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been developed as a means of managing this complexity through a standardised 
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components constitute the application logic of an AUTOSAR-based system. 
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 1.   

 

 

Thesis Introduction 

 

 

 
1.1 Problem Specification 
 

The use of embedded software in the automotive industry has grown rapidly in recent 

years. There is now a wide range of vehicle functions under computer control: from 

engine management to air conditioning, entertainment to anti-lock brakes and so on. 

Coupled with this increasing complexity is the challenge of reducing development 

time for new vehicles. 

 

AUTOSAR (AUTomotive Open System ARchitecture) attempts to meet this 

challenge by providing a means of managing the increased complexity of embedded 

automotive systems. AUTOSAR completely separates an application from its 

infrastructure. This means that an application, air conditioning for example, can 

initially be deployed on a particular type of Electronic Control Unit (ECU) and then 

later redeployed on a totally different type of ECU. The application is not concerned 

with the implementation details of the infrastructure such as ECU hardware, 

communications networks, the operating system etc.  

 

The application is made up of software components which are discrete pieces of code 

offering one or more pieces of functionality. These communicate with each other and 

system services via well-defined communications interfaces. An application can be 

created by selecting components with the required functionality from a library of 

software components. This is not a trivial task even if the repository is relatively 

small. The developer needs an effective means of matching their requirements to the 
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stored software components. This thesis addresses this problem in the context of 

automotive application development using AUTOSAR. 

 

 

 

 

1.2 Research Questions 
 

� What level of specification is needed to adequately document the 

functionality of AUTOSAR software components to facilitate reuse within 

the automotive industry? 

� How should requirements be structured to facilitate their matching to 

available software components? 

� What level of process improvement can be achieved by automated matching 

of application requirements to available components, compared to a manual 

matching process? 

 

 

 

 

1.3 Thesis Overview 
 

This thesis is broken up into four main sections as follows: 

 

1. Introduction 

This section describes the background for the research and the research 

questions. It also presents an overview of the thesis. 

 

2. Literature Review 

The literature review describes the areas of interest which this research 

examines. These are as follows: 

� Vehicle Electric/Electronic Architecture 

� Automotive Software Development 

� Software Reusability 

� Component-Based Software Engineering 
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� AUTOSAR 

Following this, a summary of the literature review is provided. 

 

3. Implementation 

The implementation section describes the process carried out to develop a 

framework for mapping requirements to AUTOSAR components and the 

methods used to test this approach. It also presents a description of the 

research methodology adopted. 

 

4. Results and Analysis 

This section contains the results obtained during testing of the process 

developed in the previous section. It contains an analysis of the results along 

with a set of conclusions and recommendations based on these results. 

 



      

 

 5

 
 
 
 
 
 
 
 

 

Section 2: Literature 

Review 
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     .2.   

 

 

Vehicle Electrical/Electronic 

Architecture 

 

 

2.1 Overview 
 

As with so many other inventions, the introduction of the automobile was fuelled by 

a military need. Around 1769 a French military engineer, Nicholas Joseph Cugnot, 

developed a steam-driven vehicle to pull artillery pieces. Cugnot was followed by 

men such as James Watt and Richard Trevithick, who developed  steam as a form of 

power (Gillespie 1992). The steam-powered engine went on to power the industrial 

revolution. 

 

It was not until 1886 that the first practical gasoline powered automobiles were 

created. Karl Benz and Gottlieb Daimler both developed their own versions 

independently. The automobile continued to evolve throughout the late 19th and early 

20th centuries. At the turn of the 20th century Henry Ford made a giant leap forward 

when he introduced the production line to produce the Model T Ford. This had a 

great effect not only on the automotive industry, but on manufacturing as a whole. 

 

The next great revolution in the automotive industry came about in 1962 when 

General Motors introduced a transistorized ignition system. This followed on from  

two previous developments – the transistor, developed in 1948, and the integrated 

circuit in 1959 (Chowanietz 1995). Shortly thereafter, further advances were made in 

areas such as fuel injection (developed by Bosch in 1967), cruise control and anti-

lock braking systems (ABS). These were based around simple analogue circuits.  
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Microprocessors were first used in a General Motors ignition control system in 1976. 

This had the effect of allowing better control of ignition timing and hence increased 

engine output and efficiency and reduced emissions (Chowanietz 1995). Soon other 

manufacturers began to follow General Motor’s example. This was largely motivated 

by the need to conform to new emissions legislation such as the US Clean Air Act of 

1971. 

 

Early automotive electrical and electronic systems consisted of a set of independent 

Electronic Control Units (ECUs) tied to specific subsystems. For example, one ECU 

might control engine management while another might control ABS. There was no 

interaction between ECUs. This changed with the introduction of networking 

technologies such as Controller Area Network (CAN) in the early 1990s. Now 

various systems could communicate and work together to add new levels of 

functionality. For example, a traction control system utilises functions from both the 

powertrain and the chassis subsystems (Schäuffle and Zurawka 2003). It works by 

exchanging information between these two subsystems across a vehicle network. 

 

A trend which has emerged in the last couple of decades is the move towards 

standardisation of many parts of vehicle electrical and electronic architectures. In the 

early 1994 two consortia of organisations involved in the automotive industry 

merged to form the OSEK/VDX steering community (Lemieux 2001, p.2). 

OSEK/VDX comprises four main standards: an operating system, communication, 

network management and an OSEK implementation language (OIL) (Lemieux 

2001a). Later, in 2003 AUTOSAR (Automotive Open Systems Architecture) was 

founded by an association of carmakers and automotive suppliers. Their aim was to 

provide a standard software architecture and development interfaces for in-vehicle 

electronic systems (AUTOSAR GbR 2006c). Tier 1 suppliers often have to develop 

multiple versions of systems with essentially the same functionality. The cost of this 

is then be passed on to each OEM. AUTOSAR allows OEMs and Tier 1 suppliers to 

collaborate on common basic functions which had previously been implemented 

differently for each OEM. The time and money previously spent on these functions 

would be released for the development of competitive innovative functionality. In 

May 2006 release 2.0 of the AUTOSAR specifications was published. This was 

followed in December 2006 by release 2.1 (AUTOSAR GbR 2006d). 
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Standardisation efforts are not confined just to the electronics physically located 

within a vehicle. Diagnostics for example, have also seen moves towards 

standardisation. The ODX or Open Diagnostics Data Exchange defines a standard 

means of specifying diagnostics and programming data to allow it to be transferred 

between system suppliers, vehicle manufacturers and service dealerships (Augustin, 

Backmeister et al. 2006). Version 2.1.0 was released in 2006 (Kricke 2007). These 

milestones are illustrated graphically in Figure 2.1. 

 
Fig 2.1 Milestones in Automotive E&E DevelopmentFig 2.1 Milestones in Automotive E&E DevelopmentFig 2.1 Milestones in Automotive E&E DevelopmentFig 2.1 Milestones in Automotive E&E Development    

 

Modern electronic systems have grown vastly in size and scope. For example, in 

1955, a vehicle might have had around 45 metres of wiring. Now, modern high-end 

vehicles can have more than 4 kilometres of wiring. Furthermore, it has been 

estimated by analysts that over eighty percent of innovation in the automotive 

industry comes from electronics (Leen and Heffernan 2002, p.88-93). The diagram in 

Figure 2.2 effectively captures some of the complexity involved in a modern 

vehicle’s electronic systems. 
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Fig 2.2Fig 2.2Fig 2.2Fig 2.2 Automotive Electric and Electronic Architecture Automotive Electric and Electronic Architecture Automotive Electric and Electronic Architecture Automotive Electric and Electronic Architecture    

(Leen and Heffernan 2002, p.88-93) 

 

It should be noted that Figure 2.2 is actually only a sub-set of the electronic 

architecture in a modern vehicle. In reality the systems are much more complex, 

containing significantly more control units and network connections. The following 

section gives a breakdown of the components which make up a vehicle’s electrical 

and electronic architecture. 

 

 

 

 

2.2 Electric & Electronic Architectures 
 

A modern automotive electric and electronic architecture consists of the following 

items which are also illustrated in Figure 2.3:  

 

� ECUs: Microcontrollers which run software to control some sub-function of 

a vehicle. 

� Communications Networks: These transmit data among ECUs and also 

between the ECUs and their associated sensors and actuators.  
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� Sensors: Hardware used to measure a physical quantity e.g. engine coolant 

temperature or crankshaft speed. These are the inputs to an automotive 

electric and electronic system. 

� Actuators: Hardware used to physically control or influence some physical 

aspect of an automotive system e.g. fuel injectors, spark plugs. 

 
Fig 2.3 Automotive Electric and Electronic ArchitectureFig 2.3 Automotive Electric and Electronic ArchitectureFig 2.3 Automotive Electric and Electronic ArchitectureFig 2.3 Automotive Electric and Electronic Architecture    

 

Sensors and actuators are relatively straightforward. ECUs and communications 

networks however require a more thorough examination. 

 

 

 

2.2.1 Electronic Control Units 

Electronic Control Units or ECUs (sometimes referred to as Electronic Control 

Modules or ECMs) are at the heart of automotive electronic systems. An ECU is 

essentially a computer made up of hardware and software which implements some 

automotive function to be controlled or monitored. The following is an overview of 

the main components which make up an ECU (Bonnick 2001): 

 

• A Central Processing Unit (CPU) 

• Input/Output (I/O) devices 

• Memory 

ECUECUECUECU    

ECUECUECUECU    

Engine 

Communications Network 

Wheel SWheel SWheel SWheel Speed Sensorpeed Sensorpeed Sensorpeed Sensor    

Spark PlugSpark PlugSpark PlugSpark Plug Actuator Actuator Actuator Actuator    

GatewayGatewayGatewayGateway    

Communications Network 
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• A program 

• A clock 

These are illustrated in Figure 2.4:  

 
FigFigFigFig    2.4 ECU Architecture2.4 ECU Architecture2.4 ECU Architecture2.4 ECU Architecture    

 

1. Central Processing Unit 

A Central Processing Unit or CPU is the brains of an ECU. It is the area of an ECU 

where data processing, mathematical operations, decision making and control signal 

generation are carried out (Boehmer 1999). The CPU executes the instructions 

contained within a program. 

 

2. Input/Output devices 

An ECU may have a number of input or output ports through which it may receive or 

generate signals. These can in turn be connected to various devices. For example, in 

Figure 2.4 the ECU is connected to a crankshaft position sensor which can send data 

to the ECU via a port. On the other side, the ECU can send a signal to a spark plug in 

order to make the spark plug ignite the fuel mix in a cylinder. It may be necessary to 
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perform some special processing on a signal e.g. analogue to digital conversion, 

filtering to remove noise etc. 

 

3. Memory 

There are five basic types of on-board memory used in automotive applications 

(memory on the same chip as a CPU): random access memory (RAM), read only 

memory (ROM), erasable programmable ROM (EPROM), electronically erasable 

programmable ROM (EEPROM) and flash memory (Boehmer 1999). RAM holds 

data that the ECU is currently working on such as run-time variables. The various 

forms of ROM hold the program code in addition to look-up tables such as ignition 

timing maps. Flash operates in the same role as ROM, being most similar to EPROM 

in that it can be electrically erased. 

 

4. Clock 

A clock is used to produce pulses which control the actions of the ECU. The clock 

typically consists of an electronic circuit which makes use of a quartz crystal to 

produce accurately timed, regular electrical pulses (Bonnick 2001) to control the 

timing of operations in an ECU. 

 

5. Program 

Application software which makes use of the ECU’s hardware to perform one or 

more tasks related to the operation of the vehicle. 

 

 

 

2.2.2 Communications Networks 

If ECUs in an electric and electronic architecture are to share information and 

resources, then there is a need to provide them with some means of communicating 

with each other. A common language and communications structure must be used.  

 

There are numerous electronic applications in modern vehicles. Each will have 

different requirements which must be fulfilled by the chosen network. For example, a 

brake-by-wire system would need a high level of fault-tolerance, while in-vehicle 
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multimedia devices may need extensive synchronous bandwidth (Leen and 

Heffernan 2002, p.88-93). 

 

The following sub-sections detail three communications protocols currently in use in 

automotive applications. 

 

 

2.2.2.1 Controller Area Network 

Controller Area Network or CAN is widely used for in-vehicle networks. It has 

established itself as the standard for automotive applications (Denner V., Maier J. et 

al. 2004, p.1072). 

 

Network Structure 

CAN is based around a linear bus topology as shown in Figure 2.5.   

 

 
Fig 2.5 CAN Bus TopologyFig 2.5 CAN Bus TopologyFig 2.5 CAN Bus TopologyFig 2.5 CAN Bus Topology    

 

On a CAN bus all nodes have the same priority (Denner V., Maier J. et al. 2004, 

p.1072). Therefore, there is no single node which controls the bus. This allows 

systems to be developed with a degree of redundancy – if one node fails, the bus will 

still be able to operate. Depending on their length, CAN buses can support a bit rate 

of up to 1Mbit/s. 

 

CAN Messages 

CAN is based around the concept of a message-oriented transmission protocol. Each 

CAN message is given a unique identifier. However, the nodes or ECUs on the bus 

are not given any form of identification. Instead, when a message is broadcast by an 

    

ECUECUECUECU    
    

ECUECUECUECU    
    

ECUECUECUECU    

    

ECUECUECUECU    
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ECU, every ECU on the bus examines the message’s id to see if it is relevant to that 

particular ECU. If it is not, then the message is simply ignored. This allows nodes to 

transmit without any knowledge of what other nodes are on the bus. A CAN message 

identifier can be 11-bits long (standard identifiers) or 29-bits long (extended 

identifiers). 

  

In this communications paradigm, it is possible for any node to transmit at any time. 

There is no bus master regulating the transmission of messages and there is no fixed 

schedule – a CAN bus is event-driven. Inevitably, it will happen that two nodes will 

transmit messages at the same time. The CAN protocol employs a bus arbitration 

scheme whereby priority is given to the message with the lowest id number. The 

node that transmitted the message with the higher id will stop and wait for an 

opportunity to retransmit the message i.e. when the bus is free, allowing the message 

with the lower id to be sent first. 

 

 

2.2.2.2. FlexRay 

FlexRay was conceived by a group of automotive, semiconductor and electronic 

systems manufacturers. Their aim was to create a bus which was deterministic, fault-

tolerant and could support high data rates (FlexRay Consortium 2007). These 

features make FlexRay particularly suited to critical applications such as Brake-By-

Wire and Steer-By-Wire. 

 

Network Structure 

A FlexRay network can consist of up to two channels – channel A and channel B. 

Each of these can support a data rate of up to 10 Mbit/s, giving a gross data rate of 

20Mbit/s (FlexRay Consortium 2007). Figure 2.6 illustrates a dual-channel bus 

configuration. Note that a node may be connected to either channel A or channel B 

or both.  
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Fig 2.6 FlexRay Bus ConfigurationFig 2.6 FlexRay Bus ConfigurationFig 2.6 FlexRay Bus ConfigurationFig 2.6 FlexRay Bus Configuration    

 

Unlike CAN, there is no single FlexRay topology. Instead, networks can be 

configured in a number of ways - as a passive bus, a passive star, an active star or a 

combination of these (FlexRay Consortium 2005) e.g. 

 

 
Fig 2.7 Single Channel Hybrid TopologyFig 2.7 Single Channel Hybrid TopologyFig 2.7 Single Channel Hybrid TopologyFig 2.7 Single Channel Hybrid Topology    

 

The network in Figure 2.7 consists of a hybrid topology. Two of the elements 

connected to the star are individual nodes, while the third is a bus made up of further 

nodes. Further topologies may also be supported. 

 

Communications Cycle 

FlexRay, unlike CAN, is a time-triggered network. Media access control is based 

around a recurring communications cycle (FlexRay Consortium 2005, p.100). A 

section of the communications cycle does however cater for dynamic 

communications.  

 

The FlexRay communications cycle is broken up into four parts (FlexRay 

Consortium 2005, p.100) – the static segment, the dynamic segment, the symbol 

window and network idle time.  
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Fig 2.8 FlexRay Communications CycleFig 2.8 FlexRay Communications CycleFig 2.8 FlexRay Communications CycleFig 2.8 FlexRay Communications Cycle    

 

Static Segment 

The static segment consists of a number of static slots. Each of these is assigned to a 

message id to ensure that only one message is transmitted at that given time every 

communications cycle. 

 

Dynamic Segment 

The dynamic segment is broken up into a number of mini-slots.  Any node may 

transmit an arbitrary message during one of these mini-slots. If two nodes want to 

transmit at the same time, priority is given to the message with the lowest id number. 

This ensures that collisions do not occur. 

 

Symbol Window 

The symbol window is used to transmit various commands e.g. to wake up a cluster 

of nodes.  

 

Network Idle Time 

The network idle time contains the remaining number of macroticks from the 

communications cycle. The main function of the network idle time segment is to 

allow nodes to resynchronise themselves and ensure that they are all working off a 

common global time (FlexRay Consortium 2005, p.107). Communications do not 

occur during this period. 

 

Execution of Communications Cycle 

Every communications cycle (excluding startup) is executed with a fixed period of 

macroticks (FlexRay Consortium 2005, p.101). A macrotick is an interval of time 

which has been derived from the cluster-wide clock synchronisation algorithm. It is 

made up of a number of microticks which are the smallest units of global time used 

by FlexRay. The microticks’ sizes are determined by the communication controller 

of each FlexRay node (FlexRay Consortium 2005, p.15). 

Static Segment Dynamic Segment Symbol Window 
Network Idle 

Time 



    VVEEHHIICCLLEE  EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC  AARRCCHHIITTEECCTTUURREE  

 

 17 

 

As has already been stated, FlexRay is based around a recurring communications 

cycle. Therefore, the four slots outlined above are repeated for every communication 

cycle i.e. 

 

 
Fig 2.9 FleFig 2.9 FleFig 2.9 FleFig 2.9 FlexRay Communications Cycle TimingxRay Communications Cycle TimingxRay Communications Cycle TimingxRay Communications Cycle Timing    

(FlexRay Consortium 2005, p.101)    

 

 

2.2.2.3 Local Interconnect Network 

Many functions in a vehicle do not require high levels of redundancy or high data 

transmission rates provided by networks such as FlexRay or CAN. These include 

non-critical systems such as electric windows or air-conditioning. It is desirable 

therefore, to implement these features with a lower cost, lower speed network such as 

LIN (Local Interconnect Network). A LIN bus may transmit data at a rate of up to 

20kbit/s (LIN Consortium 2006). 

 

Network Structure 

A LIN bus consists of a single master node and one or more slave nodes (LIN 

Consortium 2006). This is illustrated in Figure 2.10. 
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Fig 2.10 LIN NFig 2.10 LIN NFig 2.10 LIN NFig 2.10 LIN Networketworketworketwork    

 

A master node controls all activity on the bus. A slave node will only transmit or 

publish a message if requested to by the master. To understand the operation of a 

LIN bus, it is first necessary to look at the format of a LIN message frame.  

 

A LIN message frame consists of two parts, a frame header and a response. The 

master task transmits the frame header. The header is essentially a request for some 

action to be performed. Each slave node listens to the bus. If a node detects a header 

that it publishes, then it will transmit a response and carry out any necessary actions 

in response to the request. An example of communications on a LIN bus is illustrated 

in Figure 2.11. 

 
Fig 2.11 LIN Communications ExampleFig 2.11 LIN Communications ExampleFig 2.11 LIN Communications ExampleFig 2.11 LIN Communications Example    

 

In this example the bus master transmits the header for the message with an id of 01. 

Slave 1 reads the message header and responds by transmitting the response, 

containing the relevant data. Slave 2 also reads the message header, but since 

Slave NodeSlave NodeSlave NodeSlave Node    

MASTER NODEMASTER NODEMASTER NODEMASTER NODE    

Slave TaskSlave TaskSlave TaskSlave Task    

Master TaskMaster TaskMaster TaskMaster Task    

Slave TaskSlave TaskSlave TaskSlave Task    

Slave NodeSlave NodeSlave NodeSlave Node    

Slave TaskSlave TaskSlave TaskSlave Task    

MasterMasterMasterMaster    SlaSlaSlaSlave 1ve 1ve 1ve 1    Slave 2Slave 2Slave 2Slave 2    

 Message Header - ID 01 

Response - ID 01 
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message 01 is not part of the list of messages that slave 2 acts on, it simply ignores 

the header and does nothing. 

 

 

2.2.2.4 Media Oriented Systems Transport 

Media Oriented Systems Transport (MOST) is a synchronous network consisting of 

up to 64 nodes (MOST Cooperation 2008). A single TimingMaster provides a 

constant data signal to the system clock. TimingSlaves (all other devices on the 

network) synchronise their operation according to this base signal. MOST is used 

primarily for networking in-vehicle multimedia and infotainment systems. There are 

two primary methods of transporting data on a MOST network: 

 

Data Streaming 

Data is transmitted as a continuous stream. This method is primarily used for 

multimedia applications i.e. audio and/or video. 

 

Packet Data Transmission 

Data is transmitted in a burst-like manner. This method is primarily used for 

transmitting data with large block sizes such as navigation maps and graphics. 

 

 

 

2.2.3 Gateways 

There may be a large number of communications networks present in a vehicle. For 

example, a vehicle may use FlexRay for brake-by-wire and drive-by-wire systems, 

CAN for the engine management electronics, LIN for electric windows, lights and 

mirrors and MOST (Media Oriented Systems Transport) for the multimedia systems. 

Systems connected to these networks need to share data. For example, it may be 

necessary for the brake-by-wire system on the FlexRay network to communicate 

with the engine management system on a CAN bus in order to provide traction 

control.  
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Each network however uses its own communications protocol. This is the ‘language’ 

which the nodes on that network use to communicate with one another. Therefore 

there must be some means of translating between the different languages. This 

functionality is provided by gateways. A gateway is an ECU which is used to 

translate messages from one communications protocol to another (Heßling 2004, 

p.1108). This process is illustrated in Figure 2.12. 

 
Fig 2.12 Network GatewayFig 2.12 Network GatewayFig 2.12 Network GatewayFig 2.12 Network Gateway    

 

In this example, Node A wishes to transmit data to Node C. Both nodes however are 

on different networks. Therefore, Node A transmits the data as a standard CAN 

message. The gateway has been set up to subscribe to this message. It receives the 

data contained in the message and repackages it in a FlexRay message frame. This 

can then be transmitted on the FlexRay network at the appropriate time e.g. during 

the dynamic segment of the FlexRay network’s communications cycle.  
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2.3 Summary                                                                    
 

The scale and complexity of vehicle electric and electronic architectures has 

continued to grow since the introduction of early automobiles. The rate at which 

these systems have grown has greatly increased since the introduction of the 

microcontroller. In this chapter, the basic parts which make up a vehicle’s electric 

and electronic architecture have been introduced. These include sensors, actuators, 

electronic control units or ECUs and network gateways. Further, three examples of 

in-vehicle networks have been presented. The next step is to consider the 

development of software which utilises the structures outlined above.  

 

 

 

 

2.4 Relevance to Research                                              
  

This chapter has outlined the main items which form an automotive electric and 

electronic architecture. An understanding of these systems provides the context in 

which the research is based. As this thesis is concerned with software components, it 

is necessary to understand the environment in which those components operate.
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.3.   

 

 

Automotive Software Development 

 

 
 

3.1 Overview 
 

The role of software in automotive electric and electronic systems has been touched 

on in the last chapter. This chapter presents an overview of development processes 

and tools used to develop automotive applications. In addition, an introduction to 

various standards relating to automotive software is given. 

 

According to Broy, there are two primary factors which influence the continual rapid 

inclusion of software into automotive systems (Broy 2005). Software allows new 

innovative functionality to be added. This can be a unique selling point for a vehicle. 

Also, cheaper and better technical solutions may be introduced for existing 

functionality e.g. replacing carburettor-based injection systems with digital fuel 

injection.  

 

The first vehicles to employ software were introduced about 30 years ago. Initially 

software was used to control isolated systems such as ignition. However, with the 

introduction of various network systems, ECUs could share resources, leading to 

increasingly complex systems such as anti-lock brakes. Currently, premium cars can 

have over 70 ECUs connected through more than 5 different busses, running more 

than 10,000,000 lines of code. Further, over 40% of vehicle production costs can be 

attributed to electronics and software (Broy 2006).  

 

It has been estimated in 2003 that eighty percent of all future innovations in the 

automotive industry would be driven by electronic systems. Ninety percent of these 
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innovations would be driven by software (Grimm 2003). This is in part due to the 

trend of manufacturers moving from hardware-based solutions to software-based 

solutions (Schäuffle and Zurawka 2003, p.21). It is important therefore to consider 

the unique aspects of automotive software and examine current development 

methods.  

 

 

 

 

3.2 Development Processes 
 

There are a number of tools and processes used to develop software for the 

automotive industry. This section describes some of the more widely used ones. 

 

 

 

3.2.1 The V-Model 

Automotive systems are typically developed via some form of a divide and conquer 

strategy: a system is divided into more manageable sub-sections which are each 

developed separately and later integrated. If necessary, sub-sections are further 

decomposed and so on. An approach widely used in the automotive industry is the V-

Model as illustrated in Figure 3.1. 

 
Fig 3Fig 3Fig 3Fig 3.1 .1 .1 .1 VVVV----ModelModelModelModel    

(Beck 2002) 
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The phases V-Model are outlined below: 

 

1. Requirements Definition: This specifies the set of elicited requirements for 

the system which may include individual actions to be carried out by ECUs, 

events etc. 

2. Functional Design: The system is designed in terms of models, diagrams. 

The logical structure of the system is designed in this phase. 

3. System Partitioning: The system design is broken up into a number of 

independent modules which can be developed separately by a number of 

suppliers. 

4. ECU Development HW/SW: The individual sub-systems are developed and 

implemented by the various sub-system suppliers. Note that some modules 

may still be developed in-house by the OEM (Original Equipment 

Manufacturer). 

5. ECU Test: Each ECU is tested in isolation to ensure that it fulfils the 

requirements laid down. 

6. Functional Integration: ECUs which work together to provide some 

function e.g. powertrain management, are integrated together and tested to 

ensure that they fulfil the requirements for that system and that they will 

operate correctly as an integrated unit. 

7. Integration: The separate systems are integrated together to produce the 

complete E&E architecture for the vehicle. The full architecture is then tested 

to ensure that all of the systems operate correctly as a complete implemented 

architecture. 

 

 

 

3.2.2 Model Based Software Development 

There does not seem to be one standard definition of what exactly comprises model 

based software engineering. However the main concept is that models are used 

instead of straight code or more document-based methods.  

 



    AAUUTTOOMMOOTTIIVVEE  SSOOFFTTWWAARREE  DDEEVVEELLOOPPMMEENNTT  

 

 27 

Huber et al. describe two types of model which can be used: process models and 

product models (F. Huber, J. Philipps et al. 2002). A process model simply describes 

some activity in the development process (F. Huber, J. Philipps et al. 2002) e.g. 

‘generate test cases’, or ‘define component interfaces’. 

 

Their definition of a product model is more useful however. It effectively describes 

what comprises a model created during development. They define a product model 

(F. Huber, J. Philipps et al. 2002) as being made up of various entities which describe 

the system being developed, along with its environment and the relationships 

between its entities. A product model describes the parts of a system which are 

explicitly dealt with during the development process and handled by a development 

tool. Domain concepts included in such a model may include a component or a state. 

Scenarios or test cases may be included as can more semantically oriented concepts 

such as “execution trace”. 

 

Frequently, tool support is used to create models more efficiently. Often, these tools 

allow a model to be tested and verified at an early stage.  The following section 

describes a number of tools which are currently used in the automotive industry. 

 

 

 

 

3.3 Development Tools                                                    
 

Developers frequently make use of various tools to create product models. These 

tools provide graphical user interfaces which allow a user to build up a visual 

representation of a system. System components for example may be represented by 

blocks and relations between components can be illustrated with lines connecting 

blocks.  Tools such as Simulink allow a user to run a simulation of the system which 

has been modelled. This tool in particular is further described in a later section. 

 

There are a number of advantages to using a tool-based approach which facilitates 

simulation of a system. They allow early error detection and correction and early 
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verification and validation of a system (Won Hyun Oh, Jung Hee Lee et al. 2005). 

This can reduce development time and costs as problems are uncovered early on in 

the project lifecycle. Coupled with automatic code generators, modelling tools have 

the potential to greatly simplify and streamline the development process. 

 

There is a wide range of tools available to aid the development of automotive 

software. Two categories of tools used are model based development tools and 

hardware in the loop simulators. 

 

 

 

3.3.1 Modelling Tools 

This section will present an overview of one of the most widely used modelling tools 

- Simulink. Simulink allows a user to model, simulate and analyse systems whose 

output changes over time (The Mathworks Inc 2005). This makes it particularly 

suited to embedded applications such as those found in automotive systems. 

 

Simulink contains a number of libraries – each of which contains a set of blocks – 

from which a system can be built. Examples include Ports & Subsystems, Maths 

Operations and Signal Routing. These blocks can be used to define the functionality 

of a system. An example is shown in Figure 3.2. 
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Fig 3Fig 3Fig 3Fig 3....2222    SimulinkSimulinkSimulinkSimulink    

 

The air conditioning system in Figure 3.2 has three inputs – an enable command 

which indicates that the system should be turned on, a reading of the cabin 

temperature and the desired temperature that the vehicle occupant has input. The 

system has a single output which controls the hot/cold air mix vent. Note that it is 

possible to include artefacts such as the scope included above to monitor signals such 

as the output of the system. 

 

While the above example is extremely simple, it demonstrates that it is possible to 

model systems effectively with Simulink. In this way, complicated systems can be 

modelled and tested at an early stage in the development process. Simulink can be 

coupled with an automatic code generation tool such as Targetlink to allow models to 

be translated into production code for deployment on an ECU. 
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3.3.2 Code Generators 

Code generators allow a user to create an executable piece of code either by 

specifying a set of values or by a conversion of a model. Infineon’s DAvE or Digital 

Application virtual Engineer is an example of the former method. DAvE allows a 

developer to generate initialisation, configuration and driver code for Infineon’s 

family of 8-, 16- and 32-Bit microcontrollers (Infineon 2006). This enables the 

developer to rapidly set up a microcontroller i.e. configure communications ports, 

timers, clock speed and so on without having to worry about how to actually 

implement this low-level code. This leaves the developer free to concentrate on 

writing the actual application code. 

 

The second method outlined above consists of taking a model and translating it into 

code. An example of this form of code generator is TargetLink by dSPACE. 

TargetLink takes a control system which has been modelled in Simulink, and allows 

the developer to generate code from that model, which can then be deployment on an 

ECU (dSpace GmbH 2006). This method has the advantage of translating directly 

from specification/design to implementation. 

 

 

 

3.3.3 Hardware In The Loop Simulation 

Hardware in the loop (HIL) simulation tools provide the ability to test and evaluate 

an embedded system before it has been deployed in an actual vehicle. They can 

highlight problems with scheduling and performance and can reveal input/output 

errors, bus and energy management errors and errors with diagnostics functions. 

Also, a HIL simulation can uncover any hardware/software incompatibilities 

(Burmester 2007).  

 

A HIL simulation consists of the following main parts: a board/ECU containing the 

application under development and a HIL simulator as illustrated in Figure 3.3. 
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Fig 3Fig 3Fig 3Fig 3....3333    HIL SimulatorHIL SimulatorHIL SimulatorHIL Simulator    

Modified from (Gomez 2001)    

 

The HIL simulator emulates the environment that the application will be deployed in. 

For example, in the case of an engine control unit, the HIL simulator would model 

the various physical components of the engine. These would include the spark plugs, 

fuel injectors, a crankshaft sensor, engine coolant sensors, the various sensors 

necessary for calculating air charge and so on. As far as the ECU is concerned, it is 

connected to the physical components. This is the reason why HIL simulators are so 

effective. 

 

A HIL simulator will generate data which simulates the inputs the ECU would 

receive during actual operation. The ECU will then process the data as per its design 

and generate outputs. These are monitored by the HIL simulator which can then 

make modifications to the inputs if necessary e.g. to simulate a change to a vehicle’s 

speed as the ECU alters (from its perception) the fuel/air mix. The ECU will react 

exactly as it would in the actual vehicle. This enables testing and validation to be 

carried out before an actual vehicle is ready. 

 

 

 

 

3.4 Standardisation                                                         
 

Recent years have seen the introduction of standardisation efforts within a number of 

automotive application areas. Standardisation is extremely beneficial to the software 
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development process. For example, a standardised software architecture and/or 

operating system can reduce the amount of new software development which has to 

be carried out and promotes reuse of previously implemented software modules. A 

common approach to diagnostics will again reduce the amount of new development 

which has to be carried out. The following sections describe some of the more recent 

standardisation efforts within the automotive software community.  

 

 

 

3.4.1 Diagnostics Tool Support 

Modern vehicles in general contain a large number of sub-systems which have been 

developed externally by Tier 1 suppliers. Each system which has been developed by 

a supplier could potentially use a different approach to diagnostics and the modelling 

of diagnostic data. This could lead to unnecessary complications for both OEMs and 

aftermarket service dealerships. 

 

A solution to this problem has been created by ASAM (Association for 

Standardisation of Automation and Measuring Systems). The stated goal of ASAM is 

“to develop, maintain, and deploy platform independent extensible standards, and to 

enable products that use and are compliant with those standards.” (ASAM)ASAM 

works in the area of automation, analysis, measurement and simulation.  

 

ASAM have developed the Open Diagnostic data eXchange (ODX) as a means of 

describing all of the diagnostic data for a vehicle and its ECUs. The aim of the ODX 

is to simplify the support of the aftermarket service industry by providing a 

standardised diagnostic data model which diagnostic tool makers can integrate into 

their tools (Augustin, Backmeister et al. 2006). An OEM can specify diagnostic data 

for a new vehicle in this format, and distribute this data to aftermarket service 

dealerships. The service dealerships can then integrate this data into their existing 

diagnostic tools. As a result, a new tool does not need to be developed for each new 

vehicle model, greatly aiding OEMs and service dealerships. 
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3.4.2 Diagnostic Protocols 

There is a wide range of vehicles available from a large number of manufacturers in 

today’s marketplace. The majority of these vehicles contain subsystems which are 

not developed in-house. Potentially each sub-system developed for a vehicle could 

use a different diagnostic protocol. This would greatly increase the work which 

OEMs would have to carry out during systems integration.  

 

There are a number of diagnostic standards available. Two examples are ISO-14229: 

Road Vehicles – Diagnostic Services, and ISO-15765: Diagnostics On CAN. Both of 

these are provided by the International Standards Organisation (ISO). The majority 

of modern vehicles produced support the standards outlined here. 

 

ISO-14229: Road Vehicles – Diagnostic Services 

ISO-14229 specifies common requirements for diagnostic services. These services 

allow a user to control diagnostic services on an embedded vehicle ECU which is 

connected to a serial data link (ISO 2002). The standard specifies a set of services 

but not any implementation details. 

 

ISO-15765: Diagnostics on Controller Area Network (CAN) 

ISO-15765 defines common requirements for vehicle diagnostics systems on CAN. 

The application layer services defined for ISO-15765 have been developed in 

compliance with the services laid down by ISO-14229: Road Vehicles – Diagnostic 

Services (ISO 2001). ISO-15765 defines the communications layers necessary to 

implement these services according to the ISO-OSI (Open Systems Interconnect) 

reference model for network communications. It defines the application and network 

layers. The data-link layer is specified by CAN. 
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3.4.3 Operating System 

One of the most widely used examples of an operating system standard for 

automotive applications is the OSEK OS, which is part of the wider OSEK/VDX 

environment.  

 

OSEK/VDX originally started out as two separate projects. The first was being 

developed by a group of German automotive manufacturers and was called OSEK – 

“Offene Systeme und deren Schnittstellen fur die Elektronik im Kraftfahrzeug”, 

roughly translated to English as “Open systems together with interfaces for 

automotive electronics”. The second, VDX or Vehicle Distributed eXecutive, was 

being developed in France by PSA and Renault. In 1994 these projects merged and 

created OSEK/VDX (Lemieux 2001b). 

 

The OSEK/VDX operating system is an open standard. It is a small, scalable real-

time operating system which has been designed for use on embedded systems which 

have high memory constraints and a fixed set of functionality (Lemieux 2001b). The 

operating system handles various items such as events and alarms and provides 

resource management. 

 

One of the central operational concepts of the OSEK OS is a Task. A task is 

essentially a piece of code which can be scheduled – initiated, terminated, suspended 

(depending on the category of the task) etc – by the operating system. The tasks 

contain the code to carry out the functional aspects of a system.  

 

OSEK/VDX contains a number of other standards. These include the following:  

 

� OSEK COM: OSEK Communications (COM) defines both the interfaces 

and protocols used for intertask and interprocessor communications between 

applications (e.g. on different ECUs) or within a single application (running 

on a single ECU) (Lemieux 2001, p.123-211). 

� OSEK NM:  OSEK Network Management (NM) defines a methodology and 

the API services which make it possible for an application to monitor the 

availability of nodes on a network (Lemieux 2001, p.213-256) 
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� OSEK OIL: OSEK OIL is the language which is used to configure the 

various objects used in a specific OSEK/VDX implementation. A system may 

be configured through the use of an OIL file, which contains the actual 

configuration of the application (Lemieux 2001, p.14). OIL files provide 

portability between different OSEK implementation tools i.e. the same 

system may be implemented using different tools if the same OIL file is 

reused in all cases. 

 

 

 

3.4.4 Architecture 

One of the most recent efforts at producing a standard software architecture for 

automotive applications is known as the Automotive Open System Architecture or 

AUTOSAR. AUTOSAR is essentially a standardised software architecture for 

embedded automotive applications. One of the main goals of AUTOSAR is to 

separate an application from its infrastructure. An application is made up of a set of 

discrete software components and the infrastructure is managed by the Basic 

Software modules as shown in Figure 6.1.  

 

 
Fig Fig Fig Fig 3.4 Abstracted3.4 Abstracted3.4 Abstracted3.4 Abstracted view of AUTOSAR Architecture view of AUTOSAR Architecture view of AUTOSAR Architecture view of AUTOSAR Architecture    

 

The basic software fulfils the infrastructural requirements, covering items such as the 

operating system, inter-ECU communications, hardware management etc. Standard 
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interfaces to the basic software allow software components to be developed without 

regard for the hardware that the system is to be deployed on. This can greatly 

simplify development. In addition, software components which have been created for 

a past system can be reused in future developments e.g. in the latest edition of a 

particular car model. AUTOSAR is discussed in greater detail in Chapter 6. 

 

 

 

 

3.5 Summary 
 

There is a wide range of tools and processes available to aid the development of 

automotive software. The automotive industry is moving towards standardised 

methods for diagnostics, operating systems and architectures. These will further aid 

the software developer in their task. 

