

WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy

__

MMAAPPPPIINNGG RREEQQUUIIRREEMMEENNTTSS TTOO AAUUTTOOSSAARR

SSOOFFTTWWAARREE CCOOMMPPOONNEENNTTSS

__

GGaarreetthh LLeeppppllaa BB..SScc.. ((HHoonnss))

MM..SScc..

SSuuppeerrvviissoorr:: BBrreennddaann JJaacckkmmaann BB..SScc..,, MM..TTeecchh..

SSuubbmmiitttteedd ttoo WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy

AAwwaarrddss CCoouunncciill,, JJuunnee 22000088

 I

AACCKKNNOOWWLLEEDDGGEEMMEENNTT

This thesis would have been impossible without the help of the following people.

I would like to thank Mr. Brendan Jackman for his support and guidance throughout

this project.

I would like to thank the members of the Automotive Control Group for their advice

and help.

�� DDaavviidd PPoowweerr,, GGrroouupp SSuuppeerrvviissoorr,, DDeeppaarrttmmeenntt ooff CCoommppuuttiinngg,, MMaatthhss &&

PPhhyyssiiccss,, WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy

�� FFrraannkk WWaallsshh,, GGrroouupp SSuuppeerrvviissoorr,, DDeeppaarrttmmeenntt ooff CCoommppuuttiinngg,, MMaatthhss &&

PPhhyyssiiccss,, WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy

�� KKeevviinn MMuulllleerryy,, GGrroouupp MMeemmbbeerr,, DDeeppaarrttmmeenntt ooff CCoommppuuttiinngg,, MMaatthhss &&

PPhhyyssiiccss,, WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy..

�� ZZhhuu WWeeii DDaa,, GGrroouupp MMeemmbbeerr,, DDeeppaarrttmmeenntt ooff CCoommppuuttiinngg,, MMaatthhss && PPhhyyssiiccss,,

WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy..

�� RRiicchhaarrdd MMuurrpphhyy,, GGrroouupp MMeemmbbeerr,, DDeeppaarrttmmeenntt ooff CCoommppuuttiinngg,, MMaatthhss &&

PPhhyyssiiccss,, WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy..

�� RRoobbeerrtt SShhaaww,, GGrroouupp MMeemmbbeerr,, DDeeppaarrttmmeenntt ooff CCoommppuuttiinngg,, MMaatthhss && PPhhyyssiiccss,,

WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy..

�� JJoohhnn WWaallsshh,, GGrroouupp MMeemmbbeerr,, DDeeppaarrttmmeenntt ooff CCoommppuuttiinngg,, MMaatthhss && PPhhyyssiiccss,,

WWaatteerrffoorrdd IInnssttiittuuttee ooff TTeecchhnnoollooggyy..

I would also like to thank the various industry partners and academic staff who

participated in the testing process.

Finally I would like to thank my parents, and God “In Him we live and move and

have our being”.

 II

DDEECCLLAARRAATTIIOONN

II,, GGaarreetthh LLeeppppllaa ddeeccllaarree tthhaatt tthhiiss tthheessiiss iiss ssuubbmmiitttteedd bbyy mmee iinn ppaarrttiiaall ffuullffiillllmmeenntt ooff

tthhee rreeqquuiirreemmeenntt ffoorr tthhee ddeeggrreeee MM..SScc..,, iiss eennttiirreellyy mmyy oowwnn wwoorrkk eexxcceepptt wwhheerree

ootthheerrwwiissee aaccccrreeddiitteedd.. IItt hhaass nnoott aatt aannyy ttiimmee eeiitthheerr wwhhoollee oorr iinn ppaarrtt bbeeeenn ssuubbmmiitttteedd ffoorr

aannyy ootthheerr eedduuccaattiioonnaall aawwaarrdd..

SSiiggnnaattuurree:: __

GGaarreetthh LLeeppppllaa
SSeepptteemmbbeerr 2255tthh,, 22000088..

 II

AABBSSTTRRAACCTT

Title: Mapping Requirements to AUTOSAR Software Components

Author: Gareth Leppla

Modern automotive electrical and electronic systems are rapidly growing in
complexity. An increase in the number of systems under electronic control has led to
a corresponding increase in the complexity of the deployed software. AUTOSAR has
been developed as a means of managing this complexity through a standardised
architecture which separates an application from its infrastructure. Reusable software
components constitute the application logic of an AUTOSAR-based system.
However a major problem which faces AUTOSAR and component-based software
engineering in general is the difficulty in selecting components which fulfil the
system requirements. This thesis presents a framework which allows requirements to
be mapped directly to software components. It includes the results from a study
which was carried out in conjunction with automotive and software engineering
experts to test the framework.

