
Evaluation of a DTN Convergence Layer for the AX.25
Network Protocol

John Ronan
Telecommunications Software

& Systems Group
Waterford Institute of

Technology
Waterford

Ireland
jronan@tssg.org

Kristian Walsh
Telecommunications Software

& Systems Group
Waterford Institute of

Technology
Waterford

Ireland
kwalsh@tssg.org

Darren Long
Bury St Edmunds

England
darren.long@mac.com

ABSTRACT
The AX.25 Link Access Protocol for Amateur Packet Radio is a
data link layer protocol derived from the ITU-T X.25 data link pro-
tocol with modifications for use by amateur radio operators. One of
the authors has produced a prototype AX.25 connected mode DTN
Convergence Layer (CL) based on the existing DTN2 reference im-
plementation. Initial testing of this implementation was undertaken
on Linux in order to compare the performance of the implementa-
tion with the performance of native AX.25 links. Initial results ap-
pear to indicate that the current prototype can be up to 25 percent
more efficient than using the Linux TCP/IP over AX.25 implemen-
tation in certain circumstances. The experimental results also re-
veal situations where obvious improvements can still be made to
the implementation.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Data communica-
tions

General Terms
Performance, Experimentation

Keywords
Delay Tolerant Network, DTN, AX.25

1. INTRODUCTION
Amateur Radio emergency communications networks have used

the AX.25 protocol [3] for many years. At its peak utilisation, dur-
ing the late 1980s and early 1990s, the worldwide AX.25 Bulletin
Board System (BBS) network moved email and other messages
over terrestrial and satellite (AO-51, GO-32 and others) links across
long distances, on a store-and-forward network.

Since the growth of the Internet, most of this infrastructure is no
longer in place, with much of the previously AX.25 links replaced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiOpp ’10, February 22-23, 2010, Pisa, Italy.
Copyright 2010 ACM 978-1-60558-921/10/02 ...$10.00.

Bundle Protocol
Application

Native Protocol
Suite A

Transport
Network

Data Link

Bundle
Protocol

 Convergence
Layer: A_CL

Bundle
Protocol

Native Protocol
Suite A

Transport
Network

Data Link

Convergence
Layer: A_CL

Bundle
Protocol

Native Protocol
Suite B

Transport
Network

Data Link

 Convergence
Layer: B_CL

Bundle Protocol
Application

Data
Network
protocol

A

Native Protocol
Suite B

Transport
Network

Data Link

Convergence
Layer: B_CL

Bundle
Protocol

Native Protocol
Suite B

Transport
Network

Data Link

Convergence
Layer: A_CL

Data
Network,
protocol

B

Data
Network,
protocol

B

Figure 1: DTN network stacks in a heterogenous network. The
DTN Bundle Protocol accesses the underlying transport net-
works using Convergence Layers which map existing protocol
suites to a common set of functions.

by fixed-line TCP/IP [15] [14] links between systems. Other AX.25
networks have been replaced over the last number of years by much
cheaper IEEE 802.11 point-to-point links.

Recently, however, there has been a resurgence of interest in the
AX.25 protocol due to the deployment of the Winlink 2000 [20]
system, which commonly uses AX.25 as the “last mile” between an
internet-connected gateway and a radio network. However, in the
event of a failure anywhere in the chain connecting the radio equip-
ment to the core Winlink network, the client has to be manually
reconfigured to use an alternate gateway (or another mechanism) to
connect to the Winlink core servers. This need for manual configu-
ration precludes the use of Winlink in ad hoc radio networks.

In recent years, DARPA and the Internet Research Task Force
have developed an architecture [5] and protocol [17] for Delay
or Disruption Tolerant Networking (DTN) . DTN uses in-network
or node-level storage to provide an overlay network on top of a
number of heterogeneous network infrastructures (see figure 1).
Node-level storage allows application messages—called bundles in
the DTN architecture—to be stored at DTN gateways for arbitrary
lengths of time while waiting for a onward path to become avail-
able. This differs from IP’s “store-and-forward” model where the
IP packets must either be forwarded immediately or dropped.