 

 

 

 

3.6. Relevance To Research 
 

As with the previous chapter, an understanding of the practices and tools used to 

develop automotive software provides a context for this research. The framework 

that will be developed must be able to be integrated into the automotive software 

development process to ensure its validity. Understanding the move towards 

standardisation is also important as this will affect the direction that the research 

takes. The development of the framework to map requirements to AUTOSAR 

components will have to take into account these standards, again to ensure its 

validity. 
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.4.   

 

AUTOSAR 

 

 
 

4.1 Introduction  
 

AUTomotive Open System ARchitecture, or AUTOSAR is a standardised 

architecture for automotive Electric and Electronic (E&E) systems. The initiative 

was developed as a collaboration between a number of organisations operating in the 

automotive industry. These include the core AUTOSAR partners: the BMW Group, 

Bosch,  Continental, Daimler, Ford, Opel, PSA Peugeot Citroën, Toyota and 

Volkswagen AG (AUTOSAR GbR 2006f). The aim of AUTOSAR is to separate an 

application from the underlying infrastructure i.e. the hardware, operating system and 

communication buses. 

 

Apart from the financial motivations, there are a number of technical factors that 

have motivated the development of a standard architecture for electric and electronic 

(E&E) systems (AUTOSAR GbR 2006b). These include: 

 

- The need to manage increasing E&E complexity. 

- Improving flexibility during production, modification and updating of 

E&E systems. 

- Improving scalability, that is, the ability to grow the size of a system. 

- Improving quality and reliability. 

- Enabling the early detection of errors during a project’s design phase. 

 

The AUTOSAR architecture is a good example of a component based system. All of 

the higher application-level tasks are handled by the software components. 

Communications, task scheduling, hardware management and all other 
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infrastructural requirements are handled by lower level software modules. Figure 4.1 

shows an abstracted representation of the AUTOSAR architecture. This diagram 

illustrates a number of software components, working together with various drivers, 

services etc. As was already discussed in Section 4.1, software components 

communicate via-well defined interfaces. Again, these are illustrated in Fig 4.1.  

 

 
Fig Fig Fig Fig 4.1 Abstracted4.1 Abstracted4.1 Abstracted4.1 Abstracted view of AUTOSAR Architecture view of AUTOSAR Architecture view of AUTOSAR Architecture view of AUTOSAR Architecture    

 

 

 

 

4.2 Virtual Functional Bus (VFB)                                  
 

The Virtual Functional Bus (VFB) (AUTOSAR GbR 2005a) is an abstracted view of 

the interconnections between software components throughout an entire vehicle and 

between software components and their related infrastructure. All of the 

implementation details – communications protocols, interaction with an OS and 

hardware, which ECU each software component is located on etc – are hidden.  

 

The VFB is used to provide a means of virtual integration of software components 

that is independent of an actual implementation. Therefore, components can be 

integrated and their communications links can be determined at an early stage. This 

information is then used at a later stage for implementation and deployment on 

ECUs. In an actual deployed system the Run Time Environment (RTE) encapsulates 

the VFB abstraction. The RTE uses the Operating System (O/S), AUTOSAR COM 

and other Basic Software Modules to implement the encapsulation. Figure 4.2 

illustrates an AUTOSAR system viewed at the VFB level. 
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Fig Fig Fig Fig 4.2 Virtual Functional Bus4.2 Virtual Functional Bus4.2 Virtual Functional Bus4.2 Virtual Functional Bus    

 

The following sub-sections specify the main components of the AUTOSAR system 

as viewed at the VFB level. 

 

 

 

4.2.1 Communications Mechanisms 

At the VFB level, communication between components is described by the following 

concepts: 

 

Interface 

An interface is a contract which must be fulfilled by a component which implements 

that interface. An interface describes what information is transmitted between ports 

of components (AUTOSAR GbR 2006e) and the behaviour of that port. It is not an 

artefact that is actually implemented. Rather, an interface is used to specify how a 

port is to be configured. It details the operations (in the case of client-server 

communications) and data items which are recognised and potentially used by the 

ports they characterise. Note that a software component does not necessarily have to 

use all of the operations and/or data items defined in a particular interface. 

 

Interfaces can aid a developer in the integration of software components. This is due 

to the fact that the ports of components which are characterised by the same interface 

will always match with each other. 
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Port 

A port implements an interface. It is the point of a software component through 

which it can interact with other components (AUTOSAR GbR 2005a) . A port can 

either provide data or services (P-Port) or require data or services (R-Port). In the 

former case, the port provides the data/services defined in an interface, and in the 

latter case, the port requests the data/services defined in an interface from another 

component. For example, a component may have a P-Port which is used to transmit a 

sensor reading which has been filtered (e.g. analogue to digital conversion), while 

another component my receive that data via an R-Port and perform some calculation 

using that value. 

 

There are four types of port used: client, server, sender and receiver. These are used 

in client-server and sender-receiver communications respectively. Both of these 

communications paradigms are explained in section 4.4.4. 

 

Connector 

A connector is used to connect ports, defining the transfer of data between two ports 

with compatible interfaces. Essentially it specifies the mapping between two ports. A 

connector will connect exactly one P-Port to exactly one R-Port (AUTOSAR GbR 

2005c) . 

 

Fig. 3.3 below illustrates these concepts. 

 
Fig Fig Fig Fig 4.3 VFB Communications Mechanisms4.3 VFB Communications Mechanisms4.3 VFB Communications Mechanisms4.3 VFB Communications Mechanisms    

 

Figure 4.3 consists of two software components. Software Component 1 (SW-C 1) 
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indicating that it provides that piece of data. In this case, an interface is used to 

define SW-C 1’s R-Port as a client i.e. it requires that some operation (also defined in 

the interface) is carried out. An interface define SW-C 2’s P-Port as a server i.e. it 

provides some operation. A connector maps the R-Port of SW-C 1 to the P-Port of 

SW-C 2. 

 

 

 

4.2.2 Basic Software 

The VFB abstraction hides all of the infrastructural aspects of an AUTOSAR 

architecture.  However, to present a complete view of AUTOSAR, the main basic 

software modules fulfilling these infrastructural requirements are described below. 

Section 4.3 gives a brief description of the Runtime Environment. Figure 4.4 

illustrates the layered architecture of AUTOSAR, including the Basic Software 

modules. 

 

 
Fig Fig Fig Fig 4.4 AUTOSAR Architecture Layers4.4 AUTOSAR Architecture Layers4.4 AUTOSAR Architecture Layers4.4 AUTOSAR Architecture Layers    
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Interaction with Hardware 

The VFB provides components with access to microcontroller peripherals, ECU 

electronics, sensors and actuators. This is performed through the use of a number of 

software modules - the Microcontroller Abstraction Layer, the ECU abstraction and 

Complex Device Drivers (AUTOSAR GbR 2005b). 

 

Microcontroller Abstraction Layer (MCAL) 

The MCAL provides software components with access to the peripheral hardware of 

a microcontroller via a defined API. The goal of the MCAL is the abstraction of 

standard peripheral microcontroller hardware. It allows software components to use 

facilities such as FLASH memory, watchdog timers etc without having to know the 

specifics of how to access or operate the hardware. The MCAL should abstract the 

functionality of at least the following: 

 

- Digital Input/Output  

- Analogue/Digital Converter 

- Pulse Width (De)Modulator 

- EEPROM (Electronically Erasable Programmable Read-Only Memory) 

- FLASH 

- Capture Compare Unit 

- Watchdog Timer 

- Serial Peripheral Interface 

- I2C Bus (Inter-Integrated Circuit Bus) 

 

Drivers for the above, along with those for other required peripherals, are held in the 

MCAL. 

 

ECU Abstraction 

The ECU Abstraction is written for a specific ECU and uses the MCAL directly. The 

ECU Abstraction has the responsibility of abstracting everything installed on the 

ECU. It provides sensor and actuator software components with the electronic values 

of an ECU e.g. electrical signals from sensors.  
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Complex Device Drivers 

This is a special form of software component which makes the functionality of a 

special piece of hardware (microcontroller peripheral, sensor, actuator etc) usable for 

other software components. A complex device driver is ECU specific. It should only 

be used if the performance of the complex device driver is much better than that of 

the ECU Abstraction and MCAL or if there is no suitable interface in the MCAL. 

This may be the case, for example, if some special form of signal processing is used. 

 

Operating System (OS) 

The AUTOSAR OS is based on the standard OSEK operating system. OSEK OS is 

widely used in the automotive industry and has a proven track record in vehicle 

ECUs. It contains the following features which make it a suitable basis for the 

AUTOSAR OS (AUTOSAR GbR 2008) (Lemieux 2001b): 

 

• Fixed priority-based scheduling: Tasks are given a priority level which is 

statically defined i.e. it does not change during the execution of the program. 

This ensures that critical tasks (e.g. safety critical tasks) always run before 

less important tasks. (The exception to this is the priority ceiling protocol 

which temporarily raises the priority of a task to the highest possible priority 

assigned to a particular resource. This ensures that the task has control of that 

resource for the duration of its operation). 

• Facilities for handling interrupts: Interrupts are key to the operation of real-

time systems as they are used to handle external asynchronous events. There 

are three categories of interrupts. Category 1 interrupts are the fastest form of 

interrupt service routine (ISR). These do not require an OS application 

programming interface (API) call i.e. they do not interact with the OS. They 

generally generate an output such as a frequency signal or a pulse width 

modulation signal. Category 2 interrupts call API services. They may be used 

to perform tasks such as counting a series of pulses or identifying external 

events. Category 3 ISRs are a combination of the previous two e.g. the ISR 

may only occasionally have to make an API call. This form of ISR is optional 

according to OSEK. 
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• A startup interface through StartOS() and the StartupHook(): The 

former causes all of the objects defined in the OIL file (OSEK 

Implementation Language file. Contains definition of the application) to be 

initialised. The latter allows a developer to include any other necessary 

initialisation required for the application.  

• A shutdown interface through ShutdownOS() and the 

ShutdownHook(): These allow all of the objects which were opened 

during startup to be closed. 

 

OSEK OS must provide the ability of inter-task i.e. internal communication as 

defined in OSEK COM. AUTOSAR however performs this task using either the 

RTE or AUTOSAR COM. Therefore the AUTOSAR OS does not need to support 

internal communications. 

 

Some systems will most likely continue to use proprietary OSs. In this case, the OS 

must be abstracted to an AUTOSAR OS as the interfaces to the OS must be 

AUTOSAR compliant. 

 

Communication 

This software module is concerned with the various aspects of inter-ECU 

communications networks e.g. CAN, LIN, FlexRay etc. It handles both data transfer 

and network management. 

 

AUTOSAR Services 

The AUTOSAR glossary states that “An AUTOSAR service is a logical entity of the 

basic software offering general functionality to be used by various AUTOSAR 

software components. The functionality is accessed via standardised AUTOSAR 

interfaces.” (AUTOSAR GbR 2006a). Examples of this general functionality could 

include timer services, VFB bus monitor, signal filters, car mode manager (ignition, 

driving etc) and so on.  
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4.3 Runtime Environment (RTE)                                   
 

The RTE (AUTOSAR GbR 2007) implements the interfaces between software 

components described by the VFB. It also allows software components to make use 

of an ECU’s resources without any direct interaction between the component and the 

ECU, O/S, Basic Software Modules etc. To access the ECU’s resources, a software 

component simply makes a request to the RTE, which then handles any interaction 

with the lower levels.  Note that the functionality of Basic Software is accessed via 

standardized AUTOSAR services defined in the RTE specification. Therefore the 

RTE is the link between software components and the services and hardware on an 

ECU and between software components throughout the entire vehicle network. 

 

 

 

4.3.1 RTE Generation 

Each ECU in an AUTOSAR-based system contains its own instance of a RTE which 

has been configured specifically for that ECU during the RTE generation process. 

The RTE generator tool will create API functions which form the communications 

between software components and which link software components to the operating 

system and basic software modules. There are two stages to the RTE generation 

process: 

 

• RTE Contract Phase: In this phase software component information (mainly 

interface definitions) is used to create a component header file. This file 

contains a definition of the APIs which allow a software component to access 

the RTE and its services. Note that the software component internal 

behaviour description file detailing Runnable Entities and RTE Events is also 

used in this process. 

• RTE Generation Phase: An ECU configuration description is used as an 

input to the RTE generation tool. This file contains details relating to the 

software components to be deployed on an ECU such as the mappings of 

application level signals to COM messages. Each ECU will have a 
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corresponding configuration description which is used to generate a specific 

RTE for each ECU. 

 

 

 

 

4.4 Software Component                                                
 

Software components (AUTOSAR GbR 2006e) fulfil the application requirements of 

an AUTOSAR system. They provide the core functionality i.e. the control logic 

necessary for some task. In an engine management system, software components 

might control features such as the ignition timing, injector pulse width, exhaust gas 

recirculation strategy and so on. The infrastructure – sending and receiving of CAN 

messages or OS scheduling, for example – is handled by basic software modules. 

These lower level tasks are not in the domain of AUTOSAR software components. 

 

Due to the separation of application and infrastructure in AUTOSAR systems, 

software components become independent from the following (AUTOSAR GbR 

2006b): 

- The type of microcontroller that a software component is mapped to. 

- The type of ECU that the software component is mapped to. 

- The physical location of related software components on the vehicle 

network. 

- The number of instances of a particular software component in a system 

or on an ECU. 

 

 

 

4.4.1 Atomicity of Software Components 

Every implemented AUTOSAR software component is an atomic unit (AUTOSAR 

GbR 2006, p.17). Therefore, a software component cannot be divided into smaller 

parts to be distributed over multiple ECUs. It is a whole unit and must be deployed as 

such. This atomicity, coupled with the Virtual Functional Bus concept explained in 
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Section 4.2, allows a software component to be deployed without regard to the 

location of other software components with which it communicates. In some cases 

however it may be necessary to locate a software component on a specific ECU for 

performance and efficiency reasons. This is typical of sensor and actuator software 

components which are dependent on a particular piece of hardware. It also may be 

true of some application software components which require data at a higher rate 

than can be supplied by the vehicle network being used. 

 

A software component may also be deployed independently of the number of times 

the component is instantiated on an ECU or in the whole system e.g. a car may have 

two instances of a software component which controls cabin temperature - one for 

the passenger and one for the driver. 

 

 

 

4.4.2 Compositions 

AUTOSAR software components that are logically interconnected may however be 

packaged together as a larger single component. This is referred to as a composition. 

A composition allows the encapsulation of a number of pieces of functionality 

(AUTOSAR GbR 2006, p.27). For example, a composition that calculates the pulse 

width for petrol injectors may contain two atomic software components – one which 

calculates the base injector pulse width from the desired fuel mass flow rate (SWC-

1), and one which adjusts this value based on operating conditions (SWC-2). Figure 

4.5 shows a view of the composition from a logical point of view. Figure 4.6 shows 

the actual implemented software components. 
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Fig Fig Fig Fig 4.5 Logical View of a Composition4.5 Logical View of a Composition4.5 Logical View of a Composition4.5 Logical View of a Composition    

 

 
Fig Fig Fig Fig 4.5 I4.5 I4.5 I4.5 Implementation of a Compositionmplementation of a Compositionmplementation of a Compositionmplementation of a Composition    

    

Unlike atomic software components, the software components in a composition may 

be distributed over several ECUs. They do not necessarily need to be located 

together.  

 

In reality a composition is never actually implemented. It is a logical, design phase 

artefact and is only used to facilitate the design of a system. In the final 

implementation, a composition’s sub-components will be mapped to atomic 

AUTOSAR components. 

 

 

  

4.4.3 Sensor/Actuator Components 

This is a special class of software component (AUTOSAR GbR 2006b). Typically, 

the details of the underlying microcontroller and hardware are hidden from software 

components. However, in this case, while the component is still independent of any 
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given ECU it is dependent on a particular sensor/actuator. Therefore it must know 

the details of that particular piece of hardware. It makes sense, for performance 

reasons, to locate these software components and their corresponding hardware on 

the same ECU. However, this is not essential. 

 

 

 

4.4.4 Communications Modes 

There are two main methods by which software components communicate with each 

other. These are client-server and sender-receiver communications (AUTOSAR GbR 

2006, p.35-43). 

 

1. Client-Server Communication 

Client-server communications are service oriented. A client-server interface declares 

one or more operations that a client can invoke on a server. 

 

In this mode, a client requests that some function or operation is performed by the 

server. This is analogous to making a remote method invocation in Java. A software 

component can be both a client and a server. Fig 3 illustrates this communications 

method. The Light Controller SW-C requests that the Light Actuator SW-C performs 

the operation Turn_on_lights(). In this example, the Light Controller SW-C is a client 

while the Light Actuator SW-C is the server. The latter performs the operation and 

reports back the result of the operation to the Light Controller SW-C. Note that a 

response is not always required. 

 

 
Fig Fig Fig Fig 4.6 Client4.6 Client4.6 Client4.6 Client----Server CommunicatServer CommunicatServer CommunicatServer Communicationionionion    

Light ControllerLight ControllerLight ControllerLight Controller    
SWSWSWSW----CCCC    

Light ActuatorLight ActuatorLight ActuatorLight Actuator    
SWSWSWSW----CCCC    

Turn_on_lights() 

Result 
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2. Sender-Receiver Communication 

Sender-receiver communications are data based. A sender-receiver interface contains 

one or more data elements or mode groups. The former, as its name suggests is 

simply some piece of data. The latter allows for the transmission of various modes 

which describe the state of the vehicle (or some aspect of it) e.g. start-up, normal 

driving, shutdown etc. 

 

In sender-receiver communications, a sender will transmit data asynchronously to 

one or more receivers. There is no handshaking involved and the sender does not 

receive any message indicating whether the data was received or not. Fig 3.4 shows 

the Crankshaft Sensor SW-C (sender) transmitting a data value i.e. RPM to a 

Dashboard SW-C (receiver). Note that modes can also be transmitted in the same 

way e.g. car starting, car shutdown etc. 

 
Fig Fig Fig Fig 4.7 Sender4.7 Sender4.7 Sender4.7 Sender----Receiver CommunicationReceiver CommunicationReceiver CommunicationReceiver Communication    

 

 

 

4.4.5 Communication Attributes 

The VFB defines communications in terms of ports and interfaces. These describe 

the overall structure of communications. They do not however define essential 

information such as whether or not communications needs to be done reliably, if an 

init value should be used if real data is not available, should a queue be used when 

receiving events and if so how long etc. These and the other communications 

attributes are held in communication specification (ComSpec) classes which are in 

turn linked to specific data elements or operations. The exact ComSpec attributes 

Crankshaft Crankshaft Crankshaft Crankshaft 
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Dashboard Dashboard Dashboard Dashboard     
SWSWSWSW----CCCC    

RPM 



    AAUUTTOOSSAARR  

 

 53 

used in a particular instance depends on a number of factors including the 

communications paradigm used (sender-receiver or client-server), whether a data-

element represents actual data or an event and so on. 

 

 

 

4.4.6 Internal Behaviour 

The AUTOSAR Software Component Template (AUTOSAR GbR 2006e) defines 

the meta-class “Internal Behaviour” as describing the aspects of a software 

component relevant to the operation of the RTE. This class describes internal aspects 

of a software component including runnable entities and the events they respond to, 

PerInstanceMemory and ExclusiveAreas. 

 

Runnable Entities 

A runnable entity is a sequence of instructions contained within a software 

component which can be executed by the RTE (AUTOSAR GbR 2005a). Essentially 

runnables encompass the various pieces of functionality of the component. For 

example a runnable may be set up to run when a piece of data is received or when an 

operation is called on a server. Runnables are the smallest piece of code in a software 

component which can be scheduled by the operating system. There are a number of 

categories (Cat) of runnable entities (AUTOSAR GbR 2005a). These vary according 

to their scheduling complexity. 

 

• Cat 1A: Finite execution Time. No wait points. Accesses data elements 

through DataReadAccess and DataWriteAccess. 

• Cat 1B: Similar to Cat 1A but can also explicitly send data (DataSendPoints), 

explicitly read data (DataReceivePoints) and invoke services 

(ServerCallPoints). 

• Cat 2: Allowed to “wait” e.g. for a response from a service request, to receive 

data or for RTE events.  

• Cat 3: These use APIs to directly access the OS i.e. they do not access its 

resources with standard RTE APIs. While this category of runnable is listed 

in the VFB specification it is not currently supported by AUTOSAR. 
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The various methods of reading and writing data elements, invoking services etc 

mentioned in the descriptions of runnable categories require further explanation. 

These methods are as follows: 

 

• DataReadAccess: This can be used to access a data element of an RPort. A 

runnable is given the location of the data it requires. It does not need to 

invoke an operation on the RTE to access the data.  

• DataWriteAccess: This can be used to access the data of a PPort. A runnable 

is given the location where it can write the data. It does not need to invoke an 

operation on the RTE to write the data. In this case the runnable must ensure 

that the data element is in a consistent state when the runnable returns. The 

data will only be sent when the runnable terminates. 

• DataSendPoint: A DataSendPoint is associated with a particular data element 

provided by a PPort of a software component. It allows a runnable to invoke 

an RTE operation instructing the RTE to send out the data on the associated 

sender port of the software component. 

• DataReceivePoint: A DataReceivePoint is associated with a particular data 

element of an RPort. Using this, a runnable can invoke a method on the RTE 

which will tell the RTE to receive the next value for this data element. 

DataReceivePoints can also be used to receive events. In this case a queue 

may be enabled and if so, the next value for the data element will be taken 

from this queue. 

• ServerCallPoint: The runnable may invoke a specified method (client-server 

communications). The ServerCallPoint may be synchronous or asynchronous. 

In the case of the former the runnable will block until it receives a response. 

In the case of the latter, the runnable will continue but an RTEEvent will 

occur when the response is received. 

 

RTE Events 

An RTE Event (RTEEvent according to AUTOSAR naming conventions) as its 

name suggests is a predefined event which may occur on the RTE. These events are 

used to prompt some response e.g. invoke an operation etc. The responses are 

typically handled by runnable entities. Thus, RTEEvents can be seen as the trigger 
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which starts the execution of a runnable. In this case a specific RTEEvent is assigned 

to a runnable e.g. “trigger runnable_a if data received on receiver port X”.  

Alternatively, it is possible for the RTE to provide “wait-points”. These will allow a 

runnable to block until a particular event in a sequence of events occurs. AUTOSAR 

defines seven RTEEvent types: 

 

- AsynchronousServerCallReturnsEvent 

- DataSendCompleteEvent 

- DataReceivedEvent 

- DataReceiveErrorEvent 

- OperationInvokedEvent 

- TimingEvent 

- ModeSwitchEvent 

 

PerInstanceMemory 

It can be defined in the software component description file whether or not a 

component supports multiple instantiation. If this is enabled then each instance will 

typically require an allocation of memory. The types required (valid C typedefs) are 

specified in the PerInstanceMemory section of the software component description 

file. The RTE provides mechanisms which allow each instance to access its own 

specific memory blocks. If a software component does not support multiple 

instantiation then it does not need to use the PerInstanceMemory class but can 

instead use static variables. 

 

ExclusiveAreas 

An ExclusiveArea is used as a scheduling tool. An ExclusiveArea essentially 

prevents runnables from pre-empting each other. For example, if two or more 

runnable entities refer to a particular ExclusiveArea, then only one of the runnables 

may execute in that runnable area i.e. the runnables cannot execute concurrently. The 

inclusion of this in the internal behaviour of a software component does not prescribe 

a specific implementation e.g. mutual-exclusion. 
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4.5 AUTOSAR Development Process                            
 

The AUTOSAR approach to systems development, known as the AUTOSAR 

Methodology, is described using the Software Process Engineering meta-model 

(SPEM). There are two artefacts used in Figure 4.9 to illustrate the Methodology.  

 

 
Fig Fig Fig Fig 4.8 SPEM Blocks4.8 SPEM Blocks4.8 SPEM Blocks4.8 SPEM Blocks    

 

Figure 4.9 shows an illustration of the AUTOSAR Methodology as given in the 

AUTOSAR Technical Overview (AUTOSAR GbR 2006b). 

 

 

.  

 
Fig Fig Fig Fig 4.9 AUTOSAR Methodology4.9 AUTOSAR Methodology4.9 AUTOSAR Methodology4.9 AUTOSAR Methodology    
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Activity: “An <<Activity>> describes a piece of work 
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which the role may assist.” (AUTOSAR GbR 2006b) 
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The first task is to define the System Configuration Input. Software components and 

hardware must be selected and the system constraints must be decided on. This will 

involve filling out the following templates (AUTOSAR GbR 2006b): 

 

– A software component template for each software component 

– An ECU resource template for each ECU detailing items such as the processor, 

memory, sensors etc. 

– A system constraints template containing constraints relating to buses, mapping 

of software components that belong together etc. 

 

The main task in the Configure System phase involves mapping components to 

ECUs. Its output – the System Configuration Description includes all system 

information such as bus topology, and the mappings of software components to 

ECUs. 

 

Each of the subsequent steps must be repeated for each ECU in the system. Extract 

ECU-Specific Information involves taking the information relevant to a particular 

ECU from the System Configuration Description and then generating an ECU 

Extract of System Configuration. 

 

Configure ECU adds all of the relevant information required for implementation such 

as task scheduling, assigning runnable entities to tasks, configuration of basic 

software modules etc. The deliverable from this stage is the ECU Configuration 

Description. This is then used to build the executable file that is deployed on the 

ECU. 

 

 

 

 

4.6 Summary                                                                    
 

The prevalent trend in the automotive industry is that E&E systems are becoming 

more complex while development times are decreasing.  AUTOSAR offers a 



    AAUUTTOOSSAARR  

 

 58 

potential solution to this through the introduction of a standardised architecture and 

the ability to assemble an application from software components.  

 

 

 

 

4.7 Relevance to Research                                              
 

As this research is primarily concerned with the reuse of software components in 

automotive applications, it will take place in the context of the AUTOSAR 

environment. Therefore it is necessary to understand the AUTOSAR architecture – in 

particular the software components – and the development processes used. 

 

The first research question proposed asks about the level of specification needed to 

document a component’s functionality to facilitate its reuse. The software component 

description file is insufficient on its own for this task. Firstly, a component’s 

interfaces may describe the services it provides but does not show the approach used 

by the component. Secondly, two components may perform the same function but 

provide it via different interfaces. This could make component selection more 

difficult. Finally there is the problem of interface naming. An interface could for 

example be given the name X and include the data elements A and B.  Poor naming 

and documentation practices can hinder the development process. 

 

It is necessary therefore to devise some means of augmenting the information 

provided in a software component description file to facilitate the selection of 

software components. This forms an important part of this research. 
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.5.   

 

 

Software Reuse 

 

 
 

5.1 Introduction  
  

“Software Reuse is the systematic practice of developing software from a stock of 

building blocks, so that similarities in requirements and/or architecture between 

applications can be exploited to achieve substantial benefits in productivity, quality 

and business performance”(Morisio, Ezran et al., p.340-357).  

 

This definition poses an interesting question: what exactly are the building blocks 

used to develop software? The most obvious answer to this is code. Reuse may be 

achieved through technologies such as software components or object libraries. 

However, it is possible to reuse other software engineering artefacts. 

 

The above definition states that software can be reused if there are similarities in the 

requirements and/or architecture. If system requirements or architectures are similar 

over a range of projects then it makes sense to consider these as candidates for reuse. 

Frakes’ definition of software reuse includes these items. He states that “Software 

reuse is the use of existing software knowledge or artefacts to build new software”  

(Frakes 2000, 115-116). 

 

This chapter illustrates the various strategies outlined above and presents a number 

of methods of achieving reuse. 
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5.2 Reuse Strategies                                                         
 

There are three main points at which reuse can be practised: at the implementation 

level, at the design stage and during requirements elicitation. Reuse during 

implementation consists of reusing previously written pieces of code. Design reuse 

involves reusing past design level artefacts such as models and software 

architectures. If reuse is performed during requirements elicitation, then requirements 

from past systems may be used to form a basis for the requirements of the current 

system under development. Each of these strategies is discussed in greater detail 

below. 

 

 

 

5.2.1 Code Reuse  

There is already a significant amount of code reuse carried out in industry. Libraries 

that provide common functions such as file access or mathematical operations are 

used every day by developers. These code libraries are often taken for granted, and 

as this method is so frequently used in industry, it is not often thought of as code 

reuse (Waldo 1998). 

 

Libraries of software components may also be used as a means of achieving code 

reuse. Software components are software artefacts that encapsulate one or more 

pieces of functionality. Each component communicates with other components and 

its system environment via well-defined interfaces. Therefore, if the interfaces can be 

fulfilled by a new system – required data is supplied to the component and the 

component’s provided data is handled by the system, then the component can be 

integrated into that system.  

 

A more detailed overview of component-based software engineering is presented in 

Chapter 6. 
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5.2.1.1 Benefits of Code Reuse 

Vitharana describes four benefits which may be achieved by component-based 

software engineering (Vitharana 2003, p.67-72).  

 

Enhanced Quality 

A component that is used in more than one application or system will undergo tests 

for each application it is deployed in. There will be a better chance to discover 

potential bugs and/or improvements. 

 

Simplified Maintenance of Systems 

In a component-based environment, obsolete components may be replaced by newer 

or updated ones as long as the same interfaces are used for the new component.  

 

Leveraged Costs Developing Individual Components 

A component may be used in many applications. It does not have to be created from 

scratch each time. 

 

Reduced Lead Time 

Development time is reduced as it is possible to create an entire system by 

assembling pre-existing components. Alternatively, systems can consist of a mix of 

new and reused code. This again reduces the amount of code which must be 

developed. 

 

These benefits are described further in Chapter 6. 

 

 

5.2.1.2 Challenges of Code Reuse 

There are a number of challenges which must be addressed when reusing code. 

Again, these are given in greater detail in Chapter 5. 

 

Training 

Component-based software engineering is still fairly young compared to traditional 

software engineering practices. Therefore it is necessary to provide training for staff 
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in the new techniques and technologies required. It also may be necessary to hire 

new staff (Vitharana 2003, p.67-72). 

 

Integration 

Software components may not integrate properly. Also, pre-existing components  

may not provide their specified functionality (Vitharana 2003, p.67-72).  

 

Identifying Components 

It is necessary to have an effective classification and coding system to allow 

components to be easily identified and discovered (Vitharana 2003, p.67-72) . 

 

 

Matching Components to Requirements  

It may be difficult to match the requirements provided in a requirements document to 

a component’s specifications (Vitharana 2003, p.67-72). 

 

Version Control  

A component may undergo several modifications throughout its lifecycle. Therefore 

there must be some means provided of tracking and managing the different versions 

of components (Vitharana 2003, p.67-72). 

 

Interdependence of Components 

It is often the case that component selection decisions are heavily interdependent. 

One selection decision can constrain others (Kurt Wallnau, Scott Hissam et al. 2001). 

Therefore careful decisions must be made when selecting components, since picking 

one component may prohibit the use of others. 

 

Size of Reusable Software 

The size of a piece of software can affect its potential for reuse. For example, if a 

software component is too small and trivial, then programmers may feel that they can 

make it themselves. If it is too complicated, then after taking the time to understand 

the component, developers may believe that they can make a better version 

themselves (Zhu 2005). 
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5.2.2 Design/Architectural Reuse 

A software architecture specifies the way that a system is composed from individual 

components and the ways in which those components interact with each another 

(Clements, Kazman et al. 2002). Many organisations have realised that a software 

architecture is the result of a significant amount of investment (Bass, Clements et al. 

1998, p.329). Therefore, there is a desire to obtain the maximum amount of return for 

each architecture. 

 

An architecture can be reused in one of two ways (Bass, Clements et al. 1998, 

p.329). The first is within a single organisation, whereby the organisation uses the 

architecture as a basis for a product family. This is the case with software product 

lines. The second method occurs when an architecture is used within a community 

i.e. across more than one organisation. A common architecture may lead to a market 

for common components. AUTOSAR is an example of a common architecture used 

in the automotive industry. 

 

Design reuse does not necessarily have to be confined to architectural reuse. Other 

design level artefacts such as diagrams or Simulink models are also candidates for 

reuse. 

 

 

5.2.2.1 Benefits of Architectural/Design Reuse 

 

Leveraged Costs 

A software architecture requires a significant investment by an organisation’s 

engineers. Since a lot of design work has already been completed during the 

development of the architecture, a significant amount of this design does not have to 

be repeated for subsequent products in the line  (Clements and Northrop 2002a). 

 

Reuse of performance modelling and analysis 

A new product can be fielded with a high degree of confidence that any problems 

have been worked out as modelling and analysis data is reused for subsequent 

projects  (Clements and Northrop 2002). It is likely that any problems e.g. with 
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communications, hardware interfacing, scheduling etc have been adequately 

modelled and analysed and that any problems such as deadlock or data consistency 

have been resolved. 

 

 

5.2.2.2 Costs of Architectural/Design Reuse 

 

Investment 

The development of architecture for a software system represents a significant 

investment in both time and finances. Significant investment must also be made to 

maintain a product line architecture (Clements and Northrop 2002a). For example the 

AUTOSAR development partnership was formed in 2003. Work on the standard has 

continued on into 2008. Companies must retrain staff and develop or purchase tools 

to support AUTOSAR. New development practices, validation steps etc must be 

introduced. 

  

Managing Variations 

The architecture must be able to support the variations present in the product line. 

This can impose an additional constraint on the architecture and will therefore 

require greater skill to define  (Clements and Northrop 2002a). It should be possible 

to use the architecture as a basis for a number of systems rather than it being tailored 

from the start to suit only one or a small number of specific products. 

 

 

 

5.2.3 Requirements Reuse 

It is advantageous to perform reuse at a higher level of abstraction than code.  At 

higher levels of abstraction, it can be easier to understand a component’s 

functionality and justify its use (Periyasam and Baram 1997). Also, a major problem 

with software reuse is the difficulty of identifying reusable components. Often 

reusable code may be accompanied by an informal document which does not 

adequately describe the functionality of the code. As requirements form the starting 
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point for any software development project, the reuse of past requirements can lead 

to further reuse of design and code artefacts.  

 

 

5.2.2.1 Benefits of Requirements Reuse 

 

Increase in productivity  

Introducing reuse starting at the requirements level can lead to an increase in 

productivity (Roudiès and Fredj 2001). 

 

Leads to reuse of design level artefacts 

The reuse of requirements can point a developer towards subsequent design level 

artefacts such as a particular product line architecture. Costs and time are thus saved 

at more than one point i.e. requirements and design do not have to be developed.  

 

 

5.2.2.2 Challenges of Requirements Reuse 

 

Transformation of working methods 

To enable successful reuse of requirements, there needs to be a change in working 

practices (Roudiès and Fredj 2001). These may include the ways in which 

requirements are created and managed and may necessitate a move away from more 

traditional practices. 

 

 

 

 

5.3 Software Reuse Practices                                          
 

There are a number of tools and methods used to facilitate software reuse. This 

section presents four different approaches – software product lines, software 

components, domain analysis and the model driven architecture. Note that these 

approaches are not necessarily separate. They can be used to complement each other. 
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For example, a software product line may be based on a particular architecture which 

has been created through a domain analysis and the individual products in the 

product line may be constructed using reusable software components. 

 

 

 

5.3.1 Software Components 

Software components and component-based software engineering are described in 

Chapter 6. A software component is essentially a discrete piece of code which 

communicates via well-defined interfaces. They can be thought of as building blocks 

which can be assembled to form a complete software system. 

 

A software component may be reused in many applications. If a system is able to 

meet a component's interfaces then it should be possible to integrate the component 

into the new system under development. 

 

 

 

5.3.2 Software Product Lines 

A software product line is “a collection of systems sharing a managed set of features 

constructed from a common set of core software assets. These assets include a base 

architecture and a set of common, perhaps tailorable, components that populate it.” 

(Bass, Clements et al. 1998). These assets may also include domain models,  

requirements, documentation, specifications, tests and so on (Clements and Northrop 

2002b). This definition ties together two reuse strategies – code reuse in the form of 

software components which have already been defined, and architectural reuse.  

 

There are three activities which are essential to product line development. These are 

– core asset development, product development and management involvement. 
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5.3.2.1 Core Asset Development  

The aim of core asset development (Clements and Northrop 2002, p.31-37) is to set 

up the production capability for products i.e. to put everything in place to enable 

products to be created. To do this, three items (the outputs of core asset 

development) must be created. These are the product line scope, core assets and a 

production plan. 

 

Product Line Scope 

The product line scope describes the products that make up a product line and/or 

products that may be added in the future. It is important to determine the correct 

scale for the product line scope. Too small a scope will lead to core assets which are 

too specific and hence difficult to reuse. If the scope is too large on the other hand, 

then the core assets may not be able to include the variability necessary to support a 

large number of products. This could lead to development returning to a more 

traditional development practice in which reuse of assets is not prevalent. The 

product line scope should change as the market changes. 

 

Core Assets 

One of the main core assets is the product line architecture. The product line 

architecture specifies the structure of products in the line and interface specifications 

for the components used. It also presents a set of variation points to allow the 

individual products to be created. Figure 5.1 illustrates a simple product line 

architecture for an engine unit. This diagram is presented in UML. 

 
Fig Fig Fig Fig 5.1 Product Line Architecture5.1 Product Line Architecture5.1 Product Line Architecture5.1 Product Line Architecture    



    SSOOFFTTWWAARREE  RREEUUSSEE  

 69 

The Engine Management architecture contains four direct sub-systems: ignition, fuel 

injection, a crank sensor, and a throttle sensor. All of these modules with the 

exception of fuel injection are common to every product in the line. The fuel 

injection sub-system is a variation point with two possible configurations. In this 

case, the fuel injection system may inject fuel directly into the cylinders, or into the 

intake manifold.  

 

The above example is a very high-level view of a product line and a variation point. 

In reality, the variation points may be defined at a much lower level e.g. a set of 

sensors which may vary by an event-driven or time-triggered reporting mechanism.  

 

Other core assets include software components which have been developed for reuse 

across the product line along with any relevant documentation, test cases etc. 

Requirements specifications, domain models and any Commercial off-the-shelf 

(COTS) components used are further examples of core assets. 

 

Finally, there are a number of core assets which exist at a non-technical level. These 

include training necessary for a given product line, technical management process 

definitions for that product line, along with the business case for using a product line 

for the given set of products and the set of identified risks for building the products. 

Production Plan 

A production plan will describe how products for a specific product line are 

constructed from the set of core assets. Each core asset has an attached process which 

states how the asset is to be used during the development of a product. The 

production plan is made up of these processes along with any ‘glue’ needed to 

integrate the assets. 

 

 

5.3.2.2 Product Development  

At a simple level, product development consists of taking core assets and applying a 

production plan to produce a product (Clements and Northrop 2002, p.37-44). 

