requirement is that the
minimum timing parameters in the CAN network are at least achieved or exceeded in
the FlexRay network. This requires a detailed understanding of both network

technologies, but specifically the FlexRay network as it is more complex.
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1.3 Research Questions

Question 1:

What are the benefits of using the migration framework versus the use of a gateway?

Question 2:

What migration techniques used in other or similar protocols are applicable in this

research?

Question 3:

What parameters are required in relation to the application and network protocol, for

migration to be undertaken?
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1.4 Document Layout

The thesis is arranged as follows;

» Section | : Thesis Overview
This section, Thesis Overview presents the problem specification and the

research questions.

> Section Il : Literature Review
The Literature Review section discusses the background of automotive
networks before presenting the CAN and FlexRay protocols in depth. An
embedded system overview is discussed before the section concludes with a

review of migration procedures carried out by other authors.

> Section Il : Framework Development
This section, Framework Development, presents the requirements and

methodology for undertaking this migration procedure.

> Section IV : Testing & Results
Section 1V, Testing & Results, presents the system model and the actual
migration framework. The section proceeds with the abstract and experimental
implementations of the generic model and the ACC (Adaptive Cruise Control)
reference model and the Verification of Time-Triggered properties. The section

concludes with a presentation of findings and a discussion of results.

» Section V : Conclusion
Section V contains the conclusion, and any potential future work that would

improve this research.

» Section VI : Appendices

Section VI concludes the thesis with the appendices.
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2 Automotive Networks Review:

2.1 Introduction

This chapter contains a general assessment of what a computer network is, and
reviews common network topologies. The TCP/IP and OSI reference model layers are
presented due to their use in the transportation of data packets. This leads onto a
history of automotive networks discussing various classes of automotive protocols. The
Electronic Control Unit (ECU) is presented due to its core use in the development and
implementation of networks in the automotive industry. Finally automotive protocols
are discussed at event-triggered and time-triggered level and a direct comparison is

made between the natures of both protocols.

2.2 Computer Networks

“A network is a series of points or nodes interconnected by communication paths”
(Harbeck, 2006)

The Internet is the most common data network that people come into contact with on
a daily basis. The Internet evolved from a small academic research project involving a
few dozen sites to become a vast worldwide system of interconnected networks
providing various functions and services. The first computer networks were
timesharing networks that used mainframes and attached terminals (Teare, 1999).
Timesharing is the concept of multiple users getting access to the processor during the
processors ‘idle’ time.

By networking remote locations to these ‘powerful’ computers (time-sharing) the
required tasks could be completed more economically. Currently an entire industry

provides networking technologies and services.
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2.3 Network Function

A network consists of two or more devices interconnected as illustrated in Figure 2-1.
One of the earliest network types was built to allow several computers to share a

single printer.

A network’s function is the transportation of data (e.g. data from a computer to a
printer). Networking can be complex because there are so many different technologies
available that can be used to connect two or more networks together (Comer, 2001).

As data networks were developing during the 1970s and the 1980s the automotive
industry was also starting to realise the advantages of implementing networks in
automobiles. Originally, automobiles had relatively small quantities of electric and
electronic components, usually in the form of closed loop circuits. For example, one of
the earliest applications was the control and operation of lights. Additional features
such as windscreen wipers and engine management systems increased the complexity
and volume of wiring in the wiring harness. This led to the development of the bus
structure in the 1980s. The de-facto bus structure in the automotive industry became
the Controller Area Network (CAN). The structures of conventional data networks and
automotive networks have some similarities. In the following section the features of
both network types are discussed at network level in relation to the following;

topology, architecture and protocols.
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2.4 Network Topologies

The term ‘Topology’ refers to the layout of the interconnecting devices on a network.
There are two ‘types’ of topologies; the physical topology which describes the cable,
node, and connector arrangements, and there is the logical topology which describes
the arrangement of devices on a network (Steinke, 2000). The following description
deals with physical topologies.

The main physical topologies are Bus, Star and Ring. The names are given in relation to
the general shape of each network. The type of topology used depends on the

configuration requirements of the system.

2.4.1 Bus Topology
The Bus Topology (shown in Figure 2-2) can consist of a common medium, such as co-

axial cable (10 base-2 (thin net) or 10 base-5 (thick net)) or un/shielded twisted pair
(Institute, 2002).

Nodes

T3
%

Figure 2-2: Bus topology

All the other nodes on the network can be directly connected off this. Because all
nodes share a common bus they can also share communication. The beginning and
end of the bus are terminated to prevent signal reflecting back down the cable. If the
central bus fails (e.g. the cable is cut) nodes at either side of the break can cease to
function correctly, if they are required to communicate with each other. Using the CAN

protocol information travels along the central bus and whichever node requests the

10
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information matches the message ID and then it can extract the information from the
bus. If the message ID does not match the node ID the node does not gain access to
that message. If a single node is removed from the network it does not affect the rest

of the system.

2.4.2 Star Topology

The Star Topology is based on the principle of a centralised host through which all
other nodes communicate (Figure 2-3). If one node wants to communicate with
another node it is required to send the data through the central processor and then
distribute it to the desired node. If the central processor node fails, subsequently

communication is halted.

Gentral
Processor

2.4.3 Ring Topology

The Ring Topology or Ring Network consists of each node being connected to-two
other nodes to form a ring as illustrated in Figure 2-4. If one node sends data to a node
that is not directly connected, the data has to go through all the other nodes in its

path. The data can travel two paths (left or right) to get to its destination node.

11
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2.4.4 Mesh Topology

In a fully connected Mesh Topology (as illustrated in Figure 2-5) every node is directly
connected to all other nodes on the network. This makes it possible for all nodes to
send data at the same time. This also allows for redundancy to be incorporated into
any system using a mesh topology configuration. A message can take an alternative
route if one route is corrupted or blocked. Due to the amount of wiring required this is

considered a costly approach.

Figure 2-5: Mesh Topology

12
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2.4.5 Hybrid Topology

These three topology types can be combined to make Hybrid Topologies such as a Tree
Topology where there is a central bus and there is a ring and/or star topologies

branching off.

2.5 LAN (Local Area Network) & WAN (Wide Area Network)

Networks can generally be categorised in one of two fundamental groups; LAN (Local
Area Network) and WAN (Wide Area Network). These incorporate some features from

the OSI (Open Systems Interconnect) model which is discussed in detail in section 2.9.

2.5.1 LAN

LANs connect as few as two devices together or as many as a few thousand. The
interconnection between the devices can be via cable or wireless means. LANs usually
connect devices that are in relative close proximity to each other such as a workstation
and a printer in the same building. In a LAN, a server can contain data applications and
services that other devices are allowed access. Ethernet is a technology that is widely
associated with LANs. Ethernet LAN primarily deals with the physical and data-link
layers (Teare, 1999). The MAC layer on a LAN uses a method called Carrier Senses
Multiple Access/Collision Detection (CSMA/CD) for dealing with contention on the
network. A device using CSMA/CD, listens on the network when it has data to be
transmitted and, if no other device is using the network it transmits. After transmission
it listens to see if a collision has occurred. If a collision has occurred each message is
re-transmitted after a random length of time. If a number of other devices are using
the network, performance degrades due to the increased number of collisions.
Introducing switches on a network sub-divides the network into smaller collision

domains resulting in less contention and improved performance.

13
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2.5.2 WAN

WANSs are used to connect multiple LANs over a larger area. A WAN uses dedicated or
switched connections to link computers in geographically remote locations that are
too widely dispersed to be directly linked to the LAN (Parnell, 1997). They can be
connected via public telecommunications system or private communications. The

Internet is an example of a public communications system.

2.6 Communication Protocol

A communication protocol is a set of rules or standards that enables communications
or data transfer between two end-points (SearchNetworking.com, 2007). A protocol
enables communication between a host and a remote host as long as the
communication takes place on the same level. If the rules are not kept then
communication cannot occur. The TCP/IP reference model is illustrated in figure 2-6

but is not presented in detail as it is not covered in the scope of this research.

Application

Transport

Internet

Network Access
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2.7 Automotive Networks History

As data networks began evolving, the automotive industry was beginning to add more
electronic components and features to automobiles, such as air conditioning and
electric windows. While data networks were developed to improve quality of service
and increase data transfer rates, the automotive industries initial motivation would
have been fundamentally financial. This has changed in recent years as the number of
safety critical applications increases and consumers demand more comfort
applications such as climate control. The introduction of a networked bus structure in
automobiles has lead to a reduction in the size of wiring harnesses. Reducing the size
of a wiring harness also yielded a reduction in the weight of the automobile and in turn

this would improve fuel efficiency.

While initially introducing networks in cars reduced weight, this also lead to other
safety/non-safety applications being developed, this increased weight and power
consumption. The availability of integrated circuits in the 1960s and the 1970s allowed
further development of automotive electronics and the development of the electronic
control unit (ECU). The use of the ECU allowed engine management parameters to be
varied depending on external conditions like engine load and air temperature. At the
time, the main factor pushing automotive electronics development was exhaust
emissions regulations. Mechanical methods alone could not provide the means to
meet these new requirements while maintaining performance and efficiency
(Fischerkeller, 2007). It was then realised that the microcomputer adapted for
automotive use could address the requirements for emission controls while
maintaining performance for the driving enthusiast. The microcomputer could handle
data from the spark timing with variations in the load speed, inputs from sensors
providing data on crankshaft position, coolant temperature etc (Jurgen, 1999).
Increased development of integrated circuits allowed car manufacturers to eliminate

passive components. Then with the development of microprocessor, electronic engine
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controls, anti-lock braking systems and trip computer revolutionised automobile

electronics (Buchholz, 2006).

Originally, as automobile manufactures started to develop more electronic based
applications for cars, there was no link between the electronics industry and the
automotive industry. The automotive industry wanted the technology to be as
economical as possible, but within the electronics industry all new technologies are
initially expensive (due to research and development costs) and then become more
cost effective due to improvements in production methods, product life cycles and

widespread adaption.

It is no coincidence that during the 1980s the seminal breakthrough in automotive
network development was facilitated by the production of more powerful ICs
(Integrated Circuits). The CAN protocol was also developed during this period and by
the early 1990s had become the de-facto standard in the automotive industry. There
have been other variants of this protocol such as TTCAN, CANOpen, DeviceNet, CAN
Kingdom and J1939. Proprietary variants such as J1850 PWM, J1850 VPM and ISO

9141-2 were developed individually by manufacturers but these are not included in the

scope of this research. There are also three other primary automotive protocols. Local

Interconnect Network (LIN) was developed as a low cost, lower speed alternative to
CAN for use primarily in non-critical body control unit (BCU) functions. The Media
Oriented System Transport (MOST) protocol was developed with high bandwidth
infotainment systems specifically in mind. The FlexRay protocol was developed for use

in safety critical applications.

2.8 Automotive Networks Description

Automotive networks can be classified by their protocols. There are four main
protocols CAN, LIN, FlexRay and MOST. Each protocol is selected for its ability to meet
the system requirements while keeping the implementation and build costs as low as

possible. The relative cost per data rate is illustrated in Figure 2-8.
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Bitrate [bps]

Node cost

A general rule of thumb is that the fastest networks tend to be the most expensive as
is illustrated by Figure 2-8. LIN operates at speeds with a maximum data rate of 20
Kbit/s and is typically used in applications that require the driver to initiate operation.
In critical applications that occur rapidly or do not require the driver to initiate
operation the faster networks such as CAN and FlexRay with speeds of up to 10Mbit/s
(1Mbit/s for CAN) are used even though they are more expensive to implement than
LIN. In 1994 the Society of Automotive Engineers (SAE) defined the classification of

four classes of networks; Class A, Class B, Class C and D.

e Class A: Data rates 10 kbits/ or lower
e (Class B: Data rates from 10 to 125 kbits/s
e Class C: Data rates from 125 kbits/s to 1 Mbit/s

e (Class D: Data rates over 1 Mbit/s

Class A is used in the body electronics of the car and an example is LIN as mentioned
above. Class B is used to share information between ECUs to reduce the number of
sensors required. A low speed CAN network would fall into this category. A class C

network would be utilised by a real-time high-speed communications system i.e.
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powertrain or chassis applications using high speed CAN. And finally the class D
network is used by MOST and FlexRay in applications that require predictability and
fault tolerance (NICOLAS NAVET, 2005).

While the protocol parameters change from protocol to protocol a basic network
structure can be summarised in Figure 2-9. CAN (Controller Area Network) is the de-
facto network standard in the automotive industry. CAN operates on a peer-to-peer
basis i.e. no master or slave, a message is transmitted and the node that requires the

data gains access to the data and processes it.

HNODE MNODE

Bus — | |

HNODE MODE

Figure 2-8: Basic Network Configuration

In Figure 2-10 we see an illustration of a network configuration where each node is
directly connected to every other node on the network (point-to-point). Figure 2-5
(mesh topology) is also an example of this as is previously explained. For a simple four-
node system there is not much system complexity, but modern high to medium end
automobiles have over 70 interconnected ECUs therefore dramatically increasing
system complexity (A. Albertl, 2005). Networking eliminates redundant wiring
because a sensor only has to be wired to the nearest controller and the controller will

transmit the information over the network (Jared Busen, 2006).

18



Automotive Networks Review

CAM CaM
HGDE HODE
i 3

CAR CAM
MODE HGDE
2 4

Networking improves many aspects within the automotive industry such as design
flexibility, diagnostics and reduced wiring/weigh/cost (Philip Koopman, 1998). Design
flexibility is improved because designers just have to design as far as the controller and
the network takes the information to the required controller in a different part of the
automobile. Having one central access point on the network and connecting this into
the diagnostics tool enables error messages on the bus to be read and analysed. This
enables problems to be located quicker than having to test each functional area

individually.

Networking allows the provision for scalability within a system. This allows a system to
grow as more applications are added. A system can only grow if in the initial design
stage provision is made for possible expansion or increased data through put at a later

stage.

2.8.1 Generic Node Composition

Examining the components of a typical automotive network node reveals a general

outline similar to that in Figure 2-11. Here a sensor provides input data to an Electronic

Control Unit (ECU). The sensors data is processed in the ECU and transmitted across
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the network so that any required actions will be taken if necessary. For output data we

could have an actuator in place of the sensor.

ECU

NODE

Metwork Y

Figure 2-10: A Basic Node Comprising of a Sensor and ECU

Before the introduction of ECUs into engine management systems the amount of fuel
in a cylinder, quantity of air mixed in and the ignition time of the spark plugs were all
parameters set by the designer at design time. By introducing ECUs this enabled these
parameters to be mapped depending on varying engine load values, quality of air
mixture etc. By having optimum operating conditions the car can achieve its best
performance as efficiently as possible. With greater emphasis on reducing carbon
emissions, it is with the aid of an ECU that these regulations can be met. The ECU
receives data from the sensor and uses data tables and calculations to make
adjustments to the actuating devices (Jurgen, 1999). The ECU can also help to perform

system diagnosis whenever an error occurs.

2.9 ECU

The electronic control unit (ECU) in an automobile has three main functions;

e Perform decision-making capabilities (e.g. adjust intake values)
e Perform arithmetic calculations
e Store data

e Read inputs from sensors

e Perform Actuations based on decisions
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The ECU is based around the microprocessor because it can perform the three basic
requirements as mentioned above. Modern automobiles need processing capabilities
of computers and computers are based around microprocessors. The microprocessor
acts as a CPU (Central Processing Unit) for a computer. Early microprocessors
processed up to eight bits at a time but nowadays microprocessors are available in 16-

bit and 32-bit format, which enables higher processing speeds.

The CPU works in a sequential manner and a clock, usually a crystal clock, controls the
timing. This enables frequencies of several megahertz giving higher processor speeds
and greater accuracy for clock samples. When an instruction is received and needs
temporary storage in the CPU it is stored in the memory registers. Within the registers

each word received is stored in memory.

ey
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Figure 2-12 illustrates a microprocessor with associated registers. It also illustrates the
program counter that keeps track of where any instructions are stored and what
instructions the CPU requires running. The ALU (Arithmetic Logic Unit) performs the
arithmetic calculations in binary. Any data that is being processed by the ALU is stored
in the accumulator until the calculation is finished. The control unit directs movement

of data in the computer. What enables a microprocessor to carry out instructions in
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the desired manner are the instructions it receives, these instructions would usually be

conveyed via software through a program.

A basic computer can consist of the following elements; a microprocessor, extra
memory, inputs and outputs. Data is stored at a specific address is memory and, when
the processor requires data, fetches it from that address.

When storing data in memory the type of memory used is influenced by the tasks
function. Source code does not change and therefore would be stored in ROM (Read
Only Memory). If the same task was performed repeatedly without change in the
process then ROM type of memory can be selected, an example of this would be on a
fuel management system that uses fixed data. If the data is only required for a
temporary period then RAM (Random Access Memory) can be used. Once the power is
disconnected from this type of memory the data is lost. An example of this would be a
trip computer in a automobile (also called run-time data) (Hillier, 1996). Non-volatile

RAM (NVRAM) is also used in instances where stored data is not to be erased. The

primary area where NVRAM is used is in data recording such as in the odometer.

A bus interconnects the components of the microprocessor; these buses are named in
relation to the data they carry such as the address bus, data bus and control bus. For
an automotive based computer the inputs and outputs would typically be sensors,

transducers and actuators.

Current practice in the automotive industry is that the physical network bus
interconnecting between nodes is a cable. Connectors attach the cable to the

hardware. The protocol is a contributing factor when cable specifications are set.

2.10 Automotive Network Protocols

As discussed in the previous section one reason for introducing networks into modern

automobiles was due to the increased levels of new features and applications in

automobiles. Design engineers decide what protocol is run on the network. Some
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considerations that have to be taken into account when deciding what protocol shall

be used are;

e Is the application critical?

e What speeds are required for the application?

e What costs are associated with each protocol?

e Is the technology readily available to develop the application with the chosen

protocol?

The answer to these questions will often decide the protocol chosen, whether it is an

event-triggered (ET) or time-triggered (TT) system.

2.10.1 Event-Triggered Protocols

In an event-triggered (ET) system, traffic gets put onto the network after an event has
occurred such as the driver pressing the brakes. This is asynchronous transfer because
there is no predetermined time at which these events will occur. Because any event
can occur at any time in any order, the network has to have a developed system that
will avoid collisions if two messages on two separate nodes try to gain access to the
network at the same time. This is achieved by tagging each message with a priority
level. The message with the highest priority will be granted access to the bus once it is
free. This is an efficient use of bandwidth due to the fact that only messages that need
to be transmitted will be looking for access to the network (NICOLAS NAVET, 2005). An
event-triggered communication controller does not need a dispatching table because
the transmission of a message is triggered by a send command from the host (Kopetz,

2000).
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2.10.2 Time-Triggered Protocols

With the time-triggered (TT) protocol, transmission occurs at predefined points in time
(Andrei Hagiescu, 2007). Activities can only occur with the progression of time and the
activity is predefined. This requires the network to have a pre-defined schedule that
assigns activities/tasks a section of the time (time slot) to perform the required action.
Each task is made up of messages. If a message is not transmitted in its defined time

slot it waits until its next time slot.

In Figure 2-13, a message is assigned slot two (S2) in which to transmit. If the message
does not obtain access to the bus in slot (S2) its next assigned slot where it will get a

chance to gain access to the bus is in slot seven (S7).

L L1
s1(s2 S3|S4|S5|56m88| [ ] |'t

s = slot

A time-triggered communication controller contains a dispatching table in its local
memory that determines what point in time a particular message is transmitted or
when that message is expected to be received (Kopetz, 2000). If a new node is added
to the network all other nodes need to be updated due to a change in the schedule (if
the new node was an unplanned addition). This can result in inefficient bandwidth
usage as some messages might not need to transmit the whole time, but will need to

be allocated slots by the system designer (Andrei Hagiescu, 2007).

2.10.3 Comparison of Event-Triggered and Time-Triggered Networks

ET systems have an advantage over TT systems when it comes to adding new nodes
onto the network. With ET systems the new node can be added on where as in TT

systems the new node has to be scheduled into the system at design time. This
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involves the system designer re-organising the system schedule to accommodate the
new IDs on the new node. As stated previously bandwidth efficiency is greater on ET
systems because a message can be transmitted if bandwidth is available where as on a
TT system a message can only transmit when it has been scheduled to do so even if
there are no messages scheduled in the slots before it. TT systems can be fault tested
to a higher degree because the designer has the schedule prior to execution. In ET
systems run time testing is critical for catching potential faults due to the aperiodic
nature of the protocol. Also in TT networks, since the application does not control the
timings there is a common time base for all nodes which allows the communication

controller to synchronise to the message schedule (Hartwich, 2007).

After considering these features the properties of each protocol can be examined.
Only CAN and FlexRay are discussed as LIN and MOST were not encountered during

this research.

2.11 Conclusion

In this chapter the concept of computer networks was introduced starting with the
general principle and moving onto automotive systems. Differing network topologies
and architectures were discussed before an example of the TCP/IP reference model is
presented, whose protocol is used extensively in the Internet. The seven layers of the
OSI reference model are explained as this reference model is used to compare layers
of other protocols. A brief history about the reasons for using of networks within the
automotive industry is presented along with an overview of a nodes hardware
composition. Finally the chapter concludes with a discussion on TT and ET protocols
and a comparison of strengths and weakness of the two.

This chapter presents the necessary background to understanding the purposes and
requirements of networks within the automotive industry. By presenting data network
models such as the OSI model this allows comparisons to be made when discussing
automotive protocols in later chapters such as the comparison made in Chapter 3

between CAN and the OSI model. By presenting an overview of the various network
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types (TT and ET) the limitations and advantages of each architecture type are

revealed.
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3 CAN (Controller Area Network):

3.1 Introduction

Robert Bosch GmbH originally developed CAN in 1986. It was designed as an
asynchronous serial bus network for connecting devices, sensors and actuators in a
system or sub-system, and was developed to be robust in electromechanically noisy
environments. It was initially developed for automotive applications but also has been

used in Industrial applications that are subject to noise (Corrigan, 2002).

The CAN protocol is an ISO standard (ISO 11519 for applications up to 152Kbps, 1SO
11898 for applications up to 1Mbps) and includes a physical layer and Data Link Layer,
layers 1 and 2 respectively, of the OSI model as illustrated in Figure 3-1. Only layers 1
and 2 of the OSI model have been defined for CAN; the Data Link Layer is composed of
the Logical Link Control (LLC) sub-layer and the Media Access Control (MAC) sub-layer
((CiA), 2008, cia.org, 2001-2007). In layer two the data for transfer is encapsulated
within the network level information packets and a unique identifier is assigned to

each of these "communication objects" (Rufino, 1997, (CiA), 2008).
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The CAN standard version is a Carrier-Sense Multiple-Access protocol with Collision
Detection and Arbitration on Message Priority (CSMA/CD+AMP)(Corrigan, 2002).
CSMA requires each node on a bus to wait a prescribed period of inactivity before
attempting to send a message. Carrier-Sense entails that the devices attached to the
network listens for other signals on the line before transmitting. If there are other
devices transmitting on that line the listening device waits until the line is clear before
transmitting. Multiple-Access allows many devices to connect and share the same

network.

Transmission occurs if the CAN node requests the transmission of a message and the
message is the highest priority message that wins arbitration over other messages
trying to gain access to the network. The Arbitration process is explained in detail in

section 3.2.2 and Figure 3-5.

3.2 CAN Physical Structure

CAN prioritises messages by configuring their IDs. Payload lengths of eight bytes or less

are sent on a serial bus. A CAN bus is a balanced two-wire interface running over a
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shielded twisted pair, unshielded twisted pair or ribbon cable. In some applications
different kinds of links are used e.g. optical or radio links. It is not uncommon to use
different transmission mediums for applications with specific requirements. Electrical
signals on the bus will be reflected back at the end of the line unless the lines are
correctly terminated as illustrated in Figure 3-2. The node may receive a reflected
signal instead of the intended signal and this will cause inaccuracies if the signals are
different. Placing a resistor at both terminating ends of the bus can fix this and avoid

unnecessarily long stub-ends of the bus.

1200
Resistance

CAN
Device

CAN
Device

The bit encoding used is Non-Return to Zero (NRZ) encoding with bit stuffing for data
communicating on a differential two-wire bus. A sequence of more than five identical
bits is a violation of the bit-stuffing rule. The CAN bus is a broadcast type bus. This
necessitates that if a message is broadcast all other connecting nodes receive the
message, but only the node requiring the message will react to it and process it

accordingly.

3.3 CAN Frame Format

There are two types of CAN frame format;

ee_Standard Frame <~ -~ { Formatted: Bullets and Numbering |

ee FExtended Frame

The standard frame is presented in Figure 3-3 and the CAN extended frame is

presented in Figure 3-4. Standard CAN (2.0A) uses an 11bit identifier while extended
CAN (2.0B) uses a 29 bit identifier (Corrigan, 2002).
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Figure 3-3: CAN Standard Frame Format

The arbitration field in standard CAN comprises of the 11bit identifier and the RTR

(Remote Transmission Request) frame.

wm—-
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11-Bit Identifier R | D | 18-Bitldentifier [T |rl | r0 | DLC | 0...8 Bytes Data |CRC | ACK | O
R R

mo W

In extended CAN the arbitration field comprises of a 29bit identifier, RTR frame, IDE
(IDentifier Extension) frame and SRR (Substitute Remote Request) field. Standard CAN
has one reserve bit r0; Extended CAN has two reserve bits rO and rl1. The reserved bits
and the DLC (Data Length Code) of both frame types are contained in the control field.
CAN is comprised of four different frame types that control message transfer and they

are;

e Data Frame
e RTR Frame
e Error Frame

e Overload Frame
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Data frame

The data frame is the most common message type and is made up of the data field,
arbitration field, the CRC (Cyclic Redundancy Check) field and the acknowledgment
field as is illustrated in Figure 3-3. This frame interacts with the MAC layer (layer 2) on
the OSI model. The arbitration field determines the priority of the message when two
or more nodes are contending for the bus. The data field contains zero to eight bytes
of data and the CRC field contains the 16-bit check sum used for error detection. The
acknowledgement field is used when a message is received and the ACK bit overwrites
the recessive bit at the end of correct message transmission. The transmitter checks
for the presence of an ACK bit and retransmits the message if no acknowledge bit is

detected.

Remote transmission request frame (RTR)

The remote frame is intended to solicit the transmission of data from another node.
There are two main differences between this and the data frame; first this type of
message is explicitly marked as a remote frame in the arbitration field and secondly it
contains no data. The RTR bit is dominant is a data frame and recessive in a remote

frame. The remote frame is presented in Figure 3-5 (BOSCH, 1991).

Remote Frame

Arbitration

) Control Field CRC Field
Field

T END of

Start Frame
of ACK
Frame Field
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Error frame

The error frame is transmitted when a node detects an error in a message and causes
all other nodes in the network to send an error frame to confirm they also have
detected the error. The error frame contains two fields; Error Flag and Error Delimiter.
The error flag is followed by the superposition of error flags as illustrated in Figure 3-6.
To terminate an error frame correctly the bus may need to be idle for three bit times

(BOSCH, 1991).

Data _,.  Frrorframe —m8M8 —
Frame ‘
Error
Flag ‘ ‘
Superposition of Error
Error Flags Delimiter

Overload frame

The overload frame is transmitted when a node becomes too busy and it gives an extra
delay between messages. It is similar to the error frame in format. The overload frame
contains two fields; the Overload Flag and the Overload Delimiter. At most two
overload frames can be transmitted to delay the next data or remote frame. The

overload frame is illustrated in Figure 3-7 (BOSCH, 1991).

& Overload Frame —8 — 5

Overload
fe— —
Flag
Superposition of Overload Overload
Overload Flags Delimiter Frame

Figure 3-7: Overload Frame Format
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3.4 Bus Arbitration

Bus arbitration is the method by which messages gain access to the network when two
or more messages request access at the same time.

Each message is tagged with a priority (lowest value is the highest priority). Each
message identifier must be unique and assigned at design time. The message ID
defines the priority level. The CAN protocol uses non-destructive bit wise arbitration to
control access to the bus. It is non destructive as the node winning arbitration
continues on with the message without ‘the losing’ message being destroyed or
corrupted by another node. The node that loses arbitration joins the queue again. This
guarantees access to the bus for the controller with the highest priority message.
There can be some latency if a message is already being transmitted or a higher
priority message wants access to the bus. If a low priority message and a high priority
message are vying for bus access, there will be greater latency for a lower priority

message.

For this non-destructive bit-wise arbitration to take place some preconditions have to
be established. First the logic states need to be defined as dominant or recessive.
Second the transmitting node must monitor the state of the bus to see if the logic
state it is trying to send actually appears on the bus (Pazul, 1999). Normally logic high
is associated with a one and a logic low is associated with a zero however the CAN bus
defines a logic bit zero (0) as the dominant bit and logic bit one (1) as the recessive bit.
The dominant bit state will always win arbitration over the recessive bit state therefore
the lower the value of the bit identifier (value of all zeros) the higher the priority of the
message. Messages that need to be transmitted more often on the network should be
assigned a higher priority ID e.g. Data coming from engine management is of higher
criticality than data for air conditioning if on the same bus.

If two nodes are trying to get access the bus say nodes ‘A’ and ‘B’ and node ‘A’ wins
arbitration. Because the nodes are continuously monitoring transmission node ‘B’ sees
that the bus state does not match what it transmitted so it stops transmitting. This

allows node ‘A’ to continue with transmission. Both nodes vie for the bus again once
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node ‘A’ releases control and both nodes want to re-transmit at the same instant.

Figure 3-8 shows this process.

Hode A wins Arhitration

Hode R m—

Hode B wins Arhitration

w1

1] IIIJS_I I I_I I |_|

3.5 CAN Error Handling

Error handling prevents a single node from locking the network (Corrigan, 2002). The

CAN protocol in total incorporates five error checking methods (BOSCH, 1991) ;

e BitError

e Stuff Error
e CRCError
e Form Error

e Acknowledgment Error

When the CAN controller detects an error it transmits an error frame. Every CAN
controller on the bus will try to detect errors in its messages. The node that discovers
the error will transmit an error flag. By transmitting an error flag the bus traffic is
destroyed and any other node that detects the error flag will also discard its current
message. Each node maintains two error counters, a transmit error counter and a
receive error counter. The error counters are modified accordingly.
1. When a RECEIVER receives an error the RECEIVE ERROR COUNT is
increased by one except when the received error was a bit error sent

during an ACTIVE ERROR FLAG or an OVERLOADING FLAG.
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2. When the receiver detects a ‘dominant’ bit as the first bit after sending
an error flag, the receive error count will be increased by 8.

3. When the transmitter sends an error flag the transmitter increases the
error count by 8. Two exceptions are:
If the TRANSMITTER is ’error passive’ and detects an
ACKNOWLEDGMENT ERROR because of not detecting a ‘dominant’ ACK
and does not detect a ‘“dominant’ bit while sending its PASSIVE ERROR
FLAG

If the TRANSMITTER sends an ERROR FLAG because a STUFF ERROR occurred during
ARBITRATION whereby the STUFF BIT is located before the RTR bit, and should have

been ‘recessive’, and has been sent as ‘recessive’ but monitored as ‘dominant’.

4. If a TRANSMITTER detects a BIT ERROR while sending an ACTIVE ERROR
FLAG or an OVERLOAD FLAG the TRANSMIT ERROR COUNT is increased
by 8.

5. If a RECEIVER detects a BIT ERROR while sending an ACTIVE ERROR FLAG
or an OVERLOAD FLAG the RECEIVE ERROR COUNT is increased by 8.

6. Any node tolerates up to 7 consecutive ‘"dominant’ bits after sending an
ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or OVERLOAD FLAG. After
detecting the 14th consecutive ‘dominant’ bit (in case of an ACTIVE
ERROR FLAG or an OVERLOAD FLAG) or after detecting the 8th
consecutive ‘dominant’ bit following a PASSIVE ERROR FLAG, and after
each sequence of additional eight consecutive ‘dominant’ bits every
TRANSMITTER increases its TRANSMIT ERROR COUNT by 8 and every
RECEIVER increases its RECEIVE ERROR COUNT by 8.

7. After the successful transmission of a message (getting ACK and no
error until END OF FRAME is finished) the TRANSMIT ERROR COUNT is
decreased by 1 unless it was already 0.

8. After the successful reception of a message (reception without error up

to the ACK SLOT and the successful sending of the ACK bit), the RECEIVE
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ERROR COUNT is decreased by 1, if it was between 1 and 127. If the
RECEIVE ERROR COUNT was 0, it stays 0, and if it was greater than 127,
then it will be set to a value between 119 and 127.

9. A node is ‘error passive’ when the TRANSMIT ERROR COUNT equals or
exceeds 128, or when the RECEIVE ERROR COUNT equals or exceeds
128. An error condition letting a node become ’error passive’ causes the
node to send an ACTIVE ERROR FLAG.

10. A node is 'bus off’ when the TRANSMIT ERROR COUNT is greater than or
equal to 256.

11. An ’error passive’ node becomes ’‘error active’ again when both the
TRANSMIT ERROR COUNT and the RECEIVE ERROR COUNT are less than
or equal to 127.

12. A node which is ’bus off’ is permitted to become ’‘error active’ (no
longer ’'bus off’) with its error counters both set to 0 after 128
occurrence of 11 consecutive ‘recessive’ bits have been monitored on

the bus.

Using the error counters the CAN node not only detects errors but also contains them
by detecting the constant transmission of error frames. The CAN bus changes between
Error Active, Error Passive and Bus Off depending on the error counter value (Daniel
Mannisto, 2003). The parameters are illustrated in Table 3-1. They also ensure that a

node cannot tie up the bus by repeatedly re-transmitting error frames.
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Table 3-1: CAN Error States

0- 128- >255 Comment
127 255 | Errors

Errors | Errors

Error counter operates as

Error normal, if error occurs error
X
Active flag is sent and message is
destroyed

Can only send out passive error
flag once an error is detected,
Error can still send and receive
Passive messages. Cannot become
error active until counter falls

below 128

Can only enter this state due to
transmit error counter
exceeding 255. Node that is

Bus Off X bus off cannot influence the
bus in this state. Controller and

counter reset and start

sequences are sent

The maximum and minimum data rate for a CAN network is 1Mbps and 10Kbps
respectively. Cable length depends on the data rate being used. Normally all the
devices in the system transfer at a uniform and fixed bit rate. The maximum line length

is 1km; 40metres at 1Mbps. Termination resistors are used at each end of the cable.
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3.6 CAN Protocol Features

The CAN protocol provides four primary benefits;

e A standardised communication protocol simplifies and economises interfacing
subsystems from various OEMs onto a common network

e The communication load is shifted from the host CPU to the intelligent
peripheral that gives the host CPU more time to run its system tasks

e Using a multiplexed network vastly reduces the size of the wiring harness and
eliminates point-to-point wiring. This can increase the efficiency of a vehicle
due to the fact it is carrying less weight

e The broad market appeal of CAN is that it can be employed in multiple
industries (aerospace, manufacture of automobiles (robotics)) and motivates
the semiconductor industry to manufacture and develop competitively priced

CAN devices

Because CAN is a mature technology and has been developed over a number of years,
the cost of developing and improving CAN based systems has fallen. The CAN
communication network is an event-triggered architecture. This means that the
occurrence of an event is recognised by the system as a change at an input or sensor
etc. By operating a message priority system CAN is deployable in real-time distributed
systems. For real-time deployment to work there has to be a guaranteed minimum
message delivery time, where the worst case delays should not be allowed exceed the
maximum delay. Also an 8bit microcontroller with as little as 4K of memory and 256
bytes of RAM is able to support a CAN application. One of the main drawbacks of CAN
is its non-deterministic nature. This makes it impossible to test completely a CAN
based system for every possible error therefore making live testing much more critical
to enable delivery of an error free product to the customer. One of the major
disadvantages of CAN is the restricted room for further development of applications as
the bandwidth limitations are being reached (i.e. lack of scalability). Traditionally CAN

systems were designed to have busloads of 30-40%. This increased further to busloads
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of 80% with the development of scheduling tools such as Volcano Network
Architecture (Robert I. Davis, 2007). To guarantee message delivery time’s a certain
percentage of the bandwidth needs to be unused to prevent the blocking of low
priority messages at high busloads. Future scalability cannot be improved upon further

in these type CAN systems without adding additional CAN sub-buses.

