Families of Facets for Certain Combinatorial Optimisation Problems.


Abstract.

The paper shows that for some combinatorial optimisation problems, such as Linear Ordering (LO) and Travelling Salesperson Problem (TSP), small families of facet defining inequalities almost fully describe the facial structure of the problem polytope. 

1. Linear Ordering Problem [LO].

We are given a set of vertices A = {1, 2,……, n}. Let ( = ((1, (2, …. (n) be a permutation of the ordered set (1,2,….n).  

Let  

Xij   = 1,
if i occurs after j in the ordering (,

            
 
       = 0,
otherwise

and let  Cij be the corresponding cost. Then

[image: image94.wmf]
with cost function   minimize   ( Cij .Xij

Let G = (V, E) be the complete directed graph of the node (vertex) set N ( {1, 2, … , n} and let ( be the collection of edge sets of acyclic tournaments on N. The linear ordering polytope PLOn is the convex hull of the incidence vectors of elements of ( . The convex hull of the incidence vectors of acyclic subgraphs in G is written PACn. In [GJR85a] it is shown that 


Dim (PLOn ) = ½ n(n-1), Dim (PACn) = |A|
 
xi, j + xj, i = 1

( i, j ( N with i ( j is a maximal irredundant 

equation system for PLOn 


and
0 ( x i, j ( 1

( i, j ( N are facet defining inequalities for PLOn.


Example:  If   = (1,2,3,4,5) and C is a shown, 
Cij     1    2    3    4    5


Then 
Xij  =  0,    i ( j
   (above the diagonal)              1      *    0    3    2    2

and  
Xij  =  1,     i  (j    (below the diagonal)       
  2      2    *    4    3    2

so    Cost = ( Cij Xij = 12.                      
  3      1    2    *    0    2


  




              4      0    0    1    *    3







                          5      3    1    0    2    *

On the other hand, if  ( = (2,1,4,3,5) 
       
 C(   2   1    4    3    5

the cost = 9 (as easily calculated from                           2     *    2    3    4    

the permuted cost matrix C ().


   1     0    *    2     4   2

   4     0    0    *    1    3

                                                                 

   3     2    1    0    *    2








               5     1    3    2    0    *

The order of elements in a permutation can not give rise to directed cycles (dicycles).  If element 1 comes before element 2 and 2 comes before 4, then it can not be the case that 4 comes before 1 (otherwise we have a directed cycle of length 3)!

If C =  ( (i, (j, (k) is an ordered subset of size    C   = 3 from the permutation

( = ((1,   (2 …….  (n), 
then

   

X (C) =  X (​i. (​j + X (​j. (​k + X (​k (i​  (      C  - 1,

Theorm 1 [R85]

Example:  In the previous examples we let X​ij = 1 if Cij  < Cji and highlight the smaller cost entry:

Cij =           1    2   3   4   5                                   Xij =          1    2   3   4   5

         

         

1      *    0   3   2   2                                            1     *    1   0   0    1

         

2      2    *   4   3   2                                            2     0    *   0   0    0

         

3      1    2   *   0   2                                            3     1    1   *   1    0

         

4      0    0   1   *   3                                            4     1    1   0   *    0

         

5      3    1   0   2   *                                            5     0    1   1   1    *

Count          2    4   1   2   1

The sum of highlighted entries in the columns is not  equal to {0,1,2,…..4} so the previous solution is unfeasible.  Let us check the 20 triplets X ( C )

	C = {i, j, k, (i)}
	Xi,j + Xj,k+Xki = X (C)
	X (C ) ( 2?
	C = {I, j, k, (i)}
	Xi,j + Xj,k+Xki = X (C)
	X (C)( 2?