Product development combined with core asset development may be viewed as a 

single iterative process. For example, building a product may lead to the 
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development or modification of new or existing core assets. These new/modified 

assets can then be fed back into product development. In addition, construction of a 

new product might necessitate changes being made to the product line scope.  

 

 

5.3.2.3 Management Involvement  

Two levels of management must be involved for successful product line development 

(Clements and Northrop 2002, p.45-48). Managers at the technical level oversee the 

development of core assets and product development. Managers at the organisational 

level handle items such as organisational resources (personnel etc), funding models 

and overall organisational decisions relating to the product lines. There should also 

be in place a product line manager and a product line champion who provides 

leadership in attempting to achieve product line goals. 

 

 

 

5.3.3 Domain Analysis 

Software reuse only becomes possible when the features and capabilities which are 

common to applications or systems within a domain can be defined prior to software 

development (Kang, Cohen et al. 1990). For example, if software reuse is to be 

performed in the context of an engine management system, then it is necessary to 

know how an engine works, including factors such as sensor data that must be read 

and actuators which are under ECU control. Therefore, a study must be performed on 

the domain in question. 

 

Domain analysis consists of collecting domain knowledge, which may take the form 

of technical literature, information from domain experts etc, and forming this raw 

data into a model which represents the concepts present in the domain. The resultant 

output – the domain model - is a problem-oriented analysis of a domain which 

includes the similarities and variations of the set of systems in that domain 

(Keepence, McCausland et al. 1996, 35-42). There is no single prescribed method for 

representing a domain. Therefore, any number of representations may be used, from 

simple textual descriptions of domain concepts, to a structured modelling language 
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such as the UML.  Two examples of a simple domain model for automotive sensors 

are presented to illustrate both of these approaches. Figure 5.2 shows a text-based 

domain model. Figure 5.3 expresses the same domain knowledge in terms of a UML 

class diagrams. 

 

 

 
Fig Fig Fig Fig 5.2 Text5.2 Text5.2 Text5.2 Text----Based Domain ModelBased Domain ModelBased Domain ModelBased Domain Model    

 

 

 
Fig Fig Fig Fig 5.3 UML5.3 UML5.3 UML5.3 UML----Based Domain ModelBased Domain ModelBased Domain ModelBased Domain Model    

 

In the example shown in Figure 5.4 a domain model for an engine management 

system is to be constructed. The inputs to this domain analysis project are knowledge 

from mechanical engineers, software engineers, electronic engineers, engine 
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technical specifications and modelling standards. The output is a set of UML 

diagrams describing the domain concepts. 

 

 

 
Fig Fig Fig Fig 5.4 Engine Management Domain Analysis5.4 Engine Management Domain Analysis5.4 Engine Management Domain Analysis5.4 Engine Management Domain Analysis    

 

 

5.3.4 Model Driven Architecture (MDA) 

The MDA (OMG 2003f) was created by the Object Management Group (OMG). The 

OMG is an international non-profit consortium whose members range from end-

users to large scale corporations involved in the computer industry. Founded in 1989, 

the OMG is heavily involved in developing standards and specifications which 

impact the world of computing. These include the Unified Modelling Language 

(UML) and the aforementioned Model Driven Architecture (MDA). 

 

The MDA is an approach to software development which, as its name suggests, relies 

mainly on models. Its three primary goals are to facilitate the portability, 

interoperability and reusability of software architectures. These are achieved through 

the architectural separation of concerns. Essentially, the MDA separates the overall 

operation of a software system from the details of how the system makes use of its 

environment i.e. hardware, operating system, programming language etc. Therefore, 

a software architecture model which specifies the operation of a Climate Control 

Unit, for example, may first be implemented on a particular microcontroller for a 
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certain car. Later that same architecture model may be reused to recreate the same or 

a similar climate control unit on a totally separate microcontroller for the newest 

model of that same car.  

 

 

5.3.5.1 MDA Approach 

MDA operates by taking a set of requirements for a system and then structuring them 

into general models detailing what a system does but not how it does it. These are 

then transformed into more specific models which more closely match the final 

system operation until a final implementation is achieved. The MDA approach 

makes use of three main model types: 

 

1. Computation Independent Model 

2. Platform Independent Model 

3. Platform Specific Model 

 

Computation Independent Model – CIM 

The CIM  (OMG 2003a) is the highest level of abstraction of a system used in the 

MDA. The CIM describes the situation or environment that the system will operate 

in, and a high level view of what the system is supposed to do. This essentially 

means that a CIM represents the overall requirements of that system. For example, a 

CIM may include the following requirements for a fuel injection system: 

 

1. The fuel injection system shall take into account vehicle operation conditions 

such as engine start-up and coasting. 

2. The fuel injection system shall provide a means of controlling the 

recirculation of exhaust gasses. 

3. There must be a means of detecting and controlling engine knock. 

 

The CIM is analogous to a domain model in that both can show a high level view of 

a system. They both describe the main concepts of the system without regard for any 

implementation specific details. 
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Platform Independent Model – PIM 

The PIM  (OMG 2003b) is a more detailed description of a system – what it is and 

what the system actually does. This level of abstraction illustrates, from a logical 

point of view, exactly what the system does but not how it will do it. Any specifics of 

how it will be implemented, what programming language, software and hardware 

will be used, are hidden at this point.  

 

A PIM may make use of various models such as class diagrams and data-flow 

diagrams from the UML to aid the understanding of the system. Figure 5.5 shows an 

example of a simple PIM for the fuel injection system.  

 
Fig Fig Fig Fig 5.5 Fuel Injector PIM5.5 Fuel Injector PIM5.5 Fuel Injector PIM5.5 Fuel Injector PIM    

 

Platform Specific Model – PSM 

The PSM  (OMG 2003c) is shows how a system is implemented on a chosen 

platform.  

 

 

Transformation 

The MDA revolves around the concept of transformation – that is, transforming one 

model into another. A CIM is transformed into a PIM, which is in turn refined to 

produce one or more PSMs. This allows the system to be implemented on each of the 

selected platforms. In this way, a system can be designed, from concept to 

implementation, through refinement from an initial system specification to its final 

implementation. 
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In the example illustrated in Figure 5.6 a fuel injection application is transformed 

from general requirements (CIM) into a generic PIM which details exactly what the 

application should do, but not how it does it, and finally into two separate PSMs. 

These describe the implementation of the same application on an Infineon and a PIC 

microcontroller respectively. 

 
Fig Fig Fig Fig 5.6 MDA Transformations5.6 MDA Transformations5.6 MDA Transformations5.6 MDA Transformations    

 

 

The above example is a simplified view of the MDA process. In reality, there may be 

any number of intermediary stages between the initial CIM and the final 

implemented PSMs. In this case, the MDA may be applied multiple times, with the 

PSM from one stage becoming the PIM for the next stage. For example, Figure 5.6 

may be extended to include more than one microcontroller in both the Infineon and 

PIC ranges as shown in Figure 5.7. 

 
Fig Fig Fig Fig 5.75.75.75.7    Multiple MDA TransformationsMultiple MDA TransformationsMultiple MDA TransformationsMultiple MDA Transformations    
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there is the transformation from the PIM to the Infineon and the PIC PSMs. These 

are further refined, being used as PIMs in the next step of the transformation. For 

example, the Infineon PSM is specific to the Infineon family of microcontrollers but 

it can be further refined for a specific member of that family e.g. the C167 controller. 

Here, the Infineon PSM is now considered to be a PIM, as it is independent of the 

actual microcontroller model number. This allows the more specific PSMs to be 

created. This can be repeated any number of times for more specific variants of each 

controller. 

 

 

What is a platform? 

The above example serves to illustrate the confusion that can arise when trying to 

define platform. The OMG states in the MDA Guide that the definition of a platform 

depends on what level a system is viewed at. For example, the decision may be made 

to implement an application using software components. At this point, the platform is 

a generic component-based architecture. This may be further refined, implementing 

the system on a CORBA (Common Object Request Broker Architecture) or EJB 

(Enterprise Java Beans) component architecture. Now, at this level (which is closer 

to the final implementation), the platforms are considered to be the CORBA and EJB 

architectures. 

 

 

Mapping  

If a PIM is to be transformed into a PSM, then it is necessary to be able to map 

elements defined in the former, to elements in the latter. There are five main ways of 

achieving this (OMG 2003d): 

 

1) Model Type Mappings 

 The mapping is performed by taking a PIM which has been prepared according to 

some process independent modelling language, and mapping it to a PSM according 

to a corresponding PSM language.  
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2) Model Instance Mappings 

Model elements in the PIM are identified, which should be transformed in a 

particular way (dependant on the particular target platform). This is achieved 

through the use of marks. A mark is applied to a PIM element to show how it is to 

be transformed e.g. a generic communications module may be marked to be 

transformed into an AUTOSAR sender-receiver communications interface in the 

PSM. Note that marks may also be used to indicate quality of service requirements. 

 

3) Combined Type & Instance Mapping 

As its name suggests, this is simply a combination of the above two approaches. 

 

4) Marking Models 

A mark is used to indicate that a particular item e.g. a UML stereotype, a type from 

a model etc will be used in a transformation. For example, if a particular entity X is 

applied as a mark to a class or object in a PIM, then this indicates that the entity X’s 

template of a mapping will be used to transform the PIM to a PSM. 

 

5) Templates 

A template is a parameterised model which is used to define a particular type of 

transformation. Templates can be used in Model Type Mapping as rules to guide 

the transformation of a pattern of elements. Templates may also be used in 

conjunction with marks, allowing certain model elements which have been marked 

(again in a certain pattern), to be transformed according to a given template.  

 

 

Transformation Methods 

The mapping tools described in the previous section may be utilised in various ways 

in order to allow models to be transformed. The OMG identifies four possible 

approaches to transforming models (OMG 2003e). These, and further approaches 

may be implemented through a combination of manual and automatic transformation, 

the use of marks, templates etc.  
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A significant quantity of the work in the MDA approach involves the process of 

transforming a PIM into a PSM. The OMG identifies four main types or methods 

which could be used. These are: 

 

1) Manual Transformation 

The transformation is carried out based on design decisions made by system 

developers. 

 

2) Transformation a PIM Prepared Using a Profile 

A PIM may be prepared according to a platform independent UML profile. This 

may then be transformed, possibly with the use of marks, into a PSM according to 

a platform specific UML profile. 

 

3) Transformation Using Patterns and Markings 

Here, the specification for a mapping may contain patterns and marks which 

identify elements within those patterns. Elements from a PIM are then marked. 

These marked elements are transformed according to the corresponding elements in 

the patterns into a PSM. 

 

4) Automatic Transformation 

In this approach, a developer may be able to supply all of the required information in 

a PIM to allow a tool to convert it into a final implementation e.g. deployable code. 

A component-based software system such as AUTOSAR is one example of an area 

where this approach is applicable. All that needs to be done is to select the required 

functionality for the application, and the tool could select the appropriate 

components and configure the Runtime Environment. 
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5.4 MDA and the AUTOSAR Build Process 
 

It is possible to draw parallels between the approach proposed by the MDA and the 

processes involved in building an AUTOSAR-based system. This is due to the way 

in which AUTOSAR separates an application from its infrastructure.  

 

The application side of an AUTOSAR system is fulfilled by software components. 

They contain the logic necessary to carry out various tasks such as fuel injection, 

anti-lock brakes and so on. All of the infrastructural requirements – communications, 

memory management etc – are handled by the basic software modules.  

 

There are two steps involved in developing software components for an AUTOSAR 

system (LiveDevices Ltd 2004). Firstly, a set of software components which will 

fulfil the functional requirements of the system must be built or selected. It is 

possible to do this without any knowledge of the platform that the components will 

be deployed on. The output of this stage is a set of code files and a corresponding set 

of XML files which describe each of the software components.  

 

The next phase involves deploying the software components. The components are 

allocated to the ECUs and are integrated with the basic software of the ECUs. This 

requires the software component description files and two other files which must be 

defined. The first is the ECU Configuration Description file. This contains the 

mappings of components to the system’s ECUs, along with a description of the ECU 

resources. The second file is the System Configuration Description file. This file 

contains information such as the network topology and how communications 

between ECUs is mapped to the physical networks. Note that to create these files, the 

developer requires a set of ECU Resource Descriptions, each of which describes the 

resources of their corresponding ECU, and a System Constraints Description file, 

which defines items such as the physical network to be used and so on.  

 

An automated tool can then take these files and configure the software for each ECU. 

This includes generating a Run-Time Environment (RTE) for each ECU, configuring 

the basic software modules and integrating the software components. The output 
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from this task is the set of system ECUs containing the final deployed application 

and properly configured basic software. 

 

Figure 5.8 illustrates steps from the AUTOSAR build process and relates them to 

similar steps in the MDA. It is broken up as follows: The initial set of system 

requirements describe what is desired of the system without specifying how it is to 

be carried out. This relates to a computation independent model. The next section 

consists of the set of software components. These contain the functionality of the 

system but since they can be developed without any knowledge of the final platform 

they are to be deployed on, they relate to a platform independent model. The final 

section is the deployed AUTOSAR system. Here, the platform specific details i.e. the 

ECUs, physical networks etc are known and the software components have been 

deployed. This section relates to the platform specific model. 

 

Note that each of the steps carried out in the AUTOSAR development process is 

essentially a refinement of the output of the previous stage, resulting in a more 

specific output until a final system is deployed. This is similar in concept to the 

refinement steps carried out when a MDA CIM is transformed into a PIM and then a 

PSM. 
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Fig Fig Fig Fig 5.85.85.85.8    Comparison of AUTOSAR and MDAComparison of AUTOSAR and MDAComparison of AUTOSAR and MDAComparison of AUTOSAR and MDA    

 

 

 

 

5.5 MDA and Simulink/TargetLink 
 

The MDA process parallels system development using Simulink and TargetLink. 

Simulink and TargetLink have already been described in Chapter 3. Simulink is a 

model-based development tool that allows a user to model a system using various 

blocks representing mathematical operations, events and so on. TargetLink works in 

conjunction with Simulink to convert models into code.  
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The starting point for any system is a set of requirements. These requirements are 

interpreted by a developer and used to model the required system using Simulink. 

The Simulink model may be thought of as a PIM in that it models the operation of a 

system but is not specific to a particular platform or programming language. Next the 

Simulink blocks must be converted into TargetLink blocks. This is analogous to the 

marking process in the MDA which allows a PIM to be converted into a PSM. 

Finally the marked blocks (TargetLink blocks) are converted directly into code files 

which can be deployed on a microcontroller. Figure 5.9 illustrates the relationship 

between Simulink/TargetLink and the MDA. 

 

 
Fig 5.9 Comparison of Simulink/TargetLink and MDAFig 5.9 Comparison of Simulink/TargetLink and MDAFig 5.9 Comparison of Simulink/TargetLink and MDAFig 5.9 Comparison of Simulink/TargetLink and MDA    
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5.6 Summary                                                                
 

There are a number of strategies which may be applied when attempting to reuse 

software or software engineering artefacts. These include reuse of code, designs and 

requirements. These strategies are embodied in various techniques and tools which 

are used in industry. Examples of these include software component reuse, software 

product lines, domain analysis and the model driven architecture. Each of these can 

be used in isolation or in conjunction with another technique to achieve software 

reuse. Each method has various benefits attached to it but also a number of 

challenges which must be overcome. 

 

 

 

 

5.7 Relevance to Research                                              
 

The concept of reuse is key to this research. The core items in the research include 

reusable software components, potentially reusable requirements and a reusable 

architecture – AUTOSAR. Therefore, an understanding of each of these is 

fundamental to the research. 
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.6.   

 

 

Component-Based Software 

Engineering 

 

 
6.1 Overview 
 

Component-Based Software Engineering (CBSE) is, in practice, a relatively new 

method of developing software applications and systems. The goal of CBSE is to 

create systems by composing reusable components at a finer level of granularity than 

a complete application (Heineman and Councill 2001) i.e. systems are developed by 

assembling various software components into a larger whole. This is analogous to the 

way a house is built using individual bricks, tiles, panes of glass etc. This chapter is 

broken up as follows. First the concept of a software component is introduced. Next 

the benefits and challenges of CBSE are presented. Finally a number of approaches 

used to identify, select and store software components are discussed. 

 

 

 

 

6.2 Software Components                                               
 

A software component can be defined as “a software element that conforms to a 

component model and can be independently deployed and composed without 

modification according to a composition standard.” (Heineman and Councill 2001) 

This is a very general statement but it provides an effective starting point from which 

to develop a complete understanding of a software component.  
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Components can be viewed as the building blocks which are used to make up a 

system. They each represent one or more logical or organizational-related tasks, 

which, when working together, provide the full functionality of the system. Figure 

6.1 presents a simplified illustration of three software components which may be 

used to control the cabin temperature of a car. 

 
Fig Fig Fig Fig 6.16.16.16.1    Air Conditioning Unit Software ComponentsAir Conditioning Unit Software ComponentsAir Conditioning Unit Software ComponentsAir Conditioning Unit Software Components    

 

The main software component in this example is the Cabin Temperature Controller. 

It contains the control logic for the system. Two other components are necessary to 

allow cabin temperature to be effectively controlled. The first is the Cabin 

Temperature Sensor. This receives a signal (temperature) from a physical sensor in 

the car cabin, and passes this to the Controller component. The Controller can then 

compare this value to the Desired Temperature – set by the user – to determine if any 

change must be made to the ratio of hot and cold air entering the cabin. This data is 

then passed to the Hot/Cold Air Mix Vent software component, which will in turn 

change the position of a vent to alter the air mix as required. As can be seen, the 

three software components all work together to provide the full functionality of a 

system to monitor and control a car’s cabin temperature. 

 

 

 

6.2.1 Interfaces 

Communications between components is achieved through the use of well-defined 

communications interfaces. An interface is a contract that specifies services a 

component provides or services it needs others to fulfil. Interfaces are therefore 

classified as either “provide” or “require” interfaces. A provide interface defines the 

Cabin 
Temperature 

Sensor 

Cabin 
Temperature 
Controller 

Cabin Temperature 

 
Hot/Cold Air Mix 

Vent 

Hot/Cold Air Ratio 

Desired Temperature 
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services that a component makes available to others. A component that has a require 

interface, as its name suggests, needs some other component to supply some service 

and/or data for it to operate fully. Figure 6.2 illustrates these concepts. 

 

 
Fig Fig Fig Fig 6.26.26.26.2    Component InterfacesComponent InterfacesComponent InterfacesComponent Interfaces    

 

In Figure 6.2 Component A requires (through a require interface) a service to be 

fulfilled by another component. This is done by Component B which provides that 

service through a provide interface. Software components work together in this way 

to fulfil the requirements of an entire system. 

 

Interfaces must conform to standards laid out in the specification of the component 

architecture (McArthur, Saiedian et al. 2002) i.e. the component model, or according 

to an interface definition language.  

 

For example, AUTOSAR specifies two main communication modes, implemented as 

interfaces. These are sender-receiver and client-server interfaces(AUTOSAR GbR 

2006e). In the former case, a sender will transmit data to one or more receiver 

components. In the latter case, client software components may request that some 

operation is carried out by a server component. This is analogous to remote method 

invocation in languages such as Java. The messages are passed via a set of software 

modules (the Runtime Environment, which handles the interaction with basic 

software modules such as the operating system, communications etc) to their desired 

destination. 

 

 

 

 

Component AComponent AComponent AComponent A    Component Component Component Component BBBB    

Require Interface Provide Interface 
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6.2.2 Component Model 

Each component architecture/infrastructure (CORBA, AUTOSAR etc) has a specific 

component model. This details composition and interaction standards which must be 

adhered to by components conforming to that model. It should contain  the following 

pieces of information (Sparling 2000, p.47-53): 

 

- A set of design principles and modelling standards 

- A standard set of analysis, design, development & testing tools 

- A uniform set of document standards 

- A description of the goals of component based development. 

 

 

 

6.2.3 Components versus Objects 

From a conceptual point of view, a component is quite similar to a software object, 

so what’s the real difference? To answer this satisfactorily, it is necessary to look at 

the implementation of both.  

 

Internally a component and an object may be extremely similar. In fact, there is no 

reason why a software component cannot be implemented as a single object. 

However, a component could also potentially be implemented by a group of objects, 

or it may contain no object-oriented code at all. It may simply be made up of basic 

procedural C code. Also, unlike objects, component names may not be used as type 

names (Weinreich and Sametinger 2001, p.36). A number of component suppliers 

may for example create components with totally different functionality but which 

have the same name. They are in reality two different “types”. 
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6.3 Benefits & Challenges of CBSE 
 

6.3.1 Benefits 

The following is a list of some of the potential benefits to be gained when adopting 

CBSE:  

 

Software Reuse 

A component-based architecture is a plug and play environment (McArthur, Saiedian 

et al. 2002). Therefore components used in one system can be plugged in to another 

future system.  This ability to reuse software is one of the greatest advantages CBSE 

has over most other traditional software engineering practices and leads on to further 

advantages.  

 

Vitharana identifies four advantages that CBSE gives to the software development 

process (Vitharana 2003, p.67-72). These are: 

 

Enhanced Quality 

A component that is used in more than one application or system will undergo tests 

for each application it is deployed in. Therefore, the component will be better 

understood both in isolation and in the context of multiple deployments. There will 

be more opportunities to discover bugs and potential improvements which can be 

made. The view that reuse can improve quality is further supported by a study carried 

out on software reuse in Statoil ASA (Slyngstad, Gupta et al. 2006). 

 

Simplified Maintenance of Systems 

In a component-based environment, obsolete components may be replaced by newer 

or updated ones. If the interfaces used in the new component conform to the ones 

used in the older version, then this operation may be carried out without the need to 

rewrite code in other areas of the system. The old component can be easily removed 

and the newer one inserted in its place.  
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Leveraged Costs When Developing Individual Components 

A component may be used in many applications. It does not have to be created from 

scratch each time. 

 

Reduced Lead Time 

Development time is reduced as it is possible to create an entire system by 

assembling pre-existing components. Even systems which require some new 

software to be developed can make use of pre-existing components which fulfil some 

of their requirements. All of this serves to reduce the amount of code that must be 

developed from scratch and this can reduce the time to market. 

 

 

 

6.3.2 Challenges of CBSE 

There are a number of challenges which must be addressed during CBSE such as: 

 

Training 

CBSE is still fairly young compared to traditional software engineering practices. 

Therefore it is necessary to provide training for staff in the new techniques and 

technologies required. It also may be necessary to hire new staff (Vitharana 2003, 

p.67-72). 

 

Integration 

Software components may not integrate or they may not provide their specified 

functionality (Vitharana 2003, p.67-72). This problem could affect assemblers of 

components, who purchase software components from third-parties, to a greater 

extent than those who develop and reuse in-house components.  

 

Identifying Components 

It is necessary to have an effective classification and coding system to allow 

components to be easily identified and discovered (Vitharana 2003, p.67-72). This is 

especially needed when the number of components stored is large. Otherwise, it will 

become more and more difficult to find components which satisfy system 
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requirements. It should not take more effort to identify a relevant component than it 

takes to develop a new one from scratch. 

 

Matching Components to Requirements  

It can be a challenge to break up a requirements document into parts which can be 

matched against components in a repository. In addition, there may be a difficulty in 

matching a component’s specifications, which may be given in a particular notation, 

to the requirements which may be specified in a totally separate way e.g. in English. 

In addition, the set of components selected must be checked to ensure that they fulfil 

the system requirements (Vitharana 2003, p.67-72). 

 

Version Control  

A component may undergo several modifications throughout its lifecycle. Therefore 

there must be some means provided of tracking and managing the different versions 

of components (Vitharana 2003, p.67-72). 

 

Interdependence of Components 

It is often the case that component selection decisions are heavily interdependent. 

One selection decision can constrain others (Kurt Wallnau, Scott Hissam et al. 2001). 

Therefore, careful decisions must be made when selecting components as picking 

one component may prohibit the use of others. 

 

Size of Reusable Software 

The size of a piece of software can affect its potential for reuse. For example, if a 

software component is too small and trivial, then programmers may feel that they can 

make it themselves. If it is too complicated, then after taking the time to understand 

the component, developers may believe that they can make a better version 

themselves (Zhu 2005). 
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6.4 Component Identification, Selection and Storage  
 

The challenges associated with the identification and selection of relevant software 

components have already been introduced. This research will address two of these 

challenges: identifying components and matching requirements to components. 

Before doing this, it is necessary to look at some of the current methods which aim to 

solve these issues. 

 

 

 

6.4.1 Classifying Components 

There are a number of methods which are in place or have been proposed to allow 

relevant components to be identified and classified. These include the following 

methods: 

 

  

6.4.1.1 Group Technology Classification and Coding Schemes 

Classification and Coding (C&C) schemes are already widely used in the 

manufacturing industry to identify physical components or parts. Group technology 

is a prime example of this. The Classification & Coding (C&C) methods used in 

group technology may be used to derive a means of identifying software components 

for easy design and retrieval (Jain, Vitharana et al. 2003) 

 

Classification and coding are constantly mentioned together and so the assumption is 

often made that they are the same single entity or task. However, this is not true. 

Each is a separate process in its own right (Snead 1989).  

 

Classification is the process of grouping items together based on the same specific 

attributes and characteristics. In manufacturing, this may be the shape and 

dimensions of a part. Software components may be grouped based on application 

areas, interfaces etc. Coding is some shorthand notation for the database of classified 

objects e.g. a set of digits which identify the characteristics of a particular 

component.  
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There are a number of techniques which may be used in a C&C system. Each of 

these is not necessarily distinct and different approaches may be used in conjunction 

with each other. 

 

 

6.4.1.1.1 Logic Trees 

These are created by making choices at decision points e.g. at one level, is a 

component used in powertrain or chassis systems. There are three main types of logic 

trees (Snead 1989, p.60-61). These are: 

 

Binary Logic Trees 

At each decision point there are only two choices e.g. 

 
Fig 6.3 Binary Logic TreeFig 6.3 Binary Logic TreeFig 6.3 Binary Logic TreeFig 6.3 Binary Logic Tree    

 

The advantage of this approach is that it is relatively easy to construct and to classify 

components as the user is only given two choices at each point. Binary logic trees 

can however become quite deep. 

 

Poly Trees 

A poly tree differs from a binary tree in that more choices can be made at each level 

e.g.  

 

Fig Fig Fig Fig 6.4 Poly Logic Tree6.4 Poly Logic Tree6.4 Poly Logic Tree6.4 Poly Logic Tree    

 

Automotive SystemsAutomotive SystemsAutomotive SystemsAutomotive Systems    

PowertrainPowertrainPowertrainPowertrain    ChassisChassisChassisChassis    

Fuel InjectionFuel InjectionFuel InjectionFuel Injection    IgnitionIgnitionIgnitionIgnition    

Body/ComfortBody/ComfortBody/ComfortBody/Comfort    

Exhaust Gas Exhaust Gas Exhaust Gas Exhaust Gas 
RecirculationRecirculationRecirculationRecirculation    

Automotive SystemsAutomotive SystemsAutomotive SystemsAutomotive Systems    

PowertrainPowertrainPowertrainPowertrain    ChassisChassisChassisChassis    

Fuel InjectionFuel InjectionFuel InjectionFuel Injection    IgnitionIgnitionIgnitionIgnition    
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Due to the fact that poly trees allow more than one decision to be made at each level, 

they may be shallower than equivalent binary trees. However, since multiple choices 

can be made at each level, errors can be made when making classifications. For 

example, in Figure 6.4 a sensor used in exhaust gas recirculation may be erroneously 

assigned to the Fuel Injection branch. Exhaust gas recirculation does play a part in 

fuel injection systems but in light of the existing tree structure, this would obviously 

be the wrong branch to assign it to. In this way poly trees can be more difficult to use 

than other systems. 

 

N-Trees 

Both of the above tree types only let a user traverse one path to make a selection. 

They are referred to as mutually exclusive path trees or ‘E-Trees’. An N-Tree is a 

non-mutually exclusive logic tree. Multiple nodes may be simultaneously selected, 

allowing several paths to be traversed at the same time. Therefore components do not 

need to be placed in a hierarchal form - no attribute is considered more important 

than the other. An N-Tree is implemented in the same format as the previous two 

types. It is the control logic that allows this multiple selection of paths. Figure 6.5 

contains the same tree as shown in Figure 6.4. Here two child nodes at the same level 

are selected as the user wishes to develop a fuel injection system in conjunction with 

an exhaust gas recirculation system. In the previous examples, this would not be 

allowed. Only one node could be selected. 

 
Fig Fig Fig Fig 6.5 N6.5 N6.5 N6.5 N----TreeTreeTreeTree    

 

6.4.1.1.2 Code Types  

There are three basic code types used in C&C systems (Snead 1989, p.61-63). These 

are:  

Automotive SystemsAutomotive SystemsAutomotive SystemsAutomotive Systems    

PowertrainPowertrainPowertrainPowertrain    ChassisChassisChassisChassis    

Fuel InjectionFuel InjectionFuel InjectionFuel Injection    IgnitionIgnitionIgnitionIgnition    

Body/Body/Body/Body/ComfortComfortComfortComfort    

Exhaust Gas Exhaust Gas Exhaust Gas Exhaust Gas 

RecirculationRecirculationRecirculationRecirculation    

Selected 

Nodes 
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1. Monocode 

This is the closest of the three code types to the logic trees described in the previous 

section. It can be viewed as having the same form as an E-Tree. Monocode consists 

of a set of digits. The first digit is the highest level in the hierarchy; the next digit is 

the next level down and so on. Each digit is dependent on the previous one i.e. its 

parent. For example:  

 

 
Fig Fig Fig Fig 6.6 Mono6.6 Mono6.6 Mono6.6 Mono----CodeCodeCodeCode    

 

2. Polycode 

Each digit represents a distinct attribute of an item. Unlike Monocode however, each 

digit is independent i.e. it does not depend on any other digit in the code. Digits are 

assigned values by asking questions about an item’s properties. The same questions 

must be asked about every item coded, even if a property does not relate to it. As a 

result of this, item codes can become quite long and coding tedious. This form of 

coding differs from logic trees in that it is unstructured in its approach. The following 

is an example of a polycode system: 

 

Possible Values Digit Feature 

1 2 3 

1 Type Table Chair Stool 

2 No of Legs Odd No Even No - 

3 Material Wood Metal Plastic 

4 Colour Black White Brown 

 

Table 6.1 Polycode Example 

 

3. Hybrid 

Most coding systems used in industry consist of a mix of the above two approaches. 

A population can be divided into groups using Monocode. The initial digits in the 

CylinderCylinderCylinderCylinder    PanelPanelPanelPanel    1st Digit 

PipePipePipePipe    FlagFlagFlagFlag----PolePolePolePole    GratingGratingGratingGrating    DoorDoorDoorDoor    2nd Digit 
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code are assigned for this function. Further classification may be applied to each 

group using Polycode. Digits are assigned to each item within a given group by 

asking questions about properties relating only to that group 

 

 

There are currently a number of methods used in software engineering to classify 

traditional reusable artefacts. These include attribute-value, keyword, hypertext and 

faceted classification (Vitharana, Zahedi et al. 2003, p.97-102). There are a number 

of other approaches which have been proposed by various researchers. Section 

6.4.1.2 describes faceted classification of software components in greater detail. 

 

6.4.1.1.3 Evaluation 

Initially a C&C scheme appears to present an immediate solution to the problem of 

identifying software components. If this process can be used to identify physical 

components, then why can’t it be used to identify software components? A group-

technology-type C&C scheme could indeed be used to very precisely identify a 

component. The main issue to be addressed is the selection of a C&C scheme. Too 

precise a scheme could lead to difficulty in selecting a component as the developer 

may spend too much time evaluating low-level characteristics of a component. Too 

general a scheme will cause the developer to have to sift through an unnecessary 

number of components as a search may turn up a large number of candidate 

components.  

 

A further problem is that a C&C scheme is really geared towards the selection and 

identification of a single component. It may be difficult to integrate such an approach 

into a tool which would allow the matching of a complete set of system requirements 

to a number of components which interact and fulfil those requirements. 

 

 

 

6.4.1.2 Faceted Classification 

Vitharana et al. describe the use of facets as the basis of a C&C scheme (Vitharana, 

Zahedi et al. 2003, p.97-102). A facet is essentially a category which may be coupled 
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with a corresponding description of that facet. In this approach a set of facets or 

categories and a set of corresponding descriptions are identified for a particular 

domain. Facet-description pairs are then used to identify reusable artefacts e.g 

software components.In the context of automotive systems there may be a facet 

category called “Application Domain” which is used to define which domain a 

particular software component belongs to.  The facet may be assigned the value 

“Powertrain”. Therefore if this facet value is assigned to a software component, it 

indicates that the component is used in powertrain systems. An example of potential 

automotive facets is given in Table 6.2. 

 

Facet Description Example 

Application 

Domain 

Main functional area of a vehicle 

which the component is used in 

Powertrain, Chassis, 

Safety 

Component 

Type 

The base type of the software 

component 

Sensor, Actuator, 

Application 

 

Table 6.2 Automotive Facet Example 

 

In the approach proposed by Vitharana et al. a component is described at a number of 

levels by facets. For example, at the component level (the highest level in the 

component structure), a role facet describes the role of that component in potential 

applications e.g. a ticket purchasing component may be used in an online cinema 

booking application. Next a rule facet can be used to describe any rules that 

characterise the component e.g. this component must have 1MB of memory 

available. Other facets can then be used to describe the functions of the component 

e.g. ticket sales management, elements associated with the component e.g. cinema, 

music concert, events associated with the component e.g. book ticket, issue refund, 

or users of the component e.g. ticket vendor. 

 

An iterative approach can be used to search for a component in the repository. 

Initially a broad search is made, which is subsequently refined through a number of 

iterations until a small set of components has been retrieved for closer examination 

by a user. For example, a user may first look for all components which contain the 

role facet ticket purchasing. The set of components returned may be further refined 

by looking at other facets such as the role or function facets.  
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A set of well-defined classifiers may also be used. For example, a component may be 

defined as being a system e.g. operating system, an algorithm such as analogue to 

digital conversion, or an application such as ticket booking. Components may also be 

broken up into industry categories such as manufacturing, airline etc. In the 

automotive context, this may be replaced by functional domains such as those 

described in AUTOSAR i.e. powertrain, body/comfort, safety, man/machine 

interface, multimedia/telematics and chassis. These classifiers are based more on the 

traditional group technology C&C methods than facets (Jain, Vitharana et al. 2003, 

p.48-63).  

 

The approach proposed by Jain et al. consists of two items. Firstly, a relational 

database holds all of the structured information such as the well-defined classifiers. 

The less structured information i.e. the facets, is stored in Extensible Markup 

Language or XML. Components can be searched for using a structured search of the 

relational database, or a semi-structured approach where the text based facet 

descriptions are queried, or a combination of both. 

 

De Lucena has developed another approach based on facets (de Lucena Jr. 2001). 

The aim is to create a facet-based classification scheme for software components 

used in industrial automation processes. Components are classified according to a set 

of ten mandatory facets. In addition, a number of optional facets may be included as 

necessary. The mandatory facets consist of the following (de Lucena Jr. 2001): 

 

1. Application Domain: There are two main application divisions used in 

industrial automation - product automation and plant automation. 

2. Specialisation of the Domain: Describes the area in which the component is 

used in greater detail. For example, a specialisation in the domain of process 

automation may be a packaging system. 

3. Industrial Automation Task:  This is a high level classification of the 

component, not a functional description. This facet may have a value of – 

sensor, actuator, command, communication etc. 

4. Hierarchic Classification: This is the management level of the component 

(the level at which the component is used). The levels include – Business 



    CCOOMMPPOONNEENNTT--BBAASSEEDD  SSOOFFTTWWAARREE  EENNGGIINNEEEERRIINNGG  

 100

Level, Production Level, Process Control Level, Process Variable Level and 

Field Level. 

5. Implemented Functionality: A set of keywords which describe the 

component's implemented functionality. A textual description of the 

component is stored elsewhere. 

6. Trigger Type: States if the component is initiated by a particular event or 

periodically at a given time interval i.e. event-triggered or time-triggered. 

7. Real-Time Characteristic: Is the component hard real-time, soft real-time or 

not real-time at all? 

8. Component Technology: This describes the programming language or the 

architecture used by the component. Examples include C++, CORBA, 

AUTOSAR and JavaBeans 

9. Hardware Platform: The hardware originally used by the component. Other 

hardware platforms which the component has been successfully implemented 

on may also be included. 

10. Operating System: All possible operating systems which the component can 

be successfully deployed on. 

 

The searching method used here relies on tool support. The user selects values for 

each of the facet, which has the effect of narrowing the amount of selected 

components. If a value is not selected for a particular category (facet), then all of the 

components for that category are displayed. 

 

Locating a set of component using the tool is only the first step in the process. Next, 

the potential candidate components must undergo a technical evaluation to find the 

most suitable. This is followed by the final decision making process. This stage is 

influenced by various factors including commercial considerations such as the price 

of the component. If no suitable component is found, then a tool will assist the user 

in creating an order or request for a component to fulfil the desired role. 

 

6.6.1.2.3 Evaluation 

Faceted classification of components presents a more refined and potentially more 

applicable form of a C&C scheme than a group technology-based method. The main 

issue to be addressed is the definition of facets. This must be carefully controlled and 
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managed. Otherwise potential issues may arise such as multiple facets existing which 

actually define the same characteristic or poor definitions of facets. If this issue can 

be addressed, then facets could indeed provide an effective method of identifying and 

retrieving software components. 

 

 

 

6.6.2 Matching Components to Requirements 

An alternative to more traditional search and retrieval techniques is to provide some 

means of mapping directly from a set of requirements to a set of software 

components. This section describes some of the methods which attempt to carry out 

this task. 

 

 

6.6.2.1 Design Spaces 

Design spaces have been proposed by Baum et al. as a method of mapping 

requirements to reusable components (Baum, Becker et al. 2000, 155-163). A design 

space is a multidimensional space of design choices. It contains a set of dimensions 

which describe relevant criteria of items in a specific domain. For example, the 

domain of AUTOSAR runnables may include the following dimensions: runnable 

category and “wait for event”. The choices within each dimension are referred to as 

categories. This is illustrated in Figure 6.7. 

 

 
Fig Fig Fig Fig 6.7 Design Space6.7 Design Space6.7 Design Space6.7 Design Space    

Runnable CategoryRunnable CategoryRunnable CategoryRunnable Category    
CategoryCategoryCategoryCategory    

Cat 1Cat 1Cat 1Cat 1    

Cat 2Cat 2Cat 2Cat 2    

Wait for EventWait for EventWait for EventWait for Event    

YesYesYesYes    

NoNoNoNo    
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Note that selecting the Cat1 runnable restricts the possible options for ‘Wait for 

Event’ to ‘No’. This means that a category 1 runnable cannot wait for an event to 

occur during its lifecycle. These correlations between categories represent expert 

knowledge of the domain.  