Because DTN operates as an overlay network over transport lay-
ers, it allows for different transport protocols to be used at different
points along the path. This allows the selection of transport pa-
rameters suitable for the local environment. In the context of the
DTN overlay network, the various transport layers used between
DTN routers are termed Convergence Layers. This use of Conver-
gence Layers provides a framework for interconnecting heteroge-

neous network segments.
In this work, we explore the suitability of the existing AX.25 net-

work infrastructure for use as part of a more general ad hoc emer-
gency communications network. A DTN Convergence Layer for
the AX.25 protocol was developed to allow AX.25 nodes to par-
take in DTN transfers. Tools [9] already exist to use a DTN net-
work for the transport of email that present a standard SMTP [13]
and POP [4] interface to a user’s existing email application.

However, before considering AX.25 networks for use as links
in a DTN network, it was necessary to evaluate the performance
characteristics of AX.25 itself when used as the transport for DTN
traffic. To this end, we examined the throughput of DTN trans-
fers over point-to-point radio links using the AX.25 transmission
protocol.

AX.25 links are normally low bandwidth (1200 bits per second is
still a common configuration), and so it was essential to determine
the overhead incurred by the use of DTN, and how a DTN solution
compared to existing transfer mechanisms. For this reason, tests
were also performed using not only the DTN protocol, but also na-
tive AX.25 and TCP/IP-over-AX.25 in order to be able to perform
a meaningful comparison.

2. AMATEUR RADIO COMMUNICATIONS
NETWORKS

2.1 Packet BBS Systems
It is worth noting that in 1985, Karn et al [11] describe what work

will be required in AX.25 networks to implement distributed pro-
tocols to allow for automatic exchange of connectivity information
across heterogeneous ad hoc connections that have a wide range of
performance levels. The following passage is particularly relevant:

“In addition, given the nature of the amateur ser-
vice, some links might have some rather unusual char-
acteristics such as asymmetries in station RF perfor-
mance and part-time availability due to changing prop-
agation conditions or satellite visibility. At the same
time, the amount of storage needed to store routing ta-
bles in each node must be minimized in order to keep
costs down”

In the heyday of the amateur packet network, this was done by
building an extensive AX.25 radio network, including satellite gate-
ways on every continent, all using protocols exclusive to Amateur
Radio. Long term store-and-forward systems formed an important
part of this network’s infrastructure, especially for satellite gate-
ways. Today this network still exists, albeit as islands of AX.25
traffic interconnected via TCP/IP tunnels.

2.2 Winlink 2000
One existing approach to integrate the Amateur Radio data net-

work into the wider Internet is the “Winlink 2000” global radio
email system [20]. Winlink 2000 is designed to provide access to
email to and from radio networks. To do so, the system comprises
five mirrored Common Message Servers (CMS) distributed around
the globe, whose purpose is to exchange information between the
Winlink 2000 network and the broader internet. Each of these CMS
nodes serves a number of local Radio Message Servers (RMS),
which provide the access points for end-users. Despite support for
some additional services (e.g., position broadcast and weather re-
ports), Winlink 2000 is primarily an email service. It provides a
mechanism for exchange of SMTP messages between the internet

and the AX.25 data network, but this is performed at the applica-
tion level of the network stack; it is not possible to exchange traffic
with arbitrary ports on an internet host.

Winlink 2000 is a statically-configured network: although every
RMS is functionally identical, and interchangeable in use, clients
must be configured by their operator to speak to a specific one.
While disruption tolerance is achieved in the core network by mir-
roring the five CMS hosts, the “last mile” still relies on a circuit-
switched transport model which requires operator intervention in
the event of disruption.

3. DTN CONVERGENCE LAYER IMPLE-
MENTATION

The DTN2 reference implementation [8] is provided as a flexible
software framework for experimentation, extension and real-world
deployment of Delay Tolerant Networking (DTN) systems. We
have taken this framework and used it to produce a Convergence
Layer (CL) for the AX.25 networking protocol.

The AX.25 Connected Mode Convergence Layer (AX.25CM-
CL) is a convergence layer implementation for AX.25 sockets on
the Linux platform.

The AX.25CM-CL transports the DTN “bundles” described by
RFC-5050 [17] directly over an AX.25 connection that operates
solely as a Layer 2 protocol. In this respect, the AX.25 Conver-
gence Layer (CL) is similar to the existing Bluetooth CL.