 III

TTAABBLLEE OOFF CCOONNTTEENNTTSS

AACCKKNNOOWWLLEEDDGGEEMMEENNTT .. I
DDEECCLLAARRAATTIIOONN ..II
AABBSSTTRRAACCTT...II
TTAABBLLEE OOFF FFIIGGUURREESS ..VII
TTAABBLLEE OOFF TTAABBLLEESS... X
Section 1: Introduction...1
Chapter 1. Thesis Introduction ..2

1.1 Problem Specification ...2
1.2 Research Questions...3
1.3 Thesis Overview ...3

Section 2: Literature Review..5
Chapter 2. Vehicle Electrical/Electronic Architecture..6

2.1 Overview ..6
2.2 Electric & Electronic Architectures ...9

2.2.1 Electronic Control Units...10
2.2.2 Communications Networks ..12
2.2.3 Gateways ...19

2.3 Summary ..21
2.4 Relevance to Research ..21
22..55 RReeffeerreenncceess ..22

Chapter 3. Automotive Software Development ...24
3.1 Overview ..24
3.2 Development Processes...25

3.2.1 The V-Model..25
3.2.2 Model Based Software Development..26

3.3 Development Tools...27
3.3.1 Modelling Tools...28
3.3.2 Code Generators...30
3.3.3 Hardware In The Loop Simulation ...30

3.4 Standardisation ...31
3.4.1 Diagnostics Tool Support ...32
3.4.2 Diagnostic Protocols ..33
3.4.3 Operating System...34
3.4.4 Architecture ...35

3.5 Summary ..36
3.6. Relevance To Research ..36
3.7 References ..37

Chapter 4. AUTOSAR..39
4.1 Introduction ..39
4.2 Virtual Functional Bus (VFB) ...40

4.2.1 Communications Mechanisms..41
4.2.2 Basic Software ...43

4.3 Runtime Environment (RTE) ..47
4.3.1 RTE Generation ...47

4.4 Software Component ..48
4.4.1 Atomicity of Software Components..48
4.4.2 Compositions ...49
4.4.3 Sensor/Actuator Components ...50

 IV

4.4.4 Communications Modes...51
4.4.5 Communication Attributes ...52
4.4.6 Internal Behaviour..53

4.5 AUTOSAR Development Process...56
4.6 Summary ..57
4.7 Relevance to Research ..58
4.8 References ..59

Chapter 5. Software Reuse ...60
5.1 Introduction ..60
5.2 Reuse Strategies..61

5.2.1 Code Reuse ..61
5.2.2 Design/Architectural Reuse ..64
5.2.3 Requirements Reuse...65

5.3 Software Reuse Practices ..66
5.3.1 Software Components ..67
5.3.2 Software Product Lines ..67
5.3.3 Domain Analysis..70
5.3.4 Model Driven Architecture (MDA) ..72

5.4 MDA and the AUTOSAR Build Process...79
5.5 MDA and Simulink/TargetLink ..81
5.6 Summary ..83
5.7 Relevance to Research ..83
5.8 References ..84

Chapter 6. Component-Based Software Engineering ...86
6.1 Overview ..86
6.2 Software Components ...86

6.2.1 Interfaces ...87
6.2.2 Component Model..89
6.2.3 Components versus Objects..89

6.3 Benefits & Challenges of CBSE..90
6.3.1 Benefits..90
6.3.2 Challenges of CBSE...91

6.4 Component Identification, Selection and Storage ..93
6.4.1 Classifying Components...93
6.6.2 Matching Components to Requirements ... 101

6.5 Summary .. 107
6.6 Relevance To Research ... 107
6.7 References .. 109

Chapter 7. Requirements Engineering .. 111
7.1 Overview .. 111
7.2 Requirements .. 111
7.3 Requirements Engineering .. 113

7.3.1 Elicitation... 113
7.3.2 Requirements Analysis & Negotiation.. 116
7.3.3 Requirements Validation .. 116
7.3.4 Evolution of Requirements... 118

7.4 Automotive Requirements Engineering... 118
7.4.1 Factors Influencing Requirements .. 118
7.4.3 Industrial Practice .. 119

7.5 Representing Requirements... 122

 V

7.5.1 Data-Flow Diagrams .. 122
7.5.2 The Unified Modelling Language... 124
7.5.3 Controlled Requirements Expression.. 128