 

The original design spaces concept was made up of two sub-spaces - a requirements 

and a structural design space. The former details the externally observable behaviour 

of a system while the latter addresses internal structural issues and implementation 

details. However, Baum et al. have altered design spaces (Baum, Becker et al. 2000, 

155-163). One of the main changes is the replacement of the requirements and 

structural subspaces with a set of separate but interrelated design spaces. The 

requirements design space has been replaced by an application and a requirements 

design space. The structural design space has been replaced by a set of component 

design spaces. 

 

Design spaces allow a questionnaire to be developed which guides a developer 

through the requirements elicitation process. The developer is presented with the 

dimensions of the design spaces in a question format, allowing the user to select the 

variations they want for the system under development. The questionnaire is based 

on the Application Design Space, which consists of the application level aspects of 

the domain model, independent of any platform specific details. This allows the 

developer to design a system without having to consider the choice of hardware or 

infrastructure the system is to be deployed on. 

 

There are four steps involved in mapping requirements to software components: 

 

1. Create a platform design space profile 

A Requirements Design Space is used to create the profile. The requirements design 

space like the application design space is created from the domain model. In this case 

however, it contains requirements on the run-time platform e.g. ‘is multi-thread 

support required?’ The questions from the application design space are mapped into 

questions in the requirements design spaces, allowing questions answered at the 

application level to fill in some if not all of the questions at the requirements design 

space level.  
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2. Select platform architecture 

 This step often depends on human experts to select the most appropriate 

architecture. A platform architecture is an abstraction of a set of platform variants 

which follow a similar design rational. Components may be developed for a specific 

architecture. Therefore it is necessary to first select an architecture before 

components can be chosen. 

 

3. Create Component Profiles 

It is necessary to map platform requirements to the requirements for components. A 

Component Design Space is associated with every component type. The component 

design space describes all of the available properties for components of that type. In 

a similar fashion to step 1, the requirements design space is mapped to profiles in the 

component design spaces  

 

6. Select Components 

The above steps have narrowed the search space of available software components, 

providing a much smaller set that the developers can now choose from. 

 

The approach outlined above assumes that generic components are used, which can 

be tweaked or adjusted as necessary. This can be aided by tool support, thus creating 

the final system. 

 

6.6.2.1.1 Evaluation 

Design spaces present an interesting approach of mapping requirements to 

components. A significant investment must be made in creating the design spaces 

initially. Significant rework of the design spaces may have to be carried out to 

facilitate the introduction of new components with functionality that was not 

originally planned for. Therefore, this approach while effective in the selection of 

components, may represent too much of an investment to create and maintain 

compared to other methods.  
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6.6.2.2 Requirements Elicitation through Model-Driven Evaluation 

of Software Components 

Chung et al. have conducted research into eliciting requirements via a model-driven 

evaluation of software components (Chung, Ma et al. 2006). In this method, a 

stakeholder’s requirements are structured into an AND/OR tree format (which in this 

case can also contain NOT statements). This is similar to the way in which a query is 

entered into a Web browser. This is shown in Figure 6.8. 

 

 
Fig Fig Fig Fig 6.8 AND/O6.8 AND/O6.8 AND/O6.8 AND/OR TreeR TreeR TreeR Tree    

 

The user requirements are structured in a query. This query can then be automatically 

decomposed into a set of sub-queries as shown in Figure 6.8. The second level nodes 

(sub-queries 1 and 2) may represent composite component. The leaf nodes are taken 

as the search criteria for component descriptions.  

 

Software component descriptions may be given in any syntactically and semantically 

well-defined notation such as the UML. For example, a class diagram may be used, 

with each class representing a software component.  

 

Query: 
System Control AND 
fuel injection NOT 

diesel AND 
ignition AND knock 

control 

Sub-query 1: 
System Control AND 
fuel injection NOT 

diesel 

Sub-query 2: 
ignition AND knock 

control 

System 
Control  

Fuel 
injection  

- diesel  

(Minus sign in sub query denotes logic NOT) 

Ignition  Knock 
control  
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Components are first matched against the leaf nodes. This process may be carried out 

using a keyword search, with each leaf node being evaluated in sequence. For 

example, in sub-function 1, the leaf node System control is evaluated first, followed 

by Fuel Injection and NOT Diesel. If an exact mach to one of the nodes is not found, 

then the user may be presented with the option of relaxing the requirement to fit 

another component which is not an exact match. Alternatively, the component may 

have to be modified or a new one developed.  

 

Following the selection of components to fit the individual requirements in the query, 

the relationships among the components must be examined, with composite 

components being included if necessary. A final selection of components can then be 

made, or the user may go back and refine the requirements query based on the 

components which have been uncovered.  

 

6.2.2.2.1 Evaluation 

This method is potentially a very effective mapping approach. The main issue to be 

addressed is the mapping of user specified keywords to software component 

descriptions. Two possible solutions to this are:  

 

1. A thesaurus-type program which will recognise user-specified keywords and 

will be able to map them to equivalent terms in the software component 

descriptions. 

2. Facets may be used to build up the user query. The user may be restricted to 

selecting terms which have been stored as facets in a repository to build up 

their query. 

 

 

6.6.2.3 Agent-Based Matching 

Hara et al. propose a method of reusing software components based on an agent 

model (Hara, Fujita et al. 2000), which makes use of the ADIPS Repository Protocol 

(ARP). ADIPS is an agent oriented programming environment created by Hara et al. 

(Shigeru Fujita, Hideki Hara et al. 1998, 57-70). This method consists of three main 

components; an agent virtual machine, a component repository and a design support 
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environment. The software component repository is in turn made up of repository 

agents. These are made up of software components along with design knowledge. 

The structure of this approach is illustrated in Figure 6.9. 

 
Fig Fig Fig Fig 6.9 ADIPS Framework6.9 ADIPS Framework6.9 ADIPS Framework6.9 ADIPS Framework    

 

The approach proposed here is essentially a method of upgrading an application. The 

application user is able to request some new functionality that is to be added to their 

application. The requirements for a new component are sent via the user’s agent 

virtual machine. This is an operational environment where a number of agent 

systems work together as distributed application systems offering services to users. 

The requirement is broken down and matched by the repository agents to the most 

suitable component. Note that an exact match is not required.  

 

It is possible to create and modify a component via the design support environment. 

This is carried out by a component programmer. 

 

6.2.2.3.1 Evaluation 

The above approach relates more to distributed desktop applications than to 

embedded automotive software. In the latter environment, there is little demand for 

new functionality ‘on-the fly’. Any changes which need to be made to an automotive 

software system will be carried out by OEMs when developing a new vehicle. 
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6.5 Summary                                                                    
 

A software component is a software artefact which can be individually identified. It 

both provides and requests services via well-defined interfaces. To ensure 

correctness, a software component must conform to a set component model e.g. the 

AUTOSAR software component template. 

 

Component-based software engineering can provide many benefits to system 

developers. These include the reuse of existing software, enhanced software quality, 

simplified maintenance of systems and reduced development time.  

 

However there are also a number of challenges which must be overcome. These 

include the need for additional training in CBSE methods, the difficulty of 

integrating software components and the difficulty of identifying, selecting and 

matching components to requirements. 

 

There are a number of methods used to facilitate the storage, identification and 

retrieval of software components. These include various group technology style C&C 

schemes and faceted-based classification. Alternatively, it is possible to map directly 

from requirements to a set of software components in certain circumstances 

 

 

 

 

6.6 Relevance To Research                                            
The automotive industry is beginning to make the shift to software components 

through the introduction of the AUTOSAR architecture. Therefore software 

components are a necessary topic to consider when investigating automotive E&E 

systems. Furthermore, since the main focus of this research is software components, 

it is necessary to understand the general principles behind component-based systems 

before any more meaningful work is carried out. 
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The ability to locate and identify software components is one of the main issues 

which needs to be addressed in component-based software engineering and by this 

research. The first research question presented in this thesis deals with the level of 

specification of a component’s functionality i.e. how the component is to be 

identified. The second question asks how requirements should be structured in order 

to be matched to software components. This is essentially covers the same problem 

outlined in this chapter of locating particular software components. 

 

Facets and a group technology style C&C scheme seem to be promising as potential 

solutions to this problem. Mapping directly between requirements and components 

presents an interesting avenue of research. This approach could be combined with 

one of the component matching techniques mentioned earlier and potentially 

integrated into a tool-based solution. 
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.7.   

 

 

Requirements Engineering 

 

 

 
7.1 Overview 
 

Systems are often delivered late, over budget, and don’t do what users really want. 

They are often never used to their full potential. Contributing to this are problems 

with the initial system and software requirements (Sommerville and Sawyer 1997). 

Requirements elicited from various stakeholders in a system development project 

may be incomplete, inconsistent, ambiguous or incorrect and may not reflect the real 

needs of a customer. Furthermore, it is possible for misunderstandings to occur 

between customers, analysts and developers. 

 

This chapter examines what a requirement is and presents an overview of the 

processes involved in requirements engineering. 

 

 

 

 

7.2 Requirements 
A requirement is a description of how a system or some property of that system 

should behave.  There are two types of requirements: functional and non-functional 

requirements. 
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Functional Requirements 

A functional requirement describes a specific task that a system must support (Dai 

and Cooper 2005). An example of a functional requirement may be that a spell-

checker must be included in a word processor. 

 

 

Non-Functional Requirements 

A non-functional requirement specifies some important constraint on a software 

system. This includes qualities such as security, performance, availability, 

extensibility and portability (Cleland-Huang, Settimi et al. 2006). An example may 

be that data must be transmitted at a rate of 1Mb/s. 

 

The definition of a requirement according to the Institute of Electrical and 

Electronics Engineers (IEEE) is: 

 

1. A condition or capability needed by a user to solve a problem or achieve an 

objective 

2. A condition or capability that must be met or possessed by a system or 

system component to satisfy a contract, standard, specification, or other 

formally imposed document 

3. A document representation of a condition or capability as in definition 1 or 2. 

 

A requirements document should state what is done by a system but not how it does 

it. Implementation details included at this point can constrain the system too much 

and reduce the possible solutions which may be developed. While this idea seems 

reasonable, it is in practice too simplistic. Two of the main reasons for this are: 

 

1. Readers of a requirements document are often practical engineers. They may 

be able to relate better to implementation descriptions than an abstract 

problem description.  

2. A project is, in many cases, only part of a larger system. It may be necessary 

to specify implementation requirements to ensure that the system is 

compatible with the environment it is to be deployed in, and that it conforms 

to any standards or organisational concerns laid down. 
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7.3 Requirements Engineering                                       
 

“Requirements engineering is the branch of software engineering concerned with the 

real-world goals for, functions of, and constraints on software systems. It is also 

concerned with the relationship of these factors to precise specifications of software 

behavior, and to their evolution over time and across software families.” (Zave 1995, 

214-216) 

 

Nuseibeh and Easterbrook state that this is an attractive definition of requirements 

engineering for the following reasons (Nuseibeh and Easterbrook 2000, 37-46):  

 

1. This definition stresses the importance of real-world goals which are the 

motivating factors for a system to be developed. 

2. The “precise specifications” described form the basis for analysis and 

validation of requirements, and defining and verifying what designers must 

build. 

3. The definition acknowledges the fact that in the real world, things change 

and that requirements should be able to evolve. 

 

There are four key areas of requirements engineering – requirements elicitation, 

requirements analysis and negotiation, requirements validation and requirements 

evolution. Each of these is described in the following sections. 

 

 

 

7.3.1 Elicitation 

Requirements elicitation is “the process of discovering the requirements for a system 

by communicating with customers, system users and others who have a stake in the 

system development.” (Sommerville and Sawyer 1997)  

 

A common perception is that requirements elicitation consists of simply asking 

stakeholders what they want in a system, be it through interviews, questionnaires or 

some other medium. While these activities do make up part of the elicitation process, 
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there is more involved (Kotonya and Sommerville 1998). When developing a 

business system, the organisation and environment in which the system will operate 

must be analysed. It is also useful to consider any business processes which will 

make use of the system. In an automotive context, it would be important to consider 

the networked environment in which the system is to be deployed, as it is unlikely to 

be a standalone system.  

 

Sommerville presents four dimensions of requirements elicitation. While these are 

given in the context of a commercial business application, the concepts are still 

applicable to the domain of embedded systems. 

 

1. Application Domain Understanding 

An understanding must be developed of the general area in which the system 

is used. For example when planning a fuel injection system, a general 

knowledge of powertrain systems should be developed.   

 

2. Problem Understanding 

The problem is understood in terms of the specific environment in which the 

system is to be deployed. This is a specialisation and extension of the general 

domain knowledge previously obtained. For example, the fuel injection 

system may be considered in terms of the specific manufacturer’s 

organisation of E&E systems. 

 

3. Business Understanding 

This is an understanding of how systems interact and contribute to different 

business goals. In an automotive context, this may include developing 

knowledge of how the fuel injection system operates with other aspects of 

engine management and other systems to provide the full functionality of the 

vehicle, or meet emissions regulations. 

 

4. Understand Needs and Constraints of System Stakeholders 

The main considerations at this point are work processes which the system 

will support and the role of existing systems in these work processes.  
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Requirements elicitation is an iterative process. Elicited requirements must be 

analysed to ensure that they are correct and consistent. Negotiation with stakeholders 

can then be carried out to ensure that they are satisfied with the requirements. If not, 

then further elicitation, analysis and negotiation may be carried out until a final set of 

requirements has been specified. 

 

 

Elicitation Tools 

A number of tools or methods are used to elicit requirements. These include 

interviews, observation and scenarios. Examples of requirements elicitation 

techniques are given below: 

 

Scenarios 

A scenario is used to elicit and clarify requirements through interaction with a real-

world example. A scenario can be thought of as a story which shows how a system is 

used (Kotonya and Sommerville 1998). Scenarios may be used in conjunction with 

other tools such as UML use cases. A use case describes a typical sequence of events 

and a set of alternative sequences to handle events which are not in the typical course 

of events. A scenario can be used for each of these sequences to individually describe 

their behaviour (Booch, Rumbaugh et al. 1999, p.224-225). 

 

Prototyping 

Prototyping may be used in a similar way to scenarios. A user is presented with a 

mock-up of the implemented system. This may be a paper model, a graphical user 

interface or a Simulink model. The existence of, and interaction with a prototype can 

help users and developers to quickly determine if the currently elicited requirements 

are correct, and can help with the discovery of new requirements as potential 

improvements to the prototype are determined. 

 

Reuse of Past Systems’ Requirements 

It may be possible to reuse requirements from previous projects. This may be the 

case if similar systems are being developed e.g. a fuel injection system being 

developed for car X will share many of the same requirements as those for an already 

existing fuel injection system for van Y. Aspects such as calculation of the injector 
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pulse-width and injection timing, while possibly different in their implementation, 

may share a lot of similarities at the requirements level. There is also the potential for 

this to lead on to subsequent reuse at the design, coding and testing stages. 

 

Requirements reuse has the benefit of reducing costs as the reused requirements have 

already been successfully analysed and verified in past systems. Of course, there is 

always the chance they may not fully integrate into the current project without 

modification, if at all. 

 

 

 

7.3.2 Requirements Analysis & Negotiation 

Elicited requirements must be checked to ensure that they are complete. 

Requirements analysis and negotiation is the process of discovering problems with 

requirements and ensuring that all stakeholders agree on the set of requirements. The 

set of requirements is analysed for any conflicts, overlaps, omissions or 

inconsistencies. Negotiations are carried out with stakeholders to ensure that the set 

of requirements can be agreed upon by everyone. It may be necessary to change or 

remove certain requirements to ensure that others may be fulfilled. The output of this 

stage is a draft requirements document. 

 

Requirements analysis is not the same as requirements validation. The latter task 

presupposes that the requirements to be validated are complete and have been agreed 

upon by stakeholders. Therefore, requirements analysis and negotiation must be 

completed before validation can be carried out.  

 

 

 

7.3.3 Requirements Validation 

The aim of requirements validation is to check the draft requirements document - 

created during the elicitation, analysis and negotiation stages – for consistency, 

completeness and accuracy. The main concern at this point is the way in which 
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requirements are described. The requirements document obtained from this stage 

must present a clear and unambiguous description of the system to be used in the 

design and implementation stages. 

 

There are a number of tools used to validate a set of requirements. The most common 

method is reviews, which may take the form of structured meetings. If models have 

been used in the requirements document, then they may be validated using CASE 

(Computer Aided Software Engineering) tools. Of course this is dependant on the 

models being developed in a language supported by a CASE tool. Alternatively, it 

may be helpful to convert the model into a natural language format. 

 

Rewriting the requirements in the form of a draft user manual can aid in the 

validation process. This process can help authors of requirements to see them in a 

different way. Also, to be able to rewrite a requirement the author must be fully able 

to understand it. 

 

A prototype, as described in the previous section, can also prove to be useful during 

validation. The validation prototype may however require more detail than one built 

during analysis. The reason being that during analysis, the prototype may simply be 

implemented to help describe one or more difficult requirements. Simpler ones 

which may be taken for granted e.g. login, may be omitted. During validation, it is 

important that a practical, realistic prototype is developed which presents a true 

picture of all of the requirements specified in the document.  

 

In the context of the automotive industry, there are a number of tools which can be 

used to ensure early validation of requirements.  Two of the most commonly used 

types are model-based development tools and hardware in the loop simulators. Both 

of these approaches are described in greater detail in chapter 3. 

 

 

Model-Based Development Tools 

Model-based development tools provide an effective method of creating a mock-up 

or prototype of a potential system which is independent of any particular 

implementation. Building a model and then simulating its behaviour can uncover 
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previously unknown requirements or highlight invalid ones. Simulink is an example 

of a model-based development tool. 

 

 

Hardware in the Loop Simulators 

Hardware in the loop (HIL) simulators are used to test a system before it is actually 

deployed in a vehicle. The simulator generates artificial inputs e.g. dummy sensor 

values, and monitors the outputs, making any necessary changes to the inputs. In this 

way, problems with the system can be uncovered before the system has been 

deployed. Requirements, design etc can then be modified as appropriate. 

 

 

 

7.3.4 Evolution of Requirements 

A software system will experience changes as a stakeholder’s requirements change 

and as the environment in which the system operates changes. It must be possible to 

recognise changes and to manage any changes to requirements documentation. 

Changes may be discovered through continuous elicitation, re-evaluating risk, and 

monitoring systems in their environment (Nuseibeh and Easterbrook 2000, 37-46).  

 

It is necessary to provide some means of tracking requirements through the 

development process to ensure that as requirements change, so too do later artefacts 

based on those requirements. Tool support can aid in this task. 

 

 

 

 

7.4 Automotive Requirements Engineering                  
 

7.4.1 Factors Influencing Requirements 

There are a number of factors which contribute towards or otherwise influence 

automotive system requirements.  
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Requirements Frequently Change 

Increased complexity, parallelisation of work (i.e. a number groups within an 

organisation working with separate requirements documents which cover some of the 

same information) and time restrictions in the development process can lead to the 

need to introduce assumptions about the system early on in the development process. 

These assumptions may be changed or removed during later stages (Weber and 

Weisbrod 2002). 

 

 

Environmental Legislation 

A vehicle must comply with emissions regulations as laid down e.g. European light-

duty vehicles must meet the Euro 5 standard as defined in Directive 98/70/EC 

(European Parliament Council 1998). This will form a part of the set of vehicle 

requirements and will influence the design of the vehicle components. 

 

 

Reliability and Safety 

Early computer controlled automotive electronics were used mainly in non-safety-

critical areas such as comfort systems. In modern vehicles however, electronics are 

used to control systems such as anti-lock brakes, fuel injection, traction control etc, 

systems which are critical for the operation of the vehicle and the safety of 

passengers. Such systems require a high level of reliability and safety (Grimm 2003), 

and this must be taken into consideration when creating a set of requirements. 

 

 

 

7.4.3 Industrial Practice 

In the automotive industry, requirements engineering is carried out in a similar 

fashion to traditional software projects, taking into consideration the above factors.  

The following is a description of the requirements engineering process as carried out 

by a research partner company which is involved in the development of powertrain 

control systems. 
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Initially, a high level requirements document is created based on the features a 

customer wants to be included in a system. This high-level document is analysed by 

a team that decide how to implement each customer requirement. Other requirements 

are created as a result of the customer requirements e.g. safety features, diagnostics 

and interaction with other components.  

 

This analysis leads to the production of a detailed requirements document. This is 

developed by a team and reviewed both internally and externally. Following this, the 

system is designed and built.  

 

Each requirements document has an associated test report, detailing various test 

cases. Every requirement in the requirements document has a corresponding entry in 

the test report document.  

 

The above process takes place at a functional level. At this level the testing carried 

out is black-box testing. A similar process is carried out at a lower layer, using 

Yourdon modelling as the design methodology. This is a method of analysis and 

design which attempts to follow a more structured approach, similar to engineering 

fields (Hoffer, George et al. 2002). Here, white-box testing is carried out. In 

summary for each item of functionality, five design documents are created – a 

customer requirements document, a functional requirements document, a functional 

test report, a Yourdon design diagram and a white-box test report. 
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Fig Fig Fig Fig 7.17.17.17.1    Industrial Practice FlowchartIndustrial Practice FlowchartIndustrial Practice FlowchartIndustrial Practice Flowchart    
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7.5 Representing Requirements                            
 

There are a number of different approaches which can be used to represent a set of 

requirements. These range from informal textual descriptions to various modelling 

techniques. This section provides an overview of some of the methods used. 

 

 

 

7.5.1 Data-Flow Diagrams 

Data-flow models are used to model the data interactions that a system or part of the 

system has with other activities or entities. These may be internal or external to the 

overall system (Kotonya and Sommerville 1998, p.142-145). There is a lack of 

standardisation in industry regarding data-flow diagrams (DFDs). However a DFD 

will generally include the following concepts (Kotonya and Sommerville 1998, 

p.142-145): 

 

� Data-Flows, represented by arrows. 

� Transformations of data into other data, represented by bubbles 

� Data source and destinations, also called terminators, represented by 

rectangles. 

� Data stores, represented by two parallel lines. 

 

DFDs are used in a number of analysis and design approaches. For example the 

Yourdon Structured Method introduced in Section 7.4.3 uses DFDs as a means of 

modelling system behaviour (Cooling 1991, p.344-358). 

 

Requirements analysis using DFDs may be carried out as follows. First a top-level 

DFD is created which shows a black-box view of the system. This is called a 

context-level DFD as it describes the overall context of the system. Figure 7.2 

illustrates a top-level DFD for a basic vehicle heating, ventilation and air-

conditioning unit. This unit controls two functions: 
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� The hot/cold air mix entering the cabin and hence the temperature of the 

cabin. 

� The direction of the flow of air into the cabin e.g. towards the windscreen, the 

driver’s feet etc. 

 

 
Fig Fig Fig Fig 7.27.27.27.2    ContextContextContextContext----Level DFDLevel DFDLevel DFDLevel DFD    

 

A system may be subsequently decomposed to describe more detailed requirements 

by creating a separate DFD for each transformation bubble. This may be carried out 

at multiple levels to build up a hierarchy of DFDs. Figure 7.3 illustrates the first level 

of decomposition for the Control Cabin Climate  bubble in Figure 7.2. This contains 

a data store which holds the settings for the unit from the last time it was activated. 

 

 
Fig Fig Fig Fig 7.37.37.37.3    DecompDecompDecompDecomposition of Contextosition of Contextosition of Contextosition of Context----Level DFDLevel DFDLevel DFDLevel DFD    
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7.5.1.1 Evaluation 

DFDs show the data interactions of a system. They describe transformations which 

may be performed on the data, data stores and the sources and destinations of data. 

As such they are suited to describing the overall behaviour of a system. They could 

be used to show a hierarchal decomposition of an automotive system starting at a 

high level such as control engine management, decompose this into subsystems, and 

eventually reach the level of sensor or actuator software component entities and 

transformations (e.g. an entity fuel injector and a transformation inject fuel quantity). 

 

 

 

7.5.2 The Unified Modelling Language 

The Unified Modelling Language (UML) is an object-oriented modelling language 

which is widely used for both analysis and design. It consists of a suite of different 

model types, each of which specialises in the description of a particular aspect of a 

system under development. This can range from use cases which show the sequence 

of events that occur when a system or part of a system is interacted with, to class 

diagrams which illustrate the objects in a system.  

 

The two most essential and commonly used analysis steps are (Larman 1998, p.10-

11):  

 

1. Define Use Cases 

2. Define a Conceptual Model 

 

 

7.5.2.1 Use Case 

A use case describes a process. It is not strictly an object-oriented concept (Larman 

1998, p.10-11) but can be used in a variety of contexts which require a process to be 

described in a stepwise fashion. It describes a sequence of actions along with any 

variations which will provide some useful result to an actor (a person interacting with 

the system) (Booch, Rumbaugh et al. 1999, p.222). Figure 7.4 shows an expanded 
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use case for a hotel booking system. The expanded use case provides more detail 

than a high-level use case which only describes the actors, type of use case and a 

textual description of the sequence of events. 

 

 
Fig Fig Fig Fig 7.47.47.47.4    Expanded Use CaseExpanded Use CaseExpanded Use CaseExpanded Use Case    

 

An expanded use case has the following fields (Larman 1998, p.51-52): 

� Use Case: The name of the use case 

� Actors: A list of the actors. These are the participants in the use case. 

� Purpose: The intent behind the use case. 

� Overview: A high-level description of the use case i.e. a summary. 

Use Case:  Book Room 

Actors:  Guest (initiator), Receptionist 

Purpose:  Capture the booking of a hotel room and its 

payment. 

Overview:   A guest arrives at the reception desk and 

requests a room. The receptionist checks for 

an available room, assigns it to the guest and 

then accepts payment. 

Type: Primary and essential 

Cross-References: Functions: R1.1,R2.3 

Typical Course of Events 

Actor Action System Response 

1.  This use case begins when a 
guest arrives at reception and 
requests a room. 

2.  The receptionist checks for an 
available room 

3.  Displays a list of available 
rooms 

4.  The receptionist assigns a 
room to the guest 

5.  Records room assignment and 
guest details. 

6.  The receptionist requests 
payment from the guest. 

7.  The guest pays the 
receptionist who then records 
the payment 

8.  Records payment and prints a 
receipt. 

Alternative Courses 

Line 2: No rooms available. Receptionist requests alternative 
booking date from guest 
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� Type: Whether the use case is a primary (major/common), secondary 

(minor/rare) or optional (may not be tackled) use case. This field also 

indicates if the use case is essential or real. An essential use case does not 

contain much technology or implementation detail. Instead it is concerned 

with describing the process in terms of essential activities and motivations. A 

real use case describes a process with a greater emphasis on implementation 

details such as input and output technology (Larman 1998, p.58-60). 

� Cross References: Any related functions or use cases. 

� Typical Course of Events: Describes the interaction between the actors and 

the system. It only describes the most common sequence of events. 

� Alternative Courses: Variations from the typical course of events i.e. 

exceptions to the usual sequence. 

 

 

7.5.2.2 Conceptual Model 

A conceptual model describes the concepts within a problem domain (Larman 1998, 

p.85). It describes the objects that occur within that domain along with the 

relationships between them. There are three items which make up a conceptual 

model: 

 

� Concept: A concept is an idea, a thing or an object (Larman 1998). It may 

represent a notion such as a room booking or a physical item such as an 

actual room. 

� Attribute: An attribute defines a property of a concept. For example, a room 

concept may have an attribute called room number or size. 

� Association: A link between concepts showing their relationship. For 

example, if there are two concepts, payment and room booking, an 

association could be used to show that a payment is made for a booking. Each 

end of an association shows the multiplicity of a concept in the relationship. 

This is the amount of times a single instance of a concept is used in that 

relationship e.g. one payment is made for one booking. One room booking 

may be for one or more rooms (a ‘many’ multiplicity is indicated by an 

asterix ‘*’). 
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Figure 7.5 illustrates a simple conceptual model for the hotel booking system. It 

contains the three main concepts which must be included in this system: a room, a 

record of the booking for the room and a payment for that booking. 

 
Fig Fig Fig Fig 7.57.57.57.5    Conceptual ModelConceptual ModelConceptual ModelConceptual Model    

 

 

7.5.2.3 Evaluation 

The UML is an object-oriented modelling language. Object-oriented tools can be 

used to describe component-based software development concepts. An object 

typically represents a distinct item which has a particular set of distinguishing 

features (its attributes) and a set of functions which may be performed on that object 

(its operations). A software component is also a distinct entity. It typically works 

with particular signals or data items (its attributes) and encompasses one or more 

pieces of functionality (its operations).  

 

In the UML for example, the concepts in a conceptual diagram can represent the 

various software components of an automotive system such as fuel injector. These 

can be easily mapped to software components. Use cases provide an effective means 

of describing the operation of a system and its interactions with a user e.g. driver. 

These could potentially be modified to show the operation of embedded systems by 

choosing non-human entities as actors. Design class diagrams described in Chapter 

12 fully encompass the concepts outlined above for a software component i.e. a 

discrete entity with attributes and operations.  

RoomRoomRoomRoom    

Room No 

Room Rate 

BookingBookingBookingBooking    
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Start Date 
End Date 

Is for 

0..* 

1..* 

PaymentPaymentPaymentPayment    

Amount 

Is made for 1 1 
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Concept 
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This research focuses on AUTOSAR software components. An important factor to 

consider therefore when choosing a method of representing requirements is the 

analysis and design methods currently used by AUTOSAR. The majority of 

diagrams used in the AUTOSAR specifications are UML class diagrams. As UML is 

already so widely used in defining AUTOSAR it would make sense to integrate it 

into the component selection process to be defined. 

 

 

 

7.5.3 Controlled Requirements Expression 

Controlled Requirements Expression (CORE) has been designed specifically for the 

requirements analysis process (Cooling 1991). It has been widely used in various 

avionics and defence applications. The CORE process consists of a set of prescribed 

steps which result in a set of system requirements models (Cooling 1991, p.332). 

These can then be used as inputs to the design stage. 

 

The fundamental steps of the CORE process are as follows. Initially the various 

viewpoints for the system must be identified. A viewpoint describes a user or 

subsystem’s view of the overall problem to be solved (Cooling 1991, p.332) i.e. the 

system to be developed.. These can be shown in a viewpoint structural model as 

shown in Figure 7.6. This diagram shows the viewpoints for a fuel injection system. 

 

 
Fig Fig Fig Fig 7.6 Vie7.6 Vie7.6 Vie7.6 Viewpoint Structural Modelwpoint Structural Modelwpoint Structural Modelwpoint Structural Model    

 

The analyst must then collect the data which can be used to construct models of the 

various viewpoints in the system. These can be illustrated using a viewpoint diagram 

as described in Section 7.5.2.1. The analyst must then combine the information from 

 

 

 

Overall System Viewpoint Diagram 
(Environment) 

 

Driver Fuel 
Delivery 

Diagnostic 
System 
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the different viewpoints and handle any loose-ends, inconsistencies and any conflicts 

which may arise. The information resulting from this process forms the requirements 

document (Cooling 1991, p.332). 

 

There are three main model types used in CORE. These are: 

 

� Viewpoint diagrams 

� Data-structure diagrams 

� Thread diagrams 

 

These models are used in conjunction with textual documents to define the 

requirements for a system.  

 

 

7.5.2.1 Viewpoint Diagram 

Viewpoint diagrams are one of the central models used in CORE. They define a 

problem as seen from a particular point of view (Cooling 1991, p.332). This can 

include the views of both system users (e.g. vehicle driver) and parts of the system 

(e.g. engine management unit). A viewpoint diagram consists of five fields (Cooling 

1991, p.333-336): 

 

 

� Viewpoint Source: Where data to the viewpoint comes from. 

� Inputs: Information input into the viewpoint. 

� Actions (Processes): The tasks that happen within a viewpoint. 

� Outputs: Information output as a result of viewpoint actions. 

� Destinations: Where the output data goes to. 

 

Figure 7.7 illustrates a viewpoint diagram for a simple fuel injection control unit. 
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Fig Fig Fig Fig 7.7 Viewpoint Diagram7.7 Viewpoint Diagram7.7 Viewpoint Diagram7.7 Viewpoint Diagram    

 

Note that arrows are used to indicate the relations between fields in the viewpoint 

diagram. 

 

 

7.5.2.2 Data Structure Diagram 

The aim of a data structure diagram as its name suggests is to aid with an analysis of 

the structuring of data from viewpoint diagrams. It shows three main items (Cooling 

1991, p.333-336): 

 

• The data that a particular viewpoint produces. 

• The order in which a viewpoint produces data. 

• Any repeated or optional data groups. 

 

Figure 7.8 shows a data structure diagram for an exhaust gas recirculation (EGR) 

control system. 

 
Fig Fig Fig Fig 7.8 Data Structure Diagram7.8 Data Structure Diagram7.8 Data Structure Diagram7.8 Data Structure Diagram    
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7.5.2.3 Thread Diagram 

A viewpoint diagram is limited in its ability to describe the behaviour of a system. 

Thread diagrams specify a system’s behaviour in terms of dataflows and actions 

(Cooling 1991, p.333-336). Figure 7.9 shows the structure of an action as used in 

thread diagrams and its corresponding dataflow lines. 

 

 
Fig Fig Fig Fig 7.9 Action and Dataflows7.9 Action and Dataflows7.9 Action and Dataflows7.9 Action and Dataflows    

 

An action block can represent a simple action which takes inputs and produces 

outputs. However an action block may also be used to define aspects of control logic 

such as iterative control and selection control (if-then-else). Figure 7.10 (a) shows an 

iterative control block and Figure 7.10 (b) shows a selection control block. The 

iterative control block is indicated by an asterix (*) in its Action Type section. The 

selection control blocks contain a circle which indicates that the blocks are optional. 

Both block-types are influenced by a control signal. In the case of the former this 

controls the extent of the iterations while in the latter it determines which block is 

selected (Cooling 1991, p.333-336). 

 

    
Fig Fig Fig Fig 7.10 Iteration and Selection Control Blocks7.10 Iteration and Selection Control Blocks7.10 Iteration and Selection Control Blocks7.10 Iteration and Selection Control Blocks    

(Cooling 1991, p.336) 

 

(a) Iteration Control (b) Selection Control 
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Figure 7.11 illustrates a simple thread diagram for a fuel injector viewpoint. In this 

example a fuel injector is activated when the crankshaft reaches a predetermined 

position. This is checked periodically. If the position has not been reached then no 

action is performed. 

 

 
Fig Fig Fig Fig 7.11 Fuel Injector Thread Diagram7.11 Fuel Injector Thread Diagram7.11 Fuel Injector Thread Diagram7.11 Fuel Injector Thread Diagram    

 

 

7.5.2.4 Evaluation 

CORE has already been successfully used in various types of embedded applications 

such as aerospace systems. As such it already has a proven track-record for real-time 

systems. Viewpoints provide an effective means of describing the role of a particular 

entity in the overall system. The concepts of inputs, processes and outputs could be 

used to effectively specify a software component’s functionality, thus providing a 

black-box view of the component.  

 

Thread diagrams on the other hand may be less useful. They describe the control 

logic of a system which may not be too useful in a software component environment. 

They may be at too low a level of abstraction, describing more implementation-

relevant details. It would be more useful to specify requirements for an AUTOSAR 

system in terms of the various aspects of functionality required and the signals which 

will be used. This can be provided by viewpoint diagrams. Data Structure Diagrams 

may be useful in describing the data produced by a software component and the 
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sequence in which it is produced. This could be especially important when 

integrating components together in a system. 

 

 

 

 

7.6 Summary                                                                    
 

Incomplete or incorrect requirements can lead to problems with system development. 

The final delivered project may be over budget and over time and may not fulfil the 

needs of the project stakeholders. It is clear that correct requirements elicitation, 

analysis, negotiation and validation must be carried out to ensure the success of any 

software engineering endeavour. While the process of requirements engineering can 

often be vague and imprecise, tools such as structured interviews, scenarios and 

prototypes can greatly aid the requirements engineer in their task. 

 

 

 

 

7.7 Relevance to Research                                              
 

Requirements are a key concept in this research. The second research question 

proposed asks how requirements should be structured to facilitate their mapping to 

software components. Therefore it is crucial to consider what a good requirement is 

and how it is constructed. Effective reuse of past requirements necessitates that those 

requirements are correct and complete. Consideration must also be given to current 

industry practices to ensure that the format of requirements specifications to be 

developed is relevant to industry. 
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 8.    

 

 

Literature Review Summary 

 

 

 
Modern automotive electric and electronic systems are continually growing in 

complexity. This has been facilitated through the introduction of technologies such 

as in-vehicle networks and developments in embedded controllers. Recent trends 

have seen moves towards the standardisation of many automotive systems. These 

include diagnostics protocols, operating systems and software architectures. 

 

AUTOSAR is a standardised software architecture that separates an application from 

its infrastructure. Software components contain the application. They are the control 

logic of a system. The infrastructure (memory management, communications, 

operating system etc) is managed by basic software modules. Therefore an 

application may be developed independently of the hardware and infrastructural 

requirements and deployed on a wide range of platforms. Also, software components 

may be assembled into different applications which require their functionality. 

 

Reuse of code, in this case software components, is only one example of reuse which 

is practiced in the software industry. In fact reuse is often carried out at a number of 

different levels. These include the reuse of architectures and design models and the 

reuse of requirements.  

 

AUTOSAR is a relatively new component-based architecture. Therefore particular 

attention must be paid to general component-based software engineering practices 

where research has already been carried out. Experiences of practitioners and 

researchers in the area of component-based engineering have revealed a number of 
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benefits to such an approach. These include the reuse of existing code which leads to 

reduced costs and development time and increased quality. The maintenance of 

systems is also simplified. However there are also a number of challenges which 

must be overcome. These include the difficulty in managing components – their 

storage, identification, retrieval and multiple versions of the same component. Also 

there may be difficulty in integrating software components and interdependence 

between certain components. The size of components may also be an issue especially 

in the context of embedded systems which have limited resources. 

 

In any software development process requirements engineering is a key process. If 

requirements are not correct, complete and clear then the resulting system will more 

than likely not carry out the desired functionality. There are a number of tools such 

as scenarios, CORE, UML diagrams etc which may be used to aid the requirements 

engineering process and help in the correct specification of requirements. These 

approaches must be considered when developing the framework to map requirements 

to AUTOSAR software components. 
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Section 3: Implementation
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 9.    

 

 

Framework Development 

 

 

 
9.1 Introduction                                                               
 

The implementation section describes the development of a framework for mapping 

functional requirements to AUTOSAR software components and the creation of a 

testing methodology to validate the framework. The development process described 

in this section consists of the following steps: 

 

1. Define a standardised means of describing a software component’s 

functionality 

The aim of this step is to determine a method of specifying software components 

in a clear and logical way that facilitates their easy identification and discovery. 