	1   2   3   (1)
	1  +  0  +  1  =  2
	   T
	1   5   3   (1)
	1  +  1  +  1  =  3
	   F***

	1   2   4   (1)
	1  +  0 +   1  =  2
	   T
	1   5   4   (1)
	1  +  1 +   1  =  3
	   F***

	1   2   5                            
	1  +  0  +  0  =  1                       
	   T
	2   3   4                            
	0  +  1  +  1  =  2                       
	   T

	1   3   2                   
	0  +  1  +  0  =  1
	   T
	2   3   5                   
	0  +  0  +  1  =  1
	   T

	1   3   4
	0  +  1  +  1  =  2              
	   T
	2   4   3
	0  +  0  +  1  =  1              
	   T

	1   3   5   
	0  +  0  +  0  =  0
	   T
	2   4   5   
	0  +  0  +  1  =  1
	   T

	1   4   2
	0  +  1  +  1  =  2
	   T
	2   5   3
	0  +  1  +  1  =  2
	   T

	1   4   3
	0  +  0  +  1  =  1
	   T
	2   5   4
	0  +  1  +  1  =  2
	   T

	1   4   5
	0  +  0  +  0  =  0
	   T
	3   4   5
	1  +  0  +  1  =  2
	   T

	1   5   2
	1  +  1  +  0  =  2
	   T
	3   5   4
	0  +  1  +  0  =  1
	   T


We can visualise the problematic directed cycles from the illustration:



                                                                                                                                              

If we set    
X35 = X45 = 1

and                  
X53 = X54 = 0

(i.e. reverse the arcs (4,5) and (3,5)), the column count is feasible and the new permutation is (2, 5, 1, 4, 3).





Xij  =         1   2   3   4   5





           1    *   1   0    0   1





           2    0    *  0    0   0





           3    1    1   *   1   1





           4    1    1   0   *   1





           5    0    1   0   0   *





Count        2    4   0   1   3

Theorem 2 [R85] 
[image: image1.wmf]

Thus ordered sets of size > 3 do not induce facet defining inequalities for Plo.

A directed graph D = ( V, A ) is a k-fence, 

if 

(i)     
  V     = 2K,  K  (3

(ii)   
V can be partitioned into 



two disjoint sets

     

Upper = { U1, U2, ….. Uk} and 

     

Lower = {L1, L2,… ..Lk)


  4 - Fence
 

with A =  U  {(UI, LI)} U {(LI, Uj)  : j = 1,2, ….K,  j ( i}

The arcs (Ui, Li) are called pales and (Li, Uj) are called pickets.

Theorem 3 [R85]



Let C1,​C2,……., Ck be a sequence of  

different dicycles with 

(i) K (3 and K odd

(ii) Ci and Ci+1   

(i = 1, 2, … , k-1) 

 
have a directed path Pi in 

                        common and C1 and Ck have                                                                                                 

the directed path Pk in common 
 (iii)
Given any dicycle Cj, let
J  = { 1,2, ..K }{{ j–2, j–4,..}{ j+1, j+3,..}}
 
Then every set 
[image: image2.wmf]U
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Ci

1

=

\{ ei : i J }  

contains exactly one dicycle Cj , where

ei , i J is any arc in the directed path Pi .

(iv) The largest acyclic arc set has cardinality | 
[image: image3.wmf]U

k

i

Ci

1

=

| - (k+1)/2

The collection of cycles M = 
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k

i

Ci

1

=

 is a Mobius ladder of size k.

Theorem 4 [R85]


Reinelt [R85: p61-62] reports on the performance of the Relaxed LP formulation:



Minimise Cijij
with

X( C) 
[image: image5.wmf]£

  2, 
for any ordered subsets of size 3

X( F)  
[image: image6.wmf]£

  7, 
for all 3-fences

X( M) 
[image: image7.wmf]£

  8, 
for all Mobius ladders of type M2 or type M2 

Xij + Xji =1,

Xij 
[image: image8.wmf]³

  0

In particular, the optimum triangulation of the Belgian 44-sector Input-Output table for 1959 was as shown:

	Number of Inequalities Inserted
	Number of Inequalities Eliminated
	LP Size (rows)
	LP Value

	-
	-
	-
	256765

	500 3-dicycles
	-
	500
	252250

	500 3-dicycles
	75
	925
	247190

	223 3-dicycles
	219
	929
	245960

	  58 3-dicycles
	90
	897
	245770

	    4 3-dicycles
	32
	869
	245762

	    8 Mobius
	14
	863
	245750

	    2 3-dicycles
	5
	860
	245750


Any fractional basic variables were resolved using the Branch-and-Bound algorithm. A column generation technique was used to introduce the various facet defining inequalities into the formulation, as required.