3.7 TTCAN (Time-Triggered Controller Area Network) Introduction

TTCAN addresses some of the shortcoming of CAN such as non-determinism through
the use of TT architecture. TTCAN offers a predefined time-triggered method of
scheduling CAN messages for synchronous message transfer. For asynchronous
message transfer, TTCAN instigates message transfer with occurrence of an event

(Centre, 1998 - 2005) .

3.7.1 TTCAN Cycle Structure

To maximise the use of TTCAN over CAN the network requires a deterministic element.
This allows a reduction in latency (jitter) values of high priority messages getting access
to the bus, therefore providing a deterministic aspect to the network. A time master
bases communication on the periodic transmission of a reference message. Once this
reference message is sent by a node all other nodes on the network synchronise
themselves to this. This provides CAN with quasi event-triggered protocol features.

An advantage of using the TTCAN based system is the possibility of transmitting an
event-triggered window during a time-triggered slot. This is achieved by transmitting
the event-triggered message in the arbitrating time window. During this window ET
messages vie for access to the network. This is achieved through the arbitration
method CAN uses, if there is more than one message looking for access to the

network.
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The TTCAN communication cycle is called a matrix cycle as seen in Figure 3-9 (G. Leen,

2001).
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The start of each cycle is denoted by its reference message. The time masters
reference messages are used to guarantee the operation of CAN. This operates on
extension level 1. Extension level 1 guarantees the TT operation of CAN based on the
reference message of a time master. The reference message on this extension level
only requires one byte for control information the rest of the bytes (7bytes) can be
used for data. In extension level 2 a globally synchronized time base is established and
a continuous drift correction among the CAN controllers is realised. On extension level
2, a global synchronisation time base is used to counter any drift that occurs. This
extension level requires 4 bytes for control information and additional bytes can

contain data (Thomas Fiihrer, 2000).

As can be seen from Figure 3-9 the matrix cycle is made up of a base cycle. Each base
cycle is the length from one reference message to the start of the following reference
message. In between the reference messages are time windows. Each window per

base cycle can be different but all base cycles have to contain the same properties
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relating to time windows. Time windows can be use to transmit periodic or aperiodic
messages depending on the configuration by the design engineer. This means that the
cycle is fixed and is not changed while online. The time window that transmits periodic
messages is called an exclusive window, where as a time window for aperiodic
messages are called arbitration windows as illustrated in Figure 3.10. After the second

arbitration window the cycle repeats to build up into a matrix.

One Sample Cycle |

Refernce ‘ ‘ ‘ ‘

Wincow

Exclusive
wincow
Arbitration
winclowy

TTCAN can be implemented where CAN has already been implemented, and is covered
under the standard 1SO11898-4 (A. Albert, 2003). TTCAN is compatible with the

existing CAN network as they have the same physical layer.

TTCAN has advantages over CAN such as it contains time-triggered and event-triggered
properties. This means TTCAN is deterministic yet still has some of the flexibility of
CAN that allows for more efficient bandwidth usage. TTCAN can also be used in
companies that have invested in knowledge of CAN because the tools and equipment
are cross compatible. Even though TTCAN_offers improved_bandwidth utilisation was
developed-after One-area-whereit does not offer increased bandwidth when compared
to_the maximum_bandwidth available in CAN.fals-dewn-is-ithas-thesamebandwidth
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3.8 Conclusion

In this chapter the specifics of the CAN protocol are discussed in depth. The chapter
starts off with an overview of the CAN layers in relation to the OSI reference model.
Then the CAN frame format is explained in relation to the standard 11-bit frame
format and the 32-bit format. Arbitration and error checking are extensively discussed
as these parameters play a significant role in the successful implementation of CAN.
TTCAN is also discussed in this chapter due to it being derived from CAN. The

differences between CAN and TTCAN are discussed as is the cycle structure of TTCAN.

Because CAN is an established protocol it continues to be widely used within the
automotive industry. Factors such as integration into a company’s development model
and availability of expertise will ensure that the CAN protocol will not face a sudden
discontinuation in use. It has also been recognised by the automotive industry that
CAN is incapable of providing for the future requirements of all applications. TTCAN is
further proof that TT features in a protocol are required in the automotive sector. This
has lead to alternative protocols such as FlexRay and TTTech (TTTech joined the
FlexRay consortium (Technology, 2005)). It appears that through the volume of
research (the FlexRay consortium have extended their agreement until 31* December
2009) and through product releases, FlexRay will be the de-facto automotive protocol

(Thomas Noltey, 2005) where CAN is not suitable.
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4 FlexRay:

4.1 Introduction

This chapter describes the FlexRay protocol in detail. Specific areas of focus are on
FlexRay’s physical structure, frame structure and communication cycle operation. The
following sections are critical to the development of the migration framework as they

form the core of the FlexRay protocol.

FlexRay offers reliable, real-time capable, high-speed data transmission between

electrical and mechatronic components. The FlexRay consortium was founded by;

e Automobile manufacturers
e Semiconductor manufacturers

e Experts in communication technology

e And system suppliers to benefit the automotive industry-feunded-the-FlexRay
conserttan

All companies involved jointly developed a new standard that is openly available to

members and is intended to supplement the established data busses of CAN, LIN and

MOST. A communication network is the backbone of an X-by-wire system. Initial

development of X-by-wire will involve having the mechanical and hydraulic mechanism

as a back up to the critical devices such as steering, breaking etc (Thomas Fihrer,

2000)

FlexRay is an alternative protocol to complement existing protocols as illustrated inean
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The objectives of the FlexRay consortium are the joint development of an innovative
and high-quality communication system and a comprehensive infrastructure for future
distributed applications. This involves developing the specifications for the
communication protocol, the physical layer, the bus guardian, hardware and the
software interfaces. The consortium was founded by BMW, Daimler Chrysler, Motorola
semiconductors products sector (now Freescale semiconductors) and Philips
semiconductors in 2000. In total 103 companies are part of the FlexRay consortium; 7
of whichthem ares core members, 25—-as premium associate members, and 71-as

associate members (Consortium, 2008).

4.2 FlexRay Features

The FlexRay consortium was set up because it became obvious that existing data
transfer rates used within the chassis, body and power trains of today’s vehicles will
reach their limits in the next generation systems. The main features of FlexRay are

(Consortium, 2008);
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e Synchronous and asynchronous data transmission

e Support of a fault tolerant scalable time-base

e Scalable electrical/electronic architectures supporting a multiple of platforms

e Single channel gross data rate of 10Mbits/s

e Deterministic data transmission with guaranteed message latency and message
jitter

e Support for redundant transmission channels

e Fault tolerant and time triggered services available in hardware

e Arbitration free transmission

e Support for bus and star topologies

e Fast error detection and signalling

e Support of wake-up and sleep functionality via the bus

FlexRay can attain ahas data transfer rate of 20Mbit/s over dual channels or a data
rate of 10Mbit/s on a single channel. FlexRay supports deterministic data transfer and-
FlexRay—supperts—numerous network topologies such as point-to-point, passive star,
linear passive bus, active star network, cascaded active stars and hybrid topologies. For
interconnection two primary topologies are proposed; star based interconnection
topology and a bus based interconnection topology. Both of these interconnection
methods can use dual channel systems. The star configuration can be deployed in
distributed configuration such that two star-based subsystems are connected by star-
to-star links. A distributed system can also be designed by combining the star and bus
approach allowing several nodes to be connected to a branch of the star as shown in

Figure 4-2.
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4.3 FlexRay Cycle Structure

FlexRay communication_is based on 64 -eeeurs—n-reoccurring communication cycles,
composed of a Static Segment (ST), Dynamic Segment (DYN), Network Idle Time (NIT)
and an optional Symbol Window, as illustrated in Figure 4-3. The communication cycle
is the fundamental element of the media access scheme within FlexRay. FlexRay offers
| two media access schemes; TDMA (Time Division Multiple Access) and a dynamic mini-
slotting based access scheme. The duration of the cycle is fixed when the network
| isbecemes configured. A time window, which is defined by the communication cycle,
can be divided into two parts, a static segment and a dynamic segment. In addition
each cycle can contain a symbol window that is used for run time testing, and a
network idle time that allocates a communications free period upon the conclusion of

each communication cycle.
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The purpose of the static segment is to provide a time window for scheduling a
Aumberof-time-triggered messages. This part of the cycle is reserved for synchronous
communication, which guarantees a certain frame latency and jitter through fault
tolerant clock synchronization. The messages which are to be transferred through the
static segment must be configured before starting communication (offline). For this to
be achieved the static segment uses a TDMA based communication scheme. In the
dynamic part of the communication cycle each device may transfer event-triggered
messages, which are prioritised by frame ID. Temporal characteristics of the
communication cycle are defined at design time and stored statically in each node.
Nodes that require greater bandwidth are assigned more slots than those that require

less bandwidth.

Currently most Hhigh-speed vehicle control systems are teday—networked byusing
CAN. If one of the wires in two-wire CAN becomes cut or shorts, the timing behaviour
of the CAN bus becomes unpredictable. When one wire is cut or shorted interference
can increase on the bus because the inverted voltages on each wire minimise the
interference cancelling effect. With excess interference CAN bus data can be rendered

useless for its intended purpose. One of the major aims when developing FlexRay was
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scalable fault tolerance. Using this approach FlexRay could be used in non-fault
tolerant systems as well as fault tolerant systems. FlexRay provides scalable fault
tolerance by a means of a dual channel system with mixed connectivity (some nodes

connected to both channels other nodes connected to only one).

4.4 FlexRay Node Structure

Each FlexRay node consists of a controller component and a driver component as can

be seen in Figure 4-4.
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The controller component includes a host processor and a communication controller.
The driver component includes the bus drivers and optional bus guardians. The bus
guardian protects the communication channels from transmission faults that violate
the TDMA scheme. The bus guardian also prevents malfunctions by only granting bus
access for sending a message at predefined times for each node. The bus driver
connects both the communication controller te-the-bus-and the bus guardian aceess-to

the bus. The host informs the bus guardian which time slots the communication

50



FlexRay

controller has allocated. The bus guardian then allows the communication controller to
transmit data only in these time slots. If the bus guardian detects a gap in the timing it
disconnects the communication channel. A summary of how each component of a
FlexRay node interacts with another component to enable data to be transmitted onto

the network is illustrated in Figure 4-5.
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4.4.1 CHI (Controller Host Interface)

The FlexRay core (between the host processor and the protocol engine) is partitioned
such that the Protocol Engine (PE) is responsible for all FlexRay specific protocol
handling and the Controller Host Interface (CHI) handles all tasks of integrating FlexRay
functionality into the rest of the system. Figure 4-6 shows how the protocol engine

interfaces with the host processor via the CHI.
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The CHI provides host access to the FlexRay protocol’s core’s configuration; (control

and status register). asAlso the CHI provides access to wel-aste-tthe message buffer

configuration; (control and status register). The FlexRay buffers hold the FlexRay
frames (Receive and Transmit frames) including the frame header, payload data and
frame status information. The message buffer data is stored in the FlexRay memory
and the message buffer control structures are implemented in the CHI. Different end
user applications have different requirements therefore the core should be

configurable to optimise application performance.

4.5 FlexRay Frame Structure

The FlexRay frame format is illustrated in Figure 4-7. The frame consists of three
segments; the header segment, the payload segment and the trailer segment. When a

node_configuration—appears—on—the—network—it is transmitteds on the network,

transmission occurs in -this order (header, payload and trailer).
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4.5.1 Header Segment (5 bytes)

Reserve Bit
The 1 bit reserve bit is reserved for further development so it shall be ignored and set

to zero.

Payload Preamble Indicator

The payload preamble indicator (1 bit) indicates if the payload section contains an
optional network management vector as illustrated in Figure 4-8a. If the message is
transmitted in the static segment it indicates the presence of a network management
vector (see Figure 4-8a). If it is transmitted in the dynamic segment it indicates if there
is a message ID (see Figure 4-8b). If it is set to zero neither are contained in the

payload preamble indicator.
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Null Frame Indicator
The null frame indicator (1 bit) indicates whether there is a null frame. If the null frame
is set to zero the frame contains no valid data and all bytes in the payload section are

set to zero.

Sync Frame Indicator
The Sync frame indicator (1 bit) indicates whether or not the frame is to be used for
system synchronisation. When set to a zero the frame is not considered for

synchronisation, otherwise it is considered for synchronisation.

Start-Up Frame Indicator
The start-up frame indicator (1 bit) indicates if the frame is a start-up frame otherwise
is given a value of one otherwise it is given a value of zero. Only coldstart nodes can

transmit start-up frames.

Frame ID

The frame ID (11 bits) defines the slot in which the frame should be transmitted. The
frame ID ranges from 1 to 2047, an ID value of zero is invalid. The node transmits the
frame ID with the most significant bit (MSB) being transmitted first and decreasing in

order (to the LSB).
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Payload Length

The payload length (7 bits) indicates the size of the payload segment. It is set by
getting the number of payload data bytes and dividing it by two (e.g. a frame that
contained a payload segment of 72 bytes would be transmitted with a length 36). The
payload length is fixed when sent in the static segment but may vary for frames sent in

the dynamic segment.

Header CRC

The header CRC (cyclic redundancy check) (11 bits) uses a CRC code calculated over the
sync frame indicator, the start up frame indicator, the frame ID and the payload
length. The communication controller (CC) calculates the header CRC of a received
frame in order to check that the CRC is correct. The header CRC of transmitted frames
is calculated offline and is provided to the communication controller during
configuration. Computation of the header CRC is done by first shifting in the sync
frame indicator then the MSB of the frame ID followed by the rest of the frame ID,
then the MSB of the payload length and the subsequent bits of the payload length. The

header CRC is transmitted with the MSB transmitted first.

Cycle Count
The cycle count (6 bits) keeps track of the value of the cycle counter at the time of

frame transmission.

4.5.2 Payload Segment (0 — 254 bytes)

Because the payload segment contains two-byte-words it must contain an even
number of bytes. The bytes are numbered starting at zero and increasing by one byte
with every subsequent byte-after. In Figure 4-810 Data0 is referred to as the first byte
and Datal as the second byte as so forth. For frames in the dynamic segment the first

two bytes may contain the message ID field. For frames in the static segment up to

55



FlexRay

twelve bytes may be used to indicate a network management vector. The MSB of each

byte will be transmitted first with the subsequent bytes following.

4.5.3 Trailer Segment (3 bytes)

The trailer segment contains a 24bit CRC for the frame. The CRC frame contains a CRC
code computed over the header segment and the payload segment of the frame (all
fields within these segments are included). The CRC is computed using the same
generator polynomial on both channels but a different initialisation vector is used for
each of the two channels. The frame fields are fed into the generator starting with the
reserved bit and ending with the least significant bit (LSB) of the last byte of the
payload segment. The CRC frame is transmitted starting with the MSB descending in

sequence to the LSB (Consortium, 2005).

4.6 FlexRay Timing Hierarchy

Having discussed the FlexRay frame format the next critical component to
understanding FlexRay is its timing hierarchy. The timing hierarchy can be broken into

four distinct levels for analysis:

BlLevel 1: -MicroTick level (uT) == {Formatted: Bullets and Numbering ]

BlLevel 2: MacroTick level (MT)

Level 3: Arbitration Grid Level

BlLevel 4: Communication Cycle Level == { Formatted: Bullets and Numbering ]

Level 1 (Microtick): The uT is a time unit that is extracted from the communication
controller’s oscillator clock. A pre-scalar value can be used if necessary. The microtick
value is given in units of microseconds. The smallest temporal granularity of a node is

in uT.
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Level 2 (macrotick): The MT value is an integer multiple of uTs. The number of uTs per
MT can fluctuate between nodes and also fluctuate between MTs on the same node
(Consortium, 2005). Action points designate when transmissions on the MT level start.

The MT figure is also presented in microseconds.

Level 3 (arbitration grid level) is where the static slots are defined for the static

segment and mini slots are defined for the dynamic segment.

Level 4 (communication cycle) is composed of the static segment, dynamic segment,
network idle time and optional symbol window. The symbol window is where media
access takes place. Network idle time is where no transmission takes place except to
apply clock correction values and it is required to conclude every communication cycle.
The number of MTs per cycle shall be an integer value and this is constant through all
nodes in a specific cluster(Consortium, 2005). All four levels are illustrated in Figure 4-

9.

communication I I | |

cycle lavel 7 ]
static 5egn1er‘t dynamic segment 5ymbo| window network
idle time
arbitration /

grid level
tatlc slot static sloér‘" nislot \ minislot

| o acfion point — action point \:l | o action poir‘|t:{
e N
o O-[Do- ~O-0-
macr .tck
micratick -
level
microtick

As mentioned previously there are two media access schemes, TDMA and a dynamic
mini slotting access scheme (or flexible time division multiple access (FTDMA) as it is
sometimes referred). The static segment operatesruns en-thea TDMA scheme and the

dynamic segment operates aruhs-en-the dynamic mini slotting scheme. Each static slot
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for the TDMA scheme is obtained from the arbitration level. The mini slot scheme also

obtains its base mini slot from this level as can be seen in Figure 4-9.

4.7 Communication Cycle

The FlexRay communication cycle frame is composed of the ST segment the DYN
segment the optional symbol window and the NIT (Network idle Time). It is during the
NIT that calculations are carried out for the offset and phase as discussed in the
section 4.7.5. Figure 4-10 illustrates an example of the composition of a FlexRay frame
for transmission in a communication cycle. The communication cycle is as illustrated in

Figure 4-3 previously.

|

NIT

The communication cycle is composed of an integer number of macroticks. The
number of macroticks per cycle is the same for all nodes in a cluster. Also all nodes
should have the same cycle value at any given instance of time. The cycle counter
value ranges from 0-63. Once the cycle counter reaches the maximum value it resets
and starts counting again from zero in the next communication cycle. The cycle

counter value is incremented at the start of each communication cycle.
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4.7.1 Wake-Up

For a cluster wake-up all bus drivers are required to be supplied with power. Start up
occurs on all channels synchronously. At least one node in the cluster requires an
external wake-up source. The CC (Communication Controller) provides the host with
the ability to transmit the wake-up pattern and it prevents a disturbance on the
communication channel once communication occurs. The host sets the configuration
in the CC as to what channel is to be woken up. Each channel available is woken
separately. Both channels must not be woken at the same time to prevent a faulty
node disturbing communication simultaneously on both channels with its
transmission.

The wake-up pattern causes any fault free node to change from sleep mode to wake-
up if it is still in sleep mode. The bus driver of the receiving node recognises the wake-
up patter and triggers wake-up. During the wake-up procedure any number of nodes
can try and wake-up a channel. This issue is resolved during the wake-up process. The
wake-up pattern is collision resilient. If a fault causes two nodes to transmit wake-up

patterns the signal resulting from the collision can wake-up other nodes.

4.7.2 Communication Start Up

As FlexRay is based on a TDMA scheme, synchronicity has to be present for successful
communication. A node has to be in the wake up state before start up can commence.

Start up is initiated by a coldstart node. Only a node assigned as a coldstart node may
initiate this process. The node that starts the cluster is called the leading coldstart

node and the nodes that follow are called the follow coldstart nodes.

Start up is initiated by the coldstart node transmitting a CAS (Collision Avoidance
Symbol). Only this coldstart node can transmit in the four cycles that follow this
transmission. Next other coldstart nodes are allowed transmit then all other nodes
follow. The coldstart node contains the pKeySlotUsedForStartUp parameter set to true

and the header contains the start-up frame indicator set to one. The
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pKeySlotUsedForStartUp parameter set a bit that signifies the node as being a coldstart
node. If the cluster contains three nodes or less each node shall be considered a
coldstart node. Each node is also configured to be a sync frame, enabling each node to
also be a sync node. Only start-up frames can be transmitted during the start-up
process. For a follow-coldstart node first it listens on the FlexRay channel for FlexRay
frames. On reception of a valid pair of start-up frames, the node tries to derive its clock
correction and schedule from the coldstart node. If this is unsuccessful it collects all
sync frames and performs clock correction in the following double cycle. If clock
correction does not signal any errors and the node continues to receive sufficient
frames from the node it had integrated upon, it transmits its start-up frame. If this is
unsuccessful it returns to listen-mode.

For non-coldstart nodes, the node listens to the FlexRay channel to receive FlexRay
frames. It searches for two coldstart nodes that transmit start-up frames that fit its
own schedule. If this is unsuccessful or clock correction throws an error the node
aborts integration and tries again from the start. Once two valid start-up frames are
received the node can leave the start-up phase and move into the operation phase.
The coldstart inhibit mode is available to prevent the node initialising the
communication cycle. This mode can be used to prohibit active start-up attempts of a

node or delay start-up attempts.

4.7.3 Clock Start-Up

Before synchronisation can occur, clock start-up has to take place. This is dependent
on the start and initialisation of the MTG (Macro Tick Generation) process and the
initialisation and start of the CSP (Clock Synchronisation Process). The clock within the
node can be started through the coldstart node process if it is the leading coldstart

node or it adopts the initialisation values of a coldstart node.

60



FlexRay

4.7.4 Cold-Start

If no communication is detected on the channels, a leading coldstart node needs to be
assigned to trigger communication. This leading coldstart-node initiates the start-up
procedure by sending start up frames. There has to be a minimum of two fault-free
coldstart nodes for successful start-up. There is a limit of between 2-31 coldstart

attempts that can be made as specified by (Consortium, 2005).

4.7.5 Node Synchronisation

As FlexRay is run on a distributed communications system every node requires its own
individual clock. This leads to the challenge of synchronising every node because
operating a time-triggered protocol requires a global time base. This is achieved in
FlexRay through the wsetransmission of sync frames—being—transmitted.
Synchronisation can be divided into two concurrent processes; the macrotick
generation process (MTG) and the clock synchronisation process (CSP).
The MTG controls the cycle and MT counter and applies rate and offset correction

values. This is achieved by adjusting the number of uT per MT.

The CSP is achieved by performing initialisation at the start of a cycle and then

calculating and storing the new deviation, offset and rate correction values. There are

a set of precision differing-values allewedto be selected from. There are two types of

precisiondiffering values_to chose from; offset (phase) and rate (frequency)

differences. FlexRay combines both of these to calculate offset and rate correction

values that in turn synchronises the local time base of each node.

driverimplements-these-stepsThe driver operation examined_in detail in this thesis is

the DECOMSYS COMMSTACK and is discussed in detail in Chapter 10—the
COMMSTACK<FLEXRAY>that-is—a—controllersoftware-driver-package. Other software
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driver packages are available from companies such as Fujitsu (emea, 2008) and Vector

(Informatik, 2008).

4.8 Conclusion

Over the past few years the development of the communication hardware has been

the main priority, but as this reaches a more advanced stage we-can-start-lockingat

developing the required applications_can now be investigated. Due to FlexRay’s

characteristics (Large bandwidth, deterministic behaviour and fault tolerance) it is
ideally suited to the role of a central backbone of future ECU architectures. With the
introduction of a new bus system, there is awe need to be able to incorporate the
older systems and products as well as being able to integrate support for the new
FlexRay features. When testing and developing these systems it is vital that they can

be tested under real-time conditions.

Judging by the strength and backing of the core and associate members of the FlexRay
consortium it appears that it will becomes a dominant standard in automotive
distributed applications. The most probablelikely use feritin the near future will be as
a backbone network used in conjunction with other networks such as CAN and LIN.
These other networks are not expected to become redundant; instead these will be
used for other (less critical) control systems in the automobile. By the fact that the
FlexRay consortium agreed to extend their agreement from the 1% of January 2009
until 31°' December 2009 demonstrates that they are intent on taking the technology

forward. The FlexRay consortium was formed out of necessity due to present protocols
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not being able to meet predicted demands of future vehicles. TTCAN went some way
towards meeting these requirements but it was not able to fully cope the way FlexRay
could with extra bandwidth requirements. One potential major advantage for FlexRay
over other protocols is the reserve for future functional extensions (Schedl, 2007).
FlexRay will very likely become the de-facto standard for in-vehicle communications

(Traian Pop, 2007).
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5 Automotive Embedded Systems
Design:

5.1 Automotive Embedded System Design

In this chapter, methods of automotive embedded design are discussed. First there is a
review of the concept of distributed architectures and real-time operating systems in
the context to the automotive industry. Secondly, design approaches for automotive
embedded systems are discussed. Thirdly, scheduling techniques are reviewed and

finally analysis and conclusions are presented.

5.2 Distributed Architectures - Introduction

Computer architecture is concerned with the design and performance of the system as
a whole (Jordan, 2004). In distributed systems processing power is distributed among
computers in a cluster or network (Englander, 2000). Communication protocols and
standards used in data networks allow data to be transferred between different
systems. This allows each system to do part of the processing giving higher overall
throughput and fault tolerance. This allows tasks that involve mass amounts of
computation to carry out this computation across the network of connected

computers.

The complexity and physical distribution of modern active-safety automotive
applications requires the use of distributed architectures (Abhijit Davare, 2007).

In distributed computing the fact there are multiple autonomous computers should be
transparent to the end user (Lobur, 2003). When a command is executed in a

distributed operating system it selects the processors, manages transport to the
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processors and stores results (Tanenbaum, 1996). In computer networking all file

management has to be called explicitly (Tanenbaum, 1996). This is where a ‘true’

distributed system varies from a networked system. A basic distributed architecture

consists of a more than one node connected by a communication bus as illustrated in

Figure 5-1.

Node

Hodes

5.2.1 Basic Node Design

Bus

Each node (as illustrated in Figure 5-2) contains a CPU, communications controller,

memory and an interface for an 10 (Input/output). Typical 10 interfaces are the

reception of data from a sensor or a signal to actuate an actuator.

Node

CPU

Memory | | 10

Communication
Controller

Figure 5-2: General Node
Properties

The node architecture for a FlexRay node is to some extent different to the general

example in Figure 5-2. This is due to a CHI (Controller Host Interface) being required to

interact between the CPU and the communication controller. The CHI explicitly
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implements the FlexRay protocol and is independent of the CPU (Traian Pop, 2007).

The FlexRay node architecture is presented in detail in Figure 4-4.

The communication bus is configured according to the protocol being implemented.
Tasks can be assigned to processors through software and communicate with each
other using messages. Each task is capable of communicating with another task on a
separate processor by transmitting a message on the communication bus. The tasks
can be periodic or aperiodic with or without precedence constraints. The deadlines can

be soft (non-critical) or hard (critical) depending on the application requirements.

5.3 Real-Time Operating System (RTOS)

The primary difference between real-time systems and other computer systems is that
the response time is viewed as the crucial part of the application software in a real-
time system (E. Douglas Jensen, 1985).

Real-time and embedded systems operate in environments that offer restricted
memory and processing power. For this reason an operating system capable of
responding in real-time is required. In these environments an RTOS can be designed to
extract fast and predictable real-time responses (Schaffer, 2006). A hard real-time
system is one that has fatal errors if deadlines are missed. Soft real-time systems

deadlines are not as critical as hard real-time deadlines, if deadlines are missed.

Distributed architectures supporting the execution of hard real-time applications are
not only common in automotive systems, but also in avionics and industrial control
systems (Abhijit Davare, 2007). A RTOS has a set of functions that are required to be
carried out when implementing an application on the host system. Some of these

functions are pre-emption, time-sharing, interrupt handling and memory allocation.
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5.3.1 RTOS Functions

The operating system controls tasks that carry out specific functions. The task to be
executed is defined by a schedule (TT) or the occurrence of an external event (ET).

Through the use of interrupts a task with a high priority can get executed if a lower
priority task is currently being executed. An interrupt declares that a task with a higher
priority than the task currently being executed is waiting for execution. Once the lower
priority task finishes execution the higher priority task is then executed. If pre-emption
is implemented the higher priority task will be executed before a lower priority task is
finished executing. The lower priority task is then executed if it is the next highest
priority task is scheduled for execution. Without pre-emption the high priority task will
have to wait until the lower priority task is finished execution before it gets executed.
An interrupt handler is required to enable pre-emption. When a message is available
for execution it notifies the interrupt handler and it is assigned an interrupt priority
and placed in the interrupt queue, the position in the queue depends on its priority
level. The interrupt request handler (IRQ) notifies the system that an interrupt is
pending at a certain location, so the system pauses momentarily while it decides what
action is required to deal with the pending interrupt. The interrupt can be a hardware

interrupt (external interrupt) or software interrupts (from an instruction set).

5.4 OSEK/VDX

OSEK/VDX is a set of standards for distributed real-time architectures developed by a
consortium of European automobile manufacturers and suppliers in conjunction with
the University of Karlsruhe, Germany (Lemieux, 2001). The OSEK/VDX RTOS is widely

used within the automotive industry. The primary parameters standardised are;

e The Operating System (OS)
e Communication (COM)
e Network Management (NM)

e The OSEK Implementation Language (OIL)
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5.4.1 OS (Operating System)

The OSEK OS is a single processor OS designed for distributed embedded controls. The
OS specification is intended to give an efficient utilisation of the environment
resources for automotive control applications (OSEK, 2005). This system can be applied
in applications that require a compact, real-time distributed system that is not

automotive based such as consumer electronics items.

5.4.2 COM (Communications)

The OSEK standard supports both inter-task communication and inter-process
communication. The OSEK/VDX model covers five layers that are defined by the OSI

reference model as illustrated in Figure 5-3;

e Application

e Interaction

e Network
e Data link
e Physical

In Figure 5-3 the layers of the OSEK model that are also defined in the OSI reference
model are shaded in (Layers 1, 2, 3, 6 & 7). The Interaction layer is similar to the
presentation layer in the OSI model. This is where the exchange of data between tasks

is specified.
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Application Layer 7
Interaction Layer 6
Session Layer 5
Transport Layer 4
Network Layer 3
Data Link Layer 2
LLC & MAC Sub-Layer
Physical Layer 1

5.4.3 NM (Network Management)

The NM specification was designed primarily for the automotive industry. The basic
function of NM is to monitor the status of the nodes on the network, report status
information to the application and to handle APIs (Application Programming

Interfaces) for control of NM components.

5.4.4 OIL (Operating system Implementation Language)

Since OSEK is a static operating system the definition of the system objects used is
required before compile time (Informatik, 2008). The OIL file is composed of two parts;
the implementation specific part and the application specific part. The implementation
specific part is supplied with the OSEK/VDX implementation (Lemieux, 2001) and
should not be changed. The application specific part can be changed as deemed

necessary by the designer during application development.
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5.5 Process Models

A process model shows the relationship between processes that make up a system.
This helps identify changes that maybe required in helping the system function more
efficiently. When implementing a process model the first basic parameter is to know
what system you are modelling. You can break down the model to the following

configurations

e ET system
e TT system

e Mixed system

A system can be broken down into set of basic components. As illustrated in Figure 5-4
a simple task graph contains Tasks T1 and72, the message m1 and the task graph
period. Each task can run on the same ECU, or in the other extreme every task in a task

graph can run on a separate ECU.

=T — R B - B

ml

5.6 Task Scheduling Policies

There are a number of scheduling policies (procedural rules) to consider when
formalising a scheduling solution in a real-time system. Some of the methods for

consideration are earliest deadline (ED), deadline monotonic (DM), rate monotonic
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(RM), least slack scheduling (LSC), priority promotion (PP) and mixed traffic scheduling
(MTS). The primary objective of any scheduling policy is to meet the message and task
deadlines. Scheduling methods are classed as fixed priority scheduling, static priority

scheduling or dynamic priority scheduling.

5.6.1 Dynamic Priority Scheduling

Dynamic priority scheduling allows a tasks priority to be altered during run time. This
increases the overhead required to implement this scheduling method. This method is

non-deterministic which is not ideal for real-time systems (Oshana, 2007b).

5.6.2 Least Slack Scheduling

In this scheduling method the slack is calculated from the absolute deadline minus the
execution time for the task to complete execution. The task with the least slack is then

given the highest priority to best guarantee it will meet its deadline.

5.6.3 Earliest Deadline (ED)

The earliest deadline method assigns the highest priority values to tasks that have the
shortest time in which to complete. This method works in a system that has plenty of
capacity and uses pre-emption, but once the system starts to overload performance
degrades rapidly (Carey, 1991). This is due to tasks that have not already missed their
deadline, but are closest to missing them, being assigned the highest priority value.
This then results in tasks that can still make their deadline not being assigned the
highest priority values. The task that is closest to its deadline might not actually be able
to complete in due time. If the processor utilisation bound is greater than 100%
deadlines will start to be missed. The utilisation bound is calculated by each process

execution time divided by its period as presented in Equation 5-1.
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Process ExecutionTime .
= Utilisation Bound

Process Period

Equation 5-1: Utilisation Bound

5.6.4 Fixed Priority Scheduling

Fixed priority scheduling requires that the priority of a task is not changed in real-time.
The message or task schedule has to be known prior and scheduled off-line in a
scheduling table. This approach does not allow new messages that are created during
the run-time to be processed.

Two of the most common protocols that use this method are rate monotonic (RM) and
deadline monotonic (DM). The most significant advantages of these methods are

simple implementation and good exploitation of available bandwidth (Natale, 2000).

5.6.4.1 Rate Monotonic (RM)

Using the RM scheduling method the higher a tasks frequency the higher its priority,
therefore the task with the shortest period has the highest priority (Buttazzo, 2004).

When using RM the following can be assumed (Sha, 1991)

e Task switching is instantaneous.

e Tasks account for all execution time.

e Task interactions are not allowed.

e Tasks become ready to execute precisely at the beginning of their periods and
relinquish the CPU only when execution is complete.

e Task deadlines are identical with task periods.

e Tasks with shorter periods are assigned higher priorities; the criticality of tasks
is not considered.

e Task execution is always consistent with its rate monotonic priority: a lower

priority task never executes when a higher priority task is ready to execute.
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Using these factors, worst-case latencies can be calculated then compared to the

timing requirements to determine if deadlines shall be met.

5.6.4.2 Deadline Monotonic (DM)

Deadline monotonic was derived from the rate monotonic scheduling; it is a
generalised version. The task with the shortest deadline has the highest priority; the
priority is derived from its message ID. No task can have a task deadline longer than

the task period because the task needs to be finished before it can run again.

Both (RM and DM) systems require the highest priority task running, but in practice
this is not always possible. It is impossible to get immediate transition between tasks
due to a transition period existing; this transition period can be as small as a faction of

a millisecond.

5.6.5 Mixed Traffic Schedule

Mixed Traffic Scheduling (MTS) is employed through a combination of; fixed priority
scheduling and dynamic scheduling.

One example of this approach was by (Shin, 1995) where a MTS consisting of ED and
DM but without the need for long IDs was implemented. The non-pre-emptive version
of DM is used so that once a message starts transmission it always completes.
Simulated results from Shin show that in terms of timing, MTS has superior

performance when compared to ED.

73



Automotive Embedded Systems

5.7 Task Graphs

Task graphs visually represent the parameters associated with each task that
comprises an application. The task graph also shows the sequence of tasks that require
execution to successfully execute the application. Task graphs are used to analyse and
adjust constraints when developing an algorithm. They can also be used in ECU task
allocation, network/process design and performance modelling (Vikram Adve, 2006).
Thus a graph is a way of representing connections or relationships between pairs of
objects (Michael T. Goodrich, 2002). Task graph analysis involves similar techniques
used in critical path analysis. This allows for an abstract representation of the

application or system.

5.8 (ritical Path Analysis (CPA)

Critical Path Analysis (CPA) techniques were developed separately in Great Britain and
the USA around the 1950s and 1960s. In Great Britain in the 1950s the Operational
Research (OR) section of the Central Electricity Generating Board, investigated
methods concerned with the overhaul of a generating plant. This led to a technique
identifying the longest irreducible sequence of event. Using this technique the
overhaul time of a plant was reduced by 42%, in the 1960s this was further reduced by
32% (Lockyer, 1974). Also in the USA in early 1958 the US navy special projects office
set up a team to deal with the planning and control of complex works. This was known
as Performance Evaluation Review Task (PERT). This work resulted in early arrow
diagram drawings. Furthermore, in 1958 the US air force implemented a technique

called Critical Path Method (CPM) to control large projects (Lockyer, 1974).

CPA techniques are used across a wide variety of industries from construction, sales,
marketing, production or any sector where project planning is required. Path analysis
was developed because the previous methods such as Gantt charts did not sufficiently
demonstrate the inter-relationship between various tasks (Lockyer, 1974). An example

of this would be the designer not being able to deduce by examining a Gantt that task i
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is or is not permissible for execution with or without precedence constraints. A
precedence constraint is if task i is unable to start execution until task i-1 has been

received.