This will have the benefit of improving component reuse and could potentially 

reduce system development time by reducing the time spent searching through a 

library of candidate software components. The development of a component 

identification scheme is described in Chapter 10. 

 

2. Define a standardised means of specifying functional requirements and a 

method of mapping the requirements to the component descriptions 

Currently, a system designer must search through a library potentially containing 

hundreds if not thousands of components to find one which best suits a particular 

task. One of the main barriers to matching user requirements with existing 

components is that requirements are often expressed in English. It may also be 

difficult to determine how to group and/or break up requirements in such a way 

that they can be fulfilled by a set of components. With this in mind, it can be 
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seen why a user’s requirements should be formatted according some 

standardised structure.  

 

This step of the development process defines a method of specifying functional 

requirements in a structured manner which facilitates their translation to a set of 

software components. It also addresses the development of a scheme to perform 

this mapping process. The development of the mapping process and the 

requirement specification method is outlined in Chapter 11. 

 

3. Develop a tool that provides support for the methods developed 

When a suitable means of encoding a component’s functional specifications has 

been determined, it will be necessary to develop a repository that stores software 

components. The tool will provide support for a user to create a set of 

requirements and automatically map these requirements to a set of software 

components. The development of the tool is outlined in Chapter 13. 

     

4. Test the framework in conjunction with automotive experts. 

In this step a methodology is developed which will be used to test the 

effectiveness of the framework as supported by the software tool. The 

development of the testing process and the test cases used is described in 

Chapter 14. 

 

 

Steps 1 and 2 deal with the development of the framework. Both of these steps are 

interrelated i.e. the development of a means of describing software components will 

affect how requirements should be structured and vice versa. However for clarity 

each is described in a separate chapter.  

 

There are two main tasks which must be carried out to facilitate the development of 

the mapping framework, the software tool and the tests. These are: 
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1. Create a set of software components 

A set of software components must be created for use in the framework. More 

specifically it is the AUTOSAR software component description files which are 

needed as these are currently used to identify components.  

 

As AUTOSAR is still in its infancy, there is not an abundance of systems that use 

AUTOSAR software components. Therefore it will be necessary to select an 

application area from which to generate software components and determine the 

functions which may be under electronic control. Examples of automotive 

applications which may potentially be used include powertrain, body control and 

climate control. This process ties in with the domain analysis process outlined next. 

 

2. Carry out a domain analysis 

A domain analysis of the selected area will consist of identifying the various parts of 

the application under computer control. In the case of a climate control system, these 

may include cabin temperature sensors, air vent actuators and various control 

algorithms. The identified areas of control will then be mapped into AUTOSAR 

software components. Also, the method chosen to create component descriptions and 

requirements will be based on facets. This is outlined in Chapters 10 and 11. The 

facets are the language which describes an automotive application domain. Therefore 

it is necessary to carry out a domain analysis to allow a set of facets to be created. 

The process used is outlined in Chapter 12. 

 

Both of these tasks are performed in conjunction with the steps outlined earlier in 

this chapter. All of the steps mentioned are illustrated in Figure 9.1. 
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Fig 9.1 Framework Development FlowchartFig 9.1 Framework Development FlowchartFig 9.1 Framework Development FlowchartFig 9.1 Framework Development Flowchart    
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 10   

 

 

Software Component Identification 

 

 

 
10.1 Introduction 
 

One of the major barriers to reuse of software components is the difficulty in 

identifying and selecting the correct component. The following chapter aims to solve 

this problem by presenting a method of identifying components based primarily 

around the use of facets.  

 

This chapter is broken up as follows: firstly the requirements for a component 

identification scheme are presented. Next, a method of identifying components is 

selected and discussed, showing how this approach fulfils the requirements laid 

down. The final section illustrates how this approach is used to identify AUTOSAR 

software components 

 

 

 

 

10.2 Identification Scheme Requirements             
 

There are a number of requirements which a component identification scheme must 

meet before it is considered for use in this research. These requirements are as 

follows: 
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1) Appropriate Level of Granularity 

This influences a number of the subsequent requirements.  Granularity here refers to 

the level of detail contained in the component identification scheme. An appropriate 

level of granularity must be chosen whereby component descriptions are detailed 

enough to adequately describe a component’s functionality and yet are at a high 

enough level that a developer is not bogged down in low-level details. Furthermore, 

if too coarse a level of granularity is chosen, this will result in component 

descriptions which are too general or broad to be of any real use. A search through a 

repository of components could return a large set of components, the majority of 

which do not fulfil the system requirements. The systems engineer must then sift 

through to these to find the correct one. If the level of granularity is too fine, the 

engineer may spend an unnecessary amount of time evaluating a large volume of 

low-level criteria.  

 

2) Ability to Describe Real-World Concepts 

AUTOSAR software components operate in an embedded environment. The signals 

they process and the functions they perform are influenced by and in turn influence 

real-world artefacts. Therefore the component identification scheme chosen should 

allow a user to specify the component’s functionality in terms of real-world concepts 

rather than some abstract representation.  

 

For example, this research takes place in the context of automotive powertrain 

systems. In this case the identification scheme should be able to identify a 

component’s functionality in terms of functions which are performed on the 

powertrain. Therefore, it should be possible to describe an engine management 

system in terms that an engineer can easily understand such as fuel injection and 

ignition. 

 

3) Ease of Use 

The method chosen should promote the reuse of software components and not hinder 

it. Therefore, the component identification scheme should be relatively easy to use, 

not requiring extensive training. 
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4) Can be Integrated into Tool Support 

Part of this research deals with the potential improvements which can be achieved 

when using a tool-based method of selecting components rather than a manual 

approach. It is necessary therefore to be able to integrate the chosen component 

identification scheme into a software-based tool. This will allow metrics to be 

gathered by the tool which will be used in the assessment of the component 

identification scheme. Also it is important that tool support is relevant and could be 

implemented in the automotive industry. 

 

 

 

 

10.3 Selection of Component Identification Scheme 
 

An evaluation has been made of the component identification and selection schemes 

described in Chapter 6. The evaluations are presented in Table 10.1. Some of these 

e.g. model driven evaluation, do not prescribe a specific method of identifying 

components (with a particular type of identifier for example) and instead concentrate 

more on the searching process.  

 

Scheme Appropriate 

Level of 

Granularity 

Ability To 

Describe Real-

World Concepts 

Ease of Use Ability To Be 

Integrated Into 

Tool Support 

Group 

Technology 

Trees 

Yes Yes No Yes 

Group 

Technology 

Codes 

Yes Yes No Yes 

Facets Yes Yes Yes Yes 

Design Spaces Yes Yes No Yes 

Model Driven 

(And/Or Trees) 
Yes Yes Yes Yes 

Agent-Based 

Modelling 
Yes Yes No No 

 

Table 10.1 Component Selection and Identification Scheme Ranking 
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Based on the evaluations made, the most suitable methods found are faceted-based 

classification and model driven evaluation. However model driven evaluation does 

not prescribe a specific method of tagging software components with an identifier. 

There is no specific method used to create a component’s functional specification 

other than the use of some well-defined notation such as the UML (see is stated in 

Section 6.6.2.2). Facets on the other hand can be used to construct functional 

specifications for a software component. Therefore a faceted-based classification 

scheme was chosen as the most suitable method of identifying and selecting software 

components. This section shows how faceted-based classification meets the 

requirements presented in the previous section and then describes how facets have 

been adapted for use with AUTOSAR components. 

 

The following list describes how such a scheme meets the requirements laid down in 

the previous section. 

  

1) Appropriate Level of Granularity 

There is no prescribed level of abstraction which facets must conform to. Therefore 

in this research, it is possible to create facets at the level of abstraction or granularity 

that best fits the needs of automotive software developers. 

 

2) Ability to Describe Real-World Concepts 

A facet essentially consists of an identifier and a description. Therefore facets can 

readily be used to model real-world concepts. The only limitation is the facet 

author’s ability to describe a particular item. 

 

3) Ease of Use 

Facets are an extremely simple concept to understand and master. The only potential 

difficulty is in creating a method of searching and sorting a list of facets. 

 

4) Can be Integrated into Tool Support 

There are numerous methods that could potentially be used to implement facets in a 

software development support tool. At its simplest level, all that is needed is some 

means of storing a name and description pair (the facets) and linking these to 
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software components. This could even be achieved with as little as a relational 

database. 

 

 

 

 

10.4 Implementation of Facet-Based Classification 
 

There are a number of factors which must be considered when implementing a facet-

based classification scheme. The primary concern is the categories of facets to be 

used.  These will decide how a particular domain is represented and must therefore 

be carefully selected. AUTOSAR software components are accompanied by a 

corresponding XML file that describes various details about the component – 

interfaces, ports, units etc. As such, this description file is an obvious starting point 

for the creation of facets.  

 

 

 

10.4.1 Facet Candidates from Component Description File 

There are a number of potential candidates for facets in a software component 

description file. The two most suitable options are the sections of relating to 

interfaces and resource consumption. 

 

Interfaces 

An interface defines the exchange of information between the ports of software 

components. To do this, an interface will describe the names and signatures of 

operations and data elements exchanged between software components (AUTOSAR 

GbR 2006e).  

 

Initially it seems that interfaces would make ideal candidates for facets. They specify 

the data that is transferred and also advertise any operations that a component 

performs e.g. get velocity or set valve position. However, under the current release of 

AUTOSAR specifications the naming and descriptions of interfaces are entirely 
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dependent on the software component author. There are no standard interfaces and 

interface descriptions for common functions. It is entirely possible and indeed valid 

under the current AUTOSAR specifications to label an interface as ‘X’ and describe 

it as ‘Interface - data transfer’. This is of little help to an engineer searching for a 

particular software component. This lack of standardisation can also lead to 

confusion. For example, consider the two components shown in Figure 10.1. 

 

 
Fig 10.1 Components With Identical FunctionaliFig 10.1 Components With Identical FunctionaliFig 10.1 Components With Identical FunctionaliFig 10.1 Components With Identical Functionalitytytyty    

 

Both of these software components have required ports which are linked to 

interfaces. These interfaces define the transfer of temperature data from the basic 

software to the software components. In this example both interfaces seem to 

perform the same task, so how is the systems engineer supposed to decide on the best 

one to use? A number of interfaces offering the same functionality but under 

different names would unnecessarily complicate the task of searching for 

components which perform a particular function.  

 

Phase 2 of AUTOSAR will attempt to address this through the standardisation of 

interfaces (Fennel, Bunzel et al. 2006). While this should solve the problems outlined 

above, at the time of this research no such facility exists. 
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It is important that a developer understands the internal functionality of a software 

component. Suppose that one of the software components outputs a command to 

change the position of a valve. There is currently no standardised means of 

determining what goes on inside the software component. All that is revealed by its 

interfaces is that the component reads the temperature from a sensor and outputs a 

command to change a valve’s position. An engineer does not necessarily know what 

process the component uses to determine the valve position. The information 

provided by interfaces and a set of text descriptions on their own may be insufficient 

for this task. Also there may be some unseen processes which the engineer may need 

to know about. 

 

There is a further problem with identifying a software component based solely on its 

description file and its interface descriptions. A particular software component may 

provide the functionality required by a developer. However if its interfaces do not 

match what the developer is looking for then they may miss his component. If the 

internal functionality of the component is known but the interfaces do not match up 

to other selected components or to the overall design then it may still be possible to 

create another intermediary software component. This would bridge the gap between 

mismatched interfaces, possibly converting the data from one component into a form 

useable by the interface of another. 

 

Resource Consumption 

The AUTOSAR Software Component Template provides for the description of the 

resource consumption of software components (AUTOSAR GbR 2006e). This may 

include static and dynamic memory needs and execution time. Resource 

consumption will have to factor into an engineer’s thinking at some point during the 

development process. Therefore this section of the Software Component Template is 

a prime candidate to be used in the creation of facets.  

 

Currently this research focuses on determining a method of identifying and selecting 

software components based on a high-level description of the components’ 

functionality. Therefore, while it is important for a systems engineer to consider the 

resources used by a software component, they are not included in the framework at 

this point. However, the framework that is developed in this research is not intended 
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to be a stand-alone entity. It should be considered as part of an iterative process with 

a number of refinement steps as with tools such as the MDA.  

 

Figure 10.1 illustrates a potential approach to such a process, making use of the 

framework and other evaluation criteria such as resource consumption. In this 

example the framework described in this research takes a set of user requirements 

and maps them to an initial set of software components which best fits the 

requirements laid down.  

 

The next step is to evaluate this set of components to see if they can be deployed on 

the intended hardware. This will be determined from the ECU resource description 

files and the Resource Consumption section of each software component’s 

description file. In addition, any system constraints which may influence the 

selection of software components are also taken into account. If the set of selected 

software components is deemed to be invalid, then the set will have to be modified 

i.e. some components may have to be replaced. This is repeated until a final valid set 

of component can be deployed. 
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Fig 10Fig 10Fig 10Fig 10....2222    Framework Applied to PotFramework Applied to PotFramework Applied to PotFramework Applied to Potential Development Processential Development Processential Development Processential Development Process    

 

 

 

10.4.2 Facets Based on CORE 

The problems associated with creating categories of facets from a software 

component description file have been outlined in Section 10.4.1. As has already been 

stated, it is desirable to have some means other than interfaces and text descriptions 

to describe the internal processes of a software component.  Also at the time of this 

research, AUTOSAR has not yes standardised a set of interfaces (and hence their 

data elements). Therefore a standardised means of describing operations and data 

elements is required. 

Requirements 

Map to SWCsMap to SWCsMap to SWCsMap to SWCs    

Selected  
SWCs 

Evaluate SWCsEvaluate SWCsEvaluate SWCsEvaluate SWCs    

Deployed 
SWCs 

Framework Level 

System System System System 
ConstraintsConstraintsConstraintsConstraints    

ECU Resource ECU Resource ECU Resource ECU Resource 
DescriptionsDescriptionsDescriptionsDescriptions    

SWC SWC SWC SWC 
Description FileDescription FileDescription FileDescription File    
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CORE viewpoint diagrams contain fields which represent this required information 

i.e. inputs, processes and outputs. Therefore, to facilitate the mapping of 

requirements to software components, it was decided to specify the various parts of a 

system according to a restricted version of a CORE viewpoint diagram (Cooling 

1991, p.334) as shown in Figure 10.3. The diagram’s fields are taken as the facet 

categories which will be used to create software component functional specifications. 

 

 
Fig 10Fig 10Fig 10Fig 10....3333    Modified Viewpoint DiagramModified Viewpoint DiagramModified Viewpoint DiagramModified Viewpoint Diagram    

 

 

Figure 10.3 is a restricted viewpoint diagram in that unlike the full viewpoint 

diagram, Figure 10.3 omits the source and destination fields. A software component 

may be implemented without any knowledge of other artefacts in the system: 

hardware, other software components etc. They may be deployed in a variety of 

contexts. Therefore it is not appropriate and potentially restrictive to list specific 

sources and destinations for inputs and outputs. 

 

The viewpoint diagram has already been discussed in Chapter 6 and its usage in this 

framework will be explained further in Chapter 11. At this point, the important thing 

to take from this diagram is that a system has inputs and outputs and performs a 

number of actions or processes. 

 

Software components can be thought of as small systems which work together to 

form a larger composite system. A component may have one or more inputs and 

outputs and will carry out some actions or processes. Therefore, the method of 

modelling a system as defined by viewpoint diagrams may be applied to software 

components. 
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The sections illustrated in the modified viewpoint model in Figure 10.3 are taken as a 

basis for the creation of facets to identify software components as follows: 

 

Actions 

An action facet describes some task that a software component performs. This may 

include measuring a real world value in the case of a sensor software component, 

performing a calculation based on some inputs, or manipulating a physical entity in 

the case of an actuator software component. 

 

Signals 

Both inputs and outputs to and from a software component can be described by the 

common Signals facet. A signal facet describes a piece of data which is transferred 

either between hardware and a software component in the case of sensor/actuators or 

between two or more software component as a result of a calculation or operation. 

Signal facets essentially provide standardised descriptions for the data items and 

operation arguments contained in AUTOSAR interfaces. 

 

It may also be necessary at times to further classify signals in terms of their physical 

type. For example the signal facet engine_speed may be further described as being of 

type revolutions_per_minute. This necessitates the creation of a third type of facet. 

 

Physical-Quantities 

A Physical-Quantity facet describes some real-world unit. Examples include 

temperature, pressure, velocity and acceleration. 

 

The three facet types are summarised in Table 10.1. 
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Facet Description 

Action A task which a software component performs e.g. measure 

signal, turn on actuator, perform calculation 

Signal 

 

A piece of data which is transmitted or received by a software 

component. May be to/from a sensor/actuator or the result of an 

operation. 

Physical-

Quantity 

A physical real-world unit such as temperature, velocity etc. 

 

Table 10.1 Summary of Facets 

 

 

10.4.3 Implementation Example 

The following example describes how to classify a software component based on the 

classification scheme outlined in Section 10.4.2. The example is broken up into a 

number of parts. First a set of tables is presented which show a repository of facets. 

Next a software component is shown along with a description of the component and 

its interfaces. The final section shows how the facets outlined in the tables are used 

to classify the software component.  

 

10.4.3.1 Facet Repository 

Tables 10.2 to 10.4 describe a repository from which the facets used to describe the 

software component are taken. Table 10.2 describes the Action facets and the second 

table describes the Signal facets. 

 

Name Description 

Measure_Temp Reads a temperature value from a temperature sensor. 

Measure_Crank_Pos Reads the current position of the crankshaft  

AtoD_Conversion Converts an analogue signal to a digital signal 

DtoA_Conversion Converts a digital signal to an analogue signal 

Calc_AirCharge Calculates the mass flow rate of air into the intake manifold 

Activate_Injector Turns on a fuel injector solenoid 

    

Table 10.2 Action Facets 
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Name Description Physical-Quantity Type 

Engine_Coolant_Temp Current temperature of the engine 

coolant 

Temperature 

Crank_Pos Current position of the crankshaft  Degrees 

Air_Charge Mass flow rate of air entering the 

intake manifold 

Mass Flow Rate 

On_Off Activation/Deactivation signal for a 

solenoid 

- 

    

Table 10.3 Signal Facets 

 

 

Name Description 

Temperature Measure of the temperature of a body. Measured in degrees Celsius (°C) 

Degrees Measure of an angle (°).  

Mass_Flow_Rate Rate of flow of a mass of fluid. Measured in kilograms per second (kg/s) 

    

Table 10.4 Physical-Quantity Facets 

 

 

10.4.3.2 Software Component 

The software component in Figure 10.4 example controls the operation of a simple 

engine coolant temperature sensor. The function of the sensor as its name suggests, is 

to monitor the temperature of the engine coolant. The software component will read 

this data, convert it into a digital signal and then broadcast it to other components. 

 
Fig 10Fig 10Fig 10Fig 10....4444    Temperature Sensor Software CoTemperature Sensor Software CoTemperature Sensor Software CoTemperature Sensor Software Componentmponentmponentmponent    
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In this example the software component has two interfaces: Measure Temperature 

and Broadcast Temperature. 

 

The require interface Measure Temperature in this case is a client. It requests that the 

temperature sensor hardware provide it with the most recent temperature reading. It 

does this via an operation getTemp( ), which in turn has a single return value: temp. 

 

The provide interface Broadcast Temperature is a sender interface. It periodically 

transmits the result of the analogue to digital conversion on the temperature reading 

to other software components in the system. A single data element, eng_Temp, is 

used to carry this out. 

 

 

10.4.3.3 Mapping Software Component to Facets 

The temperature sensor software component may be described using facets as 

follows. The first step is to identify the functionality of the software component and 

match it up with the relevant entries from the Action facet table. This specifies 

exactly ‘what’ the component does using a standardised vocabulary. 

 

Next, the inputs and outputs of the software component must be specified. Sender-

receiver interfaces are straightforward. Each data item in a sender-receiver interface 

is mapped directly to a single facet. For Client-server interfaces, each data item that 

is passed via an operation e.g. a return value, must also be mapped to a facet. The 

mappings for the temperature sensor software component are as follows: 
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Fig 10Fig 10Fig 10Fig 10....5555    Describing Component with FacetsDescribing Component with FacetsDescribing Component with FacetsDescribing Component with Facets    

 

 

The approach described above provides an effective method of classifying software 

components. The language which is created through the use of facets can continue to 

evolve as new software components are stored in the repository. However the 

component identification scheme can only be truly effective if the creation and 

maintenance of facets is carefully managed. The AUTOMAP tool as described in 

Chapter 13 allows the repository of facets to be effectively managed. In an actual 

industry setting it would be necessary to incorporate a facet validation process to 

ensure consistency and avoid duplication of facets. There must also be a suitable 

method of matching up a set of system requirements to these component 

descriptions. Chapter 11 describes this process. 
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10.5 Summary 
 

This chapter has presented a scheme of describing a software component’s 

functionality and its inputs and outputs in terms of a set of facets. These facets are 

stored in a repository which can be thought of as a kind of dictionary for the 

application domain that the software component is developed for. The facets form 

the standardised ‘language’ which is used to describe software components. Thus as 

more components with new functionality are added, this language will have to grow 

and evolve. The use of a tool to manage facets and assign them to software 

components is discussed in Chapter 13. 
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11   

 

 

Mapping Requirements to Components 

 

 

 
11.1 Introduction 
 
A component identification scheme on its own does not guarantee that the correct 

software components will be selected. ‘Correct’ components are ones which meet the 

system requirements laid down. The most effective way of ensuring that a set of 

requirements is fulfilled is to provide some means of mapping directly between the 

requirements and the software components. 

 

This chapter presents a method of specifying a system’s requirements in a format 

which can be directly mapped to a set of software components. To do this, the 

chapter has been broken up as follows: firstly the requirements for a requirements 

specification scheme are listed. Next, a method of specifying a set of requirements is 

explained. This is accompanied by a description of how the method used fulfils the 

requirements laid down. Finally, an example is given showing how a set of 

requirements may be structured using the above format and mapped to a set of 

software components. 

 

 

 

 

11.2 Requirements for Requirements Specifications 
 
There are a number of requirements which must be fulfilled when deciding on a 

method of specifying system requirements. These are as follows:  
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1) Ability to Adequately Describe System Requirements 

The method chosen should allow a developer to precisely specify the requirements 

for a system. They should not have to fundamentally alter a requirement because the 

method chosen cannot adequately describe it. 

 

2) Easy to Understand 

The method chosen to represent requirements should be easy to read and understand. 

It should not consist of an obscure mathematical or modelling representation that can 

only be understood by a small minority with extensive training in the method chosen. 

The requirements specification scheme should be relatively straightforward to use.  

 

3) Can be Easily Mapped to Component Descriptions 

The requirements specification scheme chosen should facilitate the mapping of 

requirements to software component descriptions. A complex transformation method 

should not be needed. 

 

4) Can be Integrated into Tool Support 

As with the component identification scheme, it should be possible to integrate the 

requirements specification scheme in a software tool. If both of these schemes are 

implemented in a tool, then it should be possible to create an automated method of 

translating the requirements into a set of software components. This could be of great 

benefit to a systems engineer but will need to be tested to determine the advantages 

of using the approach in a tool-based context. 

 

 

 

 

11.3 Selection of Requirements Specification Scheme 
 
The method chosen to represent requirements is based a combination of CORE 

viewpoint diagrams and use cases as defined in the UML. Each of these contributes 

to the modelling of requirements in a different way. Firstly the input, output and 

action fields of a viewpoint diagram are used to describe the specific details of 

requirements i.e. the data which is later mapped to software components. A modified 
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version of a use case provides the structure for this information. This will also 

contain a high level overview of the system under development. 

 

The following list describes how such a scheme meets the requirements laid down in 

the previous section. 

 

1) Ability to Adequately Describe System Requirements 

CORE viewpoint diagrams allow a developer to specify a system or parts of a system 

in terms of inputs, processes and outputs. Each of these may be specified as a piece 

of text. Therefore, even if a requirement is expressed in an informal document, it 

should be possible to specify it in a viewpoint diagram. 

 

2) Easy to Understand 

The viewpoint model used in this research is in fact a restricted version of the 

original, not making use of the viewpoint source and destination fields. Therefore it 

only consists of inputs, processes and outputs – three very simple concepts to grasp. 

The use case format holds the data in a well-structured format which presents 

individual requirements and system inputs and outputs in a clear and unambiguous 

manner, allowing them to be easily understood. 

 

3) Can be Easily Mapped to Component Descriptions 

Both requirements specifications and component descriptions are structured along 

the viewpoint model concepts of inputs, processes and outputs. If requirements are 

specified in terms of the same facets which are used to describe software 

components, then the mapping process will be greatly simplified. 

 

4) Can be Integrated into Tool Support 

If the approach proposed in point three is adopted, then it should be a relatively easy 

task to implement requirements specifications in a tool. Also, it is possible to quickly 

develop a use case-type form using tools such as Microsoft’s Visual Studio. A 

potential issue however is the implementation of an algorithm to match the 

requirements to component descriptions. 
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11.4 Describing Requirements with Facets 
 
This section explains how facets based on the CORE viewpoint diagram are used to 

specify a set of requirements and how these requirements are structured in a modified 

version of a UML use case. As was stated in Chapter 7, a viewpoint diagram consists 

of the following fields (Cooling 1991, p.334): 

 

� Viewpoint Source: The source of data inputs to the viewpoint. 

� Inputs: A list of the data inputs to the viewpoint. 

� Actions/Processes: The actions or tasks which occur within the viewpoint. 

� Outputs: A list of the data items output from the viewpoint as a result of one 

or more actions. 

� Destinations: Where the output data items go to. 

 

Chapter 10 describes how the input, action and output fields are taken as a basis for 

the creation of facets used in the classification of software components. These facets 

form a standardised language which describes the functionality of software 

components. It makes sense to allow a developer to specify their requirements in 

terms of this standardised vocabulary since it already describes the key concepts in a 

particular application domain. This will facilitate the direct mapping of requirements 

to software components. If a facet describing a particular function or signal is not yet 

present in the language, then this will indicate to the developer that the function or 

signal has not yet been implemented. In this way, new candidate software 

components can be identified for development.  

 

Figure 11.1 shows how the input, output and action fields are integrated into a 

modified version of a UML use case. This is followed by a description of each of the 

fields in the use case. 
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Fig 11Fig 11Fig 11Fig 11.1 .1 .1 .1 Modified Use CaseModified Use CaseModified Use CaseModified Use Case    

 

� Name: The name of the use case and hence the name of the system described 

by the use case. 

� Description: A high level textual overview of the system. This should 

present a broad picture of the overall operation of the system without 

containing a significant amount of requirement specific detail. 

� Input Signals: Inputs to the system. These are taken from the repository of 

signal facets to ensure that a common vocabulary is used and to facilitate 

mapping to software components. 

� Output Signals: Outputs produced by the system. Again these are taken from 

the repository of signal facets. 

� Functional Requirements: The tasks or actions which the system must 

perform. These are typically taken from the repository of action facets. 

Alternatively a child use case may be listed here as a functional requirement. 

This allows a functional decomposition of the requirements for a complex 

system to be carried out. Each functional requirement may be accompanied 

by a corresponding description provided by the author of the use case. The 

description field has no bearing on the mapping process and is only included 

Name: New System 

Description: This is a description of a new system under 

development. The system reads in certain data and carries out a 

number of tasks before generating an output..  

Input Signals: 
Input Signal 1 

Input Signal 2 

Output Signals: 
Output Signal 1 

Functional Requirements: Description: 

Requirement 1               Description of the first 

              functional requirement 

Requirement 2              Description of the second  

             functional requirement 

Requirement 3              Description of the third 

             functional requirement 



    SSOOFFTTWWAARREE  CCOOMMPPOONNEENNTT  IIDDEENNTTIIFFIICCAATTIIOONN  

 

 164

for administrative or explanatory purposes e.g. justifying the need for a 

requirement or explaining its place in the context of the overall system.  

 

 

 

 

11.5 Building a Modified Use Case 
 
The following example describes how to construct a modified use case for a simple 

heating, ventilation and air conditioning (HVAC) unit based on an informal 

requirements document. The example is broken up into a number of parts. First the 

informal requirements document is presented. Next, the extraction of requirements 

and the process of mapping these to facets is described. This is followed by the 

construction of a modified use case. Finally, the mapping of the requirements to a 

software component is shown.  

 

 

 

11.5.1 Informal Requirements Document 

The requirements for a heating, ventilation and air conditioning (HVAC) unit are 

shown in Figure 11.2. In this case they take the form of a textual document which 

states the requirements in an informal manner.  
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Fig 11Fig 11Fig 11Fig 11....2222    Informal RequiremenInformal RequiremenInformal RequiremenInformal Requirements Documentts Documentts Documentts Document    

 

The document shown in Figure 11.2 is not that useful to system developers. The 

requirements in their current form may be difficult to map to a set of pre-existing 

software components. Therefore, the requirements must be extracted and presented 

in a more structured format. This process is presented below.  

 

 

 

11.5.2 Extracting Requirements 

The first step in creating a modified use case is to determine the requirements as 

stated in the requirements document. The exact approach taken will depend on the 

structure of the requirements document used. In this case two lists were made. The 

first contains the actions that are described in Figure 11.2, while the second describes 

all of the candidates for data items which can be seen in the text. 

 

 

HVAC Unit 

This document describes the requirements for a 
heating, ventilation and air conditioning (HVAC) 
unit. 
 
The HVAC unit shall provide some means of 
cooling and removing moisture from air to be sent 
to the cabin. A vehicle user should be able to 
change the direction of airflow to different parts of 
the cabin. These zones are: the windscreen, the feet 
of the driver and front passenger, the faces of the 
driven and front passenger, and combinations of 
these. There must be a fan present to blow air into 
the cabin. Also there must be a means of 
controlling the temperature of the air entering the 
cabin. Hot air is filtered in from the engine; the 
quantity supplied being controlled by a valve. The 
system should automatically adjust the temperature 
of the cabin to meet the user specified temperature. 
All of the features described should be controlled 
by user inputted commands 
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HVAC Unit Actions 

� Cool air  

� Remove moisture from air 

� Change airflow direction 

� Blow air 

� Control temperature 

� Control quantity of hot air 

� Adjust Temperature 

HVAC Unit Signals 

� Air humidity 

� Cabin zone 

� Air temperature 

� Hot air quantity 

� User specified temperature 

� User command 

. 

 

 

The actions and signals listed will have to be assessed to determine which ones 

actually need to be implemented and which ones are simply descriptive. Also, it is 

necessary to determine if any extra actions or signals must be defined to more 

precisely state the requirements for the system. For example the signal User 

Command as taken from the requirements document represents, all user commands 

to the system e.g. turn on fan, set cabin temperature etc. It would be more beneficial 

to explicitly state these requirements and their corresponding signals. This will leave 

less room for ambiguity at later stages of the development process. The actions and 

signals are assessed below.  

 

 

HVAC Unit Actions 

� Cool air: Valid action. 

� Remove moisture from air: Valid action but is handled by the activation of 

the air conditioning unit. Therefore this has been removed. 

� Change airflow direction: Valid Action 

� Blow air: Valid action.  

� Control temperature: Valid action 

� Control quantity of hot air: Valid action but relates to the same task as 

Control Temperature. Therefore it is discarded. 

� Adjust Temperature: Valid action but relates to the same task as Control 

Temperature. Therefore it is discarded. 
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HVAC Unit Signals 

� Air humidity: Unnecessary as a value to monitor as dehumidification will be 

provided by the air cooling effect of the air conditioning. 

� Cabin zone: Valid input signal. Will need to be selected by a user.  

� Air temperature: Valid input signal. Must be monitored by the system to 

allow the cabin temperature to be controlled. 

� Hot air quantity: Valid output signal. The system must be able to control the 

amount of hot air supplied to increase/decrease cabin temperature. 

� User specified temperature: Valid input signal. User specified set-point 

which is used to control the cabin temperature. 

� User command: Invalid input signal. This covers a number of signals, some 

of which are given above. Others must be added such as an on/off command 

for the air conditioning unit.  

 

The final lists of actions and signals are presented below. Note that a number of 

items have been added which were not originally considered during the construction 

of the informal requirements document. These include user input signals for the 

components of the HVAC system such as an on/off command for air conditioning 

unit and a fan speed setting. 

 

HVAC Unit Actions 

� Cool air  

� Change airflow direction 

� Blow air 

� Control temperature 

� Measure cabin temperature 

 

 

HVAC Unit Signals 

� Cabin zone 

� Air temperature 

� Hot air quantity 

� User specified temperature 

� Air conditioning on/off signal 

� Fan speed 
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11.5.3 Mapping Requirements to Facets 

The next step is to specify the actions and signals in terms of the standardised 

domain language which is held in the facet repository. The following three tables list 

the action, signal and physical quantity facets stored in the facet repository. 

 

 

Action Facets 

Name Description 

Measure_Temp Reads a temperature value from a temperature sensor 

Measure_Crank_Pos Reads the current position of the crankshaft  

AtoD_Conversion Converts an analogue signal to a digital signal 

DtoA_Convertion Converts a digital signal to an analogue signal 

Set_Fan_Speed Sets the speed of a fan motor 

Cabin_Temp_CL_Control Closed loop control of cabin temperature. Takes a user set temperature 

point and adjusts a vent to let in more/less hot air based on a reading of 

the current cabin temperature 

Cabin_Temp_OL_Control Open loop control of cabin temperature. Takes a user set temperature 

point and adjusts a vent to a predetermined position to let in the correct 

amount of hot air 

Set_Airflow_Direction Sets the direction of the flow of air into the vehicle’s cabin based on a 

user specified position 

Activate_Demister Controls the activation and deactivation of a heating element for a 

window demister 

Activate_Aircon Controls the activation and deactivation of an air conditioning unit 

 

Table 11.1 Action Facets 
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Signal Facets 

Name Description Physical-Quantity Type 

Cabin_Temp Current temperature of the vehicle 

cabin 

Temperature 

Temp_Command Temperature set point entered by the 

user to the ECU 

Temperature 

Fan_Speed Rotational speed of a fan Rotational Speed 

Fan_Command User specified level for the fan speed 

provided in increments e.g. 1-6 

entered to the ECU 

- 

Aircon_On/Off Command from ECU to turn on air 

conditioning unit 

-  

Aircon_Command On/Off command from user to ECU - 

Air_Dir_Command Command from user to ECU to set 

the direction of air entering the 

vehicle cabin 

- 

Air_Dir_Vent_Pos Pre-determined command from the 

ECU to vent actuators to control their 

position and hence the direction of 

air entering the vehicle cabin 

- 

Air_Mix_Vent_Pos Command from the ECU to vent 

actuators to control their position and 

hence the amount of hot air entering 

the vehicle cabin 

 

Coolant_Temp Temperature of the engine coolant Temperature 

 

Table 11.2 Signal Facets 

 

 

Physical-Quantity Facets 

Name Description 

Temperature Measure of the temperature of a body. Measured in degrees Celsius (°C) 

Degrees 

 

Measure of an angle (°) 

Rotational Speed The speed of rotation of an object. Measured in revolutions per minute 

(RPM). 

Mass_Flow_Rate Rate of flow of a mass of fluid. Measured in kilograms per second (kg/s) 

 

Table 11.3 Physical-Quantity Facets 
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The requirements and system inputs and outputs which have been extracted from the 

informal requirements document must now be described in the domain language. To 

do this, each requirement and signal must be mapped to an equivalent facet in the 

repository. In the case of the HVAC unit, the mappings are as follows: 

 

 

 

HVAC Unit Action Facet(s) 

Cool air  Activate_Aircon 

Change airflow direction Set_Airflow_Direction 

Blow air Set_Fan_Speed 

Control temperature Cabin_Temp_CL_Control 

Measure cabin temperature Measure_Temp 

 

Table 11.3 Mapping HVAC Actions to Action Facets 

 

 

 

HVAC Unit Signal Facet(s) 

Cabin zone Air_Dir_Command 

Air_Dir_Vent_Pos 

Air temperature Cabin_Temp 

Hot air quantity Air_Mix_Vent_Pos 

User specified temperature Temp_Command 

Air conditioning on/off signal Aircon_On/Off 

Aircon_Command 

Fan Speed Fan_Speed 

Fan_Command 

 

Table 11.4 Mapping HVAC Signal to Signal Facets 
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11.5.4 The Modified Use Case 

The requirements for the HVAC unit can now be presented in a modified use case. 

This is illustrated in Figure 11.3. Note that as was previously stated, the main use 

case description is a high–level abstraction of the system which does not include any 

detailed requirements. Descriptions have also been added for three of the individual 

requirements. These aid stakeholders who have not authored the use case in 

understanding the requirements laid down and in the case of Set_Fan_Speed, provide 

information for later stages of the development process. 

 

 
Fig 11.3Fig 11.3Fig 11.3Fig 11.3    HVAC Use CaseHVAC Use CaseHVAC Use CaseHVAC Use Case    

 

It can be seen upon comparison of the informal requirements document and the 

modified use case shown in Figure 11.3 that the latter presents a much more 

structured and precisely defined set of requirements. It is now possible to map these 

to software components. The following section shows how this process is carried out. 

Name: HVAC Unit 

Description: The HVAC unit controls air conditioning, cabin 

temperature and the air fan based on commands from the user.  

Input Signals: 
- Air_Dir_Command 

- Cabin_Temp 

- Temp_Command 

- Aircon_Command 

- Fan_Command 

Output Signals: 
- Air_Dir_Vent_Pos 

- Air_Mix_Vent_Pos 

- Aircon_On/Off 

- Fan_Speed 

 

Functional Requirements: Description: 

Activate_Aircon          - 

Set_Airflow_Direction                - 

Set_Fan_Speed              Will need maximum of six  

                                                       increments 

Cabin_Temp_CL_Control          Uses PID loop control 

Measure_Temp             Provides feedback data for  

           closed loop cabin temperature    

           control 



    SSOOFFTTWWAARREE  CCOOMMPPOONNEENNTT  IIDDEENNTTIIFFIICCAATTIIOONN  

 

 172

11.6 Mapping Process 
 

The mapping of requirements which have been structured according to the pattern 

described in Section 11.3 to software components is a relatively straightforward 

process. This is due to the fact that the functional requirements and the system inputs 

and outputs from a modified use case are taken from the same collection of facets 

which are used to describe the software components in a repository. This section will 

show how this mapping process may be carried out. 

 

There are three items from a use case which can be mapped directly to the facets 

used to describe software components. These are: 

 

� Input Signals: These describe the inputs to the system. A system may consist 

of one or more software components. Therefore, the inputs listed only 

describe the inputs to the overall system, not inputs to components which are 

fulfilled by other components within the system. Input signals are mapped to 

input facets of software components. 

