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Abstract

Software encipherment and an equivalent firmware implementation is the general
scope of this work. Current cryptographic implementations rely on software
running under general purpose, often multi-user, operating systems alongside
a horde of untrusted and possibly malicious applications. Additionally there
are other threats to security, such as that posed by “crackers” or government
agencies listening in to network traffic. This work addresses one method for
minimising these risks.

A framework is presented for implementation of a cryptographic coprocessor,
capable of securely performing encryption, decryption and key management.
To achieve maximum performance and security the algorithm is instantiated in
firmware. This achieves superior performance to pure software implementations.

This work also examines various issues related to the choice of algorithms
out “in the wild” today, how they operate, and how they can be used for dif-
ferent purposes. It shows how a software algorithm can be brought into the
hardware/firmware domain and deployed as effectively therein. The frame-
work implemented retains all the functionality of the pure software solution
while gaining significantly in performance. This approach is also significantly
more secure, as a firmware implementation is not open to the standard security
workarounds and breaches commonly applied to software solutions.

As part of the project a corresponding software implementation has been
verified against the firmware equivalent, and an assessment made on the rel-
ative merits of both approaches with respect to speed, security, and ease of

implementation.
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1.1 Computer Security

“We already are seeing the first wave of deliberate cyber attacks
— hackers break into government and business computers, steal-
ing and destroying information, raiding bank accounts, running up
credit card charges, extorting money by threats to unleash computer
viruses.” — President Bill Clinton.[Gol99]

While it is very laudable for the President of the U.S.A. to say these words,
the reality of the situation is that computer security is woefully neglected in
the general computing world (the damage that the “I Love U” virus was able to
do being a case in point). Today’s computer environment consists of physically
distributed personal computers and workstations, connected by networks. Such
an environment is inherently difficult to protect.

Arbaugh et al. have pointed out that the integrity of the operating system’s
kernel cannot be trusted because malicious code can be injected in the boot-
strap process[AFS97]. For example, typical PCs can be booted from CDROM,
floppy disks or over the network, thus allowing arbitrary code to be run. Some
do allow an administrator to set a BIOS (Basic Input Output System) pass-
word thus allowing the boot process to continue only if the correct password is
entered. However it is not to difficult to remove the password by resetting the
BIOS[FW99).

The advantage of software only implementations is that they are inexpen-
sive and easy to deploy. The disadvantage of these implementations is that they
provide a very low level of protection for cryptographic variables and, unfortu-
nately, this low level of security is unlikely to change in the future. Vulnerable
software ranges from the applications right down to the operating system. Some

examples:
1. Operating systems

e scanning memory for encryption keys in Windows NT[SS98].
e Windows NT jump table patching[RC97].

e erroneous permissions of DLL cache on Windows NT 4.0[dil99].
2. Basic system programs

e intercepting shell messages[Hei98].
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o buffer overflow in df, eject, login, etc., in IRIX[CER97].
3. Daemons

o buffer overflow in wu-ftpd[CER99c].
¢ buffer overflow in IIS web server[CER99b].

¢ bugs in sample files in IIS[wel99].

>~

. Applications
e buffer overflow in sendmail|[ CER99a]
5. Network protocols

e flaws in ICMP Router Discover Protocol allowing man-in-the-middle
attack[sil99a]

=2

. Security software

e poor encrypting of shellock[ml199].

e password appraiser sending Windows passwords in the clear on the
Internet[mud99]

Such vulnerabilities can be quite serious. They may yield control of the machine
to an opponent, crash the system or leak critical information (cryptographic
keys). Unfortunately, the main problem is that for most people there is no

problem:

“If only more people were aware of the problem. Then I wouldn’t
have to start off by having to convince them they needed to do

something - we could get right down to solving problems”[Ran99]

Users see it as normal for software to contain bugs. Since program correctness is
difficult to achieve[Wie93], and as long as features are the major selling point for
products, buggy and insecure systems will be the normal state of affairs|[CF98].
The simple fact is that no mainstream operating system has the features re-
quired to implement proper security policies]LSM*98|, and the work involved
in performing the necessary redesign from scratch with an operating system
containing millions of lines of code would make it prohibitive[Gut00].
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This seems to be painting a very bleak picture for someone trying to provide
“secure” services to users. How do we address this problem? One approach is to
move the cryptography away from the insecurity. In other words, though a user
may be running the latest up to date operating system with all the latest bugs
and un-patched buffer overflows, none of these can subvert the cryptography.
Hence we move the crypto operations and the critical cryptographic keys into
hardware.

In [Gut00] Gutmann does this by using an embedded Linux solution run-
ning on a RISC processor. At the opposite end of the spectrum, Itoi [Ito00] uses
IBM’s 4758 cryptographic co-processor [chp] to secure a Kerberos Key Distribu-
tion centre. Not one of these approaches use a firmware implementation, they
involve downloading a conventional program into an on-board RISC or CISC

processor.

1.1.1 Goals

The goals of this work are:

e Investigate the area of cryptographic algorithms, and decide on one algo-
rithm for further investigation.

e Implement this chosen algorithm both in software and firmware.

e Compare the differences in implementation and performance, of the dif-

ferent domains.

e Suggest possible improvements of the different implementations based on

experience gained.

1.2 Cryptography

1.2.1 A Brief History

“On a day nearly 4000 years ago, in a town near the Nile, a master scribe
sketched out the hieroglyphs that told the story of his lord’s life — and in doing
he opened the recorded history of cryptology”. His was not a system of secret
writing as the modern world knows, he merely used some unusual hieroglyphics
here and there in place of more ordinary ones. The intention was not to make it
hard to read the text, but to impart a dignity and authority to it, perhaps in the
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same way that a government proclamation will spell out "In the year of Our Lord
Nineteen Hundred and Ninety Nine" instead of just "1999.” The anonymous
scribe may also have been demonstrating his knowledge for posterity. Thus
the inscription was not secret writing, but it incorporated one of the essential
elements of cryptography: a deliberate transformation of the writing. It is the
oldest text known to do so.

In its first 4000 years, Cryptology did not grow steadily, it rose and grew
independently in many places, and in most of them it also died with its civilisa-
tions. In other places, it survived, embedded in a literature, and from this the
next generation could climb to higher levels. But progress was slow and incon-
sistent. More was lost than retained. Much of the history of cryptology of this
time is a patchwork of unrelated items, sprouting, flourishing, withering. Only
toward the Western Renaissance does the accreting of knowledge begin to build
up a momentum. Modern cryptologywas born among the Arabs. They were
the first to discover and write down the methods of breaking codes and ciphers,

the word “cipher” itself, comes from the Arabic word for mathematics[Kah96].

1.2.2 The Fundamental Idea of Cryptography

It is possible to transfer or encipher a message or plaintext into “an intermedi-
ate form” or ciphertext in which the information is present but hidden. Then
we can release the transformed message (the ciphertext) without exposing the
information it represents.

By using different transformations, we can create many different cipher-
texts for the exact same message. So if we select a particular transformation “at
random,” we can hope that anyone wishing to expose the message (“break” the
cipher) can do no better than simply trying all available transformations (or on
average half) one-by-one. This is a brute force attack.

A cryptographic “key” is an item of data which is shared among the commu-
nicating parties to facilitate cryptographic techniques. This data may include
public or secret keys, initialisation values, and additional non-secret parame-
ters. The are generally classified according to Table 1.1. Hence a “symmetric”’
algorithm uses a single key for encryption and decryption, and similarly, an
“asymmetric” algorithm uses a public and private key for decryption and en-
cryption respectively.

The difference between intermediate forms is the interpretation of the ci-
phertext data. Different ciphers and different keys will produce different inter-
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| Term | Meaning |
private key, public key | paired keys in an asymmetric cryptographic system
symmetric key key in a symmetric (single-key) cryptographic system
secret adjective used to describe private or symmetric key

Table 1.1: Key Classification

pretations (different plain-texts) for the exact same ciphertext. The uncertainty
of how to interpret any particular ciphertext is how information is “hidden.”

Naturally, the intended recipient needs to know how to decipher the interme-
diate form back into the original message, and needs to receive the decryption
key in a secure manner. The latter is the key distribution problem.

As an example, while attending Secondary School is was common practice
to encipher messages to pass to friends in “study”. Key Distribution was easy:
drop the key into the other party’s desk while entering study. Unfortunately,
in a real system, key distribution is not so such an easy task, and will be dealt
with later.

By itself, ciphertext is literally meaningless, in the sense of having no one
clear interpretation. In so-called perfect ciphers, any ciphertext (of appropriate
size) can be interpreted as any message, just by selecting an appropriate key. In
fact, any number of different messages can produce ezactly the same ciphertext,
by using the appropriate keys. In other ciphers, this may not always be possible,
but it must always be considered. To attack and break a cipher, it is necessary to
somehow confirm that the message we generate from ciphertext is the message
which was originally sent (i.e., we know the plaintext).

1.2.2.1 The Single Transformation

The single transformation cipher is a simple substitution cipher: a streaming or
repeated letter-by-letter application of the same transformation. That “trans-
formation” is the particular arrangement of letters in the second column, for
example, a simple permutation of the alphabet. There can be many such ar-
rangements. But in this case the key is that particular arrangement. We can
copy it and give it to someone and then send secret messages to them. But if
that sheet is acquired — or even copied — by someone else, the enciphered mes-
sages would be exposed. This means that we have to keep the transformation
secret.

One of the earliest descriptions of this method appears in the Kama-sutra,
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a text written in the fourth century AD by the Brahmin scholar Vatsyayana,
based on manuscripts dating back to the fourth century BC. The Kama-sutra
recommends that women should study 64 arts, such as cooking, dressing, mas-
sage and the preparation of perfumes. Number 45 on the list is mlecchita-vikalpa,
the art of secret writing, advocated in order to help women conceal the details
of their liaisons. One of the first documented uses of a substitution cipher for
military purposes appears in Julius Caesar’s Gallic Wars. The substitution re-
placed Roman letters with Greek letters, rendering the message unintelligible
to the enemy ([Sin99, pp9-10]).

1.2.2.2 Many Transformations

Now suppose we have a full notebook of lined pages, each of which contains a
different arrangement in the second column and each page is numbered. Now we
just pick a number and encipher the message using that particular page. That
number thus becomes our key, which is now a sort of numeric shorthand for the
full transformation. So even if the notebook is exposed, someone who wishes to
expose our message must try about half of the transformations in the book before
finding the right one. Since exposing the notebook does not immediately expose
our messages, maybe we can leave the notebook unprotected. We also can use
the same notebook for messages to different people, and each of them can use
the exact same notebook for their own messages to each other. Different people
can use the same notebook and yet still cipher messages which are difficult to
expose without knowing the right key. Note that there is some potential for
confusion in first calling the transformation a key, and then calling the number
which selects that transformation also a key. But both of these act to select a
particular ciphertext construction from among the many. There are only two of
the various kinds of “key” in cryptography.

1.2.2.3 Weak and Strong Transformations

The simple substitution used in the above cipher is very weak, because it “leaks”
information: the more often a particular plaintext letter is used, the more often
the associated ciphertext letter appears. And since language uses some letters
more than others, simply by counting the number of times each ciphertext let-
ter occurs we can make a good guess about which plaintext letter it represents.
Then we can try our guess and see if it produces something we can under-
stand. It usually does not take too long before we can break the cipher, even
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without having the key. In fact, we develop the ultimate key (the enciphering
transformation) to break the cipher.

A “real” cipher will have a far more complex transformation. For example,
the usual 64-bit block cipher will encipher 8 plaintext letters at the same time,
and a change in any one of those letters will change all 8 letters of the resulting
ciphertext. This is still simple substitution, but with a huge alphabet. Instead
of using 26 letters, a 64-bit block cipher views each of 264different block values

as a separate letter, which is approximately 1.8 x 10'° “letters.”

1.2.2.4 Key-space

Suppose we have 256 (0-255) pages of transformations in the notebook; this
means there are exactly 256 different keys we can select from. If we write the
number 256 in binary we get “100000000”; here the leftmost 1 represents 1 count
of 28. Or, we can compute the base 2 logarithm by first taking the natural log of
255 (about 5.545) and dividing that by the natural log of two (about 0.693); this
result is also 8. So we say that having 256 key possibilities is an “8 bit” key-space.
If we choose one of the 256 key values at random, and use that transformation
to encipher a message, someone wishing to break our cipher should have to try
about 128 deciphering operations before happening upon the correct one. The
effort involved in trying, on average, 128 deciphering operations (a brute force
attack) before finding the right one, is the design strength of the cipher.

If our notebook had 65,536 pages or keys (instead of just 256), we would
have a “16 bit” key-space. Notice that this number of key possibilities is 256
times that of an “8 bit” key-space, while the key itself only has 8 bits more than
the “8 bit” cipher. The strength of the “16 bit” cipher is the effort involved in
trying, on average, 32,768 deciphering operations before finding the right one.

The idea is the same for a modern cipher: We have a machine which can
produce a huge number of transformations between plaintext and ciphertext,
and we select one of those transformations with a key value. Since there are
many, many possible keys, it is difficult to expose a message, even though the
machine itself is not secret. And many people can use the exact same machine
for their own secrets, without revealing those secrets to everyone who has such

a machine.
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1.2.2.5 Digital Electronic Ciphering

One of the consequences of having a computer for ciphering is that it oper-
ates very, very fast. This means that someone trying to break the cipher (the
“cryptanalyst”), can try a lot more possibilities than they could with a pen and
paper.

Assume that we have a perfect (symmetric key) algorithm. By perfect, we
assume that there is no better way to break the crypto-system other than trying
every possible key in a brute-force attack.

To launch this attack, a cryptanalyst needs a small amount of ciphertext and
the corresponding plaintext; a brute-force attack is a known-plaintext attack!.
For a block cipher (see §1.2.11), the cryptanalyst would need a block of cipher-
text and corresponding plaintext: generally 64 bits. Assuming a computer can
try a million keys a second, it will take 2285 years to find the correct key[Sch96,
p151]. If the key is 64 bits long, then it will take the same computer about

585,000 years to find the correct key among the 264

possible keys. If the key is
128 bits long, it will take 10%® years. The universe is only 10'° years old, so 102°
years is a long time. With a 2048-bit key, a million million-attempts-per-second
computers working in parallel will spend 10°®7years finding the key. By that
time the universe will have long collapsed or expanded into nothingness.

A brute- force attack is tailor made for parallel processors. Each processor
can test a subset of the key-space. The processors do not have to communicate
among themselves; the only communication required at all is a single message
signifying success. There are no shared memory requirements. It is easy to
design a machine with a million parallel processors, each working independent
of the others.

In 1994, Michael Wiener decided to design|Wei93][Wei94] a brute-force crack-
ing machine. He designed the machine for the Data Encryption Standard
(DES)?[0ST93] algorithm, but the analysis holds for almost any symmetrical
key algorithm. He designed specialised chips, boards, and racks. He estimated
prices and discovered that for $1 million, someone could build a machine that
could crack a 56-bit DES key in an average of 3.5 hours (results guaranteed in
7 hours). And that the price/speed ratio is linear. Table 1.2 generalises these

1By trying all possible keys, the ciphertext will eventually be decoded to the plaintext.
Thus the confidentiality of all transmissions hinges on the choosing a key length that can be
“cracked” in an “impossibly” long time.

2Known at the Data Encryption Algorithm by ANSI and DEA-1 by the ISO, has been
a worldwide standard for 25 years. The standard UNIX password system uses DES with
variations intended to discourage brute-force cracking. See [Sch96, pp265-294]| for details.
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| Cost | 40 | 56 | 64 | 80 | 128 |

$100K 2 seconds 35 hours 1 year 70,000 years | 10'9 years
$1M .2 seconds 3.5 hours 37 days 7000 years 108 years
$10M .02 seconds 21 minutes 4 days 700 years 10 7years
$100M 2 milliseconds 2 minutes 9 hours 70 years 1018 years
$1G .2 milliseconds 13 seconds 1 hour 7 years 1015years
$10G .02 milliseconds 1 second 5.4 minutes 245 days 10'%years
$100G 2 microseconds .1 second 32 seconds 24 days 1013years
$1T .2 microseconds .01 second 3 seconds 2.4 days 1012years
$10T .02 microseconds | 1 millisecond .3 second 6 hours 10!'years

Table 1.2: Average Time Estimates for a Hardware Brute -Force Attack in 1995

numbers to a variety of key lengths. Moore’s Law, however states: Computer
processing power doubles approximately every 18 months.?> This means that
the costs go down roughly by a factor of 10 every 5 years; what cost $1 million
in 1995 will cost a mere $100,000 today. Pipelined computers might do even
better[HA94]. For 56-bit keys, these numbers are within the budgets of most
large companies and many criminal organisations. The military budgets of most
industrialised nations can afford to break 64 bit keys. Breaking an 80 bit key
is still beyond the realm of possibility, but if trends continue, that will change
within the next 25 years. In cryptography is is wise to be pessimistic.

Without special-purpose hardware and massively parallel machines, brute-
force attacks are significantly harder. A software attack is about a thousand
times slower than a hardware attack and is generally measured in MIPS-years:
a million-instructions-per-second processor running for one year, which is about
3 % 103 instructions executed. A 200-MHz Pentium is about a 50-MIPS ma-
chine. Unfortunately the “MIPS-year” is often both miscalculated and mis-
used. Silverman tries to clear up this confusion [Sil99b], demonstrating how the
“MIPS-Year” can be applied as a measurement of the amount of effort required
to break, and compare the “strength” of, cryptographic keys.

The real threat of a software-based brute-force attack is not that it is certain,
but that it is “free”. It costs nothing to set up a microcomputer to test possible
keys whenever it is idle (In a typical educational institution for example all the
student-accessible PCs are guaranteed to be idle for at least 10 hours day). If it
finds the key — great; if it doesn’t, then nothing is lost (arguments about the

electricity usage not withstanding). It costs nothing to set up an entire network

3This increase in computing speed results mainly from the increasing miniaturisation of
components.



CHAPTER 1. INTRODUCTION & BACKGROUND 11

to do that. In 1991 an experiment with DES used the collective idle time of
40 workstations to test 234 keys in a single day[GO91]. At this speed it would
take 4 million days to test all keys. If enough people try attacks like this, then
someone somewhere will get lucky.

1.2.3 What Cryptography Can do

Potentially, cryptography can hide information while it is in transit or storage®.
In general, cryptography can:

e Provide Secrecy

e Authenticate that a message has not changed in transit

e Implicitly authenticate the sender

Cryptography hides words: At most it can only hide talking about contraband
or illegal actions. In countries with “freedom of speech”, we normally expect
crimes to be more than just “talk.”

Cryptography can kill. Not in the same way as a knife can kill, but as
part of a system or process. It could be argued that the Japanese Pacific fleet
lost the battle at Midway because of cryptography. They assumed that their
crypto-systems were unbreakable, which was not the case, as the Americans
were reading their traffic. The American cryptanalysts were almost certain that
the main attack would come at Midway (they had deciphered messages relating
to “AF” which they were pretty sure was an indicator for Midway on a partially
solved map grid) but they needed proof. So they sent out a plain language
message saying that the fresh-water distillation plant on Midway had failed.
Several days later the American cryptanalysts deciphered a Japanese intercept
stating that “AF” was short of fresh water. Now they were sure where the attack
would come [Kah96, p569).

Cryptography, in general, is defensive, and can protect ordinary commerce
and ordinary people.

In the face of the snowballing bigness of the institutions of glob-
alised human life, we must reserve privacy rights explicitly so that

we may misrepresent ourselves to those against whom we have no

4No matter how secure an algorithm, if it is part of a badly implemented “crypto-system”
then it does nothing more than give the user a deluded sense of security.
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other defence, against those for whom our name is but a label on

data collected without our consent[Gee99].

Cryptography can hide secrets, either from others, or during communication.
There are many good and non-criminal reasons to have secrets: certainly those
engaged in commercial research and development have “secrets” they must keep.
Professors and writers may want to keep their work private, until an appropriate
time. Negotiations for new jobs are generally private, at least we might prefer
that detailed discussions not be exposed. One possible application for cryp-
tography is to secure on-line communications between work and home, perhaps

leading to a society-wide reduction in commuting.

1.2.4 'What Cryptography Can Not do

Cryptography can only hide information after it is encrypted and while it re-
mains encrypted. But secret information generally does not start out encrypted,
so there is normally an original period during which the secret is not protected.
And secret information generally is not used in encrypted form?, so it is again
outside the cryptographic envelope every time the secret is used.

Secrets are often related to public information, and subsequent activities
based on the secret can indicate what the secret is.

Cryptography simply cannot protect against:

e Informants.

e Undercover Spying.

e Bugs (in both system implementation and eavesdropping devices).
e Photographic evidence.

e Testimony.

It is a mistake to imagine that cryptography alone could protect most infor-
mation against “Big Brother” or potentially of more grave concern, many “little
brothers’[Gee99]. Cryptography is only a small part of the protection needed

for “absolute” secrecy.

5P.G.P. the email encryption package has a mode of operation whereby the received, en-
crypted, email can be displayed on the screen, without being stored on disk in its un-encrypted
form.
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1.2.5 Problems with Keys

The physical key model reminds us of various things that can go wrong with

keys:

We can lose our keys.

We can forget which key is which.

We can give a key to the wrong person.

Somebody can steal a key.

Somebody can pick the lock.

Somebody can go through a window.

Somebody can break down the door.

Somebody can ask for entry, and unwisely be let in.

Somebody can get a warrant, then legally do whatever is required.

Somebody can burn down the house, thus making the key irrelevant.

Even absolutely perfect keys cannot solve all problems, nor can they guarantee

privacy. And how do we get a key to the correct place/person, are we sure that

the person is who they say they are? Indeed, when cryptography is used for com-

munications, generally at least two people know what is being communicated.

So either party could reveal a secret:

By accident.

To someone else.

Through third-party eavesdropping.

As revenge, for actions real or imagined.
For payment.

Under duress.

In testimony.

In summary, when it is substantially less costly to acquire the secret by means

other than a technical attack on the cipher, cryptography has pretty much

succeeded in doing what it can do.
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1.2.6 Strength

Key-space alone only sets an upper limit to cipher strength; a cipher can be much
weaker than it appears. An in-depth understanding or analysis of the design
may lead to “shortcuts” in the solution. Perhaps a few tests can be designed,
each of which eliminates vast numbers of keys®, quite possibly reducing the effort
required by the attacker (called the Opponent) by orders of magnitude such that
a brute-force attack is now feasible. This process is called cryptanalysis.

We understand strength as the ability to resist cryptanalysis. But this makes
“strength” a negative quality (the lack of any practical attack), which we cannot
measure. We can infer the “strength” of a cipher from the best known attack.
We can only hope that the Opponent does not know of something better.

Every user of cryptography should understand that all known ciphers are at
least potentially vulnerable to some unknown technical attack’. And if such a
break does occur, there is absolutely no reason that we would find out about
it. However, a direct technical attack may be one of the least likely avenues of

exposure.

1.2.7 System Design and Strength

Cryptographic design may seem as easy as selecting a cipher from a book of
ciphers. But ciphers, are only part of a secure encryption system. It is common
for a cipher system to require cryptographic design beyond simply selecting a
cipher, and such design is much tricker than it looks.

The use of an unbreakable cipher does not mean that the encryption system
will be similarly unbreakable. A prime example of this is the man-in-the-middle
attack on public-key ciphers (see §1.2.12). Public-key ciphers require that one
use the correct key for the desired recipient. The correct key must be known
to cryptographic levels of assurance, or the key itself becomes the weakest link
in the system; Suppose an Opponent can get us to use his key instead of the
right one (perhaps sending a faked message saying “Here is my new key”). If he
can do this to both ends, and also intercept all messages between them (which
is conceivable, since Internet routing is not secure), the Opponent can sit “in
the middle.” He can decipher each message (now in one of his keys), then re-

encipher that message in the correct user key, and send it along. So the users

6“Idea”, the algorithm used in P.G.P., has a number of “weak” keys. [Sch96, p323][DGV94b]

"The “One-Time Pad” cipher has as many values in the key as the plaintext. This is the
source of its perfect security. It is essential that no portion of the key ever be reused for
another encryption (hence the name), otherwise current cryptanalysis can break the cipher.
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communicate, and no cipher has been broken, yet the Opponent is still reading

the conversation. Such are the consequences of system design error.

1.2.8 Cryptanalysis versus Subversion

Cryptanalysis is hard; it is often tedious, repetitive, and very expensive. Suc-
cess is never assured, and resources are always limited. Consequently, other
approaches for obtaining the hidden information (or the key) can be more ef-
fective.

Approaches other than a direct technical attack on ciphertext include getting
the information by cunning, outright theft, bribery, or intimidation. The room
or computer could be bugged, network sniffers could be installed on “rooted”®
computers, secretaries subverted, files stolen, etc. Most information can be
obtained in some way other than “breaking” ciphertext.

When the effort required to break the cipher greatly exceeds the effort re-
quired to obtain the same information in another way, the cipher is probably
strong enough. And the mere fact that information has escaped does not nec-
essarily mean that a cipher has been broken.

It is interesting to note that virtually every crypto-system invented before the
1940s was systematically overcome by applying Shannon’s information theory
of secrecy systems, first published in 1949[Sha49]. All of the systems had been
broken piecemeal before that time, but for the first time, cryptanalysts had a
general way to attack all crypto-systems. Only two systems remain impervious
to this attack, the “One Time Pad” and Public Key Systems (detailed in §1.2.12).

1.2.9 Secret Ciphers

Although cryptanalysis might succeed even if the ciphering process was un-
known, we would certainly expect that this would make the Opponent’s job
much harder. It can thus be argued that the ciphering process should remain
secret. Military cipher systems are not actually published, although it would be
foolish of the military not to assume that any competent Opponent will obtain
this information through other channels. Military Ciphers are still designed with
the following ideals which were deduced by Kerchoffs in 1883[Kah96, p235]:

8 A underground term used by a “cracker” to describe a machine that has been successfully
broken in to, and which is now under the control of the cracker and, more than likely, his
cohorts.
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1. The system should be, if not theoretically unbreakable, unbreakable in

practice.
2. Compromise of the system should not inconvenience the correspondents.
3. The key should be rememberable without notes and be easily changeable.
4. The cryptograms should be transportable by telegraph.

5. The apparatus or documents should be portable and operable by a single

person.

6. The system should be easy, neither requiring knowledge of a long list of

rules nor involving mental strain.

Over time, these requirements have been rephrased, and qualities that lie im-
plicit have been made explicit. But any modern cryptographer would be very
happy if any cipher fulfilled all six.

In commercial cryptography we normally assume that the Opponents will
know every detail of the cipher (excluding the key, of course). There are several

reasons for this:

e It is common for a cipher to have unexpected weaknesses which are not
found by its designers. If the cipher design is kept secret, it cannot be
examined by other parties, and so weaknesses may not be publicly exposed,

and could be exploited in practice.

e If a cipher itself is a secret, then that secret is increasingly compromised
by making it available for use. For a cipher to be used, it must be present
at various locations, and the more widely it is used, the greater the risk
of the secret being exposed. So whatever advantage there may have been
in keeping the cipher-mechanism secret will be lost, and the Opponents
eventually will have the same advantage as they would have had from

public disclosure.?

There is another level of secrecy here, and that is the trade secrecy involved
with particular software designs. Few large companies are willing to release
source code for their products without some serious controls. While the crypto
routines themselves presumably might be patented, releasing that code alone

90nly now the cipher designers may comfort themselves with the dangerous delusion that
they have an advantage over their opponents.
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probably would not support a thorough security evaluation as the years of re-
search and conclusions from that research have not been made available for
scrutiny. People are fallible, thus conclusions taken from research may be in
error. Source code might reasonably be made available to customers under a
non-disclosure agreement, but this will not satisfy everyone. And while it might
seem nice to have all source code available for free, this will not support an
industry of continued cipher design and development. However the Advanced
Encryption Standard (AES, §1.2.14) program is hoping to address this issue by
standardising on an algorithm for the future that is free, and that has received
as much exposure and cryptanalysis as possible. As the minimum key length of
AES is 128 bits, it is envisaged that AES will be “Secure Enough”[BDR*96] for
everyone’s needs, assuming no better attack than brute force (Figure 1.2). But
who knows, maybe some of the more powerful security agencies have already
compromised all of the candidates.

1.2.10 Hardware vs Software Ciphers

Currently, most ciphers are implemented in software, that is, by a program of
instructions executed by a general-purpose computer. Normally, it is cheaper to
implement an algorithm in software, but hardware can run faster, and nobody
can change its operation through the use of software. Of course, there are lev-
els to hardware, from microprocessors (which thus require significant interface
software) to external boxes with communications lines running in and out. Any-
one trying to decide whether to deploy a software or hardware implementation
has to consider the security risks, their expense along with the following issues
(amongst others):

e Software, especially in a multi-user system, is almost completely insecure
(JLSM*98]).This may not be an issue for home users, and real solutions

here may depend upon secure operating systems.
e Hardware represents a capital expense, and is extremely inflexible.
e Software operates more efficiently on blocks of data than streams of data.

e It is more expensive both in terms of time and monetary value to replace

(crypto) hardware than (crypto) software!?.

10See http://www.ireland.com/newspaper/finance/2000/0315/fin18.htm for a current ex-
ample
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This rest of this work will take the approach of putting the algorithm, and
even more importantly, the key-authentication-key, into firmware. Our primary
requirement being the capability to instantiate a secure communications channel
between two hosts. This approach gives higher security and speed at a higher
(monetary) cost, if, and only if, implemented correctly[LSM*98]. The ideal
being a “computational device that can be trusted to execute its programming
correctly, despite physical attack”[SW99]

1.2.11 Block & Stream Ciphers

There are two basic types of encryption algorithms: block ciphers and stream
ciphers. A block cipher is one in which a block of plaintext is treated as a whole
and used to produce a block of ciphertext of equal length. A stream cipher is
one that encrypts a digital data stream one bit or byte at a time. While all
ciphers are classified in this fashion, in truth most algorithms can be either:

blocks can be formed from streams and vice versa [Sch00].

1.2.12 Public Key Ciphers

Public key ciphers (and their related public key exchange algorithms) are gen-
erally block ciphers, with the unusual property that one key is used to encipher,
while a different and apparently unrelated key is used to decipher a message.
So if one of the keys is kept private, the other key (the “public” key) can be
released “into the wild”, and anyone can use that to encipher a message to us.
Then our private key can be used to decipher any such messages. An interesting
side effect of this scheme is that someone who enciphers a message and sends it
to us cannot decipher their own message even if they want to.

The prototypical public key cipher is RSA, which uses large numeric values as
keys. These numbers may contain 1,000 bits or more (over 400 decimal digits), in
which each and every bit is significant. The key-space is much smaller, however,
because there are very severe constraints on the keys; not just any random value
will do. So a 1,000-bit public key may have a brute-force strength similar to a
128-bit secret key cipher.

Because public key ciphers operate on huge values, they are very slow, and
so are normally used just to encipher a random message key. The message key
is then used by a conventional secret key cipher which actually enciphers the
data.
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At first glance, public key ciphers apparently solve the key distribution prob-
lem (mentioned earlier in §1.2.5 this problem is first acknowledged in literature
in [DH76]). But in fact they also open up the new possibility of a man-in-the-

middle attack or the user authentication problem.

How do you know that the key belongs to who you think it does?
Still a research problem.[Ros00]

To avoid this, it is necessary to assure that one is using exactly the correct key
for the desired user. This requires authentication (validation or certification) via
some sort of secure channel, and that can take as much effort as a secure secret
key exchange. A man-in-the-middle attack is extremely worrisome, because it
does not involve breaking any cipher, which means that all the efforts spent in
cipher design and analysis and mathematical proofs and public review would be

completely irrelevant.

1.2.13 Quantum Leap

Quantum computing is an area where things get either very exciting or very
weird, depending on your point of view. It is outside the scope of this work to
go into quantum computing in any detail. Suffice it to say that for long term
security, the mere existence of quantum computing, means that Public Key
Encryption systems are already broken. Currently, with quantum computing,
the only type of message that it is known how to share securely, is a completely
random string of bits. However, a random string is the perfect key on which
to base standard symmetric key cryptography schemes. By using a system in
which the integrity and secrecy of the key is guaranteed by the laws of nature
we are getting closer to realisation of the “ideal” cipher (§1.2.9). Unfortunately,
for the moment it is unlikely this type of cryptography will be practical for the
foreseeable future [Sch96][Sin99][SRO00].