Using CPA the network undergoing planning can be abstracted and thought of as a
model. The model undergoing CPA is composed of activities/tasks connected by
arrows. Arrow diagrams themselves are graphical models scientifically drawn that
represent the logical sequence of the network (Reynaud, 1970). The arrow as
illustrated in Figure 5-5 shows the activities progression. The activity progression takes
place in the direction of the arrow. The most basic configuration is one node and one
arrow as illustrated in Figure 5-5. The head of the arrow indicates the completion of an

activity.

The expected duration of the activity is indicated by the placing of a value as a
subscript on the arrow indicating the direction of process flow as illustrated in Figure

5-6 (for example the activity duration A-B will take 2 units).
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Dummy activities are sometimes used. These are activities that do not require
resources, but can take time (Gordon, 1991). This is illustrated with a broken arrow
and is used in situations where two or more parallel activities have the same head and
tail. The dummy activity is used to demonstrate different process paths. A dummy path

is also used to indicate logic conditions (e.g. precedence constraints).

Further developing the activity graph representation, constraints such as earliest time
to commence activity and latest time to finish an activity can be illustrated. Two widely
used configurations are seen in Figure 5-7. Here A represents the nodal label, E is the

earliest deadline and L is the latest deadline.

Figure: 5-7: Alternative Activity Task
Configurations

Process models using CPA techniques can range from the extremely simple as per

Figure 5-5, to the complicate as per Figure 5-8, and with higher complexity if required.
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5.9 Task Graph Analysis

Each task on a task graph can be represented as illustrated in Figure 5-9, it contains the
task number and the process time for that task. Task graphs can contain as little as one
task and there is no upper limit. Task graphs can be segmented to show different
process running on different systems and each task is connected by a line showing the
direction of data transfer. The number on this line is the message number (Figure 5-10)

for communication between two tasks (Lockyer, 1991).
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Figure: 5-10: Two Tasks, T1 & T2, connected
by a message ml

From the task graph, each task’s processing time and the task graph period can be
calculated. The release time (time at which the task is available for execution) r; and
the deadline time (time at which the task has completed execution of designated task)
d; for each task can also be individually calculated. In Figure 5-11, T1 has been assigned
a release time of 15ms and a deadline time of 18ms. Any unrequited task graph
process time that was previously designated for the execution of tasks can now be
considered slack. This slack in the system can be evenly assigned to each task on the
path as per (Aloul, 2005). This will increase the amount of time that each task has to

process its message.

T = 15ms

: d=18ms

Figure 5-11: Task T1s
release and deadline
parameters
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The assignment of tasks to processors can be presented in Gantt charts. If the diagram
in Figure 5-12 is used, combined with the task parameters shown, it can be proven that

different path choices are available.

1

Processor 2

Figure 5-13: Gantt Chart for Tasks in Figure 5-12 (Hurley, 1994)

Figure 5-13 demonstrates the advantage of having multiple processors (distributed
architecture) because the total execution time of all the tasks (if they were all
processed on one processor) would be 15units but the execution time is down to
units using this configuration. There are restrictions, one of which is that some tasks

cannot execute until the previous task is finished. For example T4 cannot be processed
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until 71 has been executed but T6 can be processed before T4 if T6 does not have

restrictions such as requiring input from 74 and 73.

5.9.1 Worst Case Execution Time (WCET) & Best Case Execution Time (BCET)

WCET and BCET analysis is used to determine if performance goals are met and if
interrupts have sufficiently short time to react (Jakob Engblom, 2000). The BCET is the
“shortest execution time”, while the WCET is the “longest execution time” (Reinhard

Wilhelm J E, 2006)

The Once the release times and deadline times are calculated for each task in a system
(including the slack if appropriate), there is enough information available to calculate
the WCET for each task. Equation 5-2 can be used to test if the obtained WCET is
feasible. Where the WCET should be less than or equal to the deadline minus the
release time, otherwise it cannot be guaranteed that the task will meet its deadlines.
The message delay is the time from the signal being generated, passing through the
ECU/s and communication bus/es and arriving at its destination completing execution

as per Equation 5-3 (e.g. actuating an actuator) (Andrei Hagiescu, 2007).

w<d-r

Equation 5-2: WCET

The WCET, deadline and release time can be used to calculate the message delay as

shown in Equation 5-3.

delay(m;)=d —r —w

Equation 5-3: Message Delay

The BCET is the quickest time from when a message leaves one task and the time

taken until it completes execution. This includes time spent propagating through the
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network. Factors such as bandwidth limitations, latency in the system and jitter affect

the BCET.

When developing automotive applications the state space is too large to completely
determine all possible combinations therefore giving absolute WCETs. One method
around this is to get end-to-end execution times for a set of scenarios or test cases.
The problem with this approach is that the minimum and maximum times obtained for
that particular test case will lead to an overestimation of the BCET and
underestimation of the WCET, which is not safe for hard real-time systems (Reinhard

Wilhelm J E, 2006).

5.9.2 Response Time Analysis (RTA)

Response Time Analysis determines if deadline times are met. Before the final system
or application parameters are defined there is a method for examining if the chosen
system will meet its required deadlines. This method requires the WCRT (Worst Case
Response Time) to be calculated and then compared to the required deadline. If a pre-
emptive model is used the execution time and period of each task are required.
Equation 5-4, (Burns, 1994b), calculates the execution time based on the maximum

interference from a higher priority task.

n+ Win
w=c+ Y {T}Ci
J

jehp(i) w?

Where Wi =€

Equation 5-4: Recurrence Response Time

Where hp(i) is the set of all higher priority tasks than task i. Task i is delayed by
execution time C; where j is a periodic task. The periodic interval time is T;.

To get an indication of whether the tasks meet the system constraints firstly sum the
response times and then subtract the results from the deadline constraint (Oshana,

2007a).
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In this framework the response time of a message is crucial in determining if the tasks
and applications meet their required deadlines. While tools are available that
determines the WCRT of a message this research did not have the appropriated budget
or access to these tools so the equations used in developing these tools were used. In
1994 schedulability analysis was developed for CAN showing WCRTs (Robert I. Davis,
2007). In 1995 work by Tindell and Burns was adopted by automotive manufacturer
Volvo Car Corporation. Using these works, configuration and schedulability analysis
was successfully carried out and implemented on the CAN bus in the Volvo S80. This
lead to the release of Volcano Network Architect by Volcano Communications
Technologies AB (Robert I. Davis, 2007). This allowed improvements to scheduling as
message timings could now be guaranteed. The methods previously used to calculate
WCRTs were underutilising bus bandwidths. Using a systematic approach, bandwidth

utilisation to increased from the 30-40% mark to 80% (Robert I. Davis, 2007).

Works by(Burns, 1994a),(Burns, 1994b) ,(Robert I. Davis, 2007) and (Tindell, 1994) are
used primarily in this framework in abstracting the necessary equations before

obtaining WCRTs.

In (Burns, 1994b) the author presents four phases of a tasks execution as illustrated in
Figure 5-14. Here a is the initial context switch, b is the Tasks Actual Execution, c is the
internal actions after the last observable event and d is the context switch away form
the task. The author explains that utilisation analysis is more appropriate in cases
where the task set conforms exactly to the rate monotonic model. If the deadline is

less than or equal to the period Equation 5-5 can be used.
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Release Completion

1

Last Observable Event

R =C, +B, +1,

Equation 5-5: Response Time

Where B is the blocking time, C is the computational time, / is the interference. The
author provides equations to calculate computational deadlines, periods and multiple
iterations. The author specifically assumes no jitter in the test system and therefore
does not provide for it in any of the calculations. However in (Burns, 1994b) the author
discusses message queuing jitter as also discussed by (HerKert, 1996). This led to a
proposed WCRT as in Equation 5-6. Here J,, is the queuing jitter of a message, w, is the
worst case delay of a message (due to higher priority messages pre-empting and lower
priority message already on the bus) and C,, is the time taken to physically send the

message onto the bus.
Rt =J,+w,+C,
Equation 5-6: Response Time (Including Jitter)

Cn is presented in Equation 5-7. Here s, denotes the bounded size of messages in
bytes and T, is the bus bit time. The constants and coefficients in equation 5-7 are

presented by (Burns, 1994b).

C,= &MJ;SS"“J +47+8s,, jrbh

Equation 5-7: Communication Time

B, is given by Equation 5-8 where Ip(m) is the set of lower priority messages.
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B = max (c
m Vjehp(m)( )

Equation 5-8: Blocking Delay

The term w,, is presented as in Equation 5-9 but is rewritten as in Equation 5-10 to
allow for a recurrence relation due to there being no simple method of presenting in

terms of wy,.

Viehp(m) T, !

W+ +7,.
w,=B,+ X [mj’rb”—‘c

Equation 5-9: Queuing Delay

C.

N
Wm+Jj+Tbi[—‘
i

Wn+l — B + Z
" ™ Vjehp(m) T

Equation 5-10: Reoccurrence Queuing Delay

i

Where hp(m) is the set of messages with a higher priority than m, T; is the period of

message j. B, is the longest time a messages can be delayed by a lower priority

0
message and is defined by Equation 5-8. A value of zero can be used for Vm _ teration

proceeds until Equation 5-11 is satisfied

n+l _
m =

w, w,

Equation 5-11: Convergence

In (Tindell, 1994) the author presents the worst case response time as per Equation 5-
12. Here C; is the worst case computation time of a task, hp(i) is the set of tasks with a
higher priority than task i. T; is the minimum time between successive arrivals of task j.

B; is the longest time that task i could spend blocked by a lower priority task.

rr=C,+B,+ X Pﬂci

viehp()| T;
Equation 5-12: Response Time
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For the recurrence relation Equation 5-13 illustrates this. Again, as in previous works,

zero is a suitable value for r;.

(" =C +B+ ¥ Pﬂcj

mwnﬂ

Equation 5-13: Recurrence Response

The author includes jitter values in these equations and the assumption that priorities
are unique is made here also. Equation 5-13 will guarantee convergence if processor
utilisation is less than 100% and the task deadline is less than the period for situations
where the task is not released immediately and is placed in a priority order run queue.

Equation 5-14 can be used where w; is given by Equation 5-15.

n=J+w

Equation 5-14: Updated Response Time

viehp(i) ﬂ

J. +w,
w,=C +B+ X : C,

Equation 5-15: Worse Case Delay

In Equation 5-15 the term J; is the worst case delay between a task arriving and being
released and is termed release jitter. This can be an issue if the worst case time
between successive releases is shorter than the worst case time between arrivals. To
account for a later release of a task being delayed by non-completion of an earlier
release, the time spent in the run queue must be less than the task period. Applying

this to Equations 5-14 and 5-15 results in Equations 5-16 and 5-17 respectively.

r,= max (J; +W;(q)—qT;)
4=0,12...

Equation 5-16: Updated WCRT
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T, <

vjehp(i) i

W@ =(Q+1C, + ¥ Pﬁw(q)]

Equation 5-17: Updated Delay

Previous Equations, 5-16 and 5-17 are guaranteed to produce a result if utilisation is
less than or equal to 100%.

In (Robert I. Davis, 2007) the authors determine Cm as per Equation 5-18 where the
maximum bit stuffing is assumed. Here g is a value of 34 which represents the 11-bit
identifier format (it would be a value of 54 for the 29-bit identifier format). The term

Tpit is the time for 1 bit on the bus.

C, =(g+8s, +13+Vﬁgjm_lJ)rbn

Equation 5-18: Transmission Time

Equation 5.18 is simplified to Equation 5.19.

C, =(55+10s, )7y,

Equation 5-19: Simplified Transmission Time

In (Robert I. Davis, 2007), the authors assume that communication is attained through
a CAN bus and that the highest priority message queued at a node is entered into
arbitration. The system is assumed to contain a static set of hard real-time messages,
where each message has a fixed identifier and hence a unique priority. Each message
has the maximum number of data bytes s, and a maximum transmission time Cp,. The
authors define the response time of a message as

“The longest time from the initiating event occurring to the message being received by
the nodes that require it”.

A message is said to be schedulable if its response time is less than its deadline. The
system is then said to be schedulable if all the messages in the system are schedulable.
The authors use the same response times in their equations as stated previously in

Equations 5-6 and 5-12.
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5.10 Design Process

When designing an automotive system one of the first tasks undertaken is to deciding
on the design process required. Two methods available are heuristic and algorithmic
design. Both these methods can provide a suitable solution but there are different
approaches in each method. Each process will take a certain amount of time before a
valid answer is extracted. The designer has to decide which solution best optimises the
time taken to develop a solution. Some problems do not have any possible utilisable
outputs. Others are only fully solvable using optimised results if an appropriate
method is used in the design approach. These problems are called NP problems and
different classifications of them are explained in the following section. Heuristic and

Genetic algorithms are also discussed in the following section.

5.10.1 NP Problem

The NP in a NP problem stands for Non-deterministic Polynomial. For a problem to be
classified as NP it has to be solvable in polynomial time by a non-deterministic Turing
Machine (Weisstein, 2008). A problem can also be considered to be NP if its solution
can be guessed and it is deemed non-deterministic because there is no particular
method to guessing. The non-deterministic Turing machine is a computational device
and can be simulated in C++ or other languages. It takes in many paths and computes
them to obtain a result. To study a problem for NP completeness the input n has to be
the number of bits required to encode the input. It is also assumed that characters and
numbers in the input are encoded using a reasonable binary encoding scheme so that
each character uses a constant number of bits and each integer M>0 is represented

with at most clogM bits, for a constant ¢>0 (Michael T. Goodrich, 2002).

A problem can be determined NP complete, NP hard and P. A problem is NP hard if the
algorithm for solving it can be easily converted to solve any other NP problem. NP hard
means “at least as hard as any NP problem” (Weisstein, 2009). A problem that is NP

hard is considered to be NP complete. A problem might not have an efficient solving
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algorithm if it is NP complete. The general bin packing problem is known to be NP
complete (Nossal, 1996). Each NP complete problem is as difficult as another. Some of
the classical examples are satisfyability, vertex cover, knapsack and travelling

salesperson.

5.10.2 Heuristics

Taking a heuristics design approach involves using experience gained when making
decisions.

A heuristic approach can be taken during the design process that has multiple possible
solutions. The designer then selects a solution that best suits and then recreates the
process to find a new set of solutions. By continuing the process this converges to an
optimal result. This approach does not have a formal method or step approach. This
process is appropriate when searching for an optimal solution and is used for mixed
systems and single structured systems. An example of a mixed system would be
FlexRay or TTCAN where the parameters of either of the system can change (e.g.
timing and segment sizes) which will give a different solution each time(Skiena, 1997).

A single structured system is CAN, LIN and MOST to name but three examples.

5.10.3 Algorithms

An algorithm is a procedure for solving a problem. Using an algorithmic approach in
the design process follows a set of predefined steps. In this approach there is a
definitive result. The problem to be scheduled would have its characteristics and
parameters defined which creates some restrictions in the design process.

Algorithm design process can be summarised in the following steps (Turner, 1996)

B1. Clarify the problem; Note any assumptions and simplifications. Constantly<- - - {Formatted:Bulletsand Numbering

restated the problem
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B2. Define inputs; to set out what constitutes allowable inputs and what data types
these are

B3. Define outputs; State what expected data types are and their format

B4. Write “first pass” algorithm solution; this will show up any issues overlooked
and ambiguities of language. Write down the improved version and re-do
process as necessary

B5. Implement solution in code; here any programming technicalities will show up.

B6. Upon successful error free compilation compare results with those expected

B7. Comprehensive test process; devise a comprehensive test procedure that

covers as many possible solution scenarios

The algorithm method can also be used as an optimisation approach depending on the

rigidness of the parameter constraints and repeatedly re-inputting the solution set.

5.10.4 Genetic Algorithm (GA)

Genetic Algorithms use a stochastic and heuristic method to give a mutated solution.
This mutated solution is then applied to a fitness function to give an optimal solution
set.

GAs (Genetic Algorithms) are easiest explained using the concept of natural genetics
whereby in the majority of cases only the ‘strongest, fittest and smartest’ survive. This
produces offspring better than the previous generations. GAs have been successfully
applied to optimisation problems like wire routing, scheduling adaptive control, game
playing, cognitive modelling, transportation problems, travelling salesman problems,
optimal control problems, database query optimisation etc (Michalewicz, 1996). The
genetic algorithm itself does not contain any application specific parameters; these are
not included until the fitness function is developed. The fitness function results can
then be fed back into the GA for further optimisation of the results. GAs should not be
purely considered optimisation algorithms. An example of this is in evolution;
sometimes luck is involved in the survival process. Similar to genetic algorithms, an

optimisation solution and a non-optimal solution could be accepted.
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5.11 Conclusion

This chapter begins by discussing distributed architectures and basic node design. Next
there is a brief discussion on RTOS and the OSEK/VDX which is a standard developed
by European automobile manufacturers. Some scheduling policies used in real-time
embedded systems are presented. The history of CPA and some associated parameters
are introduced. This leads into task graphs which are introduced as a method of
visually representing tasks and application data. From the task graphs BCET, WCET and
RTA parameters can be derived. Next the type of NP problem can be diagnosed to help
determine the design approach. The Heuristic method, algorithmic and GA approaches
to design have been discussed. This chapter gives an overview into the types of
approaches used in this research and similar work carried out that has been reviewed
during the course of this research.

After review scheduling methods and design processes used by other authors, the
strengths and weaknesses of each approach can be assessed. Using task graph analysis
allows the application undergoing migration to be assigned into its component sets.
This allows any slack in the system to be redistributed among other tasks in the
application. Task graph analysis is a critical component in the abstraction of CAN and
FlexRay parameters.

After examining design processes in section 5.9 it is apparent that none of these will fit
directly into my application test cases. One factor for this is that these design process
were designed for test cases carried out using simulation and not in real-time. Some
aspects of the design processes can be incorporated into the application test case e.g.

algorithm approach allowing the steps in the design process be defined.
The design approaches taken in the automotive industry have also been used in other

industry sectors such data networks, telecommunications and industrial computing

(real-time systems) (Vasilios Pasias, 2006).
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6 Automotive Network Migration:

6.1 Automotive Network Migration

Migration (at hardware level, software level or both) is a change from one system to
another. Methods of analysing an embedded system at task and message level in
conjunction with developing timing constraints were examined in the previous
chapter. The implementation of these constraints on the chosen protocol is critical to
achieving a successful migration. This chapter discusses two approaches to achieving
successful migration; gateways and full conversion methods. Both methods are

discussed with reference to previous works by different authors.

6.2 Introduction

Automotive network migration at the application level, involves changing from one
protocol and successfully executing on a different protocol without compromising

functionality or practicality.

When undertaking the migration process key parameters such as timing analysis,
predictability analysis and optimisation procedures were examined in works carried
out by (Shan Ding, 2005), (Aloul, 2005) and (Traian Pop, 2007). Some of the potential

methods for undertaking these procedures were discussed in Chapter 5.

6.3 Protocol Migration Requirements

Migration to a multi protocol system is required if no single protocol is able meet the
designer and manufacturer’s requirements such as equipment costs, bandwidth

requirements and determinism. If a specific protocol is unable to meet the specified
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requirements but an alternative protocol allows these specified requirements to be
met, then migration can also take place between these two protocols. In this second
instance it is the network component that is changed.

In order to successfully convert from one protocol to another there has to be some
common functionality in terms of the protocol (Lam, 1989) as illustrated in Figure 6-1.
Here node X1 communicates with node X2 using protocol X and similarly node Y1
communicates with node Y2 using a different protocol Y. If XI needs to communicate

with Y2 it is unable due to no common functionality existing.
{|

h

nality

An example of this common functionality is some form of protocol converter as

illustrated in Figure 6-2 where C is the converter.

One reason for a lack of compatibility between protocols is the need to improve
functionality as new protocols replace older ones. Older protocols are sacrificed for
superior quality (Lam, 1989). An example of this is a LIN network beside a CAN network

as discussed in Chapter 3. This placement coupled with different protocols being more
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efficient at transferring different types of information leads to numerous protocols
potentially operating in a single system.

When a migration takes place it is insufficient to map a single message from one
protocol to the new protocol. A sequence of events such as tasks in one protocol
should be mapped so as to attain proper flow, no undue termination, no deadlock, no

unexpected reception or errors (ZP. Tao, 1992).

There are two methods for network migration, these are;

e Side-by-Side Migration

e Full Conversion

6.4 Side-by-Side Migration (Using a Gateway)

A gateway enables migration of necessary data and parameters from one protocol to
another (Suk-Hyun Seol, 2006).

In the side-by-side method there are at least two different protocols in operation on
either side of a gateway. The gateway is used to carry out the conversion process of
the protocol’s parameters. A gateway can carry out the conversion of more than one
protocol.

Data transfer takes place through an ECU. This ECU is called a gateway as illustrated in
Figure 6-3. Communication occurs in a single direction or in both directions as

illustrated in Figure 6-3.

Gateway
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6.4.1 Gateways

A gateway allows separate protocols to engage with each other. This enables the
transfer of data between different networks. Due to the variety of networks available
when developing a gateway the system designer must consider the following questions

(Smith, 2005)

e What applications will be used?

e  Which networks need to be bridged?

e What is the bridge topology?

e Is DMA (Direct Memory Access) required?

e What size should the data buffers be?

e What bus should be used for internal transfer?

e How wide should this be?

e What arbitration mechanism should be employed?

e How much processing power is required?

The question, “Which networks need to be bridged?” is a complex question in its own
right. To take the example of CAN and FlexRay (as per Figure 6-3) they both have
different payloads; CAN 8 bytes max, FlexRay 254 bytes max, thereby requiring a
gateway able to handle both these payload ranges. The CAN data would need to be
buffered up to a larger data rate but this would lead to jittering delays while the
information is being buffered so there are trade offs to be considered.

Ideally the processors primary objective is to keep processing; the DMA feature can
accordingly be included. DMA can deal with data transfers between the gateway and
memory interfaces leaving the processor to deal with processing duties.

The AUTOSAR (Automotive Open Systems Architecture) partnership consisting of
leading OEMs (Original Equipment Manufacturers) and tier one suppliers defines a

gateway structure (AUTOSAR, 2007).
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6.4.2 AUTOSAR Gateway Structure

AUTOSAR defines the basic gateway structure as illustrated in Figure 6-4. The upper
layer contains the communication parameters for the exchange of data between ECUs.
The lower layer contains the interfaces and the drivers for the protocols. A router
connects the upper layer and lower layer, and communication (COM) is contained in
the upper layer. COM is a method for exchanging data between different tasks on an

ECU or on multiple ECUs (Jackman, 2007).
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Using the side-by-side migration example, the characteristics of the first protocol are
maintained until such time as the conversion takes place. The features of the second
protocol cannot be utilised until after the conversion has taken place. For example
using a gateway to convert from CAN to FlexRay (as illustrated in Figure 6-3), some
features of CAN (e.g. being a pure event-triggered system) and some features of
FlexRay (e.g. determinism and dual channels), are unable be used on both protocols.

Because CAN is a mature protocol in comparison to FlexRay automotive manufacturers
might prefer to work with CAN as much as possible (if previous developments using
the CAN protocol were undertaken), and switch to FlexRay when deemed completely
necessary to take advantage of some of its properties as discussed in Chapter 4. In (A.
Albert, 2003) a gateway is used to convert received CAN data to a TTCAN network for
use in a vehicle dynamic management system which contained; an electronic stability
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program, active front steering and an electronic active roll stabiliser. Off the shelf
gateways can be purchased from companies such as NEC (GmbH, 2007) and TZM
(Mikroelektronik, 2008) to name but two.

Examples of different functional gateways are; in-vehicle, inter-vehicle and vehicle-to-
infrastructure communication. Examples of each of the above are infotainment
systems, live traffic and travel information and remote diagnostics for more efficient

breakdown assistance (Guido Gelen, 2006).

Specific migration issues involved in migration of the FlexRay protocol data and

parameters to the CAN protocol are illustrated in Figure 6-5.

98



Automotive Network Migration

6.4.3 FlexRay to CAN Migration
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In this section issues such as extracting necessary data for the FlexRay protocol and
configuration for the correct transmission in the CAN protocol are examined.

From Figure 6-5 (Suk-Hyun Seol, 2006) message transfer starts when the first message
buffer is full until the data is transferred to memory. Then the data length, ID and
payload are extracted from the message frame. Subsequently the ID field is converted
from a FlexRay 12 bit field to a CAN 29 bit ID field. The data length is then split in
lengths of 8 byte segments. After that the ID, data length and payload data are copied
to the host’s message buffers from the queue. Each time a message is taken from the

queue a counter is decremented and any time a message is put into the queue the
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counter is incremented. Finally the message frames are transmitted on the CAN bus

(Suk-Hyun Seol, 2006).

The above format deals with converting from a TT protocol to an ET protocol. Other
research has dealt with converting different TT protocols. (Shehryar Shaheen, 2006)
developed a gateway for TT control networks. These included FlexRay, Byteflight,
TTP/C and TTCAN. In this approach the packet routing architecture and message queue
format were abstracted from conventional gateway design methods. Other issues
were encountered that would not occur on general data communications networks
such as timely reliable delivery of all message frames across the gateway (Shehryar
Shaheen, 2006). This is due to the different network characteristics of a TT network

from an ET network.

6.5 Full Migration

The full conversion method implies complete migration from one protocol to the new
protocol. For a full conversion to be deemed successful, all necessary parameters that
were fulfilled in the old system need to be at least met if not improved in the new
system. For example, it would not make sense to have safety critical applications on
the CAN network when they were previously on the FlexRay network, if the
characteristics of the FlexRay protocol were critical to successful implementation of

the application.

6.5.1 Migration to a TT (Time-Triggered) Protocol

Many authors have researched the area of migrating to a TT protocol including
(Kanchi, 2007), (Wei Zheng, 2005), (Aloul, 2005),(Andrei Hagiescu, 2007), (Traian Pop,
2007).

Some protocols are easier to migrate to a TT system than others. One such case is

where the initial protocol and the new protocol contain common properties. An
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example of this case is a migrating from TTCAN to FlexRay. Both of these protocols
contain TT and ET properties. Migrating from an ET system to a TT system requires
more planning (than from TT to ET) because a schedule table needs to be developed
prior to run-time. This is achieved in (Suri, 2004) where the authors use the TTP/C
protocol as a base and sporadic data transfer is included in the modified frame
structure. Migration is accomplished through the development of a Sporadic
Information Transfer (SIT) bit in the frame header file. This SIT bit can either send
sporadic data or request additional slots to transmit sporadic data. Small amounts of
sporadic data are transmitted in the SIT section of the frame but if large amounts of

sporadic data are required they will be sent in the requested additional slots.

6.5.2 Migration to an ET (Event-Triggered) Protocol

One of the more difficult systems to migrate is a TT protocol system onto an ET
protocol system. There is no guarantee that deadlines will be met due to the
characteristics of both domains.

It is not enough to just make sure deadlines from one protocol are met in the new
protocol. Maximum utilisation of the frame is another critical objective in achieving a
successful migration. In the above example since the payloads of both protocols are
known it is possible to determine that one TTCAN frame of 8 bytes (max size) will fit in
a FlexRay frame of 127 two-word bytes (maximum size). If more than one TTCAN
frame is accommodated in the FlexRay frame, bandwidth utilisation is increased. The
major stumbling block to doing this is optimising the frame sizes. This is achieved using
optimisation and best fit algorithms as discussed in (Abhijit Davare, 2007) and (Traian
Pop, 2003) as presented in Chapter 5.

In (Andrei Hagiescu, 2007) the authors migrate to the DYN (dynamic) domain in the
FlexRay network. The authors commence by declaring that the worst-case end-to-end
delay values are more appropriate to calculate. This is due to the possibility that as a
signal propagates through a system it will possibly get modified by scheduling policies
it encounters in the system. An example of this is a message originating from a sensor

passing over multiple ECUs and activating an actuator. The authors take a framework
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by (S. Chakraborty, 2003) and modify it to model the FlexRay protocol. Multiple ECUs
are modelled on the FlexRay bus with application tasks mapped onto the ECUs. The
worst-case length of specified tasks is a constant. The framework developed allows
DYN messages be transmitted over two cycles allowing messages larger than the DYN

domain to be transmitted.

6.5.3 Migration to a Mixed System

When migrating from an ET or TT system to a mixed system the designer determines
where each segment domain transfers to in the new protocol. This could involve a
direct transfer to its equivalent domain (static or dynamic) in the mixed system or to
the alternative domain in the mixed system (static or dynamic). Earlier work has been
carried out migrating to a mixed system but the designer does not fully utilise both TT
and ET aspects of these systems. (Shan Ding, 2005) and (Cummings, 2008) are

examples of this as explained in sections 6.5.4 and 6.5.5 respectively.

6.5.4 GA (Genetic Algorithm) Approach

In (Ding Shan, 2005) the author restricts migration to only the static segment of a
mixed system protocol using a GA static scheduling method. (Shan Ding, 2005)
presents an application representing a set of task graphs G; containing tasks T; and
edges connecting the tasks E;. Each node contains known worst case execution times
C;, periods T; and a deadline D;. The author uses the constraints; Response Time (RT),
Freshness Time (FT), Maximum Response, Maximum Freshness Time, Response and
Freshness Constraint, Input and Output Constraint and Slot Redundancy to develop

“an individual” algorithm. This “individual” algorithm is presented in Figure 6-6.
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" Generate Individual() A
{
for each edge ei in edge set Ei;
do {
if (two vertexes of ei in difference processors){

Select a slot in dataflow randomly;

while (unsatisfy contraints condition){
Slip one slot;
if (dataflow is enough}{

BUSState = FlowNG;
break; }

if (satisfy contraints condition){
Insert the edge into dataflow;

}

Yelse{
write message_in_same_processor;
}
ywhile(Ei = ¢)
scheduling for each processor;
o vy

Figure 6-6: Algorithm for generating an individual (Shan Ding, 2005)

The results obtained are optimised by selecting routes according to their fitness then
applying crossover and mutation.

(Nossal, 1996) also presents a GA that generates a static schedule for bus access to the
TTP (Time-Triggered Protocol). The GA includes a fitness function. The author presents
the planning method (heuristic based GA) in developing an algorithm that is then
applied to the chosen TDMA protocol. Below is a list of constraints from the
communication system that are necessary for the planning algorithm to complete. Two
requirements to be fulfilled are requirements by the application and requirements by
the protocol. The message size is calculated in Equation 6-1 and the maximum
message size is calculated from Equation 6-2. Where M is the bus message, i is the

node, j is the TDMA cycle, s, is the size in bits and d is the data element.

ms; =| >s, |[bit]

deMj

Equation 6-1: Used message size of node i

MS; = max*{msij }[bit]

1<j<C

Equation 6-2: Maximum message size of node i
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The optimum period is calculated from Equation 6-3 where o4 is the optimum period,
rn is the receiving node and / is the maximum latency from the sending node to the
receiving node. RNy is the receiving node’s communication latencies, rp,, is the

smallest period of any task receiving data element d at node rn.

0 = oy e - mintpes, |

Equation 6-3: Data element optimum period

Next the fitness function is applied to check the validity of the schedule. An optimum
ratio of 1 (actual period and maximum period) is desirable. A ratio greater than 1
should be avoided as it violates the applications temporal requirements such as
scheduled periods larger than the maximum period. A ratio less than 1 means the data
element is transmitted more often than required and therefore would constitute a

waste of bandwidth.

The overall fitness function is defined by Equation 6-4. For a complete derivation see

(Nossal, 1996), where D is the number of data elements.

Ay
ZZ’:I f( d*trpma )
Fo Pq
D

Equation 6-4: Overall Fitness

Both of these GA scheduling methods do not take account of scheduling aperiodic
signals. This will lead to under utilisation of the bandwidth in a protocol that contains

TT and ET domains.
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6.5.5 Other Approaches

Other approaches previously taken are discussed in this section such as the Heuristic
design method and other developer specific paradigms. There is a commonality
between them in that all methods develop schedulability analysis and optimisation
techniques. In (Traian Pop, 2002), (Traian Pop, 2003), (Traian Pop, 2006), (Traian Pop,
2007), (Jan Carlson, 2003) the authors take the heuristic approach.

(Aloul, 2005) synthesises each application task to a scheduled message level using only
a TDMA protocol. Task graphs are used to develop message clustering once the
parameters such as deadline dj, release time r;, execution time ¢; and task T; are known.
Slack is calculated and distributed among the tasks to obtain a worst-case response
time for each task w;. A message delay delay(m;) is calculated as presented in Equation
5-3 in Chapter 5. Once the bandwidth is known a slot size can be calculated from
Equation 6-5.

Agy = miin{size(mi )}/ B s

slot

Equation 6-5: Slot Duration

An algorithm is then developed to first synthesise (Figure 6-7) the network topology
and then to cluster the network topology. A message period equal to a harmonic
multiple is required to enable scheduling of multiple task graphs with different

periods.
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Progedure SYNTH ({;}) ) =Messige set ¥/
Pty = Min{periad(my)} 3 1% pyig denotes the minimum period in the messase set ¥/
i
catyy = Number of messages in {m;}: /* Topology cost where each iy is allotied a dedicaied bus #/
g =2, P Inigiglize the messige s{*/

for (each g [ 2, o] begin
Susg = [mgl s [Lnt!d 15 the lumest integer uch that 2 g g Sdelay(m) o] Prgselt
Sort massnges in &, by increasing pariod;
Shat = CLUSTER(S, 1V sgi= set of cludters ¥/
Citty, = NUmber of elusiers in S,
if (cosi gy, < costy, ) bein
OOy, ¥ 08T
SO 8t 15 Current best solution,
ends
g =24
nd;
rfurn sy, M Reum the best allocation *

Figure 6-7: Network Topology Synthesis Algorithm (Aloul, 2005)

Transmission slot reuse is applied to increase bandwidth utilisation. This is achieved

through Equations 6-6 and 6-7.

0 Z Z{ perlod(mnew)} o

| arrival(m,)

Equation 6-6: Slot Reuse

size(m,,)
Bépeed A ~Nieyse

j slot

Equation 6-7: my, transmission slot portion within period(m,e,,)

However in (Aloul, 2005) no mention is made of using an ET protocol or mixed system
which increases bandwidth utilisation when compare to pure TT systems (as discussed

in Chapter 2).

In (Traian Pop, 2002) the authors develop a design heuristic algorithm for mixed

time/event triggered distributed embedded systems as presented in Figure 6-8.
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01 Gen_Part, Gen_Map, Gen_Bus_Cycle
02 if TT not schedulable then

03  change partitioning (TT to ET)

04 change mapping

05 change bus cycle

06 endif

07 if TT not schedulable then stop endif
08 if ET not schedulable then

09 Mapping_and_Partitioning

[0 if ET not schedulable then

11 Optimize_Bus_Access

12 endif

13 endif

This design heuristic involves three primary steps;

e Build initial configuration
e Mapping and partitioning

e Bus cycle optimisation

In (Traian Pop, 2006) the authors build on their previous work to specify
implementation on the FlexRay protocol. The application model was developed using
acyclic task graphs and timing analysis was performed on the ST (static) and DYN

(dynamic) segments. The schedulability algorithms are presented in Figure 6-9.

schedule_TT_task(t;, Node, )
10 find first available time % moment after ASAP,_on Node,
11 schedule t;after t on NOder,--, so that holistic &nalysis préduces
minimal worst-case responsé times for FPS tasks and DYN messages

12 update ASAP for all Tjj successors
end schedule TT task

schedule_ST_msg(ty, Node,

13 find first ST sIot(Nodet.f)available after ASAP__
14 schedule t;in that ST dlot J
15 update ASAP for all Tjj successors

end schedule_ST_msg

Figure 6-9: TT and DYN Schedulability Algorithms (Traian Pop, 2006)
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Having prior knowledge of the scheduled tasks is required to carry out schedulability
analysis of the TT domain. This means a scheduling table can be set up. The DYN
domain analysis is carried out by determining the worst case response time (WCRT).
This includes taking into account the transmission delay caused by the transmission of
higher priority tasks. Blocking by the ST domain also has to be considered. This work is
improved on in (Traian Pop, 2007) where the authors propose a FlexRay bus
configuration for a specific application. An algorithm is developed to optimise bus

access on the FlexRay network as is illustrated in Figure 6-10.