� Output Signal: These describe the outputs of the system. As with inputs, the 

output signals only describe signals that leave the system, not ones which are 

only used between software components within the system. Output signals 

are mapped to Output facets of software components. 

� Functional Requirements: Functional requirements describe the tasks which 

the system must perform. As such they map to the Action facets of software 

components.  

 

 

 

11.6.1 Mapping Example 

In the following example a use case is created to describe the requirements for a 

closed loop cabin temperature control system. This is a subset of the previous HVAC 

Unit use case example. 
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Fig 11.4Fig 11.4Fig 11.4Fig 11.4    Cabin Temperature Control Use CaseCabin Temperature Control Use CaseCabin Temperature Control Use CaseCabin Temperature Control Use Case    

 

A software component repository has been created and populated with the following 

software components: 

 

Software 

Component 

Actions Inputs Outputs 

Cabin_Temp_Sensor Measure_Temp 

AtoD_Conversion 

Cabin_Temp Cabin_Temp 

Coolant_Temp_Sensor Measure_Temp 

AtoD_Conversion 

Coolant_Temp Coolant_Temp 

Cabin_Temp_Controller Cabin_Temp_CL_Control          Cabin_Temp 

Temp_Command 

Air_Mix_Vent_Pos 

Cabin_Temp_Controller1 Cabin_Temp_OL_Control          Temp_Command Air_Mix_Vent_Pos 

 

Table 11.5 Component Repository 

 

The ‘functional requirements to actions’ mapping is the controlling factor. Initially a 

larger set of components which fulfil one or more of the requirements may be 

selected. Components are then selected from this set based on the matching of their 

inputs/outputs to the system inputs/outputs or if their inputs or outputs match up to 

the outputs or inputs respectively of other components selected. The mappings are 

carried out as follows: 

Functional Requirements: Description: 

Cabin_Temp_CL_Control          Uses PID loop control 

Measure_Temp             Provides feedback data for  

           closed loop cabin temperature    

           control 

Name: HVAC Unit 

Description: The HVAC unit controls air conditioning, cabin 

temperature and the air fan based on commands from the user.  

Input Signals: 
- Cabin_Temp 

- Temp_Command 

Output Signals: 
- Air_Mix_Vent_Pos 
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Requirement Component 

Options 

Selected 

Component 

Reason 

Measure_Temp 

 

Cabin_Temp_Sensor 

Coolant_Temp_Sensor 

Cabin_Temp_Sensor Cabin_Temp_Sensor’s 

input matches to a system 

input. 

Coolant_Temp_Sensor’s 

input does  not 

Cabin_Temp_CL_

Control           

Cabin_Temp_Controller 

 

Cabin_Temp_Controller Only component which 

fulfils this requirement 

 

Table 11.5 Selecting Components 

 

The selected software components can now be integrated and deployed e.g. 

 
Fig 11.5Fig 11.5Fig 11.5Fig 11.5    System with Multiple ComponentsSystem with Multiple ComponentsSystem with Multiple ComponentsSystem with Multiple Components    

 
 
The above example consists of a relatively simple system. More complex systems 

consisting of a large set of software components still present a number of problems 

including the following: 

 

� It may be difficult to select components which both fulfil the stated 

requirements and can also be integrated together with the minimum amount 

of work.  

� Also, the above scheme, while it does effectively provide a means of 

mapping requirements to components may still prove to be difficult to use if 

there is a large number of software components present in the repository. 

Selecting and integrating the most suitable components becomes even more 

difficult for large component sets.  
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Therefore it is necessary to integrate the approach laid down along with the 

component identification scheme into a software tool. A software-based tool will 

allow the full potential of the framework to be realised and will significantly reduce 

the complexity of applying the framework to a large repository of software 

components. The software tool developed as part of this research is outlined in 

Chapter 13. 

 

 

 

 

11.7 Summary 
 

This chapter has presented a requirements specification scheme in which 

requirements are defined by facets. These facets, as with the component 

identification scheme, are based on the viewpoint diagram concepts of inputs, 

outputs and actions.  The facets form a standard language which is used to more 

effectively specify requirements and to describe the functionality of software 

components. The requirements are formatted in a modified use case and can then be 

mapped to software components. The steps involved in this have also been outlined 

in this chapter. The next step is to integrate the requirement and component 

identification and matching schemes into the overall framework . 
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12   

 

 

Domain Analysis 

 

 

 
12.1 Introduction 
 

Chapters 10 and 11 describe the steps used to identify software components and 

construct requirements which are mapped to these components. They show how 

facets are used to achieve both of these tasks. This chapter will show how a set of 

facets may be created for a specific application. 

 

The research presented in this thesis is based on embedded automotive applications. 

An analysis must therefore be performed on an automotive application area to 

provide a context in which to perform the research. 

 

The decision was made to focus on a spark ignition powertrain system. Within this 

domain, the analysis concentrates on the ignition and fuel injection systems. It was 

felt that these areas provided a sufficient level of complexity to the research and 

represent a key part of automotive systems.  

 

This chapter is broken up as follows: initially, a more thorough explanation of class 

diagrams is presented. The subsequent section gives an overview of spark ignition 

engines. The final section describes the resulting domain models and their 

development. 
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12.2 Design Class Diagrams                                                        
 

A domain analysis is a prerequisite for the creation of facets. The knowledge 

gathered through the analysis process should be presented in such a way that it can 

be easily represented by action, signal and physical-quantity facets. UML class 

diagrams were chosen as they are particularly suited to this task. 

 

UML conceptual diagrams (also called class diagrams) were briefly introduced in 

Chapter 5. This section describes a similar type of model used in the UML. A class 

diagram is used to model a static view of a system. It illustrates the classes in a 

system along with the various relationships between classes (Booch, Rumbaugh et al. 

1999, p.105-116). Class diagrams are typically used during the design stage of a 

software development project. 

 

A class diagram consists of blocks called classes and a number of types of 

connectors which are used to show the relationships between classes. A class may 

include a set of operations which may be performed on the class and a number of 

attributes. These are illustrated in Figure 12.1.  

 

 

 
Fig Fig Fig Fig 12.1 Employee Class12.1 Employee Class12.1 Employee Class12.1 Employee Class    

 

There are a number of connectors which may be used to indicate various 

relationships between classes. These include: 

 

� Association: An association simply shows a link between two classes. For 

example, an association works in may be used to show that an employee 

works in a department. This is illustrated in Figure 12.2. Note that each side 

of the association has a multiplicity. This shows how many instances of each 
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class may participate in an association. An asterix (*) shows that many 

instances of a class may participate, 1..* shows that one to many instances of 

a class may participate, 0..1 shows that zero or one instance of a class may 

participate and so on. 

 

 
Fig Fig Fig Fig 12.2 Association Between Classes12.2 Association Between Classes12.2 Association Between Classes12.2 Association Between Classes    

 

 

� Aggregation: An aggregation is a form of association which shows the 

relationship between a class and its various parts (Booch, Rumbaugh et al. 

1999). These are also represented by classes. For example a department in a 

company may be made up of offices and equipment. An aggregation is 

represented by a solid diamond. This is illustrated in Figure 12.3. 

 

 
 

Fig 12.3 AggregationFig 12.3 AggregationFig 12.3 AggregationFig 12.3 Aggregation    

 

� Generalisation: A generalisation/specialisation relationship consists of child 

classes which are specialisations of the parent class (Booch, Rumbaugh et al. 

1999). The children take on the characteristics of the parent and add their 
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own behaviour and structure i.e. attributes and operations. A generalisation is 

shown by a hollow arrowhead pointing to the parent as illustrated in Figure 

12.4. In this example the parent class is payment. There are two types of 

payment, cash and credit card. 

 
Fig Fig Fig Fig 12.4 Generalisation12.4 Generalisation12.4 Generalisation12.4 Generalisation    

 

There are typically three ways in which a class diagram is used (Booch, Rumbaugh 

et al. 1999, p.105-116): 

 

1) To model a system’s vocabulary. 

2) To model simple collaborations between classes. 

3) To model a logical database schema. 

 

The domain models will be used to model the facets which make up an application 

domain. This is the vocabulary of that domain. Also, the facets are to be stored in a 

database i.e. in the mapping tool’s facet repository. These two factors indicate that 

class diagrams are particularly suited for use in creating the domain models. 
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12.3 Spark Ignition Engines                                           
 

The information used to produce the domain models comes from a number of 

sources. These include: 

 

• The Bosch Automotive Handbook - 6th Edition (Bosch 2004). 

• The Automotive Electronics Handbook – 2nd Edition (Jurgen 1999). 

• Hilier’s Fundamentals of Motor Vehicle Technology 2 – Powertrain 

Electronics (Hillier, Coombes et al. 2006). 

 

There are a number of systems in a spark ignition engine which are under electronic 

control. These include fuel injection, ignition timing, exhaust gas recirculation 

control and lambda fuel control. These and a number of other sub-systems are 

described below.  

 

 

 

12.3.1 Fuel Injection 

There are a number of ways of supplying fuel to the engine. These include single-

point, multi-point and direct fuel injection (Hillier, Coombes et al. 2006, p.77-162).  

 

1. Single-Point Injection: Also called throttle body injection. A single injector 

is used to inject fuel directly over the throttle butterfly/ throttle valve. 

2. Multi-Point Injection: In multi-point fuel injection systems, there is a fuel 

injector for each cylinder. An injector is located just upstream of the intake 

valve of its corresponding cylinder (Hirschlieb, Schiller et al. 1999d). 

3. Direct Injection: Similar to multi-point injection. In this case however, an 

injector is located in each cylinder and injects the fuel directly. It does not 

pass through an intermediary valve as with the previous two methods. 

 

Regardless of the method of supplying the fuel, the fundamentals of determining how 

much fuel is needed remains roughly the same. An ECU will calculate the correct 

amount of fuel based on the following formula (Hirschlieb, Schiller et al. 1999): 
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There are three methods commonly used to measure the air mass flow rate (also 

known as air charge). These are (Hirschlieb, Schiller et al. 1999): 

 

1. Speed Density: In the speed density method, the ECU calculates the air mass 

flow rate based on the air intake manifold pressure, air inlet temperature and 

engine speed or RPM. If the engine uses exhaust gas recirculation (EGR) 

corrections need to be made as some of the airflow into the engine will 

include exhaust gases. 

 

2. Air Flow Measurement: The airflow is measured at the air inlet using a 

vane-type sensor. A temperature sensor allows corrections to be made to 

compensate for changes in air density. EGR corrections do not need to be 

made as it is only fresh air that is measured. 

 

3. Air Mass Measurement: The mass flow rate of the incoming air is measured 

directly with a hot –wire or hot-film air mass flow sensor. 

  

The result of the fuel mass flow rate calculation is used to determine the base pulse 

width of the fuel injector solenoids. The injector pulse width controls the amount of 

time a fuel injector remains open and hence the quantity of fuel supplied. Corrections 

must be made to the base pulse width due to factors such as changes in vehicle 

operating conditions and lambda control corrections (explained in section 12.3.2). 

The result is the effective pulse width which is the actual value used to control the 

fuel injectors. 

 

 

Am 

requested air-fuel ratio 

Fm    = 

Where Fm    = fuel mass flow rate 

             
Am    = air mass flow rate 
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12.3.2 Lambda Control 

Lambda control is a sub-system of fuel control. Lambda (λ) can be defined as “the 

excess-air factor that indicates the deviation of the actual air/fuel ratio from the 

theoretically required ratio.”  (Hirschlieb, Schiller et al. 1999) The lambda sensor 

measures the level of oxygen in the exhaust gas. This information is then passed back 

to the fuel control system allowing corrections to be made to the air-fuel mix.  

 

A value for lambda can be calculated using the following formula (Hirschlieb, 

Schiller et al. 1999): 

 

Ideally, this formula should return a result of λ = 1, indicating an ideal balance of 

fuel and air. In reality, the value of λ will oscillate between a rich mix (λ < 1) i.e. too 

much fuel, and a lean mix (λ > 1) i.e. too much air. 

 

 

 

12.3.3 EGR Control 

Exhaust Gas Recirculation or EGR control is used to reduce the amount of nitrogen 

oxides (NOx) escaping into the atmosphere. A portion of the exhaust gases is routed 

back into the fuel-air mix. This has the effect of lowering the peak combustion 

temperature and hence reduces the production of nitrogen oxides. Eventually a point 

is reached where hydrocarbon emissions begin to increase. The optimal level of 

exhaust gases to be added to the mix occurs just prior to this point.  

 

The flow of exhaust gases back into the fuel-air mix is regulated by a valve under 

ECU control. The required valve position may be determined from a RPM/engine 

load table of optimal EGR opening positions held in ROM (Hirschlieb, Schiller et al. 

1999).  

 

λ   = 
Quantity of air supplied 

Theoretical requirement (14.7) for petrol 
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Some systems may include a sensor that indicates the current position of the EGR 

valve. Others may use a pressure sensor to detect the gas pressure in the recirculation 

pipe. Both of these sensor types allow the quantity of gas flowing in the EGR system 

to be determined  

 

 

 

12.3.4 Ignition Timing Control  

According to the description of ignition control systems provided by Hirschlieb et al, 

(Hirschlieb, Schiller et al. 1999) the base ignition timing for various values of engine 

load and RPM are typically stored in a table in ROM. The aim is to produce the 

optimal levels of torque, emissions, driveability, and fuel economy and to reduce 

engine knock.  

 

As with injection control, corrections need to be made to this signal based on factors 

such as vehicle operating conditions, EGR control and temperature. In this case, 

engine knock must also be considered.  

 

Knock occurs when the ignition timing of the fuel-air mix in a cylinder advances to a 

point where uncontrolled combustion occurs. The solution is to retard the activation 

of the corresponding spark plug to a point where knock stops. A sensor is used to 

detect the occurrence of engine knock. 

 

 

 

12.3.5 Engine Control System Example 

Figure 12.5 shows an example of an engine control system. This system uses the 

speed density method for determining the mass of the air entering the system. The 

diagram illustrates the main functions under ECU control. It also includes the sensors 

and actuators used. Note that the example is a high-level abstraction of a control 

system. In an actual vehicle there may be many more aspects of the powertrain and 
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fuel delivery systems under electronic control e.g. monitoring fuel level, electrical 

fuel pump etc.  

 

 
Fig Fig Fig Fig 12.5 SI Engine Example12.5 SI Engine Example12.5 SI Engine Example12.5 SI Engine Example    

 

 

 

 

12.4 Domain Models                                                                               
 

This section shows how the information described in Section 12.3 and in the 

corresponding reference material is presented in a set of class diagrams. Two sets of 

class diagrams were produced. The first set contains diagrams which describe the 

information uncovered during the domain analysis. It represents a first attempt at 

representing the information required by ECUs in the selected domain. The second 

set of diagrams is a refinement of the first and directly models the facets which are to 

be stored in the facet repository.  
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12.4.1 Initial Domain Models 

The initial domain models present a hierarchal decomposition of a spark-ignition 

engine. They show the main sub-systems of an engine along with relevant operations 

and attributes for those sub-systems. Variants of sub-systems, including those which 

are not under ECU control, are also shown e.g. the different modes of supplying fuel 

to the fuel rail. This section presents each of the diagrams along with a description. 

 

The initial domain models were constructed in the following manner:  

 

1. Identify the main functional areas of the problem domain. These form the top 

level classes in the diagram.  

2. Identify subsystems in each of the main functional areas. These are also 

represented by classes in the domain models. This step may have to be 

repeated for further subdivisions of more complex subsystems e.g. fuel 

injection. Aggregations are used to show the sub-systems which make up a 

functional area while generalisation relationships are used to illustrate 

different specialisations of a sub-system. For example, direct injection and 

single-point injection are two types of fuel injection systems. 

3. For each class (functional area, subsystem etc), identify any actions, 

processes or tasks which fall under ECU control at that level. These become 

the operations of the classes.  

4. For each class (functional area, subsystem etc), identify data which are 

measured, outputted or in some way used by ECUs. These become the 

attributes of the classes e.g. an attribute of a sensor class would be the data 

which it reads.  

 

 

SI Engine 

The Spark-Ignition (SI) Engine diagram as shown in Figure 12.6 represents the 

highest level of abstraction of the system. The SI Engine class consists of the 

following sub-systems: 
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• Fuel System: This describes the system which controls how fuel is delivered 

from the fuel tank to the cylinders. There are a number of sub-systems which 

make up a fuel delivery system. Therefore another diagram is used to 

illustrate them. 

• Ignition System: This illustrates the system which controls the activation of 

the spark plugs that ignite the fuel-air mix in the engine’s cylinders. As with 

the fuel system, there are a number of sub-systems which form the ignition 

system. Therefore this system will again be described in a separate class 

diagram. 

• Engine Coolant Sensor: This sensor monitors the temperature of the engine 

coolant. 

• Throttle Position Sensor: This measures the position of the throttle 

butterfly. It is used to determine the amount of fuel to supply to the cylinders. 

• Crankshaft Sensor: This measures both the position and rotational speed of 

the crankshaft. The data measured is used by a number of the other sub-

systems e.g. fuel injection, determining ignition timing. 

 

 

Fig Fig Fig Fig 12.6 SI Engine Class 12.6 SI Engine Class 12.6 SI Engine Class 12.6 SI Engine Class DiagramDiagramDiagramDiagram    

 

 

Fuel System 

The fuel system is the most complex of the sub-systems which have been examined 

during the domain analysis. The class diagram in Figure 12.7 shows the three main 
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types of fuel injection systems: direct injection, intake manifold injection and single 

point injection, along with their associated sub-systems, including the required 

pumps and sensors. Figure 12.7 also includes other subsystems necessary for fuel 

injection air intake measurement, exhaust gas recirculation lambda sensing, fuel level 

monitoring and evaporative emissions control. 
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Fig 12.7Fig 12.7Fig 12.7Fig 12.7 Fuel System Class Diagram Fuel System Class Diagram Fuel System Class Diagram Fuel System Class Diagram    
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Ignition System 

The ignition system controls the activation of spark plugs at the correct time. It 

consists of subsystems which control the ignition timing and alter it due to the 

occurrence of combustion knock, detected by a knock sensor. 

 

 

 
Fig Fig Fig Fig 12.8 Ignition System Class Diagram12.8 Ignition System Class Diagram12.8 Ignition System Class Diagram12.8 Ignition System Class Diagram    

 

 

Physical Quantities 

There is a need to define facets which describe physical quantities. There are a 

number of signals which are monitored or controlled by ECUs. The majority of these 

(excluding simple on/off signals for solenoids for example) are based on real-world 

units. Physical Quantity facets define these units. Figure 12.9 illustrates the main 

types of physical quantity which have been identified. 
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Fig Fig Fig Fig 12.9 Physical Quantity Class Diagram12.9 Physical Quantity Class Diagram12.9 Physical Quantity Class Diagram12.9 Physical Quantity Class Diagram    

 

 

 

12.4.2 Refined Domain Models 

The initial domain models produced reflect the information gathered through the 

domain analysis. However more complex systems lead to even more complex 

diagrams. This can be seen in Figure 12.7. If the facet repository follows such a 

structure, then it may be difficult to navigate. Therefore it was decided to refine the 

domain models to produce a smaller set of diagrams which can be more easily 

navigated. Furthermore, the initial domain models describe some systems which may 

not be under ECU control e.g. certain pump systems in Figure 12.7. The focus of the 

domain models is on systems which are under electronic control. Therefore it is 

possible to streamline the models by removing non-electronic systems. 

 

A number of extra facets were added during testing of the AUTOMAP application. 

For completeness these have been included. Note that where these extra facets are 

included, they are clearly indicated. Two refined models were produced.  

 

 

12.4.2.1 AUTOSAR Class Diagram 

Figure 12.10 represents both the action and signal facets. It is a refinement of the 

information given in Figures 12.6, 12.7 and 12.8 and only shows the information 

which will be stored as facets in the repository. The model follows the AUTOSAR 
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pattern for the functional domains of a vehicle.  However in this case only the 

chassis, powertrain and body/comfort domains are used.  

 

At this point a new concept must be introduced. A vehicle functional domain may be 

broken up into a number of systems. These may be further subdivided into sub-

systems and so on. Therefore the concept of a Part is introduced. A Part is simply a 

functional area of a vehicle which is controlled or monitored by an ECU e.g. ignition 

or EGR control. A part lists the various actions and signals which may be used in that 

particular functional area. 

 

The AUTOSAR diagram is broken up as follows: classes represent Parts, attributes 

represent Signal facets and operations represent Action facets. Figure 12.10 shows 

the class diagram. 

The initial class diagrams representing a spark–ignition engine were refined to 

produce this model as follows: 

 

� The main functional areas of a vehicle’s powertrain system were identified. 

These are independent of any particular implementation format e.g. direct 

injection, single-point injection. The Fuel Injection class for example 

contains operations and attributes relevant to both of these methods of fuel 

injection. 

� The signals and operations for each functional area were identified from the 

initial class diagrams and inserted where appropriate. 

 

Note that a number of classes were added for use in the testing process. These 

include all of the classes in the Body_Comfort domain and the Oil_Distribution and 

Monitoring classes. Further, a number of facets were added. These are indicated 

where appropriate in Table 12.1. 
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Fig 12.10 AUTOSAR Class DiagramFig 12.10 AUTOSAR Class DiagramFig 12.10 AUTOSAR Class DiagramFig 12.10 AUTOSAR Class Diagram    
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Facets 

Table 12.1 shows the facets for each class along with the description which is used 

in the facet repository. 

 

Class Facet Type Description Notes 

AUTOSAR         

Chassis         

Powertrain On_Off Signal Used to signal that an 
actuator should be 
activated or deactivated 

  

  Vehicle_Speed Signal Current speed of the 
vehicle 

  

  Vehicle_Acceleration Signal Rate of change in 
velocity of the vehicle. 
Can be positive or 
negative (decelerating) 

  

  Number Signal Generic number Added 
during 
testing 

  Engine_Temperature Signal Temperature of the 
engine 

  

  Alive_Signal Signal Indicates to sub-systems 
such  as aircon and the 
fuel pump that the 
engine is currently 
running and that the sub-
system should remain 
active 

  

  Measure_Engine_Temp Action Gets the temperature of 
the engine from the 
engine temperature 
sensor hardware 

  

  Measure_Velocity Action Measures the velocity of 
the vehicle 

  

  Measure_Acceleration Action Measures the rate of 
change of velocity of the 
vehicle 

  

Fuel_System Lambda Signal Excess oxygen in the 
exhaust 

  

  Fuel_Volume_FlowRate Signal Volume flow rate of the 
fuel into the fuel rail 

  

  Measure_Excess_Oxygen Action Measures the oxygen in 
the exhaust (Lambda) 

  

  Measure_Fuel_Flow Action Measures flow rate of 
fuel into the fuel rail 

  

Fuel_Injection Injector_Pulse_Width Signal Time duration to keep a 
fuel injector open 
(active) for 

  

  Fuel_Injector_No Signal Number of the fuel 
injector to 
activate/deactivate 

  

  On_Off Signal Command to 
activate/deactivate a fuel 
injector solenoid 

  

  Control_Fuel_Injection Action Controls all aspects of 
fuel injection based 
solely on the throttle 
position and the current 
engine speed 
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  Calc_Base_Injector_Pulse
_Width 

Action Determines the amount 
of time a fuel injector 
should remain open 
without taking into 
account any 
modifications which 
need to be made such 
as vehicle operation 
conditions. 

  

  Calculate_Lambada_Corre
ctions 

Action Determines the changes 
which need to be made 
to the fuel mix (ie the 
injector base pulse 
width) based on 
readings from the 
excess oxygen 
(lambada) sensor 

  

  Calculate_Operating_Cond
itions_Corrections 

Action Determines the changes 
which need to be made 
to the fuel mix (ie the 
injector base pulse 
width) based on the 
vehicle operating 
conditions e.g. coasting, 
full load 

  

  Activate_Fuel_Injector Action Activates and 
deactivates one or more 
fuel injection solenoids  

  

  Control_Injection_Timing Action Controls the activation 
timings of fuel injectors.  

  

Air_Intake_Mea
surement 

Air_Mass_Flow_Rate Signal Measurement of the 
mass flow of air into the 
intake manifold. Also 
known as air charge 

  

  Intake_Manifold_Pressure Signal Pressure of air in the 
intake manifold 

  

  Air Volume Signal Volume of a particular 
body of air 

  

  Air_Temperature Signal Temperature of a 
particular body of air 

  

  Measure_Intake_Manifold_
Pressure 

Action Determines the air 
pressure in the air intake 
manifold 

  

  Calculate_Air_Mass_Flow_
Rate 

Action Calculates the air charge 
or air mass flow rate. 
This is the flow of air 
which is used in the 
combustion process.  

  

  Airflow_Temperature_Corr
ections 

Action Determines the 
temperature of the 
incoming air, to allow the 
correct air mass flow 
rate to be calculated 

  

  Burnoff_Wire Action Burns off any residue 
which may have 
collected on a hot-wire 
air mass sensor 

  

  Measure_Oxygen_Content Action Determines the amount 
of oxygen present in a 
body of gas 

  

  Measure_Air_Pressure Action Measures the pressure 
of a body of air 

  

  Measure_Airflow_Volume Action Measures the volume of 
air passing a particular 
point 
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  Measure_Air_Mass Action Measures the mass of a 
given body of air 

  

  Measure_Air_Temp Action Measure the 
temperature of a body of 
air 

  

EGR_Control Lambda Signal Excess air level in the 
exhaust 

Should 
be 
"Exces
s 
oxygen
" 

  EGR_Valve_Pos Signal Position of the EGR 
valve 

  

  Aegr Signal Flow rate of exhaust 
gases back into fuel/air 
mix 

  

  Set_EGR_Valve Action Controls the opening 
and closing of the 
exhaust gas recirculation 
valve 

  

  Measure_Aegr Action Measure volume flow 
rate of exhaust gas 
recirculating to be added 
to the fuel/air mix 

  

  Measure_EGR_Flow_Corr
ections 

Action Make changes to an 
airflow measurement 
due to exhaust gases 
present in the airflow 

  

Fuel_Tank Fuel_Level Signal Volume of the fuel in a 
fuel tank 

  

  Measure_Fuel Action Measures the level of 
fuel in the tank 

  

Fuel_Pump Adjust_Pump Action Control the amount of 
fuel delivered by a pump 

 

  Activate_Deactivate_Pump Action Turns a pump on or off Added 
During 
Testing 

Ignition Spark_Plug_No Signal Number of the spark 
plug to be activated 

  

  On_Off Signal Command to activate a 
spark plug 

  

  Control_Ignition_Timing Action Determines the correct 
time to activate the spark 
plugs and then activates 
them. 

  

  Activate_Spark_Plug Action Turn on the relevant 
spark plug hardware 

  

  Make_Operating_Condition
s_Modifications 

Action Modify the ignition timing 
based on operating 
conditions modifications 

  

  Make_Knock_Modifications Action Modify the ignition timing 
to minimise  engine 
knock 

  

Engine_Knock_
Control 

Cylinder_No Signal Number of the cylinder 
that is experiencing 
knock 

  

  Cylinder_Block_Pressure Signal Pressure measured on 
the cylinder block 

  

  Knock_Vibration Signal Vibrations in engine 
block which indicate 
engine knock 

  

  Detect_Knock Action Detect that engine knock 
is occuring and the 
cylinder that is 
experiencing knock 
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  Measure_CylinderBlock_Pr
essure 

Action Measures the pressure 
on the cylinder block 

  

  Measure_Engine_Vibration
s 

Action Measures engine 
vibrations which indicate 
the occurance of engine 
knock 

  

Coolant_Syste
m 

Coolant_Temp Signal Temperature of the 
engine coolant 

Added 
during 
testing 

  Coolant_Vol Signal Volume of the engine 
coolant 

Added 
during 
testing 

  Coolant_Level Signal Percentage of coolant in 
the system relative to the 
maximum possible 

Added 
during 
testing 

  Measure_Coolant_Temp Action Measures the 
temperature of the 
engine coolant 

Added 
during 
testing 

  Measure_Coolant_Vol Action Measures the volume of 
engine coolant 

Added 
during 
testing 

  Calculate_Coolant_Lev Action Calculates the 
percentage of coolant in 
the engine relative to the 
maximum possible level 
based on volume and 
temperature values 

Added 
during 
testing 

Oil_Distribution Oil_Vol Signal Volume of oil Added 
during 
testing 

  Oil_Temp Signal Temperature of a body 
of oil 

Added 
during 
testing 

  Oil_Level Signal Percentage of oil in a 
system relative to the 
total possible quantity of 
oil for that system 

Added 
during 
testing 

  Measure_Oil_Vol Action Measure the volume of 
oil in the engine 

Added 
during 
testing 

  Measure_Oil_Temp Action Measure the 
temperature of the oil in 
the engine 

Added 
during 
testing 

  Calc_Oil_Level Action Calculate the percentage 
of oil in the system 
relative to the total 
possible amount 

Added 
during 
testing 

Crankshaft Crankshaft_Position Signal Current rotational 
position of the 
crankshaft. Measured in 
degrees 

  

  Crankshaft_Speed Signal Rotational speed of the 
main crankshaft 

  

  Measure_Crankshaft_Posit
ion 

Action Determines the position 
of the crankshaft 

  

  Measure_Crankshaft_Spee
d 

Action Determines the 
rotational speed of the 
crankshaft 

  

Monitoring Diagnostics_Data_Element Signal Generic container for 
diagnostics data 

Added 
during 
testing 

  Transmit_Monitoring_Data Action Transmits monitored 
data to an external 
system 

Added 
during 
testing 
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  Record_Data Action Store data for later 

analysis 
Added 
during 
testing 

  Throttle_Pos Signal Position of the throttle   

  Measure_Throttle_Pos Action Measures the curent 
position of the throttle 

  

Body_Comfort Body Temp Signal Temperature of car body Added 
during 
testing 

Cabin Cabin_Temp Signal Temperature of the 
vehicle cabin 

Added 
during 
testing 

  Measure_Cabin_Temp Action Measures the current 
temperature in the 
vehicle cabin 

Added 
during 
testing 

Heated_Seats On Off Signal Command to turn on or 
off the heating element 

Added 
during 
testing 

  User_Command Signal Command from user 
controlled switch to turn 
on or off the seat heating 
element 

Added 
during 
testing 

  Activate_Deactivate Action Turns on or off the seat 
heating element 

Added 
during 
testing 

  Adjust_For_RPM Action Shutoff heating element 
if RPM falls below a 
threshold value to save 
battery charge 

Added 
during 
testing 

Dehumidifier Level_Command Signal Level to set the 
dehumidifier at 

Added 
during 
testing 

  Set_Level Action Set the level of the 
dehumidifier 

Added 
during 
testing 

AirCon Valve_Pos Signal Angular position of a 
valve in the aircon 
system 

Added 
during 
testing 

  Vent_Dir Signal Desired direction of the 
airflow 

Added 
during 
testing 

  AirMix_Adjustment Signal The amount to adjust the 
air mix by. May be 
positive or negative 

Added 
during 
testing 

  User_Set_Temp Signal The temperature level 
that has been set by the 
user of the aircon unit 

Added 
during 
testing 

  Control_Airflow_Direction Action Adjust a vent to control 
where the air is blowing 
to i.e. face, windscreen, 
feet etc 

Added 
during 
testing 

  Control_Air_Mix Action Calculate the necessary 
changes required to 
make to the hot/cold air 
mix to ensure it meets 
the user specified 
temperature 

Added 
during 
testing 

  Control_AirMix_Vent Action Adjust the vent which 
controls the amount of 
hot/cold air entering the 
cabin 

Added 
during 
testing 

Fan Fan_Speed Signal Speed of the fan in RPM Added 
during 
testing 
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  Set_Fan_Speed Action Control the speed of the 
fan 

Added 
during 
testing 

  On_Off Signal Command to turn on or 
off a demister 

Added 
during 
testing 

  Set_Demister Action On off command to turn 
on or off the demister 
hardware 

Added 
during 
testing 

  Demister_Command Action User inputted command 
to turn on or off the 
demister 

Added 
during 
testing 

 

Table 12.1 AUTOSAR Facets 
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Physical Quantities 

The PHYSICAL-QUANTITIES diagram shows both physical quantity groups and 

physical quantities as classes. These are the ‘types’ which may be given to signal 

facets. A signal facet may optionally be assigned a physical-quantity facet which 

provides more information regarding the signal. This is especially important for 

signals from sensors or to actuators. Figure 12.11 shows the class diagram which 

represents the physical quantity facets. As with the AUTOSAR diagram, a number of 

extra facets were added during testing. Again these are noted where appropriate.  

 

In this case the refinement process was more straightforward. Parent classes were 

created to represent the physical-quantity groups. This ensures that the diagram 

corresponds to the structure laid out in Chapter 10 for physical quantity facets. As 

with the AUTOSAR diagram, a number of extra classes were added during testing. 

These are indicated where necessary. 

 

 
FigFigFigFig 12.11 Refined Physical Quantity Class Diagram 12.11 Refined Physical Quantity Class Diagram 12.11 Refined Physical Quantity Class Diagram 12.11 Refined Physical Quantity Class Diagram    

 

 

 

Facets 

Table 12.2 shows the facets for each class along with the description which is used 

in the facet repository. 
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Class Facet Type Description Notes 

PHYSICAL-
QUANTITIES 

    

Temperature Celsius Physical-
Quantity 

A measure of hot  

Rotational_ 
Motion 

RPM Physical-
Quantity 

Revolutions per minute Renamed 
from Angular 
Velocity 

 Degree Physical-
Quantity 

A unit of angle 
measurement. Represents 
1/360th of a full rotation 

Renamed 
From 
Angular 
Position 

Linear 
Motion 

Velocity Physical-
Quantity 

Rate of change of position. 
Measured in meters per 
second 

 

 Acceleration Physical-
Quantity 

Rate of change of velocity. 
Measured in metres per 
second squared 

 

Pressure Pressure Physical-
Quantity 

Pa  

Time Pulse_Width Physical-
Quantity 

Total cycle time for an 
electical pulse. Measured 
in milliseconds 

Added 
during 
testing 

Mass Mass Physical-
Quantity 

A measure of how much 
matter there is in an object 

Added 
during 
testing 

 Mass_Flow_ 
Rate 

Physical-
Quantity 

Rate of flow of a mass of 
fluid. Measured in kg/s 

Added 
during 
testing 

Volume Fluid_Volume Physical-
Quantity 

Volume of a fluid. 
Measured in litres 

 

 Volume_Flow_ 
Rate 

Physical-
Quantity 

Rate of flow of a flued. 
Measured in litres per 
second 

Added 
during 
testing 

Lambda Lambda Physical-
Quantity 

Excess air ratio Renamed 
from Oxygen 
Level 

Humidity Relative 
Humidity 

Physical-
Quantity 

the ratio of the partial 
pressure of water vapor in 
a gaseous mixture of air 
and water vapor to the 
saturated vapor pressure 
of water at a given 
temperature - 
http://en.wikipedia.org/wiki/
Humidity 

Added 
during 
testing 

 

Table 12.2 Physical-Quantity Facets 

 

 

The facets which have been created as part of the domain analysis must be stored in 

a repository as described in Chapter 12. This will allow them to be used in the 

construction of requirements and in the identification of software components. 
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12.5 Summary                                                                 
 

This chapter has presented a potential approach to a domain analysis as conducted 

for this research. It has produced a set of facets which are used during the testing 

process to determine the effectiveness of the mapping framework. 
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13   

 

 

Software Tool 

 

 

 
13.1 Introduction 
 

Chapters 10 to 12 have outlined the various steps which form the process used to 

map requirements to software components. This chapter will describe the 

implementation of a software application which provides support for this framework 

process through the provision of a set of tools. It starts by explaining the need for 

software tools in this process and then describes the implementation of the 

AUTOMAP software application. 

 

 

 

 

13.2 The Need for Tool Support 
 

The framework outlined in the Chapters 10 to 12 provides a useful foundation upon 

which to map a set of requirements to software components. It provides a clear and 

efficient method of identifying software components and an effective method of 

structuring the system requirements. However, to be truly effective, the framework 

must have a set of tools to facilitate its implementation. This section will describe 

why software tools should be integrated into the framework.  
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Creating a Use Case 

Integrating a use case form/window with a facet repository would allow a user to 

rapidly select the inputs, outputs and actions necessary to describe a set of 

requirements.  A tool could provide support for accessing and identifying the 

relevant facets. 

 

 

Describing Software Components 

A developer must carry out a number of tasks in order to adequately describe a 

software component using facets. They must first examine a component’s 

AUTOSAR description file to determine which tasks it performs. Next they assign a 

number of action facets to that component to describe these tasks. If no action facet 

adequately describes a task performed by the component, then a new action facet will 

have to be created. This process must then be repeated for the software component’s 

inputs and outputs. This is quite a complicated process. Again, one of the most 

restrictive factors is the discovery of relevant facets. A software tool could support 

this process along with the ‘tagging’ of software components with the relevant facets.  

 

 

Mapping Process 

The mapping process would be extremely tedious for a large system if carried out by 

hand. A software tool could remove most of this effort and keep it hidden from the 

user. This would allow them to focus on other tasks within the development process, 

leading to increased productivity and reduced development time. 

 

 

Managing Facets 

A domain such as powertrain systems will contain a large number of potential facets. 

This can be seen in the domain analysis performed in Chapter 11. As the number of 

domains examined increases, so too will the number of facets. Also, automotive 

systems are growing in complexity: applications previously handled solely by 

mechanical means are now coming under ECU control e.g. steer-by-wire. This will 

again increase the number of facets which are needed. There must be some means of 

managing this complexity which affects the storage and retrieval of facets. 
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A software-based repository could be used to store these facets. The facets could be 

structured in a hierarchy according to their domain/sub-domain. For example, all 

facets associated with powertrain systems would be stored under a powertrain section 

of the repository. Some means could also be provided to help with the discovery of 

relevant facets. 

 

 

Evaluating Potential Solutions 

In a large set of software components, there may be a number of different 

combinations of software components that can fulfil a particular set of requirements. 

However the repository may not contain all of the software components needed to 

fulfil a particular set of requirements i.e. only partial solutions may exist. A software 

tool could provide some means of allowing the user to evaluate the candidate 

solutions to determine the most suitable one for their needs. 

 

 

 

 

13.3 AUTOMAP 
 

The AUTOMAP application has been developed with the aim of promoting the reuse 

of software components by supporting the mapping framework. It provides facilities 

for cataloguing software components and a means of structuring user requirements to 

allow a set of components matching those requirements to be selected.  