7.6 Summary .. 133
7.7 Relevance to Research .. 133
7.8 References .. 134

Chapter 8. Literature Review Summary ... 135
Section 3: Implementation.. 137
Chapter 9. Framework Development .. 138

9.1 Introduction .. 138
Chapter 10. Software Component Identification .. 142

10.1 Introduction .. 142
10.2 Identification Scheme Requirements ... 142
10.3 Selection of Component Identification Scheme ... 144
10.4 Implementation of Facet-Based Classification... 146

10.4.1 Facet Candidates from Component Description File 146
10.4.2 Facets Based on CORE .. 150
10.4.3 Implementation Example.. 153

10.5 Summary .. 157
10.6 References .. 158

Chapter 11. Mapping Requirements to Components.. 159
11.1 Introduction .. 159
11.2 Requirements for Requirements Specifications ... 159
11.3 Selection of Requirements Specification Scheme 160
11.4 Describing Requirements with Facets.. 162
11.5 Building a Modified Use Case... 164

11.5.1 Informal Requirements Document.. 164
11.5.2 Extracting Requirements .. 165
11.5.3 Mapping Requirements to Facets.. 168

11.6 Mapping Process... 172
11.6.1 Mapping Example .. 172

11.7 Summary .. 175
11.8 References .. 176

Chapter 12. Domain Analysis... 177
12.1 Introduction .. 177
12.2 Design Class Diagrams ... 178
12.3 Spark Ignition Engines.. 181

12.3.1 Fuel Injection ... 181
12.3.2 Lambda Control ... 183
12.3.3 EGR Control .. 183
12.3.4 Ignition Timing Control ... 184
12.3.5 Engine Control System Example .. 184

12.4 Domain Models .. 185
12.4.1 Initial Domain Models.. 186
12.4.2 Refined Domain Models... 191

12.5 Summary .. 202
12.6 References .. 203

Chapter 13. Software Tool ... 204
13.1 Introduction .. 204
13.2 The Need for Tool Support ... 204

 VI

13.3 AUTOMAP .. 206
13.3.1 Use Case .. 208
13.3.2 Facet Repository .. 209
13.3.3 Software Component Repository .. 212
13.3.4 Software Component Selection... 214
13.3.5 Selected Components ... 218

13.4 Summary .. 219
13.5 References .. 220

Section 4: Results and Analysis.. 221
Chapter 14. Testing .. 222

14.1 Introduction .. 222
14.2 Testing Process ... 222

14.2.1 Recording of Metrics.. 223
14.2.3 Workflow... 225
14.2.4 Test Cases .. 226
14.2.5 Testers.. 235

14.3 Summary .. 236
Chapter 15. Analysis... 237

15.1 Introduction .. 237
15.2 Selected Software Components ... 237
15.3 Logged Metrics... 239

15.3.1 Timing and Viewing Data .. 240
15.3.2 Solution Requirements ... 244
15.3.3 Use Cases... 248

15.4 Tester Opinions... 255
Section 5: Conclusion ... 256
Chapter 16. Conclusion .. 257
Section 6: Appendices... 262
Appendix A: XML Schemas... 263

A.1 Facet Repository Schema ... 263
A.2 Component Description Repository Schema... 267