1 Assign FramelDs to DYN messages (similar to BBC, Fig. 5, line 1)

2 for gdNumberOfStaticSlots =

3 gdNumberOfStaticSlots ., to gdNumberOfStaticSlots ,,, do

4 for gdStaticSlot = gﬂaﬁcﬁfﬂfmm to gdStaticSloty,, step 20 * gdBit do
5 Assign ST slots to nodes in round-robin fashion

8 DYN,, - = Determine_DYN_segment_length()

7 End optimisation if feasible DYNp,s and Cost <0

a end for

g

end for

While there are proposed techniques for looking at ET (dynamic) protocols such as
CAN, these techniques are not applicable when considering the dynamic segment of
the FlexRay protocol. (Valenzano, 2004) examines the Byteflight protocol but
implements a quasi-TDMA transmission scheme to guarantee message transmission.
This is not fully compatible to the ET nature of the dynamic segments in FlexRay.
Another technique as proposed in (Oshana, 2007) involves making the dynamic
segment as big as the largest dynamic message to run. This will guarantee all dynamic
messages get transmitted but it is an inefficient method if the DYN messages have
different periods. For example if there are 10 messages to run and 9 have periods of
1ms and one message has a period of 4ms. This results in the dynamic segment of 4ms
being required. The predominant DYN message size being transmitted (90% of the

time) is a Ims message. This results in an inefficient allocation of bandwidth.

In (Wei Zheng, 2005) the authors focus on TT scheduling. The authors use two metrics

to obtain the design goal in scheduling hard real-time distributed embedded systems.
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These are extensibility and scalability. The principle of orthogonalisation is used where
a functional description is first applied and then functional components are mapped to
architectural components. The system is represented by direct acyclic graphs. Task
parameters are consistent with other methods examined previously in this chapter
such as WCET, Release Time, Deadline, Period, Start Time, and Finish Time etc. These
constraints were then used to develop feasibility constraints. The schedule is
considered feasible if it satisfies constraints imposed by the architecture (Wei Zheng,
2005). The inclusion of scalability and extensibility metrics allows limited design
changes without modifying the existing schedule. This is achieved through adding slack
into the system. The system cost function is then compared to another optimisation
technique of minimising the end-to-end delay, which is then proved successful under

tested conditions.

In (Traian Pop, 2006) the authors propose methods for scheduling a FlexRay
communication protocol. For the ST segment the SCS (Static Cyclic Scheduling) and the
FPS (Fixed Priority Scheduling) approach is used, FPS is also used in the DYN segment.
The author iteratively builds up a scheduled table for SCS tasks. This leads the author
to develop the scheduling algorithm presented in Figure 6-11. The authors develop the
DYN segment separately based on the RTA principle discussed in Chapter 5. A

maximum worst case response time is calculated using Equation 6-8.

Rm{t)=0, +w,(t)+C,,

Equation 6-8: DYN Worse Case Response Time

Where R, is worst case response time, 6,, is the longest delay suffered during one bus
cycle if a message is generated by sender task just after its slot has passed, wy, is the
worst case delay caused by transmission of ST messages and higher priority DYN

messages and C,, is the communication time on the particular bus.

Each equation segment (6, w, and Cp) is further analysed to accurately determine

any issues that could arise to delay a messages response.
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Equation 6-9 shows &, as a function of the ST segment the message’s frame identifier

and gdMinislot minus the total bus length.

o — (8T, + FramiD, .gdMinislot)

m bus

Equation 6-9: Worse case delay 6,,

GlobalSchedulingAlgorithm) schedule TT taskir;, Node, ﬁ“]
1 while TT Jeady fstis nat empty 10 find!first avaiable fime [ moment after ASAP..on Nods,,
& seleot oy from TT ready [t 11 sohedule vyafter £on Node. so that holist Jna\ysm prﬂduces
i Iyl a[r §C5 task then minimel worst<ase espons@ fimes for FPS tasks and DYN messages
| el s, Nodey 12 updele ASAPTor all; suesears
5 else//yls a ST message and sche U TT fask
b schedule_ST_msg[s; Noden)
7 ndif schedule ST msgfr; Noce,
8§ update TT ready list 13 find first ST slot{Nods, gavai\ableaﬂerASAPr
¢ endwhile scheduls yin that ST gt !
end StaficScheduling upcee ASHP ol PELEE

end sche Ue_ST_msg

Figure 6-11: Global Scheduling Algorithm (Traian Pop, 2006)

Equation 6-10 illustrates the communication time C,,, where Frame_size(m) is the

message frame size and bus_speed is the operating bandwidth speed

Frame _size(m)
bus _ speed

C =

m

Equation 6-10: Communication Time

Wp, is the maximum amount of delay on the bus from ST messages, higher priority
messages hp(m), lower frame identifier messages If(m) and unused DYN slots with
frame identifiers lower than those currently sending, which equals one minislot ms(m).
FramelD(m) reuse is not part of the FlexRay specifications but is considered by the

authors in analysing the DYN segment.

Developing these equations (6-8, 6-9 and 6-10) further an optimal solution for

BusCycles(m) is obtained using an ILP. The authors determine the worst case delay for
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BusCyclesn(t), produced by If(m,t) and ms(m,t), adding up to the delay produced by

messages in hp(m,t).

In (Cummings, 2008) the author presents a sample CAN network and describes how it
is transitioned over to the FlexRay network. The primary criticisms of FlexRay by the
author are in relation to its cost and complexity. In the sample CAN network presented
the standard 11-bit identifier is chosen. The bus rate of 500Kbit/s is also applied. The

author presents a table of data as illustrated in Table 6-1.

Table 6-1: Example CAN Network

Number | Frames | Average | Bus

of Per Payload | Time

Frames | Second Per

Second

2 500 8.0 262ms
3 200 7.0 145.2ms
7 100 6.7 165.9ms
8 50 7.1 97.6ms
6 20 54 25.4ms

This example CAN network had a bus load calculated at 75%. Adding two more frames
at 2ms periods increases bus load beyond what is available. The author deduces that it
is more cost beneficial to implement FlexRay than operate two CAN networks with a
gateway in between. The FlexRay network is set up to physically compare as close as

possible to the CAN configuration. The FlexRay configuration parameters are;
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e Asingle channel at 10 Mbit/s
e 2 Static Frames

e Payload of 2 Bytes

e 125 Dynamic Frames

e 1000 ps Cycle Time

Two static frames are included as FlexRay requires two synchronisation frames for
start up. The designer provides more dynamic frames than is required. The 1ms cycle
time is chosen because previous CAN rates were multiples of 1ms.

The author concludes that implementing this set up allows continued use of some CAN
design practices but comes at a cost of deferring redundancy and determinism.
FlexRay’s performance is improved over CAN and there is further room for
improvement through the possibility of increasing the frequency at which the DYN

frames are transmitted.

6.6 Conclusion

This chapter starts by presenting an introduction to automotive network migration and
some of the basic requirements. Following this section a discussion of side-by-side
migration methods (gateways) and examples are given of other works carried out in
this area are offered. The next part discusses full conversion methods. This is broken
down into migrations to TT protocols, ET protocols and mixed systems. Then the
genetic algorithm approach is discussed with examples of implementations by other
authors. The chapter concludes with a discussion of other methods and the outcomes
obtained. All previous works are backed up by methods and results to verify the

findings.

This chapter goes some way towards answering research question number two. This is
achieved by presenting cases where some authors have implemented gateways to
enable the operation of CAN, where FlexRay was initially used. Other cases are

presented where systems are completely specified to operate on a single protocol
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only. Due to their characteristics some protocols are more straightforward to convert
than others. Numerous authors have carried out previous work on protocol migration.
Each author’s implementation techniques differ but some works contain similarities.

All approaches delivered valid results.
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7 Literature Review Conclusion

7.1 Conclusion

Modern automobiles contain an ever-increasing number of electronic components due
an increasing number of critical and non-critical applications. The increased number of
these applications is driven by consumer’s desires for more comfort applications and
also improvements in the development of safety applications. It is apparent that no
single protocol will meet all the requirements of all applications. This is evident by the
wide variety of protocols with differing features such as; varying bandwidth, different
costs and levels of complexities at the protocol network layer.

Networks have proven their use and effectiveness either on a small scale or large scale,
not only in the automotive industry but in any industry where communication is critical

for operation.

By implementing a chosen protocol the characteristics of the network that operates
that protocol are defined. There are four predominant automotive protocols CAN, LIN,
MOST and FlexRay. Each of these has their own merits of use in their required setting.
CAN is used for BCU (Body Control Unit) applications, LIN is used in non-critical BCU
applications but has lower cost and speed than CAN. MOST is used for infotainment
purposes in an automobile and FlexRay is planned for use in high speed safety critical

applications.

FlexRay has an advantage over other existing protocols in that it utilises both ET and TT
characteristics and has greater bandwidth. Primarily due to cost factors, FlexRay will
not be the only network in an automobile; this leads to the existence of multiple
networks in a structure. To enable applications currently executing on older protocols

to take advantage of FlexRay’s features, migration to FlexRay will be required.
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Complete migration may be necessary if the older protocol does not have the features
to successfully implement an application. If complete migration is not necessary then a
gateway (as discussed in Chapter 6) could be a viable solution to working with more

than one protocol.

There are many approaches that can be undertaken during the migration process. The
two process discussed (Algorithmic and Heuristic) offer suitable solutions for most
cases. The method chosen will depend on a number of factors such as system
parameters, the application requirements, available hardware and software. To
efficiently migrate from one network protocol to another the application is firstly
analysed at task level and modelled in a task graph. Each task is then synthesised at
message level. An optimal frame size can be found from a combination of; the
messages release time, deadline time, WCET, slot size and slot delay as explained in

Chapter 5.

As discussed previously in Chapter 6 most of the work previously available by other
authors focuses on implementing the ET protocol in the static segment of the FlexRay
frame. This results in scheduled messages meeting their deadlines but bandwidth
utilisation is not optimised. To improve bandwidth utilisation in FlexRay, use of the

DYN (ET) domain is required.

If each task schedule is configured in advance, it is this feature that makes time-
triggered networks deterministic and predictable but if the networks schedule is not
set up but activated on the occurrence of an event this is called an event-triggered
network. When choosing the type of network in an automobile there are some factors
that need to be taken into consideration such as what applications shall be executed.
For example powertrain or air conditioning systems. If powertrain data is being
transmitted on the network a FlexRay based protocol would be one possible option,
but if it is the air conditioning system that runs on the network then maybe the LIN

protocol may be more suitable. It is also possible to execute more than one protocol
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on the network; as per the above case we could have both networks running on the

one vehicle. This has been achieved on modern vehicles using gateways.

With software becoming increasingly predominant in the development process within
the automotive industry choosing the right network for the correct application is a
major factor in cost. The worldwide value creation in automotive electric/electronics
(including software) amounts to an estimated €127 billion in 2002 and an expected
€316 billion in 2015 according to a Mercer study (Alexander Pretschner, 2007).
Software will make up an estimated 40 percent of this value creation by 2010

(Alexander Pretschner, 2007).
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8 Migration Framework Requirements:

8.1 Introduction

Chapter 6 describes methods other authors have used when scheduling various
protocols on embedded systems. In this chapter the full migration method is chosen.
This is due to it being deemed the most suitable alternative to the use of a gateway.
The chosen migration method reduces the complexity of multiple protocols by
employing a single protocol system. This chapter presents the process by which the
migration framework was developed. In Chapter 9 the migration procedure that deals
with the actual migration steps undertaken are presented. The framework was
developed through logical procedural steps that allows for a variety of CAN
configurations to be processed once a set of basic parameters are obtained and
defined. The migration framework is started by defining the CAN application that will
undergo the migration procedure. The migration procedure is summarised and

graphically represented in Figure 8-1.

8.2 Migration Requirements

By undertaking this migration procedure the configuration of tasks is not affected. This
is because this migration procedure is applied to the messages of each task cluster or
application. Tasks are not required to be reassigned to different ECUs at any stage of
the migration procedure, but can be done so to reduce the amount of data transferred
on the network. The physical layer of the original system (CAN) is replaced with the
physical layer of the migrated system (FlexRay). From the CAN system, the CAN
controller is substituted with a FlexRay driver. The FlexRay driver requires a
communications controller (CC). The CC can be integrated into the MCU. A FlexRay
physical layer interface is required to meet the FlexRay standard physical layer
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interface specification. The communications stack or COMMSTACK links the

application to the FlexRay communications controller.

d

il

Stages

8.3 Application Definition
Obtain the CAN application that will be used to undergo the migration procedure. This

is the application from which the migration will proceed from and also the exact

application that is to be implemented in FlexRay.
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8.4 CAN Parameter Abstraction

Extracting the parameters from the CAN application is required so the critical
properties of the CAN application are integrated into the FlexRay parameters. This is
done by representing the application in task graph format and analysing its properties

such as those presented in 8.4.2.

8.4.1 CAN Graph Abstraction

The migration framework can be undertaken on the premise that the CAN
configuration is already setup and operational. Once this condition is met the CAN
application needs to be represented in task graph format. This is done by abstracting
each process, whether it is functional or computational, as an activity on the task
graph. The activities are placed on the task graph in an order that meets the
precedence constraint requirements. Activities are linked to each other by an arrow,

with the arrow head indicating the progression flow through the task graph.

8.4.2 CAN Analysis

The CAN system is represented in task graph format, the next step is to abstract the
initial CAN parameters. The set of CAN components are all directly derived from the

task graph and are listed below;

e Task graph release (start) time r;
e Task graph deadline (end) time D;
e Worst Case Execution Time (WCET)

e Task period

The release time r; will have an initial value of zero as this is the release time of the

first task. The deadline time D; will be a value at which all tasks in the task graph have
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completed execution. The WCET value can vary depending on hardware (CAN
controller) and software constraints (Jitter). This value can be obtained by means of a
specialist application that extracts the WCET of each message. This value can also be
calculated (using Equation 5-6) if necessary parameters are known. These parameters
are the jitter j,, queuing delay/interference w, and communication time C,. The final
parameter for definition before migration can commence is the CAN message set
Mcan, and its associated parameters CAN,; and w;. These parameters are explained in

section 9.8.

8.5 Migration

The basic parameters are defined, the migration procedure (as per Chapter 9) can be
undertaken. The resulting FlexRay parameters Mgz and FRcompset Will be either ideal for
implementation or as close to ideal as is possible due to other constraint complexities
mentioned. Such is the complexity and volume of parameters for configuration, there
are some parameters whose values interconnect and are interdependent with respect
to each other. The FlexRay parameters will be in the form of time units or slot number

units.

8.6 FlexRay Frame Implementation

The FlexRay parameters extracted from the framework are used to configure the
FlexRay frame. Each FlexRay parameter can be configured manually in XML file format.
This approach has a greater chance of resulting in configuration constraint errors. If a
FlexRay designer tool is used this will flag errors and violations. The designer tool for
example will detect if by adjusting one parameter this affects and results in a
constraint violation in a separate parameter. The designer tool can generate CHI
(Controller Host interface) files that contain critical FlexRay frame parameters. The

frame parameters can also be contained in a FIBEX (Field Bus Exchange) file. Then
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when implementing the FlexRay frame it takes on the parameters associated with the

CHI or FIBEX file.

8.7 FlexRay Application Configuration

Configure and implement the FlexRay application based on the CAN application and
the FlexRay frame parameters. The FlexRay applications structure does not change by
undertaking the migration procedure. If there is a situation that requires the physical
structure to change, return to section 8.1 and start over. Any difference in the FlexRay
application structure, when compared to the CAN application structure, can result in
different parameter values being extracted from the framework when compared to

those that would have been obtained otherwise.

8.7.1 \Validation

To validate migration the deadlines of both systems need to be compared. The
framework is validated by examining execution times and busloads. This allows a direct
comparison between both protocols. The migration benefits can be summarised in

three scenarios.

Scenario I

Here both CAN and FlexRay meet their respective deadlines but due to low bus load
volumes CAN messages get access to the bus faster than they do on the FlexRay
protocol. In this situation under these conditions there is no benefit to implementing
FlexRay unless other features of FlexRay are required by applications using the bus.

The CAN bus is at the 30% busload mark in this scenario.
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Scenario II

In this scenario both CAN and FlexRay meet their required deadlines but the CAN
messages are suffering some delays getting access to the bus when compared to
Scenario I. Implementation of FlexRay is more justifiable than in Scenario | but there is
equally as strong a case to be made for the continued use of the CAN bus. The designer
will have to make a decision based on a number of factors such as future loads on that
bus and if FlexRay’s features are required for the implementation of other

applications, to give but two factors. CAN busload is at approximately 60% busload.

Scenario II1

In this Scenario some CAN deadlines are being violated and/or busload has reached
saturation. CAN busload exceeds the maximum attainable value and complete

migration is justifiable.

8.8 Conclusion

Through the implementation of the steps discussed in this chapter a successful
migration framework was developed. These steps are summarised in the flow chart in
Figure 8-1. The chapter presents the steps necessary to process an application
originally configured to operate on the CAN network and is now required to operate

on the FlexRay network.
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9 CAN to FlexRay Migration
Methodology:

9.1 Introduction

This research is deemed a success upon achieving a successful implementation of the
reference CAN application on the CAN protocol, and then migrating and implementing
the same application using the FlexRay protocol, by applying the framework. The
approach taken is similar to the approach used by Pop (2007). This involves exploring

task deadline on the message level. Message level analysis techniques are designed to;

e Determine if deadlines are met in the ST segment
e Obtain the FlexRay frame length
e Find the WCRTs in the DYN segment

9.2 Framework Development

To develop a framework, initial parameters need to be determined, implemented and
tested. Initial parameters are obtained from the reference CAN application such as
initial release time, task graph deadline, task execution times etc, as specified in

section 8.4.2.
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9.2.1 System Definition

When migrating from CAN to FlexRay the first notable issue is that the two network
protocols are different in their fundamental principle of operation. CAN operates on
the principle of an ET protocol and FlexRay operates both an ET and a TT type

protocols.

Before any migration can take place CAN data is required. This data can be generated
by the user using parameters that provide a fair representation of a CAN system. The
recorded CAN data is analysed to obtain deadline timings and bus parameters that

FlexRay will need to meet upon successful migration.

9.2.2 Defining CAN Data in FlexRay Format

All CAN traffic is ET, thereby critical tasks can be given higher priority IDs to aid access
to the bus. After the CAN parameters are obtained the designer is required to decide
where in the FlexRay communication cycle this data can be placed. A possible solution
is to place all ET CAN messages into the DYN segment of the FlexRay frame. This
ensures the ET characteristics of CAN are met through the use of the ET characteristics
of FlexRay’s DYN segment as implemented by Cummings (2008). However it does not
make efficient use of FlexRay’s features, such as having both a ST and DYN segment; it
only takes advantage of the high bandwidth available.

FlexRay’s bus bandwidth was also necessary to consider. The options available were
2.5MBit/s, 5MBit/s and 10MBit/s. The value chosen would have a major bearing on
other system parameters specified in appendix A and B of the FlexRay specifications

v2.1rev A.

If certain CAN messages are schedulable and occur at predefined moments in time a
scheduling table can be constructed as to the exact moment in time when a message
will require transmission and how often this occurs. Due to a message being triggered

for transmission on a predefined moment in time, the network protocol responsible
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for transmission is considered a time-triggered protocol. FlexRay’s ST segment fulfils
this requirement. All critical schedulable messages can be placed in the ST segment of

the FlexRay protocol to guarantee transmission.

A possible alternative to implementing all the critical data in the ST segment is to place
some of the critical data in the DYN segment. The DYN segment has a defined segment
in the FlexRay cycle; therefore if a single message was assigned the highest priority in
this segment on its own it would be guaranteed to get access to the bus. As more
messages are added, their priorities will be lower than the initial message thereby not
guaranteeing timely access to the bus. This approach is not investigated further in this
research as the only way of guaranteeing critical messages get access to the bus is by

allocating them slots in the ST segment.

9.3 System Implementation

To achieve a successful system implementation the CAN application is implemented
separately to the FlexRay implementation. First the reference CAN application is
implemented and the consequential data is logged for analysis. Through the
framework the FlexRay frame, cluster and message parameters are obtained. Using
these parameters the reference application is implemented in FlexRay and its

consequential data is logged for analysis.

9.3.1 Periodic Task Analysis

The aim of the analysis at this stage is to determine deadlines at the message level of
the periodic tasks. The technique described in Aloul (2005) is used to synthesise the
periodic tasks in the ST segment onto message level. The ST segment slot size is
defined at this stage. A heuristic approach is taken when choosing the ST payload size.
This then allows the FlexRay frame size to be defined and a FlexRay cycle period is also

obtained.
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9.3.2 Aperiodic Task Analysis

Due to the nature of the DYN segment a different approach has to be taken to that
used for the periodic tasks. Aperiodic tasks are scrutinised down to their message level
using a RTA procedure. Because each message is aperiodic a WCRT is calculated for
each message so the designer knows under the worst circumstances what the

maximum delay for each message is.

9.4 Verification

The application running on the FlexRay protocol is required to meet or improve on the
timing and bus parameters obtained using the same application on the CAN protocol.
Under very small bus loads CAN is able to marginally beat FlexRay timings due to there
being a reduced chance of messages been blocked or delayed. At higher busloads
FlexRay’s additional bandwidth should enable it to handle higher volumes of data. This

is verified in the Testing and Results section.

9.5 Implementation of Analysis Findings

The FlexRay frame can be configured as per results obtained in analysis of the ST and
DYN segments. At this stage there could be discrepancies between values calculated
and achievable values. This is a result of configuration values being different from the
achievable minimum or maximum parameter ranges. A solution as close as possible to
the calculated results is used in this scenario. This solution is attainable from the
FlexRay frame designer program, or through the examination of FlexRay’s constraints

in appendix A and B of FlexRay’s specifications.
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9.6 Applying Framework to a Real-World Application

Using the framework steps in the abstract implementation (a Traction Control
application); the framework is applied to a real-world application configuration. Bus
statistics are recorded and compared to those achieved using the CAN protocol. The
abstract implementation contains more nodes than the experimental implementation
(an Adaptive Cruise Control Application) model and is also used to acquire associated

FlexRay parameters.

9.7 Generic CAN to FlexRay Development

The experimental implementation of the application was processed in the same
physical development environment where possible. This includes both the reference
CAN implementation of the application and the reference FlexRay implementation of
the application. This allowed a direct comparison between the two set-ups. The same
can be said for the third test case “Verification of Time-Triggered Properties”, both
CAN and FlexRay implementations were implemented in CANalyzer. These
implementation test cases (Traction Control, Adaptive Cruise Control and Verification
of Time-Triggered Properties are presented in detail in Chapter 11). The initial model
for obtaining the ST segment size and cycle period was abstracted from (Aloul, 2005)
as described in section 6.5.5. The DYN segment size was developed from work carried
out by (Traian Pop, 2006) as described in section 6.5.5. Key to obtaining the FlexRay
frame and cluster configuration parameters was synthesising the application tasks to a
message level. As FlexRay is composed of a static and dynamic segment, messages
transmitted in the static segment are scheduled prior to execution while messages
transmitted in the dynamic segment are event triggered and it is not known exactly
when these events will occur. This lead to RTA approach being used in configuration of

the DYN segment.

The CAN message set Mcan (Equation 9-1) is composed of CAN messages, CAN,,;, which

connect tasks on the task graph, where i is the number of messages on the task graph.

131



CAN to FlexRay Migration Methodology

Mu = {CAN,,...CAN,}

Equation 9-1: CAN Message Set

The CAN message parameter set is composed of a component set of message size
(size(m;)), message ID (ID;)and the message period (period(m;)). This is illustrated in

Equation 9-2.

CAN,; = (size(m,), ID;, period(m;))

Equation 9-2: Message components

9.8 Static Segment Development

Initial requirements before a message can be scheduled are the tasks worst case
execution time (WCET) (w;), process deadline time D;, release time r; and the task
period. The final task graph deadline D; is obtained by summing all the periods in the
task graph. Each individual task can be compiled into a task graph which shows the
execution time of each task and the task deadline. Any precedence constraints on each
task should be taken into consideration at this stage. The task graph execution time is
calculated by summing up each tasks execution time along the chosen path of the task
graph. The longest path is the one that will finish at the latest time. To find the worst
possible time a task will take to complete, select the longest path in the task graph

(Equation 9-3).
W, = ZIongest path through task graph
Equation 9-3: Task Graph Execution Time

Therefore the execution time of a path i is the sum of each tasks execution time along
the chosen path. The WCET is dependent on a variety of factors such as the processor

the task is being executed on and the task priority. WCET is calculated from the longest
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path a task takes from the moment it is called until it has successfully completed

execution.

9.8.1 Task Scheduling

To schedule an intermediate task r; and w; of the intermediate task are required. The

intermediate task deadline is calculated as illustrated in Equation 9-4.

di=w, +r,

Equation 9-4: Intermediate Task Scheduling

Any slack in the system can then be calculated and equally reallocated among each
task. First the total slack TotalSlack; is required. This is obtained by subtracting the task
graph deadline from the sum of the execution times along a chosen task graph path as

presented in Equation 9-5.

TotalSlack =D, - ) ¢,

Equation 9-5: Total Available Slack

The total available slack is then reallocated equally among the number of tasks (x)

along the chose path as illustrated in Equation 9-6.

TotalSlack
slack, = ——
path

X

Equation 9-6: Slack per Task

With the new slack reallocated, each tasks release time r; and deadline time d; is now

re-calculated to include the slack.

After the final r;, d; and w; are known we perform a check to determine if the values

obtained thus far will potentially lead to a schedulable solution. Equation 9-7 is used in
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determining this result. Scheduling is considered successful if the WCET is less than or

equal to d; minus r;.

w; <d; —r,

Equation 9-7: Parameter Validation Check

9.8.2 Message Deadline

Once the final r;, di and w; are known we use these parameters to calculate the
deadline of each message as illustrated in Equation 9-8. This deadline is the
transmission deadline time td(m;), by which time transmission of the message is

required to have been completed.

td(mi) = di =W

Equation 9-8: Transmission Deadline

Any factors affecting a delay in transmission need also be accounted for. Due to the ST
segment being TT there is no network contention when a message tries to access the

bus. Resulting from this the transmission delay is calculated as per Equation 9-9.

size(m;)

transmission delay =
Bus

speed

Equation 9-9: Transmission Delay

For multi-rate task graphs the LCM (Lowest Common Multiple) of all coupled task
graph periods is used to guarantee the timely execution of all deadlines. An example of
this is if there are two task graphs with periods of 2ms and 5ms respectively. A hyper-

cycle of 10ms is required to guarantee timely transmission of all messages.
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9.8.3 Payload Definition

To calculate the slot delay and the transmission time, the message size and frame
payload size parameters need to be finalised. All the messages that require
transmission are summed up and the header and trailer bytes are included to give a
more realistic frame size in bytes. The header and trailer data are collectively termed
the ‘overhead’, as this data accompanies the payload but is not required by the
application. The number of message transmissions required to transmit all data is
calculated. In determining the frame size the payload size also needs defining. This is

due to the payload being part of the FlexRay frame.

Before obtaining the total number of FlexRay frames required to transmit the entire
CAN payload data at the chosen payload it was required to know the FlexRay frame
size. The FlexRay frame size is determined by Equation 9-10. Start at a payload size of
one byte and increase by a value of one byte with each iteration. Payload sizes are

required to be an even integer value.

FRsize(m;) = (pd; +O,)

Equation 9-10: FlexRay Frame Size

Equation 9-11 presents the total number of frames required to transmit all ST data at
the chosen payload size pd;. Where j is an integer value in one application cycle. In
Equation 9-12 Cf¢ is the number of frames pre cycle. If the size(m;) parameter includes
bit stuffing this will lead to a data cycle total size (in terms of number of bytes) that is

too large.

Cfy = zUS'ZSQm )D

Equation 9-11: Frames per Application Cycle (ST Data)

At the set payload size the number of frames required to transmit the complete cycle

data can be found. Start at a payload size of one byte and increase in single integer
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values until ten consecutive increases in the total number of bytes is obtained. Now
that the total number of required frames per application cycle is found the total
amount of data for transmission is also known using Equation 9-12. D is the total

transmitted data at the chosen payload value.

D = Frame SizexCf

Equation 9-12: Total Required Bytes

A list is generated containing the total number of bytes required to transmit all the
data at the chosen frame size. Graphing this data results in a graph with the general
profile similar to that as illustrated in figure 9-1. Each region on the graph is explained

in the following paragraphs.

Region 1: Payload sizes are initially very small in relation to the total amount of data
for transmission therefore a large number of frames are required to transmit the data.
As there are more frames there is also more overhead accompanying those frames. To
give an example, if there are 40 Bytes for transmission in total and the payload size is 1
Byte then 40 frames are required. If the payload is increased to 2 Bytes then only 20
Bytes would be required. This means the overhead is reduced from 40 frames to 20

frames.

Region 2: This is the region from which the payload and frame size are chosen. The
lower limit is reached in terms of the total number of bytes transmitted per chosen
payload size; therefore the payload reaches its optimal size in relation to the total
number of bytes transmitted. This continues the trend of less total data due to less
overhead. The total data transmitted starts to increase due to the payload continuing

to increase.

Region 3: The payload is continuing to increase. The increase is linear because the
number of frames required has reached its optimal point and cannot be reduced any
further. For example if there are 3 messages for transmission (regardless of how small
the payload size) all the data cannot be transmitted in less than 3 frames.
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Quantity of ST Data Transmitted
per Frame Size
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The payload and frame value are chosen heuristically. The chosen value is not
necessarily the value that results in the smallest total number of bytes for
transmission. A smaller or larger payload value might better suit the applications
requirements. A smaller payload size requires more frames to transmit the same
quantity of data. Choosing a larger payload size can result in a larger frame size which

allows reduced system granularity.

9.8.4 ST Slot Size

In the ST segment a task transmits a message and that message is transmitted in an
assigned slot. In this framework this assignment is implemented as follows. T1
transmits m1 which is assigned to slot 1, T2 transmits m2 which is assigned to slot 2
and so forth until all messages have been assigned a unique slot. Each message
requires an individual slot due to there being no slot reuse in the ST segment of the

FlexRay protocol.
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Each message has a period, period(m;) equal to its deadline td(m;). Transmission slot
duration gdStaticSlot is calculated by summing the message payload size and message

overhead and then dividing by the bus bandwidth (9-13).

size(payload,) + size(overhead,) 15

gdStaticSlot =
Bus

speed

Equation 9-13: Slot Duration

9.8.5 Discretisation

By discretising the slot duration the message period can be expressed as a function of
slots instead of as a function of time. This allows greater ease in setting the FlexRay
frame parameters. Message period is now expressed in terms of transmission slot

intervals. This is achieved by dividing td(m;) by gdStaticSlot (9-14).

td(m,) J

td(M,) = -
gdsStaticSlot

Equation 9-14: Discretised Slot Delay

The discretised slot duration td(M;) is labelled so to differentiate it from the

undiscretised slot duration td(m;).

9.8.6 Periodicity and Distance Constraints
To guarantee a message will meet its deadlines two constraints are invoked;

e Periodicity: The minimum message period, pmin, is required to be a multiple
harmonic of a base period, ppase-
e Distance: The distance between two successive messages must be less than or

equal to the message period, period (m;).
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To obtain a FlexRay frame cycle that meets both these constraints we use the
minimum message period, pmin, as our starting point (the smallest td(M;) value). We
obtain a ppese value that is a multiple harmonic period of pnin. The other message
periods can be adjusted downwards (if message periods are increased there is the
possibility of missing deadlines). This allows the periodicity constraint to be met. The
distance constraint is met because the distance between slot 1 in cycle 1 and slot 1 in
cycle 2 is constant and so on. Also as the cycle period is modified to pni, or less (as
defined by the periodicity constraint) and the distance between slot 1 in successive
cycles is less than or equal to the message period. Where slot 1 is mentioned it is also

applicable for the range of slots 1, 2, 3........ n, where n is the number of ST slots.

L

Examining Figure 9-2, if Ppi, is 6 and ppgse contains a value of 1.5, this meets the

distance and periodicity requirements. This is backed up by Equation 9-15.

When scheduling the FlexRay frame it is suggested to reduce the cycle size as much as
possible without exceeding any timing constraints. This is to aid the DYN segment in
accessing the FlexRay bus as frequently as possible, thereby enabling DYN messages to

be transmitted more frequently on the bus, if required by the application.

Equation 9-15 is used in the validation of the ppgse value as a multiple harmonic, which

allows the periodicity and distance constraints to be finalised.
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k k+1
2% Ppase < Puin < 27 Prase

Equation 9-15: Periodicity and Distance Constraint Validation

The number of iterations required to validate what k is equal to in 2 part of Equation
9-15, can be determined from the number of (integer) iterations taken to get from pmin
tO Ppase Minus one. For example if pmin was 48ms and ppase Was 3ms, thereby k is equal

to 4 (5 iterations minus 1).

36512524548
24.3<48<2%.3
48 <48 <96

Any modifications still have to meet the periodicity and distance constraint

requirements.

9.9 Dynamic Segment Development

As the DYN segment is used to transmit aperiodic messages these cannot be scheduled
prior to transmission. This leads to the use of RTA in determining the worst case delay
of each DYN message. Some parameters that can affect the transmission of the DYN

messages are;

e The earliest a message can be transmitted in a slot in the DYN segment is after
the ST segment has finished transmission

e DYN messages are assigned on a priority basis; therefore higher priority
messages can potentially block or delay lower priority messages

e Transmission of a message cannot occur if the minislot counter value is less
than the pLatestTx value. The frame and payload sizes are calculated as per
DYN message sizes.

e Only one node can transmit on the bus at any one time
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e Only one slot is assigned to a node at any one time
e The node determines when the slot counter value is equal to the frame

identifier value.

The DYN segment size is already defined. This is because the ST segments size, FlexRay
cycle size and the NIT (obtained through a FlexRay designer tool) (Dependable
Computer Systems, 2007) parameters are predefined through our ST segment analysis.

This leaves the remaining time allocated for the DYN segment.

First a check is required to assess if it is possible for all DYN messages to transmit in the
DYN segment. For this to be possible the number of minislots should be greater than
or equal the number of DYN tasks. If this is not the case some tasks will not be
allocated a slot for transmission. Reducing the minislot size as per (Consortium, 2005)

allows more slots to be allocated without increasing the DYN segment size.

To verify if the DYN segment is large enough for the transmission of all DYN tasks we
need to view the DYN segment size as a function of the number of minislots. This is
done using Equation 9-17. Here the total communication time of all DYN messages
(Equation 9-16) is divided by the number of minislot. If the number of provided slots is
greater than or equal to the number of required slots, transmission is possible under

correct scheduling. This is shown in Equation 9-18.

TotalDYN C,, =Y (C,y-.Cyy)

Equation 9-16: Total DYN Communication Time

TotalDYN C,,

Required Slots = —
gdminislot

Equation 9-17: Minimum Number of Required DYN Slots

No. of allocated slots > No. of required slots

Equation 9-18: Slot Quantity Verification
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The maximum worst case delay, calculated using Equation 9-19 takes into account
delays caused by other DYN messages, the ST segment and associated FlexRay

parameters.

Ry(D)=Cy + 0, +W, (D)

Equation 9-19: Dynamic Worst Case Response Time

Where;

R is worst case response time

Cm as required for ST segment, is the message communication time, Equation 9-20

Om is the longest delay suffered during one bus cycle if a message is generated by
sender task just after its slot has passed, Equation 9-21

Wn is the worst case delay caused by transmission of ST messages and higher priority

DYN messages, Equation 9-23

The communication time, as illustrated in Equation 9-20 is the DYN frame size
multiplied by the bus bit time. The DYN frame size is composed of the DYN message
and associated overhead. The same overhead value as calculated per the ST segment is

used.

C,, = DYNFrame x Bit Time

Equation 9-20: Communication Time

o, = FR(t)—(ST,,, +C, + NIT)

us

Equation 9-21: §,, Delay
Where FR(t) is the length of the FlexRay bus and ST, is the length of the ST segment,

and Cp, is the time the DYN message itself takes on the bus.

Wn, can be caused by higher priority messages hp(m), and unused DYN slots with lower
priority identifiers. Each unused minislot gives a delay of one minislot ms(m). The

single minislot enables the minislot counter to increment to the next minislot value. In
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the worst case to obtain the minislot number it is assumed that all messages of a
higher priority (than the current message) have transmitted in the previous cycle. This

results in equation 9-22.

ms(m) = Total DYN minislots— 1

Equation 9-22: Number of Unused Minislots

For this calculation the worst case delay occurs if the message requires transmission at
the moment the pLatestTx value is the same as the minislot counter. Therefore all
minislots after this value cannot be used for transmission. This is illustrated in Equation
9-23.

w,, (t) = ST, + hp(m)+ms(m) + (pLatestTx.gdMinislot) + NIT

us

Equation 9-23: w,,(t) Delay

Using Equation 9-19 presents the WCRT delay of a DYN message. This enables the
network designer to know how many FlexRay cycles it will take to guarantee the

transmission of each DYN message.