 

The AUTOMAP tool may be used as follows. Initially a set of facets determined 

through a domain analysis is created and stored in the facet repository. AUTOSAR 

software components (more specifically, their description files) can then be 

examined and ‘tagged’ with information from the facet repository. The result is a set 

of software component descriptions which contain standardized terms for their 

inputs, outputs and the actions they perform. This data can then be stored in the 

software component repository. When a new system is to be developed, a user will 

take the requirements specifications for that system and will translate those 
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specifications into one or more modified use cases through a dedicated use case 

form. This allows the functional requirements of the system, in addition to the system 

inputs and outputs to be specified using the standard terms stored in the facet 

repository.  

 

Finally, the requirements are matched through automatically to software components. 

This produces a set of candidate solutions, each of which fulfils some or all of the 

requirements. The solutions must then be evaluated by the user to determine which 

one best fits their needs. Figure 13.1 illustrates the structure of the AUTOMAP 

application. Each part of the AUTOMAP application is described in the subsequent 

sections. 

 
    

Fig 13.1Fig 13.1Fig 13.1Fig 13.1    AUTOMAP StructureAUTOMAP StructureAUTOMAP StructureAUTOMAP Structure    
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13.3.1 Use Case 

The modified use case contains a structured set of requirements which the selected 

components must fulfil. It follows the structure outlined in Chapter 11.  

Requirements are specified using facets contained in the facet repository. Signal 

facets are used in the use case to create lists of inputs and outputs. Action facets are 

used to specify the functional requirements of the system. Figure 13.2 shows the 

layout of the use case form. 

 

 
Fig 13.2Fig 13.2Fig 13.2Fig 13.2    Use Case FormUse Case FormUse Case FormUse Case Form    
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13.3.1.1 Use Case Operations 

The use case form allows a user to perform the following actions: 

 

1. Add and delete input signals. 

2. Add and delete output signals. 

3. Add and delete functional requirements. 

4. Enter a description for each functional requirement to explain or justify the 

need for a requirement. 

5. Generate sets of software components i.e. map the requirements to 

components. 

6. Save and load use cases. 

 

 

 

13.3.2 Facet Repository 

The facet repository is one of the core concepts in the AUTOMAP application. It 

contains a list of actions, signals and sub-systems which relate to a particular 

functional domain. For example, the powertrain may contain the action “turn on fuel 

injectors”, the signal “crankshaft position” or the sub-system “Exhaust Gas 

Recirculation”. This in turn has its own set of actions, signals and sub-functions. The 

actions, signals and sub-functions are the ‘language’ used by a user to describe both 

software components and system requirements. 

 

 

13.3.2.1 Repository Structure 

The facet repository is stored using XML (exTensible Markup Language). The 

structure of the facet repository reflects the structure laid out in this section and is 

divided into two main sections: AUTOSAR and PHYSICAL-QUANTITIES. The 

XML schema for the facet repository is presented in Appendix A. 
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AUTOSAR 

The AUTOSAR section contains the facets which describe the functionality and 

information used in vehicle E&E systems. It has been further divided into six 

functional domains as defined by AUTOSAR (AUTOSAR GbR 2006). The 

functional domains are: 

 

� Chassis 

� Powertrain 

� Safety (active/passive) 

� Man Machine Interface 

� Body/Comfort 

� Multi-media/Telematics 

 

A domain can be divided up into a number of functional areas. For example the 

powertrain domain contains engines, transmission systems and so on. Each of these 

can then be further subdivided into sections describing aspects of that sub-domain. 

Engine systems may be broken up into a number of categories: spark-ignition, 

compression ignition, electric etc. In the AUTOMAP application these sub-sections 

are called parts. Each part is made up of three further sub-sections: 

 

� Actions: Contains the action facets for a particular functional part. 

� Signals: Contains the signal facets for a particular functional part. 

� Parts: Lists any sub-sections of a particular functional part. 

 

Figure 13.3 illustrates the structure of the facet repository’s AUTOSAR section. 
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Fig 13.3 AUTOSAR Section of Facet RepositoryFig 13.3 AUTOSAR Section of Facet RepositoryFig 13.3 AUTOSAR Section of Facet RepositoryFig 13.3 AUTOSAR Section of Facet Repository    

 

PHYSICAL-QUANTITIES 

The PHYSICAL-QUANTITIES section holds the facets which describe real-world 

measurable values such as temperature and linear velocity. It may be broken up into 

a number of physical-quantity groups, each containing a specific set of physical 

units. For example a sub-section called linear motion may contain two unit facets: 

acceleration and velocity. Figure 13.3 illustrates an example of the PHYSICAL-

QUANTITIES section of the facet repository. 

 

 
Fig 13.4 PHYSICALFig 13.4 PHYSICALFig 13.4 PHYSICALFig 13.4 PHYSICAL----QUANTITY Section of FaQUANTITY Section of FaQUANTITY Section of FaQUANTITY Section of Facet Repositorycet Repositorycet Repositorycet Repository    

 

 

13.3.2.2 Repository Operations 

The facet repository allows a user to perform the following actions: 

 

PhysicalPhysicalPhysicalPhysical----

QuantitiesQuantitiesQuantitiesQuantities    

Linear MotionLinear MotionLinear MotionLinear Motion    Acceleration 

Velocity 

Rotational MotionRotational MotionRotational MotionRotational Motion    Angular Velocity 

Angular Position 

AUTOSARAUTOSARAUTOSARAUTOSAR    ChassisChassisChassisChassis    

PowertrainPowertrainPowertrainPowertrain    Actions Startup Diagnostics 

Signals Diagnostic Stream 

Parts EngineEngineEngineEngine    Actions 

Signals 

Parts 

Start Engine 

Engine Speed 

Fuel SystemFuel SystemFuel SystemFuel System    

Ignition SystemIgnition SystemIgnition SystemIgnition System    

CrankshaftCrankshaftCrankshaftCrankshaft    
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1. Add new parts as children of AUTOSAR functional domains and of other 

parts. 

2. Add new physical quantity groups. 

3. Add new action, signal and physical-quantity facets. 

4. Modify existing facets. 

5. Remove existing facets, parts and physical-quantity groups. 

 

The facet repository may be viewed using the form shown in Figure 13.4. This form 

allows a user to perform all of the actions listed above. 

 

 

 
    

FFFFig 13.5ig 13.5ig 13.5ig 13.5    Facet RepositoryFacet RepositoryFacet RepositoryFacet Repository    

 

 

 

13.3.3 Software Component Repository 

The software component repository holds a set of software component descriptions 

which have been created using facets from the facet repository. Signal facets are 

matched up with corresponding inputs and outputs of a software component while 

action facets describe the functionality of the component. This process is described in 

greater detail in Chapter 10. 
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13.3.3.1 Repository Structure 

The software component repository stores component descriptions in XML. Unlike 

the facet repository these descriptions are stored as an unordered list. There should 

be little need for a user to access the repository directly. The main exception is if a 

user needs to describe a new software component. However, if a user is evaluating 

software components for use, then a separate form is used. This is presented in 

section 13.3.5. The XML schema for the software component repository is presented 

in Appendix A. 

 

 

13.3.3.2 Repository Operations 

The component repository allows a user to perform the following tasks: 

 

1. Add a new component description. 

2. Match a component’s inputs and outputs to signal facets. 

3. Add action facets to describe the functionality of the component. 

4. Modify an existing component description. 

5. Delete an existing component description. 

 

These operations may be performed using the form shown in Figure 13.6. 
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Fig 13.6Fig 13.6Fig 13.6Fig 13.6    Software Component RepositorySoftware Component RepositorySoftware Component RepositorySoftware Component Repository    

 

 

Note that in the form shown in Figure 13.6 both provided and required interfaces are 

listed along with their data elements. It is not explicitly stated whether an interface is 

a client-server or a sender sender-receiver interface. The focus of this form is to 

allow users to add action facets to describe a component’s functionality and signal 

facets to describe its inputs and outputs. The abstracted view only shows the data 

essential for this task. It is not necessary to know what communication paradigms is 

used when tagging a component with action and signal facets. This information is 

important however when selecting software components and integrating them in the 

final deployed system. 

 

 

 

13.3.4 Software Component Selection 

The software component selector takes a set of user requirements specified in a use 

case and attempts to match these to a set of software components. It also attempts to 

ensure that a set of software components can work together with the minimum of 
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extra code/ components which must be supplied by the user. This may be achieved 

by selecting components whose interfaces are fulfilled by the system inputs/outputs 

or by other components. This part of the AUTOMAP tool embodies the decision 

making aspects of the mapping process. As such it remains hidden from the user. The 

results of a selection process are displayed in the form outlined in Section 13.3.5. 

 

 

13.3.4.1 Selection Algorithm 

The aim of the selection algorithm is to find potential solutions to a set of 

requirements. It presents the user with these solutions, allowing the user to select the 

most suitable one. There are a number of steps which comprise the selection 

algorithm. These are as follows: 

 

1. The search space is pruned. All components which do not perform at least 

one of the actions listed in the set of functional requirements are removed 

from the search space.  

2. For each remaining component in the search space: 

a.  Start new solution.  

b. Add component to the solution. 

c. Update list of requirements fulfilled by the solution. 

d. For all other components in the search space 

i. If (component’s signals match Use Case signals OR if 

component’s signals connect with signals of other components 

in solution) AND component does not duplicate requirements 

already fulfilled in the solution: 

1. Add component to solution 

2. Update list of requirements fulfilled by the solution. 

e. If Requirements still unfulfilled: 

i. For all components in the search space and not in the current 

solution 

1. If component does not duplicate requirements already 

fulfilled in the solution: 

a. Add component to solution 
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b. Update list of requirements fulfilled by the 

solution. 

3. Remove duplicate solutions. 

4. Generate report of all candidate solutions. 

 

There are a number of points to note about the matching algorithm. The first is that 

after the pruning process in step 1, only software components which fulfil at least 

one or more of the user requirements are present in the search space. The second 

point concerns what exactly a ‘match’ is. Only exact matches of facets are catered for 

in this algorithm i.e. a component’s functions must directly match one or more 

requirements. A requirement cannot only partially meet a piece of a component’s 

functionality and vice versa. Each requirement and function is specified as a discreet 

entity with an action facet. This is also true of signals. For example, in step 2.d.i. a 

component’s input signal can only match another component’s output signal if they 

use the same signal facet. 

 

The summary presented to the user shows all of the potential sets of software 

components. This includes the number of fulfilled versus unfulfilled requirements 

and the number of fulfilled versus unfulfilled provide and require interfaces. The 

steps of the matching algorithm are illustrated in the flowchart shown in Figure 13.7. 
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Fig 13.7 Selection AlgorithmFig 13.7 Selection AlgorithmFig 13.7 Selection AlgorithmFig 13.7 Selection Algorithm    
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13.3.5 Selected Components 

The selection process will result in potentially more than one set of software 

components being generated. Each solution set will fulfil some or all of the 

requirements specified in the use case. The results form shown in Figure 13.8 allows 

a user to evaluate each of these solutions and determine the most suitable one to use. 

 

 
Fig 13.8 Results FormFig 13.8 Results FormFig 13.8 Results FormFig 13.8 Results Form    

 

 

The results form lists all of the possible solutions which have been determined for 

the user requirements. A summary accompanies each solution which includes the 

following information: 

 

� Functions Fulfilled: The number of functions the solution fulfils versus the 

total number of functional requirements specified. 

� Required Data Items: The number of software component data inputs which 

are supplied either by a system input as specified in the use case or by the 
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outputs of other software components in the solution, versus the total number 

of data items required by components in the solution. 

� Provided Data Items: The number of data items output by components in 

the system which are used as inputs to other components in the solution or by 

the system outputs as defined in the use case, versus the total number of data 

items output by components in the system. 

 

The results form allows a user to examine the individual software components within 

a particular solution. From here they may view the description and interface 

information as supplied by the component’s AUTOSAR description file. The results 

file also shows the action facets which describe the component’s functionality in 

addition to the signal facets which are assigned to the data elements of a 

component’s interfaces. 

 

The aim of the results form is to allow a user to assess all of the potential solutions to 

their requirements to determine the most suitable one. The summary data presented 

in the form in conjunction with the ability to view individual components facilitates 

this process. 

 

 

 

 

13.4 Summary 
 

This chapter has presented an overview of the AUTOMAP application. The 

AUTOMAP application provides tools which support the framework to map 

requirements to AUTOSAR software components as outlined in this research. It 

allows a user to enter a number of facets which describe a functional domain. These 

can then be used to describe software components and to construct a set of 

requirements. The AUTOMAP application can then map these requirements to 

software components stored in the component repository. A number of potential 

solutions may be generated. The results form allows a user to assess these and 

determine the most suitable solution to use. 



    SSOOFFTTWWAARREE  TTOOOOLL  

 

 220
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14   

 

 

Testing 

 

 

 
14.1 Introduction 
 

This chapter provides an overview of how the mapping framework was tested. It first 

outlines the aims of the testing process. Next it shows the steps involved. This 

includes a description of a manual software component selection approach which 

will provide a comparison for AUTOMAP. Finally it describes the test cases which 

have been created. 

 

The testing process required that a set of software components be created. Initially 

software components were generated using Simulink in conjunction with TargetLink. 

However this proved to be a lengthy and time consuming process. The structure of a 

software component description file was analysed and a tool was subsequently 

developed which allowed the relevant sections of description files to be rapidly 

generated.  

 

 

 

 

14.2 Testing Process 
 

The aim of the testing process is to determine the effectiveness of the mapping 

framework in mapping functional requirements to software components. This 

process is embodied in the AUTOMAP application. The effectiveness of this 

approach is assessed by comparing AUTOMAP (which is based on the mapping 
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framework) to a manual software component selection process.  Both approaches 

will be presented to a number of automotive experts. Each expert will complete a 

number of test cases using both AUTOMAP and a manual component selection 

process. The two processes will then be compared. A number of factors will be 

examined. These include: 

 

 

� The total time taken to complete each process. 

� The effort which must be applied to examining individual software 

components. This can be determined by the number of times that software 

components are examined and the amount of time that each examination 

takes during the process. 

� How well the selected software components meets the requirements provided. 

� The ability to integrate the selected components with each other. 

 

 

 

14.2.1 Recording of Metrics 

Metrics must be gathered for both AUTOMAP and the manual approach to allow for 

a comparison of the two methods. AUTOMAP contains code which gathers the 

relevant metrics. This is described in section 14.2.2.1. The manual approach required 

that a simple tool be developed which simply lists the software components without 

offering any support. This also contains code to record the relevant metrics. Section 

14.2.1.2 describes the manual approach and the metrics gathered.  

 

 

14.2.1.1 AUTOMAP 

The AUTOMAP tool contains code which collects the following pieces of data: 

 

� Time taken to complete a use case. 

� Requirements, inputs and outputs entered in a use case. 

� Time taken to view the results form and select a solution. 

� All of the potential solutions generated. 
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� The index of the solution selected by the user. 

� A record for every time a user examines a software component. This includes 

the name of the component and the amount of time it was examined in that 

instance. 

 

 

 

14.2.1.2 Manual Method 

A component viewer application was developed which allows a user to browse 

through a list of software components and view their descriptions and interfaces as 

provided in their AUTOSAR software description files. Figure 14.1 shows a 

screenshot of this application. 

 

 
Fig 14.1 Component Viewer ApplicationFig 14.1 Component Viewer ApplicationFig 14.1 Component Viewer ApplicationFig 14.1 Component Viewer Application    

 

The manual application collects the following pieces of data: 

 

� Time taken to complete the selection process. 

� A record for every time a user examines a software component. 
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Users must manually record the software components they have selected using this 

approach. This will allow the solutions obtained from the manual approach and 

AUTOMAP to be compared.  

 

 

 

14.2.3 Workflow 

The following steps are performed for each of the test cases: 

 

Manual Software Component Selection 

1) The Component Viewer application is opened by the user. 

2) The user selects a set of components from the list which they feel best meets 

the system overview given in the requirements document. Particular attention 

must be paid to the interfaces to ensure where possible that the interfaces 

passing data between components match up. 

3) The names of the components that have been selected are recorded in a Word 

document or a text file.  

4) The file is then saved under the name Test_X_Manual_Solution where X is 

the number of the test case currently being working on. 

5) When the process is completed, in the component viewer form the user 

selects File->Save As to save a report. The report should be saved under the 

name Test_X_Manual_Report.  The report is saved automatically as an XML 

file. The report records details such as the components viewed, the amount of 

time spent looking at each software component and the total time spent 

carrying out the process.  

6) The user closes the application to ensure that a fresh report is created for the 

next test case. 

 

 

Tool Assisted Software Component Selection 

1) The user opens the AUTOMAP application. 

2) The New Use Case option is selected. 
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3) The user enters inputs and outputs specified in the requirements document 

into the use case form. 

4) The user enters a list of requirements which match the system overview given 

in the requirements document. 

5) The use case is then saved under the name Test_X_UseCase, where X is the 

number of the current test case. The file is stored as XML. 

6) The Generate Components button is pressed. This causes a list of possible 

solutions to be displayed. 

7) The user then selects the solution which seems most appropriate to the 

requirements outlined in the test case. 

8) The solution report is then saved under the name Test_X_Solution where X is 

the number of the current test case. 

9) The user closes the application to ensure that a fresh report is created for the 

next test case. 

 

 

 

14.2.4 Test Cases 

Three separate test cases were created. Each of these is based on a complete system 

or a sub-system from the powertrain domain. The test cases were designed with 

progressive levels of difficulty. For example, the initial test case describes a basic 

system which measures crankshaft data from the engine hardware and outputs it for 

other software components in the vehicle. This may be fulfilled by one or two 

software components. The later test cases however increase in complexity, requiring 

a corresponding increase in the number of software components to fulfil their 

requirements.  

 

It was decided to present the requirements as informal English descriptions. This 

ensures that no bias is given towards AUTOMAP. If the requirements had been 

stated more explicitly and each requirement presented as a separate item then there 

would be a one-to-one mapping of the requirements in the test cases to the facets 

used by the AUTOMAP tool to construct a modified use case. Obviously this would 
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unfairly balance the results in favour of the AUTOMAP tool. Hence the requirements 

are presented as relatively ambiguous text descriptions. 

 

There are two classes of requirement: core (mandatory) and optional. The expert 

conducting the tests is not made aware of the distinction. 

 

� Primary: A core requirement is an essential piece of functionality for the test 

case. Core requirements will be the primary means of assessing the suitability 

of a selected set of software components. Primary requirements generally 

include decision making requirements e.g. calculate_injection_timing. 

� Secondary: A secondary requirement is of lesser importance to the operation 

of the system outlined in a test case. Secondary requirements cover tasks such 

as receiving inputs from sensors or controlling actuators. A test case for 

example may state that a system requires data on the position of the 

crankshaft. If in this instance the test case lists the crankshaft position as a 

system input then the user has the option of adding a requirement to measure 

the crankshaft position or ignoring the requirement. This is due to the fact 

that the system input does not explicitly state the source of the data. It could 

potentially come directly from the crankshaft sensor, necessitating a 

requirement to measure the data, or it may be received from another software 

component which is not part of the system outlined in the test case. This is 

also true for outputs. An output data item may be sent to the actuator 

hardware or to another software component controlling the hardware. 

Therefore, if the source of an input or the destination of an output is 

ambiguous, then the requirement is classed as secondary. 

 

Each test case has the following format: 

 

� Name: The name of the system to be developed. 

� Description: A textual description of the system. This contains the actual 

requirements which must be matched to software components. It describes 

the various functions which the system will perform.  

� Inputs: A list of inputs to the system. These may come from either physical 

hardware or from software components external to the system. 
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� Outputs: A list of outputs from the system. These may take the form of data 

transmitted to software components external to the system or commands to 

actuator hardware. 

 

Each test case presented in this section is preceded by a brief introduction and a list 

of the actual requirements as described by facets obtained from the domain analysis.  
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Test Case 1 

Test case 1 describes a simple system which receives data from one or more crank 

sensors and transmits this data to other software components. The aim of this test 

case is to familiarise users with both the manual method and the AUTOMAP tool. 

This test case has the following requirements: 

 

Core Requirements 

� Measure_Crankshaft_Position 

� Measure_Crankshaft_Speed 

 

Optional Requirements 

� None 

 

The test case is presented as follows: 

 

 

System:   Crankshaft Data Measurement   

  

Description: This system shall provide the ability to read data relevant to the 

crankshaft and pass it on to other entities for their use. 

 

Inputs: - Crankshaft position: The current angle of rotation of the crankshaft. 

 - Crankshaft speed: The speed of rotation of the crankshaft. Measured in 

revolutions per minute or RPM  

 

Outputs: - Crankshaft position: The current angle of rotation of the crankshaft. 

 - Crankshaft speed: The speed of rotation of the crankshaft. Measured in 

revolutions per minute or RPM 
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Test Case 2 

Test Case 2 describes the requirements for an ignition system which attempts to 

minimise the occurrence of combustion knock. It introduces the first set of optional 

requirements. This test case has the following requirements: 

 

Core Requirements 

� Control_Ignition_Timing 

� Make_Knock_Modifications 

� Detect_Knock 

� Measure_Engine_Vibrations 

 

Optional Requirements 

� Activate_Spark_Plug 

� Measure_Crankshaft_Position 

� Measure_Crankshaft_Speed 

� Measure_Intake_Manifold_Pressure 

 

The test case is presented as follows: 

 

 

System:      Ignition 

Description:  This system controls the activation and deactivation of the spark plugs 

in a spark ignition engine. Each spark plug should be activated at a pre-

determined time. This time may be determined from the current position 

of the crankshaft. When the crankshaft rotates to a particular angular 

position, a spark plug is activated. 

 

 There must be a means of measuring and controlling engine knock. This 

occurs when the ignition timing is advanced too far for the current engine 

operating conditions, leading to uncontrolled combustion. Engine knock 

can be detected via an acceleration sensor which measures vibrations in 

the engine. Engine speed (revolutions per minute or RPM) and engine 
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load (intake manifold pressure) are used to determine how much a spark 

plug’s activation should be retarded. 

 

Inputs: -     Current position of the crankshaft 

- Engine speed 

- Intake manifold pressure 

    

Outputs:  -    Command to activate/deactivate physical the spark plug 
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Test Case 3 

Test Case 3 is the final and most challenging test case. It describes a fuel supply and 

injection system. This test case contains the greatest number of core and optional 

requirements. The requirements are as follows: 

 

Core Requirements 

� Calc_Base_Injector_Pulse_Width 

� Calculate_Operating_Conditions_Corrections 

� Calculate_Lambada_Corrections 

� Control_Injection_Timing 

� Calculate_Air_Mass_Flow_Rate 

� Measure_EGR_Airflow_Corrections 

� Activate_Deactivate_Pump 

� Measure_Fuel 

 

Optional Requirements 

� Measure_Crankshaft_Position 

� Measure_Crankshaft_Speed 

� Measure_Throttle_Pos 

� Set_EGR_Valve 

� Measure_Excess_Oxygen 

 

The test case is presented as follows: 

 

 

System:      Fuel Injection 

 

Description:  This system shall control all aspects of engine management relating to 

the injection of fuel in a spark ignition engine. The two main aspects of 

fuel injection to be considered are the amount of fuel to be delivered and 

the time at which fuel is to be supplied. 
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 The quantity of fuel to be supplied is controlled via pulse width 

modulation – the duration of the pulse width determining how long an 

injector should remain active. An initial pulse width is determined from 

the Air Mass Flow Rate (which is the rate at which air is entering the 

intake manifold) and the requested fuel-to-air ratio. The requested fuel-

to-air ratio is determined via a throttle position sensor which indicates the 

driver’s desired fuel/air mix.  

 

 The air mass flow rate for this system is to be based on the speed-density 

method. In this method, the air mass flow rate is calculated via the engine 

revolutions per minute (RPM), air inlet temperature and intake manifold 

pressure.  

 

 An exhaust gas recirculation (EGR) unit is to be fitted. The flow of 

exhaust gases need to be taken into account when calculating the air mass 

flow rate. The EGR system must be able to monitor and control the 

position of a valve which increases/decreases the flow of exhaust gases. 

 

 Modifications to the fuel/air mix must be made to ensure the best mix for 

the vehicle operating conditions. Operating condition modifications are 

determined based on data from a velocity sensor, the intake manifold 

pressure and the engine RPM (revolutions per minute). 

 

 To ensure that an efficient mix is being used, a lambda sensor will be 

installed. This will measure the level of oxygen in the exhaust gas and 

indicate if a mix is too lean or too rich. This data will be used to make 

further corrections to the injector pulse width to reduce/increase the 

amount of fuel supplied. 

 

 The time at which fuel is injected is determined from the current 

rotational position of the crankshaft. When a predetermined position is 

reached, an activation signal is to be sent to the relevant fuel injector. 
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 A pump will be used to deliver the fuel from the tank to the fuel rail. The 

fuel tank will also require a fuel level sensor. 

  

 Finally the RPM, engine coolant temperature and fuel level should be 

output for systems such as the instrument panel. 

 

Inputs: -     Throttle position 

- Engine RPM 

- Air inlet temperature 

- Intake manifold pressure 

- EGR valve position 

- Velocity of the vehicle 

- Lambda (excess oxygen) reading 

- Current position of the crankshaft 

    

Outputs:  -    Command to activate/deactivate the physical fuel injector(s)  

- Engine RPM 

- Engine coolant temperature 

- Fuel level 

- EGR valve position 
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14.2.5 Testers 

Seven people with varying levels of experience and backgrounds were selected to 

complete the testing process. This section gives a brief description of their 

backgrounds and areas of expertise. 

 

 

Tester 1 

Tester 1 has industrial experience with various forms of embedded systems including 

those in the automotive industry. This tester has lectured in embedded systems, 

automotive software development and systems analysis and design techniques. 

 

Tester 2 

Tester 2 has experience in the field of non-automotive component-based software 

engineering.  

 

Tester 3 

Tester 3’s primary background is in the area of electronics engineering. Tester 3 only 

has a few months of industrial experience. 

 

Tester 4 

Tester 4 currently works in the automotive industry. This tester is engaged in 

software development primarily in the area of comfort systems. 

 

Tester 5 

Tester 5 currently works in the automotive industry. This tester is engaged in 

software development primarily in the area of powertrain systems.  

 

Tester 6 

Tester 6 is a qualified mechanic. This tester is not experienced in the area of 

automotive software development or in general software development practices. 
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Tester 7 

Tester 7 currently works in the automotive industry. As with tester 4, this tester is 

engaged in software development primarily in the area of comfort systems. 

 

 

 

 

14.3 Summary            
 

The testing process consists of a number of steps. Experts must attempt to select 

software components which best fit the requirements laid out in each of the three test 

cases. This will be performed using AUTOMAP and a manual approach. The data 

will mainly be gathered automatically using code inserted into AUTOMAP and the 

component viewing application in the case of the manual approach. In the case of the 

manual method, the experts will manually note the components they have selected. 

The data collected using both approaches will be analysed and compared to 

determine the effectiveness of the mapping framework used in AUTOMAP. 
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15   

 

 

Analysis 

 

 

 
15.1 Introduction 
 

This chapter presents the results obtained during the testing process. The first section 

shows the selected software components in diagrammatic fashion. This is used to 

examine the effort required to integrate the selected software components together 

into a working system. The second section shows an examination of various metrics 

which were logged during the testing process. This includes factors such as the time 

taken to complete a selection process, the fulfilled requirements and so on. The third 

section describes the testers’ experiences during the process as obtained from a 

questionnaire.  Finally, conclusions based on the gathered data are presented. 

 

Seven people carried out the tests. These testers are numbered e.g. Tester 1, Tester 2 

etc, to ensure their anonymity.  

 

 

 

 

15.2 Selected Software Components     
 

This section focuses primarily on the interactions between the software components 

selected by testers. The selected software components were examined to determine 

how well they integrate with each other and how much work must be carried out in 

order to realise a correct solution. The detailed results data is presented in Appendix 

B. What is presented in this chapter is the conclusions made from comparing each 
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tester’s solutions for both the manual and tool-assisted approaches. This was done to 

determine which approach would require the least reworking to meet the 

requirements laid down. The main factors which were examined were: 

 

� The number of software components which must be added. 

� The number of software components which must be discarded. 

� Interfaces which may fully or partially match in terms of the data items they 

use but not in terms of the interface names and/or extra data items used by 

one of the interfaces.  

 

Note that since all solutions for Test Case 1 produced complete solutions this test 

case has not been included. The observations are listed in Table 15.1. 

 

Tester Test Case 
2 

Test Case 
4 

1 Manual Manual 

2 AUTOMAP Manual 

3 AUTOMAP AUTOMAP 

4 Manual AUTOMAP 

5 AUTOMAP Equal 

6 Manual Manual 

7 AUTOMAP AUTOMAP 
    

Table 15.1 Effort To Realise Solutions 

 

The observations listed in Table 15.1 indicate that both approaches are roughly 

equal. In seven instances AUTOMAP outperformed the manual approach in terms of 

requiring the least amount of effort to modify solutions to meet the test case 

requirements. The manual approach outperformed AUTOMAP in six instances and 

in one case both approaches produced solutions which require roughly equal amounts 

of effort to be completed. 
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15.3 Logged Metrics 
 

This section deals with the data which was logged using the AUTOMAP tool and the 

manual approach support tool. It is broken up into three sections. The first deals with 

data relating to the effort which goes into a selection process. This includes the time 

taken for the complete process, the average software component viewing time and 

the number of software component views. The second section compares the results 

obtained using both approaches in terms of the primary and secondary requirements 

fulfilled by the solutions. The third section shows the data which was logged from 

the use cases.  

 

 

 



    AANNAALLYYSSIISS  

 

 240

15.3.1 Timing and Viewing Data 

Test Case 1 

 No of SWC Views Average SWC  
Viewing Time (s) 

Total Time 
(s) 

Tester Manual Automap Manual Automap Manual Automap 

1 4 0 15.53 0 158.33 273.69 

2 1 0 2.9844 0 944.2969 466.92 

3 2 6 677.71 6.94 1453 135.47 

4 27 3 17.12 5.59 680.95 262.56 

5 203 5 0.58 8.68 212.38 301.03 

6 9 2 13.44097 37.4453125 188.875 117.984375 

7 5 5 27.7971 8.8159 339.212147 400.3722 
    

Table 15.2 Test Case 1 Timing & Viewing Data 

 

Evaluation 

� In all but one case (Tester 3) more software component views were made 

using the manual approach. 

� In all but two cases (Tester 5 and Tester 6) less time was spent on average 

viewing a software component using AUTOMAP.  

� In the case of Tester 3 over ten minutes were spent on average viewing a 

single software component during the manual process. This may indicate an 

external distraction (phone call etc). 

� In four out of seven cases more time was spent on the manual method. 

 

Conclusion 

� The high number of software component views coupled with the low average 

viewing time in the case of the manual approach for Tester 5 most likely 

indicates that the tester was rapidly scanning through the list of components 

without generally spending significant effort on examining each component. 

� In two cases there was no time spent on examining software components 

using AUTOMAP i.e. no components were selected for examination in detail. 

This indicates that the summary information provided was considered 

sufficient by the tester, not requiring significant examination of the selected 

components. 
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� Both approaches yielded the same results in terms of requirements fulfilled. 

However in the majority of cases greater effort went into the manual process, 

indicating that AUTOMAP can save effort. 
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Test Case 2 

 No of SWC Views Average SWC  
Viewing Time (s) 

Total Time 
(s) 

Tester Manual Automap Manual Automap Manual Automap 

1 20 10 24.3 5.43 535.68 373.32 

2 42 0 889.0781 0 1656.140625 428.203125 

3 3 0 490.55 0 1565.69 403.53 

4 364 9 6.41 4 2432.22 704.5 

5 171 38 1.02 2.62 226.36 345.52 

6 24 0 14.5514 0 468.96875 930.9375 

7 17 8 15.1513 1.3614 343.7693339 281.0871 
    

Table 15.3 Test Case 2 Timing & Viewing Data 
    

Evaluation 

� In all cases more software component views were made using the manual 

approach. Often there was a significant difference e.g. Tester 4 making 364 

views using the manual approach versus 9 using AUTOMAP. 

� In all but one case (Tester 5) more time was spent on an average view using 

the manual approach. 

� In all but two cases (Tester 5 and 6) more time was spent completing the 

process using the manual approach.  

 

Conclusion 

� As with the previous test case it appears that more effort was spent 

completing the manual process. 

� Testers 4 and 5 spent relatively short periods of time examining individual 

software components using the manual process. This coupled with the high 

number of component views indicates that they were rapidly scanning 

through the list of available components, stopping on ones which appeared to 

be relevant. 
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Test Case 3 

 No of SWC Views Average SWC  
Viewing Time (s) 

Total Time 
(s) 

Tester Manual Automap Manual Automap Manual Automap 

1 17 0 23.27 0 632.81 433.84 

2 29 0 4.7247 0 218.6875 508.46875 

3 17 0 16.6479779 0 326.109375 702.17 

4 149 7 12.55 1.16 1969.91 337.88 

5 177 29 3.9 3.87 726.88 953.53 

6 23 8 29.0024 5.1895 729.625 1075.76563 

7 956 10 1.9251 3.4267 1895.643043 553.4708 
    

Table 15.4 Test Case 3 Timing & Viewing Data 
    
    

Evaluation 

� In all cases more software component views were made using the manual 

approach. 

� In all but one test case (Tester 7) more time was spent on an average view 

using the manual approach. 

� In four test cases more time was spent completing the process using 

AUTOMAP. 

 

Conclusion 

� In this test case AUTOMAP exceeded the manual process in a number of 

instances in terms of the total time taken for the process. This may be due to 

users becoming familiar with the contents of the component repository in the 

manual approach. 

� However more views were made using the manual process. This is coupled 

with a higher average viewing time in all but one case. This indicates that a 

larger repository would lead to even greater effort and hence the manual 

approach exceeding AUTOMAP in terms of effort exerted selecting 

components. 
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15.3.2 Solution Requirements 

 

Abbreviations:  

� Man: Manual Approach 

� Auto: Automap Approach 

 

The tables in this section describe the requirements produced for each test case. 

These include primary and secondary requirements. They also include extra 

requirements i.e. requirements which were not specified in a test case but are still 

useful in that application, incorrect requirements which do not add anything useful 

and duplicate requirements i.e. a requirement that is fulfilled by more than one 

component in the solution. 
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Test Case 1 

 Primary  Secondary  Extra Incorrect  Duplicate 

Tester Man Auto Man Auto Man Auto Man Auto Man Auto 

1 2 2 - - 0 0 0 0 0 0 

2 2 2 - - 0 0 0 0 0 0 

3 2 2 - - 0 0 0 0 0 0 

4 2 2 - - 0 0 0 0 0 0 

5 2 2 - - 0 0 0 0 0 0 

6 2 2 - - 0 0 0 0 0 0 

7 2 2 - - 0 0 0 0 0 0 

    
Table 15.5 Test Case 1 Solution Requirements 

 

Evaluation 

� Both approaches produce solutions which contain the same number of 

primary requirements. 

 

Conclusion 

� Both systems are equal in terms of the quality of systems produced. 
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Test Case 2 

 Primary  Secondary  Extra Incorrect  Duplicate  

Tester Man Auto Man Auto Man Auto Man Auto Man Auto 

1 1 3 4 1 0 1 1 0 0 0 

2 1 2 0 0 0 1 0 0 0 0 

3 1 1 0 4 0 0 0 0 0 0 

4 3 0 3 3 0 0 0 0 0 0 

5 0 2 2 3 0 1 0 0 0 0 

6 1 0 2 0 0 0 3 2 0 0 

7 0 0 1 3 0 0 1 0 0 0 
 

Table 15.6 Test Case 2 Solution Requirements 

 

Evaluation 

� In two cases (Tester 4 and Tester 6) the manual method fulfilled more of the 

primary requirements. Two cases fulfilled the same number of primary 

requirements (Tester 3 and Tester 7). In all other test cases AUTOMAP 

fulfilled more primary requirements. 

� In two cases (Tester 1 and Tester 6) the manual method fulfilled more 

secondary requirements. Two test cases fulfilled the same number of 

secondary requirements (Tester 2 and Tester4). In all other test cases 

AUTOMAP fulfilled more primary requirements. 

� Three cases using AUTOMAP produced useful extra requirements. 

� Three test cases using the manual method produced incorrect requirements 

versus one case of incorrect requirements using AUTOMAP. In this case 

incorrect requirements were specified by the user in the use case. See Table 

15.11. 

� No duplicate requirements were produced. 

 

Conclusion 

� In the majority of cases AUTOMAP produces systems which better fulfil the 

requirements and contain fewer incorrect requirements. 
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Test Case 3 

 Primary  Secondary  Extra Incorrect Duplicate  

Tester Man Auto Man Auto Man Auto Man Auto Man Auto 

1 3 2 6 0 0 0 0 2 0 0 

2 4 0 0 0 0 0 0 2 0 0 

3 1 6 0 1 0 0 3 1 0 1 

4 6 6 0 4 0 0 0 2 0 1 

5 3 7 5 1 0 0 0 0 0 0 

6 4 3 1 1 0 0 2 2 0 0 

7 5 2 1 6 0 0 4 0 1 0 
 

Table 15.7 Test Case 3 Solution Requirements 

 

Evaluation 

� In four test cases the manual approach produced more primary requirements 

versus two cases using AUTOMAP. In one case (Tester 4) an equal number 

of requirements were fulfilled using both approaches. 

� In two cases (Tester 1 and Tester 5) the manual approach fulfilled more 

secondary requirements versus three cases using AUTOMAP. Two cases 

fulfilled the same number of secondary requirements (Tester 2 and Tester 6).  

� No useful extra requirements were produced. 

� In two cases the manual approach produced solutions containing incorrect 

requirements versus five cases using AUTOMAP. 

� In one case the manual approach produced a duplicate requirement versus 

two times using AUTOMAP. 