Currently, the only major difference between the AX.25CM-CL
and the TCP-CL [7]Protocol is that the AX.25 implementation is
extended to include a 32-bit CRC appended to each TCP-CL Pro-
tocol segment. This is necessary in order to ensure that any cor-
ruption of AX.25 KISS [6] data frames can be detected, as well as
providing additional means to detect protocol errors introduced by
the implementation.

On occasion, malformed AX.25 packets were sent into the Con-
vergence Layer, which was placed into an invalid state as a result.
At its most benign, this invalid state caused the convergence layer
link to be dropped (and subsequently re-established, if viable); in
more extreme cases, the entire protocol daemon (dtnd) would crash.
After adding the CRC32 checksum to each transmitted segment,
the AX.25CM-CL now detects malformed messages and terminates
the connection, assuming that the connection will be re-established
and transfer will be resumed, if connectivity permits.

3.1 Capabilities and Limitations
The AX.25CM-CL code has been in active development since

January 2007, when it was first branched from the TCP-CL and
oasys support classes. Currently, the AX.25CM-CL allows point-
to-point links between two peers, and also paths containing a single
repeater operating at the AX.25 link layer.

At time of writing, no announcement or discovery mechanism
had been implemented and therefore links have to be manually con-
figured and initiated.

4. AX.25 THEORETICAL PERFORMANCE
In assessing the performance of the DTN implementation, it is

useful to consider the theoretical performance limits of the under-
lying data transport. In this case, that transport is the AX.25 Link
Access Protocol for Amateur Packet Radio [3], a data link layer
protocol derived from the ITU-T X.25 data link protocol [10] with
modifications for use by Amateur Radio operators.

4.1 Experimental settings

Table 1 lists the significant parameters of the radio link used in
these experiments.

Table 1: Characteristics of experimental transfer
parameter value
link speed, bit/s 1200
Tslot, s 0.020
Ttxdelay , s 0.150
Ttail, s 0.020
p 0.250
data length, bytes 7182

4.2 Model Transfer times
AX.25 is most commonly deployed on half-duplex radio links,

with link access managed using a p-persist CSMA algorithm [18]
[12]. Transfer times on such networks have a small probabilistic
component, as a random delay is used for Media Access control.
To minimise the effect of collisions on the experimental results, a
point-to-point link was used on an unused frequency, and the fre-
quency was continually monitored for any other users during the
running of all tests. The probabilistic factor, p, was set to 0.25,
which entails an average delay of 0.25Tslot to each transmission.

Tframe, the transmission time, in seconds, for one data frame is
obtained using the following formula:

Tframe =
(bytes× 8.004) + 160

(bitrate)

where 160 is the number of bits comprising the AX.25 preamble,
header, check sequence, and end-of-frame marker.

The value 8.004 is used to take into account the additional bits
stuffed into payload data octets with the value 01111110. Assum-
ing a uniformly distributed payload byte values, such extra bits will
occur on average once in every 256 octets.

Each acknowledgement is a single transmission of a frame with
zero payload bits. Allowing for transmission setup and release
times, Tack, the average time required to send an acknowledgement
is:

Tack = Ttxdelay +
160

bitrate
+ Ttxtail + p× Tslot

The number of acknowledgements sent depends on maxframe,
the acknowledgement window size for the link. Also, where a
maxframe of greater than 1 is chosen, the transmitter is allowed
to send multiple data frames in one transmission, which eliminates
all but one set of Ttxdelay and Ttxtail delays in each group of
maxframes frames, as illustrated in Figure 2(b).

As each acknowledgement window of data packets is sent in a
single transmission, and each such transmission will generate one
acknowledgement, the following formula for transmission time of
a message containing frames number of data frames can be easily
derived:

windows = Ceiling(
frames

windowsize
)

Tmessage = frames× Tframe

+ windows×
(Ttxdelay + Ttxtail + p× Tslot + Tack)

t

txdelay txtail

t

txdelay

DATA 1

(a) Window Size = 1

(b) Window Size = 3

Ack DATA 2 Ack

DATA 1 DATA 2 DATA 3

txtail

Ack

t

Figure 2: Effect of increased window sizes on link efficiency.