For an integer k ( 3, a directed graph is a simple k-fence if it is isomorphic to 


D ( (U ( W, F1 ( F2 ), where


U = {u1, u2, … , un }, W = {w1,w2, … , wn} with U ( W = (

F1 = {(u1 , w1), (u2 , w2), … , (un , wn)}

[Pales]


F2 = 
[image: image9.wmf]U

k

i

1

=

{ (wi , v) : v ( U \ {ui }}


[Pickets]

An augmented simple k-fence is a k-fence with an added node h and arcs


F = { (u ,h) : u ( U } ( { (h, w) : w ( W}

[Poles]

Example [Augmented Simple 4-Fence]



By the subdivision of an arc (i, j) in a directed graph G, we mean the graph G’ got by the insertion of a node z, the deletion of the arc (i, j) and the insertion of the arcs (i, z), (z, j). 


Lemma [LL92]   For 1 ( t ( k-2,  let D = (U ( W, F1 ( F2) be a simple 

k-fence and let D’ be derived from D by repeated subdivision of arcs. Then the t-reinforced k-fence inequality:

t 
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 xi, j ( t |F1’| + |F2’| - t k + ½ t (t+1)

and the augmented t-reinforced k-fence inequality:

t 
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( t |F1’| + |F2’| + (k-1-t) |F3’| + ½ t (t+1) – k(k-1) are a facet defining inequalities for PLOn and PACn.




This Lemma generalises results in [GJR85a] and [GJR85b].

2.
Travelling Salesperson Problem [TSP].

Given the complete graph Kn = (V, E), with n vertices and associated edge lengths (Ci,j), the symmetric travelling salesperson problem is to that of finding the Hamiltonian tour of shortest overall length. To define the TSP polytope PTSP, let


Xi, j 
=1, 
if arc (i, j) is in a tour T



  0, 
otherwise.


Then 

with cost function   minimize   ( Cij .X ij.

Thus every vertex of PTSP consists of a zero-one vector with |E| = n(n-1) / 2 entries. It has been shown [G80] that the dimension of PTSP is n (n- 3) / 2.

The Subtour Elimination Constraints [DFJ54] were the first known valid inequalities for PTSP. If W is a subset of vertices then E(W), the set of edges with both endpoints in W, intersects every tour in at most |W| - 1 edges. Consequently,


The so-called Loop Constraints are an immediate consequence of this. Let (W) be the set of edges with one end-point in each of W and E \ W. Then 


A set A of vertices in a connected graph G is called an articulation set if G \ A is disconnected.

A complete subgraph of a graph is called a clique. A clique tree is a connected graph G composed of cliques such that 

The cliques are partitioned into 
two sets called handles and teeth

No two teeth intersect

No two handles intersect

Each tooth contains at least 2 and at 

most n- 2 vertices and at least 1 

vertex not belonging to any handle. 

The number of teeth that each handle 

intersects is odd and at least 3

If Hi  Tj    then Hi  Tj is an 

articulation set of the clique tree.


A comb is a clique tree consisting of an

odd number  3 of disjoint teeth, each of

which has  1 node separate from and  1 

node in common with a unique handle.


Theorem [G80]


Let  be a set of vertex sets in Kn = (V, E), n  6 such that 

W , 3  |W|  n- 3 and V \W. Then the following is 

a set of facets for PTSP , no 2 of which are equivalent: 

· Xi, j  
0,
 
 (i, j) E

· Xi, j   
1,
 
 (i, j) E

· Subtour Elimination Constraints:
X ( E(W))  |W| -1, 
W

· Comb Inequalities ( s Teeth):

X (E(H)) + 
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· Clique Tree Inequalities ( 2 Handles):
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where tj is the number of handles intersecting Tj. 

Corollary [G80] 

.

· Loop Inequalities:

The degree equations X ( (i)) = 2 ( i = 1, 2, .., n) form a minimal 

equation system for PTSP.