 

Conclusion 

� The manual approach produced more solutions which fulfilled a greater 

number of primary requirements while AUTOMAP produces more solutions 

which fulfilled a greater number of secondary requirements. AUTOMAP did 

produce more solutions with errors and duplicate requirements (two and one 

more respectively) than the manual approach. Therefore the manual approach 

produced marginally better solutions than AUTOMAP. Tables 15.13 to 15.15 

indicate that this is due to the requirements entered by the testers i.e. the 

AUTOMAP solutions reflect the requirements entered. In fact in most cases 

AUTOMAP delivered more correct requirements than were requested. 
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15.3.3 Use Cases 

Note that in a number of cases use case data was not supplied by the tester along with 

their test results. This is indicated where required. Input and output data was still able 

to be gathered as this data was recorded in both the use case form report and the 

results from solutions report. 
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Test Case 1 

Test Case 1 contains: 

� Two primary requirements 

� No secondary requirements 

� Two inputs 

� Two outputs 

 

 Primary Requirements Secondary Requirements 

Tester Specified Delivered Extra Specified Delivered Extra 

1 n/a n/a  n/a - - - 

2 2 2 0 - - - 

3 n/a n/a n/a n/a n/a n/a 

4 2 2 0 - - - 

5 2 2 0 - - - 

6 2 2 0 - - - 

7 n/a n/a n/a n/a n/a n/a 
 

Table 15.8 Test Case 1 Use Case Requirements 

 

 

 Incorrect Requirements  Extra Requirements 

Tester Specified Delivered Extra Specified Delivered 

1 n/a n/a n/a n/a n/a 

2 0 0 0 0 0 

3 n/a n/a n/a n/a n/a 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 n/a n/a n/a n/a n/a 
 

Table 15.9 Test Case 1 Use Case Incorrect and Extra Requirements 

 

 

 Inputs Outputs 

Tester Correct Incorrect Extra Correct Incorrect Extra 

1 2 0 0 2 0 0 

2 2 0 0 2 0 0 

3 2 0 0 2 0 0 

4 2 0 0 2 0 0 

5 2 0 0 2 0 0 

6 2 0 0 2 0 0 

7 2 0 0 2 0 0 

 

Table 15.10 Test Case 1 Use Case Signals 
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Evaluation 

� In all cases which provided a use case, two requirements were specified and 

two delivered. 

� In all cases the correct two inputs and correct two outputs were specified. 

Conclusion 

� The test case was understood by all and all testers were able to locate all of 

the relevant requirements and signals. 
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Test Case 2 

Test Case 2 contains:  

� Four primary requirements 

� Four secondary requirements 

� Three inputs 

� One output 

 

 Primary Requirements Secondary Requirements 

Tester Specified Delivered Extra Specified Delivered Extra 

1 2 2 1 1 1 0 

2 1 1 1 0 0 0 

3 n/a n/a n/a n/a n/a n/a 

4 0 0 0 3 3 0 

5 1 1 0 3 3 0 

6 0 0 - 0 0 - 

7 0 0 0 3 3 0 
 

Table 15.11 Test Case 2 Use Case Primary and Secondary Requirements 

 

 

 Incorrect Requirements  Extra Requirements 

Tester Specified Delivered Extra Specified Delivered 

1 0 0 0 0 1 

2 0 0 0 0 1 

3 n/a n/a n/a n/a n/a 

4 1 0 0 0 0 

5 0 0 0 0 1 

6 2 1 1 0 0 

7 0 0 0 0 0 
 

Table 15.11 Test Case 2 Use Case Incorrect and Extra Requirements 

 

 

 Inputs Outputs 

Tester Correct Incorrect Extra Correct Incorrect Extra 

1 2 0 1 1 0 1 

2 3 0 0 1 0 0 

3 3 0 0 1 0 0 

4 3 1 0 1 0 0 

5 3 0 0 1 0 0 

6 2 0 0 0 2 0 

7 3 0 0 1 0 0 
 

Table 15.12 Test Case 2 Use Case Signals 
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Evaluation 

� In all cases all specified primary and secondary requirements were delivered. 

� In two cases extra primary requirements not specified by the tester were 

delivered in the solution. 

� In two cases incorrect requirements were entered in the use case. Only one 

solution produced a user specified incorrect requirement. In this case two 

were specified and only one delivered. 

� In three cases useful extra functions not specified in the test case were 

delivered. 

� None of the testers selected more than two of the primary requirements 

outlined in the test case. The highest number of secondary requirements 

specified was three. This was achieved by three testers. 

� In one case an incorrect input was specified and in one case two incorrect 

outputs were specified. 

 

Conclusion 

� The low number of test case requirements entered by testers indicates that 

they did not understand the test cases or could not locate the relevant 

requirements (action facets) in the repository. 

� The former conclusion is the most likely as most testers successfully located 

the relevant signals. These are presented in a list format in the test case 

document as opposed to the textual description which contained the 

requirements. 
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Test Case 3 

Test Case 3 contains: 

� Nine primary requirements 

� Eight secondary requirements 

� Eight inputs 

� Five Outputs 

 

 Primary Requirements Secondary Requirements 

Tester Specified Delivered Extra Specified Delivered Extra 

1 1 1 1 0 0 0 

2 0 0 0 0 0 0 

3 n/a n/a n/a n/a n/a n/a 

4 4 3 3 5 3 1 

5 4 4 3 1 1 0 

6 1 1 2 1 1 0 

7 2 2 0 8 6 0 
    

Table 15.13 Test Case 3 Use Case Primary and Secondary Requirements 

 

 

 Incorrect Requirements  Extra Requirements 

Tester Specified Delivered Extra Specified Delivered 
Duplicate 

Requirements 

1 1 1 1 0 0 0 

2 1 0 1 0 0 0 

3 n/a n/a n/a n/a n/a n/a 

4 0 0 2 0 2 0 

5 0 0 0 0 0 0 

6 1 1 1 0 0 0 

7 0 0 0 0 0 2 

    
Table 15.14 Test Case 3 Use Case Incorrect, Extra and Duplicate Requirements 

 

 

 

 Inputs Outputs 

Tester Correct Incorrect Extra Correct Incorrect Extra 

1 8 0 0 5 0 0 

2 8 0 0 5 0 0 

3 8 0 0 4 0 0 

4 8 0 0 5 1 0 

5 8 0 0 5 0 0 

6 6 1 0 1 6 0 

7 7 0 0 5 0 0 
 

Table 15.15 Test Case 3 Use Case Signals 
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Evaluation 

� In the majority of cases the specified primary and secondary requirements 

were delivered. 

� In four cases extra primary requirements not supplied by the tester were 

delivered. 

� In one case an extra secondary requirement not supplied by the tester was 

delivered. 

� In three cases incorrect requirements were specified. In two cases the 

incorrect requirements were delivered. These and two more also delivered 

extra incorrect requirements not specified by the tester. 

� With the exception of Tester 6, all testers selected most if not all of the 

correct signals. 

 

Conclusion 

� AUTOMAP delivered the majority of requirements specified along with extra 

requirements which were not requested. These form part of the descriptions 

of software components which contain specified requirements. This was true 

for both correct and incorrect requirements. 

� In all cases, testers selected only a subset of the requirements outlined in the 

test cases. 

� Testers did however in most cases input the correct inputs and outputs. 

� Hence as with Test Case 2, the most likely explanation is that testers had 

difficulty in identifying the relevant requirements from the textual description 

provided. 
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15.4 Tester Opinions                                                       

 

A questionnaire was used to gather the opinions of the testers. All of the testers 

found the AUTOMAP easier to use. One reason for this was the search function 

provided by AUTOMAP. Some users felt that the descriptions of signals and actions 

in AUTOMAP could be more concise while some stated that they should be more 

descriptive. Another recurring issue was with the treeview implemented in the Data 

Dictionary Viewer. Every time the viewer was opened the tree was fully collapsed. A 

number of testers felt that it would be beneficial if the tree remembered its last state 

when it was reopened. Also one tester commented that it would be useful to allow 

multiple selections of items from the data dictionary. 

 

One tester made the point that as developers become more familiar with AUTOSAR, 

they may prefer to select software components using a manual approach. 
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16   

 

 

Conclusion 

 

 

 
The aim of this research was to devise a means of mapping requirements to 

AUTOSAR software components. Component-based software engineering is a 

relatively new concept in the automotive industry. Therefore it was necessary to look 

at research on component-based software engineering from other industries such as 

aerospace and business application development. A number of potentially related 

areas such as the MDA were also investigated to determine if they could be used in 

the context of a mapping framework. 

 

The selected approach was based on a faceted classification scheme. This allows a 

common language to be created which can be used to describe software components 

and functional requirements. 

 

Three questions were posed at the start of this research. The work carried out 

attempts to address these questions. 

 

 

 

Question 1 

What level of specification is needed to adequately document the functionality of 

AUTOSAR software components to facilitate reuse within the automotive industry? 

 

Answer 

It was determined that the most effective way to document the functionality of a 

software component is through a standardised language. Such a language is 
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necessary to provide a common, unambiguous description of a component’s 

functionality and the signals it uses. 

 

 

 

Question 2 

How should requirements be structured to facilitate their matching to available 

software components? 

 

Answer 

It was determined that requirements should be stated in terms of the standardised 

language which is used to describe software components. This facilitates the 

mapping process. A modified use case was selected as a clear and effective method 

of structuring the requirements. 

 

 

 

Question 3 

What level of process improvement can be achieved by automated matching of 

application requirements to available components, compared to a manual matching 

process? 

 

Answer 

The testing process undertaken during this research revealed that on average the 

software components delivered by an automated matching tool are equal in quality to 

a set selected using a manual process. An automated matching tool however 

significantly reduces the amount of effort exerted during the matching process. 
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Observations 

A number of observations have been made in relation to the AUTOMAP tool and the 

testing process. These are presented here. 

 

The test cases were made up of two sections. The first was a text description which 

contained the actual requirements. This was deliberately presented in this manner to 

ensure that the requirements were not unduly biased towards AUTOMAP. The 

second was a list of the main inputs and outputs to the system. Testers had difficulty 

in identifying the correct requirements but had no problems with picking the correct 

inputs and outputs. This indicates that the testers did not understand the system 

requirements. A more clearly defined set of requirements would favour AUTOMAP 

over the manual approach. 

 

In AUTOMAP’s use case form inputs and outputs may be entered but if these signals 

are to/from hardware then a requirement for this operation must be included e.g. 

“Activate Spark Plug”. It would be more efficient to state the inputs and outputs 

separately as is currently the case and then specify in the same section that a signal 

relates to hardware or to a software component. This would eliminate the need to 

state a separate requirement. 

 

An earlier prototype of the AUTOMAP application allowed a user to add child use 

cases to the list of functional requirements. While this is required by the mapping 

framework, it has been omitted in the most recent version of AUTOMAP. This is due 

to time constraints i.e. it could not be fully implemented in time for the testing stage 

of this research. However it would be beneficial to fully implement this feature. This 

would allow a multi-tiered system to be developed using AUTOMAP i.e. a system 

with one or more sub-systems. 

 

A number of improvements could be made to the matching algorithm. These include: 

 

� After a software component has been selected as a starting point, the 

remaining components are checked to see if their inputs/outputs match up to 

the use case inputs/outputs and to those of the initially selected components. 
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A more effective solution would be to also check a new software 

component’s interfaces against the interfaces of all components which are 

already part of the solution and not just against the main system 

inputs/outputs and those of the initial component. 

� If a component is added to a solution and another is found which implements 

some of the same functionality as the original component, it will be discarded 

even if it is more suitable for fulfilling the overall system requirements. 

Therefore the ordering of component in the repository has an effect on the 

solutions which are generated. While this approach can yield good results it is 

not ideal. A more effective method would be to implement some form of 

ranking system for components. The algorithm could allow selected 

components to be discarded in favour of more suitable ones which are found 

at a later stage in the matching process. This may necessitate some form of 

backtracking as component selections are interdependent i.e. selecting one 

software component may lead to others in turn being selected to match up 

with it, or other components may be discarded. 

 

 

 

Conclusion 

A mapping framework as outlined in this research has definite benefits to offer. 

These include increased productivity and the reduction of ambiguity in the 

requirements engineering and development process. However this research has also 

shown that the presentation of requirements is also key to the process. Requirements 

may be complete in that they state exactly what is needed but they should also be 

clear and unambiguous.  

 

A potential avenue for future research would be to integrate the mapping framework 

in a web-based component marketplace. This may be more difficult to achieve than 

is the case with software components for other industries e.g. the financial sector, 

due to the inherent relationship between AUTOSAR components and real world 

vehicles and their hardware. It could however promote competition and hence 

innovation which will benefit vehicle manufacturers and in turn their customers. 
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Another area for future research would be to integrate a mapping framework into a 

suite of tools to allow a direct mapping between requirements and deployed code. A 

component selection tool such as AUTOMAP could be integrated with modules 

which configure the RTE and basic software possibly based on component resource 

requirements. 

 

Finally the technology outlined in this thesis could be applied at multiple levels for 

software components. It could for example be used to provide lower level 

descriptions of a software component’s internal behaviour, resource consumption etc. 

 

In conclusion, a mapping framework using a faceted-based classification scheme can 

be used to increase productivity and reduce development time. 
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Appendix A: XML Schemas 

 

 

 
A.1 Facet Repository Schema 
 
<?xml version="1.0" encoding="UTF-8" ?> 

 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

  <xs:element name="Action"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Description" /> 

        <xs:element ref="Formula-Function" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Actions"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Action" minOccurs="0" maxOccurs="unbounded"   

         /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Description"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Formula-Function"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 
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<xs:element name="Functional_Domain"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Actions" /> 

        <xs:element ref="Signals" /> 

        <xs:element ref="Parts" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Main_Area"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Functional_Domain" maxOccurs="unbounded" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Max-Value"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Min-Value"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Name"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Part"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Actions" /> 

        <xs:element ref="Signals" /> 

        <xs:element ref="Parts" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Parts"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Part" minOccurs="0" maxOccurs="unbounded"   

         /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 
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<xs:element name="Root"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Main_Area" /> 

        <xs:element ref="Unit_Group" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Signal"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Description" /> 

        <xs:element ref="Max-Value" /> 

        <xs:element ref="Min-Value" /> 

        <xs:element ref="Unit-Name" /> 

        <xs:element ref="Unit-Path" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Signals"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Signal" minOccurs="0" maxOccurs="unbounded"  

         /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Symbol"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Unit"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Description" /> 

        <xs:element ref="Symbol" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Unit-Name"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Unit-Path"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 
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<xs:element name="Unit_Group"> 

    <xs:complexType> 

      <xs:choice> 

        <xs:element ref="Name" /> 

        <xs:element ref="Unit" /> 

        <xs:element ref="Unit_Group" /> 

      </xs:choice> 

    </xs:complexType> 

  </xs:element> 

 

</xs:schema> 
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A.2 Component Description Repository Schema 
 

<?xml version="1.0" encoding="UTF-8" ?> 

 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

  <xs:element name="Additional_Functionality"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Function" minOccurs="0" 

maxOccurs="unbounded" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Data_Element"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Description" /> 

        <xs:element ref="DDRep" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Data_Elements"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Data_Element" maxOccurs="unbounded" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="DDRep"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Description"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Function"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Functional_Domain"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="SWC" maxOccurs="unbounded" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Name"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 

 

  <xs:element name="Path"> 

    <xs:complexType mixed="true" /> 

  </xs:element> 
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  <xs:element name="Provide_Interface"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Description" /> 

        <xs:element ref="Data_Elements" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Provide_Interfaces"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Provide_Interface" maxOccurs="unbounded" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Repository"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Functional_Domain" maxOccurs="unbounded" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Require_Interface"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Description" /> 

        <xs:element ref="Data_Elements" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="Require_Interfaces"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Require_Interface" maxOccurs="unbounded" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:element name="SWC"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="Name" /> 

        <xs:element ref="Description" /> 

        <xs:element ref="Path" /> 

        <xs:element ref="Provide_Interfaces" /> 

        <xs:element ref="Require_Interfaces" /> 

        <xs:element ref="Additional_Functionality" /> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

</xs:schema> 
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 B.   

 

 

Appendix B: Detailed Results 

 

 

 
B.1 Selected Software Components     
 

This section focuses primarily on the interactions between the software components 

selected by testers. The diagrams consist of the following elements: 

 

� Software Components: These are represented by a box containing the name 

of the component. 

� Interfaces: These are connected to their corresponding software components 

and contain a list of the data elements used in the interface. An interface 

takes the form of underlined text which is external to the software 

component which uses that interface. Note that required interfaces are 

always shown on the left of a software component and provided interfaces 

are always shown on the right. 

� Data Elements:  These are the signal facets which are used to describe the 

data in an interface. These are used rather than the original data-element 

names given in the AUTOSAR component description file. This helps to 

determine if interfaces contain equivalent data items. A data element is 

represented by text in italics below its parent interface. 

� Connectors:  These show the connections between software components. A 

connector may connect two components with identical interfaces or they may 

indicate that a provided interface only provides a subset of the data required 

by another interface. A connector is represented by an arrow and is colour 

coded to indicate which parts of interfaces are matched up by connectors.  
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� Terminators: These show sources and destinations of data which are 

external to the selected set of software components. This may be to/from 

hardware in the case of sensor or actuator software components. If the data is 

specified explicitly in the test case as an input or output then this is also 

indicated. Finally, in the case of the AUTOMAP tests, if a user specifies the 

data as an input or output in a use case then this is also stated. A terminator is 

indicated by a line joined to a hollow circle. The keyword Extra indicates 

that the input/output is not listed as a test case input/output but is used in 

conjunction with one. For example, the output listed for Test Case 2 is 

On_Off. This is a command to activate/deactivate a spark plug and may be 

sent directly to the hardware. If an intermediary software component is used, 

then it may be necessary for the software component controlling the ignition 

timing to also transmit the number of the spark plug to be activated. This 

number is the Extra output. 

 

Figure B.1 illustrates these concepts. 

 
Fig Fig Fig Fig BBBB.1 .1 .1 .1 Main ElementsMain ElementsMain ElementsMain Elements    
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B.2.1 Test Case 1 

In all cases testers picked either the system illustrated in Figure B.2 or in B.3. Both 

of these meet the requirements, inputs and outputs outlined in the test case. Also in 

all cases the testers correctly specified the inputs and outputs using AUTOMAP. 

 

 
Fig Fig Fig Fig B.B.B.B.2222    Test Case 1: Solution 1Test Case 1: Solution 1Test Case 1: Solution 1Test Case 1: Solution 1    

    
    
    

 
Fig Fig Fig Fig B.3B.3B.3B.3    Test Case 1: Solution 2Test Case 1: Solution 2Test Case 1: Solution 2Test Case 1: Solution 2    
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B.2.2 Test Case 2 

 

Tester 1: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.4444    Test Case 2: Tester 1: Manual MethodTest Case 2: Tester 1: Manual MethodTest Case 2: Tester 1: Manual MethodTest Case 2: Tester 1: Manual Method    

 

Evaluation 

In this case the manual solution contains all of the sensor and actuator software 

components required for the system outlined in Test Case 2. However all of the 

sensor component outputs have no destination i.e. the tester has not included any 

software component which requires the data they supply. The single test case output 

is supplied by the single actuator component - Spark_Plug. However this component 

requires data which is not yet supplied by a software component or by a test case 

input. The system may be fully realised by including the Ignition Control 2 software 

component which requires the data supplied by all of the software components listed. 

In addition it requires engine coolant temperature data which may be supplied by a 

coolant sensor software component. Therefore this system only requires that two 

additional components are added. The knock sensor selected detects combustion 

knock using an alternative method to the one prescribed in the test case. This 

component may be used or swapped for another which uses the stated method. 
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Tester 1: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.5555    Test Case 2: Tester 1: AUTOMAP MethodTest Case 2: Tester 1: AUTOMAP MethodTest Case 2: Tester 1: AUTOMAP MethodTest Case 2: Tester 1: AUTOMAP Method    

 

Evaluation 

The software components selected may be closer to a workable implementation in 

this case than the manual method. All that is needed is to some means of supplying 

data relating to the engine coolant temperature. This may be provided by either 

Engine Coolant Sensor 1 or Engine Coolant Sensor 2 which both meet the missing 

require interface of Ignition Control 1. The software component Knock_Sensor may 

be discarded. Its output does not match up with a system output or with the inputs of 

any of the other software components. However, while the system would be 

complete in terms of fulfilled interfaces it would not fulfil the requirements laid 

down in the test case. There must be some means of monitoring and controlling 

engine knock. The Ignition Control 1 software component would need to be replaced 

with one which makes adjustments to the ignition timing in order to control engine 

knock. The software component Ignition Control 2 performs this task. Also note that 

the tester has opted to receive the crank and manifold pressure data from a source 

external to the system. Effort must be spent at some point to select software 

components to supply this data, either during the development of this system or 

another. 
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Tester 2: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.6666    Test Case 2: Tester 2: Manual MethodTest Case 2: Tester 2: Manual MethodTest Case 2: Tester 2: Manual MethodTest Case 2: Tester 2: Manual Method    

 

Evaluation 

In this case the tester has opted to receive the crank and manifold pressure data from 

an external source. Note that there is no provision in this system for knock control. If 

the system is to be fully realised then the selected software component must be 

replaced and a number of extra components must be selected e.g. a knock sensor 

software component. 
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Tester 2: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.7777    Test Case 2: Tester 2: AUTOSAR MethodTest Case 2: Tester 2: AUTOSAR MethodTest Case 2: Tester 2: AUTOSAR MethodTest Case 2: Tester 2: AUTOSAR Method    

 

Evaluation 

As with the manual method, significant work must be carried out to fully realise the 

system requirements. In this case however the selected software component does not 

need to be replaced as it takes into account the occurrence of combustion knock. 

Note that there is no source for two of Ignition Control 2’s inputs. Also the other 

three are stated as inputs in the test case. These will need to be fulfilled by software 

components at some point during the vehicle’s development lifecycle as will a 

component which directly interacts with the actuator hardware. 
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Tester 3: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.8888    Test Case 2: Tester 3: Manual MethodTest Case 2: Tester 3: Manual MethodTest Case 2: Tester 3: Manual MethodTest Case 2: Tester 3: Manual Method    

 

Evaluation 

See Tester 2: Manual Method. 
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Tester3: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.9999    Test Case 2: Tester 3: AUTOMAP MethodTest Case 2: Tester 3: AUTOMAP MethodTest Case 2: Tester 3: AUTOMAP MethodTest Case 2: Tester 3: AUTOMAP Method    

 

Evaluation 

In this case all of the necessary sensors and actuators have been selected. However 

none of the sensor software components transmit their data to another component or 

to a system output. Also there is no source for the Spark_Plug software component’s 

required data. What is needed is some means of processing the sensor data to 

produce the desired output i.e. activation signals to the Spark_Plug software 

components. A single software component Ignition Control 2 fulfils this task. 

However this component receives both crankshaft speed and position data using a 

single interface. The two selected crankshaft sensor software components transmit 

data on separate interfaces. There are two possible solutions to this problem. The first 

is to replace these two software components with a single one e.g. Crankshaft Sensor 

which has the correct interface. The second is to create some intermediary software 

component which receives data from the selected sensors using their existing 

interfaces and then retransmits this data on a new interface which matches up to 

Ignition Control 2’s require interface. 
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Tester 4: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.10101010    Test Case 2: Tester 4: Manual MethodTest Case 2: Tester 4: Manual MethodTest Case 2: Tester 4: Manual MethodTest Case 2: Tester 4: Manual Method    

 

Evaluation 

The Ignition Control software component should be replaced with one which makes 

modifications to the ignition timing based on data received from the knock sensor 

e.g. Ignition Control 2. This would also require either the crankshaft software 

components to be changed or an intermediary software component to be created as 

was explained for Tester 3: AUTOMAP Method. Also, a software component would 

be needed to measure the coolant temperature and supply this data to Ignition 

Control 2. 
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Tester 4: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.11111111    Test Case 2: Tester 4: AUTOMAP MethodTest Case 2: Tester 4: AUTOMAP MethodTest Case 2: Tester 4: AUTOMAP MethodTest Case 2: Tester 4: AUTOMAP Method    

 

Evaluation 

This solution requires a number of software components to fulfil the test case. It does 

not include any means of controlling the spark plug activation timing. It also lacks 

software components which read engine coolant temperature data and detect the 

occurrence of combustion knock. Finally a software component has not been selected 

to interface with the physical spark plugs. Essentially what has been selected is a 

collection of sensor software components which could be used in any number of 

applications. Note that none of their provided interfaces transmit data to any other 

software components or to a system output as specified by either the test case or by 

the tester. 
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Tester 5: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.12121212    Test Case 2: Tester 5: Manual MethodTest Case 2: Tester 5: Manual MethodTest Case 2: Tester 5: Manual MethodTest Case 2: Tester 5: Manual Method    

 

Evaluation 

Again significant work is required to realise a complete solution. As with the 

previous solution there is no destination for the outputted data. The majority of 

sensor software components required must still be selected as does a central 

component to determine the activation times of software components. Finally a spark 

plug software component has not been selected. 
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Tester 5: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.13131313    Test Case 2: Tester 5: AUTOMAP MethodTest Case 2: Tester 5: AUTOMAP MethodTest Case 2: Tester 5: AUTOMAP MethodTest Case 2: Tester 5: AUTOMAP Method    

 

Evaluation 

This solution is quite close to realising the requirements outlined in the test case. It 

requires two additional software components to supply data to interfaces which 

currently have no source: one to read engine coolant temperature data from a sensor 

and another to interface with a knock detection sensor. Note that this data was not 

added by the tester as a system input. Also the interfaces between the two crankshaft 

sensor components and Injection Control 2 do not match up requiring an 

intermediary software component or a replacement of the two sensor components 

with one which has the necessary interface. 
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Tester 6: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.14141414    Test Case 2: Tester 6: Manual MethodTest Case 2: Tester 6: Manual MethodTest Case 2: Tester 6: Manual MethodTest Case 2: Tester 6: Manual Method    

 

Evaluation 

This solution has two sensor software components which may be used in the test 

case. The knock sensor selected may need to be swapped for one which detects 

knock according to the method prescribed in the test case. The knock sensor is not 

transmitting data to another software component or to a system output as outlined in 

the test case. Neither is the engine monitor system. However all of the required 

interfaces are fulfilled via hardware inputs or through another software component. 

A complete solution will require a number of extra software components to be 

selected. The Engine Monitor System component may be discarded as it is not 

required for this test case. 
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Tester 6: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.15151515    Test Case 2: Tester 6: AUTOMAP MethodTest Case 2: Tester 6: AUTOMAP MethodTest Case 2: Tester 6: AUTOMAP MethodTest Case 2: Tester 6: AUTOMAP Method    

 

Evaluation 

The single software component selected in this solution does not transmit data to any 

other software component or to a user or test case specified output. Its single input is 

supplied by hardware. This solution also does not supply any of the functionality 

outlined in the test case. 
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Tester 7: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.16161616    Test Case 2: Tester 7: AUTOMAP MethodTest Case 2: Tester 7: AUTOMAP MethodTest Case 2: Tester 7: AUTOMAP MethodTest Case 2: Tester 7: AUTOMAP Method    

 

Evaluation 

In this solution only two software components have been selected. The first, Intake 

Manifold Air Mass Calculator 2, receives its inputs via system inputs specified in the 

test case. Its output is not required by any other components in the solution or by a 

system output. Also it does not fulfil any of the required functionality and may be 

discarded. The second software component, Spark_Plug, has no source for its 

required interface. However its provided interface is used to activate the physical 

spark plugs. Note that a number of software components must be selected to fulfil the 

requirements outlined in the test case. 
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Tester 7: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.17171717    Test Case 2: Tester 7: Manual MethodTest Case 2: Tester 7: Manual MethodTest Case 2: Tester 7: Manual MethodTest Case 2: Tester 7: Manual Method    

 

Evaluation 

See Tester 4: AUTOMAP method. 
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B.2.3 Test Case 3 

 

Tester 1: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.18181818    Test Case 3: Tester 1: Manual MethodTest Case 3: Tester 1: Manual MethodTest Case 3: Tester 1: Manual MethodTest Case 3: Tester 1: Manual Method    
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Evaluation 

There are in total three required interfaces which have not been fulfilled in this 

solution. Note that Injection Control and EGR Control both require the interface 

Velocity Change. Two of the interfaces, Get_Coolant_Temp and Velocity_Change, 

may be fulfilled through the introduction of corresponding software components to 

measure coolant temperature and acceleration. There are also three provided 

interfaces which do not have a specific destination. These are the outputs of Lambda 

Sensor, Air Temperature Sensor and EGR Control. All of these provide data which is 

stated as being necessary for the fuel injection system outlined in Test Case 3. 

Therefore for a complete solution, the Injection Control software component should 

be replaced by one or more software components which take into account these 

factors. Note that the software components which calculate the air mass flow rate 

based on the speed density method should take the air inlet temperature as an input. 

However this was left out in error during creation of the components. 
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Tester 1: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.19191919    Test Case 3: Tester 1: AUTOMAP MethodTest Case 3: Tester 1: AUTOMAP MethodTest Case 3: Tester 1: AUTOMAP MethodTest Case 3: Tester 1: AUTOMAP Method    

 

Evaluation 

The Basic Engine Management software component does not adequately meet the 

requirements laid down in the test case and would need to be replaced. Both of its 

inputs are however provided by the test case and stated by the user. Both of its 

provided interfaces may be matched up later to the relevant actuator software 

components. However only Set_Injector_Solenoid is relevant to this test case.  The 

second software component Intake Manifold Air Mass Calculator 2 has three 

required interfaces, two of which are fulfilled by system inputs as specified by the 

user and in the test case. The third interface EGR_airflow requires that a software 

component be selected which provides the required information; for example the 

software component EGR Control illustrated in Figure B.18. This would in turn 

require that other components be selected to meet its requirements. The data 

provided by Intake Manifold Air Mass Calculator 2 is relevant to this test case and 

could be used by other components chosen to replace Basic Engine Management. 
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Tester 2: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.20202020    Test Case 3: Tester 2: Manual MethodTest Case 3: Tester 2: Manual MethodTest Case 3: Tester 2: Manual MethodTest Case 3: Tester 2: Manual Method    

 

Evaluation 

In this solution none of the inputs are provided by selected software components. 

The majority are fulfilled by inputs as specified in the test case requiring that the 

components be selected at another stage. Two of the required interfaces, 

Air_Mass_Flow_Rate and Velocity_Change have no source i.e. they are not provided 

by a test case input or a software component. The provided interface of the selected 

component may be used to transmit commands to fuel injection software components 

to activate the corresponding hardware. This is allowed for in the test case outputs. 

Note that this interface contains an extra data item Fuel_Injector_No which is used to 

indicate the injector which should be activated.  A number of extra software 

components must be selected to fulfil the requirements in the test case. 
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Tester 2: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.21212121    Test Case 3: Tester 2: AUTOMAP MethodTest Case 3: Tester 2: AUTOMAP MethodTest Case 3: Tester 2: AUTOMAP MethodTest Case 3: Tester 2: AUTOMAP Method    

 

Evaluation 

The majority of the selected software component’s interfaces have been met by the 

test case inputs and outputs and have also been specified by the tester as system 

inputs and outputs. The exception to this is the provided interface Set_Spark_Plug 

which is not required by this test case. However the Basic Engine Management 

software component will need to be replaced by a more suitable software component 

as it does not meet the majority of the requirements laid down in the test case. 
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Tester 3: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.22222222    Test Case 3: Tester 3: Manual MethodTest Case 3: Tester 3: Manual MethodTest Case 3: Tester 3: Manual MethodTest Case 3: Tester 3: Manual Method    

 

Evaluation 

The first software component listed i.e. EGR Monitor 1 is not required by this test 

case and may be discarded. This is also true of the Oil Temperature Sensor 

component. The only remaining required interface which does not have a source is 

the Injection Timing interface as used by Injection Timing Control. This will require 

another component to be selected which determines the injection timing i.e. the pulse 

width for the fuel injectors. This component in turn will require data from other 

software components e.g. air mass flow rate, lambda readings etc. Some of these will 

lead to a need for other software components. Again a software component which 

controls the fuel injector hardware will be needed.  
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Tester 3: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.23232323    Test Case 3: Tester 3: AUTOMAP MethodTest Case 3: Tester 3: AUTOMAP MethodTest Case 3: Tester 3: AUTOMAP MethodTest Case 3: Tester 3: AUTOMAP Method    

 

Evaluation 

Two software components have been selected which both calculate the air mass flow 

rate. These are Calc Air Mass 2 Vane Sensor and Intake Manifold Air Mass 

Calculator 2. The latter uses the speed density method as outlined in the test case. 

Therefore the former software component may be discarded. The remaining 

components form an effective core for the required system as they take into account 

exhaust gases and lambda data as outlined in the test case. However two of the 

required interfaces are unfulfilled requiring that additional software components be 

selected. Further all of the other inputs are fulfilled by user and test case specified 

system inputs. Components supplying this information will have to be selected at 

some point e.g. during development of other systems. Also a fuel injector software 

component will need to be selected. 
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Tester 4: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.24242424    Test Case 3: Tester 4: Manual MethodTest Case 3: Tester 4: Manual MethodTest Case 3: Tester 4: Manual MethodTest Case 3: Tester 4: Manual Method    

 

Evaluation 

To candidate solutions were chosen by the tester. Both of these require the same 

inputs. In both cases all of the required interfaces with the exception of 

Air_Mass_Flow_Rate and Velocity_Change are fulfilled by test case inputs as 

opposed to components selected by the user. Injection Control 1 provides data which 

may be used by an injector software component. Injection Timing Calculator 1 

transmits data relating to the opening duration of fuel injection solenoids. An 

intermediary software component must be selected to use this data and in turn 

activate the solenoids via other dedicated fuel injector software components. Both 

cases will require fuel injector components. 
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Tester 4: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.25252525    Test Case 3: Tester 4: ATest Case 3: Tester 4: ATest Case 3: Tester 4: ATest Case 3: Tester 4: AUTOMAP MethodUTOMAP MethodUTOMAP MethodUTOMAP Method    

 

Evaluation 

The majority of required interfaces in this solution are provided either by software 

components within the solution. Throttle_Position as required by Injection Control is 

supplied by a user and test case specified system input. An acceleration sensor 

software component must be selected to fulfil the interface - Velocity_Change. The 

interface EGR airflow requires data from an EGR control software component. If 

EGR Control as used in Figure B.18 is selected then the only one extra software 

component is needed to fulfil its required interfaces - a coolant temperature sensor 
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component. All other required data is present in the solution. Again a fuel injector 

software component will need to be selected at some point. In order to meet the 

requirements laid down Injection Control I would need to be replaced by a similar 

software component such as Injection Timing Calculator which takes into account 

lambda corrections to the fuel mix. This has the same interfaces as Injection Control 

1 only requiring the addition of a lambda sensor software component. 
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Tester 5: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.26262626    Test Case 3: Tester 5: Manual MethodTest Case 3: Tester 5: Manual MethodTest Case 3: Tester 5: Manual MethodTest Case 3: Tester 5: Manual Method    

 

Evaluation 

This solution is almost identical to the solution presented by Tester 1: Manual 

Method. The only difference is the lack of a software component to determine the 

intake manifold pressure in this solution. Therefore if the MAP Sensor component is 

added then the work which must be carried out on this solution to meet the 

requirements from the test case is identical to that outlined for Tester 1: Manual 

Method.  
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Tester 5: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.27272727    Test Case 3: Tester 5: AUTOMAP MethodTest Case 3: Tester 5: AUTOMAP MethodTest Case 3: Tester 5: AUTOMAP MethodTest Case 3: Tester 5: AUTOMAP Method    

 

 

 

Evaluation 

This is almost a complete solution. Two required interfaces have not been fulfilled. 

The first is Velocity_Change which may be met through the addition of an 

acceleration sensor software component. The second, EGR airflow, may be fulfilled 

by adding the EGR Control software component. This in turn will require the 

addition of a coolant temperature sensor component. The majority of the inputs to 

this system are provided by test case inputs. A fuel injector solenoid software 

component should also be selected. 
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Tester 6: Manual Method 

 
Fig Fig Fig Fig B.B.B.B.28282828    TTTTest Case 3: Tester 6: Manual Methodest Case 3: Tester 6: Manual Methodest Case 3: Tester 6: Manual Methodest Case 3: Tester 6: Manual Method    

 

Evaluation 

In this solution all of the software components with the exception of Injection 

Control receive their required data via hardware.  All of Injector Control’s fulfilled 

interfaces have been met by test case inputs rather than by selected software 

components. It does have two required interfaces which have not been met. The first, 

Air_Mass_Flow_Rate may be fulfilled by a number of software components. These 

mainly take data provided as test case inputs or by software components in this 

system as their inputs. The most relevant ones also take EGR airflow as an input 

which will require further components to be selected. The only software component 

whose provided interface does not have a stated destination is Air Temperature 

Sensor. This data should be used by a software component which calculates air mass 

flow rate. However such an input has been omitted in error from the relevant 

components. Note that a fuel injector software component will also need to be 

selected. 
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Tester 6: AUTOMAP Method 

 
Fig Fig Fig Fig B.B.B.B.29292929    Test Case 3: Tester 6: AUTOMAP MethodTest Case 3: Tester 6: AUTOMAP MethodTest Case 3: Tester 6: AUTOMAP MethodTest Case 3: Tester 6: AUTOMAP Method    

 

 

Evaluation 

The software component Spark_Plug 1 is not required by this test case and may be 

discarded. The majority of the remaining inputs are met by test case or user specified 

inputs or by hardware as is the case for Crankshaft Position Sensor. There are two 

unfulfilled required interfaces: Air_Mass_Flow_Rate and Velocity_Change. These 

may be fulfilled through additional software components as shown in Tester 6: 

Manual Method. Note also that as with the manual method, the Injection Control 

software component will have to be replaced with ones which take into account 

lambda readings and EGR airflow. 
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Tester 7: Manual Method  

 
Fig Fig Fig Fig B.B.B.B.30303030    Test Case 3: Tester 7: Manual MethodTest Case 3: Tester 7: Manual MethodTest Case 3: Tester 7: Manual MethodTest Case 3: Tester 7: Manual Method    
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Evaluation 

Two of the selected software components – Engine Monitor System 2 and EGR 

Monitor are not needed for this test case and may be discarded. There are now two 

remaining required interfaces which have not been fulfilled. These are 

Velocity_Change and Air_Mass_Flow_Rate. As with other solutions 

Velocity_Change may be fulfilled through the introduction of an acceleration sensor 

software component. The interface Air_Mass_Flow_Rate may be fulfilled using a 

software component which calculates this value such as Intake Manifold Air Mass 

Calculator 2 and a corresponding MAP sensor component. This should provide a 

destination for the Air Temperature Sensor software component’s output. However 

as has already been pointed out, a number of components which should take this 

information are missing the required interface due to an error during development. In 

order to fulfil the requirements for EGR control and lambda corrections to the fuel 

mix Injection Timing Calculator 1 would need to be replaced with a number of 

components which provide this missing functionality. Finally injector software 

components need to be selected at some point during the development cycle. 
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Tester 7: AUTOMAP Method  

 
Fig Fig Fig Fig B.B.B.B.31313131    Test Case 3: Tester 7: AUTOMAP MethodTest Case 3: Tester 7: AUTOMAP MethodTest Case 3: Tester 7: AUTOMAP MethodTest Case 3: Tester 7: AUTOMAP Method    
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components need to be introduced to calculate the air mass flow rate and from this 

determine the injection timing e.g. Intake Manifold Air Mass Calculator 2 and 

Injection Timing Calculator. The former will require a MAP sensor software 

component or some equivalent. If these are added then all of the unfulfilled 

interfaces will be met. 
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.C.   

 

 

Appendix C: Source Code 
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