9.10 Conclusion

Initial CAN parameters are processed to deliver the CAN message parameters Mcan.
The component set of Mcay parameters are the message size (size(m;)), message ID
(ID;)and the message period (period(m;)). These parameters allow the development of
the FlexRay cluster configuration parameters. The cluster configuration parameters

concerned are;

e Cycle Length
— gMacroPerCycle
e ST Segment

— gNumberofStaticSlots
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— gdStaticSlot

— gPayloadLengthStatic
e DYN Segment

- gdMinislot
e Network Idle Time

- gdNIT

The cluster parameters are necessary when configuring the FlexRay frame. From the
framework the FlexRay message set is Mgz = {FRmi.....FRmn}. The message set is defined
as FRmn = (FRperiods FRsize and w;), where FRg;. and w; are the same values as for Mcan
because the application task set does not change. The FlexRay frame component set
can now be defined as FRcompset = (ST, DYN, and NIT). With further sub division the ST
segment is composed of the parameter set FRsr = (slots,e, NUMs,:, STpayloads;,.). The
DYN segment is composed of the parameter set FRpyy = (mslots,e and DYNpayloads;.).

The network idle time is the final parameter set FRy;r = (NIT;jz).

Once complete migration has taken place from the CAN protocol to the FlexRay
protocol the system designer should have all necessary parameters to configure the
FlexRay frame. The framework defines the frame size, slot sizes and payload sizes in

the static segment and DYN segment minislot and payload sizes.

To summarise, the framework can be analysed in algorithmic format. Figure 9-2
presents the algorithm for the ST segment, Figure 9-3 presents the DYN segment
algorithm and Figure 9-4 presents the FlexRay cluster and frame parameter message

sets.
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ST Segment

Graphically represent app in TG format
CAN parameters (r;, D;,)
if WCRT not available

Determine using j,, W, and C,
for Mcyw  ={CAN;. CAN,} CAN message set
definition
{

CAN,i=(size(m;), ID,, period(m;))
}
Extract Intermediate Deadlines
Reallocate Slack
Obtain recalculated r; and d; deadline
for validation check
{

wigd-r;
}
define transmission deadline td(m;)
determine transmission delay

if multi rate graphs
use LCM to obtain cycle size
else
Define pd; payload size
using FRsize(m;), Oy, Cfwg
for total bytes required at chosen frame size D
{
determine gdStaticSlot size of static slot
}
discretise td(M;)
Verify via periodicity and distance constraint
Prmin and Pbase
Zk-pbasespminszkﬂ-pbase
End;
Return ST Parameters /*ST slot size, payload, frame
size*/

Figure 9-3: ST Scheduling Algorithm
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DYN Segment

Determine total DYN communication time
TotalDYNC,,
verify {
slot quantity
WCRT
C,, communication time
6m longest delay during one bus cycle if
slot has just passed
}
for
{
Wn(t) delay caused by ST msgs and hp (m;)
}

end;
Return max delay /*Max possible delay for DYN
msgs*/

Figure 9-4: DYN Scheduling Algorithm

Frame & Cluster Parameters

flexRay message set is defined as Mgz = {FRinz.....FRmun}
for
{
FRmn = (FRper/‘od/ FRsfze and W’)
}
flexRay component set FRompser = (ST, DYN, and NIT)
for
{
FRsr = (SIOtsfzez NUMgot, STPGV/OGdsfze)
FRpyn = (mslot,e. and DYNpayloads;,.)
FRyir = (N/Tsize)
}

end;
return Flexray data /*ST and DYN config data*/

Figure 9-5: FlexRay Extraction Parameters
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10 Development Tools and Applications:

10.1 Introduction

This section describes all the physical hardware and the software applications used in
the development and implementation of the chosen applications. For the abstract
implementations the only hardware used was the pc upon which the FlexRay frame
parameters were developed. From the software perspective, for the abstract
implementation the FlexRay designer tool was used to verify parameters extracted
from the framework. The experimental implementation involved the use of all
hardware and software mentioned in this chapter. During the initial development of
the generic application the designer can set the parameters as per the application. This
includes the number of nodes, tasks, channels. For implementation of the ACC
configuration, restrictions such as the minimum number of tasks shall be defined by
the application. For the implementation of the third test case CANalyzer was used to

configure and process both the CAN and Flexray configurations.

10.2 Hardware

10.2.1 FlexRay Development Kit

The initial stage of implementing the CAN and FlexRay application was carried out on
the SK-91F467-FlexRay which is illustrated in Figure 10-1. Each starter kit can be
considered a CAN node or a FlexRay node depending on the protocol on which the
application is running. The CAN and FlexRay ACC applications were built tested and
debugged using this starter kit. The starter kit allows the developer to use CAN and
FlexRay and is part of the Fujitsu MB91460 series. At the core of the starter kit is a 32-
bit flash MCU (microcontroller unit); this MCU is the MB91F467D. The Fujitsu FlexRay
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communications controller (CC) MB88121B enables FlexRay communication. The
starter kit can be used in standalone mode or in monitor debugger mode. Using the
FlexTiny FR, the physical layer, as specified in the FlexRay specifications is achieved.

This device is plugged in to the ports provided on the boards.

The main features of the starter kit are listed below (Europe, 2007);

e Supports 32-bit Flash microcontroller MB91F467D

e Supports FlexRay CC MB88121

e On-board Memory: 32Mbit (4MByte) SRAM

e ltis possible to connect the FlexRay CC in different ways to the MCU
e All microcontroller resources available for evaluation

e In-circuit serial flash programming

e Three selectable RS-232 or LIN UART-interfaces

e Three High-Speed CAN interfaces

e Two FlexRay channels (Ch-A, Ch-B)

e FlexRay physical layer RS-485 available

e FlexRay physical layer driver module from TZM (FT1080) connectable
e 16 User LEDs
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10.2.2 Key Parameters

10.2.2.1 FlexRay Physical Layer

The physical layer connection is achieved through a RS485 transceiver or a physical
layer driver module from TZM, called FlexTiny (FT1080). It can be plugged in and by-
passes this transceiver. The FlexTiny FR (FlexRay) is illustrated in Figure 10-2. This
device offers a physical layer connection as specified in the FlexRay physical layer

specifications.
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10.2.3 CAN Channels

There are three high speed CAN channels available (CANO, CAN1 and CAN2) for

connection to the CAN controller through 9 pin D-sub connectors.

10.2.4 Interfaces
There are 4 push button switches that are connected to the MCU. These can act as
external inputs, reload timer triggers, and input capture. There is also a separate

system reset button. There are 16 output LEDs connected to two ports (port 16 and

25).

10.2.5 VN3600 FlexRay interface

The Vector VN3600 as illustrated in Figure 10-3 is a USB FlexRay interface.
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The VN3600 carries out analysis with the use of the Bosch E-Ray CC and start up is
enabled through the use of the MB88121B CC (GmbH, 2008). Each interface allows
access for one FlexRay cluster (Channel A & B) therefore if the designer wishes to
integrate more clusters, more interface units are required. It supports the maximum
payload of 254bytes, it can coldstart a cluster without an additional node and performs

start up and synchronous monitoring.

10.2.6 CANcardXL

The CANcardXL is a CAN PCMCIA interface suitable for notebook or desktop (illustrated
in Figure 10-4).
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It contains two (independent) CAN channels that are configured for 11 or 29 bit

identifiers. It can be used for error detection and remote frame generation.

10.2.7 Passive Star

The TZM FlexPS as illustrated in Figure 10-5 (FlexRay Passive Star) allows the user to
configure up to six passive branches. It was developed with the FlexRay physical layer
test working group. It also contains a car body ground connection and several test
points. Use of the FlexPS enables a more realistic network topology over direct
connection between channels. Channel A and Channel B busses require a FlexPS each

otherwise conflict will occur on the bus.

Figure 10-5: FlexRay Passive Star
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10.3 Software

10.3.1 FR Family Softune Workbench

The FR family Softune workbench that was supplied with the starter kit was version 6
as can be seen in Figure 10-6. Softune workbench enables programs to be built and

compiled.

= SOF TUNE Workbench - 91460_dynamic_inf1_91467d - [TTask]

TGl it Yew Eojct Debig Gehp FLASHHemoy Winkw Lsb M

lejol] | 3] slm =5
e

[Roden ka0 =] [MONGER INTERNAL <]

Dise| =)@ 2] & |nw] (2] mlm)
| > " A 2 12
= I node1_firdvin.abs - “Node A 5 L -]
- Source Fes Sua NRCUD++; /% count up variable used in WD ISR to check if pi
it 20 7+ Status check to implement here #/)
F e 2u5 suitch(statusTxa) )
indlude 2u8| ¢
B atc au7 case FFRD_DKAY: nTxidkes:)
B et 2u8 break;
B fird_apini_ehi.c aug case FFRD_ERROR: breaks)
B} #he_api_ntemt_sera 250 default: nTx3Erress breaks)
EFrnﬁunTmm( 251 ' M
e 252
B MAInLC 253 sultch{statusTxhu) |
B mbo19672,2m 258 4
) eent_status.c 255 case FFRD_OKAY: nTx30K++; break;)
D) reachne ot 256 case FFRD_ERROR: breaks)
) Belosdn 257 default: nixuAERFs+; breaks)
B oo =
B Sartotetbacn 259 nRCUD++; /> count up variable used in WD ISR to check if p
" 260  switch(statusRxé)}
Taskie 261
B e 262 case FFRD_DKAY: nRx10Ks+; |
B veenaes.c 263 PDR1E = SRx6.PoFL;|
fed_epi_tx_hardern % 8
1= = < >
(3]

18411

C:\Documents and Scttingsirob\DesklopIMASTERS{Validation Test CasesiTestl\Test Programt91460_dynamic_int]_91467d~15Nodc1_firdVIBMONDEB_| &

No Error.

< E

Once the program is successfully built and compiled a .mhx (Motorola hex) (Manual,
2006) output file is produced. If two nodes are being built for example a .mhx file will
be required for each node. Next application is the FME (Fujitsu Microelectronics

Europe) FR Flash programmer whose interface is illustrated in Figure 10-7.
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B, FME FR-Flashprogrammer ¥4.0.2.1 EJ@JE'

Connect via COM-Part ’T no. of attermpts <0 Prog Baudrate o/ 19200 hi
Device Typs : MBS 1FAE7D -

Automatic I External Flash I Options I Signals 1

File to program ‘r'\STANDALONE\AEIS\NDdeZidv:sCStFr rribx Browse

Connect
&
= Dump Flashloader

Start Flashloader

Automatic Mode

Initialize Flashmode
Blank Check
Erase flash, if necessary

Prograrm flash and werify

Call application at address

THIS SOFTUARE IS PROVIDED AS IS AND IS SUBJECT TO ALTERATICMS.
FUJITSU MICROELECTRCNICS ACCEPTS NO RESPOMSIEILITY OR LIABILITY
FOR ANY ERRORS OR ELIGIBILITY FOR ANY PURPOSES.

(C) Fujitsu Microelectronics Europe GmbH

ready

@ ‘ Quit

The appropriate MCU device is selected along with the baud rate and port number.
Once these parameters have been selected the .mhx file is selected to be flashed into

the memory of the starter kit. Each node has to be flashed separately.

If monitor debugger mode of the workbench is required then once the program is
successfully built and compiled the debugger is then started (the monitor debug kernel
is required to be pre-flash loaded to each board before monitor debug mode can be
entered). When the debugger is running the program can be stepped through as

required. Break points and watch windows can be set.
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10.3.2 DECOMSYS DESIGNER PRO

DECOMSYS Designer Pro is used to set the FlexRay cycle parameters. The actual
version used was DECOMSYS::DESIGNER_PRO <LIGHT> 4.3.0 as illustrated in Figure 10-
8.

il DECOMSYS: DESNHER_PAD <LIGHT » 4.3,0 - Fores Filis 1

e DECOMSYS::DESIGNER PRO

DECOMSYS L]

7 phagrs et
B R ST
) Lo gy comprrent: GO varsn £

1) Loacie imgacy comporent: DK Varsin
]

DECOMSYS designer pro has five sub headings with which the FlexRay frame details

are defined be defined in:

e Hardware Architecture

e FlexRay Frame Configuration
e Communication Planning

e ECU Software

e ECU Configuration

Hardware Architecture
The FlexRay network name is created and the Channel usage (A, B, A & B or none) is
defined. Each node ECU is named and the communication controller (CC) is also

selected.
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FlexRay Frame Configuration
Here the main parameters of the FlexRay frame are defined such as cycle length, static
segment size, dynamic segment size, slot size and mini slot size. A graphical

representation of the frame is shown as illustrated in Figure 10-9.

rda FlexRay Configuration Wizard: (1/2) General Cluster and Node Configuration (=13
FlexR.ay Netwark (Cluster) Canfiguration Metwork  FlexRayhetwork_1 -
Parameter name valus Uit Constraint (FlexRay 2,1, appendix B)

Cycle Length

aMacroPerCycle 3000

Static Segment

oMurmberOfStaticslats 70

gdStaticslot 28 MacraTicks
oPayloadLengthStatic z 16bit words
Dynamic Segment

gdMinislot 10 MacraTicks

Network Idle Time
gdNIT 127 MacroTicks

FlexRay Communication Cycle

I — B

B static Segment: 70 Static Slotfs), 1960 us

O oynamic Seament: 91 Minislot(s), 913 us

B metwork Idie Time + Symbol Window: 127 us

FlexRay Controller (Node) Configuration Mode FlexRay_Controller _1 -
Parameter name Walue Unie Constraint {FlexRay 2.1, appendix B)

Dynamic Segment

pPayloadLengthDyniMax 16 16 bit words
Startup / Sync
pkeysiotd 3

Network ¥iolations: 0, Mode Violations: 0

I Calculate > Cancel

These parameters are then used to calculate other required parameters. If a constraint
violation has occurred it is highlighted in red with the constraint number. In Figure 10-

10 constraint #18 is violated for example.

Parasester name Vaha Unt Corstraint {FesRay 2.1, aopendis B}
Cyche Length

uHacroPerCycde 3000 -2

Static Seqment

hbumtonr OF Rt Shots n

pestaticsi ] HarnTichs

o srbosdengiitts 2 16kt woncks

Erpnamic Seqment

adirision w Macrolicks

Metwork Tdke Tine

it v] Marolids =127 (coratrant S10

Figure 10-10: Constraint Violation
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This constraint number can be checked in the FlexRay specifications appendix B. Once

these parameters are met, select the finish button to keep the configuration.
Communication Planning
FlexRay frames are created and named. Each frame is assigned an associated signal

value. The frame schedule is built here. Each frame has the following parameters:

e Frame Triggering

e Frame
e Channel
e Slot

e Base Cycle
e Cycle Repetition
e Tx (transmit) CC

e Rx(receive) CC

e TxECU
e RxECU
e Report
e Service

The dynamic cycle has two parameters specific to its cycle: Minislot and Tx type.

A sample Frame schedule is shown in Figure 10-11.
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i Fhesfay Frame Scheduler
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ECU Software

This area is used to configure the periodic tasks for any application and interrupt

service routines. The files generated here are used by OSCONFIG (Operating System

CONFIGuration) in the ECU driver configuration (Dependable Computer Systems,

2007). These files were not required for implementation in this research and as a result

they will not be discussed any further.

ECU Configuration

The ECU driver configuration allows buffers to be assigned and generate the code

required for the COMMSTACK configuration.
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i Driver Configuration
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Figure 10-12 shows the ECU configuration screen with the frame values. The Auto BA

(Buffer Assignment) tab automatically assigns the buffer configuration for each slot.

This has to be completed for each node. The code generation tab presents the output

path of the generated code. Code has to be generated for each node.

Three files are generated; node.c cfg (configuration), node.h cfg and node memory cfg.

These files are then included in the Softune workbench when creating and compiling a

program. This ensures the frame parameters for the application will be the same as

those configured in the designer.
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10.3.3 COMMSTACK

(e " Z" /’”‘“ o )

Q Inifial State

Before synchronisation can occur a node has to be “online”_and—Fhis is achieved

through the COMMSTACK-COMMSTACK. Figure 10-13 shows the possible states from
the off state to the online state. The states are presented in detail later in the chapter.

DECOMSYS COMMSTACK structure is made up of four main sections

e The application (Configuration)

COMMSTACK (Library)

Hardware (FlexRay)

Hardware (Configuration)
The application consists of all the specifications required before the application build

takes place.
161



Development Tools and Applications

The COMMSTACK contains all of the library files infermatien-data-that the host CPU

requires to carry out its functions_ while being as modular as possible.: This includes the

connection schema for the CC (communications controller) hardware.

A FlexRay hardware node contains a minimum of one communication controller but
can contain more if required.

The hardware configuration contains the device mapping and the reset configuration
of the CC device(s). The static segment configuration data is required at pre-compile

time.

The state model controls how the COMMSTACK behaves in any situation. In Figure 10-
13, each state is contained in an oval while the arrows show the action taking place.

Tables 10-1 — 10-7 show the different states of the COMMSTACK FlexRay driver.

10.3.3.1 Off State

Table 10-1: Off State
Off The FlexRay CC is not able to access the network nor is it

state | configurable. This state is entered after the COMMSTACK is
initialised if the CC is detected successfully and the cluster

is not yet synchronised.

Reset Reset performs a hard reset of the
FlexRay CC
EnterConfig ENTERCONFIG ENABLES THE CC TO BE
CONFIGURED

SendWakeUpChA | SendWakeUpChA enables the
transmission of the wake up pattern on

channel A of the dedicated CC.
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10.3.3.2 Start-up State

Table 10-2: Start-up State

Start-up | The FlexRay CC enters the Startup state. Either
state active or passive startup is initiated depending on

configuration.

Abort Returns back to the off state exiting the

startup process.

1 Artinia #albar  wlanra  AnacA fbkAavkiona e

10.3.3.3 On State
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10.3.3.4

10.3.3.5

Table 10-3: On State

state

This state is entered once the CC and the cluster

are successfully synchronised. Buffer access for

COMMSTACK API functions are turned off

Online Online state is entered once the on
state has been successful.
Halt Halt immediately returns to the off

state at the end of the -current

communication cycle.

Online State

Table 10-4: Online State

Online

The FlexRay controller is synchronised to the

network and the software driver is able to access

transmission and reception buffers.

Offline | Offline state is entered.

Halt Halt immediately returns to the off
state at the end of the current
communication cycle.

Abort Abort causes the state to be

Configuration State
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10.3.3.6

10.3.3.7

10.3.3.8

Table 10-5: Configuration State

Config

THE FLEXRAY CONTROLLER CAN BE CONFIGURED.

LeaveConfig | LeaveConfig transition occurs

when exiting the Config state.

Transition takes us into the off

state.
Abort Leaves the config state, enters the
off state
Reset State
Wakeup State

Vector CANAlyzer.FlexRay

Table 10-7: Wakeup State

Wakeup

FlexRay controller transmits a wakeup pattern

Abort Abort causes the transmission of the
wakeup pattern to be aborted
immediately and returns to the off
state.

1 Transition occurs once the wakeup

pattern  has  been  successfully

completed
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CANalyzer is a tool for analysing CAN and FlexRay networks. The version used in this
research is 6.1.33 (SP3). The primary function of CANalyzer is to monitor traffic on the

network (GmbH, 2007), other functions include;

e Listen to bus data traffic

e Display data message segments

e Statistics on message frequency

e Insert prepared functional blocks such as filters generator blocks

e Record information for offline evaluations

CANalyzer contains increased functionality that enables the user to programmatically
implement application specific parameters. This can be achieved through the use of
function blocks (e.g. test case three) or by using CAPL (CANalyzer Programming
Language). CANalyzer contains the necessary browser for creation, building and

compilation of CAPL programs (GmbH, 2007).

A Flow diagram (FlexRay example is illustrated in Figure 10-14) is used to show the
functions of the bus monitoring function blocks such as; Statistics, Bus statistics, Trace,

Data, Graphics and Logging. Table 10-8 gives an overview of each function block.

Table 10-8: Analysis Function Block Overview

Function Comment

Block

Statistics Shows the mean frequency or spacing of
message/s.

Bus Statistics | Displays the statistics such as frames per
second, frame errors and null frames to name
a few parameters. CAN data is acquired from

the CAN controller

Trace Displays the trace data on input lines
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Function blocks can be included to add data onto the network. This can be done two
ways; inserting a FlexRay frame panel as seen in Figure 10-15. This allows the user to
configure the frame parameters including the payload data and frame ID. The second
ways is by inserting a CAPL function block and writing the system parameters in the

CAPL browser (see illustration 10-16).
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Figure 10-16: CAPL Browser Panel

One feature of CANAlyzer.FlexRay is that CAN and FlexRay can be analysed at the same

time. This is achieved through the use of a CANcardXL for the CAN bus and the VN3600

FlexRay interface for the FlexRay bus. Both are produced by Vector.

168



Development Tools and Applications

10.4 Conclusion

This chapter presents the tools required to progress from the implementation of the
CAN application to the verification of FlexRay properties to the final implementation of
the FlexRay application. The features of the hardware tools required are presented,
such as the Fujitsu development environment, CANcardXL and the VN3600 along with
the any software tools used such as, DECOMSYS designer and Softune monitor

debugger.
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11 System Model

11.1 Introduction

In this chapter the implementation models are presented. All preconditions to
migration have been presented together with any configuration techniques required.

The test environment and the test cases are described.

The theoretical implementation (test case 1) uses a TC (Traction Control) model. The
physical implementation model (test case 2) used was an ACC (Adaptive Cruise
Control) system. The final test case, test case 3, “The Verification of Time-Triggered
Properties” was implemented using a straight forward task graph configuration. The
hardware and software used in the test case implementations are presented along

with the specified configurations.

11.2 Traction Control & Adaptive Cruise Control Summary

Traction control involves reducing the amount of slip between the tyre and the surface
(Yoichi Hori, 1997) for example, road or ice. This is done by limiting the power being
delivered to the wheel that is slipping. The same sensor that is used for the Anti-lock
Brake Systems (ABS) can be used in determining slip.

Adaptive cruise control allows the vehicle to maintain a preset speed without the
danger of hitting the vehicle in front if it stops. Once the driver sets the desired speed
the vehicle will remain at that speed as long as there is no obstacle in front. If a vehicle
in front is encountered travelling at a slower speed than your vehicle then the brakes
are applied accordingly. A sensor at the front of the vehicle detects any obstacles. If
the vehicle in front accelerates away your vehicle will accelerate back to its desired
preset speed.
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11.3 Application Models

Test Case 1: Traction Control

The first test case will be strictly an abstract implementation. This will involve
obtaining a CAN application and processing it through the migration framework to
obtain the FlexRay frame parameters. This test case will demonstrate the framework’s
ability to produce viable FlexRay frame and cluster parameters. The abstract
implementation only requires five stages of the process flow diagram to be

undertaken. The five stages are highlighted in orange in Figure 11-1.

3\_.

AN S

Stages

The TC model used was presented in (Aloul, 2005) and is illustrated in Figure 11-2.

Each tasks function is described as in Table 11-1.

173



System Model

The TC model has ten tasks, with each task performing a ‘calculation’ or ‘action’
function. Communication between the tasks is demonstrated with connecting arrows

showing the direction communication takes place in.

POM3d ydoJE 4501

Due to the TC model not being implemented on the development environment there

was no requirement to assign tasks to certain nodes.
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Test Case 2: Adaptive Cruise Control

The second test case will be an experimental implementation of an ACC CAN
application. Upon successful migration, precisely the same application will be
implemented in FlexRay using the frame and cluster parameters obtained from this
framework. This second test case, together with demonstrating the framework’s ability
to produce viable FlexRay parameters, is a different task graph configuration scenario
compared to the first test case. This second test case also demonstrates that the
parameters obtained can be implemented in a real FlexRay cluster. All seven stages of

the flow diagram in Figure 11-1 are required in this test case.

The ACC model used in the experimental implementation case is a modified version of
a model presented by (Riis, 2007) and (Madsen, 2007). For this thesis, the application
was modelled using a two node system. The system has six tasks, and each task
directly interacts with another task on the application. This is illustrated in Figure 11-3.
The direction of message transfer is indicated by the direction of an arrow. Each task is
assigned to a node with the action tasks assigned on node 1 (N1) and computational
tasks assigned on node 2 (N2). The task functions are presented in Table 11-2.

Table 11-2: Adaptive Cruise Control Task
Functions

Function Task

Obtain Vehicle Velocity | T1

Obtain Distance to | T2

Vehicle in Front

Calculate Relative Speed | T3

of Vehicle in Front

Calculate Desired | T4

Velocity
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Figure 11-3 illustrates the ACC model in a task graph format.

poLag ydosD sy

*ntation

Communication occurs between tasks via messages. Messages are transmitted on the
bus. The ACC application data is configured to transmit in the ST segment. Precedence
constraints were defined in the application. An example of a precedence constraint is
where m3 could not be transmitted unless m1 and m2 have been received in Figure
11-3. The tasks are assigned to the same nodes in the CAN and FlexRay configurations.
T1 transmits m1 in slot 1; T2 transmits m2 in slot 2 and so forth. Figure 11-4 illustrates

the block diagram representaticn of the ACC with tasks assigned to each node.
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In FlexRay, when allocating the ACC application data to either the ST or DYN segment,
the following approach is taken in this test case. All messages that interact in a critical
application are placed in the deterministic ST segment. All data that is not used in a

critical application is placed in the non-deterministic DYN segment.

Test Case 3: Verification of Time-Triggered Properties

Tests case three, the verification of time-triggered properties, demonstrates the
effectiveness of the FlexRay protocol at guaranteeing constant application execution
times. This test case will involve undergoing all stages of the model flow diagram in
Figure 11-1. The CAN and FlexRay data shall be generated using CANalyzer.FlexRay.
This test case demonstrates that if prior consideration is not taken when deciding
message IDs, this can degrade CAN performance. As long as the messages in FlexRay
are comparable in term of priority and IDs, it is demonstrated that the time-triggered

properties of FlexRay result in no performance degradation when compared to CAN.

For the final test case “Verification of Time-Triggered Properties” the task graph was

composed as per Figure 11-5. Because the simplistic task graph is not from a real world
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example each task does not have a predefine function. All associated task graph
parameters are within the ranges of the real world parameters, as used in the two

previous test cases (TC and ACC).

For this test case all application data is allocated to the ST segment. Any additional
data required to increase the busload is also allocated to the ST segment. This is done
so as to demonstrate that as long as each message has an allocated slot in the ST
segment, transmission shall not be delayed. There is no DYN data transmitted in this

test case.

11.4 Hardware

Each node is implemented on the SK 91F467D development board (two nodes in total
hence two boards were required). The application is flash loaded onto each node
individually and the system is configured as per the reference application.

For the CAN implementation the CAN channels are directly linked together using CAN

cables in the traditional CAN bus structure format. A splice from the CAN cable
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connects to the CANcardXL which is inserted into the laptop containing

CANalyzer.FlexRay, for monitoring and bus loading purposes.

The physical layer is as per the FlexRay specifications through the use of the TZM
FlexTiny as described in Chapter 10. Nodel (N1) CHA is connected to passive star A and
N2 (Node2) CHA is connecter to passive star A. N1 CHB is connected to passive star B
and N2 CHB is connecter to passive star B. Passive star A and B are then connected to
the VN3600 FlexRay interface via FlexRay cabling. The cabling from the node to the
passive star is done using CAN cables as this does not affect performance in this test
case. If wake up symbols are a key feature of the FlexRay frame is it suggested to use
FlexRay cabling instead. The VN3600 FlexRay interface connects to the laptop
containing CANalyzer via a USB connection. Both the CAN and FlexRay cables are 9 pin

d-sub connections.

The physical test environment used only applies to the ACC experimental
implementation, test case two. For test case three, CANalyzer was used to generate
the CAN data while the FlexRay data was generated using CANalyzer and the VN3600

FlexRay interface. The interface was required to coldstart the node.

All tools and applications used were presented in Chapter 10.

11.4.1 CAN Hardware Configuration

The CAN configuration was set up by connecting two CAN nodes together with CAN
specified cables and D9 connectors. A T-bus was used to splice off the CAN signal
which was fed into the CANcardXL adaptor card. This configuration is illustrated in

Figure 11-6.
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11.4.2 FlexRay Hardware Configuration

The FlexRay configuration was somewhat different from the CAN configuration. This
was to present a more realistic bus structure configuration. The FlexRay passive star
was introduced to demonstrate the extra configuration options of FlexRay over CAN.
The traditional CAN configuration is the single bus structure. Two FlexRay nodes were
implemented using the FlexRay development kits. Both channels of FlexRay were
utilised. Channel A on node 1 was connected with channel A on node 2 via the FlexRay
passive star. Channel B on node 1 was connected with channel B on node 2 via a
separate passive star. The two channels cannot be crossed over because this would
cause the CRC to flag an error. Channel A and channel B on the passive star were
connected to the VN3600 FlexRay interface. The physical layer interfaces are inserted
into the designated slots (on the development boards) to meet the specification
standards for the physical layer. The FlexRay VN3600 interface connects to the laptop
via a USB connector and data is extracted via CANalyzer.FlexRay. The cables used are
the same as for the CAN test case except one. This is the cable that connects from each
passive star into the FlexRay interface. CAN cables were sufficient for this test case but

in a case where wake up symbols are transmitted it is recommended to use FlexRay
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specified cabling. Without this there is a probability that the FlexRay signal would not
get decoded correctly. This cable was supplied with the FlexRay interface. The FlexRay

test configuration is illustrated in Figure 11-7.

FR Node2

11.5 Software

The software required for implementing the respective applications are presented in
this section. One key software component is the application code. This defines the
applications features such as precedence constraints. The protocols that the
applications operate on are central to the research. These protocols are CAN and
FlexRay and are discussed in depth in Chapters 3 and 4 respectively. The features and
merits of each have previously been explained in depth. Each protocol’s individual
parameters are provided through the CAN controller for CAN applications, and the
communication controller for FlexRay applications. The ACC application was
implemented in C code. In situations where additional data is loaded onto the bus this
data has been generated by CANalyzer.FlexRay. This allowed for the configuration of

the message ID, period and payload. Other options include having a transmission cyclic
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or transmission activated upon transmission of a defined message. The additional
frames (CAN or FlexRay) are not incorporated into the initial system design. This is
because this data is used to demonstrate how FlexRay is able to handle additional data
quantities without adversely affecting the performance of the preconfigured ACC

application data.

11.6 Extraction Method

The CAN application is initially defined and represented as a task graph. The next step
is to extract the parameters through the framework. In these three test cases the
initial CAN data figures were input to Microsoft Excel. This application was used
because it was easily accessible and simple to use. Calculations could be easily
processed and through the modification of any equations elements, this allowed for
any changes to propagate through all other equations that were associated with the
parameter. The graphing of data (such as payload data) was also carried out using

Microsoft Excel.

11.7 Verification of Parameter Consistency

Verification is required before parameters can be accepted as valid. This is
accomplished using the DECOMSYS designer application whose features are explained
in Chapter 10. If the ideal parameters obtained from the framework are not
implementable these will be exposed in the designer tool and the implementable value
is displayed. As can be the case, the value obtained from the framework might need
slight tweaking due to another constraints being violated. These constraints can be
calculated manually since each constraint and all the sub elements are presented in

appendix B of the FlexRay specifications v2.1.
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11.8 Validation Check

To confirm that migration is successful the deadlines of each CAN task are compared
with those obtained through the FlexRay implementation. This alone is not a sufficient
check as the application deadline has to be met also. The CAN and FlexRay application
times are compared in addition. Busloads are examined to determine if there is a link
between deadlines being missed and increasing busloads. CAN and FlexRay bus loads
are increased to determine if FlexRay has the extra performance capacity it has been
claimed to possess.

For test case three “Verification of Time-Triggered Properties”, verification is carried

out solely through a comparison of application execution times

11.9 Conclusion

This chapter presents the structure, implementation and purpose of the three test
cases. The applications used in obtaining the results are presented along with the
configuration of the CAN and FlexRay test environment. The chapter concludes by

presenting the methods used in determining if migration was successful and necessary.
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12 Framework Implementation

Procedure:

12.1 Introduction

This chapter examines how the process of migration was defined and presents the
implementation procedure that was undertaken for the three test cases. The abstract
implementation is presented initially, followed by the experimental implementation
and finally, concluding with the verification of time-triggered properties
implementation. The abstract implementation is not implemented in the physical
development environment. It provides an example of how FlexRay’s frame and cluster
parameters can be extracted from the migration framework. The results determining if
migration is successful are presented in Chapter 13 only for the experimental
implementation that was applied to the development environment and test case

three, verifying FlexRay’s time-triggered properties.

12.2 Abstract (TC) Implementation (Test Case 1)

The model chosen for the abstract application (Figure 12-1) presented a high level of
complexity in relation to the number of branches and nodes it contained. While a
simpler task graph model (containing less branches and nodes) would also have
sufficed (see test case three), by using this more complex model the framework’s
strength in dealing with increased complexity is demonstrated. The associated
application task data was extracted from vehicles made available by the industrial
partner (SEWS-E Ystrad). Choosing the CAN application is step one of the migration

framework development stage as illustrated by Figure 12-1.
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12.2.1 Task Graph Model

Step two is task graph abstraction (Figure 12-2). The task graph model was adapted
from (Aloul, 2005) and presented in detail in Chapter 11. By using the traction control
model it presents sufficient detail in relation to the number of tasks and branches, to
provide a realistic structure. Figure 11-2 illustrates the traction control task graph
structure. The CAN bus speed of 125kbit/s is used in calculations. Calculations are

based on FlexRay data bus rate of 10Mbit/s.

Figure 12-2 : Migration
Step Two

12.2.2 Parameter Analysis

The CAN data used in this abstract case was obtained from an electric Smart Car (ST
data) and a Peugeot 207 (DYN data). The data was logged using CANalyzer. The timings
presented are actual task periods used in mass produced vehicles. This method of
obtaining initial CAN parameters demonstrates how the framework can operate once
the task’s parameters are presented in the message domain. This proves that the
framework’s success is not application configuration dependant. This relates to stage

three of the framework development (Figure 12-3), extracting the CAN parameters.
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12.2.3 Execution Time

One final parameter, jitter, was required before RTA could be employed to obtain the
CAN task’s WCETs. The jitter value varies depending on the CAN controller and also
varies for each individual message. Specialists equipment such as that by Agilent and
Tecktronix can be bought that extract jitter times. This specialist equipment was not
readily available during this research. Jitter values used were taken from (Burns, 1994).
The jitter values were obtained from the Intel 82527 stand-alone CAN controller. It was
considered more appropriate to use real jitter values even if they had come from a
different CAN controller than just randomly selecting jitter times. Having the message
periods and the message sizes (in bytes) allowed RTA to be use in determining the
WCET of the messages. Using Equation 12-1 as presented in (Robert I. Davis, 2007) the

response time is calculated. This response time is taken as the WCET of each task.

Rt,=J,+w,+C,

Equation 12-1: Task Response Time

Each element of Equation 12-1 is explained section 5.9.2. The initial data required to
obtain the response time is presented in Table 12-1. A CAN bus of 125kbit/s was
chosen. This results in a bit time of 8us. The communication time of each message at

the selected size in bits is calculated from Equation 12-2, as presented in Table 12-1.

