

Daidalos Framework for Successful Testbed
Integration

Miguel PONCE DE LEON1, Frances CLEARY GRANT1, Marta GARCÍA MORENO2, Antonio Romero

VICENTE2 Mark RODDY, Czeslaw JEDRZEJEK.

1 Waterford Institute of Technology, Cork Road, Waterford, Ireland
Tel: +353 51 302952, Email: miguelpdl@tssg.org, fcleary@tssg.org

2Telefónica I+D, Address, City, Postcode., Spain
2Telefónica I+D, Parque Tecnológico de Boecillo, Parc. 119-120, 47151, Boecillo, Spain

Tel: +34 983 367500, Email: martagm@tid.es, arv266@tid.es
3 Lake Communications, BIC, Ballinode, Sligo, Ireland

Tel: +353 71 9156830, Email: mark.roddy@lakecommunications.com,
4ITTI, ul. Palacza 91A, Poznan, 60-273., Poland

Tel: +48 61 861 00 73, Email: czeslaw.jedrzejek@itti.com.pl

Abstract — Daidalos Testbed integration framework

required detailed planning and implementation, constantly
adapting to the demanding changes of a research project
as it advances from development phase to integration
phase. This paper describes the various integration and
validaton efforts required to deploy an operational
daidalos Testbed infrastructure, demonstrating the effort
required to achieve a successful overall integration
process. With such a large scale project as Daidalos with a
consortium of 49 partners, the Testbed deployment,
operation and management was indeed an immense task
having to create and enforce Testbed processes suitable for
the efficient and effective operation of the Daidalos system
during integration and validation.

Key Words — Test bed, Integration Management,

Taskforces, validation.

I. DAIDALOS INTRODUCTION

Daidalos [1] is a world in which mobile users can enjoy
a diverse range of personalized services – seamlessly
supported by the underlying technologies and
transparently provided through a pervasive interface.
Daidalos demonstrates the results of the projects work
through a strong focus on user-centred and scenario-
based development of technology. Furthermore, as an
"integrated project" it requires integration of individual
components developed in WP2, 3 and 4 into a common
prototypical solution. This integration, according to the
Daidalos working structure to be fulfilled by Work
Package 5, reaches a level of complexity in terms of
number of components and their dependencies to be
included, number of partners involved as well as time
and budget constrains which is almost a unique
experience in European R&D programmes.

Innovative targeted areas within Daidalos focuses on

• Layer 2-3 in order to develop an integration of
heterogeneous network technologies. Such as
Terminal mobility, Ad-hoc systems.

• The Services and Network Management level
above layer 3. Such as QoS, A4C, Multimedia
service platform.

• Pervasive systems, which involves innovations
within network technologies and software
infrastructures. Such as context management,
Personalisation, Pervasive service
management, security & Privacy.

 These three main work areas were integrated into a
single architecture driven by a scenario-based design
approach. Finally, the integration of the projects
innovative achievements into practical assessment allow
for concept validation, system evaluation and public
demonstration.

Due to the previously mentioned large amount of
components, dependencies between them and the
number of players involved in the integration tasks, a
detailed integration planning and effective test bed
operation have been crucial in Daidalos for a successful
integrated Testbed. Strategies identified and led by an
Integration management team and followed closely by
the key stakeholders (Daidalos Management and Work
Package Leaders) were set up to cover various
integration aspects required for the Official testbeds,
such as Testbed requirements, Integration components
delivery planning and other key milestones identified
for the integration process. Details on such milestones
used will be discussed within this paper and it will also
provide you with an insight into some of the positive
and negative aspects of the processes adopted and the
results achieved following the completion of the
daidalos integration and validation phase.

II. STEPS LEADING TO INTEGRATION

Building up the system from components and packages
of components was a nontrivial task because each time
logical entities were mapped to physical devices, they

also had to be transferred to the larger test bed site with
physical mapping specific to this site. The main steps
leading to integration were identified as the following.