1.2.14 The Advanced Encryption Standard (AES)

On January 2, 1997'!, National Institute of Standards and Technology (NIST)
announced the initiation of the AES development effort and made a formal
call for algorithms on September 12, 1997. The call stipulated that the AES
would specify an unclassified, publicly disclosed encryption algorithm(s), avail-
able royalty-free, worldwide. In addition, the algorithm(s) must implement

' This section is an excerpt from http://www.nist.gov/aes
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symmetric key cryptography as a block cipher and (at a minimum) support
block sizes of 128-bits and key sizes of 128-, 192-, and 256-bits.

On August 20, 1998, NIST announced a group of fifteen AES candidate al-
gorithms at the First AES Candidate Conference (AES1). These algorithms
had been submitted by members of the cryptographic community from around
the world. At that conference and in a simultaneously published Federal Reg-
ister notice, NIST solicited public comments on the candidates. A Second AES
Candidate Conference (AES2) was held in March 1999 to discuss the results of
the analysis conducted by the global cryptographic community on the candidate
algorithms. The public comment period on the initial review of the algorithms
closed on April 15, 1999. Using the analyses and comments received, NIST
selected five algorithms from the fifteen.

The AES finalist candidate algorithms are MARS, RC6, Rijndael, Serpent,
and Twofish. NIST has developed a Round 1 Report describing the selection of
the finalists.

These finalist algorithms will receive further analysis during a second, more
in-depth review period prior to the selection of the final algorithm(s) for the
AES Federal Information Processing Standard (FIPS). NIST solicits comments
on the remaining algorithms through May 15, 2000. Comments and analysis are
actively sought by NIST on any aspect of the candidate algorithms, including,
but not limited to, the following topics: cryptanalysis, intellectual property,
cross-cutting analyses of all of the AES finalists, overall recommendations and
implementation issues. An informal AES discussion forum is also provided by
NIST for interested parties to discuss the AES finalists and relevant AES issues.

1.3 Thesis Structure

In Chapter 2, Encryption Algorithm, an algorithm is selected after first spend-
ing some time on issues such as algorithm type, encryption modes, and their
implications. Then the algorithm is examined in detail to try to get a “feel” for
the difficulties in the area. As ciphers can be used in different ways, the main
“modes” of operation are examined and a decision is made how to deploy the
selected algorithm. Without secure keys, the “system” can easily be compro-
mised so key generation issues are investigated. This is a whole area of study
in its own right, as generation of cryptographically secure random numbers is
inherently more difficult than one would assume. Finally the reference software
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implementation is examined in detail

In Chapter 3, Firmware, the technology and different development environ-
ments are introduced and examined. A development environment is chosen.
The difference between the software and firmware “domains” are highlighted
and explored. A firmware implementation of the algorithm selected in Chapter
2 is presented.

In Chapter 4, Deployment, the software implementation is packaged as a
“device driver” and uses the reference code implementation covered in Chapter
2. The firmware implementation covered in Chapter 3 is packaged as an equiva-
lent cryptographic device. Significant extra circuitry (scaffolding) is required to
actually realise a functioning firmware implementation. Building on the work

of the previous two chapters, a stable and functional solution is realised.

Chapter 5, Results and Conclusions, details the results of tests performed
on the solution, presents a discussion on the achievements of the work and
compares the differences between the software and firmware implementations.
Some further work outside the scope of this thesis is discussed which would

extend the work in interesting and useful directions.
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2.1 Introduction

In §1.2.11 block ciphers were introduced. The primary motivation for following
this path is, in the real world, block ciphers seem to be more general and stream
ciphers seem to be easier to analyse mathematically. Otherwise, the differences
are in the implementation. Stream ciphers only encrypt and decrypt data one bit
at a time and are not really suitable for software implementation. Block ciphers
can be easier to implement in software. On the other hand stream ciphers can
be more suitable for hardware implementation because they can be implemented
very efficiently in silicon. These are important considerations. It makes sense for
a hardware encryptor to encrypt each bit on a digital communications channel
as it passes. This is what the device sees. On the other hand it makes no
sense for a software encryption device to encrypt each individual bit separately.
([Sch96, pp210-211])

As can be seen from §1.2.10. The requirements are to prototype an algorithm
in software, then proceed to implement it in hardware. This is to maintain
compatibility with the software algorithm and can also give a more a more
secure system by virtue of the Key-Encryption-Key [Smi97, pp107-108]being
only in silicon and there being no way to retrieve the key other than destroying
the chip. Though there are other reasons covered in [LSM*98, Section 3.2] why
a hardware cryptographic device may not be as ideal as it sounds. The primary
one being, the operating system can be instructed not to use the cryptographic

device, thus nullifying all our efforts.

2.2 Algorithm Selection

In choosing an algorithm there are several alternatives:

1. Write our own, based on the belief that our cryptographic ability is second-

to-none.!

2. Choose a published algorithm, based on the belief that a published algo-
rithm has been scrutinised by many cryptographers; if no one has broken
it, then it must be good.

IThe Japanese PURPLE system is a classic in this regard. Allied cryptographers, never
saw a PURPLE machine and yet still managed to break the cipher.
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3. Trust a manufacturer, the government, a private consultant to write one.?

All of these alternatives are problematic. The second option seems to be the
most sensible, given that creating good encryption algorithms is hard[Sch99c¢]
[Cur][Sch99b] and that the last option quite often can prove to be the worst

choice:

It is not unusual for people who sell or promote products to
claim that their product is the solution to all of your problems but,
unfortunately, in information protection, no product can solve all of
your problems.[Coh97, p8]

See [Sch99a] and [Cur] for discussions on reasons why this might be. Though
Terry Ritter has a very interesting perspective in [Rit99] and the response it
generated in [Rit00]. Of course, the glaring problem in deciding that item 2
above is best, is of course that we do not know the abilities of the various
military cryptanalysis organisations and probably never will. They may have
several unpublished attacks against some, or indeed all published algorithms.
The debate on this precise topic can go on for ever, one can argue that the
reason the NSA is so set against export of strong crypto is that they have not
yet figured out how to break it (other than brute force), thus using any algorithm
they do not allow to be exported is safe. The counter is that they already can
break them but just do not want to publicise this fact. For example, at the
USENIX Security symposium in August 1999% the National Security Agency
(NSA)* had a minimum of two representatives in the front row at every session.
Who knows which session they were actually interested in?°

So, we decide to go with well published algorithms for the clear advantages
they provide. Now we have to decide to go with a public-key system or a
symmetric key system, (there are other systems/algorithms not mentioned here
see [Kal93| for a more detailed discussion) both provide “confidentiality” and
“Key management” which are our primary requirements. We turn to Schneier
[Sch96, page 216] for inspiration:

Public-key cryptography and symmetric cryptography are different
sorts of animals; they solve different sorts of problems. Symmetric

2See http://www.ireland.com /newspaper/finance/2000/0315/fin18.htm, the French Banks
trusted a manufacturer.

Shttp://www.usenix.org/publications/library /proceedings/sec99/

4http://www.nsa.gov

5These questions arose from a conversation that took place in the lobby of the Marriot
Hotel, Wednesday evening 25’th of August 1999, during the 8th USENIX Security Symposium.
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cryptography is best for encrypting data. It is orders of magnitude
faster and is not susceptible to chosen-ciphertext attacks. Public-
key cryptography can do things that symmetric cryptography can’t;

it is best for key management and a myriad of protocols...

The choice seems clear: a symmetric system it is, as our main thrust is data
encryption. Again Schneier helps out, with a comprehensive (though maybe a
bit dated) analysis of the current range of usable block ciphers. DES was the first
candidate for rejection as it is no longer considered “secure enough”’[HA94]. A
selection of other algorithms were ruled out because of either security concerns,

patent restrictions or speed. I was left with the following list:

o LOKI91[BKPS93]|

o IDEA[Lai92|

o CAST[Ada94|[AT93]

o Blowfish[Sch94a][Sch94b]

o 3-Way[Dae95|[DGV94a]

LOKI91 and CAST removed themselves, as they have 64 bit keys and while
looking at Table 1.2 and taking into account Moore’s Law, $300M would get
me a decrypted a message after 1 Hour. This was deemed not to be “Secure
Enough”. This left IDEA, Blowfish and 3way. Of these three, 3way was chosen®.
It was considered “Strong Enough” (96 bits), it is of a differing design to either
of the other two, Schneier [Sch96, page 354] seems to think it would suffice, and
going by Terry Ritters thinking[Rit99], it is probably as good a choice as any of
the rest. Also it was designed expressly to be fast in hardware and coming from
a programming environment, its explanation as a pseudo “For” loop appealed

to the programmer in me.

2.3 3way: The Basic Building Blocks

Here, the main characteristics of the cipher are introduced. All operations
will be on binary vectors whose components are indexed starting from 0, e.g.
X = (20,21, s Zn_1)T. The dimension of a vector is by default denoted by n.

6During the deployment stage a research paper[KSW]| was found in which a successful
attack against 3way is detailed.
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If a mapping of vectors is specified in terms of its components, the use of the
index 7 implies the range 0 <i < n. Indices consisting of expressions containing
1 must be reduced modulo n.

2.3.1 4

If p(mu) is a bit permutation that inverts the order of components of a vector.
For B = u(A) we have

bi = an_1-;

1

Obviously p~" = p. This bit permutation plays an important role in the

structure of the cipher. The basic building blocks of the cipher v and € have

1

been chosen such that y™! = o yo pand 67! = po 8 o p.

2.3.2 The Nonlinear substitution v

The mapping 7 (gamma) is defined for vectors whose dimension is a multiple of
3. If B = v(A) and the dimension n = 3k we have

bi = a; Gtk Gitok

In fact v is the parallel execution of k substitutions, acting upon 3-bit blocks

(called triplets) consisting of bits aj, a;jyr and ajiox.

2.3.3 The Linear Substitution 6

A vector A can be interpreted as a binary polynomial a(z) = Y a;z’. The
mapping 6 (theta) is defined for vectors whose dimension is a multiple of 12. If
B = 0(A) and the dimension n = 12h we have
b(z) = e(z™)a(z)mod (1 + z'?h)
with
e(r)=1+z+ 2%+ 2%+ 2% + 25 + 210

In fact 6 is the parallel execution of h substitutions acting upon 12-bit blocks

consisting of bits a;, ajn, ajt2n,--- @j+11n- The linear substitution was chosen

such that every output bit depends on 7 input bits. As can be seen in Figure 2.1,
theta is a cyclic bit shifting operation.
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Each digit represents a nibble.
Bl ock of 96 bits passed to theta

nmsb I'sb
00000000 00000000 00000001
Result of 96 bits passed to theta

nsh I'sb
00010000 00010100 01010101

Figure 2.1: Theta, bit shifter.

2.3.4 T and 9

mand 7 are two bit permutations such that 7o p o m2 = u, hence the choice
of m fixes m. For 3-WAY these operations are block-wise rotations of vector

sub-blocks of length 32 to facilitate software implementations.

2.3.5 The Structure of the Block Cipher

The encryption process consists of the iterative application of a number of
rounds r. One 3-Way round consists of the subsequent application of 8, 71,y

and 72 and is denoted by p:
p = Ty 0yomb.

Before every round, the intermediate result is XOR-ed with a vector (round-
constant) that depends on the secret key and the round number. XOR-ing with
K; is denoted by §(K;). The last round is followed by an extra application of §
and 0. We have

E,=60006(K;)opod(K,_1)o...0pod(K1)opod(Kp)

with Ej, denoting the encryption operation under secret key K . The order of
the components and their interaction with p causes decryption to be of a very

similar operation to encryption. It can be proven
Dic = o (90 8(K}) 0 po 3(K}) 0.0 po 3(KL_) 0 pod(KL)) o p

with the round keys given by K} = p(0(Ky—;)).

For efficiency reasons the key schedule is kept as simple as possible. The key
length is the block length and every encryption round key is equal to the key
global key K XOR~ed with a round constant C; with small Hamming weight”.
The decryption round keys can be computed by XOR-ing round constants with
the so-called decryption key K' = p(6(K)). In the actual implementation of the

algorithm, 71, v, and 7o are always called in the same order so, to reduce the

"Number of “1” bits in the binary sequence.



CHAPTER 2. ENCRYPTION ALGORITHM 28

number of function calls, they are implemented as one function “pi _gamma_ pi”.
In pseudo-code, to encipher a plaintext block, x, with n rounds (Daemen in
[DGV94a] recommends 11):

Algorithm 1 3way pseudo algorithm.[Sch96, p342]
Fori=0ton-1

x = x X0R K;

x = theta(x)

X = pi_gamma_pi(x)
x = x XO0R K,
x = theta(x)

Where K is a round-constant. Decryption is similar to encryption except
that the bits of the input have to be reversed, the bits of the output have to be

reversed, the key is different and the round-constants are different.

2.4 Cipher Modes Explained

In §1.2.11 Block & Stream Ciphers were introduced. It was stated that block
ciphers always encrypt the same plaintext block to the same ciphertext block,
given the same key, this electronic-codebook mode (ECB) has disadvantages
in most applications, which motivates the implementation of other methods of
employing block ciphers (modes of operation) on larger messages. The four most
common modes are Electronic Codebook mode (ECB), Cipher-Block Chaining
mode (CBC), Cipher Feedback mode (CFB) and Output Feedback mode (OFB).

2.4.1 ECB mode.

Properties of ECB (electronic codebook mode) of operation:

1. Identical plaintext blocks (under the same key) result in identical cipher-
text

2. Blocks are enciphered independently of other blocks. Re-ordering cipher-

text blocks results in correspondingly re-ordered plaintext blocks.

3. One or more bit errors in a single ciphertext block affect decipherment of
that block only. For typical ciphers, decryption of such a block is then
random (with about 50% or the recovered bits in error).
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Figure 2.2: ECB Mode

This mode is self-synchronising in the sense of recovery from bit errors, recovery
from “lost” bits causes errors in block boundaries. Since ciphertext blocks are
independent, someone replacing (accidentally or maliciously) ECB blocks does
not affect the decryption of adjacent blocks. Furthermore, this mode does not
hide data patterns - identical ciphertext blocks imply identical plaintext blocks.
For this reason, the ECB mode is not normally recommended for messages
longer than one block, or if keys are reused for more than a single one-block
message. Security may be improved by the inclusion of random padding bits in

each block (termed an Initialisation Vector).

2.4.2 CBC mode

The cipher-block chaining (CBC) mode of operation involves the use of a an
Initialisation Vector (IV) which is equal to the block length.
Properties of CBC mode of operation:

1. Identical ciphertext blocks result when the same plaintext is enciphered
under the same Key and IV. Changing the IV, key, or first plaintext block
(e.g., using a counter or a random field) results in different cipher-texts.

2. The chaining mechanism causes ciphertext to depend on all preceding
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Figure 2.3: CBC Mode

plaintext blocks. Thus re-arranging the order of ciphertext blocks affects
decryption. Proper decryption of a correct ciphertext block requires a
correct preceding ciphertext block.

3. A single bit error in a ciphertext block c¢; affects decipherment of that
and all subsequent blocks. Plaintext block p; recovered from c; is typi-
cally random (50% in error), while the recovered plaintext p;;+1 has bit
errors precisely where ¢; did. Thus an opponent can cause predictable bit

changes in p;;; by altering corresponding bits of c;

4. The CBC mode is self-synchronising in the sense that if an error occurs

in ¢; but not ¢;11, ¢j42 is correctly decrypted to p;o.

Although CBC mode decryption recovers from errors in ciphertext blocks, mod-
ifications from a plaintext block during encryption alters all subsequent cipher-
text blocks. This impacts the usability of chaining modes for applications requir-
ing random read/write access to encrypted data. ECB mode is as alternative
(but see §2.4.1).

Although self-synchronising in recovering from bit errors, recovery from
“lost” bits causing errors in block boundaries is not possible in the CBC or
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Figure 2.4: CFB Mode

other modes.

The integrity of the IV (Initialisation Vector) in the CBC mode must be
maintained, since a malicious opponent could modify the IV and make pre-
dictable bit changes to the first plaintext block recovered. Some texts rec-
ommend that the IV be kept secret, Schneier[Sch96, page 194] makes a good
argument that this need not be the case. If message integrity is required, an
appropriate mechanism should be used; encryption mechanisms guarantee con-
fidentiality only.

2.4.3 CFB Mode

While the CBC mode processes plaintext n bits at a time (using an n - bit block

cipher), some applications require that r - bit plaintext units be encrypted, for

some r < n. In this case, the cipher feedback mode (CFB) may be used.
Properties of the CFB mode of operation:

1. As per CBC encryption, changing the IV results in the same plaintext
input being enciphered to a different output. The IV need not be kept
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secret (though unpredictability in the IV is a desirable feature in any

chaining mode).

2. Similar to CBC encryption, the chaining mechanism causes ciphertext
block c; to depend on both p; and preceding plaintext blocks; conse-
quently, re-ordering ciphertext blocks affects decryption. Proper decryp-
tion of a correct ciphertext block requires the preceding ciphertext blocks

to be correct (so that the shift register contains the proper value)

3. One or more bit errors in any single r - bit ciphertext block c; affects the
decipherment of that and next ciphertext blocks until the error block has
shifted entirely out of the shift register. The recovered plaintext will differ
from the actual plaintext precisely in the bit positions ¢; was in error;
the other incorrectly recovered plaintext blocks will typically have 50% of
bits in error. Thus an opponent may cause predictable bit changes in the
recovered plaintext by altering corresponding bits in the ciphertext.

4. The CFB mode is self-synchronising similar to CBC, but in n - bit CFB
a single ciphertext error will affect the decryption of the current and the
following m/n — 1 blocks, where m is the blocks size.

5. For r < n , throughput is decreased by a factor of n/r (vs. CBC) in that

each encryption yields only r bits of ciphertext output.

Since the encryption function is used for both CFB encryption and decryption,
the CFB mode must not be used if the block cipher is a public-key algorithm:
instead, the CBC mode should be used.

2.4.4 OFB Mode

The output feedback mode (OFB) of operation may be used for applications

in which error propagation must be avoided. It is similar to CFB, and allows

encryption of various block sizes (characters), but differs in that the output of

the encryption block function (rather than the ciphertext) serves as the feedback.
Properties of the OFB mode of operation:

1. Asper CBC and CFB modes, changing the IV results in the same plaintext

being enciphered to a different output.

2. The key-stream is plaintext-independent.
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Figure 2.5: OFB Mode

(i} decipherment

3. One or more bit errors in any ciphertext character c; affects the decipher-

ment of only that character, in the precise bit position(s) in error, causing

the corresponding recovered plaintext bit(s) to be complemented.

4. The OFB mode recovers from ciphertext bit errors, but cannot resyn-

chronise itself after loss of ciphertext bits, which destroys alignment of

the decrypting key-stream (in which case explicit re-synchronisation is

required)

5. For r < n, throughput is decreased as per the CFB mode. However,

since the key-stream is independent of plaintext of ciphertext, it may be

pre-computed (given the key and IV).

The IV, which need not be secret, must be changed if an OFB key K is re-used.

Otherwise an identical key-stream results, thus allowing an opponent to recover

the plaintext of the current message if he has already intercepted the previous

ciphertext. As per CFB, the remark above on public-key ciphers applies to OFB

mode as well as CFB.
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| Mode | Description | Typical Application |

ECB Each block of X plaintext bits is en- | Secure transmission of a single value
coded independently using the same (e.g., an encryption key).

key.

CBC The input to the encryption algo- | General purpose block orientated trans-
rithm is the XOR of the next X bits | mission.

of plaintext and the preceeding X
bits of ciphertext.

CFB Input is processed J bits at a time. Authentication.
Preceding ciphertext is used as input
to the encryption algorithm to pro-
duce pseudorandom output, which is
XOR-ed with plaintext to produce

the next unit of ciphertext.

OFB Similar to CFB, except that the in- | Stream orientated transmission over
put to the encryption algorithm is | noisy channels (e.g., satellite communi-

the preceding algorithm’s output. cation)

Table 2.1: Modes of Operation

2.4.5 Choosing a cipher mode

Having chosen an algorithm and having covered the main encryption modes,
the correct modes for this application must be decided. It was decided to use
3way in ECB mode for en/decrypting Key-encryption-Keys, and CBC mode for
block encryption of data. The reasons for both these decisions are covered in
this chapter and quite succinctly summarised in Table 2.1[Sta98] above.

2.4.6 Key Generation

“Anyone attempting to generate random numbers by determin-
istic means is, of course, living in a state of sin.”

— John Von Neumann

A secure crypto system needs keys that cannot be guessed. Any deviation from
this statement means that your crypto system has a vulnerable point of attack.
A few points from Richard Smith[Smi97, pages 88-89]:

e The data is not secret unless the key is secret.
e The more random your key, the harder it will be to guess.

e Randomness really does not come easily, especially to computers.
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e The more a key is used, the easier it is to crack.

A good generator will produce keys that cannot be guessed even if attackers
know how the generator works (see §1.2.13). To do this it must generate num-
bers that are practically impossible to predict. Computers by themselves are
poor sources of unpredictable numbers; they are essentially deterministic ma-
chines that are designed to be predictable. Good random key generation is at
the heart of every strong crypto-system. For our purposes what we need is a
good pseudorandom number generator, as it happens we are fortunate in that
some enlightened minds have already implemented two useful pseudo-devices for
GNU-Linux systems (which is the development platform) called /dev/random
and /dev/urandom®. Reading from /dev/random yields a small pool of ran-
dom bits obtained from internal system state. If one observes this device while
typing on the keyboard, bits will be produced which will be more and more ran-
dom. Disk drive accesses, IRQ timings, and key presses; all of this gets hashed
into a small pool of entropy® that can be accessed directly from /dev/random.
/dev/urandom is a stream that hashes /dev/random, and gives the hash value;
then it hashes the last hash and the pool forever. Both give a good source of
random bits ([Men98]). By default, /dev/urandom uses the Secure Hash Al-
gorithm (SHA). For more discussion on keys, key security and pseudo-random
number generation!® see [Sch99a][Smi97, Chapter 4][Sch96, Chapter 16]. For
this application, where we need a “random” key and Initialisation Vector, these

devices will suffice.!!

2.5 Reference Code - A short tour

We begin with a structure chart (Figure 2.6[PJ98|) showing the caller/callee re-
lationships based on the code in appendix A, first presented in [DGV94a] , it also
clearly identifies commonality between the two main functions in the algorithm.

Clearly, mu() is the main difference between encryption and decryption.

8Purists would argue that this is not random enough and would insist on “bleaching” the
random source[Men98]. Recently, I followed a heated discussion on the linuz-kernel mailing
list (majordomo@vger.rutgers.edu) which concluded that the best source of “randomness”
would be to amplify the ambient noise in a resistor.

9Entropy is a measure of uncertainty. The larger volume of “randomness” accumulated the
higher the entropy.

10 Also see RFC 1750, http://www.kobira.co.jp/document /rfc/RFC1750.txt

11n fact, when in kernel space, the kernel function get random bytes() is used.
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main()

—

encrypt()

gamma()

decrypt()
i -
theta() mu()
rho()
— T
pi_1() pi_2()

Figure 2.6: Structure Chart of Reference Code.
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2.5.1 main

Algorithm 2 3way, main().

main()
{
word32 a[3], k[3];

scanf ("/x %x %x %x %x %x",a+2,a+l,a,k+2,k+1,k) ;
printf("key : ") ; printvec(k) ;

printf("plaintext : "); printvec(a) ; encrypt(a,k) ;
printf("ciphertext : "); printvec(a) ; decrypt(a,k) ;

We begin with main, which is primarily a text harness for the core algorithm.
When the program is run, it waits for the user to enter six values, the first three
are assigned to the plaintext, the second three to the key. Then it prints the
results of encryption. The reference document[DGV94a] has values that the
designers have tested and are used as test cases.

2.5.2 encrypt

Algorithm 3 3way, encrypt()

void encrypt(word32 *a, word32 *k)
{

int i ;

word32 rcon[NMBR+1] ;

rndcon_gen(STRT_E,rcon) ;
for( i=0 ; i<NMBR ; i++ )

{
al[0] ~= k[0] ~ (rcon[i]<<16) ;
al[1] ~= k[1] ;
a[2] ~= k[2] ~ rcom[i] ;
rho(a) ;
}
a[0] ~= k[0] ~ (rcon[NMBR]<<16) ;
al1] ~= k[1] ;
a[2] == k[2] ~ rcon[NMBR] ;
theta(a) ;

This function is the first relevant function in the execution path. It takes two
parameters, a pointer to the plaintext (soon to be ciphertext) a and a pointer
to the encryption key k. The result of this call is that the data pointed to by a
has been transformed to ciphertext. Now we will examine each function of the
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cipher in turn.

2.5.3 rndcon_gen

Algorithm 4 3way, rndcon_gen()

void rndcon_gen(word32 strt,word32 *rtab)
{ /* generates the round constants */
int i ;

for(i=0 ; i<=NMBR ; i++ )
{
rtab[i] = strt ;
strt <<= 1 ;
if( strt&0x10000 ) strt ~= 0x11011 ;
}

The first function called upon is rndcon_gen() . This function generates a
table of constants which are XOR-ed with the key and plaintext. The purpose
of these constants are to remove all exploitable symmetrical properties of the
structure of the cipher. The difference between the round constants of two sub-
sequent encryption or decryption rounds is different for all cases. The function
itself takes a seed value and a pointer to the data structure that will hold the
result, i.e. the constants themselves. The same function can be used to generate
both encryption and decryption round constants, it is a simple matter of using
a different (but fixed, see Appendix A) seed value. Also, it should be noted that
as the table is so small, the constants can be pre-generated, and hard coded,
thus it becomes a trivial matter of looking up the value in a table.

2.5.4 rho

Algorithm 5 3way, rho()

void rho(word32 *a) /* the round function */
{

theta(a) ;

pi_1(a) ;

gamma(a) ;

pi_2(a) ;
}

Rho is short for round, thus each application of rho is a equivalent to a
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single round of the 3way algorithm (see §2.3.5 above). Its primary function
is to encapsulate invocations to several other functions. It is not absolutely

necessary.

2.5.5 theta

Algorithm 6 3way, theta()

void theta(word32 *a) /* the linear step */
{
word32 b[3];

b[0] = a[0] =~ (a[0]>>16) ~ (a[1l<<16) -~ (a[1]>>16) ~ (al[2]<<16) ~
(a[11>>24) -~ (a[2]1<<8) ~ (al[2]1>>8) ~ (al[0]<<24) -~
(a[2]>>16) ~ (a[0]<<16) -~ (a[2]>>24) ~ (a[0]<<8) ;
b[1] = a[1] -~ (a[1]1>>16) -~ (a[2]<<16) -~ (a[2]>>16) ~ (a[0]<<16) -
(a[2]>>24) ~ (al[0]<<8) ~ (a[0]>>8) ~ (al[1]<<24) -~
(a[0]>>16) ~ (a[1]<<16) =~ (a[0]>>24) -~ (a[1]<<8) ;
b[2] = a[2] ~ (a[2]>>16) ~ (a[0]<<16) ~ (a[0]>>16) -~ (al[1]<<16) ~
(a[0]>>24) ~ (a[1]<<8) ~ (a[1]l>>8) ~ (al[2]<<24) -~
(a[11>>16) - (al[21<<16) ~ (al[11>>24) -~ (a[2]<<8) ;
al0] = b[0] ; a[1] = b[1] ; a[2] = b[2] ;

This function is gruesome to look at. Its purpose, along with pi_1 and pi 2
below, is diffusion. Each output bit is dependent on 7 input bits, thus each
input bit contributes to the output state of 7 bits. The data is passed in, gets
contorted and then passed back. It is basically a cyclical shift operation over

the whole 96 bits. (See Figure 2.1 for another look at its operation)

2.5.6 pi 1&pi 2

Algorithm 7 3way, pi 1 & pi 2
void pi_1(word32 *a)

{
a[0] = (a[0]1>>10) ~ (a[0]<<22);
a[2] = (a[2]<<1) -~ (a[2]>>31);
}
void pi_2(word32 *a)
{
al0] = (a[0]<<1) -~ (a[0]>>31);
al[2] = (a[2]>>10) ~ (a[2]<<22);

}
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These two functions compliment each other (pi_ 2 reverses the action of
pi_1). They are designed to frustrate both linear and differential cryptanalysis.
They cannot do this on their own however, but as a small part of the larger
whole. Put simply, they rotate the data (as opposed to key) bits.

2.5.7 mu

Algorithm 8 3way, mu()

void mu(word32 #*a) /* inverts the order of the bits of a */
{

int i ;

word32 b[3] ;

b[0] = b[1] = b[2] =0 ;
for( i=0 ; i<32 ; i++ ){
b[0] <<=1 ; b[1] <<= 1 ; b[2] <<= 1 ;
if(al0]&1) b[2] =1 ;
if(al1]&1) b[1] =1 ;
if(a[2]&1) b[0] [=1 ;
a[0] >>=1 ; a[1] >>=1 ; a[2] >>=1 ;
}

a[0] = b[0] ; a[1] = b[1] ; a[2] = b[2] ;

This function is the most unremarkable of all of the functions, yet this is the
main software decryption bottleneck. Modern microprocessors are not designed
for bit manipulation. Mu reverses the bits in a 96 bit block (previously men-
tioned in §2.3.1). When the firmware design is covered it will be shown that
this function is trivial to implement. This is hugely significant as bit operations
are quite expensive on block orientated processors (see [DeHO00] for an in depth
discussion), whereas in firmware the same function is achieved by a simple cross

connection. This will be borne out by empirical measurements.

2.5.8 gamma

This function implements the distributed nonlinearity mentioned previously in
§2.3.2. Its sole purpose is “confusion” as dictated by Shannon[Sha49]. This
function gives the 3way algorithm its name (parallel execution of substitutions
acting on 3-bit blocks)
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Algorithm 9 3way, gamma/()

void gamma(word32 *a) /* the nonlinear step */

{

word32 b[3] ;

b[0] = al0] ~ (al1]l("al2])) ;
b[1] = al1] ~ (al[2]1(~al0])) ;
b[2] = a[2] ~ (a[0]l(~al1])) ;
al0] = b[0] ; a[1] = b[1] ; a[2] = b[2] ;

Algorithm 10 3way, decrypt()

void decrypt(word32 *a, word32 *k)

{

int i ;

word32 kil[3] ; /* the ‘inverse’ key */

word32 rcon[NMBR+1] ; /* the ‘inverse’ round constants */
ki[0] k[0] ;
ki[1] k[1] ;
ki[2] k[2] ;
theta(ki) ;
mu(ki) ;

rndcon_gen(STRT_D,rcon) ;
mu(a) ;
for( i=0 ; i<NMBR ; i++ )
{
al0] == ki[0] ~ (rcon[il<<186) ;
al[1] ~= ki[1] ;
a[2] ~= ki[2] ~ rcom[i] ;
rho(a) ;
T
al[0] ~= ki[0] ~ (rcon[NMBR]<<16) ;
af[1] ~= ki[1] ;
a[2] == ki[2] ~ rcon[NMBR] ;
theta(a) ;
mu(a) ;
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2.5.9 decrypt

Now that we have covered all the constructs used to implement the encryption,
we now have to reverse the process. The structure is almost the same. There

are two major differences.

e The “key” is the encryption key modified by the application of the functions
theta() and mu()

e There is a call to mu() to reverse the bits of the data before the “decryp-
tion” takes place, and another call to mu() after it completes.

2.5.10 CBC Mode Implementation

Though not part of the reference code, CBC (Cipher Block Chaining) mode was
initially implemented by wrapping the reference code functions (see §2.4.2 and
§2.4.5 to recap on why this mode is needed). Once a functioning CBC mode
implementation was complete, work could continue on the rest of the project.
The final CBC mode implementation is contained in function swWrite() in §C.5.