For a window size of 1, each packet requires an acknowledge-
ment, which will negatively affect the throughput of the link. The
nature of the physical link used means that these acknowledgement
frames incur a very high cost. On a radio data link, each transmis-
sion, be it a single frame, or a group of frames, must also include an
initial period of time, Ttxdelay to allow the transmitter to stabilise
before data can be sent. Figure 2 shows how increasing the window
size can reduce the amount of time required to send data.

Using the experimental parameters in Table 1, we calculate frame
transmission time for a transfer of n 255-byte frames as follows.
First, the transfer time for a single frame, without link stabilisation
or release delays, Tframe, is determined, as this is constant regard-
less of the size of the acknowledgment window:

Tframe =
(255× 8.004) + 160

1200
= 1.933971s

Tack, the time required to send an acknowledgement, is also con-
stant for all window sizes:

Tack = Ttxdelay +
160

bitrate
+ Ttxtail + p× Tslot

= 0.150 +
160

1200
+ 0.25× 0.020

= 0.308s

Using these values, and the formula for Tmessage, previously,
the values in Table 2 were obtained.

Table 2: Theoretical minimum transfer times, raw AX.25
transfer

Window timings from
size model (seconds)
1 67.2
2 60.4
3 58.0
4 57.1
5 56.1
6 55.6
7 55.6

* values are same for window sizes of 6 or 7 as both settings
generate only 5 acknowledgement frames for a 7182-byte transfer

It should be noted that these figures represent peak performance
of the link, and do not account for collisions, interference or the de-
lay incurred by the transfer of data between the host system and the
AX.25 radio modem over RS-232 [16] serial interfaces. As these
model figures do not take account of these additional overheads or
the time required to process higher-level protocol commands, none

of the experimental results were expected to reach this level of per-
formance.

5. EXPERIMENTAL NETWORK

5.1 BBS and KISS mode
Traditionally, AX.25 Terminal Node Controller (TNC) devices

operate interactively. A human user connects, and issues com-
mands to a remote TNC. The remote TNC presents itself as a sim-
ple Bulletin Board System, and is thus said to be operating in “BBS
Mode”. The TNC firmware manages the AX.25 protocol stack, and
runs a small set of applications, including a simple message/email
server.

Some AX.25 Terminal Node Controller (TNC) devices can also
be operated in “KISS” mode, an acronym of “Keep It Simple, Stupid”
[6]. This mode allows host software to bypass the higher-level
AX.25 implementation built in to the TNC equipment, and use the
TNC simply as a means of sending and receiving Layer 2 frames.
Using KISS mode requires that all higher functions of the AX.25
protocol be implemented on the host system, but this also allows
the host to have greater control over how the AX.25 implementa-
tion operates.

The performance of the TNC equipment was recorded in both
BBS and KISS modes.

5.2 Network
Figure 3 shows the experimental network used to measure the

system performance.

Half-duplex radio channel

SOURCE DESTINATION

MONITOR

TNC TNC

TNC

Figure 3: Experimental setup used to measure AX.25 perfor-
mance. Source and Destination devices were connected on a
single RF data channel (i.e., half-duplex)

As the AX.25 TNC and radio transmitters used for Source and
Destination nodes were not identical, transfers were performed in
both directions in an effort to minimise the effects of using different
equipment.

Equipment used for the source node was a Yaesu FT-847 tran-
sciever, with a SCS-PTCIIex radio modem. For the destination
node a Yaesu FT-1500M transciever and Kantronics KPC3+ radio
modem were used. The monitor used a Kenwood TH-D7 with in-
tegrated radio modem. The antennas were in close proximity (less
than 10 metres), thus power levels were kept low at 5 watts or less
where possible. All nodes were static throughout all testing.

A third transceiver and TNC was used to monitor the radio chan-
nel to log all transmitted AX.25 frames and allow for the measuring
of transfer times.

To obtain a valid set of readings, five transfers of the candidate
test file were completed for each setting of the AX.25 window pa-
rameter (maxframe). These readings were then combined using
a simple average in order to give an indicative time for the given
window setting.

The test file used contained 7182 bytes1 of ASCII-encoded text
1This was the size of a ASCII file containing Two-Line Element

data. For BBS mode tests, this data file was pre-loaded into the
source TNC’s built in Bulletin Board System (BBS) server.