C,, =(55+10s,)7y;

Equation 12-2: Message Transmission/Communication Time
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Table 12-1: Parameter C,, & J,, Identification

Task | Period | Message | Stuffed Cn Jm

(ms) Size Message Size | (ms) (us)
(Bytes) (Bits)

1 1 8 135 1.08 600
72 2 5 105 0.84 700
73 1 8 135 1.08 | 400
T4 1 3 135 1.08 800
75 5 3 85 0.68 | 1100
76 1 7 125 1.00 900

Jitter values are taken directly from (Robert I. Davis, 2007) and are shown in Table 12-
1. The blocking delay B, is calculated as per Equation 5-8 and the queuing delay wy, is
calculated from Equation 5-10. The initial blocking delay is zero. Due to the possibility
of multiple iterations the queuing delay will not be the same in every cycle therefore
multiple iterations are required. The number of iterations will depend on the number
of cycles required to determine that the WCRT value is not continually increasing. The
number of decimal places in this value will also affect when a value is determined to
have not changed. For example if one decimal place is used and a value 2.7ms does not
change after the defined number of iterations, it can be determined that the WCRT is
not continually increasing. If six decimal places are used instead it is observed that
between the first two iterations the value changes from 2.766566ms to 2.778301ms,
thereby taking more iterations before it can be determined to have remained
constant. In this test case five iterations to six decimal places (values in ms) were
required until two consecutive values did not change. Table 12-2 displays wy, queuing

delays that are used in determining the response times.
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Table 12-2: wy, Five Iterations of the Queuing Delay

Queue | W;(ms) | W(ms) | W3(ms) | Wy(ms) | Ws(ms)
Delay

wl 1.086566 | 1.09830 | 1.098428 | 1.098429 | 1.098429
w2 1.089540 | 1.10127 | 1.101402 | 1.101403 | 1.101403
w3 1.093946 | 1.10568 | 1.105808 | 1.105809 | 1.105809
w4 1102673 | 1.11440 | 1.114534 | 1.114536 | 1.114536
w5 1104180 | 1.11591 | 1.116041 | 1.116043 | 1.116043
w6 1113260 | 1.12499 | 1.125121 | 1.125123 | 1.125123

Once the three parameters have been acquired for Equation 12-1 this allows the WCRT
for each message to be calculated. The figures required are presented in Table 12-3.
There are five iterations provided as this is the point at which the response time

stabilises.

Table 12-3: Worst Case Response Time
MSg Rt Rt Rtmg Rtna Rtm_r,'

(ms) (ms) (ms) (ms) (ms)

m; 2.766566 | 2.778301 | 2.778428 | 2.778429 | 2.778429

m; 2.629540 | 2.641275 | 2.641402 | 2.641403 | 2.641403

ms3 2.573946 | 2.585681 | 2.585808 | 2.585809 | 2.585809

my 2.982673 | 2.994408 | 2.994534 | 2.994536 | 2.994536

ms 2.884180 | 2.895915 | 2.896041 | 2.896043 | 2.896043

mg 3.013260 | 3.024995 | 3.025121 | 3.025123 | 3.025123

m_ e Neleleo ¥ lels] 2 2NCH"MN0 2 2NCHOCcC D d2NCO2CC 2 d2NCO2CCc

189



Framework Implementation Procedure

12.2.4 Calculating Slack

The slack requires calculating and reallocating to obtain the final intermediate release
(r;) and deadline (d;) times. The initial r; time is zero ms and the final deadline D; is
2.6seconds. D; is obtained by summing all task periods. The slack on each path is
illustrated in Table 12-4. Once the slack per path is known, the r; and d; times of the
intermediate tasks can be obtained. Path P4 is the longest path through the task graph
(Figure 12-4).

The application deadline is 2.6 seconds which is obtained by summing the task periods.
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12.2.5 Final Task Graph Parameters

The recalculated r; and d; values are presented in Table 12-5. These figures include

slack reallocation.

Table 12-5: Task Graph Parameters
WCET Slack per

Task | (ms) ri (ms) d; (ms) task (ms)

T1 2.778429 | 0.000000 | 2.778429 | 647.4030

T2 2.641403 | 0.000000 | 2.641403 | 647.4373

T3 2.585809 | 0.000000 | 2.585809 | 647.4512

T4 2.994536 | 0.000000 | 2.994536 | 647.3490

T5 2.896043 | 2.994536E | 656.2341 | 647.3490

T6 3.025123 | 0.000000 | 3.025123 | 647.5071

The first validation check performed as per Equation 9-7 can be carried out. These
results are displayed in Table 12-6. A green box represents a valid configuration and

red box represents an invalid configuration.

Table 12-6: Final Task Graph Parameters
Re-cal r; | Re-calc  d; | Validation Check (ms)

Task | (ms) (ms)

T1 0.000000 650.1814 2.778429<650.1814

T2 0.000000 650.0787 2.641403<350.0787

T3 0.000000 650.0370 2.585809<650.0370

T4 0.000000 650.3435 2.994536<650.3434

T5 650.3435 1300.589 2.896043<(1300.589-650.3435)

T6 0.000000 650.5322 3.025123<650.5322

- A AAAAAA AR AAFD A AAFrAr-~ .~AA AR~

The figures in Table 12-6 are used in migrating to FlexRay. This is stage four (Figure 12-

5) in the migration development flow chart.
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12.2.6 Message Deadlines
Each messages transmission deadline is represented by Equation 9-8 and the

transmission delay is given in Equation 9-9. The transmission delay is the delay on the

CAN bus. These values are presented in Table 12-7.

12.2.7 Payload Configuration

Sections 12.2.7 to 12.3.2 are required for stage five of the migration as per the

flowchart (Figure 12-6).
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The CAN message sizes were presented in Table 12-1. For this Framework an overhead

size of 14 Bytes is configured. This comprises of;

e 5 Bytes Header

e 3 Bytes CRC

e 4 Bytes Clock and Security (there is a minimum variance required between
messages from different nodes so there is no overlap. Includes a safety margin
of 4us))

e 2 Bytes TSS

The total FlexRay frame size is composed of the overhead and the payload. The total
number of frames required to transmit the entire payload data at a chosen payload
size can be found. This figure is rounded up to the nearest integer value. This value can
be used to determine the total data for transmission including payload and overhead
data. These figures are presented in Table 12-8. The number of messages required
column is presents how many FlexRay messages would be required to transmit the
CAN data at the chosen payload. This includes all overheads. It is calculated by dividing

the CAN payload by the FlexRay payload.
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Table 12-8: Payload Calculations

Payload FlexRay | Number of Total
Size Fréme Mess§ges Bytes
Size Required
1 15 65 975
2 16 34 544
3 17 25 425
4 18 18 324
5 19 17 323
6 20 17 340
7 21 16 336
8 22 10 220
9 23 10 230
10 24 10 240
11 25 10 250
12 26 10 260
13 27 10 270

By focusing specifically on the FlexRay frame in the abstract implementation the
payload is configured as a two-byte-word. This allows only even payload values be
considered for configuration. This results in Equation 12-3. The condition max occurs

once there have been ten consecutive instances of D increasing.

D = Frame SizexCf For even pd;values of pd; ={j<j+1....j+10}

Equation 12-3: Revised Total FlexRay Data

By graphing the Cycle Data versus Payload Size results in the graph in Figure 12-7.
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Payload Value
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Total Data(Bytes)

Payload Size (Bytes)

A payload size of 12 Bytes results in a frame size of 26 Bytes being chosen. The FlexRay

bus speed is specified at 10Mbit/s.

12.2.8 Static Slot Size

The size of the static slot is calculated as per Equation 9-13 and is verified below.

gdStaticSlot = PsztesHélByteﬂ

10Mbit/s

gdStaticSlot = {26Bytes"

10Mbit /s

At a payload size of 12 Bytes the smallest configurable ST slot size is 35us due to

configuration restrictions of the DECOMSYS designer program.
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12.2.9 Discretising

The smallest message period whose value is obtained from the minimum td(m;) value
is 647ms, rounded down. With each ST slot size of 35us this results in a discretised

td(M;) value of 18485 slots.

12.2.10 Periodicity and Distance Requirement

To configure the FlexRay frame and the ST segment so as to assist the DYN segment
data in gaining access to the bus, the message periods are modified as explained in

section 9.8.6.

To meet these requirements the pni, value is modified (down from 647ms) to 640ms.
This results in @ minimum FlexRay frame of 1.25us. With 10 ST slots of 35us each, the
outcome is a ST segment size of 350us. This coupled with an NIT of 21MT and each MT

being 1us, results in a DYN segment size of 879us.

Proving that and frame size meets the periodicity and distance requirement:

1.25ms—->2.5ms->5ms—->10ms—>20ms—>40ms—>80ms—>160ms—>320ms—>640ms

Equation 9-15 provides a formal validation as also proven below.

2°.1.25ms < 640ms < 2'°-1.25ms
640ms < 640ms < 1280ms
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12.3 Dynamic Segment Verification

The DYN segment calculations are based on (Traian Pop, 2006) and explained in detail

in section 9.9. With a DYN segment size of 879us and a minislot size of 6us this results

in 146 minislots. This number of 146 minislots allocates enough slots to transmit each

DYN message. There is enough capacity to increase the minislot size if required.

12.3.1 Initial Dynamic Data

The initial CAN data for transmission in the DYN segment is presented in Table 12-9.

Table 12-9: Initial Dynamic Data

12.3.2 Dynamic Segment Analysis

CAN
stuffed | Task
Message
Task Message | Period
Size
Size (Bits) (ms)
(Bytes)
T1 8 135 20
T2 8 135 20
T3 8 135 10
T4 8 135 20
T5 8 135 20
T6 8 135 20
T7 8 135 20
™ R 135 20

The Stuffed Message Size column was calculated as per stuffed message sizes in Table

12-1. The dynamic segment RTA is carried out using a modified version of Equation 12-

1 as represented by Equation 12-4.
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Ry(D)=Cy + 0, +W, (D)

Equation 12-4: Response Time Analysis Equation

The value C,, (Table 12-10) can be calculated as per the ST segment using the bit time.

First the total FlexRay data including the overhead is calculated. The overhead is

calculated using the same method as that used for ST segment data. Once the total

communication time of all FlexRay data is know, it can then be assessed whether there

is enough time allocated in the DYN segment for the transmission of all DYN data in the

best case scenario, with no delays. Column two, FlexRay frame size, includes any

overhead. The bit time is 0.1us.

Table 12-10: Dynamic Communication Time

FlexRay frame Size
Message Cm (us) | Total Cp, (us)
(Bytes)
ml 22 17.6
m2 22 17.6
m3 22 17.6
m4 22 17.6
m5 22 17.6
mé 22 17.6
m7 22 17.6 204.8
m8 22 17.6
m9 20 16.0

The total communication time of 204.8us is obtained from equation 12-5 where n is

the number of DYN messages.

TotalDYN C,, = 3 (C,, .

Con)

Equation 12-5: Total DYN Communication Time

This provides enough time to transmit the DYN data if no blocking occurs. There are

879us available per cycle.
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The next value for defining is 8, the delay caused by a message being generated just
after its slot has passed. This results in Equation 12-6.

o, =FR(t)— (ST, +C,, + NIT)

us

Equation 12-6: §,, Delay

The parameters for each message delay 6m and associated parameters are shown in

Table 12-11.

Table 12-11: 3, Parameters

FR(t)(us) | STpus | Cm | NIT | 6,
Message

(us) | (ps) | (us) | (us)
m1 17.6 861.40
m2 17.6 861.40
m3 17.6 861.40
m4 17.6 861.40
m5 17.6 861.40
m6 17.6 861.40
m7 1250 | 350 [17.6 | 21 |861.40
m8 17.6 861.40

The final delay variable for calculation is wp, the delay caused by the transmission of

ST messages and higher priority DYN messages. This is illustrated in Equation 12-7.

w,, (t) = ST, + hp(m)+ms(m) + (pLatestTx.gdMinislot) + NIT

us

Equation 12-7: w,, Delay

The w,(t) parameters are presented in Table 12-12.
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Table 12-12: wy(t) Parameter

hp(m) platestTx.gdminisl | Ms(m) (us) Wn(t)
Message

(us) ot (us) (us)
ml 0.0000 48 0.0000 419
m2 17.600 48 6.0000 443
m3 35.200 48 12.000 466
m4 52.800 48 18.000 490
m5 70.400 48 24.000 513
m6 88.000 48 30.000 537
m7 105.60 48 36.000 561
m8 123.20 48 42.000 584

The pLatestTx value was 138 minislots, which was obtained from the designer tool.
Subtracting pLatestTx this from the total number of minislots (146) results in a value of
8 minislots. These 8 minislots are unusable for transmission. Using Equation 9-23
allows the ms(m) value to be obtained.

To obtain the final worst case response time, sum the three parameters (Cp, 6, and

wn) for each message. This gives the resulting delays as displayed in Table 12-13.

Table 12-13: Dynamic Response Times
Cn | 6m Wn(t) | Rm(t) | Frame

Message
(ps) | (us) | (us) |(ms) | Cycles

ml 17.6 | 861.40 | 419 | 1.2980 1.0384

m2 17.6 | 861.40 | 443 | 1.3216 1.05728

m3 17.6 | 861.40 | 466 | 1.3452 1.07616

m4 17.6 | 861.40 | 490 | 1.3688 1.09504

m5 17.6 | 861.40 | 513 | 1.3924 1.11392

mé 17.6 | 861.40 | 537 | 1.4160 1.1328

m7 17.6 | 861.40 | 561 | 1.4396 1.15168

m8 17.6 | 861.40 | 584 | 1.4632 1.17056
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12.4 Final Abstract Case Parameters

Using the framework, migration is undertaken commencing with the CAN application

as illustrated in Figure 11-2. The FlexRay parameters are obtained by following the

procedural steps. The FlexRay parameters obtained are:

e Frame Length (1250us)

e Static Segment Size (350us)

e Payload Size (6 2-byte-words)

e Static Slot Size (35us)

o NIT (21us)

e DYN Segment Size (879us)

The Parameters as they are configurable in the designer tool are illustrated in Figure

12-8.

Parameter name Yalue Uit Constraint (FlexRay 2.1, appendix B)
Cycle Length

gMacroPerCycle 1250

Static Segment

gMumberOF Staticlots 10

dataticslot k] MacraTicks

P avloadLengthatatic 6 16bit words

Dynamic Segment

gdMinislat & MacraTicks

Network Idle Time

gahIT 21 MacroTicks

FlexRay Communication Cycle

[ i
. Static Segment: 10 Static Slot{s), 350 us

|:| Dynamic Segment: 146 Minislat(s), 879 us

@ Metwaork Idle Time + Symbol Window: 2 s
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From the framework a FlexRay frame size of 1.25ms is acquired. This is composed of a
ST segment of 350us (10 slots of size 35us), a DYN segment size of 879us (146 slot of
6us in size) and a NIT of 21us.

These parameters would be used to configure the FlexRay frame but this step is not

implemented in this test case (it is used in test cases two and three).

12.5 Experimental Implementation (ACC) (Test Case 2)

While the above traction control model proved that it is possible to successfully
abstract the parameters necessary to configure a FlexRay frame, these results were
not implemented in hardware. This is required to back up the claim that the
parameters obtained allow a FlexRay application to operate successfully meeting
deadline, timing and busload constraints. This is proven using an Adaptive Cruise
Control (ACC) system. A completely new application, that resulted in a different (to the
Traction Control application previously used) task graph configuration, was used to
demonstrate that the previous migration was not a once off chance occurrence. The

results validating deadlines and busloads are presented in Chapter 13.

The ACC model used is also found in (Madsen, 2007) and (Riis, 2007). The model was
modified slightly to increase the complexity. By adding a precedence constraint that
the messages of Task 1 and Task 2 (in any order) have to be received by Task 3 before
Task 3 can proceed. This results in the ACC task graph as illustrated in Figure 11-3. The
CAN bus bit rate is 125kbit/s and the FlexRay bus used is specified at a bit rate of
10Mbit/s
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12.5.1 Parameter Analysis

In (Madsen, 2007) the author provides the WCET values. The initial CAN parameters
used in this test case are presented in Table 12-14. The maximum message sizes are
used in all messages. The initial release time r;is 0Oms and the final task graph deadline

D;is 120ms.

Table 12-14: CAN Initial Parameters

Task | WCET | Deadline | Period | Size Node
(ms) | (ms) (ms) (Bytes)

T1 0 20 20 8 1

T2 0 20 20 8 1

T3 6 20 20 8 2

T4 2 20 20 8 2

The tasks were assigned to a node on the basis of the function performed. The ‘action’

tasks were placed on node 1 and the ‘computational’ tasks were placed on node 2.

12.5.2 Intermediate Task Values

To be able to find the intermediate task deadlines the slack requires reallocation

equally among all tasks. There are only two possible paths in this task graph

configuration. Table 12-15 presents the slack per task on each path.

Table 12-15: Obtaining Slack Parameter

Final Slack per Path per Task
Path | Tasks on Path Total Execution Time (ms)
(ms)

P1 T1,T3,T4,T5, T6 16 17.3333
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As can be seen in Table 12-16 a slack of 17.33ms is to be reallocated equally among all

tasks.

Table 12-16: Task Graph Parameters

Task | WCET (ms) | Ri(ms) | Di(ms) | Slack (ms)
T1 0 0 0 17.3333
T2 0 0 0 17.3333
T3 6 0 6 17.3333
T4 2 6 8 17.3333
T5 6 8 14 17.3333

Equation 9-7 verifies the task graph parameters as illustrated in Table 12-17.

Table 12-17: Final Task Graph Parameters

Task | Re-calr;(ms) | Re-calcd;(ms) | Validation Check (ms)
T1 0 17.3333 0<17.33333

T2 0 17.3333 0<17.3333

T3 34.6666 57.6666 6<(57.6666-34.6666)
T4 | 57.6666 76.9999 2<(57.9999-76.9999)

12.5.3 Message Deadlines

Each messages transmission deadline is represented by Equation 9-8 and the

transmission delay is given in Equation 9-9. These values are presented in Table 12-18.
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Table 12-18: Message Deadlines
Transmission Transmission

Deadline (ms) Delay (ps)

ml 17.333 512
m2 17.333 512
m3 17.000 512
m4 17.333 512

12.5.4 Payload Configuration

The overhead is defined as 14 Bytes as specified in section 12.2.7. As previous, the

payload is chosen heuristically depending on the total number of bytes transmitted per

payload and frame size. Table 12-19 presents the payload calculations.
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Table 12-19: Payload Calculations

Payload FlexRay Number of Total
Size Fra.lme Messe.lges Bytes
Size Required

1 15 40 600
2 16 20 320
3 17 15 255
4 18 10 180
5 19 10 190
6 20 10 200
7 21 10 210
8 22 5 110
9 23 5 115
10 24 5 120
11 25 5 125
12 26 5 130
13 27 5 135

Graphing the Cycle Data versus Payload Size results in that graph in Figure 12-9.
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Payload Value
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The payload size of 10 Bytes is chosen which results in a frame size of 24 Bytes

including the calculated overhead.

12.5.5 Static Slot Size

The size of the static slot is calculated as per Equation 9-13 and verification is

presented below. A slot size of 19.2us is obtained but this is rounded up to 20us.

gdStaticSlot = -
10Mbit/s

IOBytes+14Bytes"

gdStaticSlot :[ 24Bytes w

10Mbit /s

At a payload size of 10 Bytes the smallest configurable ST slot size obtained using

DECOMSYS designer is 33us. For the purpose of implementation a static slot size of
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40us is chosen as it allowed a uniform fit for slot delays, otherwise a ST slot size of

33us is chosen.

12.5.6 Discretising

The smallest message period whose value is obtained from the minimum td(m;) value
is 14ms. With each ST slot size of 35us this results in a discretised td(M;) value of 400

slots.

12.5.7 Periodicity and Distance Requirement

To configure the FlexRay frame and the ST segment, so as to assist the DYN segment
data gaining access to the bus, the message periods are modified as explained in

section 9.8.6.

To meet these requirements the pmin value of 14ms is chosen. This results in a
minimum FlexRay frame of 1.75ms. With 6 ST slots of 40us each this results in a ST
segment size of 240us. This coupled with an NIT of 25MT with each MT being 1us,

results in a DYN segment size of 1485us.

Proving that and frame size meets the periodicity and distance requirement:

1.75ms—=>3.5ms—->7ms—->14ms

Equation 9.15 provides a formal validation as proved below.

2%.1.75ms <14ms < 2*-1.75ms

14ms <14ms < 28ms
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12.5.8 Dynamic Segment Verification

The dynamic segment size is 1485us as worked out in the previous section. This works
out at 247 minislots with each minislot size 6MTs. Each MT is 1us. There are only two
tasks transmitted in the DYN segment. There are enough slots allocated for the

number of messages. Each message is configured to be 4 Bytes in size.

12.5.9 Initial Dynamic CAN Data

CAN data was assigned on the basis that at a minimum of one task would be
designated to each node. This format was chosen to guarantee one dynamic message
would be transmitted on the bus from each node. The dynamic tasks were configured
to transmit at semi-times within a defined range. This range was between 0-20ms. This
aspect was implemented to demonstrate that dynamic messages could get access to

the bus regularly on either node at random times.

12.6 Dynamic Segment Analysis

RTA is carried out using Equation 12-8.

R,(D)=Cy + 0, +W, (D)

Equation 12-8: Response Time Analysis Equation

The value C,, can be calculated as per the ST segment previously. First the total FlexRay
data including the overhead is required. The overhead is calculated using the same
method applied in the ST segment. This results in an overhead of 14 Bytes. Once the
total communication time of all FlexRay data is know it can then be assessed whether
there is enough time allocated in the DYN segment for the transmission of all DYN data
in the best case scenario with no delays. Column three, FlexRay frame size, includes

any overhead. This is shown in column three in Table 12-20.

209



Framework Implementation Procedure

Table 12-20: Aperiodic CAN Data

FlexRay FlexRay Cn Total C,, (per
Message .
Bit Time | Size (Bytes) | (ps) Node)(us)
ml 18 17.6
0.1us 14.4

The total communication time of 14.4us per node allows enough time to transmit the
DYN data if no blocking occurs. There are 1485us available (in the DYN segment) per

cycle.

The next value for defining is 6, the delay caused by a message being generated just
after its slot has passed. This results in Equation 12-9.

o, = FR(t)—(ST,,, +C, + NIT)

us

Equation 12-9: §,, Delay

The parameters for each message delay 6m and associated parameters are shown in

table 12-21.

Table 12-21: 3, Parameters
FR(t)(us) | STpus | Cm(us) | NIT | &m(ms)

(us) (ps)

ml 14.4 1.4806

Message

The final delay variable for calculating is w,, the delay caused by the transmission of ST

messages and higher priority DYN messages. This is shown in Equation 12-10

w,, (t) = ST, +hp(m)+ms(m) + (pLatestTx.gdMinislot) + NIT

Equation 12-10: w,, Delay
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Table 12-22: wy(t) Parameter

hp(m) | STyys | platestTx. | NIT (us) | ms(m) | wy(t)
Message | (us) (us) | gdminislot (us) (us)
(us)
m1 n 4R n nnnn ann

The plLatestTx value was 239 minislots which was obtained from the designer tool.
Subtracting pLatestTx this from the total number of minislots (247) results in a value of
8 minislots. These 8 minislots are unavailable for transmission. Equation 9-22 produces
the ms(m) value.

To obtain the final worst case response time, sum the three parameters (Cp, 6, and

wn) for each message. This presents the resulting delays as displayed in Table 12-23.

Table 12-23: Dynamic Response Times
Cn | 6m Wn(t) | Rm(t) | Frame

Message
(ps) | (us) | (us) |(ms) | Cycles

ml 14.4 | 1480.6 303 | 1.7980 1.027429

12.7 Final Experimental Case Parameters

The FlexRay parameters obtained for the experimental implementation case are:

e Frame Length (1750us)

e Static Segment Size (240us)

e Payload Size (5 2-word-bytes)
e Static Slot Size (40us)

e NIT (25us)

e DYN Segment Size (1485us)

Figure 12-10 illustrates the parameters as they appear using the FlexRay configuration

designer tool (DECOMSYS designer).
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Parameter name Walue Unit Constraint (FlexRay 2.1, appendix B
Cycle Length

giacroPerCyce 1750

Static Segment

ghlumberOfStaticHlots &

gdStaticSlot 40 MacraTicks
oPayloadlength3tatic 5 16hit words
Dynamic Segment

gdMinislot & MacraTicks
Network Idle Time

gdhIT 25 MacraTicks

FlexRay Communication Cyle

. Static Seqment: 6 Static Slok(s), 0 us
|:| Dynamic Seqment: 247 Minishot{s), 1485 us
@ Metwork Idle Time + Symbol Window: 5 us

The final FlexRay frame size is 1.75ms. This is composed of a ST segment of six slots

40us in size, a DYN segment of 247slots 6us in size and finally a NIT of 25us.

These final case parameters are used in stage six (Figure 12-11) of the migration
framework development. These parameters are used to configure the FlexRay
applications parameters that were implemented in the development environment. The

results of this implementation are presented in Chapter 13.

Figure 12-11: Framework Development Stage
Six
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12.8 Verification of Time-Triggered Properties (Test Case 3)

This test case was configured to demonstrate that bus loading would not have an
adverse effect on the execution time of an application configured to operate on the ST
segment of the FlexRay protocol. For this verification it is required to assign all
application data to the ST segment. This is due to the ST segment containing time-
triggered properties. The task graph model is presented in Figure 11-5. The results
validating deadlines and busloads are presented in Chapter 13. The CAN bus bit rate
used is 125kbit/s and the FlexRay bus bit rate used is specified at 10Mbit/s

12.8.1 Parameter Analysis

The WCET parameters are in keeping with those used in the previous two test cases.
The initial CAN parameters used in this test case are presented in Table 12-24. The
maximum message payload size is used in all messages. The initial release time r; is

O0ms and the final task graph deadline D; is 40ms.

Table 12-24: CAN Initial Parameters Test Case Three

Task | WCET | Deadline | Period | Size
(ms) | (ms) (ms) (Bytes)

T1 4 4 4 8

T2 4 4 4 8

T3 4 4 4 8

T4 4 4 4 8

TS5 4 4 4 8
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12.8.2 Intermediate Task Values

To be able to find the intermediate task deadlines the slack needs to be reallocated
equally among all tasks. There are is only one possible path through this task graph

configuration (Figure 12-12).

N VRV AV VAV

2 12-12:
Chrough
Graph

Table 12-25 presents the slack per task on each path.

As illustrated in Table 12-26 a slack of 1.714ms is to be reallocated equally among all

tasks.
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Table 12-26: Task Graph Parameters

Task | WCET (ms) | Ri(ms) | Di(ms) | Slack (ms)
T1 4 0.000 5.714 1.714
T2 4 5.714 11.429 1.714
T3 4 11.429 17.143 1.714
T4 4 17.143 22.857 1.714
T5 4 22.857 28.517 1.714

Equation 9-7 verifies the task graph parameters as illustrated in Table 12-27.

Table 12-27: Final Task Graph Parameters

Task | Re-cal r;(ms) | Re-calcd;(ms) | Validation Check
T1 0.000 5.714 0<5.714

T2 5.714 11.429 5.714<11.429
LE] 11.429 17.143 11.429<17.143
T4 17.143 22.857 17.143<22.857
15 22.857 28.517 22.857<28.517

12.8.3 Message Deadlines

Each message’s transmission deadline is represented by Equation 9-8 and the

transmission delay is given in Equation 9-9. These values are presented in Table 12-28.
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Table 12-28: Message Deadlines

Transmission Transmission
Deadline (ms) Delay (ps)
ml 1.714 512
m2 1.714 512
m3 1.714 512
ma 1.714 512

12.8.4 Payload Configuration

The overhead is defined as 14 Bytes as specified in section 12.2.7. As in previous test

cases the payload is chosen heuristically depending on the total number of bytes

transmitted per payload and frame size. Table 12-29 presents the payload calculations.

Table 12-29: Payload Calculations

Payload FlexRay Number of Total
Size Fréme Mess:;-\ges Bytes
Size Required

1 15 56 840
2 16 28 448
3 17 21 357
4 18 14 252
5 19 14 266
6 20 14 280
7 21 14 294
8 22 7 154
9 23 7 161
10 24 7 168
11 25 7 175
12 1R 7 1292
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Graphing the Total Data versus Payload Size results in the graph in Figure 12-13.

Payload Value

1000
800 +\
600 \
400 \

200 \”\

N

Total Data(Bytes)

0 —T T I I —T T )
1 23 456 7 8 91011121314151617 18

Payload Size (Bytes)

The payload size of 14 Bytes is chosen which results in a frame size of 28 Bytes

including the predetermined overhead Static Slot Size

The size is the static slot is calculated as per Equation 9-13 and is verified below. A slot
size of 22.4us is obtained but this is rounded up to 23us.

gdStaticSlot = {”BVWSH“BVIES]

10Mbit/s

gdStaticSlot = {%Byteﬂ

10Mbit /s

At a payload size of 14 Bytes the smallest configurable ST slot size using DECOMSYS
designer is 37us. Being unable to set the static slot size to the figure extracted from the

framework, this introduces redundancy into each static slot.
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12.8.6 Discretising

A message deadline delay td(m;) value of 1.7ms is extracted from the framework. Each
ST slot is of size 37us, this results in a discretised td(M;) value of 459 slots as per

equation 9-14.

12.8.7 Periodicity and Distance Requirement

To configure the FlexRay frame and the ST segment, so as to assist the DYN segment
data in gaining access to the bus the message periods are modified as explained in
section 9.8.6. For this test case all data used for loading the bus is placed in the ST
segment. This resulted in four extra messages being added to the bus. This
configuration demonstrates that by adding extra data in the ST segment the timing
deadlines of the application are not affected. The four extra messages were assigned
the highest identifiers possible to further demonstrate that this does not aid access to
the bus. DYN slots were configured but unused for the purpose of demonstrating their

potential use.

To meet these requirements the pp, value of 1.024ms is chosen (refer to section 9.8.6
for further details). This results in a minimum FlexRay frame of 512us. The ST segment
comprised of 11 ST slots of 37us each, resulting in a ST segment size of 407us. This
coupled with an NIT of 18MT with each MT being 1us. This results in a DYN segment
size of 87us.

Proving the frame size meets the periodicity and distance requirement:

0.512ms->1.024ms

Equation 9.15 provides a formal validation as proven below.

2'.0.512ms <1024ms < 2% -0.512ms
1.024ms <1.024ms < 2.048ms
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In this test case there is no DYN segment verification. While DYN slots were included in
the configuration this was done to demonstrate that they could be included if
required. Implementing the DYN segment would not add to this test case due to the
DYN segment being event-triggered and the purpose of this test case was to

demonstrate FlexRay’s time-triggered properties.

12.9 Final Practical Case Parameters

The FlexRay parameters obtained for the practical implementation case are:

e Frame Length (512us)

e Static Segment Size (407us)

e Payload Size (7 2-word-bytes)
e Static Slot Size (37us)

e NIT (18us)

e DYN Segment Size (87us)

Figure 12-14 illustrates the parameters as they appear using the FlexRay configuration

designer tool (DECOMSYS designer).
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rilm FlexRay Configuration Wizard: (1/2) General Cluster and Node Configuration g@@

FlexRay Network (Cluster) Configuration Network [ | - |
Parameter name Value Unit Constraint (FlexRay 2.1, appendix 5)
Cycle Length

gMacroPerCyde 512

Static Segment

ghlumberOfStaticSlots 11

gdStaticSlot 37 MacroTicks

gPayloadLengthStatic 7 16bit words

Dynamic Segment

gdMinislot [ MacroTicks

Metwork Idle Time

gdNIT 13 MacraTicks

FlexRay Communication Cyde

. Static Segment: 11 Static Slot{s), 407 us

|:| Dynamic Segment: 14 Minislot(s), 87 us

E Network Idle Time + Symbol Window: 18 us

FlexRay Controller (Node) Configuration Node FlexRay_Controller_1 -
Parameter name Value Unit Constraint (FlexRay 2.1, appendix 5)
Dynamic Segment

pPayloadLengthDynMas 16 16 bit words

Startup | Sync

pkeySlotld 3

Network Violations: 0, Node Violations: 0

Calculate > I Cancel

The final FlexRay frame size is 512us. This is composed of a ST segment of eleven slots
37us in size, a DYN segment of 14slots 6us in size and finally a NIT of 18us. These
parameters are used to configure the FlexRay application. The results of this

implementation are presented in Chapter 13.

12.10 Conclusion

This chapter presents the actual migration in the context of applying facts and figures
to the abstract case. There are three test cases presented; The Abstract
Implementation, The Experimental Implementation and The Verification of Time-
Triggered Properties.

The abstract implementation (TC) demonstrated the ability of the framework to handle

a complex structured application with complex constraints. The Experimental
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implementation (ACC) demonstrated the frameworks ability to handle real constraints
and also the frameworks flexibility in handling a different scenario application. The
third test case, Verification of Time-Triggered Properties, simply assigns data (both
from the application and loaded data) to the ST segment. A different task graph is also
processed through the framework compared to the previous two test cases. This
chapter presents the parameters necessary to configure a FlexRay frame for all test

cases.

To assess the frameworks success in delivering parameters that are capable of

producing a successful FlexRay configuration; task, application and deadlines are

required. These are presented under varying busloads in Chapter 13.
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13 Test Results & Verification:

13.1 Introduction

Chapter 12 presented the parameters as extracted from the migration framework after
undergoing the migration procedure. The Abstract Implementation (TC) (Test Case 1)
(Section 12.2) demonstrated the frameworks success at extracting results from a
complex application scenario. The Experimental Implementation (ACC) (Test Case 2),
while having reduced complex task graph structure, the ACC model demonstrated the
generality of the framework under diverse conditions. The Verification of Time-
Triggered properties (Test Case 3) presented another diverse task graph structure. To
fully verify the migration procedure the Experimental Implementation was
implemented in testing environment.

The ACC application was implemented in both CAN and FlexRay separately on the
Fujitsu SK-91F467D development boards as per the system design specified in Chapter
11. The framework is considered successful if the CAN application is configured on the
FlexRay protocol. Verification was carried out by obtaining message and application
deadlines under various busload conditions and comparing the results obtained from
the CAN and FlexRay implementations. The FlexRay application was tested without
redundancy configured (only CH A transmits the ACC data) and with redundancy (ACC
data is transmitted on CH A and CH B) to verify that it does not adversely affect
timings.

The third test case results were obtained by configuring the CAN and FlexRay
configurations using CANalyzer’s block generator function. The test case is considered
successful if the FlexRay’s applications timings are not affected by increases to the

busload.

223



Test Results & Verification

13.2 Test Case 2: ACC Configuration

The node configuration is illustrated in Figure 13-1 and 13-2. The same tasks are
assigned to the same nodes for the CAN and FlexRay implementations. All busload
data is recorded over a 30 second period and the CAN bus operates at 125kbit/s while
FlexRay operates at 10Mbit/s. Where a 30 second sample period is not required a 30

cycle period suffices in such instances.

The messages ID1-ID6 (ACC application messages) are assigned to the ST segment in
FlexRay because they are considered critical and ID7 and ID8 are assigned to the DYN
segment due to them being perceived less critical than the application data.

The Standard Configuration is illustrated in Figure 13-1: The red lines indicate the

messages that are transmitted across the bus.

Node 1 Node 2

o

O,
O+ ©
©
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The Minimal Configuration is illustrated in Figure 13-2: The red lines represent
communication across the bus. The blue lines are only for communication within the

node.
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This chapter completes stage seven of the framework development as illustrated in

Figure 13-3.

—
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13.3 CAN Results

The CAN test cases were divided into two sub sections to provide more comprehensive

testing;
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e CAN Standard — In this case all data is transmitted across the bus. It is possible

another node or application could potentially require this data. See Figure 13-1.

e CAN Minimal — In this minimal configuration only the data required by inter
communicating nodes is transmitted. All intra communicating data is not

transmitted. See Figure 13-2.

CANalyzer detects a message when it appears on the bus; this is not necessarily the
start of the application cycle. The application cycle starts when the first message in the
application is generated. In the CAN test cases it is assumed that the application cycle
starts 919us before the first message appears on the bus. This value of 919us is chosen
because this is the time worked out for a message to appear on the bus after it has
been generated. Because Test case 1 was completely theoretical no physical testing is

required. All results that follow are for Tests Cases 2 and 3.

13.3.1 Test Case 2: CAN Standard Cases

Test Case2 results are split into CAN and FlexRay results. A further subdivision is
created where results are divided into categories Casel,2 for CAN and 3,4 for FlexRay
and the final division is into A, B, C for CAN and A, B, C and D for FlexRay depending on
load levels. The FlexRay sub categories are explain in a paragraph prior to the results
being presented.

Test Case 3 is divided into two categories, CAN and FlexRay.

13.3.1.1 CASE 1A: Normal Load
In this test case the total bus load is averaging at 33.09% for all CAN messages. The

individual breakdown is presented in Table 13-1
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Viewing Table 13-1 it is obvious that the application data from the ACC system (IDs 1-6)
is not loading the CAN bus to any critical levels. This is graphically represented in Figure

13-4.