2.6 Conclusion

Having covered issues related to algorithm choice, modes of encryption, and the
implicit implications of choosing one over another. The chosen algorithm is then
adapted for use and the source code is explored in detail. The next chapter will
go on to assess firmware technologies, identify candidate platforms and their
associated development environments. This will lead to a chosen development

platform, environment, and an implementation.
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3.1 Introduction

Programmable logic devices (PLDs) are standard, off-the-shelf user-configurable
integrated circuits (ICs) used to implement custom logic functions. In the early
1980s, simple PLDs were typically used to integrate multiple discrete logic de-
vices and designs were typically expressed using Boolean equations.

Prompted by the development of new types of field programmable devices
[BFRV92][OD95] (FPDs), the process of designing digital hardware has changed
dramatically over the past few years|BR00]. Unlike previous generations of
technology, in which board-level designs included large numbers of Small Scale
Integrated (SSI) chips containing basic gates, virtually every digital design
produced today consists mostly of high-density devices. For these reasons,
most prototypes, and also many production designs are now built using Field-
Programmable Devices (FPDs). The most compelling advantages of FPDs are
instant manufacturing turnaround, low start up costs, low financial risk and
(since programming is done by the end user) ease of design changes.

3.1.1 Definitions of Relevant Terminology

e Field-Programmable Device (FPD) — A general term that refers to any
type of integrated circuit used for implementing digital hardware, where

the chip can be configured by the end user to realize different designs.

e PLA — a Programmable Logic Array (PLA) is relatively small FPD that
contains two levels of logic, and AND-plane and an OR-plane, where both

levels are programmable.

e PAL' — a Programmable Array Logic (PAL) is a relatively small FPD
that has a programmable AND-plane followed by a fixed OR-plane.

e SPLD — refers to any type of simple PLD, usually either a PLA or PAL.

e CPLD — a more Complex PLD that consists of an arrangement of mul-
tiple SPLD-like blocks on a single chip.

e FPGA — a Field-Programmable Gate Array is an FPD featuring a general
structure that allows very high logic capacity. Whereas CPLDs feature

logic resources with a wide number of inputs (AND planes), FPGAs offer

IPAL is a trademark of Advanced Micro Devices
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more narrow logic resources. FPGAs also offer a higher ratio of flip-flops

to logic resources than do CPLDs.
e Interconnect — the wiring resources in an FPD.

o Programmable Switch — a user-programmable switch that can connect a

logic element to an interconnect wire, or one interconnect wire to another.

e Logic Block — arelatively small circuit block that is replicated in a array in
an FPD. When a circuit is implemented in an FPD, it is first decomposed
into smaller sub-circuits that can each be mapped into a logic block.

e Logic Capacity — the amount of digital logic that can be mapped into
a single FPD. This is usually measured in units of “equivalent number of
gates in a traditional gate array”

e Logic Density — the amount of logic per unit area in an FPD.

o Speed-Performance — measures the maximum operable speed of the cir-
cuit when implemented in an FPD. For combinational circuits, it is set by
the longest delay through any path, and for sequential circuits it is the

maximum clock frequency for which the circuit functions properly.

3.1.2 Evolution of Programmable Logic Devices

The first type of user programmable chip that could implement logic circuits
was the Programmable Read-Only-Memory (PROM), in which address lines
can be used as logic circuit inputs and data lines as outputs. Logic functions,
however, rarely require more than a few product terms, and a PROM contains
a full decoder for its address inputs. PROMs are thus an inefficient architecture
for realizing logic circuits, and so are rarely used in practice for that purpose.
The first device developed specifically for implementing logic circuits was the
Field-Programmable Logic Array (FPLA), or simply PLA for short.

When PLAs were introduced by Philips, their main drawback was that they
were expensive to manufacture had a very poor price/performance ratio. Both
disadvantages were due to the two levels of configurable logic, because pro-
grammable logic planes were difficult to manufacture and introduced significant
propagation delays. To overcome these weaknesses, Programmable Array Logic
(PAL) devices were developed. To compensate for lack of generality incurred
because the OR-plane is fixed (finite number of OR, gates), several variants of
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PALs are produced, with different numbers of inputs and outputs, and various
sizes of OR-gates. PALs usually contain flip-flops connected to the OR-gate
outputs so that sequential circuits can be realized. All small PLDs, including
PLAs, PALs, and PAL-like devices are grouped into a single category called
Simple PLDs (SPLDs), their important characteristics are low cost and very
high pin-to-pin speed-performance.

The difficulty with increasing capacity of a strict SPLD architecture is that
the structure of the programmable logic-planes grow too quickly in size as the
number of inputs is increased. The only feasible way to provide large capacity
devices based on SPLD architectures is then to integrate multiple SPLDs onto a
single chip and provide interconnects to programmably connect the SPLD blocks
together. Many commercial FPD products exist on the market today with this
basic structure, and are collectively referred to as Complex PLDs (CPLDs).

CPLDs were first pioneered by Altera2, first in their family of chips called
Classic EPLDs, and then in three additional series, called MAX 5000, MAX
7000 and MAX 9000. Because of a rapidly growing market for large FPDs,
other manufacturers developed devices in the CPLD category and there are
now many choices available. CPLDs provide logic capacity up to the equivalent
of about 50 typical SPLD devices, but it is difficult to extend these architectures
to higher densities.

FPGAs however consist of an array of uncommitted circuit elements, called
logic blocks, and interconnect resources, but FPGA configuration is performed
through programming by the end user. As the only type of FPD that supports
very high capacity, FPGAs have been responsible for a major shift in the way
digital circuits are designed.

3.1.3 Computer Aided Design (CAD) Flow for FPDs

When designing circuits for implementation in FPDs, it is essential to employ
Computer-Aided Design (CAD) programs. CAD tools are important not only
for complex devices like CPLDs and FPGAs, but also for SPLDs. A typical
CAD system would involve software for the following tasks: initial design entry,
logic optimisation, device fitting, simulation, and configuration. This design
flow is illustrated in Figure 3.1, which also indicates how some stages feed back
to others. Design entry may be done either by creating a schematic diagram
with a graphical CAD tool, by using a text based system to describe a design

2http://www.altera.com
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Figure 3.1: CAD Design Flow for SPLDs[BR00]

in a simple hardware description language, or with a mixture of entry methods.
Since initial logic entry is not usually in an optimised form, algorithms are
employed to optimise the circuits, after which additional algorithms analyse the
resulting logic equations and “fit” them into the SPLD. Simulation is used to
verify correct operation, and the user would return to the design entry step to fix
errors. When a design simulates correctly it can be loaded into a programming
unit and used to configure a SPLD.

The steps involved for implementing circuits in CPLDs are similar to those
for SPLDs, but the tools themselves are more sophisticated. FPGAs, because of
their increased complexity, require additional tools. The major difference is in
the “device fitter” step that comes after logic optimisation and before simulation,
where FPGAs require at least three steps: a technology mapper to map from
basic logic gates into the FPGAs logic blocks, placement to choose which specific
logic blocks to use in the FPGA, and a router to allocate the wire segments in
the FPGA to interconnect the logic blocks. With this added complexity, the
CAD tools might require a fairly long period of time to complete their tasks.
(God Bless Moore’s law!)

3.1.4 Commercially Available FPGAs

As one of the largest growing segments of the semiconductor industry, the FPGA
market-place is volatile. As such, the pool of companies involved changes rapidly
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and it is somewhat difficult to say which products will be the most significant
when the industry reaches a stable state.

There are two basic categories of FPGAs on the market today:

1. SRAM-based FPGAs[Tri94].

2. Antifuse-based® FPGAs[H88].

In the first category, Xilinx and Altera are the leading manufacturers in terms
of number of users, with the major competitor being AT&T. For antifuse-based
products. Actel, Quicklogic, Cypress, and Xilinx offer competing products.

In general, FPGAs have gained rapid acceptance and growth over the past
decade because they can be applied to a very wide range of applications. A typ-
ical list includes: random logic, integrating multiple SPLDs, device controllers,
communication encoding (the application investigated by this work) and filter-

ing, brute-force cracking of symmetrical crypto keys and many more.

3Qriginally open-circuits and take on low resistance only when programmed.
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Other interesting applications of FPGAs are prototyping of designs later
to be implemented in gate arrays, and also emulation of entire large hardware
systems. The former might be possible using only a single large FPGA, and the
latter would entail many FPGAs connected by some sort of interconnect.

Another promising area for FPGA application, which is only beginning to be
developed, is the usage of FPGAs as custom computing machines. This involves
using the programmable parts to “execute” software, rather than compiling the
software for execution on a regular CPU.

3.2 Altera & MAX-+PLUS 11

Altera Corporation offers a complete solution to a systems designer. The solu-
tion combines programmable logic devices (PLDs) and advanced development
tools supporting faster design cycles. To further increase efficiency, Altera offers
a full range of (what Altera terms) mega-functions (similar to library functions
in C/C++) to eliminate common programming tasks, allowing designers to fo-
cus on task-specific device functions.

When investigation was first begun in this area, it was realised that there was
significant local experience with MAX+PLUS II. It seemed prudent to continue
to utilise this resource. With this in mind, and from a detailed examination at
MAX+PLUS II[Cora][Corb] (Altera’s Programmable Logic Development Sys-
tem) and AHDL[Cor95]. Altera’s MAX+PLUS II was selected.
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3.2.1 AHDL Design Language

The Altera Hardware Description Language (AHDL) is a high-level, modular
language which is completely integrated into the MAX+PLUS II Application.
One can use any editor to create AHDL Text Design Files (.tdf). Then they
are compiled to create output files for simulation, timing analysis, and device
programming.

AHDL statements can be used to design complex combinatorial logic, group
operations, state machines, truth tables and parameterised logic. One can create
entire hierarchical projects with AHDL, or mix AHDL TDFs with other types of
design files in a hierarchical design (a “project” in MAX+PLUS II). One can use
all custom functions or incorporate any of the Altera-provided mega-functions
and macro-functions — including a Library of Parameterised Modules (LPM)
functions — into any TDF by automatically creating an Include File (.inc) in
the Text Editor.

3.2.2 Text Design File Sections

A Text Design File (.tdf) is an ASCII text file, written in AHDL, that can be
entered with the MAX+PLUS II Text Editor or any standard text editor. The
following AHDL sections and statements are listed in the order they can appear
in a TDF [Cor95].

e (Optional) Title Statement - provides comments for the Report File (.rpt)
generated bye the MAX+PLUS IT Compiler .

e (Optional) Include Statement - specifies an Include File that replaces the
Include Statement in the TDF.

e (Optional) Constant Statement - specifies a symbolic name that can be

substituted for a constant.

e (Optional) Define Statement - defines an evaluated function, which is a
mathematical function that returns a value that is based on optional ar-

guments.

e (Optional) Parameters Statement - declares one or more parameters that
control the implementation of a parameterised mega-function or macro-

function. A default value can be specified for each parameter.
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(Optional) Function Prototype Statement - declares the ports of a logic
function and the order in which those ports must be declared in an in-line
reference. In parameterised functions, it also declares the parameters used
by the function.

(Optional) Options Statement - sets the default bit-ordering for the file,
or for the project if the file is a top-level TDF.

(Optional) Assert Statement - allows you to test the validity of an arbitrary
expression and report the results.

(Required) Subdesign Section - declares the input, output and bidirec-
tional ports of an AHDL TDF.

(Optional) Variable Section - declares variables that represent and hold
internal information. Variables can be declared for ordinary or tri-state
nodes, primitives, mega-functions, macro-functions and state machines.
Variables can also be generated conditionally with an “If Generate” State-
ment. The Variable Section can include any of the following constructs:

Instance Declaration

Node Declaration
— Register Declaration
— Machine Alias Declaration

— If Generate Statement

(Required) Logic Section - Defines the logical operations of the file. The
Logic Section can define logic with Boolean equations, conditional logic,
and truth tables. It also supports conditional and iterative logic gener-
ation, and the capability to test the validity of an arbritrary expression
and report the results. The Logic Section can include any of the following

constructs:

— Defaults Statement

— Assert Statement

— Boolean Equations

— Boolean Control Equations

— Case Statement
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— For Generate Statement

— If Generate Statement

— If Then Statement

— In-Line Logic Function Reference

— Truth Table Statement

AHDL is a concurrent language. All behaviour specified in the logic section
of a TDF is evaluated at the same time rather than sequentially. Equations
that assign multiple values to the same AHDL node or variable are logically
connected (OR-ed if the node or variable is active high, AND-ed if it is active
low). A TDF must contain a Subdesign section and a Logic section. The last
entries in a TDF are the Subdesign Section, Variable Section (Optional), and
Logic Section, which together contain the behavioural description of the TDF.

Files in a project hierarchy can be TDFs, GDFs, WDFs, ADFs, SMFs, EDIF
Input Files OrCAD Schematic Files, AHDL Design Files, or Xilinx Netlist for-
mat files. Each logic function is connected through its input and output ports
to the design file at the next higher level.

An include file is an ASCII text file (with the extension .inc) that can be
imported into a TDF with an AHDL include statement. The contents of the
include file replace the Include Statement that calls the file. Include files can
contain Function Prototypes, Constant, Define, and Parameters Statements.

3.2.3 Firmware & Software: Differences.

Though AHDL looks quite similar to other “programming” languages, one has
to be mindful of the differences. What one tends to forget as a programmer
is that the design will eventually be on silicon, and will be subject to all the
laws of physics, i.e. propagation delays etc. Take for example a “for” loop in a
normal programming language. There is no equivalent in AHDL, it has to be

constructed from latches and XOR gates.

3.3 3way: The Basic Building Blocks

Initially, the decision was made to try to keep the same “block” structure in
order that test and comparison could more easily be accomplished between
the firmware and software blocks on completion of the project. This probably
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makes comparison easier, but utilises more “real-estate” on the firmware device
and thus is not as “space-efficient” as it could be. Through this section, we will
break the basic firmware blocks into the same constituent parts as in §2.3 above.
All the AHDL code is contained is Appendix B.

One of the first differences: in software, the round constants have to be
generated every time the program is run (see Figure 2.5.3), whereas for firmware,
they can be pre-calculated and written into the silicon. Thus there is no firmware
equivalent of the rndcon_ gen() function. For comparison between the reference
software implementation and firmware implementation see figures 2.6 (software)
and 3.4 (firmware). As can be seen from Figure 3.4, there is some scope for
optimisation of the whole design, which is discussed later in §5.

It is worth pointing out at this point that this is a totally different domain
to operate in. It requires different thought processes in order to get the same
functionality that can quite easily done in software with little or no regard
as to how it is actually implemented. At this level one either uses an Altera
provided megafunction or else design, test and verify it completely yourself.
Thus implementing functions at this level generally requires much more thought
and effort than is required to implement the software counterpart.

3.3.1 cipher

This function encapsulates the encrypt/decrypt functions. A control line (E_D,
see Figure 3.5, which is a graphical representation of the “subdesign” segment
of the code in §B.1) selects between them. It also takes the encryption key and
feeds it to both the encipher and decipher circuits, though the key is first passed
through theta and mu in the case of the deciphering circuit. All the other lines
in the figure are there to control the action of the circuit, and have the following

action:

clock clock input into the circuit to drive all sequential logic.
e_d en/decipher, controls which half of the device the data passes through.

load loads the data on the datain lines into the device and begins the encryp-
tion/decryption operation.

counter en this controls whether the circuit does any en/decryption by en-
abling the counter which counts through the requisite 11 rounds of the
3way function.
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Figure 3.5: Cipher

term this signals the termination of the count. I.e. the encipherment operation

is complete.

countout this is a diagnostic output, which shows what state the internal

counter is in.

3.3.2 encipher

Encipher (§B.2) takes as input the encryption key and a block of data, the round

constants are hard coded into it, and outputs the encrypted block of data.

3.3.3 mlatch

The mlatch block (§B.3) takes two separate blocks of input data and, depending
on the control signals, selects one or the other of them to be latched and output.
The selection is between datain, or data from the output of the circuit, this is
how data is routed from the output of the circuit, back into the input, thus

providing a “loop” for the data to travel around.

3.3.4 round

This (§B.4) is the firmware version of the “for” loop implemented previously in
software (§2.5.4). It takes a block of data, the encryption key, and the round
constant as its input and returns a suitable processed block of data.
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When foundation work was done on this block, a significant effort was made
to design completely in combinatorial logic. This would have meant no need
for a loop and no requirement for a latch. The design itself seemed compar-
atively straightforward. Unfortunately, MAX+PLUS II was unable to resolve
the “design” into something that could be programmed into silicon. After some
iterations through varying designs, it eventually compiled when a latch was in-
serted between every two “rounds”. The reason MAX+PLUS II could not get
a fit was the huge amount of interconnections required by the combinatorial
design. In the end a latch was inserted after every round to simplify the overall
design. This highlights one of the problems with this domain. One has to work
within the limitations of the device, more memory or CPU power cannot be

“thrown” at the problem.

3.3.5 rho

This block (§B.5) encapsulates the “theta” and “pi _gamma_ pi” firmware func-
tions to maintain the same structure as the software version. Packaging it
similarly to the software version also makes it easier to verify correct operation.
It takes a block of data and returns a block of (different) data.

3.3.6 pi gamma pi

This (§B.6) is a the concatenation of pi 1, gamma, and pi_2 (see §2.5.6 and
§2.5.8 for explanation) software functions implemented in firmware. They have
been combined like this as they are never used separately.

3.3.7 theta

This (§B.7) is a slightly different implementation of theta than is in the reference
code (see §2.5.5 for explanation). This implementation is similar in structure to
the actual software implementation. Either way, it makes no difference to the
firmware implementation as it uses the same number of Logic Cells (192).

3.3.8 decipher

This function (§B.8) is almost identical to encrypt. The difference is that the
data is passed through mu first on the way in, and again as the last operation

on the way out.
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3.3.9 mu

Mu (§B.9) has the exact same effect as its software counterpart (see §2.5.7).
It reverses the bits in each of the three blocks of data (see Figure 3.6). It is
very interesting to note that this function accounts for the difference in speed
between the software encrypt and decrypt functions (detailed in §5.1), whereas
in firmware it is just a trivial cross-connection of wires which has negligible

delay.

3.4 Conclusion

Having selected and thoroughly examined an algorithm in Chapter 2, this chap-
ter has investigated firmware development environments, chosen one, and imple-
mented a firmware version of the algorithm. Unfortunately, neither the software
nor firmware solutions are particularly useful at this stage. The software version
would have to be adapted into any application in which we wished to use it,
and the firmware version is only usable in MAX+PLUS II development envi-
ronment. In the next chapter we move to deploy these implementations in a

more useful fashion.
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4.1 Introduction

First, lets review the work and take a look back at what has been covered.
In Chapter 2, the algorithm and the reference code that implements it were
introduced. In Chapter 3 the firmware structure and implementation were in-
troduced.

At this stage we have a reference software implementation, and a firmware
based implementation, at the moment neither of these are particularly useful.
The software version is limited in that it has to be compiled into every applica-
tion that uses it, or alternatively it could be compiled into a shared library and
then we could use it by including a header file and calling its functions. The
firmware solution is even less useful as we have no way of getting the data into
the device.

Ultimately we want a solution whereby we can use an application using
encryption, on a machine running GNU-Linux (hence referred to as Linux!)
doesn’t know if it is using firmware or software encryption. To talk to any
firmware device will require a set of functions explicitly designed to facilitate
this. As the application doesn’t need to know whether there is a software or
an actual firmware implementation behind it, but our requirement is that the
functionality should be identical. The ideal place to put this set of software
functions (including the ones that invoke the firmware) is in a software entity
called a “Device Driver” or “Device Handler” [Ben96][Ste92][Lew91].

4.2 Device Driver Overview.

To put it simply, a device driver is nothing more than a piece of software that
takes data from the user, converts it into a format suitable for the device, sends
it to the device, takes the result, puts it back into the format the user requires?.
Under Linux, a device driver can operate out of one of two sections of memory;
kernel space, or user space (i.e. what malloc() returns). Kernel-space drivers
have the most power, but they are difficult to understand and develop. User-
space drivers are easier to develop, and they can draw on many functions and
procedures in C libraries[KR98|, but they have limits as to what they can to with

system hardware. Drivers that run in kernel space have several advantages over

1Linux is interchangeably used to refer to the whole system or just the Kernel, for the rest
of this chapter it is used to refer to the Kernel

2 Actually users normally talk to devices through a standard library and thus restricted in
the format they can send and receive.
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those in user space. They are fast because they do not invoke context switches,
they have direct access to interrupts, they can support block-transfer devices,
they are available until one unloads them, and if properly written they can be
re-entrant. Linux loads kernel-space drivers and retains them in memory until
you specifically unload them (for modules) or until the computer is shut-down
(statically compiled into the kernel). Properly written kernel-space drivers make
their device look like a file. Thus normal file-system system calls such as open,
close, read and write can be used to send and retrieve data from the device.

A program that crashes in user-space will not halt the system, unless of
course you are trying to control hardware that locks up the computer on its own.
User-space device access requires a context switch, so if Linux has swapped the
device driver from user-space, response time suffers; Linux must retrieve the
driver before it can use it. During a “swap” , the Linux kernel can “move” the
contents of memory into a swap space or onto hard disk. User space drivers
run as a single thread, they serialise read /write accesses and make simultaneous
I/O accesses difficult. In contrast, correctly implemented kernel-space drivers
are re-entrant, so even if a process is locked whilst waiting for an external event,
another device can use the corresponding driver without compromising data
integrity.

In general, writing a kernel-space driver calls for more advanced C program-
ming skills. To write one properly, one requires knowledge of such issues as
kernel-dependent version control, memory management, and resource control.
All without recourse to any C libraries. And if the driver doesn’t work correctly,
it will crash your computer, requiring a hard reboot. Debugging a kernel-space
driver requires more work and will cause more headaches (See [Rub98, Chapter
4] for a more in-depth discussion.). As an example of the difference between
user-space and kernel-space, a kernel version of the hopefully familiar “hello
world” program. Firstly, note that the module cannot link with standard C
libraries, thus we cannot use stdio.h or any other libraries (and it is compiled
into an object file not a normal executable, see [SM98][WT95][Pom]). Kernel-
level drivers do not contain a “main()” program entry point. Testing this driver
requires using the Linux insmod and rmmod commands on the command line.
The insmod command registers the module’s capabilities with the Linux ker-
nel and the rmmod command removes and “cleans-up” the driver’s registration.
Execution of the final print statement in the example simply confirms that the
module got terminated properly.

To run this module one has to have “root” privileges (the highest privilege)
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Algorithm 11 Kernel version of “Hello World”

#define MODULE // must define before including module.h
#include <linux/module.h> // include module library functions

int

init_module(void) // registers module with kernel

{

printk(‘‘Salut Mundi!’’); // call kernel level print function
return 0;

}

void cleanup_module(void) // undoes init_modules kernel registration
1{
printk(‘‘bye cruel world’’); // prints exit message, look in /var/log/messages

}

because it operates in kernel space. So after logging in as the root user, type
/sbin/insmod hello_k.o (hello k.o being the name of the compiled binary).
In general Linux systems divert all kernel messages to the file /var/log/messages
so the output should appear in this file.

Drivers make devices look like files to software. So calling a kernel-level
driver from user space is the job of file operations. Setting up a kernel-space
driver so that an application can call it requires steps that identify the driver to
the system and other applications. This requires the establishment of the file
operations read, write, close and any other operations that you want the driver
to perform. Finally, you must add the driver to the Linux file-operations table
so that application programs can treat the driver as if it controls a file-orientated
device. One can determine which kernel drivers, or modules, Linux has loaded
by typing cat /proc/modules at the command line. The resulting list shows
active modules along with a usage count. To remove the driver from kernel
space, type /sbin/rmmod hello_k. The kernel placed the driver-exit message
“bye” in the system log files. To make matters worse, Linux is a moving target.
The kernel calls that provide modules with services can change, thus the module
no longer even compiles, never mind loads. This means that while one is kernel
programming, one has to keep an eye on “latest developments” [Goo] as they
will have an effect on your driver in the future.

For the “pseudo” driver a user-space driver would be more than adequate,
but as we will need the more powerful facilities of a kernel-space driver even-
tually we will work towards developing a complete kernel space driver. In the
following sections, we will first introduce the software “pseudo” device driver
then introduce the development board, and “scaffolding” to get the data to and
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Figure 4.1: Structural diagram of pseudo device driver

from the cryptographic core, and finally the device driver proper, that talks to
the development board.

4.3 Software - Pseudo device driver

Now that we have decided on a device driver interface, we first concentrate on
the software “pseudo” device driver. First lets have a quick look at a structural
diagram of what this will look like (Figure 4.1). It should be apparent from
Figure 4.2 that all the work is done in the write() system call, read() just
retrieves the data. All functions below the dotted arrows are the exact same as
in Figure 2.6.

We use the term “pseudo” because there is no physical device behind the
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Figure 4.2: Device Driver Architecture

driver, only software emulation of what the firmware version will do, though
its function obviously has to be identical. Now, let us re-examine the archi-
tecture of a “real” device driver (Figure 4.1) and consider how to set up the
user and application interfaces for the driver. Linux gives access to devices as
if they were files. Linux users are accustomed to controlling a driver through
shell commands and scripts. Therefore, the driver should include a minimal set
of functions accessible using read() and write() operations at the Linux shell
command prompt.

Linux device drivers exist as files in a directory called /dev. When you create
a driver file, you register the device’s name with the Operating System (OS).
As part of the registration process, Linux identifies drivers by integers. Each
driver has one major number and can have several minor numbers®. The OS
cares about major numbers only; the driver keeps track of opening and closing of
minor numbers. Driver complexity can be minimised by denying device sharing.
Write the driver so it opens a minor number and stores the process ID (PID) of
the process that opened it. If another process tries to gain access to the same
minor number, the driver denies it access.*

Otherwise, if the driver code lets several processes have access to the same

3The major number indicates the device type, the minor number the subsystem of that
device.

4 Allesandro Rubini, the author of [Rub98], recommended that I use this approach with my
driver in some email correspondences I had with him.
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board subsystem, the driver would have to stop any ongoing operation (encryp-
tion), reconfigure the board for another process, run the new operation, and
then reset the board to its previous state. This sequence might not present
difficulties if two applications with low throughput need to share the board, but
for anything else, this arrangement could present throughput problems.

As part of the driver design, it should be decided if access to the driver
is required from the Linux command line. Providing such access lets applica-
tions programmer and systems integrator confirm that their hardware is working
before compiling and running any code. If one is familiar with Linux shell pro-
gramming then the driver can be used directly from the command line using
the Linux shell commands. Generally it is a good idea to provide enough access
to allow board installers to test the board before they write applications.

Read() and write() function calls can be used for simple devices. When
dealing with a complex device that incorporates many functions, however, im-
plementing reads and writes with a command language can become confusing
for users, and the driver must take steps to properly parse the command line.
So, although these two commands are useful for accessing driver functions from
the Linux shell, the ioct1()® command should be used when accessing the
driver using an applications program.

The ioctl() command presents a different entry point into the same driver
code. Instead of requiring applications programmers to include every I/O and
driver parameter in the calling function, programmers can use a pointer to a
buffer that contains that information.

In order for the driver to be flexible enough to work with new hardware or
to be easily ported to another operating system, one should split the driver into
OS-dependent and hardware-dependent parts (Figure 4.1). By doing this, you
only need to replace the affected driver portions when adding support for a new
card or OS.

4.3.1 Device driver initialisation sequence

1. Make sure the driver supports the device found. Each manufacturer of
PCI cards has a unique ID, as does each family of PCI cards. The driver
initialisation routine reads from the PCI configuration space information
about an installed card. The driver can then check whether these values
match those of the cards its designed to handle.

5Toctl provides a “catch-all” entry point for device specific commands.
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e Not relevant for a “pseudo” driver.

2. Allocate room for a structure that contains all the device information
needed to work with — initialisation settings, status, and runtime pa-
rameters within the driver’s memory space. Ideally, to support multiple
boards, you should create this structure using an array of pointers. For this
application a pointer reference was kept to the structure. The kernel func-
tion, kmalloc ()8 should be used to allocate memory space for structures.
Later, in cleanup_module(), release the memory space with kfree().
Note, however, that kmalloc() does not fill the allocated memory with
zeroes. In addition, kmalloc allocates memory by pages (4Kbytes/page on
x86, 8Kbytes/page on Alpha), so you can efficiently allocate memory by
creating memory blocks for device structures. Finally, remember that ini-
tialisation is not time critical. Thus, the priority given to kmalloc() can
be set to GFP_KERNEL, which means the kernel can wait for sufficient
memory to become available as other processes free it. To do this we have
a static allocation of a structure which then maintains a pointer to device

specific data in memory allocated on the heap.

Algorithm 12 Extract from driver.h, §C.6
typedef struct Crypto Dev

{
ulé deviceOpen;
uid_t deviceOwner;
u8 encDec; // O for pass through 1 for encrypt 2 for decrypt
u32 inputBufferLength; // this may be redundant
u32 outputBufferLength;

u8 dataPending; // data left in the output fifo.
u8 encUsedIV; // Have we used the IV in the encryption stream
u8 decUsedlIV; // Ditto for decryption stream.

void *iFifoBuf;
void *oFifoBuf;
struct pci_dev *dev;
struct wait_queue *readq, *writeq, *opengq;
struct software_key softwareKeys;
struct tq_struct crypto_queue;
}
CryptoDev;

3. Some boards require the host computer to download and start executing
on-board firmware. This is the point at which this should now be done.

60nly as long as that structure is smaller than PAGE _SIZE, which is platform dependent.
See [Rub98] for more details.
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e Not relevant for a “pseudo” driver.

4. Register all read(), write(), and ioctl() routines with the kernel using
the register_chrdev() function as shown in the code fragment below.
Generally you should write a separate dispatch routine for each type of
board the driver supports. This approach eliminates the need for the
driver to perform an extra checking step, simplifying driver development.
Thus you write, register, and later call just one routine for each card and

its subsystem.

Algorithm 13 Extract from driver.c, §C.7.

// init_module. NULL is for unimplemented functionms.
struct file_operations crypto_Fops = {

crypto_lseek, // seek

crypto_read,

crypto_write,

NULL, // readdir
NULL, // select
crypto_ioctl, // ioctl
NULL, // mmap
crypto_open,
NULL, // flush
crypto_release // a.k.a. close
i
// Initialize the module - Register the character device
int
init_module ()
{

// Register the character device (atleast try)
ret_val =

ret_val + module_register_chrdev(MAJUR_NUM, DEVICE_NAME, &crypto_Fops);

// Negative values signify an error
if (ret_val < 0)

{
PINFO ("%s failed with %d\n",
"Sorry, registering the character device ", ret_val);
return 1;
}
return 0;




CHAPTER 4. DEPLOYMENT 67

5. Most modern PCI-boards support PCI bus mastering or direct memory
access (DMA), so you must allocate memory pages for these operations.
It is generally recommended to use the kernel functions get_free_page ()
and _get_dma_pages () for this type of memory allocation. While critical
in a real-time data-acquisition board driver, PCI bus mastering and DMA
place extra demands on memory, so one has to be realistic about requests
for memory space. The kernel will try and satisfy the allocation request,
especially if you set the priority to GPF_KERNEL by swapping out as
many pages as possible. This swapping can dramatically degrade system
performance. In this case, to make things more convenient, the memory
used for both the pseudo driver and the actual driver are allocated in the

same way.

Algorithm 14 Extract from driver.c, §C.7.

AllocateDmaBuffers (void)
{

cryptoDevice.oFifoBuf = (void *) __get_free_pages (GFP_DMA, order);
cryptoDevice.iFifoBuf = (void *) __get_free_pages (GFP_DMA, order);

if (!cryptoDevice.oFifoBuf || !cryptoDevice.iFifoBuf)
{
PINFO("Error allocating DMA pages %s(%d)\n",
__FILE__, __LINE_ );
return 1;
}

return SUCCESS;
}

6. Next, if required, an interrupt service routine (ISR) should be registered
for the board, assuming convention is followed the ISR is split into two
halves, the driver sets the address for the service routines top half.

e Not relevant for a “pseudo” driver.

7. As a final step, run a hardware initialisation routine to set the board to
a known or desired state. If the driver has to deal with multiple cards, it

would be normal practice to now increment a “card installed” counter.