For testing of the linux AX.25 implementation, we used a combi-
nation of ax25d (part of the Linux AX25 [1] subsystem) to respond
to the AX.25 connection request, and uronode [19] to deal with the
connection itself. The axmail [2] program was used to access a
local SMTP mailbox to which the test file had been pre-loaded.

When it came to testing using TCP/IP, both TNCs were first con-
figured into KISS mode and then the Maximum Transmission Unit
(MTU) and window sizes were set according to Table 3 on the
Linux host before each transfer was begun. This was to ensure
coherence between the AX.25 and TCP/IP windowing. Transfer of
the file data for TCP/IP tests was performed using the FTP protocol.

Table 3: TCP/IP test settings
Window Size MTU (Bytes) TCP Window (Bytes)

1 255 255
2 255 510
3 255 765
4 255 1020
5 255 1275
6 255 1530
7 255 1785

For the DTN test, The dtncp utility was used to send the test file.
Obviously the application-layer protocols used by the ftp, axmail

and dtncp tools all add their own small amount of overhead to the
file transfer (above that already added by AX.25). However, it was
considered to be valid to include this in the final results, as the
amount of additional data is quite small in relation to the file being
transferred, and will be representative of “real world” usage.

That said, for the purposes of generating comparable data, great
lengths were taken to make sure that there were no collisions at
the MAC layer2, thus removing one unknown. Consequently, we
are confident that the figures obtained are a true and accurate re-
flection of the performance of the protocols tested in an ideal RF
environment.

6. RESULTS
Tables 4 and 5 list the results obtained for transfers between the

two TNC devices. The recorded values are within ±2% (on the
worst case) of the mean with a confidence interval of 99%.

7. DISCUSSION

7.1 AX.25 Acknowledgement timeouts
The “Both KISS” entries in Tables 4 and 5 contain some anoma-

lous timings, marked with an asterisk. Following investigation of
the logs, it was discovered that these are due to the message trans-
fer ending with a window containing only one or two frames. In
these cases, the receiver does not send an acknowledgement imme-
diately, but instead waits to see if any more frames arrive that would
fill the window. As no such frames follow, the receiver times out,
and acknowledges what it has received.

(TLE) sets for various amateur radio satellites. These TLEs de-
scribe the orbit of an earth satellite. The file happened to be on the
source machine, and seemed a reasonable starting point
2great care was taken to monitor the frequency for any interference
during the tests

Table 4: PTCIIex reading from KPC3+
average transfer times in seconds for window sizes from 1 to 7

Win. KPC3+ Both TCP/
size BBS KISS KISS IP DTN

1 119.2 75.0 75.6 146.0 84.6
2 87.2 65.0 67.0 104 75.8
3 86.2 60.6 61.6 99.8 73.8
4 86.2 59.6 * 63.0 98.4 † 72.0
5 86.2 57.6 58.4 97.2 † —
6 86.2 57.0 * 60.2 97.6 † —
7 86.2 57.2 * 61.0 95.8 † —

model
67.2
60.4
58.0
57.1
56.1
55.6
55.6

* receiver timeout on last frame group ; †window sizes above 3 are
not honoured, see section 7.3.

Table 5: KPC3+ reading from PTCIIex
average transfer times in seconds for window sizes from 1 to 7

Win. PTCIIex Both TCP/
size BBS KISS KISS IP DTN

1 76.6 76.2 76.2 173.2 85.8
2 65.0 65.0 67.0 104.2 75.6
3 61.4 62.0 62.0 98.8 74.8
4 59.6 59.8 * 63.2 97.2 † 71.25
5 58.2 58.6 59.6 96 † —
6 57.8 58.0 * 60.8 95.8 † —
7 57.6 57.6 * 61.6 95.2 † —

model
67.2
60.4
58.0
57.1
56.1
55.6
55.6

* receiver timeout on last frame group ; †window sizes above 3 are
not honoured, see section 7.3.