1. Decide on scope of integration

2. Prepare a scenario

3. Build a deployment model

4. Prepare and validate MSC

5. Build a Testbed

6. Gather all needed components (delivery
procedures)

7. Build network architecture based on
deployment model

8. Install and configure components (base on
deployment model,)

9. Prepare and perform test cases

It is to be noted that not all elements of integration
design patterns [2] suitable for a software production
company can be applied to Daidalos.

The following figure 1 depicts the general defined
integration and testing flow for all daidalos demo sites:

Figure 1. General Daidalos Integration Flow

III. TESTBED INTEGRATION PLANNING

Testbed Integration Planning is an important phase to
identify the scope of integration and to sufficiently plan
and manage the integration process. To help this
planning stage, A ‘Handbook for Daidalos Integration-
oriented Developments’ [3] adapted known best
practices in open software development as well as
experience from previous EU projects to the needs of a
large IP projects in the areas of methodology and
organisation. They encompassed pre-integration
activities, configuration and installation requirements,
component identification and tracing changes.

With the complexity of the Daidalos system and its
operation at different OSI layers it was difficult for
work packages to develop unified integration views
within their respective subsystems. Functional
subsystems were initially pre-integrated within each

work-package, then a cross work-package incremental
process is executed. Integration was split into 3 stages

1. PreIntegration

2. Subsystem Integration

3. Intra WP Level Integration

Not all these stages were applicable to each work-
package, it was dependant on their software structure
and subsystem definition.

Scenarios in Daidalos were used to guide and merge the
development of the various technologies and conceptual
models. The detailed description of the initial university
and automobile scenarios was quite extensive, and
complete scenario descriptions have been only used to
derive business modelling and architecture work, in
addition to overall guidance of the technical
development in the project. On the other hand, portions
of the these two scenarios were chosen for defining and
describing an integrated demonstrator. It was decided
early in the project that, in order to promote technical
integration and to fully understand the challenges of
integrating various enabling technologies into a working
piece of system, the project should aim at one integrated
demonstrator on which most of our integration work
would be focused.

 The selection of a sub-scenario for this integrated
demonstrator (called Nidaros) was guided by many
factors: most innovative and useful technologies to be
demonstrated, most promising technical development
since project started to be included, combining the two
scenarios into one demonstrator, demonstrating key
concepts such as mobility, broadcast and pervasiveness,
etc. We believe Nidaros demonstrates a balanced
(however only partial) view of the innovations that
Daidalos is trying to achieve.

IV. MANAGEMENT OF INTEGRATION

In a project of the magnitude of Daidalos, where
deficiencies in workflow management immediately
causes wasted effort, communication was one of the
biggest challenges.

A mixture of integration meetings (3 of them) for the
whole consortium, audio conferences, e-mail lists,
collaboration server (MoreGroupware) and cvs for
software versioning were used for exchange of
information, documents and software.

Toward the end of the project wiki was widely adopted
in WP5 and found increasingly effective. Throughout
the Daidalos Phase I Integration stage the Wiki tool was
used as a support tool during integration, to aid the
integration planning process, to document integration
status reports, to actively supply the latest news during
component installation and execution and to provide a
detailed list of Testbed and developer contact details. It
was extremely helpful for integration information
exchange and changes in software as well as status of
integration and development work.

In order to assist the Integration management of the
Daidalos project, the following three Integration steps
were identified.

Step 1: Deployment View : This was linked to
modelling (Telelogic Tau Tool) [4] and was the first
approach for distribution of components to nodes.

Step 2: Physical Modelling: This was comprised of a
detailed list of software components with the software
and hardware requirements.

Step 3: Physical Mapping: This was comprised of the
final Layouts for the test-sites and involved the
following activities.

1) Gather the list of components that are used.

2) Get the specific component requirements in
terms of software, dependencies etc.