Now we have a functioning device driver which simulates the presence of an
actual device. If a user opens the “device” and tries to write to it the operating
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system calls the crypto_write() function which we have registered above.

Algorithm 15 Extract from driver.c, §C.7.
static ssize_t
crypto_write (struct file *file,
const char *buffer, size_t length, loff_t * offset)

{

// if the input buffer is not empty then put the caller to sleep.
while (!isDeviceReadyForData (cDev))
{
// If the device was opened in nonblocking mode,try again
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
interruptible_sleep_on (&cDev->writeq);
if (signal_pending (current)) // a signal arrived
return -ERESTARTSYS;

retval = swWrite (file, buffer, length, offset);
return retval;

}

And similarly for all the other registered functions. This function just does
some sanity checks and then passes the data down to the function that does
the real work swWrite() (§C.5). Now, with this and all the other functions we
have written, we have a fully functioning “pseudo” driver. It is clear however,
that the two main firmware advantages of speed, and absolute confidentiality of
the key-authentication-key, are both badly compromised by using the “pseudo”

driver.

4.4 Firmware

Having a functional hardware design is one thing, getting data to it over the
PCI (Peripheral Component Interconnect [Tom95])bus is another matter. This
poses a problem: how to get data transferred to the firmware “encryptor” (the
cipher block in §3.3.1 above), have the data encrypted or decrypted, and then
returned to the running program. Initially it was envisaged that a PCI or ISA
(Industry Standard Architecture) interface board would have to be constructed
from scratch, and as the project progressed it seemed that this would not be
possible. PCI was selected as the most appropriate interface as this has now
become the standard for interfacing peripheral devices directly to the micro-
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processor. This also allowed the use of a PCI Development board from PLD

Applications,” which was available.

4.4.1 PCI10K-PROD Board

The PLDA PCI10K-PROD board is a 32/64bit capable PCI board which can
operate at both 33MHz and 66MHz PCI bus speeds. It is both 5-volt and 3.3-
volt capable, and with it comes PLD applications 32-bit and 64-bit PCI target
and master /target controllers. It is based on Altera FLEX 10K technology and
has a EPF10K200SFC484-1 on-board. The board also has two chained EPC2
PROMs which automatically program the 10K200 on power up. More detailed
information can be found in [Appb][Corb)].

4.4.2 PCI-Core and Interface Circuitry.

The PLDA PCI Core[Appa| implements all the functionality required of a PCI
device and thus relieves us of this burden. What had yet to be implemented
was the interface from the PCI core to the “encryptor”. As the development

computer only a 32 bit PCI Data path, two problems presented themselves:

1. To get the data to and from my “encryptor”

2. To convert the data from 32 bits to the 96 bits the “encryptor” requires
and back again to 32 bits.

PLDA themselves partially solved the first problem, as one of the samples they
provided with the board has DMA channel 0 connected to the input of a First
In First Out register (FIFO) and DMA Channel 1 connected to the output of
the same FIFO. They also provide a 32 bit Input/Output Register which can
be used to exchange data with the back end hardware. A 32 to 96 bit de-
multiplexer circuit to convert between the input FIFO and my “encryptor” was
required, the output of my “encryptor” was then connected to a 96 to 32 bit
multiplexer and then to a second FIFO. So now the complete design looked like
Figure 4.3. (the “encryptor block at the centre of the figure is the cipher block
as documented in Figure 3.5)

Once again the design was broken down into its constituent blocks, and all of
them, except the Input/Output Register (IOR) Interface and the PCI Core were
written in AHDL. The blocks are connected together differently depending on

"http://www.plda.com
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Figure 4.3: PCI Core & Interface Circuitry

the inputs from the control circuitry®. See figures 4.4, 4.5 and 4.6 for flowcharts
that describe the action of the circuitry.

The Input/Output Register (IOR)is adapted from the supplied PLDA design
to incorporate the required design changes. It is written in VHDL. The PCI core
is the PLDA implementation used verbatim. In the following sections, we will
go through the different blocks used to complete the interface to both FIFOs
and the IOR.

4.4.2.1 inputlogic / outputlogic

The Input Logic block (§B.10) simply acts as a de-multiplexer, distributing the
32 bit input across the 96 bits required by the cipher block. Thus the first 32
bit block becomes the bottom 32 bits (a0), the second becomes the middle(al)
and the third becomes the top(a2). An Altera LPM function could have been
used, but as these were two of the first circuits designed, it was decided to build
our own in the interests of gaining as much knowledge as possible. The Output
Logic block (§B.13) is a multiplexer, again an Altera LPM (§3.2.1) could have
been used.

8ECB Mode Encryption and Decryption do not use the CBC Feedback Latch. So they are
functionally Identical.



CHAPTER 4. DEPLOYMENT

Solid line denotes
path taken by data Input Logic
XOR [ R RS
KAK Block Cipher Block
3
Key Feedback Latch |
¥
Feedback Latch v
A > XOR
7
: CBC Feedback Latch
¥ ‘
XOR [< 3
Y
Output Logic
v

Figure 4.4: Flowchart of Session Key Decryption. (ECB Mode, §2.4.1)



CHAPTER 4. DEPLOYMENT

72

Solid line denotes
path taken by data. Input Logic
XOR e
KAK Block Cipher Block
Key Feedback Latch j<c----ovvvviiiinns
Feedback Latch
"""""""" XOR
CBC Feedback Latch
XOR
Output Logic
Y

Figure 4.5: Flowchart of CBC Mode (§2.4.2) Decryption.



CHAPTER 4. DEPLOYMENT

73

Solid line denotes
path taken by data. Input Logic
XOR
KAK Block Cipher Block
Key Feedback Latch = rrvooovo.
Feedback Latch v
XOR
CBC Feedback Latch
XOR [<
Output Logic
Y

Figure 4.6: Flowchart of CBC Mode (§2.4.2) Encryption.



CHAPTER 4. DEPLOYMENT 74

4.4.2.2 kak

This block (§B.11) stores the Key Authentication Key (KAK) and has an input
from the Session Key Latch. Depending on the mode selected the output is
either the KAK or the session key.

4.4.2.3 feedbacklogic

This circuit (§B.12)is just a simple 96 bit latch. It is used at the output of
the Cipher block to re-time the output signals. As the Key Feedback Latch,
it is used to store the session keys for the decryption and encryption circuitry.
And as the CBC Feedback latch, it is used to store the Feedback value the next

operation.

4.4.2.4 cbcreset

Chbcreset (§B.14) provides a pulse to reset the CBC Feedback latch when:

e The Encryption Key changes.

e The Device is changed from encryption to decryption mode.

It also passed through the CBCRESET signal from the IOR, which is already

a pulse. This signal is under device driver control.

4.4.2.5 core

This is block (§B.15) which encapsulates all of the above functions in which all

the interconnections are made.

4.4.2.6 controlncore

This is a state machine (§B.16) that controls the operation of the device. The
operation is simple, if there is data in the input FIFO, process it. If the output
FIFO is full, stop processing. These checks are made before new data is taken
in, so there is never data “stuck” in the circuit. Also, if an interrupt is to be
sent, then this is the point at which the interrupt will be generated. There are

two cases.

1. The output FIFO becomes full (a rising edge on ofifofull). In this case the

operation of the encryptor is stalled and needs to be cleared.
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2. The input FIFO becomes empty. 18 clock cycles® later (excluding the
case above) the data is processed and needs to be cleared from the output
FIFO.

Case 1 is dealt with in “crypto” below.

4.4.2.7 crypto

Encapsulates (§B.17) both “core” and “controlncore” above, also takes into ac-
count the rising edge of OutputFifoFull (case 1 above) and uses it to generate an
interrupt. The interconnections between Core and Controlncore are completed
in this block. Crypto clock is now finished. All that needs to be connected are

the two FIFOs, and all of the requisite control lines.

4.4.2.8 display control.vhd

This block (§B.18) is a highly modified version of the PLDA example. The new
design manages the Input/Output Register, Interrupts and the control of the
on-board LEDs for diagnostic and debugging purposes.

4.4.3 Device driver initialisation sequence

Now that we have the “scaffolding” in place, we can go on to implement a full
device driver. Now we shall revisit §4.3.1 and briefly cover some of the more

important functions required to implement a fully functional device driver.

1. Make sure the driver supports the device found. Each manufacturer of PCI
cards has a unique ID, as does each family of PCI cards. The driver code
reads from the PCI configuration space information about an installed
card. The driver can then check whether these values match those of the
cards its designed to handle.

2. Allocate room for a structure that contains all the device information you
need to work with:

e This process is identical to what was done previously in §4.3.1.

3. Some boards require the host computer to download and start executing
on-board firmware. This is the point at which this should now be done.

9This is the number of cycles required to process a block of data.
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Algorithm 16 Extract from hardware.c, §C.9.

int pldInit(CryptoDev* const cDev)

{
int retVal = 0;

cDev->dev =

pci_find_device(PLDA_VENDOR_ID_PLD, PLDA_CRYPTO_ID, cDev->dev);
if (cDev->dev)

{

// Success
retVal = 0;
}
else
{
// Failure
retVal = 1;
}
}
return retVal;

X

e Not relevant at the moment, but I will discuss cases where this may

be relevant in the next chapter.

4. Register all read(), write(), and ioct1() routines with the kernel using

the register_chrdev () function.
e This process is identical to what was done previously in §4.3.1.

5. Most modern PCI-boards support PCI bus mastering or direct memory
access (DMA), so you must allocate memory pages for these operations.

e Again, this process is identical to what was done previously in §4.3.1.

6. Next, if required, an interrupt service routine (ISR) should be registered
for the board, assuming convention is followed the ISR is split into two
halves, the driver sets the address for the service routines top half.

7. As a final step, run a hardware initialisation routine to set the board to
a known or desired state. If the driver has to deal with multiple cards, it

would be normal practice to now increment a card_installed counter.

Now we have a dual purpose device driver which can both simulate the presence
of an actual device or talk to the device, depending on parameters we pass to the
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Algorithm 17 Extract from hardware.c, §C.9.

// Fill the task structure, used for the bottom half handler
cDev->crypto_queue.routine = pldBhInterrupt;
cDev->crypto_queue.data = cDev;

Algorithm 18 Extract from hardware.c, §C.9.

void

pldDeviceReset (struct pci_dev *const pciDev)

{
u32 ior;
PDEBUG ("Resetting Back end\n");
pci_read_config_dword (pciDev, IOR_REG, &ior);
ior = ior & PLDA_RESET;
pci_write_config_dword (pciDev, IOR_REG, ior);

driver when we are loading it into the kernel. Now let us re-visit the write()
system call which we covered previously:

This time we now have two write calls pldWrite ()€ is our new function that
talks to the hardware. And based upon the value of the variable usingHardware
(§C.7), the driver either dispatches the data to the hardware to be processed or
processes it in software instead. The default action of the driver is that if there
is no user intervention and if finds the hardware board, then it will use it. If
the user requests, then the software functions will be used instead. This change
can only be made when the driver is loaded into the kernel, and to change it

requires the driver to be unloaded and re-loaded again.

4.5 Conclusion

Now we have added the “scaffolding” to the software and firmware implementa-
tions. This is in the form of a Linux “device driver” architecture and (for the
firmware implementation) a development board and extra circuitry that allows
the device driver to communicate with the firmware cryptographic device. This
gives a useful implementation which can be easily configured to use either the
software or firmware version to encrypt data. Now we go on to bench test the

two versions and discuss the implications.

0PI, DA Device Write.
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Algorithm 19 Extract from driver.c, §C.7

// This function is called when somebody tries to
// write into our device file.
static ssize_t
crypto_write (struct file *file,
const char *buffer, size_t length,
loff_t *offset
)
{

// if the input buffer is not empty then put the caller to sleep.
while (!isDeviceReadyForData (cDev))
1
// If the device was opened in nonblocking mode, try again
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
interruptible_sleep_on (&cDev->writeq);
if (signal_pending (current)) // a signal arrived
return -ERESTARTSYS;

}
if (usingHardware == 1)
{
retval = pldWrite (file, buffer, length, offset);
}
else
{
retval = swWrite (file, buffer, length, offset);
}

return retval;
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5.1 Benchtest Results

In order to benchmark the device, a small program, mode (§C.10), was written
which can be used to transfer data to and from the device, as well as change
keys, change IV, reset, change mode and change stream mode. If the program
is invoked as pld_ read it assumes the user wishes to read data from the device
and requires a file name and a length (in bytes). If the program is invoked as
pld_write it assumes the user wishes to write data to the device and requires
a file name to read from. As there are two separate operations involved, two
simple shell scripts were written to make calls to the device (§C.12 and C.13).
It was decided to test the device on several size files, a file size of 6000 bytes was
initially chosen and this was doubled in size until 49152000 bytes was reached.
Three encryptions and three decryptions were done, for each size of file, on two
different hardware (x86 and Alpha) platforms were and plotted the results. The
GNU-Linux time command was used in the following manner to get the results:

rm 6000enc; /usr/bin/time /testenc.sh 6000

This command removes the output from the previous encryption and then does
an encryption of the 6000 byte size file (which is named 6000) and then prints
its results to standard output. All these results were placed into a text file for
retrieval and plotting. Later, the resulting data was plotted with the gnuplot

application.

5.1.1 x86

The machine used to generate these results was an Intel Pentium II 266 with
256MB of RAM, SuSE Linux 6.4, kernel version 2.2.16 and an Ultra Wide SCSI
Hard Drive

5.1.1.1 Comparison

As can be seen in Figure 5.7 there is a visible difference in speed between
hardware and software almost immediately. Leading to a difference of over 15
seconds between hardware encryption and software encryption, and a difference
of over 50 seconds between hardware decryption and software decryption for a
file size of > 48 MB
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5.1.2 Alpha

The machine used to generate these results was a Quant-X Alpha 21164A with
512MB of RAM, SuSE Linux 6.4, kernel version 2.2.16 and an Ultra Wide SCSI
Hard Drive.

5.1.2.1 Comparison

Two different processor architectures were used to aid in eliminating any obscure
bugs and to generate comparative test results. The underlying IO subsystems
are hopefully similar enough that the results graphed above are more a reflection
on the processor and memory throughput than anything else.

As the alpha is closer to the speed of the firmware board we shall use this
for comparison. There is a discernable difference between hardware encryp-
tion/decryption and software decryption on a file size of 48000 bytes, it does
not become clear for software encryption until the file size reaches 192000 bytes.
The speed difference between hardware encryption/decryption and software de-
cryption exceeds a factor of two when the file size reaches 1536000 bytes. Based
on the graph and estimation, the hardware encryption/decryption would be-
come twice as fast as the software encryption for a file size of approximately
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Now there is a question raised by the graphs in figures 5.3 and 5.10 which
is apparent again in figures 5.7 and 5.14. Why does the board seem faster
at encryption than decryption? Intuitively, it should take the same time. This
caused some initial concern and investigation was warranted. This is an artificial

difference which exposes:
1. A problem with the benchmarking method.
2. The consequence of the Buffer Cache[Bac86].

This came about as the data was generated using the sequence “decipher, enci-
pher, decipher, encipher, decipher, encipher”. The file was originally generated
by writing a file full of zeros to the disk, in order to make the test realistic, it
was first “deciphered” to give a random looking, un-compressible block of data,
which was then enciphered, deciphered etc etc. The buffer cache has the follow-
ing effect. The first time the file is requested, it is read in from the hard-disk, for
subsequent requests, it is already in memory, and thus the overhead of reading it
in from disk is removed which accounts for the above anomaly. This could have
been avoided by pre-reading all files before conducting the test, thus negating
the effect of the buffer cache.
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5.2 Conclusions and Future Work

This thesis set out to examine various issues related to cryptographic algorithms,
and then examine the deployment of a selected algorithm in a real-world setting
(in the form of a POSIX-style device driver). The firmware implementation
took the form of a cryptographic coprocessor, capable of securely performing
encryption, decryption and key protection, while also providing a higher level
of performance than a functionally similar software implementation.

From the results shown in the previous section, it is clear that there is a
significant performance benefit arising from deploying certain core functions of
a cryptographic algorithm in firmware, as opposed to using a purely software-
based implementation of the same algorithm.

As further evidence of this benefit, current research and industrial efforts are
moving towards cryptographic coprocessors [Gut00][Ito00][chp][Spy][Ci][3co] in
order to protect the cryptographic keys (the operating system cannot be sub-
verted into leaking cryptographic keys), and also to relieve the host CPU of the
not inconsiderable computational burden of current cryptographic algorithms.

It should also be clear that the field of cryptography is not one to be entered
into lightly: there are always performance, security, and flexibility issues to be
addressed. These issues were investigated in Chapter 1.

Chapter 2 examined the 3way encryption algorithm in detail in order to gain
a better insight to cryptography and cryptographic algorithms. Chapter 2 also
investigated the difficulties associated with deploying a cryptographic algorithm.
Here, key generation issues were discussed, because without secure keys, any
cryptographic system can easily be compromised. However, the treatment of this
topic is by no means exhaustive, as key generation is a whole area of study in its
own right: generation of cryptographically-secure random numbers is inherently

more difficult than it would initially appear.

Following the investigation of the fundamental issues associated with cryp-
tographic systems, a software based implementation of the chosen 3way algo-
rithm was undertaken. With the experience gained from this, work began on
a firmware implementation of the same algorithm. The differences between
developing in the firmware domain as opposed to software domain were intro-
duced and explored. To conclude, a firmware instantiation of the chosen 3way
algorithm was presented.

In order fulfil the final goal of this project, the two implementations (software
and hardware) were packaged up as a POSIX-style device driver in order to
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investigate their performance characteristics.

In Chapter 4, the software implementation was packaged as a “device driver”
and used the reference-code implementation described in Chapter 2. The firmware
implementation covered in Chapter 3 was packaged as an equivalent crypto-
graphic device, identical in function to the software version. Significant extra
circuitry (scaffolding) was required to realise a functioning firmware implemen-
tation: specifically, interfacing to the PCI bus and providing input and output
data buffers (FIFOs).

Examination of the final, firmware, implementation has suggested further
work which could augment the solution:

e Make the FIFOs bigger than PAGE _SIZE (the default size of a mem-
ory page of the CPU’s memory manager). This is currently an obvious
inefficiency in the design, because all UNIX-based programs access files
through the standard I/0 library. This change could reduce system over-
head significantly as the calling program would be put to sleep less often
(the reduction would of course depend on the processor architecture and

paging system, if any, being used).

e Optimise firmware description (in AHDL) for increased speed. The first
improvement would be to increase the operating clock speed of the core
block (§4.4.2.5), with the aim of reducing the overall encryption time. The
duration of the CENABLE signal (see Figure B.10) shows the length of
time that the core spends processing data. Currently this time is twelve
clock cycles, one to load the data and eleven (§2.3.5) to process it. If this

could be reduced, significant performance gains could be achieved.

e Optimise device driver code. To make the driver as efficient as possible,
the structure of the software in the driver could be altered slightly to make
more use of automatic compiler optimisations (e.g. native word alignment,

instruction scheduling, register variables, etc.).

e Reduce the silicon “footprint” (the number of logic elements required) of
the firmware without impeding speed, thus allowing room for more func-
tionality, for example: to use more than one cryptographic core. Also,
it is clear from Figure 3.4 that there is significant commonality amongst
blocks in 3way. If a different design approach were taken, and aggres-
sive inter-block optimisations pursued, it may be possible to reduce the
“footprint”.
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e Add a second, or maybe even a third, cryptographic core with a differ-
ent algorithm and keys. (e.g. a Public Key Algorithm or the recently-
announced AES §1.2.14 selection). This extra functionality would require

changes to the device-driver software.

e Add a “daughter card” which could be dynamically reprogrammed (by
the device driver) with the correct firmware algorithm depending on the
application requirements (this was touched in §4.4.3). Similar concepts
are discussed in [CHWO00] and [GSBT00]. To preserve the security of such
a system, the firmware algorithms themselves would be stored in a read-
only memory: the device driver would only instruct the card to load a
particular algorithm, and would not supply that algorithm directly.

e Port device-driver to other Operating Systems: the PCI bus is used on

non-POSIX software platforms, such as Windows and Mac-OS.

e Integrate into a middle-ware platform. For instance, appropriate hooks are
available in CORBA! to facilitate interception and encryption/decryption
operations. The solution presented here, which uses a standard Unix
device driver, would make integration relatively straightforward.

Many of these projects would be substantial design efforts in their own right.
This thesis lays a solid foundation, demonstrates that this is a valid approach

to take, and points the way for future enhancements.

1Common Object Request Broker Architecture - http://www.omg.org
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3way Reference Code

This code is taken from [DGV94a] and is the reference for all my work. It is
included here for completeness.

#define STRT_E 0xObOb /* round constant of first encryption round */
#define STRT_D Oxblbl /* round constant of first decryption round */
#define NMBR 11 /* number of rounds is 11 */

typedef unsigned long int word32 ;
/* the program only works correctly if long = 32bits */

void mu(word32 *a) /* inverts the order of the bits of a */
{

int i ;

word32 b[3] ;

b[0] = b[1] = b[2] =0 ;
for( i=0 ; i<32 ; i++ ){
bL0] <<= 1 ; b[1] <<= 1 ; b[2] <<= 1 ;
if(a[01&1) b[2] I=1 ;
if(a[11&1) b[1] I=1 ;
if(a[21%1) b[0] I=1 ;
al0] >>=1 ; a[1] >>=1 ; a[2] >>=1 ;

al[0] = b[0] ; a[1] = b[1] ; al[2] = b[2] ;

void gamma(word32 *a) /* the nonlinear step */
{
word32 b[3] ;

b[0]
b[1]

af0] ~ (a[11l("a[2])) ;
al1] =~ (a[2]11(7a[01)) ;
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b[2] = a[2] = (a[0ll("al1])) ;

al[0] = b[0] ; a[1] = b[1] ; a[2] = b[2] ;

void theta(word32 *a) /* the linear step */
{
word32 b[3];

b[0]

al0] ~ (al01>>16) ~ (a[11<<16) ~ (a[11>>16) ~ (a[2]1<<16) ~
(a[11>>24) =~ (a[2]1<<8) ~ (a[2]1>>8) ~ (a[0]<<24) ~
(a[2]1>>16) ~ (a[0]1<<16) ~ (a[2]1>>24) ~ (a[0]<<8) ;

b[1] = a[1] ~ (al11>>16) ~ (al[2]1<<16) ~ (al[2]1>>16) ~ (al[0]1<<16) ~
(a[21>>24) ~ (a[01<<8) ~ (a[01>>8) - (a[11<<24) ~
(a[01>>16) ~ (a[11<<16) ~ (a[0]1>>24) ~ (a[1]1<<8) ;

a[2] ~ (a[21>>16) ~ (a[0]<<16) ~ (a[01>>16) ~ (a[11<<16) ~
(a[01>>24) ~ (a[1]1<<8) ~ (a[1]>>8) ~ (a[2]<<24) ~
(al11>>16) ~ (a[21<<16) ~ (a[11>>24) ~ (al[21<<8) ;

b[2]

al0] = b[0] ; al1] = b[1] ; a[2] = b[2] ;

void pi_1(word32 *a)
{
al[0]
a[2]
}

(a[0]1>>10) ~ (a[0]1<<22);
(a[2]<<1) ~ (a[2]>>31);

void pi_2(word32 *a)
{
a[o0]
a[2]
}

(a[01<<1) =~ (al[01>>31);
(a[2]1>>10) =~ (a[2]1<<22);

void rho(word32 *a) /* the round function %/
{

theta(a) ;

pi_i(a) ;

gamma(a) ;

pi_2(a) ;

void rndcon_gen(word32 strt,word32 *rtab)
{ /* generates the round constants */

int i ;

for(i=0 ; i<=NMBR ; i++ )
1{
rtab[i] = strt ;
strt <<=1 ;
if( strt&0x10000 ) strt ~= 0x11011 ;
}
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void encrypt(word32 *a, word32 *k)
{

int i ;

word32 rcon[NMBR+1] ;

rndcon_gen(STRT_E,rcon) ;
for( i=0 ; i<NMBR ; i++ )
{
a[0] ~= k[0] ~ (rcon[il<<16) ;
a1l ~= k[1] ;
a[2] ~= k[2] = rconlil ;
rho(a) ;
}
a[0] ~= k[0] ~ (rcon[NMBR]<<16) ;
af1] ~= k[1] ;
a[2] ~= k[2] =~ rcon[NMBR] ;
theta(a) ;

void decrypt(word32 *a, word32 *k)
{
int i ;
word32 kil[3] ; /* the ‘inverse’ key */
word32 rcon[NMBR+1] ; /% the ‘inverse’ round constants */

ki[0]

k[0] ;
ki[1] = k[1] ;
ki[2] = k[2] ;
theta(ki) ;

mu(ki) ;

rndcon_gen(STRT_D,rcon) ;
mu(a) ;
for( i=0 ; i<NMBR ; i++ )
{
a[0] ~= ki[0] ~ (rcon[i]<<16) ;
a[1] ~= ki[1] ;
a[2] ~= ki[2] ~ rcomn[i] ;
rho(a) ;
}
a[0] ~= ki[0] =~ (rcon[NMBRI<<16) ;
al1] ~= kil1] ;
a[2] ~= ki[2] ~ rcon[NMBR] ;
theta(a) ;

mu(a) ;

//Testprogram
#include !stdio.h? #include !stdlib.h? #include "threewayref.c"

void printvec(word32 *a)

{

printf ("%08x %08x %08x\n",al[2],al1],a[0]) ;
}
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main()

{
word32 al[3], k[3];

scanf ("%x %x %x %x %x %x",a+2,a+l,a,k+2,k+1,k) ;
printf("key : ") ; printvec(k) ;
printf("plaintext : "); printvec(a) ; encrypt(a,k) ;
printf ("ciphertext : "); printvec(a) ; decrypt(a,k) ;
/*printf(“checking : ") ; printvec(a) ; */

}

/*

Testvalues key : 00000000 00000000 00000000

plaintext : 00000001 00000001 00000001

ciphertext : ad2lecf7 83ae9dc4 4059c76e

key : 00000004 00000005 00000006
plaintext : 00000001 00000002 00000003
ciphertext : cab920cd d6144138 d2f05bbe

key : bcdef(012 456789ab def01234
plaintext : 01234567 9abcdefQ 23456789
ciphertext : 7cdb76b2 9cdddb6d Oaabb5dbb

key : cab920cd d6144138 d2f05bbe
plaintext : ad2lecf7 83ae9dc4 4059c76e
ciphertext : 15b155ed 6b13f17c 478ea871
*/
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Altera Text Design Files

B.1 Cipher

-- cipher.tdf

-- This function encapsulates the encrypt/decrypt functions and selects between them.
-- It also takes the encryption key and feeds it to both the encrypt and decrypt

-- functions in the correct format

-- John Ronan, 20000707

INCLUDE "1pm_dff.inc";
INCLUDE "1pm_counter.inc";
INCLUDE "1pm_ff.inc";
INCLUDE "encipher.inc";
INCLUDE "decipher.inc";
INCLUDE "lpm_mux.inc";
INCLUDE "theta.inc";
INCLUDE "mu.inc";

CONSTANT REG_LENGTH = H"20"; -- 32bit Registers
CONSTANT COUNT_LENGTH = H"4"; -- number of bits required to count to 11
CONSTANT COUNTER_TERMINATE = H"C"; -- counter needs a terminal value for test, gets

-- reset at 11 anyway.

SUBDESIGN cipher

(
DataINO[REG_LENGTH - 1..0] : INPUT;
DataIN1[REG_LENGTH - 1..0] : INPUT;
DataIN2[REG_LENGTH - 1..0] : INPUT;
CLOCK : INPUT;
ED : INPUT; -- Encrypt = 0, Decrypt = 1
SSET : INPUT; -- Reset (Synchronous SET) line
LOAD : INPUT;
COUNTER_EN : INPUT; -- Enable the counter to count

-- ciphering operation to take place

CIPHERKEYO[REG_LENGTH - 1..0] : INPUT;
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VARIABLE

BEGIN

B. ALTERA TEXT DESIGN FILES 97
CIPHERKEY1[REG_LENGTH - 1..0] : INPUT; -- Encryption Key inputs
CIPHERKEY2[REG_LENGTH - 1..0] : INPUT;

TERM : OUTPUT; -- Test Point, Terminate Count
DataQUTO[REG_LENGTH - 1..0] : OUTPUT;

DataQUT1[REG_LENGTH - 1..0] : OUTPUT;

DataQUT2[REG_LENGTH - 1..0] : OUTPUT;

COUNTQUT [COUNT_LENGTH -1..0] : OUTPUT; -- Test Point, Value of Counter
enc :encipher;

dec :decipher;

t :theta;

m imu;

count :1pm_counter WITH(LPM_WIDTH=COUNT_LENGTH,

LPM_MODULUS=COUNTER_TERMINATE,
LPM_SVALUE=H"000000") ;
out_mux0 :lpm_mux WITH(LPM_WIDTH=REG_LENGTH, LPM_WIDTHS=H"1", LPM_SIZE=H"2");
out_mux1 :lpm_mux WITH(LPM_WIDTH=REG_LENGTH, LPM_WIDTHS=H"1", LPM_SIZE=H"2");
out_mux2 :lpm_mux WITH(LPM_WIDTH=REG_LENGTH, LPM_WIDTHS=H"1", LPM_SIZE=H"2");

out_mux0.sel[0] = E_D;
out_muxi.sel[0] E_D;
out_mux2.sel[0] = E_D;

count.clock = clock;
count.cnt_en = COUNTER_EN;
count.sset = SSET;

enc.clock = CLOCK;
dec.clock = CLOCK;

enc.load = LOAD;
dec.load = LOAD;

enc.a0[] = DataINO[];
dec.a0[] = DataINO[];
enc.al[] = DataIN1i[];
dec.al[] = DataINi[];
enc.a2[] = DataIN2[];
dec.a2[] = DataIN2[];

-- Read in the encryption key from outside
enc.cipherkeyO[] = CIPHERKEYO[];
enc.cipherkeyl[] = CIPHERKEY1[];
enc.cipherkey2[] = CIPHERKEY2[];

-- put it through theta and mu to get the decryption key
t.a0[] = CIPHERKEYO[];
t.al[]l = CIPHERKEY1[];
t.a2[] = CIPHERKEY2[];

m.a0[] = t.qO0[1;
m.al[] = t.ql[];
m.a2[] = t.q2[];
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-- feed the decryption key into the decryption circuit
dec.cipherkeyO[] = m.q0[];
dec.cipherkeyl[] = m.q1[];
dec.cipherkey2[] = m.q2[];

enc.sel0 = count.q[0];
dec.sel0 = count.q[0];
enc.sell = count.q[1];
dec.sell = count.ql1];
enc.sel2 = count.q[2];
dec.sel2 = count.q[2];
enc.sel3 = count.ql[3];

dec.sel3 = count.q[3];

% OUTPUT ¥

out_mux0.data[0][] = enc.q0[];
out_mux0.data[1][] = dec.q0[];
out_mux1l.data[0][] = enc.ql[];
out_mux1l.data[1][] = dec.qll];
out_mux2.data[0]1[] = enc.q2[];
out_mux2.datal[1][] = dec.q2[];
DataQUTO[] = out_mux0.result[];
DataOUT1[] = out_muxl.result[];
DataOUT2[] = out_mux2.result[];

COUNTQUT[] = count.q[];
TERM = count.eq[11];
END;

B.1.1 Timing Diagrams, Cipher

B.2 encipher

-- encipher.tdf

-- Takes the key and, with the correct input of control signals, performs the
-- encryption of a block of data. mlatch is used to implement the for loop in
-- the code, note the roundconstants are hard coded as input to the multiplexer
-- which feeds them out based on the select input signals.