Table 6: Comparison
transfer times all in seconds

TCP/IP DTN best AX.25
146.0 84.6 76.6
104 75.8 65
99.8 73.8 61.4
98.4 †72.0 59.6
97.2 †- 58.2
97.6 †- 57.8
95.8 †- 57.6

model
67.2
60.4
58.0
57.1
56.1
55.6
55.6

†window sizes of 4 or more are not honoured, see section 7.3.

When both TNCs were operating in “BBS mode”, this final delay
was not observed. The timings for the “BBS mode” operation were
used as the “Best AX.25” measurements in Table 6 and Figure 5.

7.2 Firmware bottleneck in KPC3+
The “BBS” column in Table 4 shows for window sizes above 3

frames, the TNC’s own firmware was the bottleneck to data trans-
fer. Using KISS mode on this device shows a marked improvement.
After testing with difference versions of this TNC (including newer
firmware), we concluded that the firmware implementation of the
“BBS” has this limitation “hard-coded”.

7.3 Problems with large window sizes in DTN
Tables 4 and 5 are missing readings for window sizes greater than

4 (AX.25 maxframe parameter). This is because of a bug which
was discovered during testing. On the fifth consecutive run with
maxframe set to 4, the AX.25 implementation in the host com-
puter appeared to enter an unstable condition: instead of obeying
the chosen maxframe setting, the source unit flooded the receiver
with all the frames (over 20) of the data transfer, causing a break-
down in flow control for both source and destination. As it was
not possible to obtain five consecutive measurements, the result for
maxframe of 4 in Tables 4 and 5 is actually an average of four
readings.

Once manifested, this behaviour persisted across all subsequent
runs of the DTN test, which would suggest that the problem caused
the internal state of the Linux kernel AX.25 implementation itself
to become corrupted.

7.4 Over-Acknowledgement
Currently, the AX25CM-CL produces a flurry of (TCP-CL Pro-

tocol) segment ACK messages (one for each segment/frame) and
sends these as distinct frames. (Figure 4) A more conservative ap-
proach to ACK generation would be prudent, by aggregating more
than one ACK into a frame and/or adopting a selective ACK mech-
anism. The first approach (aggregating multiple ACKs into a single
frame) should in theory already happen, but does not in practice –
further investigation is required.

SOURCE DESTINATION

AX25(DATA)

DTN CL AX.25

DATA

DTN CL

DATA

AX25-ACK(DATA)

DTN-ACK(DATA)

AX25(DTN-ACK(DATA))

DTN-ACK(DATA)

AX25-ACK

AX.25

Figure 4: Multiple acknowledgements produced by the DTN
CL

Deferring the first AX.25 acknowledgement in such a manner
that it is sent in the frame containing the DTN (or TCP) acknowl-
edgement message is one strategy which could be used to combat
this problem.

7.5 Overhead of DTN

50

70

90

110

130

150
TCP/IP

DTN*

best AX.25

model

7654321
AX.25 Window size

Tr
an

sf
er

 T
im

e
 (s

)

*

Figure 5: Comparison of transfer times for AX.25, AX.25 DTN
CL and TCP/AX.25 with reference to theoretical model. * Re-
liable DTN results were not available for window sizes of 4 or
more, see section 7.3

Overall, the performance of the DTN layer was acceptable, and
disproved the authors’ “gut instinct” which suggested a much greater
overhead from using DTN bundling. While a full set of measure-
ments could not be obtained, the CL implementation shows consid-
erable promise, and comfortably out-performs TCP/IP.

8. CONCLUSIONS
The prototype DTN CL performs well, considering its early stage

of development3. However, bugs remain in the implementation that
could be addressed to further improve performance. Finding the
cause of the failure to honor larger window sizes would be a priority
task. An other factor that adversely affects performance is the du-
plication of DTN and AX.25 acknowledgement messages. This re-
sulted in considerable bandwidth being consumed by “acknowledgement-
of-acknowledgement” packets. A more efficient mechanism for
stimulating reactive fragmentation should be adopted in the AX.25
Connected Mode Convergence Layer. Once these issues are re-
solved, we could move forward by evaluating the performance in
more challenging RF environments and different file sizes.

The analysis of the performance TCP/IP over AX.25 provides a
simple illustration of why so few operators use this combination
in practice: TCP’s assumption of a full-duplex transfer link results
in traffic patterns which markedly impair the performance of the
half-duplex radio link.