3) Define the deployment view which also
includes e.g. network hardware

4) Create the physical modelling which means
defining the distribution of components onto
physical nodes

V. DAIDALOS TESTBED

Daidalos Official testbed sites were selected from a list
of candidates within Daidalos partners considering a
number of requirements (such as UMTS/WLAN
coverage, transport facilities, availability of specific
equipment, broadcast availability, logistics for
demonstrations/workshops and expertise from former
projects, among others) to decide which sites were more
suitable for the chosen scenarios: automotive and
university. The three Daidalos Official Sites that were
finally selected for their fulfilment of all requirements to
be used in Work Package 5, were Stuttgart (Germany),
Aveiro (Portugal) and Sophia-Antipolis (France). Figure
2 shows the official Demo Site of Sophia Antipolis:

Physical Deployment Nidaros

Switch

Core Router

nidaros_server_wp4nidaros_server_thirdparty 1

AR 2
WLAN 2

TD-CDMA

nidaros_pda_bart nidaros_carpc_bart

AR 4
DVB- T

MMSPP

nidaros_pda_bossnidaros_pda_rosa

Firewal l

nidaros_server_streaming

ANQoSBr1
ANQoSBr2

AR1 Wlan1

AR3 Wlan3

IPv6

IPv4

nidaros_homepc_bart

AR5

A4C
QoS

RemoteAccess

ANQoSB
PM ANQoSB

PM

MMSPB/P, MMG,
maybe the MCS

CMS
PBMNS

A4C
AG

SDS

ARM
NME

Newscast
applica tion ,

MMSPUA, WP4
RS, QoSClient,

PaC, MTC

VideoTelephony
application ,
MMSPUA,

QoSClient , PaC ,
MTC,..

WIF I/TD-C DMA/DVB-T
Newscast and

VideoTelephony application ,
MMSPUA, QoSClient, PaC,

MTC,..

MMSPU A for
messaging?

VideoTelephony
application ,
MMSPUA,

QoSClient, PaC,
MT C,…

ARM, Paa,
N ME, PA,
QoSAL ,

FHOAttendant,…

ARM, Paa,
NME, PA,
QoSAL,

FHOAttendant,…

ARM, Paa,
NME, PA,
QoSAL,

FHOAttendant,…

AR M, Paa,
N ME, PA,
QoSAL ,

FHOAttendant,…

ARM, Paa,
NME, PA,
QoSAL,

FHOAttendant,…

EM, PSM, PERS,
SPM, CM, RM

AN1

CN

AN2

WLAN 1

WLAN 3

Figure 2. View of Sophia Antipolis demo Site

The Official Test Sites were provided with already-
tested modules from work packages 2-4, at different
delivery versions. Developed modules from WP2-4

were integrated, tested at system level and then
validated in the Official Sites

Demonstration of the full Nidaros scenario was a major
challenge in terms of balancing smoothness of
demonstration with explanation and visualization.
Where functionality of platform components is difficult
to illustrate due to the fact that the components are not
visible on the actual user interface, visualisation tools
provide a means to convey the sequence of operations
occurring behind the scene.

 The demonstration is inherently mobile, ranging from
the home location (i.e. Bart’s HomePC) to the CarPC
and the “simulated” airport location.

Visualisation, however, helps the audience to stay in
synchronism with the demonstration even if they cannot
be in several places at the same time (e.g. to witness a
handover from a HomePC service to the CarPC).

Visualisation was useful during the initial integration
phase. The following figure 3 conveys an example of
the DLR visualisation tool created and used specifically
for the daidalos project to enhance the visual aspect of
the pre integration phases. This visualisation tool shows
the simulated status of the network components and the
messages from the major WP4 subsystems and third
party services. The colour of the arrows indicates the
presence of recent message traffic over these
connections.

Figure 3. Visualisation Layout for the CarPC

VI. CONFORMANCE TESTING

The final deployment of Nidaros was in the Aveiro
Testbed but the first integration of all the components
involved in this scenario was in the Sophia Antipolis
test site, but continuing problems with network stability,
related to Mobile IP, prevented a full detailed
conformance test at this site.

The conformance testing specification for the Daidalos
demonstrator called the Nidaros – was developed in
Deliverable D512 Conformance Test Specification [4],
which was the basis for test process both in Sophia
Antipolis and Aveiro testbeds.