Grotschel applied these results to a 120 city TSP problem corresponding to cities in Germany. The final LP had 7140 variables, 120 equations, 7140 upper and lower bounds as well as 96 inequalities. 
	Number of Inequalities Inserted
	LP Value

	
	6662.5

	13 Subtour Elimination Constraints
	6883.5

	10 Subtour Elimination Constraints

  5 Comb Inequalities
	6912.5

	  3 Subtour Elimination Constraints

  4 Comb Inequalities
	6918.75

	  4 Subtour Elimination Constraints

  5 Comb Inequalities
	6928

	  2 Subtour Elimination Constraints

  4 Comb Inequalities
	6935.3

	  3 Subtour Elimination Constraints

  6 Comb Inequalities
	6937.2

	  8 Comb Inequalities
	6939.5

	  5 Comb Inequalities
	6940.38

	  1 Subtour Elimination Constraint

  3 Comb Inequalities
	6940.81

	12 Comb Inequalities
	6941.18

	  5 Comb Inequalities
	6941.5

	  3 Comb Inequalities
	6942


The results demonstrate that, similar to the Linear Ordering case, families of facet defining inequalities play a central role in the solution of the TSP process.

One of the main difficulties in dealing with PTSP, the polytope of the Symmetric Travelling Salesperson problem (STSP), is that it is not full dimensional; this makes it difficult to develop a good intuition of which linear inequalities are valid for the polytope. Moreover, one may encounter the same facet under a great variety of forms. One possible solution to this problem is to embed the polyhedron in a full dimensional one in such a way that it remains a face of the latter. We then seek facet defining inequalities for the imbedded polyhedron (also called a relaxation, since it is generally obtained by dropping some constraints on the original problem) and check to see if they are facet defining for the original polyhedron. 

In [NR91], the Symmetric Graphical TSP (GSTP) is introduced in this context: this is the relaxation obtained by requiring that the salesperson visit each city at least once. A set of facet defining inequalities is identified for GSTP and methods for combining the inequalities into compound inequalities are outlined. Finally, the inequalities are mapped into PTSP to get facet defining inequalities for 2-brushes, p-combs, super-combs, multi-handled clique trees and bi-clique trees. A similar approach is adopted in [BP91] where the relaxation is based on the Subtour Polytope of PTSP.   

In [BCQ95], ladder inequalities are introduced for TSP. These differ from previous “handle-tooth” inequalities. For the graph G = (V, E) let H1, H2 be mutually disjoint subsets of V, called handles, let T1, T2, … , Tt+m be pairwise disjoint proper subsets of V called teeth, where t ( 2, m ( 0 and t+m is at least 4. A tooth Tj is degenerate if Tj \ (H1 ( H2 ) = (; otherwise, it is non-degenerate. Assume that T1, T2, … , Tt are degenerate teeth and (if m ( 1) then Tt+1, … , Tt+m are degenerate teeth. Assume also that T1 only intersects H1 , T2 only intersects H2 and that Tk (k = 3, … , t + m) intersect both H1 and H2. T1 and T2 are called pendent teeth; the others are non-pendent. The ladder inequality associated with H1, H2, T1, … , Tt+m is:
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where dj is the number of handles intersected by tooth Tj.


Lemma.
The ladder inequality is valid for STSP.

For any inequality a x ( ao, we define its support graph to be Ga ( (E, Va ), where E  ( {e ( E: ae ( 0}. In this support, we consider a subclass of ladder inequalities a x ( ao that have a spanning support graph (i.e.) Ga contains no isolated nodes, and satisfy the following properties:

· |Hi ( Tj | ( 1 


for any pair Hi and Tj 

· |Tj \ (H1 ( H2)| = 1, 

for j = 1, … , t 

· |Hi \ 
[image: image27.wmf]U
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for i = 1, 2. 


The inequalities in this class are called primitive ladder inequalities.


Lemma.
All primitive ladder inequalities are facet defining.


Procedures for lifting the inequalities are presented in [BCQ95].

3.   
Inventory-Production Models.

In the Knapsack Problem (KP), we are given the weight and value of a set of objects as well as the weight capacity of a knapsack and are invited to select the most valuable collection of objects that will fit in the knapsack. 