-- John Ronan, 2000708

INCLUDE "rho.inc";

INCLUDE "theta.inc";
INCLUDE "round.inc";
INCLUDE "lpm_xor.inc";
INCLUDE "mlatch.inc";
INCLUDE "lpm_constant.inc";
INCLUDE "lpm_mux.inc";

CONSTANT REG_LENGTH = H"20"; -- 32bit Registers
CONSTANT A1_XOR_SIZE = H"2"; -- compare two inputs
CONSTANT AO_XOR_SIZE = H"3"; -- 3 INPUTS

CONSTANT RC_WIDTH = H"10";
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Figure B.1: Cipher, full test timing diagram.
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% Test values generated from the Reference code

INPUTS AO=cfbd782f
A1=31761927
A2=234809bf

OUTPUTS Q0=324a8748
Q1=023c96d8
Q2=ecf5f740%

SUBDESIGN encipher
(

AO[REG_LENGTH - 1..0] : INPUT;
A1[REG_LENGTH - 1..0] : INPUT;
A2[REG_LENGTH - 1..0] : INPUT;
CIPHERKEYO[REG_LENGTH -1..0] : INPUT; -- encryption key input
CIPHERKEY1[REG_LENGTH -1..0] : INPUT;
CIPHERKEY2[REG_LENGTH -1..0] : INPUT;
LOAD : INPUT; -- control signal to latchs
CLOCK : INPUT;
SELO : INPUT; -- control inputs
SEL1 : INPUT;
SEL2 : INPUT;
SEL3 : INPUT;
QO[REG_LENGTH - 1..0] : OUTPUT;
Q1 [REG_LENGTH - 1..0] : OUTPUT;
Q2[REG_LENGTH - 1..0] : OUTPUT;
)
VARIABLE
r : round;
40_00 : 1pm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE = AO_XOR_SIZE);
A0_01 : lpm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE = A1_XOR_SIZE);
40_02 : 1pm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE = AO_XOR_SIZE);
T : theta;
10 : mlatch WITH(REG_LENGTH = REG_LENGTH) ;
11 : mlatch WITH(REG_LENGTH = REG_LENGTH);
12 : mlatch WITH(REG_LENGTH = REG_LENGTH);
m : 1pm_mux WITH(LPM_WIDTH=RC_WIDTH,LPM_SIZE=H"10",
LPM_WIDTHS=H"4") ;
BEGIN
m.sel[0] = SELO;
m.sel[1] = SEL1;

m.sel[2] = SEL2;
m.sel[3] = SEL3;

-- Precalculated Round Constants

m.data[0] [] H"ObOb" ;
m.data[1][] = H"1616";
m.data[2][1 = H"2c2c";
m.data[3][] = H"5858";
m.data[4][] = H"bObO";
m.data[5][1 = H"7171";
m.data[6][] = H"e2e2";
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.data[7][] = H"db5d5";

.data[8][] = H"bbbb";

.data[9][] H"6767";

.data[10][] = H"cece";

.data[11][] = H"8d8d"; -- last round constant
.data[12][] = H"0000";

.data[13]1[1 = H"0000";

.data[141[1 = H"0000";

.data[15][]1 = H"0000";

8 8B B8 8 8 8 8 8 8

-- feedback of round data (for loop)
10.clock = CLOCK;

11.clock = CLOCK;

12.clock = CLOCK;

10.enable = VCC;

11.enable = VCC;

12.enable = VCC;

10.1oad = LOAD;

11.load = LOAD;

12.1o0ad = LOAD;

-- inputs to the latch... data in and feedback.
10.20[1 = AO[1;

10.r0[] = r.qO0[];

11.a0[] = A1[];

11.r0[] = r.q1[];

12.a0[] = A2[];

12.r0[] = r.q2[1;

-- encryption key fed into the round function
r.cipherkeyO[] = CIPHERKEYO[];
r.cipherkeyl[] = CIPHERKEY1[];
r.cipherkey2[] = CIPHERKEY2[];

-- round constant selected based on input to multiplexer

r.roundconstant[] = m.result[];

-- data from latch to round function
r.a0[] = 10.qout[];
r.ail[] = 11.qout[];
r.a2[] = 12.qout[];

-- round completed

-- data into exclusive or
A0_00.DATA[0][] = CIPHERKEYO[];
A0_00.DATA[1][] = 10.qout[];

-- take in the round constant
FOR i IN O TO 15 GENERATE
A0_00.DATA[2]1[I] = GND;
END GENERATE;
FOR i IN O TO 15 GENERATE
AO_00.DATA[2][I+16] = m.result[i];
END GENERATE;
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-- al

A0_01.DATA[O][] = CIPHERKEY1[];
A0_01.DATA[1]1[] = 11.qout[];

-- a2

A0_02.DATA[0][1 = CIPHERKEY2[];
A0_02.DATA[11[]1 = 12.qout[];

FOR i IN O TO 15 GENERATE

A0_02.DATA[2] [I+16] = GND;

END GENERATE;

FOR i IN O TO 15 GENERATE
A0_02.DATA[2] [1]
A0_02.DATA[2] [1]

END GENERATE;

m.result[i];
GND;

-- last operation is theta.

T.AO[] = A0_00.RESULTII;
T.A1[]1 = A0_O1.RESULTII;
T.A2[]1 = A0_02.RESULT[];

-- data is now encrypted.

Qo[l = T.QO[I;
Qi[]l = T.Q1[];
Q2[1 = T.Q2[1;

END;

B.2.1 Timing diagrams, encipher

B.3 mlatch

-- mlatch.tdf

-- Takes two inputs one is data the other is feedback data and selects from one

-- or the other based on the load inputline.

-- John Roman, 20000708

INCLUDE "dffe.inc";

-- Default value, gets overwritten by outside parameters

PARAMETERS
(

REG_LENGTH = 4
);

SUBDESIGN mlatch

(
clock
a0[REG_LENGTH - 1..0]
rO[REG_LENGTH - 1..0]
load

enable

: INPUT;

: INPUT; -- input data

: INPUT; -- feedback input data

: INPUT; -- load the latch (used to take in input data)

: INPUT;
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Figure B.4: Encipher, full test timing diagram.
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B.4

qout [REG_LENGTH - 1..0] : OUTPUT; -- output data
)
VARIABLE
DT[REG_LENGTH - 1..0] : dffe;
BEGIN
-- generates the logic for us, no need to type it all in.
FOR i IN 1 TO REG_LENGTH GENERATE
DT[i - 1].clk = CLOCK;
DT[i - 1].ena = ENABLE;
-- feedback data
DT[i - 1].d = RO[i - 11;
-- input data
DT[i - 1].clrn = aO[i - 1] or load;
DT[i - 1].prn = 'a0[i - 1] or load;
-- output
QOUT[i - 11 = DT[i - 1].q;
END GENERATE;
END;

round

-- round.tdf

-- Implements one round of the 3 way algorithm in the for loop, includes the
-- rho() operation. This is identical to the code in the round function, just

-- packaged here as it includes rho.
-- John Ronan, 20000708

INCLUDE "lpm_xor.inc";
INCLUDE "rho.inc";

CONSTANT REG_LENGTH = H"20"; -- 32bit Registers
CONSTANT A1_XOR_SIZE = H"2"; -- compare two inputs
CONSTANT AO_XOR_SIZE = H"3"; -- 3 INPUTS

CONSTANT RC_WIDTH = H"10";

SUBDESIGN round
(

AO[REG_LENGTH - 1..0] : INPUT;
A1[REG_LENGTH - 1..0] : INPUT;
A2[REG_LENGTH - 1..0] : INPUT;

CIPHERKEYO[REG_LENGTH -1..0] : INPUT;
CIPHERKEY1[REG_LENGTH -1..0] : INPUT;
CIPHERKEY2[REG_LENGTH -1..0] : INPUT;
ROUNDCONSTANT[RC_WIDTH -1..0] : INPUT;
QO[REG_LENGTH - 1..0] : OUTPUT;
Q1[REG_LENGTH - 1..0] : OUTPUT;
Q2[REG_LENGTH - 1..0] : OUTPUT;
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B.5

VARIABLE
A0_00 : lpm_xor WITH(LPM_WIDTH
A1_00 : lpm_xor WITH(LPM_WIDTH
A2_00 : lpm_xor WITH(LPM_WIDTH

REG_LENGTH, LPM_SIZE
REG_LENGTH, LPM_SIZE
REG_LENGTH, LPM_SIZE

A0_00.DATA[2] [I+16] = ROUNDCONSTANT[I];

RO : rho;
BEGIN
-- a0
A0_00.DATA[0][] = CIPHERKEYO[];
A0_00.DATA[11[] = AO[];
FOR i IN O TO 15 GENERATE
A0_00.DATA[2][I] = GND;
END GENERATE;
FOR i IN O TO 15 GENERATE
END GENERATE;
-- al
A1_00.DATA[O][] = CIPHERKEY1[];
A1_00.DATA[1I[] = A1[];
-- a2
A2_00.DATA[0][] = CIPHERKEY2[];
A2_00.DATA[11[]1 = A2[];
FOR i IN O TO 15 GENERATE
A2_00.DATA[2] [I+16] = GND;
END GENERATE;
FOR i IN O TO 15 GENERATE
A2_00.DATA[2]1[I] = ROUNDCONSTANT[I];
END GENERATE;
-- call to rho
RO.AO[] = AO_00.RESULT[];
RO.A1[] = A1_00.RESULT[];
RO.A2[] = A2_00.RESULT[];
-- OUTPUT
QO[] = RO.QO[];
Qi[] = RO.Q1[];
Q2[1 = R0.Q2[];
END;
rho
-- rho.tdf

AO_XOR_SIZE);
A1_XOR_SIZE);
AO_XOR_SIZE);
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-- This is just a wrapper for theta and pi_gammma_pi to maintain the same structure

-- as the software version. It also makes each component easier to test.

-- John Roman, 20000708
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INCLUDE "lpm_xor.inc";
INCLUDE "theta.inc";
INCLUDE "pi_gamma_pi.inc";

CONSTANT REG_LENGTH = H"20"; -- 32bit Registers
CONSTANT _XOR_SIZE = H"2"; -- compare two inputs

% Test values generated from the Reference code
INPUTS A0=00000001

41=00000001

A2=00000001
OUTPUTS QO=£fb7b7£7b

Qi=febebfbe

Q2=f£3£3£3f}

SUBDESIGN rho
(

AO[REG_LENGTH - 1..0] : INPUT;
A1[REG_LENGTH - 1..0] : INPUT;
A2[REG_LENGTH - 1..0] : INPUT;
QO[REG_LENGTH - 1..0] : OUTPUT;
Q1[REG_LENGTH - 1..0] : OUTPUT;
Q2[REG_LENGTH - 1..0] : OUTPUT;

VARIABLE

T : theta;

P : pi_gamma_pi;
BEGIN

-- THETA

T.a0[] = a0[];
T.alll = alll;
T.a2[] = a2[];

-- PI_GAMMA_PI

P.a0[] T.q0[];
p-alll = T.Q1[1;
P.A2[1 = T.Q2[1;

-- output

Qo[1 = P.QO[1;
Q11 = P.Q1[1;
Q2[1 = P.Q2[1;
END;

B.5.1 Timing diagram, rho

B.6 pi_ gamma pi

-- pi_gamma_pi.tdf

-- This is the concatenation of pi_1 , gamma and pi_2 into the one function as
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44444444 JEJEdESS 07 1ElzD @@=
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00000000 i 10000000 -1 loiElor sam
o supoolL H anes, Y

Figure B.5: Rho, full test timing diagram.



-- they are never used seperately it makes sense to put them together

-- John Ronan, 20000708

INCLUDE "lpm_xor.inc";

CONSTANT REG_LENGTH = H"20"; -- 32bit Registers

CONSTANT _XOR_SIZE = H"2

% Test values generated from the Reference code

INPUTS A0=677b6449
A1=586c045e
A2=1853287f

OUTPUTS (Q0=92a48e30d
Q1l=abca75a0
Q2=cle1df6b%

SUBDESIGN pi_gamma_pi

(
AQ[REG_LENGTH
A1[REG_LENGTH -
A2[REG_LENGTH -
QO [REG_LENGTH
Q1 [REG_LENGTH
Q2[REG_LENGTH

e

)
VARIABLE

"n.
H

..0]
..0]
..0]
..0]
..0]
..0]

: INPUT;
: INPUT;
: INPUT;
: OUTPUT;
: OUTPUT;
: OUTPUT;

AOTMP : lpm_xor WITH(LPM_WIDTH = REG_LENGTH,
A2TMP : lpm_xor WITH(LPM_WIDTH = REG_LENGTH,
AOTMP1 : lpm_xor WITH(LPM_WIDTH = REG_LENGTH,
A2TMP1 : lpm_xor WITH(LPM_WIDTH = REG_LENGTH,
Q1EXOR : lpm_xor WITH(LPM_WIDTH = REG_LENGTH,
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;

A2LSO1[REG_LENGTH - 1..0
A2RS31[REG_LENGTH - 1..0
AOLS22[REG_LENGTH - 1..0
AORS10[REG_LENGTH - 1..0
AOALSO1[REG_LENGTH - 1..
AOARS31[REG_LENGTH - 1..
A2ALS22[REG_LENGTH - 1..
A2ARS10[REG_LENGTH - 1..
BEGIN
--pi_1
-- left shift by
A2LS01[0] = GND;

1
1
1
1
0]
0]
0]
0]

1

FOR i IN O TO 30 GENERATE
A2LSO01[I+1] = A2[I];

END GENERATE;

-- right shift 31
A2RS31[0] = A2[31

13

FOR I IN 1 TO 31 GENERATE
A2RS31[I] = GND;

END GENERATE;

-- left shift 22

APPENDIX B. ALTERA TEXT DESIGN FILES

-- compare two inputs

LPM_SIZE
LPM_SIZE
LPM_SIZE
LPM_SIZE
LPM_SIZE

_XOR_SIZE);
_XOR_SIZE);
_XOR_SIZE);
_XOR_SIZE);
_XOR_SIZE);
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AOLS22[21..0] = GND;

FOR i IN O TO 9 GENERATE
AOLS22[1+22] = AO[I];

END GENERATE;

-- right shift 10

AORS10[31..22] = GND;

FOR I IN O TO 21 GENERATE
AORS10[I] = AQ[I+10];

END GENERATE;

-- gamma, the non-linear step and feed into input for pi_2
-- a0, left side of xor
AOTMP.DATA[0][] = (AOLS22[] OR AORS10[1);
AQTMP.DATA[11[]1 = (A1[] OR (NOT (A2LSO1[] OR A2RS31[1)));

AOALS01[0] = GND;
FOR I IN O TO 30 GENERATE
AOALSO1[I+1] = AOTMP.RESULT[I];
END GENERATE;

-- a0, right side of xor
AOTMP1.DATA[O] [1 = AOLS22[] OR AORS10[];
AQTMP1.DATA[1]1[] = A1[] OR (NOT (A2LSO1[] OR A2RS31[1)) ;

AOARS31[0] = AOTMP1.RESULT[31];
FOR I IN 1 TO 31 GENERATE
AOARS31[I] = GND;

END GENERATE;

-- a2, left side of xor
A2TMP.DATA[0][]1 = A2LSO1[]1 OR A2RS31[];
A2TMP.DATA[11[] = (AOLS22[] OR AORS10[1) OR (NOT A1[1);

A2ALS22[21..0] = GND;

FOR i IN O TO 9 GENERATE
A2ALS22[I+22] = A2TMP.RESULT[I];
END GENERATE;

-- a2, right side of xor
A2TMP1.DATA[O0][]1 = (A2LSO1[] OR A2RS31[]1);
A2TMP1.DATA[11[]1 = (AOLS22[]1 OR AORS10[1) OR (NOT A1[1);
A2ARS10[31..22] = GND;

FOR I IN O TO 21 GENERATE

A2ARS10[I] = A2TMP1.RESULT[I+10];
END GENERATE;

-- feed output of middle 32 bits directly to output as they’re not affected by pi_2
Q1EXOR.DATA[OI[1 = A1[];

Q1EXOR.DATA[1][1 = ((A2LSO1[] OR A2RS31[]) OR (NOT (AOLS22[] OR AORS10[1)));

Q1[1 = Q1EXOR.RESULT[];

-- pi_2, and feed to output
QO[] = AOALSO1[] OR AOARS31[];
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Q2[1 = A2ALS22[] OR A2ARS10[];

END;

B.6.1

B.7 theta

-- theta.tdf

-- optimised theta, reduces the number of xor operations required and thus saves

-- space on silicon

-- John Ronan, 20000708

INCLUDE "lpm_xor.inc";

CONSTANT REG_LENGTH

CONSTANT TEMP_XOR_SIZE
CONSTANT TEMP2_XOR_SIZE

CONSTANT OUT_XOR_SIZE

% Test values generated

INPUTS AO=d2f05bbe
A1=d6144138
A2=cab920cd

OUTPUTS QO=ffeabf3f

Q1=30771926

Q2=90a50£d5 ¥

SUBDESIGN theta
(

A0 [REG_LENGTH
A1[REG_LENGTH -
A2[REG_LENGTH -
QO [REG_LENGTH -
Q1 [REG_LENGTH
Q2[REG_LENGTH

1 1
L e e O

VARIABLE

TEMPLS16 [REG_LENGTH - 1..0]
TEMPRS16 [REG_LENGTH - 1..0]

..0]1
..0]1
..0]1
..0]
..0]
..0]

TEMP3LS08 [REG_LENGTH
TEMP3RS08 [REG_LENGTH
TEMP4LS08 [REG_LENGTH
TEMP4RS08 [REG_LENGTH
TEMP5LS08 [REG_LENGTH
TEMP5RS08 [REG_LENGTH

AOLSO8[REG_LENGTH
AOLS24 [REG_LENGTH
AORS24 [REG_LENGTH
A1LSO8[REG_LENGTH
A1LS24 [REG_LENGTH
A1RS24 [REG_LENGTH
A2LSO08[REG_LENGTH

e e

from the

..0]
..0]
..0]
..0]
..0]
..0]

H"20";
H"3";
H"2";
H"7";

: INPUT;
: INPUT;
: INPUT;
: QUTPUT;
: OUTPUT;
: QUTPUT;

Timing diagram, pi gamma pi

-- 32bit Registers
-- 3 inputs
-- 2 inputs

-- 7 inputs

Reference code

: NODE;
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;

: NODE;
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;
: NODE;

112
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44444444 1§ 89401310 ) 44444444 (0715l @@=
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ENERG
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Figure B.6: Pi gamma pi, full test timing diagram.



A2LS24[REG_LENGTH - 1..0]
A2RS24 [REG_LENGTH - 1..0]

-- 3 input exclusive or
TEMP :

-- 2 input exclusive or

1pm_xor WITH(LPM_

: NODE;
: NODE;

APPENDIX B. ALTERA TEXT DESIGN FILES

WIDTH = REG_LENGTH, LPM_SIZE = TEMP_XOR_SIZE);

TEMP2

: lpm_xor WITH(LPM_WIDTH
TEMP3 :
TEMP4 :
TEMP5 :

1pm_xor WITH(LPM_WIDTH
1pm_xor WITH(LPM_WIDTH
1pm_xor WITH(LPM_WIDTH

-- 7 input exclusive or
BO : lpm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE =
Bl : lpm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE =
B2 : lpm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE =

BEGIN

-- no shift

-- left

-- left

TEMP.data[0] []
TEMP.data[1] []
TEMP.data[2] []

Ao[];
A1[];
A2[1;

and right shift 16
TEMPLS16[15..0] = GND;

REG_LENGTH,
REG_LENGTH,
REG_LENGTH,
REG_LENGTH,

TEMPRS16 [REG_LENGTH - 1.. 16] = GND;

FOR i IN O TO 15 GENERATE
TEMPLS16[i+16] = TEMP.result[i];
TEMPRS16[i] = TEMP.result[i+16];

END GENERATE;

LPM_SIZE
LPM_SIZE
LPM_SIZE
LPM_SIZE

= TEMP2_XOR_SIZE);
= TEMP2_XOR_SIZE) ;
= TEMP2_XOR_SIZE);
TEMP2_XO0R_SIZE);

OUT_XOR_SIZE);
OUT_XOR_SIZE);
OUT_XOR_SIZE) ;

-- store the results of the above in temporary space
TEMP2.data[0] [1 = TEMPLS16[];
TEMP2.data[1][]1 = TEMPRS16[];

and right shift 8
AOLS08[7..0] = GND;
A1LS08([7..0] = GND;
A2L.S08([7..0] = GND;
TEMP3LS08([7..0] = GND;

TEMP3RSO8 [REG_LENGTH - 1..24] = GND;

TEMP4LS08([7..0] = GND;

TEMP4RS08 [REG_LENGTH - 1..24] = GND;

TEMP5LS08([7..0] = GND;

TEMP5RS08 [REG_LENGTH - 1..24] = GND;

FOR i in O to 23 GENERATE
AOLSO08[i+8] = AO[il;
A1LSO08[i+8] = A1[il;
A2LS08[i+8] = A2[il;
TEMP3LS08[i+8] = AO[il;
TEMP3RS08[i] = AO[i+8];
TEMP4LS08[i+8] = A1[il;
TEMP4RS08[i] = A1[i+8];
TEMP5LS08[i+8] = A2[i];
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-- left

TEMP5RS08[i] = A2[i+8];

END GENERATE;

-- store

TEMP3.data[0] [] = TEMP3LS08[];
TEMP3.data[1][] = TEMP3RS08[];
TEMP4.datal[0][] = TEMP4LS08[];
TEMP4.datal[11[] = TEMP4RS08[];
TEMP5.datal[0][] = TEMP5LSO08[];
TEMP5.datal[11[] = TEMP5RS08[];

and right shift 24
AOLS24[23..0] = GND;
AORS24 [REG_LENGTH - 1..8]
A11.524[23..0] = GND;
A1RS24[REG_LENGTH - 1..8]
A21.524[23..0] = GND;
A2RS24 [REG_LENGTH - 1..8]

FOR i IN O TO 7 GENERATE

GND;

GND;

GND;

END GENERATE;

-- feed into three 7
BO.datal0][]
BO.datal1][]
BO.datal2][]
BO.datal3]1[]
BO.datal4]1[]
BO.data[5][]
BO.data[6][]

Bi.datal[0][]
Bl.data[1][]
Bl.datal[2][]
Bil.data[3]1[]
Bl.datal[4]1[]
Bl.datal[5][]
Bl.datal[6][]

B2.datal[0][]
B2.datal[1][]
B2.data[2][]
B2.datal[3][]
B2.datal[4]1[]
B2.data[5][1
B2.datal6]1[]

-- output

AQLS24[i+24] = AQ[il;
AORS24[i] = AO[i+241;
A1LS24[i+24] = A1[il;
A1RS24[i] = A1[i+24];
A21.524[i+24] = A2[il;
A2RS24[i] = A2[i+24];

input xors.

= A0[];

= TEMP2.result[];
= TEMP5.result[];
= A1RS24[];

= AOLS24[];

= A2RS24[];

= AOLSO8[];

= A1[];

= TEMP2.result[];
= TEMP3.result[];
= A2RS24[];

= A1LS24[];

= AORS24[];

= A1LS08[];

= A2[1;

= TEMP2.result[];
= TEMP4.result[];
= AORS24[];

= A2LS24[];

= A1RS24[];

= A2LS08[];

QO[] = BO.result[];
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Q1[] = Bil.result[];
Q2[] = B2.result[];
END;

B.7.1 Timing diagram, theta

B.8 decipher

-- encipher.tdf

-- Takes the key, and with the correct input of control signals, performs the

-- encryption of a block of data. mlatch is used to implement the for loop similiar
-- to the software version, note the roundconstants are, similiar to the encrypt

-- module, hard coded as inputs to the a multiplexer, but in this case they are a
-- different set of constants.

-- John Roman, 20000708

INCLUDE "rho.inc";

INCLUDE "theta.inc";
INCLUDE "mu.inc";

INCLUDE "round.inc";
INCLUDE "lpm_xor.inc";
INCLUDE "mlatch.inc";
INCLUDE "lpm_constant.inc";
INCLUDE "lpm_mux.inc";

CONSTANT REG_LENGTH = H"20"; -- 32bit Registers
CONSTANT A1_XOR_SIZE = H"2"; -- compare two inputs
CONSTANT AO_XOR_SIZE = H"3"; -- 3 INPUTS

CONSTANT RC_WIDTH = H"10";

% Test values generated from the Reference code
INPUTS AO=cfbd782f

A1=31761927

A2=234809bf
OUTPUTS Q0=00000001

Q1=00000001

Q2=00000001 7%

SUBDESIGN decipher
(

AQ[REG_LENGTH - 1..0] : INPUT; -- intput data
A1[REG_LENGTH - 1..0] : INPUT;

A2[REG_LENGTH - 1..0] : INPUT;
CIPHERKEYO[REG_LENGTH -1..0] : INPUT; -- decryption key

CIPHERKEY1[REG_LENGTH -1..0] : INPUT;
CIPHERKEY2[REG_LENGTH -1..0] : INPUT;

LOAD : INPUT; -- latch control

CLOCK : INPUT;

SELO : INPUT; -- multliplexer control
SEL1 : INPUT;

SEL2 : INPUT;

SEL3 : INPUT;

Qout [REG_LENGTH - 1..0] : OUTPUT; -- Diagnostic output
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00000000 'l 50403706 f 00000000 (0”1l @@=
0000000 b 1 57612008 b 1 00000000 [0 1Elin =
00000000 il Jedav3d 4 00000000 [0 1EloD @@=
00000000 ¥ QomEavD Y 00000000 [071ley =
00000000 Y EELPPLE] ¥ 0000000 [0715] 1 =
00000000 I 35E50470 I 00000000 (0715w =
e U000z sug 0o} BLE

Figure B.7: Theta, full test timing diagram.
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Rout [RC_WIDTH - 1..0] : OUTPUT; -- Diagnostic output
QO[REG_LENGTH - 1..0] : OUTPUT; -- output data
Q1[REG_LENGTH - 1..0] : OUTPUT;
Q2[REG_LENGTH - 1..0] : OUTPUT;

)

VARIABLE
r : round;
A0_00 : lpm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE = AO_XOR_SIZE);
A0_01 : 1pm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE = A1_XOR_SIZE);
A0_02 : 1pm_xor WITH(LPM_WIDTH = REG_LENGTH, LPM_SIZE = AO_XOR_SIZE);
TO : theta;
MUO : mu;
MUL :omu;
10 : mlatch WITH(REG_LENGTH = REG_LENGTH);
11 : mlatch WITH(REG_LENGTH = REG_LENGTH);
12 : mlatch WITH(REG_LENGTH = REG_LENGTH);
m : lpm_mux WITH(LPM_WIDTH=RC_WIDTH, LPM_SIZE=H"10", LPM_WIDTHS=H"4");

BEGIN

m.sel[0] = SELO;
m.sel[1] = SEL1;
m.sel[2] = SEL2;
m.sel[3] = SEL3;

-- precalculated round constants

m.data[0] []
m.data[1] []
m.data[2] []
m.data[3][]
m.data[4][]
m.data[5][]
m.data[6] []
m.datal[7][]
m.data[8] []
m.data[9] []
m.data[10][]
m.data[11] []
m.data[12] []
m.data[13]1[]
m.data[14][]
m.data[15][]

H"bibl";
H"7373";
H"e6e6";
H"dddd";
H"abab";
H"4747";
H"8e8e";
H"0d0d" ;
H"lala";
H"3434";
H"6868";

H"d0d0"; -- last round constant

H"0000";
H"0000";
H"0000";
H"0000";

-- mu, bit reversal function
MUO.AO[] = AO[];

MUO.A1[]
MUO. A2[]

A1[];
A2[];

-- until we meet mu again, this is all the same as the encryption function

-- feedback of round data (for loop)
10.clock = CLOCK;
11.clock = CLOCK;
12.clock = CLOCK;
10.enable = VCC;
11.enable = VCC;
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12.enable = VCC;
10.1oad = LOAD;
11.load = LOAD;
12.1o0ad = LOAD;

-- inputs to the latch.. data in and feedback
10.20[1 = MUO0.QOL[];

10.r0[1 = r.qO0[1;

11.20[] = MUO.Q1[];

11.r0[]1 = r.qi[];

12.20[1 = MU0.Q2[];

12.r0[] = r.q2[];

-- diagnostic output
Qout[] = r.qO0[1;

-- decryption key fed into the round function
r.cipherkeyO[] = CIPHERKEYO[];
r.cipherkeyl[] = CIPHERKEY1[];
r.cipherkey2[] = CIPHERKEY2[];

-- round constant selected based on input to multiplexer
r.roundconstant[] = m.result[];

-- data from latch to round function
r.a0[] = 10.qout[];
r.al[] = 11.qout[];
r.a2[] = 12.qout[];

-- round completed

-- a0

-- data into exclusive or
AQ_00.DATA[0][1 = CIPHERKEYQ[];
A0_00.DATA[11[] = 10.qout[];

FOR i IN O TO 15 GENERATE
A0_00.DATA[2][I] = GND;
END GENERATE;

FOR i IN O TO 15 GENERATE
AO_O00.DATA[2][I+16] = m.result[il;
END GENERATE;

-- al
A0_01.DATA[O0][] = CIPHERKEY1[];
A0_O01.DATA[1]1[] = 11.qout[];

-- a2
A0_02.DATA[O0][1 = CIPHERKEY2[];
A0_02.DATA[11[] = 12.qout[];

FOR i IN O TO 15 GENERATE
A0_02.DATA[2][I+16] = GND;
END GENERATE;
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END;

B.8.1

FOR i IN O TO 15 GENERATE
A0_02.DATA[2][I] = m.result[i];
A0_02.DATA[2][I] = GND;

END GENERATE;

-- theta

TO.AO[] = AO_00.RESULTI[];
TO.A1[]1 = AO_O1.RESULT[];
TO.A2[] = AO_02.RESULTI[];

-- and bit reversal

MU1.AO[] = TO.QOLI;
MU1.A1[] = T0.Q1[];
MU1.A2[]1 = T0.Q2[1;

-- diagnostic output
Rout[] = m.result[];

-- data is now decrypted
QO[] = MU1.QO[];

Qi[1 = MU1.Q1[];

Q2[1 = MU1.Q2[1;

Timing diagram, decipher

B.9 mu

-- Mu function

-- Mu reverses the bits in a longword, used in the decryption

-- John Ronan, 20000709

CONSTANT REG_LENGTH = H"20"; -- 32bit Registers

SUBDESIGN mu
(

AO[REG_LENGTH - 1..0] : INPUT;
A1[REG_LENGTH - 1..0] : INPUT;
A2[REG_LENGTH - 1..0] : INPUT;
QO[REG_LENGTH - 1..0] : OUTPUT;
Q1[REG_LENGTH - 1..0] : OUTPUT;
Q2[REG_LENGTH - 1..0] : OUTPUT;

)
BEGIN

FOR i IN O TO 31 GENERATE
QO[i]l = A2[31-i];
Q1[il = A1[31-il;
Q2[i] A0[31-i];
END GENERATE;

END;
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Figure B.8: Decipher, full test timing diagram.



APPENDIX B. ALTERA TEXT DESIGN FILES

B.10 inputlogic

-- inputlogic.tdf

-- 32 bit 3 output demus.
-- John Ronan, 20000722

INCLUDE "1pm_dff.inc";
INCLUDE "lpm_ff.inc";

CONSTANT REG_LENGTH = H"20"; --32bit Registers

SUBDESIGN inputlogi
(

c

CLOCK : INPUT;
DataIN[REG_LENGTH - 1..0] : INPUT;
ENABLE : INPUT;
RESET : INPUT;
DataQUTO[REG_LENGTH - 1..0] : OUTPUT;
DataOUT1[REG_LENGTH - 1..0] : OUTPUT;
DataQUT2[REG_LENGTH - 1..0] : OUTPUT;

)

VARIABLE
inputsel :1pm_dff WITH(LPM_WIDTH=3, LPM_AVALUE=H"00000");
inputlatchO :1pm_dff WITH(LPM_WIDTH=REG_LENGTH);
inputlatchl :1pm_dff WITH(LPM_WIDTH=REG_LENGTH);
inputlatch2 :1pm_dff WITH(LPM_WIDTH=REG_LENGTH);

BEGIN

-- Demux Controller
inputsel.clock = not CLOCK;

-- 3 D types.

inputsel.enable = ENABLE AND (NOT inputsel.q[2]);
inputsel.datal[0] = (not inputsel.q[2]);
inputsel.data[1] = inputsel.q[0];

inputsel.data[2] = inputsel.q[1];
inputsel.aset = RESET;

-- input latch - 3 32 bit latches
inputlatchO.
inputlatchO.