A set of defined taskforces were involved in the
procedure of the realisation of the conformance tests:

• Aveiro Test-bed Taskforce: In charge of
managing the test-bed.

• WP2 Integration Support Taskforce, WP3
Integration Support Taskforce, and WP4
Integration Support Taskforce: Experts from
the different Work packages were supporting
the activities of the Aveiro test-bed taskforce.

• WP5 Conformance Tests Taskforce: A group
of people from WP5 that were in charge of
carrying out the tests and collecting the results,
following the guidelines of D512 [4].

Due to the definition of the tests and the scenario itself
the biggest problems we faced were those related to the
network layer, Mobile IP and WP2 network drivers,
which were unstable. It was decided to fragment the
tests and start testing and debugging small pieces of
functionality.

Different plans of action were defined, in which the tests
were started with just one mobile terminal, then
progressively adding more into the system in order to
increase the complexity gradually.

The main challenge that comes with complex scenario's
like Nidaros is to keep this complexity away from the
user. This puts a heavy burden on the service platform
and on the enabling services itself. The key factor is, to
know as much as possible about the user’s situation
and preferences and to use this information for a
continuous reconfiguration of the services itself.

The Nidaros scenario is also composed of the following
3rd party sub-services:
1. Newscast-Service –When the scene starts, Bart is
watching a personalised newscast at home.
2. ToDoList-application – This application acts like an
automated filofax.
3. SIP-Service – is used to make voice-calls, send
messages, redirection, voicemail & presence
management
4. Location-Service - is used to find location
information.
5. Traffic Information -Service - provides airport
information to the Car-PC
6. Airport Information -Service – is used to provide
Bart with airport information.

The conformance tests were split into two main areas,
Nidaros step Specific conformance tests and Nidaros
performance tests. Figure 4 conveys statistical
representations of results obtained during an Aveiro
conformance test validation iteration.

0

5

10

15

20

25

30

St ep -1 Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Planned TC

At tempted TC

Successf ul TC

No of Failures

Figure 4. Nidaros Conformance Test Statistics: Aveiro iteration

When faced with a large number of components, both
developed by Daidalos and also third party software, a
minor problem in one of them can compromise the
whole system. Some hard decisions were taken to
achieve a stable integrated platform so as to be useful
for our future work. Because we use third party
software, which was creating stability problems, we
needed to update this software. That required a change
in Linux distribution and kernel version, which achieved
the expected result of getting a more stable system. But,
on the other hard, because of the time spent on this
change, we finished with extremely hard deadlines for
the conformance testing.

Using a scenario based validation process proved to be
the most practical and useful way to convey the
innovations of the individual work groups from the
Daidalos project. The following text conveys a sample
of a selected excerpt from the overall defined Nidaros
scenario.

Bart is driving on the motorway, which triggers the
launch of the Traffic information Service. Bart arrives
at the airport, and continues to drive towards the car
parking area of the airport. His car system screen
shows the airport information carrousel. Information
about all flights will be shown. Bart parks and leaves
his car, taking his PDA with him.

A transfer is invoked on the transferring components
in the old service and starts the new service on PDA
and stops the old service on CarPC. The airport
arrivals information can now be seen on Barts PDA as
he enters the airport arrival terminal.

VII. SAMPLE TEST CASE EXECUTION

Best testing component/subsystem practises can be
classified into several groups [5]. The most obvious
debugging and testing techniques, widely recognized
and documented are listed below:

� Development of Functional Specifications.

� Reviews and software inspections.

� Formalisation of preconditions and
postconditions.

� Usage of Functional tests and Variations.

The Daidalos research project is not concerned with
production testing quality, rather demonstration and
verification of solutions from the end user point of view.
Such purpose requires scenario conformance Testing.

This section presents an example of one of the

Nidaros conformance tests used within the conformance
validation phase.

N3:05: - Launch of traffic service due to location
change.