Example. Consider KP with 

Object 
   1     2     3     4    5     6       7

    
knapsack weight capacity 35. 
Weight    3     4     3     3  25   13     16







Value    12   12     9   15   90   26  112

In the integer programming (IP) formulation, we set Xj =1, if object j is selected and Xj =0, 
otherwise.

      

                
Find:

X1 , X2 , X3 , X4 , X5 , X6 , X7 

To maximise:  12X1 +12 X2 +9 X3 +15 X4 +90 X5 +26 X6 +112 X7 

subject to: 
   3X1 + 4 X2 +3 X3 +  3 X4 +15 X5 +13 X6 +  16 X7 35 



with

Xj {0, 1}.

The solution space of the problem is {x: Ax ( b, x = 0 or 1 for j = 1, 2, … , n}, 

where A is an m*n matrix and b and c are vectors of rational numbers. Consider a single equation from the constraint set: ai,j xj ( bi. Following [CJP82], by making the substituting 1– xj for xj , as required, all the non-zero coefficients are made nonnegative:
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Let S ( K be such that



[image: image29.wmf]å

jeS

aj > a o and 

[image: image30.wmf]å

jeS

aj – ak ( a o, ( k ( S.

Then S is called a (minimal) cover and every zero-one solution satisfies
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and this defines a facet of the knapsack polytope if K = S.


Suppose next that S* ( K and t ( K – S* satisfy
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aj ( ao and Q ( {t} is a minimal cover for every Q ( S*, |Q| = k,

where k is an integer such that 2 ( k ( |S*|. Then the set S* ( {t} is called a (1, k) configuration and every zero-one solution to 
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 where T (r) ( S* varies over all subsets 

of cardinality r of S* and r varies over all integers from k to |S*|; if k = |S*|, then the equation is facet defining.

In general, these inequalities must be “lifted” to obtain facets of the associated knapsack polytope (i.e.) they must be extended appropriately to the variables xj with index j in K-S or in K-S*-{t}, respectively. 

Lifting procedure:


· Set fj = 1 ( j ( S, fo = |S| - 1 or 

 
fj = 1 ( j ( S*, ft = r – k + 1, fo = r, S = S* ( {t}, respectively.

· [Separation Procedure] Let k ( K – S and determine 

zk = Max {
[image: image35.wmf]å
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· Define fk = fo – zk , redefine S to be S ({k} and repeat until K – S is empty. The inequality f x ( fo that results defines a facet of the knapsack polytope.


The second step of the lifting procedure involves the solution of several zero-one problems. Heuristics are used to select suitable minimal cover inequalities so that the lifting procedure can be implemented efficiently.

The cover  is a collection of objects that overfills the knapsack (e.g.) the cover = {2, 3, 5, 6, 7 }with an excess = 16.

In the following, let mj denote the weight of object j and let X+  = maximum { X, 0}.


Lemma [W81]
   If  is a cover with excess , 
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    is a valid inequality for PKP and, under fairly general  

    conditions, is a facet defining inequality.


Example. If {1, 5, 6, 7} then  = 12 and

3 X1 + 15 X5 + 13 X6 + 16 X7 + 3(1- X5) + (1 – X6) + 4 (1 – X7) 35

(i.e.) 3 X1 + 12 X5 + 12 X6 + 12 X7  27

(i.e.)    X1 +   4 X5 +   4 X6 +   4 X7 9, 
is a valid inequality.

When this inequality is added to the original LP a fractional solution occurs:

X1 = 1/3, X4 = X5 = X7 = 1. 

However, the cover {1, 4, 5, 7}gives the inequality X1 + X4 + X5 + X7 3 and this has the desired effect. Unfortunately, there is no known efficient algorithm for finding the most violated inequalities, so in practice we have to resort to heuristics to guide our choice.

In [W97], the concept of weight inequalities is introduced. Let Kj be the set of items in K with weight j (j = 1, 2, … , ao ). Let T ( N1, |T| < ao, r = ao - |T| and 
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Let B1 ( ( (ao/(s+1)(, (ao/s( ( and let P1 be the polyhedron for the knapsack problem with Nj = (, (j ( {1) ( B1.