Appendix B: Detailed Results .. 269
B.1 Selected Software Components .. 269

B.2.1 Test Case 1 .. 271
B.2.2 Test Case 2 .. 272
B.2.3 Test Case 3 .. 286

Appendix C: Source Code .. 304
BBIIBBLLIIOOGGRRAAPPHHYY .. 305

 VII

TTAABBLLEE OOFF FFIIGGUURREESS

Fig 2.1 Milestones in Automotive E&E Development...8
Fig 2.2 Automotive Electric and Electronic Architecture ..9
Fig 2.3 Automotive Electric and Electronic Architecture ..10
Fig 2.4 ECU Architecture ...11
Fig 2.5 CAN Bus Topology ..13
Fig 2.6 FlexRay Bus Configuration...15
Fig 2.7 Single Channel Hybrid Topology..15
Fig 2.8 FlexRay Communications Cycle...16
Fig 2.9 FlexRay Communications Cycle Timing...17
Fig 2.10 LIN Network ..18
Fig 2.11 LIN Communications Example...18
Fig 2.12 Network Gateway ...20
Fig 3.1 V-Model ...25
Fig 3.2 Simulink...29
Fig 3.3 HIL Simulator ..31
Fig 3.4 Abstracted view of AUTOSAR Architecture ..35
Fig 4.1 Abstracted view of AUTOSAR Architecture ..40
Fig 4.2 Virtual Functional Bus..41
Fig 4.3 VFB Communications Mechanisms..42
Fig 4.4 AUTOSAR Architecture Layers ...43
Fig 4.5 Logical View of a Composition ..50
Fig 4.5 Implementation of a Composition ...50
Fig 4.6 Client-Server Communication...51
Fig 4.7 Sender-Receiver Communication..52
Fig 4.8 SPEM Blocks ...56
Fig 4.9 AUTOSAR Methodology ...56
Fig 5.1 Product Line Architecture...68
Fig 5.2 Text-Based Domain Model ...71
Fig 5.3 UML-Based Domain Model ...71
Fig 5.4 Engine Management Domain Analysis ...72
Fig 5.5 Fuel Injector PIM ...74
Fig 5.6 MDA Transformations..75
Fig 5.7 Multiple MDA Transformations ...75
Fig 5.8 Comparison of AUTOSAR and MDA ..81
Fig 5.9 Comparison of Simulink/TargetLink and MDA ..82
Fig 6.1 Air Conditioning Unit Software Components..87
Fig 6.2 Component Interfaces ...88
Fig 6.3 Binary Logic Tree...94
Fig 6.4 Poly Logic Tree ..94
Fig 6.5 N-Tree..95
Fig 6.6 Mono-Code ..96
Fig 6.7 Design Space .. 101
Fig 6.8 AND/OR Tree .. 104
Fig 6.9 ADIPS Framework ... 106
Fig 7.1 Industrial Practice Flowchart .. 121
Fig 7.2 Context-Level DFD .. 123
Fig 7.3 Decomposition of Context-Level DFD.. 123

 VIII

Fig 7.4 Expanded Use Case .. 125
Fig 7.5 Conceptual Model... 127
Fig 7.6 Viewpoint Structural Model.. 128
Fig 7.7 Viewpoint Diagram .. 130
Fig 7.8 Data Structure Diagram .. 130
Fig 7.9 Action and Dataflows ... 131
Fig 7.10 Iteration and Selection Control Blocks.. 131
Fig 7.11 Fuel Injector Thread Diagram ... 132
Fig 9.1 Framework Development Flowchart ... 141
Fig 10.1 Components With Identical Functionality ... 147
Fig 10.2 Framework Applied to Potential Development Process 150
Fig 10.3 Modified Viewpoint Diagram ... 151
Fig 10.4 Temperature Sensor Software Component .. 154
Fig 10.5 Describing Component with Facets... 156
Fig 11.1 Modified Use Case ... 163
Fig 11.2 Informal Requirements Document .. 165
Fig 11.3 HVAC Use Case... 171
Fig 11.4 Cabin Temperature Control Use Case ... 173
Fig 11.5 System with Multiple Components ... 174
Fig 12.1 Employee Class .. 178
Fig 12.2 Association Between Classes .. 179
Fig 12.3 Aggregation .. 179
Fig 12.4 Generalisation... 180
Fig 12.5 SI Engine Example ... 185
Fig 12.6 SI Engine Class Diagram .. 187
Fig 12.7 Fuel System Class Diagram .. 189
Fig 12.8 Ignition System Class Diagram... 190
Fig 12.9 Physical Quantity Class Diagram.. 191
Fig 12.10 AUTOSAR Class Diagram ... 193
Fig 12.11 Refined Physical Quantity Class Diagram... 200
Fig 13.1 AUTOMAP Structure ... 207
Fig 13.2 Use Case Form ... 208
Fig 13.3 AUTOSAR Section of Facet Repository ... 211
Fig 13.4 PHYSICAL-QUANTITY Section of Facet Repository 211
Fig 13.5 Facet Repository ... 212
Fig 13.6 Software Component Repository .. 214
Fig 13.7 Selection Algorithm.. 217
Fig 13.8 Results Form .. 218
Fig 14.1 Component Viewer Application.. 224
Fig B.1 Main Elements ... 270
Fig B.2 Test Case 1: Solution 1 .. 271
Fig B.2 Test Case 1: Solution 2 .. 271
Fig B.4 Test Case 2: Tester 1: Manual Method ... 272
Fig B.5 Test Case 2: Tester 1: AUTOMAP Method.. 273
Fig B.6 Test Case 2: Tester 2: Manual Method ... 274
Fig B.7 Test Case 2: Tester 2: AUTOSAR Method... 275
Fig B.8 Test Case 2: Tester 3: Manual Method ... 276
Fig B.9 Test Case 2: Tester 3: AUTOMAP Method.. 277
Fig B.10 Test Case 2: Tester 4: Manual Method ... 278
Fig B.11 Test Case 2: Tester 4: AUTOMAP Method .. 279