Steps Verdict
1. TESTER: Ensure that other applications such

as Newscast are terminated (or if Traffic Info
Service is already running as a consequence
of the previous test, N3:04, this should also
be stopped)

PASS

2. SUT: Car PC is in main menu mode. It takes
time for the BMW GUI to come up properly,
so wait until you see the ‘INFO’ button
appearing and select it.

PASS

3. TESTER: Trigger context change using
Generic Sensor Emulator to indicate that
CarPC location is now on the Motorway (this
is also done as part of TC N3:04, so if the test
is being performed separately it may be
necessary to change the location sensor to an
initial value which is not the motorway).

PASS

4. SUT: The traffic information system should
start automatically and become populated
with the information being broadcast from the
Carousel server.

PASS

Table 1 Detailed Test Execution: N3:05

Test Result: Overall pass.

Comments: The PSP-Container was started on the
carPC. Using the generic sensor emulator, location was
set to ‘any’, to indicate that the carPC was on the
motorway. The test was executed four times. It failed
one time due to a wrong configuration but was
successful the other three times. The Newscast finishes
and a simulated location event (Bart is on the
motorway) triggers the launch of the Traffic Service
(Bart has heard enough of the news and presses the Stop
button on the CarPC Newscast GUI. Now all unicast
sessions have stopped, DVB-T is started/activated.
DVB-T carries Traffic Info in the Carousel) and
Personalisation sub-system to change network
preferences from:

 1. WLAN 1. WLAN

 2. TD-CDMA 2. DVBT-T

 3. DVB-T 3. TD-CDMA

 Personalisation sends these new network preferences
to IIS, IIS sends this information to the mobile terminal
controller which in turn activates the DVB-T bridge.

The following actions describe additional system
execution steps to describe how to use the system upon
arrival at the airport.

Car comes within range of the Airport
• In the ‘Location’ tab, enter the location value

of Bart as car@airport, then wait
• You should see the Traffic Service

recomposing itself into an Airport Service
• The Airport Service should begin displaying

Airport information
• Log into Barts PDA (wait until fully logged in)

Bart exits car at airport and walks to terminal
• Now in the Location tab of the Sensor

Emulator, enter Barts location as airport, then
wait

• You should see the Airport Service from the
CarPC transfers to the PDA (using an
appropriate GUI display on the PDA)

• You should see Airport Information being
displayed on Bart’s PDA.

VIII. TESTBED ISSUES DURING SETUP AND RUN PHASE

With such a large scale project as Daidalos, it was
inevitable and expected that problems would occur
during test bed deployment, Integration and validation
phases.

Packages dependency issues also had a negative impact,
for example lost corrections, poor versioning(using
older versions of components and libraries),
incompatible version on operating systems, and network
administration and routing problems.

Third Party software, which Daidalos partners had no
control over, was responsible for major issues with
integration and a change of Operating System was
required before this software functioned correctly (e.g.
Mobile IP). Specific issues encountered during the run
process appeared in many areas in addition to errors in
code:

• Timing for sessions/certificates, such as
session terminations due to certificate
expiration (in CAN), Stability problems (faulty
state machines or even memory leaks)

• Settings unsynchronised scenario changes,
problems with parallel works on 2 machines
(remote restarts interfere)

• Creating dummy adapters direct access
component omitting the correct path,
Incomplete or faulty definition of interfaces
(e.g.: Care of Address instead of Home
Address), Faulty interfaces

• Lack of tolerance on some events: restarting
server forces a restart of all clients, sometimes
a container can be used only as a “transport

unit”, need to write scripts starting only parts
of a container

IX. CONCLUSIONS & RECOMMENDATIONS

Daidalos phase I provided a unique experience for
assessment of methodologies and technologies in
software engineering for a very complex
telecommunication systems. Surely, complexity of
integration has been underestimated. Also
communication, particularly interworkpackage
communication, became quite a problem for a team of
200 developers and integrators. For some large
commercial system a core team does not exceed 100
members. The most unpredicted proved to be small
reliability of crucial external systems and severity of this
problem was at the verge of being managed by
Daidalos. Also developer churn became a factor, it is
estimated to be 20% but for certain activities the
percentage could be as high as 30%. Kernel modules
were most critical. Change of distribution from
mandrake to Ubuntu mostly solved a problem of MIPL,
but introduced some software libraries dependencies.