.data[] = DataIN[];

inputlatchl.

.data[] = DataIN[];

inputlatch2.

inputlatchil

inputlatch2

DataOUTO[]

DataQUT1[]

DataOUT2[]
END;

data[] = DataIN[];
clock = inputsel.q[0];

clock = inputsel.q[1];
clock = inputsel.q[2];
inputlatch0.q[];

inputlatchl.q[l;
inputlatch2.q[];
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B.11 key-authenthication-key

-- kak.tdf

-- One input, two outputs, The choice of output is either the intermal
-- Key Authenthication Key or the Session key coming in from a Latch.
-- John Ronan, 20000722

INCLUDE "1pm_dff.inc";
INCLUDE "lpm_mux.inc";

CONSTANT REG_LENGTH = H"20"; %32bit Registers’

SUBDESIGN kak
(

KAKSEL : INPUT;
KEYOIN[REG_LENGTH - 1..0] : INPUT;
KEY1IN[REG_LENGTH - 1..0] : INPUT;
KEY2IN[REG_LENGTH - 1..0] : INPUT;
CIPHERKEYO[REG_LENGTH - 1..0] : OUTPUT;
CIPHERKEY1[REG_LENGTH - 1..0] : QUTPUT;
CIPHERKEY2[REG_LENGTH - 1..0] : OUTPUT;

VARIABLE
kakO : lpm_mux WITH(LPM_WIDTH=REG_LENGTH, LPM_WIDTHS=H"1", LPM_SIZE=H"2");
kakl : lpm_mux WITH(LPM_WIDTH=REG_LENGTH, LPM_WIDTHS=H"1", LPM_SIZE=H"2");
kak2 : lpm_mux WITH(LPM_WIDTH=REG_LENGTH, LPM_WIDTHS=H"1", LPM_SIZE=H"2");

BEGIN
kak0.sel[0] = KAKSEL;
kakl.sel[0] KAKSEL;
kak2.sel[0] = KAKSEL;

-- Hard coded KAK key
kak0.data[0][] = H"00000001";
kakl.data[0][] = H"00000001";
kak2.datal[0]1[]1 = H"00000001";

-- Session Key coming in from Latch
kak0.data[1]1[] = KEYOIN[];
kakl.data[1][] = KEY1IN[];
kak2.data[1][] = KEY2IN[];

CIPHERKEYO[] kakQ.result[];
CIPHERKEY1[] kakl.result[];
CIPHERKEY2[] = kak2.result[];

END;

B.12 feedbacklogic

-- fblogic.tdf
-- Used in several places, Basically a 96 bit latch.
-- John Ronan, 20000722
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INCLUDE "lpm_dff.inc";

CONSTANT REG_LENGTH = H"20";

SUBDESIGN fblogic

(

VARIABLE
cipherkeylatchO :
cipherkeylatchl
cipherkeylatch2
BEGIN

CLOCK
ENABLE
LATCHENABLE

DataINO[REG_LENGTH - 1..0]
DataIN1[REG_LENGTH - 1..0]
DataIN2[REG_LENGTH - 1..0]

ACLR

LatchOUTO [REG_LENGTH - 1..0]
LatchQUT1 [REG_LENGTH - 1..0]
LatchQUT2 [REG_LENGTH - 1..0]

-- 32bit Registers

: INPUT;
: INPUT;
: INPUT;
: INPUT;
: INPUT;
: INPUT;
: INPUT;
: OUTPUT;
: QOUTPUT;
: OUTPUT;

cipherkeylatchQ.aset

cipherkeylatchl.aset

cipherkeylatch2.aset

cipherkeylatch0Q.clock

cipherkeylatchl.clock

cipherkeylatch2.clock

cipherkeylatchO.enable

cipherkeylatchl.enable

= ACLR;
= ACLR;
= ACLR;

CLOCK;
CLOCK;
CLOCK;

= LATCHENABLE;
= LATCHENABLE;

END;

cipherkeylatch2.

cipherkeylatchO.
cipherkeylatchl.
cipherkeylatch2.

enable = LATCHENABLE;

data[] = DataINO[];
data[] = DataIN1[];
data[] = DataIN2[];

LatchOUTO[] = cipherkeylatch0.q[l;
LatchOUT1[] = cipherkeylatchl.q[];
LatchQUT2[] = cipherkeylatch2.q[];

B.13 outputlogic

-- outputlogic.tdf

-- Multiplexer

INCLUDE "lpm_mux.inc";
INCLUDE "lpm_counter.inc";
INCLUDE "tim_cnt.inc";

124

1pm_dff WITH(LPM_WIDTH=REG_LENGTH, LPM_AVALUE="0000000");
1pm_dff WITH(LPM_WIDTH=REG_LENGTH, LPM_AVALUE="0000000");
1pm_dff WITH(LPM_WIDTH=REG_LENGTH, LPM_AVALUE="0000000");
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CONSTANT REG_LENGTH = H"20";

SUBDESIGN outputlogic

(
CLOCK
ENABLE
SSET
DataINO[REG_LENGTH
DataIN1[REG_LENGTH
DataIN2[REG_LENGTH
DataOUT[REG_LENGTH

VARIABLE

out :lpm_mux WITH(LPM_WIDTH=REG_LENGTH, LPM_WIDTHS=H"2", LPM_SIZE=H"4");
-- I had to define my own style counter, as there was a conflict in the
-- compilation stage with some element in the PCI core.
-- Tim Symons of altera helped here hence it is defined

-- as tims counter.

count
BEGIN

count.sset = SSET;
count.clock = CLOCK;
count.cnt_en = ENABLE;

out.sel[0] = count.q[0];
out.sel[1] = count.q[1];

out.data[0][] = DataINO[];
out.data[1][] = DataIN1i[];
out.data[2] [] = DataIN2[];
out.datal[3]1[]1 = VCC;
DataOUT[] = out.result[];
END;

B.13.1 Timing diagram, outputlogic

B.14 cbcreset

-- cbcreset.tdf

-- If and of the lines Key_Data, E_D or CBCRESET are toggled, then the
-- Feedback register for CBC mode is reset to O by a pulse on the

-- RESET output. Note the CBCRESET Input line is automatically pulsed by
-- the IOR interface so we just pass it through.

-- John Ronan, 20000722

SUBDESIGN cbcreset
(

CLOCK : INPUT;
E_D : INPUT;
Key_Data : INPUT;
CBCRESET : INPUT;

%32bit Registers,

o R e

: INPUT;
: INPUT;
: INPUT;
..0] : INPUT;
..0] : INPUT;
..0] : INPUT;
..0] : QUTPUT;

:tim_cnt;
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Figure B.9: Outputlogic, full test timing diagram, close up.
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RESET
)
VARIABLE
e_dd
e_dd
keyd
keyd:
BEGIN
e_ddelay
e_ddelay
e_ddelay
e_ddelay

keydelay!
keydelay
keydelay!
keydelay

RESET =
END;

B.15 ¢

-- core.

-- Encapsulates all functions except control, to allow decryption and storage

-- of se
-- 32 to
-- John

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

CONSTANT
CONSTANT
CONSTANT

SUBDESIG!
(

B. ALTERA TEXT DESIGN FILES

: OUTPUT;
elayQ :dffe;
elayl :dffe;
elayQ :dffe;
elayl :dffe;
0.clk= CLOCK;
1.clk = CLOCK;
0.d = E_D;
1.d = e_ddelay0.q;
0.clk = CLOCK;
1.clk = CLOCK;
0.d = Key_Data;

1.d = keydelay0.q;

(E_D xor e_ddelayl.q) or (Key_Data xor keydelayl.q) or (CBCRESET);

ore
tdf

ssion keys. ECB/CBC modes of operation, and translation from
96 bits on input and output.
Ronan, 20000721

"inputlogic.inc";
"cipher.inc";
"kak.inc";
"fblogic.inc";
"outputlogic.inc";
"1pm_mux.inc";
"lpm_xor.inc";

"cbcreset.inc";

REG_LENGTH = H"20"; %32bit Registers),
COUNT_LENGTH = H"4";
COUNTER_TERMINATE = H"C";

N core

DataIN[REG_LENGTH - 1..0] : INPUT;

RESET : INPUT; -- Block Reset

CLOCK : INPUT;

Key_Data : INPUT; -- Working with a Key or Data
ED : INPUT; -- Encipher or Decipher Mode
ECB_CBC : INPUT; -- ECB or CBC mode

ILENABLE : INPUT; -- Enable Input for Input Latch
ILASET : INPUT; -- Reset Input for Input Latch

OLSSET : INPUT; -- Reset Input for Output Latch

127
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OLENABLE : INPUT; -- Enable Input for OQutput Latch

CENABLE : INPUT; -- Enable Input for Cipher Block

CBCFBENABLE : INPUT; -- Enable Input for CBC Latch

CBCRESETIN : INPUT; -- External (from IOR) Reset Input for CBC Latch

DataQUT[REG_LENGTH - 1..0] : OUTPUT;

)
VARIABLE
:cipher; -- cipher block
1kak; -- key authenthication key block
il :inputlogic;
kfb :fblogic; -- session key feedback logic
b :fblogic; -- Data Latch after cipher block
cbcfb :fblogic; -- CBC Mode feedback logic
ol routputlogic;
cbc_reset :cbcreset; -- cbcreset block
ctermdelay :dffe; -- single D latch to delay signal one clock pulse
BEGIN

-- CBC Mode Reset
cbc_reset.CLOCK = CLOCK;
cbc_reset.Key_Data = Key_Data;
cbc_reset.E_D = E_D;
cbc_reset.CBCRESET = CBCRESETIN;

-- If the key gets changed or if we switch from encryption to decryption, we
-- definitely want to reset all the feedback registers to 0;

--CBCRESETO = (E_D xor e_ddelayl.q) or (Key_Data xor keydelayl.q) or CBCRESET;
CBCRESET0 = cbc_reset.RESET; -- Reset Pulse

ctermdelay.clk = CLOCK;
ctermdelay.d = c.TERM;

-- Key authenthication Key mux. KAK hardcoded into data[0] below. CipherKey loaded from the feedback latch
k.kaksel = Key_Data;

k.KEYOIN[] = kfb.LatchOUTO[];

k.KEY1IN[] = kfb.LatchOUT1[];

k.KEY2IN[] = kfb.LatchOUT2[];

-- Input Logic, converts 32 bits to 96
il.clock = CLOCK;
il.DataIN[] = DataIN[];

il.ENABLE = ILENABLE; -- enable the input latch

il.reset = ILASET; -- reset the input latch

-- cipher

c.clock = CLOCK;

c.counter_en = CENABLE; -- enable the counter (loop)

c.sset = (not CENABLE) or cbc_reset.reset or (not RESET); -- Reset block
c.load = CENABLE; -- load the data into the cipher block

c.E_D = E_D; -- enciper or decipher

-- input from kak block, gives kak or data key
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c.cipherkeyO[] = k.CIPHERKEYO[];
c.cipherkey1[] = k.CIPHERKEY1[];
c.cipherkey2[] = k.CIPHERKEY2[];

-- Session Key fedback latch

kfb.CLOCK = CLOCK;
kfb.ENABLE = not Key_data; -- Only enable when setting new session key
kfb.ACLR = not RESET; -- Reset Latch

kfb.LATCHENABLE = ctermdelay.q and (not Key_Data); -- Only enable when setting
-- new session key and when the data out of the cipher block is valid

£b.CLOCK = CLOCK;
fb.ENABLE = Key_Data; -- Enable only when processing data, thus we don’t leak
-- the new key back out to the outside world.
fb.ACLR = (not RESET) or cbc_reset.RESET; -- Reset on system reset or from control line
fb.LATCHENABLE = ctermdelay.q; -- data out of the cipher block becomes valid

cbcfb.CLOCK = CLOCK;
cbcfb.ENABLE = Key_Data and ECB_CBC; -- Enable only when processing data and
-- when in CBC mode.
cbcfb.ACLR = (not RESET) or cbc_reset.RESET; -- Reset on system reset or
-- from control line
cbcfb.LATCHENABLE = CBCFBENABLE; -- enable while in CBC mode.

-- Cipher Key is fed into the KAK block from cipher block output
kfb.DataINO[] = c.DataOUTO[];
kfb.DataIN1[] = c.DataQUT1[];
kfb.DataIN2[] = c.DataQUT2[];

-- only need to feed data to fb latch while operating on data
fb.DataINO[] = c¢.DataOUTO[] and Key_Data;
fb.DataIN1[] = c.DataOUT1[] and Key_Data;
fb.DataIN2[] = c.DataQUT2[] and Key_Data;

-- ECB Mode = fb.LatchOUT and not ECB_CBC

-- CBC Mode Enciphering = fb.LatchQUT and (not E_D) and ECB_CBC

-- CBC MODE Deciphering = il.DataQOUT and E_D and ECB_CBC

cbcfb.datain0[] = (fb.LatchOUTO[] and (not ECB_CBC)) xor ((((fb.LatchOUTO[] and (not E_D))
xor (il.DataQUTO[] and E_D)) and ECB_CBC) and Key_Data);

cbcfb.datainl[] = (fb.LatchOUT1[] and (not ECB_CBC)) xor ((((fb.LatchOUT1[] and (not E_D))
xor (il.DataQUT1[] and E_D)) and ECB_CBC) and Key_Data);

cbcfb.datain2[] = (fb.LatchOUT2[] and (not ECB_CBC)) xor ((((fb.LatchOUT2[] and (not E_D))
xor (il.DataQUT2[] and E_D)) and ECB_CBC) and Key_Data);

-- in ECB Mode il.DataQUT is xored with O

-- in CBC Encryption its xored with the output from the feedback loop

c.DataINO[] = i1.DataOUTO[] xor ((cbcfb.LatchOUTO[] and (not E_D) and ECB_CBC) and Key_Data);
c.Datain1[] = il.DataOUT1[] xor ((cbcfb.LatchOUT1[] and (not E_D) and ECB_CBC) and Key_Data);
c.Datain2[] = il.DataQUT2[] xor ((cbcfb.LatchQUT2[] and (not E_D) and ECB_CBC) and Key_Data);

-- in ECB Mode ol.DataIN = fb.dataout

-- in CBC Encryption ol.DataIN = fb.dataout xor cbcfb.LatchOUT

0l.DataINO[] = (fb.LatchOUTO[] xor ((cbcfb.LatchQUTO[] and E_D and ECB_CBC)) and Key_Data);
ol.DataIN1[] = (fb.LatchOUT1[] xor ((cbcfb.LatchOUT1[] and E_D and ECB_CBC)) and Key_Data);
ol.Datain2[] = (fb.LatchOUT2[] xor ((cbcfb.LatchOUT2[] and E_D and ECB_CBC)) and Key_Data);
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-- output latch

ol.ENABLE = QLENABLE and Key_Data; -- Only enable when dealing with data
0l.SSET = OLSSET and Key_Data; -- Ditto

ol.clock = CLOCK;

-- 32 bits of Data out.
DataOUT[] = 0l1.DataOUT[] and Key_Data; -- Nothing leaves unless we’re processing data

END;

B.16 controlncore

-- controlncore.tdf

-- Control circuitry for the device module, state machine stalls if either
-- Input Fifo is Empty (But will output current values in core) or output
-- Fifo is Full. Hence these two lines control the whole process.

-- Generates an interrupt 18 clock cycles after the Input Fifo is empty

-- This is ample time for all the data to have been processed

-- John Ronan, 20000407

INCLUDE "lpm_counter.inc";

INCLUDE "lpm_compare.inc";

INCLUDE "lpm_dff.inc";

CONSTANT WIDTH = 5; -- No of bits in in count
CONSTANT INT_COUNTER_TERMINATE = 18; -- No of clock cycles after

-- Input Fifo Empties that all the data has been processed and output

CONSTANT CBC_COUNTER_TERMINATE = 24;

SUBDESIGN controlncore

(
clk : INPUT;
reset : INPUT;
IFifoEMPTY : INPUT; -- Control Line from Input Fifo
OFifoFULL : INPUT; -- Control Line from Output Fifo
INT_RESET : INPUT; -- Reset Interrupt
INT_REQUEST : OUTPUT;
CENABLE : OUTPUT; -- Cipher block Enable line
CBCFBENABLE : OUTPUT; -- CBC Latch Enable line
ILASET : OUTPUT; -- Input Latch Reset Line
ILENABLE : OUTPUT; -- Input Latch Enable line
OLSSET : OUTPUT; -- Output Latch Reset Line
OLENABLE : OUTPUT; -- Output Latch Enable Line
IFifoRREQ : OUTPUT; -- Reqest data from the Input Fifo
OFifoWREQ : OUTPUT; -- Request data to be sent to the Output Fifo

-- 0fifoFull precludes this
)
VARIABLE
ss: MACHINE OF BITS (CENABLE, CBCFBENABLE,ILASET, ILENABLE,OLSSET, OLENABLE, FiFORREQ)
WITH STATES (sO = B"0000000",

sl = B"0010000",
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BEGIN

s2 = B"0001001",
s3 = B"0001001",
s4 = B"0001001",
sb = B"0000000",
s6 = B"1000000",
s7 = B"1000000",
s8 = B"1000000",
s9 = B"1000000",
s1l0 = B"1000000",
sl = B"1000000",
s12 = B"1000000",
s13 = B"1000000",
s1l4 = B"1000000",
sl5 = B"1000000",
s16 = B"1000000",
s17 = B"1000000",
s18 = B"0000100",
s19 = B"0000010",
s20 = B"0000010",
s21 = B"0000010",
s22 = B"0100000") ;

interruptcount : lpm_counter WITH(LPM_WIDTH=WIDTH, LPM_MODULUS=INT_COUNTER_TERMINATE,
LPM_SVALUE=H"00000") ;

intcomparator : lpm_compare WITH(LPM_WIDTH=WIDTH);

di : lpm_dff WITH(LPM_WIDTH=1);

ififorreqdelay :dffe;

.clk = not clk;
.reset = not reset;
current current next
state input state
ss, (IFifoEmpty) or (OFifoFULL) => ss;
s0, 1 => s0;
s0, 0 => sl;
si, 1 => s2;
s1, 0 => s2;
s2, 1 => s3;
s2, 0 => s3;
s3, 1 => s4;
s3, 0 => s4;
s4, 1 => sb;
s4, 0 => sb;
sb, 1 => s6;
s5, 0 => s6;
s6, 1 => s7;
s6, 0 => s7;
s7, 1 => s8;
s7, 0 => s8;
s8, 1 => s9;
s8, 0 => s9;
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s9,

s9,

s10,
s10,
si1,
si1,
s12,
s12,
s13,
s13,
si4,
si4,
s15,
s15,
s16,
s16,
s17,

o B O

s18,

oOr O, O, O, O, O, OF, O, OO, O O

END TABLE;

Traps the Rising edge of IfifoEMPTY and 18 pulses later

it raises an Interrupt to the PCI core. The reset then

=> s10;
> s10;

=> s11;
=> si1;
=> s12;
=> s12;
=> s13;
=> s13;
=> s14;
=> s14;
=> s15;
=> s15;
=> s16;
=> s16;
=> s17;
=> s17;
=> s18;
=> s18;
=> s19;
=> s19;
=> s20;
=> s20;
=> s21;
=> s21;
=> s22;
=> s22;
=> s0;
=> s0;

sets the counter back to 0 and doesnt start counting

again until the next rising edge

dl.datal[0] = V
dl.aclr = INT_
dl.clock = Ifi
dl.enable = VC

Retiming Delay

CC;
RESET;
foEMPTY;
C;

ififorreqdelay.clk = clk;
ififorreqdelay.d = FiFORREQ;

Delay until all data is out of the core
.clock = clk;

interruptcount
interruptcount
interruptcount

interruptcount

Terminate the count
intcomparator.

intcomparator.

Interrupt when the Input Fifo is empty AND the Core is empty.

.cnt_en = d1.q[0] and (not intcomparator.aeb);

.sset = INT_RESET;

.aclr = not reset;

dataal] =
datab[] =

interruptcount.q[];
INT_COUNTER_TERMINATE - 1;

INT_REQUEST = intcomparator.aeb;

132
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IFifoRREQ = ififorreqdelay.q;
OfifoWREQ = OLENABLE; -- just happens to be the same signal :)
END;

B.16.1 Timing diagram, Controlncore

B.17 crypto

-- crypto.tdf

-- Encapsulates the cryptographic "core" and the control circuitry.
-- Also added last bit of Interrupt circuitry on rising Edge of

-- Output Fifo Full.

INCLUDE "core.inc";

INCLUDE "controlncore.inc";

SUBDESIGN crypto

(
DataIN[32 - 1..0] : INPUT;
-- Control Lines in from IOR

RESET : INPUT;
CBCRESET : INPUT;
OFifoFull : INPUT;
IFifoEmpty : INPUT;
CLOCK : INPUT;
Key_Data : INPUT;
ED : INPUT;
ECB_CBC : INPUT;
INT_RESET : INPUT;
INT_ENABLE : INPUT;
-- Control line out to IOR
INT_REQUEST : OUTPUT;
-- Data out

DataQUT[32 - 1..0] : OUTPUT;
-- Request Lines to the Input and Qutput Fifos

OFifoWREQ : OUTPUT;
IFifoRREQ : OUTPUT;
)
VARIABLE
c 1 core;
ctrl : controlncore;
delay0 : dffe;

BEGIN

ctrl.clk = CLOCK;

ctrl.RESET = RESET and (not CBCRESET);
-- Input lines to the Control Circuitry
ctrl.IFifoEMPTY = IFifoEMPTY;
ctrl.0FifoFULL = OFifoFULL;
ctrl.INT_RESET = INT_RESET;

c.Key_Data = Key_Data;
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Figure B.10: Control circuitry, full test timing diagram.
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c.E_D = E_D;
c.RESET = RESET;
c.CLOCK = CLOCK;

-- Interrupt on rising edge of OfifoFull
delay0.clk = OFifoFULL;

delay0.d = VCC;

delay0.clrn = not INT_RESET;

-- Connect all the control and data lines to the core

c.CBCFBENABLE = ctrl.CBCFBENABLE and ECB_CBC;
c.DATAIN[] = DatalIN[];

c.ILENABLE = ctrl.ILENABLE;

c.ILASET = ctrl.ILASET;

c.0LENABLE = ctrl.0LENABLE;

c.0OLSSET = ctrl.0LSSET;

c.CENABLE = ctrl.CENABLE;

c.CBCRESETIN = CBCRESET;

c.ECB_CBC = ECB_CBC;

-- Only when in Data mode do we write anything out.
OFifoWREQ = ctrl.0FifoWREQ and Key_Data;

IFifoRREQ = ctrl.IFifoRREQ;

-- Interrupt Request line

INT_REQUEST = (ctrl.INT_REQUEST or delay0.q) and INT_ENABLE;
DataOUT[] = c.DataOUT[];

END;

B.17.1 Timing Diagrams, Crypto

B.18 display ctrl.vhd

-- display_ctrl.vhd

-- PCI core universal examples
--v 4.4

-- This module controls PLDA prototyping boards leds/displays
-- Leds blink and FIF0 size is displayed

-- (c) PLD Applications 1999-2000

-- PL : 31-jan-2000
-- Modified by John Ronan, May 2000

135
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APPENDIX B.
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library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity display_ctrl is

port
(
clk : in std_logic;
rst : in std_logic;
ior_read : in std_logic;
ior_write : in std_logic;
c_data_out : in std_logic_vector (31 downto 0);
in_fifo_full : in std_logic;
in_fifo_size : in std_logic_vector (9 downto 0);
out_fifo_size : in std_logic_vector (9 downto 0);
out_fifo_full : in std_logic;
c_conf_in : out std_logic_vector (31 downto 0);
-- Displays
led_d2 : out std_logic; -- GenlOk leds
led_d3 : out std_logic;
disp_a : out std_logic_vector (7 downto 0); -- Pci-prod displays
disp_b : out std_logic_vector (7 downto 0);
-- crypto These are the control lines out from the ior register
key_data : out std_logic;
e_d : out std_logic;
ecb_cbc : out std_logic;
crypto_reset : out std_logic;
cbcreset : out std_logic;
crypto_int_reset : out std_logic; -- unused
crypto_int_enable : out std_logic;
crypto_int_request : in std_logic;
-- Interrupt control
int_active : in  std_logic_vector (3 downto 0);
int_request : out std_logic_vector (3 downto 0);
int_reset : out std_logic_vector (3 downto 0)
);

end display_ctrl;

architecture structural of display_ctrl is
-- LCD display decoder
component hex_decoder
port (
bit_code : in std_logic_vector(3 downto 0);
decimal_point : in std_logic;
hex_digit : out std_logic_vector(7 downto 0));

end component;

signal count_r : std_logic_vector (1 downto 0);

signal i_key_data, i_e_d, i_ecb_cbc, i_crypto_int_enable, i_crypto_reset, i_cbc_reset :

std_logic;
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-- bit 0 : interrupt status/interrupt reset

-- bit 1 : interrupt enable

-- bit 2 : ecb or cbc mode

-- bit 3 : encipher or decipher mode

-- bit 4 : key or data

-- bit 5 cbcreset, 1 resets

-- bit 6 crypto_reset, 0 resets

-- bit 7 spare/unused

-- bits 18..8 : out_fifo_size

-- bit 19 : out_fifo_full

-- bits 30..20 : in_fifo size

-- bit 31 : in_fifo_full

ior : process (clk,rst)

begin

if rst=’0’ then

count_r <= (others=>’0’);
i_crypto_reset <= 0’;
i_crypto_int_enable <= ’0’;
i_cbc_reset <= 17,
i_key_data <= ’0’;
i_ecb_cbc <= 07;
i_e_d <=1’

elsif rising_edge (clk) then
count_r <= unsigned (count_r) + ’1’; -- increment counter

if ior_write=’1’ then

count_r <= (others=>’0’); -- reset counter
i_crypto_reset <= c_data_out(6);
i_cbc_reset <= c_data_out(5);
i_key_data <= c_data_out(4);
i_e_d <= c_data_out(3);
i_ecb_cbc <= c_data_out(2);

i_crypto_int_enable <= c_data_out(1);

elsif count_r ="11" then

-- If we’re not being written to and counter hits this value then reset

i_crypto_reset <= ’17;
i_cbc_reset = 20’;

end if;

end if;
end process;

c_conf_in <=in_fifo_full & in_fifo_size & out_fifo_full & out_fifo_size & "O" & i_crypto_reset
& i_cbc_reset & i_key_data & i_e_d & i_ecb_cbc & i_crypto_int_enable & int_active(0)

when ior_read = ’1’ else (others=>’0?);

key_data <= i_key_data;
e_d <= i_e_d;
ecb_cbc <= i_ecb_cbc;

crypto_int_enable <= i_crypto_int_enable;
cbcreset <= i_cbc_reset;

crypto_reset <= i_crypto_reset;
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-- Generate interrupts when backend requests it.

143

int_request (0) <= crypto_int_request and i_crypto_int_enable;
crypto_int_reset <= ’0’; -- unused

int_reset (0) <= ’1’ when ior_write=’1’ and c_data_out(0)=’1’ else ’0’;
int_request (3 downto 1) <= "000"; -- PCI core implements only 1 interrupt line

int_reset (3 downto 1) <= "000";

-- Diagnostic use of onboard Leds

lcdb : hex_decoder port map (

bit_code => in_fifo_size(9 downto 6), -- Encode top bits of input fifo size

decimal_point => i_key_data,
hex_digit => disp_b
);
lcda : hex_decoder port map (
bit_code => out_fifo_size(9 downto 6),
decimal_point => i_crypto_int_enable,
hex_digit => disp_a
);

end structural;

-- Decimal point shows value of Key_Data line
-- Send out the value to the Led Display

-- Encode top bits of output fifo size
-- Decimal point shows value of Interrupt enable line

-- Send out the value to the Led Display



Appendix C

Device Driver

C.1 3way.h

// $Header: //jOn/module/3way.h#6 $
// John Ronan July 2000

#include "common.h"
#ifndef _3way_h
#define _3way_h

void theta (WORD32 * a); // linear step

void mu (WORD32 * a); // bit flipper

void pi_1 (WORD32 * a); // bit shifter

void gamma (WORD32 * a); // the nonlinear step
void pi_2 (WORD32 * a); // bit shifter

void rho (WORD32 * a); // round

#endif // _3way_h

C.2 3way.c

// $Header: //jOn/module/3way.c#6 $
// John Ronan June 2000

#include "common.h"

#include "3way.h"
void

theta (WORD32 * a)
{

WORD32 b[3], temp, temp2, temp3, temp4, temp5;

temp = a[0] ~ a[1] ~ a[2];

144
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temp2 = (temp <<
temp3 = (a[0] <<
temp4 = (a[1] <<
temps = (a[2] <<

b[0] =
a[0] ~ temp2 ~
b[1] =
a[1] ~ temp2 ~
b[2] =
a[2] ~ temp2 ~
a[0] = b[0];
al1] = b[1];
a[2] = b[2];
}
void

mu (WORD32 * a)

{

int ij;

WORD32 b[3];

b[0] = b[1] = b[2
for (1 = 0; i <3
{

b[0] <<= 1;
b[1] <<= 1;
b[2] <<= 1;

if (a[0] & 1)

b[2] I=1

if (al1] & 1)

b[1] I= 1

if (al2] & 1)

b[0] I=1
a[0] >>= 1;
al[l1] >>=1;
a[2] >>=1;

al[0]
a[1]
al[2]

b[0];
b[1];
bl[2];

16) ~ (temp >> 16);
8) =~ (a[0] >> 8);
8) ~ (a[1]l >> 8);
8) ~ (a[2] >> 8);

temps =~ (al[1]l >> 24) ~ (al0] << 24) ~ (al[2] >> 24) -~ (al[0]
<<
8);

temp3 ~ (al[2] >> 24) =~ (all] << 24) ~ (a[0] >> 24) ~ (alill
<<
8);

temp4d =~ (a[0] >> 24) -~ (a[2] << 24) ~ (a[1] >> 24) - (a[2]
<<
8);

1 = 03
2; i++)

// Optimised version

void

pi_gamma_pi (WORD32 * a)

{

WORD32 b0, b2;

145



APPENDIX C. DEVICE DRIVER 146

b2 = (a[2] << 1) | (a[2] >> 31);

b0 = (a[0] << 22) | (a[0] >> 10);

a[0] = (b0 ~ (al1] | ("b2))) << 1 | ((b0 =~ (a[1] | ("b2))) >> 31);
a[2] = ((b2 ~ (b0 | (~a[1]))) << 22) | ((b2 ~ (b0 | (~a[1]))) >> 10);
al1] = al1]l ~ (b2 | ("b0));

void

rho (WORD32 * a)

{
theta (a);
pi_gamma_pi (a);

}

C.3 common.h

// $Header: //jOn/module/common.h#8 $
// John Ronan, June 2000

#ifndef _common_h
#define _common_h
#include <linux/types.h>
#include <asm/spinlock.h>

#define WORD32 u32 // Note this is only defined for kernel space.