Busload
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35 ~ =—1|D1 Bus Load
30 e |D2 Bus Load
=
T 25 ====|D3 Bus Load
S 20 ——— D4 Bus Load
%]
a D5 Bus Load
10+
s == |D6 Bus Load
ID7 Bus Load
0 rrrrrrrrrrrrrrrrrrrrrrrrrrrrno usoa
1357 911131517192123252729 ID8 Bus Load
0,
Time (ms) Total Bus Load%

Message deadlines and application deadlines will require examination. With 30.09%
busload overall message and application deadlines should be readily attainable. Each

CAN message has a deadline as shown in Table 13-2. Only application messages of ID1-
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ID6 are shown here as messages ID7 and ID8 are pseudo randomly sent. This results in
higher bus loads for ID7 and 8. From Figure 13-5 the times that the application

messages were transmitted on the bus are illustrated.

Message Transmission Times

25

15
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Time(ms)

o++——+—+r—r+r7rrrrrrrrrrrrTrrrrrTT T T T T

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Cycle Number

e===|D] e===|D2 ===|D3 ID4 ID5 ID6

The deadlines for each message are presented in Table 13-2. It is immediately

apparent that none of the deadlines are violated.

Table 13-2: Message Deadlines

Message ID | Deadline (ms)
1 20
2 40
3 60
4 80

To examine the message deadlines in relation to the application deadline it shows that
the application deadline is easily attainable. The maximum cycle time was 21.12ms,

with a minimum of 19.69ms. The average cycle time was 19.10ms, which easily allows
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the 120ms deadline time to be met. This is illustrated in Figure 13-6, where the Y-axes

are scaled. The standard deviation in the application cycle time is 369us.

Application Cycle Time
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Cycle Number

e Cycle Deadline === Actual Cycle Time

Finally it can be shown how many frames are sent per cycle. This value can be
compared with FlexRay’s ST and DYN segments separately. Segregating the data it is
shown that six messages between ID 1 to ID 6 are transmitted per application cycle as
predicted. The total number of frames per cycle value fluctuates in CAN due to the
messages with set deadlines and the messages with random transmit times both
transmitting in the same cycle. The standard deviation is 5.99 frames per cycle. Figure
13-7 shows the number of frames fluctuating per cycle due to both the application
data and random data being displayed. The maximum number of frames per cycle is

53, with the average being 42.43.
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13.3.1.2 Case 1B: 60% Load

Increasing the busload to 60% is accomplished through the addition of two extra

messages generated by CANalyzer. These messages we assigned IDs close to the

highest priorities available (ID 11 and ID 12). The messages were set to transmit at

periods of 7ms. The busload values are presented in Table 13-3 below.

Table 13-3: 60% Busload

Msg | Min Max Average
ID Load% | Load% | %

ID1 0.74 0.84 0.78
ID2 0.74 0.84 0.77
ID3 0.74 0.84 0.77
ID4 0.74 0.84 0.77
ID5 0.74 0.84 0.77
ID6 0.74 0.84 0.78
ID7 13.64 | 18.56 16.05
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The figures presented in Table 13-3 are illustrated in graph format in Figure 13-8.

Bus Load
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@ 20 ID7 Bus Load %
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0 e e ID11 Bus Load %
135 7 911131517192123252729 ID12 Bus Load %
X Total Bus Load %
Time (ms)

With an average busload of 58.71% and the maximum not exceeding 61.80% it is
expected that deadlines are not violated. The CAN message deadlines are the same as
for the previous case 1A. Only messages of ID1-ID6 are shown here as messages ID7
and ID8 are randomly sent and messages ID11 and ID12 are transmitting periodically
every 7ms. Figure 13-9 illustrates the transmit times of the application messages. The
deadlines are as presented in Table 13-2. The final message transmit time as seen from
the graph in Figure 13-9 is at the 20ms mark where as the deadline is 120ms. The

application is therefore still meeting its deadlines.
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Examining the deadlines in relation to the application deadline Figure 13-10 illustrates

that the application deadline is not violated (the Y-axes are scaled). The maximum

cycle time is 21.45ms with a minimum of 19.70ms. The average cycle time is 20.28ms

which is well below the 120ms deadline time. There is a standard deviation in the

application cycle of 503us.
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Figure 13-10: Application Cycle Times at 60% load
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Figure 13-11 illustrates the number of transmitted frames fluctuating per cycle. The
maximum number of frames per cycle is 86 at 60% load; with an average of 75.63
frames per cycle and a standard deviation of 5.22 frames per cycles. As in the previous

case there are six application messages transmitted per application cycle.

frame/cycle
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§80/A A/\‘
%70 VMV/\NV
3 \Y}
gso
2
5 +—+———TTTTr"rTTTTTTTTTTTTTT

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Cycle Number

= frame/cycle

13.3.1.3 Case 1C: Maximum Load

To obtain a maximum busload, another two extra messages were generated on the
bus with IDs of 10 and 13. These were again generated by CANalyzer. The messages
ID10-13 were set to transmit at 1ms periods to put as much data on the bus as

possible. The busload values are presented in Table 13-4 below.
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The figures presented in Table 13-4 are illustrated in graphically in Figure 13-12.
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With an average busload of 96.29%, it is expected that deadlines will be missed. This
should be more pronounced for the lower priority messages. Only the applications
messages (ID1-1D6) are shown here. Messages ID7 and ID8 are randomly sent and not

considered critical and messages ID10-13 are set to transmit periodically every 1ms
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and are present with the purpose of loading the CAN bus. The application messages

are still meeting their deadlines as illustrated below in Figure 13-13.

Message Transmission Times
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In Figure 13-13 all message deadlines are being met. The deadlines are provided in
Table 13-2.

The messages generated by CANalyzer with the lower priorities are struggling to meet
their deadlines. This results in messages with ID 10-13 being delayed gaining access to

the bus by approx 4ms later than what was set. This is illustrated in Table 13-5.

Table 13-5: Message Delays
Msg | Set Min | Max Average

ID Period | (ms) | (ms) (ms)

(ms)

ID10 1 0.98 | 496.10 5.48

ID11 1 0.97 | 402.39 5.40

Examining the deadlines in relation to the application deadline, it shows that the
application deadline is still not being violated even though the lower priority messages

experience contention when accessing the bus. The reason for the application deadline
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not being violated is due to the message periods being significantly larger than those
not associated with the application. This results in the messages getting access to the
bus due to higher priority and occurring less frequently. The maximum application
cycle time was 33.77ms with a minimum of 33.32ms. The average cycle time was
33.57ms which is vastly below the 120ms deadline time. The standard deviation is

91.34ps. Figure 13-14 illustrates this with the Y-axes scaled.
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Figure 13-15 illustrates the number of frames fluctuating per cycle. The maximum
number of frames per cycle is 125, at the maximum load, with an average of 124.20
frames per cycle. The standard deviation figure of 0.48 frames per cycles is small due
to the upper limit being reached in terms of the number of frames that the bus can
physically handle. There are six application messages (ID1 - ID6) transmitted per

application cycle in keeping with previous case results.
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frame/cycle

125.5
125

124.5 -
124 -
123.5

V

= frame/cycle

123
122.5

Number of Frames

Cycle

122 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrri
1357 91113151719212325272931

13.3.2 CAN Minimal Cases

The minimal configuration test cases are configured as per Figure 13-2. It is expected

that the results obtained in the minimal test case would be similar to those obtained

through the normal test case.

13.3.2.1 CASE 2A: Normal Load

In this test case the total bus load is averaging at 33.40% for all CAN messages. The

individual breakdown is presented in Table 13-6

Table 13-6: Normal Busload

Msg ID Min Max Average %
Load% Load%
ID1 0.74 0.84 0.77
ID2 0.74 0.84 0.77
ID5 0.74 0.84 0.77
ID6 0.74 0.84 0.77
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Viewing Table 13-6 it is expected that this level of bus loading (Max 32.40%) should not

affect any messages timing based on observations in the previous test case.

Message deadlines and application deadlines will be examined. Each CAN message has
a deadline of 20ms as it was in the “Normal Case”. Only messages of ID1, 2, 5 and 6 are
presented here as messages ID 3 and 4 are not transmitted across the bus. Messages
ID7 and ID8 are randomly transmitted. Each message deadline is as presented in Table
13-2. Figure 13-16 illustrates the message transmit times. The results are similar to

those obtained in the previous test case
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The application deadline is not corrupted as illustrated in Figure 13-17. The maximum
cycle time was 24.51ms and a minimum of 23.54ms. The average cycle time was
23.77ms which is below the 120ms application deadline time. The standard deviation
in the application cycle is 328.43us. In the minimal configuration there are four
messages per application cycle. This is two less than in the normal configuration. The

Y-axes in Figure 13-17 are scaled.
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Figure 13-18 displays the number of frames fluctuating per cycle. The standard

deviation is 5.05 frames per cycle. The maximum number of frames pre cycle is 49,

with the average being 40.06 frames per cycle.
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Figure 13-18: Number of Frames per Cycle at Normal Load
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13.3.2.2 Case 2B: 60% Load

Increasing the busload to 60% required the addition of two extra messages generated
by CANalyzer. These additional messages we assigned IDs close to the highest priorities
available (ID 11 and ID 12). The messages were set to transmit at periods of 7ms. The

busload values are presented in Table 13-7 below.

Message Transmission Times
30

25— — —_—
20
15
10

Time (ms)

O+ rrrrrrrrrrrrrrTTTTT T

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Cycle Number

= |D] e====|D2 e===|D5 ID6

With an average busload of 56.78% and the maximum not exceeding 59.30% it would
be expected that messages completed in advance of their deadlines. The CAN message
deadlines are as presented in Table 13-2. Only the application messages (ID1, 2, 5, and

6) are presented here as messages ID7 and ID8 are randomly sent and messages ID11
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and ID12 are transmitting periodically every 7ms. All data generated by CANalyzer gets
access to the bus without any delays therefore meeting the associated message

deadlines. The message transmit times are illustrated in Figure 13-19.
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Examining the deadlines in relation to the application deadline it is proven that the
application completes prior to its deadline in Figure 13-20. The maximum cycle time is
26.04ms with a minimum of 24.47ms. The average cycle time is 25.04ms which is

below the 120ms deadline time. There is a standard deviation of 475.50us.

Figure 13-21 shows the number of frames fluctuating per cycle. The standard Deviation

is 4.58 frames per cycle. The max number of frames per cycle is 82 at 60% load, with an

average of 72.83 frames per cycle.

241



Test Results & Verification

frame/cycle

85
32 _'m o /A\'A A—A /
’s " A S AVAN |
7 —~ VNN
60
55

5 +r—rr—r—7—TT—rr—TTrrrrrrr—TT T T T T T T TTrTrm

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of Frames

Cycle Number

= frame/cycle

13.3.2.3 Case 2C: Maximum Load

To obtain the maximum busload two extra messages were generated on the bus with
IDs of 10 and 13 as was done in Case 1C. The messages ID10-13 were set to transmit at
1ms periods to place as much data on the bus as possible. The busload values are

presented in Table 13-8 below.

Table 13-8: Maximum Busload
Msg | Min Max Average | Total | Total | Average

ID Load% | Load% | % Min Max | %
% %

ID1 0.74 0.84 0.77

ID2 0.74 0.84 0.77

ID5 0.74 0.84 0.77

ID6 0.74 0.84 0.77

ID7 13.18 16.89 14.79
96.23 | 96.60 96.39

ID8 9.65 12.71 11.05
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With an average busload of 96.39% it would be expected that deadlines are missed.
This would be more pronounced for lower priority messages. Only application
messages (ID1, 2, 5 and 6) are shown here due to messages ID7 and ID8 being
randomly sent and messages ID10-13 are set to transmit periodically every 1ms. The
application messages with ID1, 2, 5 and 6 are still meeting their deadlines as illustrated

below in Figure 13-22. The deadlines are presented in Table 13-2.
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Because of the large amount of slack in each message (e.g. ID5 transmission time of
17.235ms and a deadline of 100ms) and the low transmission frequency when
compared to the other messages in the system, it is unlikely that the application will
fail in its current configuration. The messages generated by CANalyzer with the lower
priorities are struggling to meet their deadlines. This results in messages with ID 10-13
being delayed gaining access to the bus by approx 4ms after what was set. This is

illustrated in Table 13-9.
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Table 13-9: Message Delays

Msg | Set Min | Max Average

ID Period | (ms) | (ms) (ms)
(ms)

ID10 1 0.98 | 2012.66 5.39

ID11 1 0.97 | 2001.95 5.83

Examining application execution and deadline times (Figure 13-23) it shows that the

application completes execution prior to its deadline as in the previous CAN test cases.

The maximum cycle time was 26.03ms and a minimum of 24.76ms. The average cycle

time was 25.68ms which is below the 120ms deadline time. The standard deviation is

338.72us. The Y-axes are scaled in Figure 13-23.
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Figure 13-24 presents the number of transmitted frames fluctuating per cycle with a

standard deviation of 0.50. The maximum number of frames per cycle is 125 at the

maximum load, with an average of 124.50 frames per cycle.
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13.4 FlexRay Results

The FlexRay results are divided into two sections;

e Without Redundancy

e With Redundancy

Within each of these sections there are further subdivisions:

> Standard

» Standard High Data Rate

» Minimal

» Minimal High Data Rate

The “Standard” configuration refers to Figure 13-1 and the “Minimal” configuration

refers to Figure 13-2.
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The CAN messages with ID1-ID6 are assigned to the ST segment and messages ID7 and
ID8 are assigned to the DYN segment. Where loading of the bus is required this data
was placed in the DYN segment because this data is not guaranteed to meet its
deadlines because of the ET nature of the DYN segment. If the loaded data was placed
in the ST segment it would be guaranteed to get access to the bus if scheduled
correctly due to the TT nature of the ST segment.

The ST messages are transmitted on channel A (CH A) and the DYN data is transmitted

on channel B (CH B). Where data is loaded onto the bus both CH A and CH B are used.

The application message cycle is assumed to begin once the latest dynamic message
has transmitted in the previous cycle. This assumption is necessary because CANalyzer
only records when messages appear on the bus not when the messages are signalled
for transmission by the MCU through the communications stack. In the FlexRay test
case the application cycle is assumed to start 1.391ms before the message of ID 1
appears on the bus. This is the time between the last DYN message of the previous

cycle and the current ST message in the current cycle.

13.4.1 Without Redundancy

13.4.1.1 Case 3A: Standard Normal Load

Due to the FlexRay bus operating at 10 Mbit/s it would be expected that at normal
busloads FlexRay would be using less of its percentage total capacity than the CAN
equivalent. This is demonstrated in Table 13-10. Even by combining these two loads
onto a single channel, the busload would still be considerably less than the CAN

equivalent.
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These busloads are illustrated graphically in Figures 13-25 and 13-26. The IDs 1-6 have

the same loads so they appear as one line on the graph behind each other.
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The busloads are higher on CH B due to the messages allocated there having smaller

period than the messages on CH A. Therefore CH B data is on the bus more frequently.
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From the framework in section 12.5.7 the messages periods are modified to 14ms as

illustrated in Table 13-11.

Table 13-11: Revised FlexRay Message
Deadlines

Message ID | Deadline (ms)
1 14
2 28
3 42
4 56

Figure 13-27 illustrates that the messages easily meet their deadlines. Due to some

messages having different WCETs there will be slight variations between the messages

actual cycle times.
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To examine if the each message deadline can combine to complete the application
before the application deadline of 84ms, Figure 13-28 is examined. The maximum cycle
time is 24.33ms and a minimum of 24.33ms. The average cycle time was 24.33ms
which is significantly below the 84ms deadline time. There was slight deviation which

resulted in a standard deviation of 183ns.
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In the ST segment the number of frames per cycle is static (6 frames per cycle) as the
application data is scheduled at fixed points in time as illustrated in Figure 13-29. This
corresponds to the six frames transmitted by the application data in CAN. In the DYN
segment the number of frames per cycle is random due to the ET nature of the DYN

segment. This is illustrated in Figure 13-30.
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There are a maximum of 68 frames per cycle in the DYN segment with an average of

63.03 frames per cycle. The standard deviation is 3.96 frames per cycle.
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Figure 13-30: Number of DYN Frames per Cycle Normal Load

251



Test Results & Verification

13.4.1.2 Case 3B: Standard at High Data Rate

At a High Data Rate (HDR) loads in FlexRay there is twice the amount of data on the
bus when compared to the maximum amount of data on the CAN. Even at this HDR the
FlexRay bus would be expected to have capacity to handle a higher volume of traffic if

it was required to do so.

In addition to the two messages transmitted from the development boards (ID7 and
ID8) the bus is loaded with messages (hex) ID 9, a, b, ¢, d, e, f and 10. These messages
are set for transmission once in every FlexRay communication cycle at a payload of 8

Bytes.

The busload data is presented in Table 13-12.

Table 13-12: High Data Rate Busload

MsgID | Minimum | Maximum | Average
Load% Load% Load %
ST
ID1 0.02 0.02 0.02
ID2 0.02 0.02 0.02
ID3 0.02 0.02 0.02
D4 0.02 0.02 0.02
ID5 0.02 0.02 0.02
ID6 0.02 0.02 0.02
Total 0.13 0.14 0.14
DYN
ID7 0.69 0.77 0.73
ID8 0.62 0.79 0.72
ID9 1.10 1.10 1.10
IDa 1.10 1.10 1.10
nk - N -
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The DYN data was split for transmission between CH A and CH B. This was done to
demonstrate the affect of additional data on the reference applications deadlines. The
data loaded on CH A is assigned identifiers ID d, e, f and 10 while the data loaded on
CH B is assigned identifiers ID a, b, c and 9.

Figure 13-31 illustrates that the application messages meet the required application

deadlines.
Application Message Execution
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To examine if the each message deadline can combine to complete the application
before the application deadline of 84ms, Figure 13-32 is examined. The maximum cycle
time was 24.33ms and a minimum of 24.33ms. The average cycle time was 24.33ms
which is considerably less than the 84ms deadline time. The standard deviation in the

cycle times is 183ns.
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In the ST segment the number of frames per cycle is static at six frames per cycle. In
the DYN segment the number of frames per cycle is aperiodic due to the ET nature of
the DYN segment. This is illustrated in Figure 13.33. The DYN data contains a maximum
of 455 frames per cycle with an average of 444.70 frames per cycle. There is a standard

deviation of 5.08 frames per cycle.
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Figure 13-33: Number of DYN Frames per Cycle High Data Rate
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13.4.1.3 Case 3C: Minimal Normal Load

The minimal configuration at normal loads would be expected to yield slightly reduced

busloads (compared to the standard configuration) in the ST segment as two less

frames per application cycle are transmitted on the FlexRay bus. Table 13-13 presents

the busloads.

Table 13-13: Normal Busload

Msg | Minimum | Maximum | Average
ID Load% Load% Load %
ST
ID1 0.02 0.02 0.02
ID2 0.02 0.02 0.02
ID5 0.02 0.02 0.02
ID6 0.02 0.02 0.02
Total 0.09 0.09 0.09

If application messages are able to meet their deadlines needs determining. Figure 13-

34 is used in determining this. It is illustrated that all messages meet their deadlines as

defined in Table 13-11.
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Determining if the each message deadline can combine to complete the ACC
application before the application deadline of 84ms, Figure 13-35 is examined. The
maximum, minimum and average cycle times are all 24.33ms. This consistency in the
applications timing is in keeping with the TT nature of the ST segment in which the
application data was assigned. The maximum ACC application cycle time of 24.33ms
allows the application to complete greater than three times quicker than what is

required (84ms deadline time). There is a standard deviation of 254ns.
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There are constantly four frames per ACC application cycle; this is in keeping with the
expected results. In the DYN segment the number of frames per cycle is aperiodic due
to the ET nature of the DYN segment. This results in a standard deviation of 4.46
frames per cycle. There are a maximum of 69 frames per cycle in the DYN segment

with an average of 61.6 frames per cycle. Figure 13-36 illustrates this.
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Figure 13-36: Number of DYN Frames per Cycle at Normal Load
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13.4.1.4 Case 3D: Minimal at High Data Rate

At High Data Rates (HDR) there is twice the amount of data on the bus when compared

to the maximum amount of data on the CAN bus. Even at this HDR the FlexRay bus

would be expected to have capacity to handle more messages if it was required to do

SO.

In addition to the two messages sent from the development boards (ID7 and 1D8) the

bus is loaded with messages (hex) ID 9, a, b, ¢, d, e, f and 10. These messages are set

for transmission once in every communication cycle with a payload of 8 Bytes.

The busload data is presented in Table 13-14.

Table 13-14: High Data Rate Busload
MsgID | Minimum | Maximum | Average

Load% Load% Load %

ST
ID1 0.02 0.02 0.02
D2 0.02 0.02 0.02
ID5 0.02 0.02 0.02
ID6 0.02 0.02 0.02
Total 0.09 0.09 0.09
DYN

D7 0.64 0.78 0.72
ID8 0.58 0.77 0.71
ID9 1.10 1.10 1.10
IDa 1.10 1.10 1.10
IDb 1.10 1.10 1.10

The loaded data generated from CANalyzer is assigned to each channel as per test case

3B. Figure 13-37 illustrates that message deadlines are not violated. The message
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closest to missing its deadline is message ID 1. It has 12.61ms slack which allows it too

comfortably to meet its deadline of 14ms. The deadlines are presented in Table 13-11.
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Figure 13-38 presents the ACC application cycle times. The maximum cycle time was
26.08ms and the minimum was 22.58ms. The average cycle time was 24.33ms. As with
all previous test cases the ACC application cycle time is within the ACC application

deadline. The standard deviation is 559.50us.
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Figure 13-38: Application Cycle Times High Data Rate
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As in the previous minimal configuration results (Case 3C) there are only four
application frames per ACC application cycle. In the DYN segment the number of
frames per cycle is aperiodic due to the ET nature of the DYN segment. This is
illustrated in Figure 13-39. The standard deviation is 5.17 frames per cycle. There are a

maximum of 452 frames per cycle with an average of 442.1 frames per cycle.
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13.4.2 With Redundancy

In the following test cases 4A, B, C and D, redundancy was implemented for the data
transmitted in the ST segment. This involved duplicating the data on CH A. CH B data

was considered the redundant data in these test cases.

13.4.2.1 Case 4A: Standard Normal Load (Including Redundancy)

Due to the FlexRay bus operating at 10 Mbit/s it would be expected that ‘normal’ ACC
application busloads with the two DYN messages would be less than the CAN
equivalent. This is verified in Table 13-15. The ST data combines the loads of CH A and
CH B.
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From the framework in section 1.5.6 the messages periods are modified to 14ms (as
was the case for the non-redundancy test cases). Figure 13-40 illustrates that the

messages continue to easily meet their deadlines.
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Figure 13-41 presents the ACC application cycles time. Examining if the each message

deadline can be combined to complete the application cycle, before the application
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deadline of 84ms, see Figure 13-41. The maximum cycle time is 24.33ms, the minimum
and average times are also 24.33ms. This consistency of application cycle times is a
prime example of the deterministic properties of FlexRay. There is a standard deviation

of 183ns.
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The number of frames per ACC application cycle is static at twelve (6 frames each on
channel A and B). This is in keeping with test cases 3A and 3B where redundancy is not
implemented (therefore, 6 frames in total), but the application configurations have not
changed. In the DYN segment the number of frames per cycle continues to be
aperiodic due to the ET nature of the DYN segment. This is illustrated in Figure 13-42.
There is a maximum of 73 frames per cycle in the DYN segment with an average of

64.03 frames per cycle. The standard deviation is 4.02 frames per cycle.
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13.4.2.2 Case 4B: Standard at High Data Rate (Including Redundancy)

This test case is configured the same as Case 3B except redundancy is implemented. At
High Data Rates (HDR) there is twice the amount of data on the bus when compared to
the maximum amount of data on the CAN. Even at this HDR the FlexRay bus would be

expected to have the capacity to handle more messages if it was required to do so.

In addition to the two DYN messages transmitted from the development boards (ID7
and ID8) the bus is loaded with messages (hex) ID 9, a, b, ¢, d, e, f and 10. These
messages are set to transmit once in every communication cycle in the DYN segment

with a payload of 8 Bytes.

The busload data is presented in Table 13-16 where the redundant data is included.
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Table 13-16: High Data Rate Busload
Msg Min Max Average
ID Load% | Load% | %
ST

ID1 0.04 0.05 0.05
ID2 0.04 0.05 0.05
ID3 0.04 0.05 0.05
ID4 0.04 0.05 0.05
ID5 0.04 0.05 0.05
ID6 0.04 0.05 0.05
Total 0.27 0.28 0.27

DYN
ID7 0.65 0.77 0.72
ID8 0.67 0.76 0.72
ID9 1.10 1.10 1.10
IDa 1.10 1.10 1.10

Figure 13-43 illustrates the message complete transmission prior to their deadlines.

Fluctuations occur at plus/minus one frame cycle. This is caused by a message either

being ready one cycle earlier or one cycle later than the ‘standard’ message execution

time.
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The timely execution of the ACC application deadlines of 84ms is verified in Figure 13-
43.Table 13-11 contains the message deadlines. The maximum cycle time was 26.08ms
and a minimum of 22.58ms. The average cycle time was 24.10ms which means the
application has completed execution 59.9ms before the deadline time. The standard

deviation is 759.66us.

Application Cycle Times

0.1
0.08
0.06
0.04
0.02

Cycle Length (s)

oOo+—+——r7TT1TrT—V+—rTrrr TV rrrrrT T T T

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Cycle Number

=== Cycle Time STCHA == Cycle Deadline

Figure 13-44: Application Cycle Times High Data Rate
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There are twelve application frames in the ST segment as explained in the previous
test case. This is illustrated in Figure 13-45. In the DY segment the number of frames

per cycle is less cyclic due to the ET nature of the DYN segment. This is illustrated in

Figure 13-46.
frames/cycle ST
14
é 12
c 10
< 8
o
g 6
g 4
> 2
0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Cycle Number
= frame/cycle ST

The DYN data contains a maximum of 458 frames per cycle with an average of 446.60

frames per cycle. The standard deviation is 6.34 frames per cycle.
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Figure 13-46: Number of DYN Frames per Cycle High Data Rate
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13.4.2.3 Case 4C: Minimal Normal Load (Including Redundancy)

The minimal configuration at normal busloads (no data loading) would be expected to

yield slightly reduced busloads (compared to Standard configuration) in the ST

segment, due to two less frames per application cycles being transmitted on the

FlexRay bus per channel. Table 13-17 presents the busloads.

Table 13-17: Normal Busload

Msg | Minimum | Maximum | Average
ID Load% Load% Load%
ST
ID1 0.04 0.05 0.05
D2 0.04 0.05 0.05
ID5 0.04 0.05 0.05
ID6 0.04 0.05 0.05
Total 0.09 0.09 0.09
PNVY

Figure 13-47 determines if the individual messages execution times meet their

deadlines. Each message easily meets its set deadlines. The associated deadlines are as

presented in Table 13-11.
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Combining message times to build the application execution time, this enables the
success of the ACC application to be determined. If the final message completes
execution before the application deadline then the ACC application can successfully
execute. Figure 13-48 presents this data. The maximum, minimum and average cycle

times are 24.33ms. There is a standard deviation of 305ns.
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Figure 13-48: Application Cycle Times at Normal Loads

The ST segment application transmits eight application frames in total (4 per channel)

as expected. This produces a horizontal straight line when graphed. In the DYN
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segment the number of frames per cycle is aperiodic due to the ET nature of the DYN
segment. There are a maximum of 66 frames per application cycle in the DYN segment
with an average of 56.16 frames per cycle and a standard deviation of 4.58 frames per
cycle. Figure 13.49 illustrates the number of DYN data frames from CH B (as there is no

loading in this test case all the DYN data is transmitted on CH B).
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13.4.2.4 Case 4D: Minimal at High Data Rate (Including Redundancy)

This test case contains the same configuration as Case 3D with the addition of
redundancy being implemented for the ACC application data in the ST segments. At
High Data Rates (HDR) there is twice the amount of FlexRay data (in terms of the total
number of frames) on the bus when compared to the maximum amount of data on the
CAN bus. Even at this HDR the FlexRay bus would be expected to have capacity to

handle additional messages.

In addition to the two messages transmitted from the development boards (ID7 and
ID8) the bus is loaded with additional messages of (hex) IDs 9, a, b, ¢, d, e, f and 10.
These messages are set for transmission once in every communication cycle configured

with a payload of 8 Bytes.
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The busload data is presented in Table 13-18.

Table 13-18: High Data Rate Busload

MsgID | Minimum Maximum Average
Load% Load% Load%
ST
ID1 0.04 0.05 0.05
ID2 0.04 0.05 0.05
ID5 0.04 0.05 0.05
ID6 0.04 0.05 0.05
Total 0.18 0.18 0.18
DYN
ID7 0.61 0.79 0.71
D8 0.62 0.78 0.72
D9 1.10 1.10 1.10
IDa 1.10 1.10 1.10
IDb 1.10 1.10 1.10

Figure 15-50 illustrates that the message deadlines are not exceeded. The actual

deadlines are presented in Table 13-11.
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As in all previous test cases the ACC application cycle completes execution prior to the

deadline; 59.67ms prior in this test case at a worst case scenario. Figure 13-51

illustrates the application’s cycle times over a 30 application cycle period. The

maximum ACC application cycle time was 24.33ms with the minimum and average

time also 24.33ms. The standard deviation is 253.7ns.
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Figure 13-51: Application Cycle Times High Data Rate
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The number of ACC application frames remains constant at eight for the minimal
configuration. In Figure 13-52 the DYN data contains a maximum of 447 frames per
cycle with an average of 440.16 frames per cycle. The standard deviation is 3.92

frames per cycle.
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13.5 Discussion of Results

Using both protocols the ACC application was successfully implemented and executed
in all scenarios. There is a higher through-put in the number of frames in one second in
FlexRay when compared with CAN. The number of frames per second in each scenario

and test case are presented in Table 13-19 and 13-20.
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13.5.1 CAN Data

Table 13-19: Number of CAN Frames per Second
Standard | Busload | Min | Max | Average

Case 1A | Normal | 329 |391 |357.31
(30%)
Case 1B | 60% 603 | 667 | 634.38

Case 1C Max 1034 | 1040 | 1037.52
(100%)

Minimal | Busload | Min | Max | Average

Case2A | Normal | 297 | 349 | 327.76

InAnsy

13.5.2 FlexRay Data

Table 13-20: Number of FlexRay Frames per Second

No Busload | Min | Max | Average

Redundancy

Case 3A Normal | 781 | 878 | 828.18

Case 3B Normal | 4689 | 5442 | 5374.07
HDR

Case 3C Minimal | 741 | 844 | 799.89

Case 3D Minimal | 5288 | 5426 | 5366.07
HDR

Redundancy | Busload | Min | Max | Average

Case 4A Normal | 865 |934 | 899.29

At maximum busloads in case 1C or 2C the messages with the lowest priorities missed
their deadlines. These messages ID 10, 11, 12 and 13 were gaining access to the bus
later than 5ms on average as opposed to their scheduled time of every 1ms. These two

test cases resulted in a maximum of 1040 and 1041 frames per second respectively.
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Compare this to the FlexRay test cases of 3D and 4D. Here eight extra messages are
added for transmission in the frame cycle (1.750ms). This was successfully achieved
while attaining a maximum through put of 5426 and 5488 frames per second in total
over both channels. In these test cases the through put of FlexRay versus CAN was five
times larger for FlexRay. At 1041 frames per second the CAN bus has reached its
maximum capacity busload of 96.60% where as at 5488 frames per second the FlexRay

bus is at 10.43% busload.

It is recorded that at 60% loads the application cycle time was starting to increase
when compared to the application time at normal busload. In case 1A the maximum
application cycle is 21.12ms, this then increases slightly to 21.45ms in case 1B. In case
2A the maximum application time is 24.51ms but this increases to 26.04ms in case 2B.
In case 1A the minimum application cycle time cycle is 19.69ms and this is almost
unchanged at 19.70ms in case 1B. In case 2A the minimum application cycle time is
23.54ms but this increase to 24.47ms in case 2B.

Finally in case 1A the average application execution time is 19.10ms compared with a
time of 20.28ms in case 1B. In case 2A the average application cycle time is 23.77ms
compared to the average application cycle time of 25.04ms in case 2B.

These individual message transmit times can be viewed individually and it is observed
that as busloads increase so does the transmit time of each message. Figure 13-53
illustrates that the message transmit times are increasing as the busloads increase.
Messages ID5 and ID6 transmit times increase the most as they are further into the

application cycle.
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Figure 13-53 illustrates the message transmit times increasing as the busloads
increase. The messages that transmit later in the application cycle are adversely
affected to a greater degree than the messages transmitted earlier in the application
cycle. In Figure 13-54, the transmit times of message six are delayed greater than the

transmit times of message one for example.
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Figure 13-54: Message Transmit Times (Normal Configuration)
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The deterministic nature of FlexRay is illustrated by the ACC application completion
times. Seven of the eight FlexRay test cases completed transmission at 24.33ms, the
exception being test case 3D where transmission was completed at 24.10ms.This is
regardless of busloads which as illustrated in Figures 13-53 and 13-54 busloads affect

the applications execution times in CAN.

Comparing these CAN values to those obtained in FlexRay produces the following
results. The smallest application cycle time in FlexRay is 22.58ms compared with 19.69
ms at 357.31 frames per second in CAN. It could be stated than CAN is faster than
FlexRay but to put it in context CANs quickest application cycle time was achieved at
normal (30%) busload levels while FlexRay’s quickest cycles time was achieved under
HRD conditions with a through put of 5488 frames per second. This is where the
deterministic feature of FlexRay is advantageous. Messages can be scheduled for
transmission with a greater degree of certainty that those scheduled on the CAN bus.

Test case three investigates this further.

Examining the standard deviations in the ACC application cycle times allows
comparisons be made between the deterministic ST segment in FlexRay and the ET

nature of CAN. Table 13-21.

Table 13-21: ACC CAN Application Cycle
Standard Deviation

Test Case Standard
Number Deviation (ps)
1A 396
1B 503
1C 91.34
2A 328.43

Table 13-22 presents the standard deviations in the ACC application cycle.
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Table 13-22: ACC FlexRay Application
Cycle Standard Deviation

Test Case Standard
Number Deviation
3A 183ns
3B 183ns
3C 254ns
3D 559.50us
4A 183ns

A general summarisation is that the FlexRay ACC application cycle times have a higher
degree of consistency when compared to the times obtained in CAN. This results in all
the CAN standard deviation timings being in units of microseconds while the FlexRay
timings have six of the eight recordings in units of nanoseconds. Because of the nature
of FlexRay’s ST segments, unless a message transmits at the same instance in every
application cycle, the actual transmission will be a multiple of the Flexray cycle earlier
or later each time. In this ACC example if a message gets delayed by one frame cycle
(1.750ms) then the message cannot transmit for one frame cycle. If the same scenario
is examined in CAN the message is able to transmit as soon as it is ready therefore
resulting in a smaller standard deviation time by not having to wait a pre-defined

period.

13.6 Test Case 3: Verification of Time-Triggered Properties

First the CAN data is presented and then the FlexRay data is compared to the CAN

results.
To verify the time-triggered properties of Flexray, the application execution times in

CAN under various busloads are compared to the application execution times in

FlexRay. Multiple busloads are not required in the FlexRay test because configuration
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will be implemented in such a way so the maximum amount of data (for this

configuration) gets access to the bus without restrictions.

13.6.1 CAN Testing

Figure 13-55 contains the CAN configuration set up as viewed in CANalyzer. The
message ID’s are presented in Table 13-23. The final block generator at the end of the
diagram has an X through it because the additional data was not transmitted at that
stage. This function block contained IDs 4, 30, 175 and 350. These values were chosen

because they gave a spread of ranges across all application IDs.

All CAN data is configured for the maximum payload of 8 bytes and the bus rate is set

to 125kbit/s.

Table 13-23: Application IDs

Message ID CAN  Block
Label (Figure
12-55)
1 Timer 40ms
20 Msg 1
50 Msg 20
150 Msg 50

Busloads of 17%, 30%, 48%, 63% and 100% are logged. This provides a gradual
progression for increased busloads. At 17% busload only the application data was
transmitted. At a 30%busload the loaded messages are transmitted periodically every
7ms. This is increased to every 3ms at 48% busload. At 63% busload the messages are
transmitted every 2ms and finally the loaded messages are transmitted every 1ms at

maximum busload.
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Table 13-24 presents the busload values and the associated application execution

times.