There have been two major rounds of collocated
Nidaros integration testing; one in November 2005 at
Sophie Antipolis, before audit; and the final one in
March 2006 in Aveiro. The Sophie Antipolis test was
distorted by instability of Mobile IP functionality for
integrated system. In between, there was continuous
effort with remote installation and testing. Most of the
components and interfaces planned for Nidaros have
been available for the Sophie Antipolis cycle although
not all of them performed successfully in the integrated
Nidaros system. Due to complexity of the Nidaros
system a change of underlying platform such as Linux
kernel could cause non-compliance of previously
working subsystem

Running the test site was a massive operation in terms
of availability of sufficient logistics: number of
computers and devices, manpower to configure network
and computers and install components. The Daidalos
consortium could not for financial and logistics reasons
keep test sites operation on continuous basis. The test
had to be prepared before each major test cycles. This
meant lack of proper network and system configuration
first 2 or 3 days of a major test cycle. The following
recommendations were identified as suitable
enhancements to the Integration Phase.

• On site integration must be improved with a
stable basic platform very early in the
integration phase. A permanent test-bed should
be identified, which is accessible for all
partners.

• All integration activities during technical
weeks should be held at the identified test sites.

• In order for the modelling process to contribute
to the integration process, this may work if
targeted testing is linked with modelling.

During daidalos I the modelling process only
really contributed to documentation, but has
the possibility to be more constructive for the
integration phase once the correct process and
methodology is implemented.

• It is recommended that certain experts from
each Work Package arrive early to the test site
and check out that the test-bed deployment is
suitable for their software to be deployed on,
any inconsistencies should be raised at that
stage rather that when the integration team
arrive on site at a later date.

• There is a need to implement more effectively
pre-integration test-beds, running a common
Daidalos architecture and performing intra-WP
integration prior to the scheduled inter-work
package integration cycles.

Most harmful reasons of failures during the integration
process are configuration settings such as: hard-coded
IP addresses, session/certificate lifetimes, incorrect port
numbers, etc. These kinds of errors may be undetected
until integration starts. That’s why developers should
always use configuration files instead hard coding. It is
easier and less time consuming to correct a
configuration file than fixing poor coded software which
involves a complete compilation/build/reinstallation
cycle. We have to remember that configuration files
save developers time – any one on testbed with
adequate knowledge can fix it without disturbing a
developer. Also developers should consider using stable
well known software frameworks for WP integration.
For example for logging, testing, visualization and
service management. OSGi framework and logging
framework used in WP4 proved that frameworks can
save time by giving additional functionality for a small
additional work cost. Another lesson learned from
integration is that remote access to the testbed should be
more restricted during demos or conformance tests to
avoid disruptions or negative impacts on a previously
working testbed accidentally. This implies also that a
partner responsible for a testbed should have more
control over installed components and their versions.
Some clear control procedures have to be elaborated.

REFERENCES
[1] DAIDALOS - Designing Advanced network Interfaces for the

Delivery and Administration of Location independent,
Optimised personal Services (EU Framework Programme 6
Integrated Project), http://www.ist-daidalos.org/

 Steve Berczuk , Brad Appleton, Software Configuration
Management Patterns: Effective Teamwork, Practical
Integration, Addison-Wesley, 2002.

[2] D513 handbook for Daidalos Integration-oriented
Developments’

[3] http://www.telelogic.com/corp/products/tau/index.cfm

[4] D512 Conformance Test Specification

[5] James A. Whittaker, Florida Institute of Technology. “What is
Software Testing? And Why it is so hard?”
http://www.sba.oakland.edu/faculty/rajagopa/Courses/515/testin
g2.pdf