#define STRT_E 0xObOb // round constant of first encryption round
#define STRT_D Oxbibl // round constant of first decryption round
#define NMBR 11 // number of rounds is 11

#define TWAY_BLOCKSIZE 3

#define TWAY_BYTE_BLOCKSIZE 12

#define KEYFILE "/etc/kakfile"

#define RANDOMDEV "/dev/random"

#undef PINFO
#define PINFO(fmt, args...) printk( KERN_DEBUG "crypto: " fmt, ## args)

#undef PDEBUG // undef it, just in case
#ifdef CRYPTO_DEBUG
#ifdef __KERNEL__
// This one if debugging is on, and kernel space
#define PDEBUG(fmt, args...) printk( KERN_DEBUG "crypto: " fmt, ## args)
#else
// This one for user space
#define PDEBUG(fmt, args...) fprintf(stderr, fmt, ## args)
#endif
#else
#define PDEBUG(fmt, args...) // not debugging: nothing
#endif

typedef struct software_key
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// crypto stuff

WORD32 masterKey[TWAY_BLOCKSIZE];

WORD32 encipherKey[TWAY_BLOCKSIZE];

WORD32 decipherKey[TWAY_BLOCKSIZE];

WORD32 encipherRoundConstant [NMBR+1];

WORD32 decipherRoundConstant [NMBR+1];

WORD32 initialisationVector[TWAY_BLOCKSIZE];

}softwarekey;

#endif // _common_h

C.4 software.h

// $Header: //jOn/module/software.h#9 $
// John Ronan, June 2000

#ifndef _software_h
#define _software_h

#include "common.h"

void swInit (struct software_key ¥key);
ssize_t swWrite (struct file *file, const char *const buffer, size_t length,
loff_t * offset);
ssize_t swRead (struct file *file, char *const buffer, size_t length,
loff_t * offset);
void swRoundInit (struct software_key *const key);
void swEncipher (const struct software_key *const key, WORD32 * const a);
void swDecipher (const struct software_key *const key, WORD32 * const a);
void swKakDecipher (const struct software_key * const key, WORD32 * const a);
int swIsDeviceReadyForData (const struct Crypto_Dev *const cDev) ;
int swIsOutputBufferEmpty (const struct Crypto_Dev *const cDev);
#endif // _software_h

C.5 Software.c

// $Header: //jOn/module/software.c#10 $
// John Ronan, June 2000

#include <linux/vmalloc.h>

#include <asm/uaccess.h> // Copy_from/to_user
#include "3way.h"

#include "driver.h" // cDev

#include "software.h"

#include "hardware.h" // PLDA_BUFFER_SIZE

rwlock_t sw_lock = RW_LOCK_UNLOCKED;
void

swlnit (softwarekey * SoftwareKey)

{
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PDEBUG ("Inside SoftwareInit\n");

// load the KeyAuthenthicationKey from file
SoftwareKey->masterKey[0] = 0x00000001 ;
SoftwareKey->masterKey[1] = 0x00000001 ;
SoftwareKey->masterKey[2] = 0x00000001 ;

// Default encryption key.

SoftwareKey->encipherKey[0] = SoftwareKey->decipherKey[0] = 0x00000001;
SoftwareKey->encipherKey[1] = SoftwareKey->decipherKey[1] = 0x00000001
SoftwareKey->encipherKey[2] = SoftwareKey->decipherKey[2] = 0x00000001;

// Default initialisation vector.
SoftwareKey->initialisationVector[0] = 0;

SoftwareKey->initialisationVector[1]

n
o

SoftwareKey->initialisationVector[2]

n
o

// Has to be called every time the encipherKey is changed
swRoundInit (SoftwareKey) ;

// Crypto functions
// call decrypt using the masterkey as the key and this as the data.
void
swRoundInit (softwarekey * const SoftwareKey)
{
int i = 0;
WORD32 encipherStart = STRT_E;
WORD32 decipherStart = STRT_D;

// Initialise round constants

PDEBUG ("Roundinit (%p)\n", SoftwareKey);

for (i = 0; i <= NMBR; i++)

1{
SoftwareKey->encipherRoundConstant[i] = encipherStart;
encipherStart <<= 1;
if (encipherStart & 0x10000)
encipherStart = 0x11011;

for (i = 0; i <= NMBR; i++)

SoftwareKey->decipherRoundConstant[i] = decipherStart;

decipherStart <<= 1;

if (decipherStart & 0x10000)

decipherStart ~= 0x11011;
}

// Initialise decryption key
theta (SoftwareKey->decipherKey);
mu (SoftwareKey->decipherKey) ;

// Key’s initialised.. checked against reference code...

void
swEncipher (const softwarekey * const SoftwareKey, WORD32 * const a)

{
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// Hardware implementation should encompass all of this function.
int i = Q3
for (i = 0; i < NMBR; i++)
{
// XOR with vector that depends on encryption Key and round number.
af0] ~=
SoftwareKey->
encipherKey[0] ~ (SoftwareKey->encipherRoundConstant[i] << 16);
a[1] ~= SoftwareKey->encipherKey[1];
a[2] ~=
SoftwareKey->encipherKey[2] ~ SoftwareKey->encipherRoundConstant[i];
// Encryption Round
rho (a);

// Extra application of Vector and theta()
af[0] ~=
SoftwareKey->
encipherKey[0] ~ (SoftwareKey->encipherRoundConstant[NMBR] << 16);
a[1] ~= SoftwareKey->encipherKey[1];
a[2] ~=
SoftwareKey->encipherKey[2] ~ SoftwareKey->encipherRoundConstant [NMBR];
theta (a);
// block of data is now encrypted.

void
swDecipher (const softwarekey * const SoftwareKey, WORD32 * const a)
{

int i = 0;

// Reverse bits in each Longword.

mu (a);
for (i = 0; i < NMBR; i++)
{
// XOR with vector that depends on decryption Key and round number.
af0] ~=

SoftwareKey->
decipherKey[0] ~ (SoftwareKey->decipherRoundConstant[i] << 16);
a[1] ~= SoftwareKey->decipherKey[1];
a[2] ~=
SoftwareKey->decipherKey[2] ~ SoftwareKey->decipherRoundConstant[i];

// Encryption Round same as encryption
rho (a);

// Extra application of Vector and theta()
af0] ~=
SoftwareKey->
decipherKey[0] ~ (SoftwareKey->decipherRoundConstant[NMBR] << 16);
a[1] ~= SoftwareKey->decipherKey[1];
af[2] ~=
SoftwareKey->decipherKey[2] ~ SoftwareKey->decipherRoundConstant [NMBR];
theta (a);
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// Reverse bits to get plaintext
mu (a);

}

void
swKakDecipher (const softwarekey * const SoftwareKey, WORD32 * const a)
1{

WORD32 tempKey[3];

int i = 0;

for (i = 0; i < 3; i++)

tempKey[i] = SoftwareKey->masterKey[il;

theta (tempKey) ;
mu (tempKey) ;
// Reverse bits in each Longword.
mu (a);
for (i = 0; i < NMBR; i++)
{
// XOR with vector that depends on decryption Key and round number.
a[0] ~= tempKey[0] ~ (SoftwareKey->decipherRoundConstant[i] << 16);
a[1] ~= SoftwareKey->decipherKey[1];
a[2] ~= tempKey[2] ~ SoftwareKey->decipherRoundConstant[il;

// Encryption Round same as encryption
rho (a);

// Extra application of Vector and theta()

a[0] ~= tempKey[0] ~ (SoftwareKey->decipherRoundConstant[NMBR] << 16);
a[1] ~= SoftwareKey->decipherKey[1];

a[2] ~= tempKey[2] ~ SoftwareKey->decipherRoundConstant [NMBR];

theta (a);

// Reverse bits to get plaintext

mu (a);

ssize_t
suWrite (struct file *file, const char *buffer, size_t length,
loff_t * offset)

CryptoDev *cDev = file->private_data;

WORD32 *tempPtr = 0;

WORD32 blockCount = 0;

WORD32 1_buffer [TWAY_BLOCKSIZE];
WORD32 1_tempBuffer[TWAY_BLOCKSIZE];

int i = 0;
PDEBUG ("swWrite\n");
write_lock (&sw_lock);

PDEBUG ("Buffer Size %d, length %d\n", PLDA_BUFFER_SIZE, length);
if (length > PLDA_BUFFER_SIZE)
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length = PLDA_BUFFER_SIZE;

if (copy_from_user (cDev->oFifoBuf, buffer, length))
1{
PINFO ("User Space Buffer is not valid %s(%d)", __FILE__, __LINE__);
return -EFAULT;
}

blockCount = length;
tempPtr = (WORD32 *) cDev->oFifoBuf;
PDEBUG ("before blockcount %d, tempPtr %p\n", blockCount, tempPtr);

// So we’re encrypting
if (cDev->encDec == 1)
{
for (i = 0; i < 3; i++)
{
// Seed cbc mode
1_buffer[i] = cDev->softwareKeys.initialisationVector[il;

// Begin cbc mode encipherment.
while (blockCount >= 1)
{
for (i = 0; i < TWAY_BLOCKSIZE; i++)
{
// xor with previous ciphertext
tempPtr[i] = 1_buffer[i] ~ tempPtr[i];
}

swEncipher (&cDev->softwareKeys, tempPtr);

// Store generated ciphertext for next round
for (i = 0; i < TWAY_BLOCKSIZE; i++)
{
1_buffer[i] = tempPtr[il;
}
PDEBUG ("blockcount %d, tempPtr %p max (%p)\n", blockCount, tempPtr,
(cDev->oFifoBuf + PAGE_SIZE));
// Increment pointer.
tempPtr += TWAY_BLOCKSIZE;
blockCount -= TWAY_BYTE_BLOCKSIZE;
}
length = length - blockCount;
}

// Decryption on write
else
{
if (cDev->encDec == 2)
1{
blockCount = length;
tempPtr = (WORD32 *) cDev->oFifoBuf;

for (i = 0; i < TWAY_BLOCKSIZE; i++)
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// Seed cbc mode
1_buffer[i] = cDev->softwareKeys.initialisationVector[i];
}
// Begin cbc mode decipherment.
while (blockCount >= TWAY_BLOCKSIZE)
1{
for (i = 0; i < TWAY_BLOCKSIZE; i++)
1{
1_tempBuffer[i] = tempPtr[il;
}
swDecipher (&cDev->softwareKeys, tempPtr);
// XOR old ciphertext block with new plaintext block to remove CBC
for (i = 0; i < TWAY_BLOCKSIZE; i++)
tempPtr[i] = tempPtr[i] -~ 1_buffer[il;
// Store original ciphertext block for next decipher operation
for (i = 0; i < TWAY_BLOCKSIZE; i++)
1_buffer[i] = 1_tempBuffer[i];
PDEBUG ("blockcount %d, tempPtr %p\n", blockCount, tempPtr);
// Increment pointer.
tempPtr += TWAY_BLOCKSIZE;
blockCount -= TWAY_BYTE_BLOCKSIZE;
}
length = length - blockCount;
}
}
PDEBUG ("outside if blockcount %d, tempPtr %p\n", blockCount, tempPtr);
// End software
cDev->outputBufferLength = length;
write_unlock (&sw_lock);
wake_up_interruptible (&cDev->readq);
PDEBUG ("software write returning\n");
return length;

ssize_t
swRead (struct file * file, char *const buffer, size_t length,
loff_t * offset)

CryptoDev *cDev = file->private_data;

write_lock (&sw_lock);
PDEBUG ("Software read(%p)\n", file);

// If the requested length is greater than what we have stored, then we
// return what we have and the number of bytes returned... this is the correct semantics
// for the read function.
if (length > cDev->outputBufferLength)
length = cDev->outputBufferLength;

// If this call fails it means that some of the data could not be copied due
// to an invalid buffer.
if (copy_to_user (buffer, cDev->oFifoBuf, length))

{

PINFO ("User Space Buffer is invalid %s(%d)", __FILE LINE__);
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return -EFAULT;
}
// Ok data has been read from it now...
//cDev->isData = 0;
cDev->outputBufferLength = 0;

// Allow any writers to continue
write_unlock (&sw_lock);
wake_up_interruptible (&cDev->writeq);
return length;

int
swIsDeviceReadyForData (const struct Crypto_Dev *const cDev)
{
return swIsOutputBufferEmpty (cDev);
}

int
swIsOutputBufferEmpty (const struct Crypto_Dev *const cDev)
1{
if (cDev->outputBufferLength == 0)
return 1;
else

return 0;

C.6 driver.h

// driver.h - ioctl definitions and device dependant structure
// $Header: //jOn/module/driver.h#10 $
// John Ronan, June 2000

#ifndef __driver_h

#define __driver_h

#include "common.h"

#include <linux/ioctl.h>

#include <linux/tqueue.h>

// The major device number. We can’t rely on dynamic
// registration any more, because ioctls need to know
// it.

#define MAJOR_NUM 100

#define CRYPTO_DEC_USE_COUNT _IO(MAJOR_NUM, 10)
#define CRYPTO_ENC_DEC _IOW(MAJOR_NUM, 0, int)
#define CRYPTO_ECB_CBC _IOW(MAJOR_NUM, 1, int)

// Set the message of the device driver

#define CRYPTO_SET_IV _IOW(MAJOR_NUM, 2, char *)
#define CRYPTO_SET_KEY _IOW(MAJOR_NUM, 3, char *)

#define CRYPTO_RESET _IO(MAJOR_NUM, 4)
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// Get the IV from the device driver
#define CRYPTO_GET_IV _IOR(MAJOR_NUM, 3, char *)

// The name of the device file
#define DEVICE_FILE_NAME "/dev/crypto"
#define KAK_FILE_NAME "/etc/kakfile"
#define RANDOM_DEVICE "/dev/random"

typedef struct Crypto_Dev

1{
ul6é deviceOpen;
uid_t deviceOwner;
u8 encDec; // 0 for pass through 1 for encrypt 2 for decrypt
u32 inputBufferLength; // this may be redundant
u32 outputBufferLength;
u8 dataPending; // data left in the output fifo.
u8 encUsedIV; // Have we used the IV in the encryption stream
u8 decUsedIV; // Ditto for decryption stream.
void *iFifoBuf;
void *oFifoBuf;
struct pci_dev *dev;
struct wait_queue *readq, *writeq, *openq;
struct software_key softwareKeys;
struct tq_struct crypto_queue;
}
CryptoDev;

#endif // driver.h

C.7 driver.c

// $Header: //jOn/module/driver.c#13 §
// Create an input/output character device
// Copyright (C) 1999-2000 John Ronan

#ifndef __KERNEL__
#define __KERNEL__
#endif

#ifndef MODULE
#define MODULE
#endif

// Deal with CONFIG_MODVERSIONS
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>
#endif

#ifndef NOSYM
#define EXPORT_SYMTAB // Yes, I export a symbol table, has to be defined before Module.h is included
#endif
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// The necessary header files

// Standard in kernel modules

#include <linux/kernel.h> // We’re doing kernel work
#include <linux/module.h> // Specifically, a module
#include <asm/io.h>

// This will be required when I get the key stuff into the module
extern void get_random_bytes (void *, int);

// For character devices
// The character device definitions are here
#include <linux/fs.h>

// Necessary because we use proc fs
#include <linux/proc_fs.h>

// A wrapper which does next to nothing at

// at present, but may help for compatibility
// with future versions of Linux

#include <linux/wrapper.h>

#include <linux/malloc.h>

// 3way stuff

#include "common.h"

#include "driver.h"

#include "software.h"

#include "hardware.h"

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h> // for get_user and put_user
#endif

#define SUCCESS 0O

// Device Declarations

// The name for our device, as it will appear in
// /proc/devices
#define DEVICE_NAME "crypto"

// default mode=0 try and init hardware board.
int mode = 0;
MODULE_PARM (mode, "i");

CryptoDev cryptoDevice =
{0, 0,0,0,0, 0,0, 0, NULL, NULL, NULL, NULL, NULL, NULL };

static int usingHardware = 0; // Are we using hardware or software

// Get 4K..(2 = 12). pg 218 Linux Device Drivers.. only portable way to do it.
// Fifo’s on the Board will thus be 4K each. Calculated at compile time,
// thus no runtime overhead. used in AllocateDmaBuffers & FreeDmaBuffers
static int order =

(PLDA_SOFT_BUF_SIZE - PAGE_SHIFT > 0) 7 PLDA_SOFT_BUF_SIZE - PAGE_SHIFT : 0;

int

isDeviceReadyForData (const struct Crypto_Dev *const cDev)
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{
if (usingHardware == 1)
return pldIsDeviceReadyForData (cDev);
if (usingHardware == 0)
return swIsDeviceReadyForData (cDev);
PINFO ("Serious error %s(%d)\n", __FILE__, __LINE__);
return O;
}
int

isDeviceOutputEmpty (const struct Crypto_Dev *const cDev)

{
if (usingHardware == 1)
return pldIsOutputBufferEmpty (cDev);
if (usingHardware == 0)
return swIsOutputBufferEmpty (cDev);
PINFO ("Serious error %s(%d)\n", __FILE__, __LINE__);
return 0;
}
int
AllocateDmaBuffers (void)
{
#ifdef CRYPTO_DEBUG
char *cl;
char *c2;
int i;
#endif

cryptoDevice.oFifoBuf = (void *) __get_free_pages (GFP_DMA, order);
cryptoDevice.iFifoBuf = (void *) __get_free_pages (GFP_DMA, order);

if (!cryptoDevice.oFifoBuf || !cryptoDevice.iFifoBuf)
{
PINFO ("Error allocating DMA pages ¥%s(%d)\n", __FILE__, __LINE__);
return 1;
}

PINFO ("Allocated 2 Dma Buffers of %d Bytes\n", 1 << PLDA_SOFT_BUF_SIZE);

PDEBUG ("Outputbuffer (%p) InputBuffer (%p)\n", cryptoDevice.oFifoBuf,
cryptoDevice.iFifoBuf) ;

// Colors the pages for debugging purposes

#ifdef CRYPTO_DEBUG
cl = (char *) cryptoDevice.oFifoBuf;
c2 = (char *) cryptoDevice.iFifoBuf;

for (i = 0; i < PAGE_SIZE; i++)
{
*(cl + i) = OxFF;
*(c2 + i) = OxFF;
}
PDEBUG ("Outputbuffer End (%p) InputBuffer End (%p)\n", cl + i, ¢2 + i);
#endif
return SUCCESS;

}
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void
FreeDmaBuffers (void)
{
if (cryptoDevice.iFifoBuf)
free_pages ((unsigned long) cryptoDevice.iFifoBuf, order);
if (cryptoDevice.oFifoBuf)

free_pages ((unsigned long) cryptoDevice.oFifoBuf, order);

ssize_t

crypto_proc_output (struct file *file, // The file read
char *buf, // The buffer to put data to (in the user segment)
size_t len, // The length of the buffer
loff_t * offset) // Offset in the file - ignore

static int finished = 0;
//int i;

int pageSize = PAGE_SIZE;
char message[PAGE_SIZE + 1];

u32 ior = 0, ofifolength = 0, ififolength = 0;

// We return O to indicate end of file, that we have
// no more information. Otherwise, processes will

// continue to read from us in an endless loop.

if (finished)

{
finished = 0;
return 0;
}
len = 0;
if (usingHardware == 1)
{

pci_read_config_dword (cryptoDevice.dev, IOR_REG, &ior);
ofifolength = ((ior >> PLDA_OFIFO_POSN) & PLDA_FIFO_MASK) ;
ififolength = ((ior >> PLDA_IFIFO_POSN) & PLDA_FIFO_MASK) ;
len += sprintf (message,

"\nPld ofifolen:\t\t/d\noutputBufferLength:\t%d\nPld ififolen:
\t\t%d\ninputBufferLength:\t%d\nencDec:\t\t\t%d\nDeviceOpen
\t\t’%d\nusingHardware:\t\t%d\nPage Size is:\t\t %d\n",

ofifolength, cryptoDevice.outputBufferLength,

ififolength, cryptoDevice.inputBufferLength,

cryptoDevice.encDec, cryptoDevice.deviceOpen,

usingHardware, pageSize);

if (usingHardware == 0)
1{
len += sprintf (message,
"\noutputBufferLength:\t%d\ninputBufferLength:\t%d\nencDec:
\t\t\t%d\nDeviceOpen\t\t/d\nusingHardware:\t\t/%d\nPage Size is:\t\t %d\n",
cryptoDevice.outputBufferLength,
cryptoDevice.inputBufferLength,
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cryptoDevice.encDec, cryptoDevice.deviceOpen,
usingHardware, pageSize);
}
if (len > pageSize)

len = pageSize;

if (copy_to_user (buf, message, len))
return -EFAULT;

finished = 1;

return len;

int

crypto_proc_permission (struct inode *inode, int op)

{
// We allow everybody to read from our module
if (op == 4)
return 0;
// If it’s anything else, access is denied
return -EACCES;
}

// The file is opened - we don’t really care about
// that, but it does mean we need to increment the
// module’s reference count.
int
crypto_proc_open (struct inode *inode, struct file *file)
{
PDEBUG ("proc_open\n");
MOD_INC_USE_COUNT;
return 0;

// The file is closed - again, interesting only because
// of the reference count.
int
crypto_proc_close (struct inode *inode, struct file *file)
1{

PDEBUG ("proc_close\n");

MOD_DEC_USE_COUNT;

return SUCCESS;

struct file_operations File_Ops_4_Our_Proc_File = {

NULL, // lseek
crypto_proc_output, // "read" from the file
NULL, // "write" to the file
NULL, // readdir

NULL, // select

NULL, // ioctl

NULL, // mmap

crypto_proc_open, // Somebody opened the file
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NULL, // flush, added here in version 2.2
crypto_proc_close, // Somebody closed the file
};

struct inode_operations Inode_Ops_4_Our_Proc_File = {
&File_Ops_4_Our_Proc_File,

NULL, // create
NULL, // lookup
NULL, // link

NULL, // unlink
NULL, // symlink
NULL, // mkdir

NULL, // rmdir

NULL, // mknod

NULL, // rename
NULL, // readlink
NULL, // follow_link
NULL, // readpage
NULL, // writepage
NULL, // bmap

NULL, // truncate
crypto_proc_permission // check for permissions

// Directory entry

struct proc_dir_entry Our_Proc_File = {

0, // Inode number - ignore, it will be filled by
// proc_register[_dynamic]

6, // Length of the file name

"crypto", // The file name

S_IFREG | S_IRUGO | S_IWUSR,

1,

0, O, // The uid and gid for the file -

// we give it to root

96, // The size of the file reported by 1ls.

&Inode_Ops_4_Our_Proc_File,
// A pointer to the inode structure for
// the file, if we need it. In our case we
// do, because we need a write function.
NULL
// The read function for the file. Irrelevant,
// because we put it in the inode structure above

};

// This function is called whenever a process attempts
// to open the device file
int
crypto_open (struct inode *inode, struct file *file)
{
CryptoDev *cDev = &cryptoDevice;
int num = MINOR (inode->i_rdev);
int retval = SUCCESS;

if (!cDev->iFifoBuf || !'cDev->oFifoBuf)
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PINFO ("Buffers not allocated %s(%d)\n"
return 0;

}

FILE LINE__);

EJ— ——s ——

// Only one physical device... this is a bit of overkill maybe
if (num > 0)

return -ENODEV;
PDEBUG ("device_open(%p) (%p)\n", inode, file);

// We don’t want to talk to two processes at the

// same time

while (cDev->deviceOpen &% (cDev->deviceOwner != current->uid) && // Allow user
(cDev->deviceOwner != current->euid) && // Allow whover did su
tsuser ()) // Allow root
{

if (file->f_flags & O0_NONBLOCK)
return -EAGAIN;

interruptible_sleep_on (&cDev->openq) ; // Put this process to sleep.
if (signal_pending (current)) // a signal arrived
return -ERESTARTSYS; // Tell Filesystem Layer to handle it
// else loop
}

if (cDev->deviceOpen == 0)
{
cDev->deviceOwner = current->uid; // Grab it
if (usingHardware == 1)
{
if (pldRequestInterrupt (cDev))
retval = 1;

}
cDev->deviceOpent+;

file->private_data = cDev;

// Card is found... Still haven’t done anything... must set key first..
MOD_INC_USE_COUNT;

return retval;

int
crypto_release (struct inode *inode, struct file *file)
{

CryptoDev *cDev = file->private_data;

PDEBUG ("device_release(%p,%p)\n", inode, file);

// We’re now ready for our next caller

cDev->deviceOpen--;

if (cDev->deviceOpen == 0)
{
if (usingHardware == 1)
{

// Disable onboard interrupts and free interrupt line
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pldFreeInterrupt (cDev);
}
wake_up_interruptible (&cDev->openq); // awake other waiting uid’s
}
// If the module gets ’stuck’ running the ’ioctl’ program will decreast this value and allow it to be unloaded
MOD_DEC_USE_COUNT;
return O;

}

// This function is called whenever a process which
// has already opened the device file attempts to

// seek through it. It doesn’t make sense for my device

long long
crypto_lseek (struct file *file, long long offset, int whence)
{
PDEBUG ("lseek(%p)\n", file);
return -ESPIPE; // Illegal Seek
}

// This function is called whenever a process which
// has already opened the device file attempts to
// read from it.

ssize_t

crypto_read (struct file * file, char *buffer, // The buffer to fill with the data
size_t length, // The length of the buffer
loff_t * offset) // offset to the file

{

CryptoDev *cDev = file->private_data;

int retval = 0Q;

// Paranoia
if (!cDev->oFifoBuf)
1{
return -EFAULT;
}
User has to read an even number of block lengths from the device
if (length < TWAY_BLOCKSIZE - 1 || length % TWAY_BYTE_BLOCKSIZE)
{
PDEBUG ("Block size Error %s(%d) %d\n" FILE LINE length);
return -EIO; // 1/0 error possibly the best signal to return.
}

Fpp— ——3 —— ——>

// Ok there’s nothing in the Output Fifo and theres nothing in the buffer so we can do
// absolutely nothing... put the process to sleep.
while (isDeviceOutputEmpty (cDev))
{
// If the device was opened in nonblocking mode, we tell ’em to try again
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
interruptible_sleep_on (&cDev->readq);
if (signal_pending (current)) // a signal arrived
return -ERESTARTSYS; // tell the filesystem layer to handle it

// Ok now we’re getting down to it. we have data that we can read either
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// In the output Fifo or our buffer.

if (usingHardware == 1)
1{
retval = pldRead (file, buffer, length, offset);
}
if (usingHardware == 0)
{
retval = swRead (file, buffer, length, offset) ;
}

// This is ok for now, but this has to be made interrupt aware.
// hence this will probably move to an interrupt handler.
wake_up_interruptible (&cDev->writeq);

return retval;

// This function is called when somebody tries to
// write into our device file.
static ssize_t
crypto_write (struct file *file,
const char *buffer, size_t length, loff_t =* offset)

CryptoDev *cDev = file->private_data;

unsigned long retval;

// In case a NULL buffer gets passed down.. paranoia
if (!cDev->iFifoBuf)
1{
return -EFAULT;
}

// From an email with Alessandro Rubini. If the length is greater than the FiFo Length, then

// just write what we can and put the caller to sleep. return the no of bytes written.

if (length < TWAY_BLOCKSIZE - 1 || length % TWAY_BYTE_BLOCKSIZE)
{
PDEBUG ("Data needs to be even multiples of 12 bytes %d\n",
(int) length);
return -EIO; // 1/0 error possibly the best signal to return.
}

// if the input buffer is not empty then put the caller to sleep.
while (!isDeviceReadyForData (cDev))
{
// If the device was opened in nonblocking mode, we tell ’em to try again
if (file->f_flags & O0_NONBLOCK)
return -EAGAIN;

interruptible_sleep_on (&cDev->uwriteq);
if (signal_pending (current)) // a signal arrived

return -ERESTARTSYS; // tell the filesystem layer to handle it
// otherwise loop
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if (usingHardware == 1)
1{
retval = pldWrite (file, buffer, length, offset);
}
else
{
retval = swlWirite (file, buffer, length, offset);
}

return retval;

int
crypto_ioctl (struct inode *inode, struct file *file, unsigned int ioctl_num, // The number of the ioctl

unsigned long ioctl_param) // The parameter to it

WORD32 *temp = (WORD32 *) ioctl_param;
CryptoDev *cDev = file->private_data;

// Switch according to the ioctl called
switch (ioctl_num)
1{
case CRYPTO_DEC_USE_COUNT:
PDEBUG ("Decrement Use Count\n");
MOD_DEC_USE_COUNT;
break;
case CRYPTO_RESET:
PDEBUG ("Reset\n");
if (usingHardware == 1)
pldDeviceReset (cDev->dev);

break;
case CRYPTO_ENC_DEC:
cDev->encDec = ioctl_param; // 0 pass through, 1 encipher, 2 decipher
PDEBUG ("Encdec %d", cDev->encDec);
if (usingHardware == 1)
{
pldSetEncipherMode (cDev);
}
break;
case CRYPTO_ECB_CBC:
if (usingHardware == 1)
1{
pldSetStreamMode (cDev, ioctl_param);
}
break;

case CRYPTO_SET_IV:

PDEBUG ("Set IV\n");

// Receive a pointer to a message (in user space)

// and set that to be the device’s message.