Lemma [W97]     The system of inequalities 
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    completely determine the polyhedron P1. 



In [YB98], these concepts are generalised to the polyhedron P defined by
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Complementing variables, if necessary, we assume that the constants are non-negative integers. Letting E(P) be the extreme points of P, let (x^, y^) be a distinguished point and consider the problem:
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Lemma.
A point ((10, (20, z0) is feasible for SEPo if and only if

(10 x + (20 y ( (10 x^ + (20 y^ - z0 
is valid for (P) 

and it separates x^ and P if and only if z0 > 0.


The problem of finding a hyperplane separating x^ from P therefore reduces to determining if SEPo has a maximum value greater than zero.

4. Fixed Charge Problems

Wolsey and his co-workers have generalised cover inequalities to Fixed Charge (FC) problems. Fixed charge problems arise in industrial applications that require a  process with a fixed charge to be initialised before production can begin (e.g.) a furnace may have to be fired up. We can use a binary variable x to model the fixed charge: x = 1, if some production occurs and x = 0, otherwise. If the fixed charge is f and the (linear) cost of producing an item is c, then the cost of producing y items is  


Cost (y) 
= 0, 

case x = 0




= f + c.y,
case x =1.

In practice, an upper bound y  m will also be imposed on production.

Wolsey applies these concepts to industrial models, where each of a set of commodities in a company is subject to fixed charges and an upper bound b. 

Applies to the total production. We can                   Yj mj Xj
model the production as flows in a


 


   b
network of input pipes (each with capacity mj ) 

 
connected to a single output pipe

with capacity b. Define Xj = 1, if pipe j is open

(and 0, otherwise) and let mj be the capacity of arc j.


Lemma [W86] 
If  is a cover with excess , 
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is a valid inequality for PFC and, under fairly general conditions, is a facet defining inequality.




We can generalise 


the constructs to 

yj ( mj xj
incorporate                                  

                    b

output arcs            N1

with capacity 







     N2

flow bounds:                                                          yj ( mj xj
Let  P2 ( { (x, y) ( (+ n * (+ p: 
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and 
GC ( C1 ( C2 is a generalised cover with excess ( (GC-Cover) 

if 
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Lemma.
If GC is a cover with excess ( and L ( N2 \C2
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is a valid inequality for ( FCF .


The structure of P2 embraces all MIP inequalities:
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and  {aj'  + gj' uj }yj ( { {aj'  + gj' uj }/ lj } xj , xj ( 1

and so on.

This model also admits 

  ljxj ( yj ( mj xj 
       b
the generalisation where 

the flows have lower as 

well as upper bounds.

P3 ( { (x, y) ( (+ 2n: 
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The lower bound can be removed, by remodelling in the obvious way, to give the formulation:

P3’ ( { (x, y) ( (+2n: 
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This methodology is useful for modelling production systems where a machine is available for b time units, it takes time aj to set up the machine to produce items of type j and Yj units of time are spent producing item j. We say  , ) is a cover if 
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with excess  > 0.


Theorem [W86].   If  , ) is a cover ,
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      is a valid inequality for the modified PFC.


Example [Depot Location and Customer Assignment - IP]

Depots  









Customers

Capacity Operating 
Transportation Cost




Demand


 Cost

per Unit


25
40                                                     1



              3                 0




    1







15

25
40                                       3



                  0












15

25
40                        3         0

                                               1


                              3       3   






15

25 0                                                  3


We must decide which depot to open and which customer to serve (uniquely) from each depot.

Find: 
dj, ci, j

To Min:
40d1+ 40d2+ 40d3+ 15c11+ 0c12+ 45c13+ 15c21+ 45c22+ 0c23+ 45c31+ 0c32+ 15c33+ 45c41 + 45c42+ 45c43 

:
-25d1                     +15c11 + 15c12 + 15c13 





    ( 0 "D1"

                           -25d2                                           + 15c21+15c22+15c23      



    ( 0 "D2"

                                      -25d3                                                                 +15 c31 +15c32 +15c33 

    ( 0 "D3"

                                                        15 c41 +15c42 +15c43 
    ( 0 "D4"

                                                     c11                         + c21                          + c31                         + c41 

    ( 1 "C1"

            c12                       + c22                          + c32                         + c42 
    ( 1 "C2"

     c13                      + c23                          + c33                         + c43       ( 1 "C3"

with ( dj, ci, j ( {0,1}.