As expected, the highest-performance transfer was found to be
native AX.25 point-to-point traffic. However, certain single mes-
sage transfers in KISS-mode using a larger window size were sub-
ject to a delay at end of transfer, as the receiving process would
wait for a time-out before passing its received data up the stack.

The measurements taken provide an illustration that, even with-
out considering robustness in the face of disruption, the ubiquitous
TCP/IP protocol may not always be the best choice.

9. ACKNOWLEDGMENTS
This work was partly funded by the European Commission via

the 7th Framework Programme Integrated Project EFIPSANS (grant
no. 215549).

3We are in the process of attempting to merge our mod-
ifications back into the reference implementation. See
http://www.dtnrg.org/wiki/AX25ConnectedModeConvergenceLayer
for more information.

10. REFERENCES
[1] LinuxAX25, http://www.linux-ax25.org/wiki/linuxax25.

Accessed on 2009-01-02.
[2] axMail, ftp://ftp.uroweb.net/pub/ax25/. Accessed on

2009-01-02.
[3] W. A. Beech, D. E. Dielsen, and J. Taylor. AX.25 Link

Access Protocol for Amateur Packet Radio, version 2.2
Revision July 1998, 1998. Accessed on 2009-01-02.

[4] M. Butler, J. Postel, D. Chase, J. Goldberger, and
J. Reynolds. Post Office Protocol: Version 2. RFC 937
(Historic), Feb. 1985.

[5] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst,
K. Scott, K. Fall, and H. Weiss. Delay-Tolerant Networking
Architecture. RFC 4838 (Informational), Apr. 2007.

[6] M. Chepponis and P. Karn. The KISS TNC: A simple
Host-to-TNC communications protocol. In 6th Computer
Networking Conference, 225 Main Street, Newington, CT
06111-1494, USA, 1987. ARRL.

[7] M. Demmer and J. Ott. Delay Tolerant Networking TCP
Convergence Layer Protocol. Internet draft,
draft-irtf-dtnrg-tcp-clayer-02.txt, work in progress,
November 2008.

[8] Delay Tolerant Networking Research Group - Code.
http://www.dtnrg.org/wiki/Code.

[9] T. Hyyryläinen, T. Kärkkäinen, C. Luo, V. Jaspertas,
J. Karvo, and J. Ott. Opportunistic email distribution and
access in challenged heterogeneous environments. In
CHANTS ’07: Proceedings of the second ACM workshop on
Challenged networks, pages 97–100, New York, NY, USA,
2007. ACM.

[10] ITU-T. X.25 : Interface between data terminal equipment
(DTE) and data circuit-terminating equipment (DCE) for
terminals operating in the packet mode and connected to
public data networks by dedicated circuit, Oct. 1996.

[11] P. Karn, H. Price, and R. Diersing. Packet radio in the
amateur service. Selected Areas in Communications, IEEE
Journal on, 3(3):431–439, May 1985.

[12] L. Kleinrock and F. Tobagi. Packet switching in radio
channels: Part i–carrier sense multiple-access modes and
their throughput-delay characteristics. Communications,
IEEE Transactions on [legacy, pre - 1988],
23(12):1400–1416, 1975.

[13] J. Klensin. Simple Mail Transfer Protocol. RFC 5321 (Draft
Standard), Oct. 2008.

[14] J. Postel. Internet Protocol. RFC 791 (Standard), Sept. 1981.
Updated by RFC 1349.

[15] J. Postel. Transmission Control Protocol. RFC 793
(Standard), Sept. 1981. Updated by RFCs 1122, 3168.

[16] EIA Standard RS-232-C Interface Between Data Terminal
Equipment and Data Communication Equipment Employing
Serial Data Interchange, August 1969.

[17] K. Scott and S. Burleigh. Bundle Protocol Specification.
RFC 5050 (Experimental), Nov. 2007.

[18] F. A. Tobagi. Random access techniques for data
transmission over packet switched radio networks. PhD
thesis, 1974.

[19] Uronode, ftp://ftp.uroweb.net/pub/ax25/. Accessed on
2009-01-02.

[20] Winlink 2000 global radio email system,
http://www.winlink.org. Accessed on 2009-09-22.