// Get the parameter given to ioctl by the process
#ifdef DEBUG

cDev->softwareKeys.initialisationVector[0] = temp[0];

cDev->softwareKeys.initialisationVector[1] = temp[1];

cDev->softwareKeys.initialisationVector[2] = temp[2];
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#endif
// see /usr/src/linux/drivers/char/random.c
get_random_bytes ((void *) cDev->softwareKeys.initialisationVector, 12);
// new IV’s
cDev->encUsedIV = cDev->decUsedIV = 0;
break;
case CRYPTO_SET_KEY:
PDEBUG ("Set Key\n");
cDev->encDec = 2; // Decrypting.
// Disables IV being xored with Key
cDev->encUsedIV = cDev->decUsedIV = 1;
if (usingHardware == 1)
{
// This is very dangerous... ioctl_param is a 64 bit value
pldPrepareForWritingKey (cDev->dev);
crypto_write (file, (char *) temp, 12, 0);
}
if (usingHardware == 0)
{
// Decipher using the KAK
swKakDecipher (&cDev->softwareKeys, temp);
//swDecipher (kcDev->softwareKeys, temp) ;
// temp is now our new key :)
PDEBUG ("Keys going to be\n %081x %081x %081x\n", temp[0], temp[i],
temp[2]);
cDev->softwareKeys.encipherKey[0] =
cDev->softwareKeys.decipherKey[0] = temp[0];
cDev->softwareKeys.encipherKey[1] =
cDev->softwareKeys.decipherKey[1] = temp[1];
cDev->softwareKeys.encipherKey[2] =
cDev->softwareKeys.decipherKey[2] = temp[2];
// prepare new decryption key
swRoundInit (&cDev->softwareKeys);
// we’re done
}
cDev->encUsedIV = cDev->decUsedIV = O;
cDev->encDec = 0;
PDEBUG ("Key Changed ioctl\n");
break;
case CRYPTO_GET_IV:
{
// Return the current IV
// process - the parameter we got is a pointer,
// £ill it.
char Message[97];
u32 *tempPtr = (u32 *) cDev->softwareKeys.encipherKey;

int i = 0;

for (i = 0; i < 2; i++)

tempPtr[i] = cDev->softwareKeys.encipherKeyl[il;

Message[96] = °\07;
if (copy_to_user ((char *) ioctl_param, Message, 97))
{
PINFO ("User Space Buffer is invalid %s(%d)", __FILE__, __LINE__);
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return -EFAULT;

}
break;

default:
// It makes sense to return -EINVAL here but conformance to Posix
// requires -ENOTTY (Writing Linux Device Drivers pp 99-100)
return -ENQOTTY;

}

return SUCCESS;
}

// Module Declarations

struct file_operations crypto_Fops = {

crypto_lseek, // seek
crypto_read, crypto_write, NULL, // readdir
NULL, // select
crypto_ioctl, // ioctl
NULL, // mmap
crypto_open,
NULL, // flush
crypto_release // a.k.a. close

};

// Initialize the module - Register the character device
int

init_module ()

{

int ret_val = 0;

if (AllocateDmaBuffers ())
{
PINFO ("Failed to allocate memory %s(%d)\n", __FILE
ret_val++; // Failure

}

LINE__);

// 0K now we either have found a board or we’re using Software emulation.
// We can override the driver and tell it to use software emulation.
/// this is done by "insmod module.o mode=1"
if (mode == 0 && ret_val == 0)
{
// Can only fail with PCI errors.
if (!pldInit (&cryptoDevice))
usingHardware = 1;
else
PINFO ("Crypto Board not found, using software emulation\n");
}
else
swInit (&cryptoDevice.softwareKeys);
// Register the character device (atleast try)

ret_val =
ret_val + module_register_chrdev (MAJOR_NUM, DEVICE_NAME, &crypto_Fops);
// Success if proc_register[_dynamic] is a success,

// failure otherwise
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ret_val = ret_val + proc_register (&proc_root, &0ur_Proc_File);

// Negative values signify an error
if (ret_val < 0)

{
PINFO ("%s failed with %d\n",
"Sorry, registering the character device ", ret_val);
return 1;
}

PINFO ("The major device number is %d.\n", MAJOR_NUM);

PINFO ("To talk to the driver,\n");

PINFO ("’mknod %s c¢ %d 0’ will create the device\n", DEVICE_FILE_NAME,
MAJOR_NUM) ;

#ifdef NOSYM
EXPORT_NO_SYMBOLS;
#endif
return 0;

}

// Cleanup - unregister the appropriate file from /proc
void

cleanup_module ()

{

int ret;

proc_unregister (&proc_root, Our_Proc_File.low_ino);

// Unregister the device

ret = module_unregister_chrdev (MAJOR_NUM, DEVICE_NAME);

FreeDmaBuffers ();

// If there’s an error, report it

if (ret < 0)

PINFO ("Error in module_unregister_chrdev: %d\n", ret);

}

C.8 hardware.h

// A1l PLDA specific items in here.
// $Header: //jOn/module/hardware.h#10 $
// John Ronan, June 2000

#ifndef __hardware_h

#define __hardware_h

#include <linux/pci.h>
#include "driver.h" // needed for Crypto_Device struct

// PLDA BOARD

#define PLDA_MAX_DEV 0x01

#define PLDA_VENDOR_ID_PLD 0x1556

#define PLDA_CRYPTO_ID 0x6a71 // jr in hex.
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#define PLDA_FIFO_SIZE 1023 //biggest multiple of 3 32-bit words that will fit in 1024 words
// Used to test large buffer sizes
//#define PLDA_FIFO_SIZE 8184 //biggest multiple of 3 32-bit words that will fit in 1024 words

#define PLDA_BUFFER_SIZE (PLDA_FIFO_SIZE * 0x20)/8 // size is in bytes
#define PLDA_SOFT_BUF_SIZE Oxc // 2 ~ 12 4K, Used to figure out ’order’
// parameter for dma_pages
// Used to test large buffer sizes
//#define PLDA_SOFT_BUF_SIZE Oxf // 2 ~ 12 4K, Used to figure out ’order’

// parameter for dma_pages

// Registers

#define IOR_REG 0x40
#define TARO 0x48
#define DCRO Ox4c
#define TAR1 0x50
#define DCR1 0x54
#define TAR2 0x58
#define DCR2 0x5c
#define TAR3 0x60
#define DCR3 0x64

//PCI Commands

#define PLDA_IACK 0x0
#define PLDA_SPAECIAL Ox1
#define PLDA_IO_READ 0x2
#define PLDA_IO_WRITE 0x3
#define PLDA_MEM_READ 0x6
#define PLDA_MEM_WRITE 0x7

#define PLDA_CONFIG_READ 0xA
#define PLDA_CONFIG_WRITE OxB
#define PLDA_MEM_READ_MULT 0xC
#define PLDA_DUAL_ADDR_CYC OXD
#define PLDA_MEM_READ_LINE OxE
#define PLDA_MEM_WRI OxF

// DMA

#define PLDA_DMA_REQUEST 0x9 // PCI Core USer Guide Page 39
#define PLDA_DMA_FINISHED 0x2

#define PLDA_DMA_INPROGRESS Ox1

//

#define PLDA_INTERRUPT_RESET 0x1 // interrupt status/reset (bit 0)

#define PLDA_INTERRUPT_STATUS Ox1

#define PLDA_INTERRUPT_ENABLE 0x2 // interrupt enable (bit 1)

#define PLDA_INTERRUPT_DISABLE OxFFFFFFFD // interrupt disable

#define PLDA_ECB_MODE OxFFFFFFFB // Zero Bit for ECB Mode (bit 2)
#define PLDA_CBC_MODE 0x4 // Set Bit for CBC Mode

#define PLDA_ENCIPHER OxFFFFFFF7 // Zero Bit for Encipher (bit 3)
#define PLDA_DECIPHER 0x8 // Set bit for Decipher

#define PLDA_KEY OxFFFFFFEF // Zero Bit for Key (bit 4)
#define PLDA_DATA 0x10 // Set bit for Data 0x10

#define PLDA_CBC_RESET_HI 0x20 // Set bit to zero to reset register
#define PLDA_CBC_RESET_LOW OxFFFFFFDF // Set bit to zero to reset register

#define PLDA_RESET OxFFFFFFBF // Reset the backend..
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#define PLDA_FIF0_MASK 0x3FF
#define PLDA_IFIFO_POSN 20
#define PLDA_OFIFO_POSN 8

// bits 7 is unused

// bits 18-8 are the output fifo size
// bit 19 is out_fifo_full

// bits 30-20 are the input fifo size
// bit 31 is input fifo full

int pldInit (struct Crypto_Dev *const cDev);

ssize_t pldWrite (struct file *file, const char *const buffer, size_t length,
loff_t * offset);

ssize_t pldRead (struct file *file, char *const buffer, size_t length,
loff_t * offset);

void pldDmaFromHardware (struct Crypto_Dev *const cDev);

void pldDmaToHardware (struct Crypto_Dev *const cDev) ;

int pldRequestInterrupt (struct Crypto_Dev *const cDev);

void pldFreelnterrupt (struct Crypto_Dev *const cDev);

void pldInterrupt (int irq, void *dev_id, struct pt_regs *regs);
void pldBhInterrupt (void *data);

int pldIsDeviceReadyForData (const struct Crypto_Dev *const cDev);
int pldIsInputBufferEmpty (const struct Crypto_Dev *const cDev);
int pldIsInputFifoEmpty (const struct Crypto_Dev *const cDev);

int pldIsOutputFifoEmpty (struct Crypto_Dev *const cDev);

int pldIsOutputBufferEmpty (const struct Crypto_Dev *const cDev);

void pldIsDmaOBusy (struct pci_dev *const pciDev, int clearFlag);
void pldIsDmalBusy (struct pci_dev *const pciDev, int clearFlag);

int pldGetOutputFifoLength (struct pci_dev *const pciDev);
int pldGetInputFifoLength (struct pci_dev *const pciDev);

void pldCbcModeReset (struct pci_dev *const pciDev);

void pldDeviceReset (struct pci_dev *const pciDev);

void pldSetEncipherMode (const struct Crypto_Dev *const cDev);
void pldSetStreamMode (const struct Crypto_Dev *const cDev, const int mode) ;
void pldPrepareForWritingKey (struct pci_dev *const pciDev);

#endif // __hardware_h

C.9 hardware.c

// $Header: //jOn/module/hardware.c#1l $
// John Ronan, June 2000

#include <linux/mm.h>
#include <1inux/interrupt.h>
#include <asm/io.h> // needed for virt_to_bus()

#include <asm/uaccess.h> // copy_from/to_user
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#include "hardware.h"
#include "common.h"

// Note all pci bus access stuff is 1little endian so bring in the converstion fucntionms.
rwlock_t cDev_lock = RW_LOCK_UNLOCKED;

// Allocates ram for the buffers
// Sets up the structure for the bottom half handler.
// Takes in a pointer to the Device Specific Data Stricture
// and returns O if succesful.
int
pldInit (CryptoDev * const cDev)
{
int retVal = O;
if (!pci_present ())
{
PINFO ("No PCI Bios Present\n");
retVal = 1;
}
else
{
cDev->dev =
pci_find_device (PLDA_VENDOR_ID_PLD, PLDA_CRYPTO_ID, cDev->dev);
if (cDev->dev)
{
int i = 0;
PINFO ("Found Crypto Device Bus %i, Function %02i\n",
cDev->dev->bus->number, cDev->dev->devfn);
PINFO ("VendorID %x, DeviceID %x, IRQ %d\n", cDev->dev->vendor,
cDev->dev->device, cDev->dev->irq);
pldDeviceReset (cDev->dev);
// Fill the task structure, used for the bottom half handler
cDev->crypto_queue.routine = pldBhInterrupt;

cDev->crypto_queune.data = cDev;

for (i = 0; i < 3; i++)

cDev->softwareKeys.initialisationVector[i] = 0;

// Success
retVal = 0;
}
else
1{
// Failure
retVal = 1;

}
return retVal;

}

void
pldDeviceReset (struct pci_dev *const pciDev)
1{

u32 ior;

PDEBUG ("Resetting Back end\n");
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pci_read_config_dword (pciDev, IOR_REG, &ior);

ior = ior & PLDA_RESET;

pci_write_config_dword (pciDev, IOR_REG, ior);
}

ssize_t
pldRead (struct file *file, char *const buffer,
size_t length, loff_t * offset)

{
CryptoDev *cDev = file->private_data;
unsigned long flags;
PDEBUG ("Hardware Read\n");
write_lock_irgsave (&cDev_lock, flags);
length = cDev->outputBufferLength;
// This just checs that there is data for us to read.
if (cDev->outputBufferLength != 0)
{
// if there is no data left in the output fifo
// then we XOR the last 12 bytes of the buffer with the
// IV
if (cDev->decUsedIV == 0 && cDev->encDec == 2)
1{
int i = 0;
WORD32 *tempBuf = cDev->oFifoBuf;
PDEBUG ("Removing IV\n");
for (i = 0; i < 3; i++)
1{
tempBuf [i] =
tempBuf [i] ~ cDev->softwareKeys.initialisationVector[il;
}
cDev->decUsedIV = 1;
}
if (copy_to_user (buffer, cDev->oFifoBuf, cDev->outputBufferLength))
{
write_unlock_irqrestore (&cDev_lock, flags);
return -EFAULT;
}
cDev->outputBufferLength = 0;
if (cDev->dataPending)
{
cDev->dataPending = 0;
pldDmaFromHardware (cDev) ;
}
}
write_unlock_irqrestore (&cDev_lock, flags);
wake_up_interruptible (&cDev->writeq);
return length;
}

// prototype looks like write(). If there is no data in the kernel space buffer copy to kernel space
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// if there is no data in the input buffer copy to the PLDA device.
ssize_t
pldWrite (struct file * file, const char *const buffer,

size_t length, loff_t * offset)

CryptoDev *cDev = file->private_data;
unsigned long flags;

PDEBUG ("Hardware Write\n");
if (cDev->inputBufferLength == 0 && pldIsInputFifoEmpty (cDev))
1{

write_lock_irqsave (&cDev->lock, flags);
if (length > PLDA_BUFFER_SIZE)
length = PLDA_BUFFER_SIZE;
if (copy_from_user (cDev->iFifoBuf, buffer, length))
return -EFAULT;
// 1f we’ve just begun an encryption then we send the IV to the input fifo
PDEBUG ("Before if, encUsedIV = %d, %d\n", cDev->encUsedIV, length);
if (cDev->encUsedIV == O && cDev->encDec == 1)
1{
int i = 0;
WORD32 *tempBuf = cDev->iFifoBuf;
PDEBUG ("Adding IV\n");
cDev->encUsedIV = 1;
for (i = 0; i < 3; i++)
{
tempBuf [i] =

tempBuf [i] ~ cDev->softwareKeys.initialisationVector[il;

cDev->inputBufferLength = length;
pldDmaToHardware (cDev);
cDev->inputBufferLength = 0; // clear to write again
write_unlock_irqrestore (&cDev->lock, flags);
}

PDEBUG ("end_hardware_write\n");

// Return how much we actually wrote..

return length;

}

// Transfers data to PLDA device.
// No return value. Should I change this?
void
pldDmaToHardware (struct Crypto_Dev *const cDev)
{

u32 addr;

u32 val;

pldIsDmaOBusy (cDev->dev, 0);

// If we get here, there’s room in the Fifo

if (cDev->inputBufferLength == 0)

{
PDEBUG ("Cannot copy Input data to copy\n");

return;
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if (cDev->inputBufferLength >
(PLDA_BUFFER_SIZE - pldGetInputFifoLength (cDev->dev)))
{
PDEBUG ("Not enough Room %d \n", pldGetInputFifoLength (cDev->dev));
return;

}

// Get the physical address of memory for our dma transfer
addr = virt_to_bus (cDev->iFifoBuf);
// construct the dma control word from page 39 of PLDA PCI Core users Guide.
val =
((cDev->inputBufferLength /
4) << 8) | (PLDA_MEM_READ << 4) | PLDA_DMA_REQUEST;

if (pci_write_config_dword (cDev->dev, TARO, addr))

{
PINFO ("Error writing to TARO %s(%d)\n", __FILE__, __LINE__);
return;
}
// check all return values
if (pci_write_config_dword (cDev->dev, DCRO, val))
{
PINFO ("Error writing to DCRO %s(%d)", __FILE__, __LINE__);
return;
}
pldIsDmaOBusy (cDev->dev, 1);
return;

// If there is data in the Fifo take it out. All of it.
void
pldDmaFromHardware (struct Crypto_Dev *const cDev)
{
u32 addr = 0, val = 0, size = 0;
PDEBUG ("dma_from_hardware\n");
// If there is data in the kernel space buffer or the Fifo is empty we return
if (cDev->outputBufferLength != 0)
1{
PDEBUG ("buffer full, Size is %d\n", cDev->outputBufferLength);
cDev->dataPending = 1;
return;

}

pldIsDmaiBusy (cDev->dev, 0);
if ((size = pldGetOutputFifoLength (cDev->dev)) == 0)
1{
PDEBUG ("No data on board");
return;

}
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// PLDA PCI CORE Users guide page 39

addr = virt_to_bus (cDev->oFifoBuf);

val = (size << 8) | (PLDA_MEM_WRITE << 4) | PLDA_DMA_REQUEST;
// write to Tar register

// Checkma for ongoing transaction

if (pci_write_config_dword (cDev->dev, TAR1, addr))

{
PINFO ("Error writing to TAR1 %s(%d)\n", __FILE__, __LINE_);
return;

}

if (pci_write_config_dword (cDev->dev, DCR1, val))

{
PINFO ("Error writing to DCRO %s(%d)\n", __FILE__, __LINE_ );
return;

}

pldIsDmalBusy (cDev->dev, 1);
cDev->outputBufferLength = size * 4;
// No need to wake reader.. done afterwards.

return;

int

pldRequestInterrupt (struct Crypto_Dev *const cDev)

{
u32 ior;
// if return value is greater than O then we’ve an error.
//PDEBUG("1st devid %p\n",cDev);
if (request_irq
(cDev->dev->irq, pldInterrupt,
SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM, "crypto'", cDev))
{
PINFO ("Couldn’t grab interrupt %s(%d)", __FILE__, __LINE__);
return 1;
}
pci_read_config_dword (cDev->dev, IOR_REG, &ior);
ior = ior | PLDA_INTERRUPT_ENABLE;
pci_write_config_dword (cDev->dev, IOR_REG, ior);
return O;
}
void

pldFreelInterrupt (struct Crypto_Dev *const cDev)

{
u32 ior;
pci_read_config_dword (cDev->dev, IOR_REG, &ior);
ior = ior | (PLDA_INTERRUPT_RESET & PLDA_INTERRUPT_DISABLE);
pci_write_config_dword (cDev->dev, IOR_REG, ior);
free_irq (cDev->dev->irq, cDev);
PDEBUG ("IRQ, Should now be free %d\n", cDev->dev->irq);
}
// We can count interrupts with this... delete later.

static atomic_t hardwareint;
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void

pldInterrupt (int irq, void *dev_id, struct pt_regs *regs)

{
u32 ior;
CryptoDev *cDev = dev_id;
pci_read_config_dword (cDev->dev, IOR_REG, &ior);
// Make sure the interrupt belings to us.
if (!(ior & PLDA_INTERRUPT_STATUS))

return;

//Disable and reset the interrupt
ior = ior & (PLDA_INTERRUPT_DISABLE | PLDA_INTERRUPT_RESET) ;
pci_write_config_dword (cDev->dev, IOR_REG, ior);
// schedule the bottom half handler to run and do the work for us.
queue_task (&cDev->crypto_queue, &tq_immediate);
mark_bh (IMMEDIATE_BH);
atomic_inc (&hardwareint);
return;

}

void

pldBhInterrupt (void *data)

{
CryptoDev *cDev = data;
u32 ior;
unsigned long flags;
write_lock_irqgsave (&cDev_lock, flags);
pldDmaFromHardware (cDev);
pldDmaToHardware (cDev);
write_unlock_irqrestore (&cDev_lock, flags);
wake_up_interruptible (&cDev->writeq);
wake_up_interruptible (&cDev->readq);
// Re-enable interrupts
pci_read_config_dword (cDev->dev, IOR_REG, &ior);
ior = ior | PLDA_INTERRUPT_ENABLE;
pci_write_config_dword (cDev->dev, IOR_REG, ior);
return;

}

// is the kernel input buffer empty?
int
isInputBufferEmpty (const struct Crypto_Dev *const cDev)
{
unsigned long flags;
read_lock_irgsave (&cDev_lock, flags);
if (cDev->inputBufferLength == 0)
1{
read_unlock_irqrestore (&cDev_lock, flags);
return 1;
}
else
{
read_unlock_irqrestore (&cDev_lock, flags);
return 0;

}
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// is the kernel input buffer empty?
int
pldIsOutputBufferEmpty (const struct Crypto_Dev *const cDev)
{
unsigned long flags;
read_lock_irqgsave (&cDev_lock, flags);
if (cDev->outputBufferLength == 0)
{
read_unlock_irqrestore (&cDev_lock, flags);
return 1;
}
else
{
read_unlock_irqrestore (&cDev_lock, flags);
return 0;

}

int
pldIsDeviceReadyForData (const struct Crypto_Dev *const cDev)
{
return pldIsInputFifoEmpty (cDev);
}

// is the kernel input buffer empty?
int
pldIsInputFifoEmpty (const struct Crypto_Dev *const cDev)
{
u32 ior;
pci_read_config_dword (cDev->dev, IOR_REG, &ior);
if ((ior >> PLDA_IFIFO_POSN & PLDA_FIFO_MASK) == 0)
return 1;
else

return 0;

// return 1 if buffer is empty O otherwise
int
pldIsOutputFifoEmpty (struct Crypto_Dev *const cDev)
{
u32 ior;
pci_read_config_dword (cDev->dev, IOR_REG, &ior);
// If the buffer is empty then return 1
if ((ior >> PLDA_QOFIFO0_POSN & PLDA_FIFQ0_MASK) == 0)
return 1;
else

return 0;

// waits for the dma channel to become free.

void

pldIsDmaOBusy (struct pci_dev *const pciDev, int clearFlag)
{
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u32 dma_status = 0;
if (clearFlag == 0)
1{
doq{
pci_read_config_dword (pciDev, DCRO, &dma_status);
if (dma_status & PLDA_DMA_INPROGRESS)
PINFO ("Dma channel O is busy\n");
}
while ((dma_status & PLDA_DMA_INPROGRESS));
}

if (clearFlag == 1)
{
do{
pci_read_config_dword (pciDev, DCRO, &dma_status);
}
while (!(dma_status & PLDA_DMA_FINISHED));
pci_write_config_dword (pciDev, DCRO, (dma_status & PLDA_DMA_FINISHED));

}

// waits for the DMA channel to become free.

void

pldIsDmalBusy (struct pci_dev *const pciDev, int clearFlag)
{

u32 dma_status = 0;
if (clearFlag == 0)
{
do{
pci_read_config_dword (pciDev, DCR1, &dma_status);
if (dma_status & PLDA_DMA_INPROGRESS)
PINFO ("Dma channel 1 is busy\n");
}
while ((dma_status & PLDA_DMA_INPROGRESS));
}

if (clearFlag == 1)
1{
pci_read_config_dword (pciDev, DCR1, &dma_status);
do{
pci_read_config_dword (pciDev, DCR1, &dma_status);
}
while (!(dma_status & PLDA_DMA_FINISHED));
pci_write_config_dword (pciDev, DCR1, (dma_status & PLDA_DMA_FINISHED));
}
return;

}

// Returns the length of the output Fifo
int
pldGetOutputFifoLength (struct pci_dev *const pciDev)
1{
u32 ior;

int length;
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pci_

read_config_dword (pciDev, IOR_REG, &ior);

length = (ior >> PLDA_OFIFO_POSN & PLDA_FIFO_MASK) ;

return length;

}

// Returns the length of the input Fifo

int

pldGetInputFifoLength (struct pci_dev *const pciDev)

{
u32
int

pci_

ior;
length;
read_config_dword (pciDev, IOR_REG, &ior);

length = (ior >> PLDA_IFIFO_POSN & PLDA_FIFO_MASK) ;
return length * 4; // bytes

void

pldCbcModeReset (struct pci_dev *const pciDev)

{
u32

pei_

ior

pci_

ior;

read_config_dword (pciDev, IOR_REG, &ior);
= ior | PLDA_CBC_RESET_HI;
write_config_dword (pciDev, IOR_REG, ior);

return;

void

pldSetEncipherMode (const struct Crypto_Dev *const cDev)

{
u32

ior = 0;

if (cDev->encDec == 1) // Encrypting

{

pci_read_config_dword (cDev->dev, IOR_REG, &ior);
if (!(ior & PLDA_DECIPHER))
{
PDEBUG ("Previously encrypting\n");
//1f we wer previously enciphering
// Toggle the PLDA_CBC_RESET line
pldCbcModeReset (cDev->dev);
}
// Check if the last operation was also an encrypt
// 1f so then we toggle the cbc_reset flag
// Set the board to encipher
ior = (ior & PLDA_ENCIPHER) | PLDA_DATA;
pci_write_config_dword (cDev->dev, IOR_REG, ior);

if (cDev->encDec == 2) // Decrypting

{

pci_read_config_dword (cDev->dev, IOR_REG, &ior);
// Check if the last operation was also a decrypt
// if so then we toggle the cbc reset
if (ior & PLDA_DECIPHER)
{
pldCbcModeReset (cDev->dev);

177
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}
ior = ior | (PLDA_DECIPHER | PLDA_DATA);
pci_write_config_dword (cDev->dev, IOR_REG, ior);
}

void
pldSetStreamMode (const struct Crypto_Dev *const cDev, const int mode)

{
u32 ior = 0;
if (mode == 0) // ECB mode
{
pci_read_config_dword (cDev->dev, IOR_REG, &ior);
ior = ior & PLDA_ECB_MODE;
PDEBUG ("Ioctl - ECB_MODE\n");
pci_write_config_dword (cDev->dev, IOR_REG, ior);
}
if (mode == 1) // CBC mode
{
pci_read_config_dword (cDev->dev, IOR_REG, &ior);
ior = ior | PLDA_CBC_MODE;
pci_write_config_dword (cDev->dev, IOR_REG, ior);
PDEBUG ("Ioctl - CBC_MODE\n");
}
}
void

pldPrepareForliritingKey (struct pci_dev *const pciDev)

{
u32 ior = 0;
pldDeviceReset (pciDev);
// Key, ECB Mode, deciphering.
pci_read_config_dword (pciDev, IOR_REG, &ior);
ior = (ior & PLDA_KEY & PLDA_ECB_MODE) | PLDA_DECIPHER;
pci_write_config dword (pciDev, IOR_REG, ior);
}

C.10 mode.c

// $Header: //jOn/module/mode.c#5 $
// John Ronan, June 2000

#include <fcntl.h> /* open x/
#include <unistd.h> /* exit */
#include <sys/ioctl.h> /* ioctl */

#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <errno.h>
#include <sys/stat.h>

#include "driver.h"
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#define BUF 12

void

ioctl_encDec (int file_desc, int encDec)

{
int ret_val;
ret_val = ioctl (file_desc, CRYPTO_ENC_DEC, encDec);
if (ret_val < 0)

{
printf ("ioctl_encDec failed:%d\n", ret_val);
exit (-1);
}
}
void
ioctl_ecbCbc (int file_desc, int ecbcbc)
{

int ret_val;
ret_val = ioctl (file_desc, CRYPTO_ECB_CBC, ecbcbc);
if (ret_val < 0)
{
printf ("ioctl_ecbcbc failed:%d\n", ret_val);
exit (-1);
}

void
ioctl_set_IV (int file_desc, WORD32 * initialisationVector)
{
int ret_val;
ret_val = ioctl (file_desc, CRYPTO_SET_IV, initialisationVector);
if (ret_val < 0)
{
printf ("ioctl_Set_IV:%d\n", ret_val);
exit (-1);
}

void
ioctl_set_key (int file_desc, WORD32 * initialisationVector)
{
int ret_val;
ret_val = ioctl (file_desc, CRYPTO_SET_KEY, initialisationVector);
if (ret_val < 0)
{
printf ("ioctl_Set_Key:%d\n", ret_val);
exit (-1);
}

void

ioctl_reset (int file_desc)

{
int ret_val;
ret_val = ioctl (file_desc, CRYPTO_RESET);
if (ret_val < 0)
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{
printf ("reset failed %d", ret_val);
exit (1);

}

void
ioctl_decUseCount (int file_desc)
{
int ret_val;
ret_val = ioctl (file_desc, CRYPTO_DEC_USE_COUNT);
if (ret_val < 0)
{
printf ("ioctl_hardreset failed:%d\n", ret_val);
exit (-1);
}
}
void
usage (char **argv)
{
printf
("mode <0[1121315>\n\t0 = Reset\n\tl = Encipher\n\t2 = Decipher
\n\t3 = ECB-Mode\n\t4 = CBC-Mode\n\t5 = Set Key\n\t6 = Set IV");
#ifdef CRYPTO_DEBUG
printf ("\n\t9 = DEC_USE_COUNT");
#endif
printf ("\n\tOR\npld_read <name> <length>\n");
printf ("pld_write <name>\n");
}

int
main (int argc, char **argv)

{

int file_desc;

int mode = 0;

int infp = 0;

int outfp = 0;

int size = 0;

unsigned char *buf = 0;
unsigned char *tempBuf = 0;
int len;

int result;

WORD32 iv[12];

WORD32 k1[12];

k1[0] = 0xf3d7260F;
k1[1] = 0x3cab52052;
k1[2] = Ox12aeba79;

iv[0] = 0x00000001;
iv[1] = 0x00000001;
iv[2] = 0x00000001;

// Open the device
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file_desc = open (DEVICE_FILE_NAME, O_RDWR);

if (file_desc < 0)

{

if (strncmp (argv[0], "mode", 5) ==

{

if (strncmp (argv[0], "mode", 5) == 0 && argc

{

printf ("Can’t open device file

exit

(-1);

printf ("argv is %s\n", argv[0]1);

usage (argv);

mode = *argv[1] - 48;
switch (mode)

1{

case 0:
printf ("Reset\n");
ioctl_reset (file_desc);
break;

case 1:
printf ("Encrypt\n");
ioctl_encDec (file_desc, 1);
break;

case 2:
printf ("Decrypt\n");
ioctl_encDec (file_desc, 2);
break;

case 3:
printf ("ECB\n");
ioctl_ecbCbc (file_desc, 0);
break;

case 4:
printf ("CBC\n");
ioctl_ecbCbc (file_desc, 1);
break;

case b5:
printf ("Set Key\n");
ioctl_set_key (file_desc, k1);
break;

case 6:

printf ("Set Key\n");
ioctl_set_IV (file_desc, iv);

break;

#ifdef CRYPTO_DEBUG
case 9:

printf ("Decrementing MOD_USE_COUNT");

ioctl_decUseCount (file_desc);

break;

0 && argc

: %s\n", DEVICE_FILE_NAME) ;

=1

== 2)
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#endif
default:
printf ("Default\n");
}

if (strncmp (argv[0], "pld_read", 9) == O && argc == 3)
1{
printf ("pld_read: ");

// Open device for reading.

if (
(outfp =
open (argv[1], O_CREAT | O_EXCL | O_WRONLY,
S_IRUSR | S_IWUSR)) < 0)
{
printf ("Cannot open %s\n", argv[1]);
exit (1);
}

printf ("size %d ", atoi (argv[2]));
len = atoi (argv[2]);

buf = malloc (sizeof (char *) * len);

if (!buf)
{
printf ("Couldn’t alloc memory\n");
exit (1);

tempBuf = buf;
// read the data from the device
while (len > 0)
1{
result = read (file_desc, tempBuf, len);
if (result < 0)

{
if (errno == EINTR)
{
printf ("EINTR\n");
}
if (errno != EINTR)
{
printf ("System Callinterrupted reading file (%s) (4d)",
strerror (errno), __LINE__);
exit (1);
}
}
else
1{

tempBuf += result;
len -= result;

//write it out to drive
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len = atoi (argv[2]);
tempBuf = buf;
// write the data to the file
while (len > 0)
{
result = write (outfp, tempBuf, len);
if (result < 0)
1{
if (errno == EINTR)
{
printf ("EINTR\n");
}
if (errno != EINTR)
{
printf ("System Callinterrupted reading file (%s) (4d)",

strerror (errno), __LINE__);

exit (1);
}
}
else
{
tempBuf += result;

len -= result;

}
printf ("%s closing\n", argv[0]);
close (infp);
close (outfp);
free (buf);

if (strncmp (argv[0], "pld_write", 10) == 0 && argc == 2)
1{
printf ("pld_write: ");
// Open device for reading.
if ((infp = open (argv[1], O_RDONLY)) < 0)
{
printf ("Cannot open %s", argv[il);
exit (1);

len = lseek (infp, O, SEEK_END);
size = len;

lseek (infp, O, SEEK_SET);
printf ("size %d ", len);

buf = malloc (sizeof (char *) * len);

if (!buf)
{
printf ("Couldn’t alloc memory\n'");
exit (1);

tempBuf = buf;
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// read the data from the file
while (len > 0)

{
result = read (infp, tempBuf, len);
if (result < 0)
1{
if (errno == EINTR)
{
printf ("EINTR\n");
}
if (errno != EINTR)
{
printf ("System Callinterrupted reading file (%s) (%d)",
strerror (errno), __LINE__);
exit (1);
}
}
else
{
tempBuf += result;
len -= result;
}
}

//write it out to drive
len = size;
tempBuf = buf;
// write the data to the device
while (len > 0)
1{
result = write (file_desc, tempBuf, len);
if (result < 0)
1{
if (errno == EINTR)
{
printf ("EINTR\n");
}
if (errno !'= EINTR)
{
printf ("System Callinterrupted reading file (%s)\n",
strerror (errno));
exit (1);
}
}
else
{
tempBuf += result;

len -= result;

}
printf ("%s closing\n", argv[0]);
close (infp);
close (outfp);
free (buf);
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return 0;

C.11 Makefile

# Makefile for a basic kernel module
# $Header: //jOn/module/Makefile#6 $
# John Ronan June 2000

CC=gcc

LINK= gcc -g
MODCLFAGS =
LDFLAGS =

all: module.o mode
ifeq ($HOSTTYPE,i386)
MODCFLAGS = -D__KERNEL__ -Wall -Wstrict-prototypes -02 -fomit-frame-pointer -pipe \
-DMODULE -DLINUX -DNOSYM #-DCRYPTO_DEBUG
LDFLAGS = elf_i386
else
MODCFLAGS = -D__KERNEL__ -Wall -Wstrict-prototypes -02 -fomit-frame-pointer -pipe \
-mno-fp-regs -ffixed-8 -mcpu=evb -Wa,-mev6 -DMODULE -DNOSYM #-DCRYPTO_DEBUG
LDFLAGS = elf64alpha

endif
module.o: driver.o 3way.o software.o hardware.o
1d -m $(LDFLAGS) -r -o module.o driver.o 3way.o software.o hardware.o
driver.o: driver.c driver.h hardware.h software.h common.h /usr/include/linux/version.h
$(CC) $(MODCFLAGS) -c driver.c
hardware.o: hardware.c hardware.h driver.h common.h /usr/include/linux/version.h
$(CC) $(MODCFLAGS) -c hardware.c
software.o: software.c software.h 3way.h software.h driver.h /usr/include/linux/version.h
$(CC) $(MODCFLAGS) -c software.c
3way.o: 3way.c 3way.h common.h /usr/include/linux/version.h
$(CC) $(MODCFLAGS) -c 3way.c
mode: mode.c driver.h
$(CC) $(MODCFLAGS) mode.c -o mode
clean:

@-rm -f *.0 core module.o mode >& /dev/null

C.12 testenc.sh

#!/bin/sh

# These 4 commands
mode 5 # set key
mode 6 # set IV
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mode 4 # cbc mode
mode 1 # encipher
pld_write $1 &> /dev/null&
pld_read $lenc $1

C.13 testdec.sh

#!/bin/sh

mode 5 # set key

mode 6 # set IV

mode 4 # cbc mode

mode 2 # decipher

pld_write $lenc &> /dev/null &
pld_read $1dec $1

# $1 is the file name and length
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