Table 13-24: Application Execution Times

App App
Busload

Execution | Deadline
(%)

Time (s) (s)
17 0.007472 0.04
30 0.007962 0.04
48 0.009164 0.04

Presenting this data graphically (Figure 13-56) demonstrates the extent of the CANs

inability meet timing deadlines once capacity has been reached.
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13.6.2 FlexRay Testing
The FlexRay data was generated using the CANalyzer configuration in Figure 13-57. The

FlexRay bus was set for a data rate of 10Mbit/s. The Vector VN3600 FlexRay interface

was used as a coldstart node.
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W

Due to the frame size being set to 512us (see section 12.7) it was decided to configure
all FlexRay data (including messages not associated with the application data) to
transmit in every cycle (this maximises busload). This included the application data and
the loaded data. From Figure 13-57 it is observed that there are eight FlexRay
generation blocks. This is due to the four extra frames not assigned to the application
being transmitted from one single function block generator. This is the ‘FP’ block at the
bottom of the stack. The IDs are assigned to each slot in the static segment. The loaded
data (comprised of four messages from the CAN results, section 13.6.1) are assigned
the first four slots thereby having IDs 1 to 4. IDs 5 to 11 are assigned to the remaining
static slots. This configuration is chosen to demonstrate that assigning messages in any

order will not have any effect on results.

By transmitting all eleven messages ID1 to 11 in every FlexRay frame cycle (512us in

length), this results in a busload of 48.75%
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13.7 Conclusion

At low busload levels the CAN ACC application completes execution before the FlexRay
application. As CAN busloads increase the application execution times started to
increase also. Due to the configuration of the CAN application, its deadlines were likely
to be missed as busloads increase. This was due to the priorities assigned to the
messages not allowing the application data access to the bus as more messages are
transmitted with increased frequency. The deterministic nature of FlexRay is proven
through the consistency at which the ACC application completes execution.

By FlexRay having a greater than five times higher through-put (at 10% busload) than

CAN (at maximum busload), this demonstrates FlexRay’s extra bandwidth feature.

The ST data obtained from CH A was the exact same as the ST data from CH B where
redundancy was implemented. This further aids the “chance” of successful reception

and transmission of these FlexRay frames.

FlexRay’s time-triggered properties were verified in test case three. This is proven by
examining the application’s execution times. Using the CAN protocol, CAN was unable
to meet its application deadline of 40ms once the bus was loaded with four extra
messages transmitting periodically every 1ms. Comparing this to FlexRay where the
configuration allowed all eleven messages to transmit every 512us. The FlexRay
application data therefore was able to complete execution before the revised deadline

of 7.168ms deadline.
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14 Conclusion:

14.1 Research Summary

This chapter provides a summary of the research carried out, the research questions
are re-addressed and areas of potential in future research are suggested.

The research began with a broad but in-depth examination of automotive protocols
such as CAN, LIN and FlexRay. This gave an understanding of the underlying principle of
each protocol. A focus was placed on time-triggered and event-triggered protocols as
FlexRay contained both elements within its frame structure. Previous works were
reviewed primarily on time-triggered networks, since there was only a minimal amount
of work carried out on the FlexRay protocol at the time. Further investigation into
possible methods of scheduling event-triggered and time-triggered protocols was

undertaken.

Investigative research was carried out into methods used by other authors in the
scheduling of Time-Triggered and Event-Triggered protocols. All possible trade-offs and
features of previous works that could help or hinder my work using the FlexRay
protocol were defined. The features of CAN that were required on the FlexRay
application were defined at this stage by deciding what would constitute a successful
migration. From this a primary framework was developed for the ST and DYN segments

of FlexRay. This evolved into the finished migration procedure.

Further in-depth research was required into the features of the development boards.
Research was also carried out in parallel into the use and features of
CANalyzer.FlexRay and DECOMSYS designer pro <light>; these programs would
required in depth knowledge for the development of the FlexRay frame and cluster

and also for the analysis of data. The possibilities were to generate either the CAN or
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FlexRay data from CANalyzer or to generate it from the Fujitsu development boards. As
the development boards provided greater flexibility for configuration purposes (in

terms of the reference application) this method was used where possible.

14.2 Summary of Testing and Results

To verify the framework three test cases were devised. Each test case provided the

framework to process a different application task graph configuration.

Test Case 1:

The abstract Traction Control Application was processed through the framework to
extract FlexRay frame and cluster parameters. The task periods used were taken from
data logged from production vehicles (Peugeot 207 and an electric Smart Car). Upon
extraction of FlexRay parameters, these parameters were processed using the
DECOMSYS designer tool to reveal any parameter violations. The aim of this test case

was to extract the FlexRay parameters; therefore it was not implemented in hardware.

Test Case 2

Following this a reference ACC application was processed through the framework. This
application was configured on the development boards and associated data logged.
Using the ACC application allowed the framework to process a different task graph
structure. This allowed the ACC application to be processed through the framework to
extract the associated FlexRay frame and cluster parameters. Using these extracted
parameters the ACC application was implemented in FlexRay. The associated data was
logged using CANalyzer. Using the parameters extracted from the framework the
FlexRay configuration of the ACC was setup. This was implemented on the
development boards and data was logged in CANalyzer.

Busloads and deadlines were examined from the CAN results and compared to those
obtained from FlexRay, to determine if the FlexRay application performed comparable

to the CAN case.
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The end results demonstrated that at low data rates CAN performed marginally
superior than FlexRay. This was due to the ET nature of the CAN protocol allowing the
messages transmit on the bus when required, where as in FlexRay data is only granted
access to the bus according to a schedule. Once data rates increased FlexRay provided
deterministic and constant timings. The extra capacity of FlexRay was also

demonstrated without compromising the ACC application deadlines.

Test Case 3

The aim of third and final test case was to verify FlexRay’s time-triggered properties by
demonstrating its constant execution of the test application when compared to CAN.
The test application was processed through the framework to obtain necessary
FlexRay parameters. The test application for both CAN and FlexRay were implemented
using CANalyzer’s function block generators. These parameters were then
implemented in CANalyzer on a FlexRay network. The application timings for CAN were
logged over five busloads starting at 17% and finishing at maximum load. The FlexRay
data was logged at a busload level of 48%. At this level FlexRay was able to transmit
the same number of messages at a higher frequency than CAN was able to cope with.
In addition to this the FlexRay application execution timings we transmitted every
FlexRay frame cycle. Thereby the consistency of FlexRay’s execution of the application

was proven, where as CAN failed to meet deadlines under the maximum busload.
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14.3 Research Questions

Question 1:

What are the benefits of using the migration framework versus the use of a gateway?
The full migration procedure reduces the complexity associated with having multiple
protocols in operation side by side. This is achieved by employing a single protocol that
allows the applications features continued use, while at the same time utilising other
feature of the newer protocol. A gateway might be more suitable if a partial migration
meets system requirements, where as complete migration reduces system complexity.

Question 2:

What migration techniques used in other or similar protocols are applicable in this

research?

FlexRay is a unique protocol and there is no other protocol exactly like but it there are
similar protocols like TTCAN for example. Also using some features of protocols that
have commonalities to segments within FlexRay can aid in the development of a
migration procedure. The migration techniques applicable to this research include task
graph analysis, WCET analysis and RTA analysis.

Question 3:

What parameters are required in relation to the application and network protocol for

migration to be undertaken?

The application parameters extracted from the framework are;
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e Task graph release (start) time r;
e Task graph deadline (end) time D;
e Worst Case Execution Time (WCET)

e Task period

These parameters require the CAN application to be presented in task graph format

before application parameters are extracted.

The frame parameters that the framework provides are;

e Frame Length

e Static Segment Size
e Payload Size

e Static Slot Size

e NIT

e DYN Segment Size

These parameters are extracted from the framework and can be input to a FlexRay
designer tool to determine the associated parameters, if they are not already known.
These frame and cluster parameters allow the configuration and implementation of

the FlexRay application.

14.4 Areas for Future Research

The migration framework was a success in extracting the FlexRay parameters

necessary for migration, but there is room for further research in some areas;

e In the reference application, the only method of recording an event was when

it appeared on the bus. To obtain more accurate timings it is suggested to try
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and record when a message is generated and received by the MCU. In this
thesis this was attempted through the UART but this was not practical due to

the delay this caused on the message timings.
While every effort was made to ensure the test cases were as close to real
world a possible, to truly determine the effectiveness of the framework and

parameters they should applied to a live applications on automobiles.

Automate the migration process thereby providing initial configuration

parameters allowing the final FlexRay parameters to be derived.

Perform parameter validation checks in the framework instead of using a

separate design tool. This would speed up the migration procedure.

A cost benefit analysis could be carried out to define a breakeven point in the

migration process.
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14.5 Published Material

An oral presentation and a paper were presented at the AAE conference 2008. This
took place at the RBS Williams F1 centre, Oxfordshire, on the 23" of September 2008.
The presentation and paper were based on the research presented in this thesis. The

paper and presentation were titled “CAN to FlexRay Migration Framework”
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14.7 Calculations

Abstract Implementation Calculations

Parameter C,, & J,, Identification

Message Size (Bytes) | Bit Size Equation | Message Size (Bits) | C,, Equation | C,, Jm (us)
(ms)

8 55+(10*8) 135 135*8us 1.08 | 600
5 55+(10*5) 105 105*8us 0.84 | 700
8 55+(10*8) 135 135*8us 1.08 | 400
8 55+(10*8) 135 135*8us 1.08 | 800
3 55+(10*3) 85 85*8us 0.68 | 1100
7 55+(10*7) 125 125*8us 1.00 | 900
8 55+(10*8) 135 135*8us 1.08 | 100
8 55+(10*8) 135 135*8us 1.08 | 100
8 55+(10*8) 135 135*8us 1.08 | 200
2 55+(10*2) 75 75*8us 0.60 | 400
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Wp, First Iteration

Queue

Delay

w,, Equation

Wy, (ms)

wl

1.08ms+(((0ms+0.6ms+8us)/100ms)*1.08ms)

1.086566

w2

1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m
s))

1.089540

w3

1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m
s), (((0Oms+0.4ms+8us)/100ms)*1.08ms))

1.093946

w4

1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m
s),((0ms+0.4ms+8s)/100ms)*1.08ms),(((0+0.8ms+8u)/100ms)*1.08ms))

1.102673

w5

)

(
1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m
(

s),(((0ms+0.4ms+8s)/100ms)*1.08ms),(((0+0.8ms+8u)/100ms)*1.08ms),(((0+1.1ms+8
Us)/500ms)*0.68ms))

1.104180

w6

1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m
s),(((0ms+0.4ms+8us)/100ms)*1.08ms),(((0+0.8ms+81)/100ms)*1.08ms),(((0+1.1ms+8
Us)/500ms)*0.68ms),(((0+0.9ms+8us)/100ms)*1ms))

1.113260

w7

1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m
s),(((0ms+0.4ms+8s)/100ms)*1.08ms),(((0+0.8ms+81)/100ms)*1.08ms),(((0+1.1ms+8
Us)/500ms)*0.68ms),(((0+0.9ms+8us)/100ms)*1ms),(((0+0.1ms+8us)/500ms)*1.08ms)
)

1.113493

w8

1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m
s),(((0ms+0.4ms+8s)/100ms)*1.08ms),(((0+0.8ms+8u)/100ms)*1.08ms),(((0+1.1ms+8
Us)/500ms)*0.68ms),(((0+0.9ms+8us)/100ms)*1ms),(((0+0.1ms+8us)/500ms)*1.08ms)
,(((0+0.1ms+8us)/100ms)*1.08ms))

1.114659

w9

1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m
s),(((0Oms+0.4ms+8us)/100ms)*1.08ms),(((0+0.8ms+81)/100ms)*1.08ms),(((0+1.1ms+8
Us)/500ms)*0.68ms),(((0+0.9ms+8us)/100ms)*1ms),(((0+0.1ms+8us)/500ms)*1.08ms)
,(((0+0.1ms+8s)/100ms) *1.08ms), (((0+0.2ms+8us)/500ms) *1.08ms))

1.115109

w10

1.08ms+Sum((((0ms+0.6ms+8s)/100ms)*1.08ms),(((0ms+0.7ms+8us)/200ms)*0.84m

s),(((0ms+0.4ms+8s)/100ms)*1.08ms),(((0+0.8ms+81)/100ms)*1.08ms),(((0+1.1ms+8
Us)/500ms)*0.68ms),(((0+0.9ms+8us)/100ms)*1ms),(((0+0.1ms+8us)/500ms)*1.08ms)
,(((0+0.1ms+8us)/100ms)*1.08ms),(((0+0.2ms+8us)/500ms) *1.08ms),(((0+0.4ms+8us)/
400ms)*0.60ms)

1.115721

\
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Wm Second Iteration

Queue

Delay

w,, Equation

W, (ms)

wl

1.08ms+(((1.086566ms+0.6ms+8us)/100ms)*1.08ms)

1.09830

w2

1.08ms+Sum((((1.086566ms+0.6ms+8s)/100ms)*1.08ms),(((1.089540ms+0.7ms+8s)/200ms
)*0.84ms))

1.10127

w3

1.08ms+Sum((((1.086566ms+0.6ms+8s)/100ms)*1.08ms),(((1.089540ms+0.7ms+8s)/200ms
)*0.84ms),(((1.093946ms+0.4ms+8us)/100ms)*1.08ms))

1.10568

w4

1.08ms+Sum((((1.086566ms+0.6ms+8s)/100ms)*1.08ms),(((1.089540ms+0.7ms+8s)/200ms
)*0.84ms),(((1.093946ms+0.4ms+8us)/100ms)*1.08ms),(((
1.102673ms+0.8ms+8)/100ms)*1.08ms))

1.11440

w5

1.08ms+Sum((((1.086566ms+0.6ms+8s)/100ms)*1.08ms),(((1.089540ms+0.7ms+8s)/200ms
)*0.84ms),(((1.093946ms+0.4ms+8us)/100ms)*1.08ms),(((1.102673ms+0.8ms+81)/100ms)*1.
08ms),(((1.104180ms+1.1ms+8us)/500ms)*0.68ms))

1.11591

w6

1.08ms+Sum((((1.086566ms+0.6ms+8us)/100ms)*1.08ms),(((1.089540ms+0.7ms+8s)/200ms
)*0.84ms),(((1.093946ms+0.4ms+8us)/100ms)*1.08ms),(((1.102673ms+0.8ms+8)/100ms) *1.
08ms),(((1.104180ms+1.1ms+8us)/500ms*0.68ms),(((1.113260ms+0.9ms+8us)/100ms)* 1ms))

1.12499

w7

1.08ms+Sum((((1.086566ms+0.6ms+8s)/100ms)*1.08ms),(((1.089540ms+07ms+8us)/200ms)
*0.84ms),(((1.093946ms+0.4ms+8us)/100ms)*1.08ms),(((1.102673ms+0.8ms+81)/100ms) *1.0
8ms),(((1.104180ms+1.1ms+8us)/500ms)*0.68ms),(((1.113260ms+0.9ms+8us)/100ms)*1ms),(
((1.113493ms+0.1ms+8us)/500ms)*1.08ms))

1.12522

w8

1.08ms+Sum((((1.086566ms+0.6ms+8us)/100ms)*1.08ms),(((1.089540ms+0.7ms+8s)/200ms
)*0.84ms),(((1.093946ms+0.4ms+8us)/100ms)*1.08ms),(((1.102673ms+0.8ms+8u)/100ms)*1.
08ms),(((1.104180ms+1.1ms+8us)/500ms)*0.68ms),(((1.113260ms+0.9ms+8us)/100ms)*1ms)
,(((1.113493ms+0.1ms+us)/500ms) *1.08ms),(((1.114659ms+0.1ms+8us)/100ms)*1.08ms))

1.12639

w9

1.08ms+Sum((((1.086566ms+0.6ms+8s)/100ms)*1.08ms),(((1.089540ms+0.7ms+8s)/200ms
)*0.84ms),(((1.093946ms+0.4ms+8us)/100ms)*1.08ms),(((1.102673ms+0.8ms+8)/100ms) *1.
08ms),(((1.104180ms+1.1ms+8us)/500ms)*0.68ms),(((1.113260ms+0.9ms+8us)/100ms)*1ms)
,(((1.113493ms+0.1ms+8us)/500ms) *1.08ms),(((1.114659ms+0.1ms+8s)/100ms)*1.08ms),(((
1.115109ms+0.2ms+8us)/500ms)*1.08ms))

1.12684

w10

1.08ms+Sum((((1.086566ms+0.6ms+8s)/100ms)*1.08ms),(((1.089540ms+0.7ms+8s)/200ms
)*0.84ms),(((1.093946ms+0.4ms+8us)/100ms)*1.08ms),(((1.102673ms+0.8ms+8u)/100ms) *1.
08ms),(((1.104180ms+1.1ms+8us)/500ms)*0.68ms),(((1.113260ms+0.9ms+8us)/100ms)*1ms)
,(((1.113493ms+0.1ms+8us)/500ms)*1.08ms),(((1.114659ms+0.1ms+8us)/100ms) *1.08ms),(((
1.115109ms+0.2ms+8ps)/500ms)*1.08ms),(((1.115721ms+0.4ms+8ps)/400ms)*0.60ms)

1.12745

\ll




Appendix D

Wn, third Iteration

Queue

Delay

w,, Equation

Wi (ms)

wl

1.08ms+(((1.098301ms +0.6ms+8us)/100ms)*1.08ms)

1.098428

w2

1.08ms+Sum((((1.098301ms+0.6ms+8s)/100ms)*1.08ms),(((1.101275ms+0.7ms+8
us)/200ms)*0.84ms))

1.101402

w3

1.08ms+Sum((((1.098301ms+0.6ms+8s)/100ms)*1.08ms),(((1.101275ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105681ms+0.4ms+8us)/100ms)*1.08ms))

1.105808

w4

1.08ms+Sum((((1.098301ms+0.6ms+8s)/100ms)*1.08ms),(((1.101275ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105681ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114408 ms
+0.8ms+8u)/100ms)*1.08ms))

1.114534

w5

1.08ms+Sum((((1.098301ms+0.6ms+8us)/100ms)*1.08ms),(((1.101275ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105681ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114408 ms
+0.8ms+81)/100ms)*1.08ms),((( 1.115915ms+1.1ms+8s)/500ms)*0.68ms))

1.116041

w6

1.08ms+Sum((((1.098301ms+0.6ms+8us)/100ms)*1.08ms),(((1.101275ms+0.7ms+8
us)/200ms)*0.84ms),(((1.105681ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114408 ms
+0.8ms+81)/100ms)*1.08ms),(((1.115915ms+1.1ms+8us)/500ms*0.68ms),(((1.1249
95ms+0.9ms+8us)/100ms)*ms))

1.125121

w7

1.08ms+Sum((((1.098301ms+0.6ms+8s)/100ms)*1.08ms),(((1.101275ms+07ms+8

us)/200ms)*0.84ms),(((1.105681ms+0.4ms+8s)/100ms)*1.08ms),(((1.114408ms+0
.8ms+81)/100ms)*1.08ms),(((1.115915ms+1.1ms+8us)/500ms)*0.68ms),(((1.12499
5ms+0.9ms+8us)/100ms)*1ms),((( 1.125228 ms +0.1ms+8ps)/500ms)*1.08ms))

1.125355

w8

1.08ms+Sum((((1.098301ms+0.6ms+8us)/100ms)*1.08ms),(((1.101275ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105681ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114408 ms
+0.8ms+81)/100ms)*1.08ms),(((1.115915ms+1.1ms+8us)/500ms)*0.68ms),(((1.124
995ms+0.9ms+8us)/100ms)*1ms),(((1.125228ms+0.1ms+us)/500ms) *1.08ms),(((1.
126394ms+0.1ms+8s)/100ms)*1.08ms))

1.126521

w9

1.08ms+Sum((((1.098301ms+0.6ms+8us)/100ms)*1.08ms),(((1.101275ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105681ms+0.4ms+8us)/100ms)*1.08ms),(((1.114408s0.8
ms+81)/100ms)*1.08ms),(((1.115915ms1.1ms+8us)/500ms)*0.68ms),(((1.124995m
s+0.9ms+8us)/100ms)*1ms),(((1.125228ms+0.1ms+8us)/500ms)*1.08ms),(((1.1263
94ms+0.1ms+8us)/100ms)*1.08ms),(((1.126844ms+0.2ms+8s)/500ms)*1.08ms))

1.126970

w10

1.08ms+Sum((((1.098301ms+0.6ms+8us)/100ms)*1.08ms),(((1.101275ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105681ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114408 ms
+0.8ms+81)/100ms)*1.08ms),(((1.115915ms+1.1ms+8us)/500ms)*0.68ms),(((1.124
995ms+0.9ms+8us)/100ms)*1ms),(((1.125228ms+0.1ms+8us)/500ms)*1.08ms),(((1
.126394ms+0.1ms+8s)/100ms)*1.08ms),(((1.126844ms+0.2ms+8ps)/500ms)*1.08
ms),((( 1.127456 ms +0.4ms+81s)/400ms)*0.60ms)

1.127582

Vil



Appendix D

W Fourth Iteration

Queue

Delay

w,, Equation

Wi, (ms)

wil

1.08ms+(((1.098428ms +0.6ms+8us)/100ms)*1.08ms)

1.098429

w2

1.08ms+Sum((((1.098428ms+0.6ms+8s)/100ms)*1.08ms),(((1.101402ms+0.7ms+8
Us)/200ms)*0.84ms))

1.101403

w3

1.08ms+Sum((((1.098428ms+0.6ms+8s)/100ms)*1.08ms),(((1.101402s+0.7ms+8s
)/200ms)*0.84ms),(((1.105808ms+0.4ms+8ps)/100ms)*1.08ms))

1.105809

wi

1.08ms+Sum((((1.098428ms+0.6ms+8s)/100ms)*1.08ms),(((1.101402ms+0.7ms+8
us)/200ms)*0.84ms),(((1.105808ms+0.4ms+8us)/100ms)*1.08ms),(((1.114534ms+0
.8ms+81)/100ms)*1.08ms))

1.114536

w5

1.08ms+Sum((((1.098428ms+0.6ms+8us)/100ms)*1.08ms),(((1.101402ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105808ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114534 ms
+0.8ms+811)/100ms)*1.08ms),((( 1.116041ms +1.1ms+8us)/500ms)*0.68ms))

1.116043

w6

1.08ms+Sum((((1.098428ms+0.6ms+8us)/100ms)*1.08ms),(((1.101402ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105808ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114534 ms
+0.8ms+811)/100ms)*1.08ms),(((1.116041ms+1.1ms+8us)/500ms*0.68ms),(((1.1251
21ms+0.9ms+8us)/100ms)*ms))

1.125123

w7

1.08ms+Sum((((1.098428ms+0.6ms+8s)/100ms)*1.08ms),(((1.101402ms+07ms+8
us)/200ms)*0.84ms),(((1.105808ms+0.4ms+8s)/100ms)*1.08ms),(((1.114534ms+0
.8ms+81)/100ms)*1.08ms),(((1.116041ms+1.1ms+8us)/500ms)*0.68ms),(((1.12512
1ms+0.9ms+8ps)/100ms)*1ms),((( 1.125355 ms +0.1ms+8us)/500ms)*1.08ms))

1.125356

w8

1.08ms+Sum((((1.098428ms+0.6ms+8s)/100ms)*1.08ms),(((1.101402ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105808ms+0.4ms+8us)/100ms)*1.08ms),(((1.114534ms+0
.8ms+811)/100ms)*1.08ms),(((1.116041ms+1.1ms+8us)/500ms)*0.68ms),(((1.12512
1ms+0.9ms+8us)/100ms)*1ms),(((1.125355ms+0.1ms+ps)/500ms)*1.08ms),(((1.12

6521ms+0.1ms+8us)/100ms)*1.08ms))

1.126522

w9

1.08ms+Sum((((1.098428ms+0.6ms+8s)/100ms)*1.08ms),(((1.101402ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105808ms+0.4ms+8s)/100ms)*1.08ms),(((1.114534ms+0
.8ms+811)/100ms)*1.08ms),(((1.116041ms+1.1ms+8us)/500ms)*0.68ms),(((1.12512
1ms+0.9ms+8us)/100ms)*1ms),(((1.125355ms+0.1ms+8s)/500ms)*1.08ms),(((1.1

26521ms+0.1ms+8us)/100ms)*1.08ms),(((1.126970ms+0.2ms+8us)/500ms)*1.08m
s)

1.126972

w10

1.08ms+Sum((((1.098428ms+0.6ms+8s)/100ms)*1.08ms),(((1.101402ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105808ms+0.4ms+8us)/100ms)*1.08ms),(((1.114534ms+0
.8ms+81)/100ms)*1.08ms),(((1.116041ms+1.1ms+8us)/500ms)*0.68ms),(((1.12512
1ms+0.9ms+8us)/100ms)*1ms),(((1.125355ms+0.1ms+8s)/500ms)*1.08ms),(((1.1
26521ms+0.1ms+8us)/100ms)*1.08ms),(((1.126970ms+0.2ms+8us)/500ms)*1.08m
s),((( 1.127582 ms +0.4ms+8s)/400ms)*0.60ms)

1.127584




Appendix D

W, Fifth Iteration

Queue w,, Equation Wy, (ms)
Delay

wl 1.08ms+(((1.098429ms +0.6ms+8us)/100ms)*1.08ms) 1.098429
w2 1.08ms+Sum((((1.098429ms+0.6ms+8us)/100ms)*1.08ms),(((1.101403ms+0.7ms+8 1101403

us)/200ms)*0.84ms))

w3 1.08ms+Sum((((1.098429ms+0.6ms+8us)/100ms)*1.08ms),(((1.101403ms+0.7ms+8
1.105809
us)/200ms)*0.84ms),(((1.105809ms+0.4ms+8s)/100ms)*1.08ms))

w4 1.08ms+Sum((((1.098429ms+0.6ms+8us)/100ms)*1.08ms),(((1.101403ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105809ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114536 ms 1.114536
+0.8ms+81)/100ms)*1.08ms))

w5 1.08ms+Sum((((1.098429ms+0.6ms+8us)/100ms)*1.08ms),(((1.101403ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105809ms+0.4ms+8us)/100ms)*1.08ms),((( 1.114536 ms 1.116043
+0.8ms+811)/100ms)*1.08ms),((( 1.116043ms +1.1ms+8us)/500ms)*0.68ms))

w6 1.08ms+Sum((((1.098429ms+0.6ms+8s)/100ms)*1.08ms),(((1.101403ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105809ms+0.4ms+8us)/100ms)*1.08ms),(((1.114536ms+0
.8ms+81)/100ms)*1.08ms),(((1.116043ms+1.1ms+8us)/500ms*0.68ms),(((1.125123

1.125123

ms+0.9ms+8us)/100ms)*ms))

w7 1.08ms+Sum((((1.098429ms+0.6ms+8s)/100ms)*1.08ms),(((1.101403ms+07ms+8

us)/200ms)*0.84ms),(((1.105809ms+0.4ms+8us)/100ms)*1.08ms),(((1.114536ms+0
1.125356
.8ms+811)/100ms)*1.08ms),(((1.116043ms1.1ms+8us)/500ms)*0.68ms),(((1.125123

ms+0.9ms+8us)/100ms)*1ms),((( 1.125356 ms +0.1ms+8us)/500ms)*1.08ms))

w8 1.08ms+Sum((((1.098429ms+0.6ms+8s)/100ms)*1.08ms),(((1.101403ms+0.7ms+8
Us)/200ms)*0.84ms),(((1.105809ms+0.4ms+8us)/100ms)*1.08ms),(((1.114536ms+0
.8ms+81)/100ms)*1.08ms),(((1.116043ms+1.1ms+8us)/500ms)*0.68ms),(((1.12512 | 1.126522
3ms+0.9ms+8s)/100ms)*1ms),(((1.125356ms+0.1ms+us)/500ms)*1.08ms),(((1.12
6522ms+0.1ms+8us)/100ms)*1.08ms))

w9 1.08ms+Sum((((1.098429ms+0.6ms+8s)/100ms)*1.08ms),(((1.101403ms+0.7ms+8
us)/200ms)*0.84ms),(((1.105809ms+0.4ms+8s)/100ms)*1.08ms),(((1.114536ms+0
.8ms+81)/100ms)*1.08ms),(((1.116043ms+1.1ms+8us)/500ms)*0.68ms),(((1.12512

3ms+0.9ms+8s)/100ms)*1ms),(((1.125356ms+0.1ms+8s)/500ms)*1.08ms),(((1.1 1126972
26522ms+0.1ms+8s)/100ms)*1.08ms),(((1.126972ms+0.2ms+8us)/500ms)*1.08m
s)

w10 1.08ms+Sum((((1.098429ms+0.6ms+8us)/100ms)*1.08ms),(((1.101403ms+0.7ms+8
us)/200ms)*0.84ms),(((1.105809ms+0.4ms+8s)/100ms)*1.08ms),(((1.114536ms+0
.8ms+811)/100ms)*1.08ms),(((1.116043ms+1.1ms+8us)/500ms)*0.68ms),(((1.12512 1127584

3ms+0.9ms+8us)/100ms)*1ms),(((1.125356ms+0.1ms+8ps)/500ms)*1.08ms),(((1.1
26522ms+0.1ms+8s)/100ms)*1.08ms),(((1.126972ms+0.2ms+8us)/500ms)*1.08m
s),((( 1.127584 ms +0.4ms+8s)/400ms)*0.60ms)




Appendix D

Obtaining Slack

Total Final Slack per

Tasks Execution Times of Tasks on Calculate Slack per

Path Execution Path per Task
on Path | Chosen Path (ms) Path per Task (ms)

Time (ms) (ms)

T1,T5T | 2.778429+2.896043+

P1 10.38797 (2600-0.01038797)/4 647.4030
8,19 2.306522+2.406972
T2,T5T | 2.641403+2.896043+

P2 10.25094 (2600-0.01025094)/4 647.4373
8,79 2.306522+2.406972
T3,T5,T | 2.585809+2.896043+

P3 10.19535 (2600-0.01019535)/4 6474512
8,79 2.306522+2.406972
T4,T5T | 2.585809+2.896043+

P4 10.60407 (2600-0.01060407)/4 647.3490
8,79 2.306522+2.406972
T1,T5T | 2.778429+2.896043+

P5 10.10858 (2600-0.01010858)/4 647.4729
8,T10 2.306522+2.127584
T2,T5T | 2.641403+2.896043+

P6 9.971552 (2600-0.009971552)/4 647.5071
8,T10 2.306522+2.127584
T3,T5,T | 2.585809+2.896043+

P7 9.915958 (2600-0.009915958)/4 647.5210
8,T10 2.306522+2.127584
T4,T5T | 2.585809+2.896043+

P8 10.32468 (2600-0.009915958)/4 647.4188
8,T10 2.306522+2.127584
T6,T8,T | 3.025123+2.306522+

P9 7.738617 (2600-0.007738617)/3 864.0871
9 2.406972
T6,T8,T | 3.025123+2.306522+

P10 7.459229 (2600-0.007459229)/3 864.1803
10 2.127584
T7,T8,T | 2.305356+2.306522+

P11 7.018850 (2600-0.007018850)3 864.3270
9 2.406972
T7,T8,T | 2.305356+2.306522+

P12 6.739462 (2600-0.006739462)/3 864.4202
10 2.127584

Xl




Appendix D

Payload Calculations

FlexRay Number  of | Calculation
Payload Calculation of the Number of Messages Total
Frame Messages for Total
Size Required Bytes
Size Required Bytes
(8/1)+(5/1)+(8/1)+(8/1)+(3/1)+(7/1)+(8/1)+(8/1)+(8/
1 15 65 65*15 975
1)+(2/1)
(8/2)+(5/2)+(8/1)+(8/1)+(3/1)+(7/2)+(8/1)+(8/1)+(8/
2 16 34 34*16 544
1)+(2/1)
(8/3)+(5/1)+(8/1)+(8/1)+(3/1)+(7/3)+(8/1)+(8/1)+(8/
3 17 25 25%17 425
1)+(2/1)
(8/4)+(5/1)+(8/1)+(8/1)+(3/1)+(7/4)+(8/1)+(8/1)+(8/
4 18 18 18*18 324
1)+(2/1)
(8/5)+(5/1)+(8/1)+(8/1)+(3/1)+(7/5)+(8/1)+(8/1)+(8/
5 19 17 17*19 323
1)+(2/1)
(8/6)+(5/1)+(8/1)+(8/1)+(3/1)+(7/6)+(8/1)+(8/1)+(8/
6 20 17 17*20 340
1)+(2/1)
(8/7)+(5/1)+(8/1)+(8/1)+(3/1)+(7/7)+(8/1)+(8/1)+(8/
7 21 16 16/21 336
1)+(2/1)
(8/8)+(5/1)+(8/1)+(8/1)+(3/1)+(7/8)+(8/1)+(8/1)+(8/
8 22 10 10*22 220
1)+(2/1)
(8/9)+(5/1)+(8/1)+(8/1)+(3/1)+(7/9)+(8/1)+(8/1)+(8/
9 23 10 10*23 230
1)+(2/1)
(8/10)+(5/1)+(8/1)+(8/1)+(3/1)+(7/10)+(8/1)+(8/1)+(
10 24 10 10*24 240
8/1)+(2/1)
(8/11)+(5/1)+(8/1)+(8/1)+(3/1)+(7/11)+(8/1)+(8/1)+(
11 25 10 10*25 250
8/1)+(2/1)
(8/12)+(5/1)+(8/1)+(8/1)+(3/1)+(7/12)+(8/1)+(8/1)+(
12 26 10 10*26 260
8/1)+(2/1)
(8/13)+(5/1)+(8/1)+(8/1)+(3/1)+(7/13)+(8/1)+(8/1)+(
13 27 10 10*27 270
8/1)+(2/1)
(8/14)+(5/1)+(8/1)+(8/1)+(3/1)+(7/14)+(8/1)+(8/1)+(
14 28 10 10*28 280
8/1)+(2/1)
(8/15)+(5/1)+(8/1)+(8/1)+(3/1)+(7/15)+(8/1)+(8/1)+(
15 29 10 10*29 290
8/1)+(2/1)
(8/16)+(5/1)+(8/1)+(8/1)+(3/1)+(7/16)+(8/1)+(8/1)+(
16 30 10 10*30 300
8/1)+(2/1)
(8/17)+(5/1)+(8/1)+(8/1)+(3/1)+(7/17)+(8/1)+(8/1)+(
17 31 10 10*31 310
8/1)+(2/1)
(8/18)+(5/1)+(8/1)+(8/1)+(3/1)+(7/18)+(8/1)+(8/1)+(
18 32 10 10%*32 320
8/1)+(2/1)
(8/19)+(5/1)+(8/1)+(8/1)+(3/1)+(7/19)+(8/1)+(8/1)+(
19 33 10 10*33 330
8/1)+(2/1)
(8/20)+(5/1)+(8/1)+(8/1)+(3/1)+(7/20)+(8/1)+(8/1)+(
20 34 10 10*34 340
8/1)+(2/1)

Xl



Appendix D

Experimental Implementation Calculations

Obtaining Slack

Execution Times of | Total Final Slack per
Tasks on ) Calculate Slack per
Path Tasks on Chosen Path | Execution Path per Task
Path . Path per Task (ms)
(ms) Time (ms) (ms)
T1,T3,T4,T
P1 0+0+6+2+6+2 16 (120-16)/6 17.3333
5,T6
T2,73,T4,T
P2 0+0+6+2+6+2 16 (120-16)/6 17.3333
5,T6

Xl




Payload Calculations

FlexRay Cacl for
Payload Calculation of the Number of | Number of Messages Total
Frame Total
Size Messages Required Required Bytes
Size Bytes
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
1 15 40 40*15 600
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
2 16 20 20*16 320
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
3 17 15 15%17 255
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
4 18 10 10*18 180
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
5 19 10 10*19 190
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
6 20 10 10*20 200
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
7 21 10 10/21 210
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
8 22 5 5%*22 110
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
9 23 5 5%23 115
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
10 24 5 5*24 120
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
11 25 5 5*25 125
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
12 26 5 5*26 130
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
13 27 5 5*27 135
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
14 28 5 5%28 140
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
15 29 5 5*29 145
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
16 30 5 5*30 150
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
17 31 5 5*31 155
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
18 32 5 5*32 160
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
19 33 5 5*33 165
+(8/1)
(8/1)+(8/1)+(8/1)+(8/1)+(8/1)
20 34 5 5*34 170

+8/1)
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