Valid inequalities:

· From constraint "C1" and the Knapsack lemma, any equation of at least two variables (e.g.):

c11 + c31 ( 1

· From constraint "D4" and the first Lemma above:

15c41 + 15c42 + 10 (1 - c41 ) + 10 (1 - c42 ) ( 25

(i.e.) 
c41 + c42 ( 1

· From constraint "D1" and the last lemma, we get the system:

y 1+ y2 + 10 (1 - c11 ) + 10 (1 - c12 ) ( 0 + 25,

y1 ( 15 c11, 
y2 ( 15 c12, 
c11 ( 1, 
c12 ( 1.

Wolsey and his team developed the MPSARX package for automatically generating facet defining inequalities of this type for production models. This also has a facility for combining and simplifying the resulting inequalities. MPSARX has had considerable success in facility location and distribution problems.

5.  
Economic lot-Sizing.

Here yj, sj, dj are                      d1                  d2                  d3                d4

production, end-stock 

and demand in period j. 

Production is                                S1                  S2                 S3                 S4

uncapacitated: yj ( M xj.

                                                    y1 (Mx1         y2(Mx2        y3(Mx3       y4(Mx4

P4 ( { (x, y, s) ( (+3n: sj-1 + yj = dj + sj, yj ( M xj , xj ( 1, j ( N}

(4 = P4 ( (Zn * (2n )


Lemma.
For S ( L = {1, 2, …. , l} with l ( n,
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is a valid inequality for (4 and with minor exceptions is 




facet defining and with P4 define Conv ((4).


As the problem can be solved by dynamic programming, we should not be surprised that a simple algorithm solves the separation problem.


Lemma.
For l = 1, 2, …, n, L = { 1, 2, … , l}, let




Sl = { j ( L: yj* > (
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This example illustrates the folowing general result.


Theorem.
( efficient algorithm to solve the separation problem for a 

family F of valid inequalities iff ( efficient algorithm to solve 


Max {c x + h y: (x, y) ( P, (k x + (k y ( (0 k, ( k ( F }


If the production is capacitated, yj ( mj xj and let ( {k, … , l} with k ( 


d j l
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Then is a cover of { k, … , l} if 
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Lemma.
If is a cover of { k, … , l} then
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If back-logging is allowed, 

P4’ ( { (x, y, s,r) ( (+4n: sj-1 – rj-1+ yj = dj + sj - rj, yj ( M xj , xj ( 1, j ( N}

Lemma.
Let U, R-, R+ ( {1, 2, … , n} with U ( (, R- ( R+ ( (,




l j-- = Max {i ( R-: i < j}, l j+ = Main{i ( R+ : i ( j}, 

V = { l j-- +1, l j+ }. Then 
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This corresponds                      d1                  d2                  d3                d4

to the schema                                   r1                  r2                r3                  r4

shown. 

                                                                   S1                  S2                 S3                 S4

.

                                                    y1 (Mx1         y2(Mx2        y3(Mx3       y4(Mx4
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Plo  =  conv  {x  {0,1}n(n-1) : ( is a permutation of (1,2,, ….n) }








Let C be an ordered subset of size 3 from a 


permutation.


Then X (C) ( 2 defines a facet of PLo





     Simple 4 - Fence





2





5





1





4





3





Dimension 	Plo = n ( n – 1) / 2.


Let C be an order set of size K from a permutation.


The face of Plo defined by X ( C ) ( k – 1 has dimension nC2 – k (k – 3)/2
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Let F be a K- fence, then


X (F) ( K2 – K + 1 defines a facet of Plo
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Let M be a Mobius ladder of size k. Then, 


X (M) ( |M| - (K + 1)/2 defines a facet of Plo





PTSP =  conv  {X   : X is a tour }
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