 IX

Fig B.12 Test Case 2: Tester 5: Manual Method ... 280
Fig B.13 Test Case 2: Tester 5: AUTOMAP Method .. 281
Fig B.14 Test Case 2: Tester 6: Manual Method ... 282
Fig B.15 Test Case 2: Tester 6: AUTOMAP Method .. 283
Fig B.16 Test Case 2: Tester 7: AUTOMAP Method .. 284
Fig B.17 Test Case 2: Tester 7: Manual Method ... 285
Fig B.18 Test Case 3: Tester 1: Manual Method ... 286
Fig B.19 Test Case 3: Tester 1: AUTOMAP Method .. 288
Fig B.20 Test Case 3: Tester 2: Manual Method ... 289
Fig B.21 Test Case 3: Tester 2: AUTOMAP Method .. 290
Fig B.22 Test Case 3: Tester 3: Manual Method ... 291
Fig B.23 Test Case 3: Tester 3: AUTOMAP Method .. 292
Fig B.24 Test Case 3: Tester 4: Manual Method ... 293
Fig B.25 Test Case 3: Tester 4: AUTOMAP Method .. 294
Fig B.26 Test Case 3: Tester 5: Manual Method ... 296
Fig B.27 Test Case 3: Tester 5: AUTOMAP Method .. 297
Fig B.28 Test Case 3: Tester 6: Manual Method ... 298
Fig B.29 Test Case 3: Tester 6: AUTOMAP Method .. 299
Fig B.30 Test Case 3: Tester 7: Manual Method ... 300
Fig B.31 Test Case 3: Tester 7: AUTOMAP Method .. 302

 X

TTAABBLLEE OOFF TTAABBLLEESS

Table 6.1 Polycode Example ..96
Table 10.1 Component Selection and Identification Scheme Ranking................... 144
Table 10.1 Summary of Facets.. 153
Table 10.2 Action Facets .. 153
Table 10.3 Signal Facets... 154
Table 10.4 Physical-Quantity Facets ... 154
Table 11.1 Action Facets .. 168
Table 11.2 Signal Facets... 169
Table 11.3 Physical-Quantity Facets ... 169
Table 11.3 Mapping HVAC Actions to Action Facets... 170
Table 11.4 Mapping HVAC Signal to Signal Facets ... 170
Table 11.5 Component Repository.. 173
Table 11.5 Selecting Components... 174
Table 12.1 AUTOSAR Facets... 199
Table 12.2 Physical-Quantity Facets ... 201
Table 15.1 Effort To Realise Solutions ... 238
Table 15.2 Test Case 1 Timing & Viewing Data... 240
Table 15.3 Test Case 2 Timing & Viewing Data... 242
Table 15.4 Test Case 3 Timing & Viewing Data... 243
Table 15.5 Test Case 1 Solution Requirements ... 245
Table 15.6 Test Case 2 Solution Requirements ... 246
Table 15.7 Test Case 3 Solution Requirements ... 247
Table 15.8 Test Case 1 Use Case Requirements.. 249
Table 15.9 Test Case 1 Use Case Incorrect and Extra Requirements 249
Table 15.10 Test Case 1 Use Case Signals .. 249
Table 15.11 Test Case 2 Use Case Primary and Secondary Requirements............. 251
Table 15.11 Test Case 2 Use Case Incorrect and Extra Requirements 251
Table 15.12 Test Case 2 Use Case Signals .. 251
Table 15.13 Test Case 3 Use Case Primary and Secondary Requirements............. 253
Table 15.14 Test Case 3 Use Case Incorrect, Extra and Duplicate Requirements .. 253
Table 15.15 Test Case 3 Use Case Signals .. 253

 1

Section 1: Introduction

 TTHHEESSIISS IINNTTRROODDUUCCTTIIOONN

 2

 1.

Thesis Introduction

1.1 Problem Specification

The use of embedded software in the automotive industry has grown rapidly in recent

years. There is now a wide range of vehicle functions under computer control: from

engine management to air conditioning, entertainment to anti-lock brakes and so on.

Coupled with this increasing complexity is the challenge of reducing development

time for new vehicles.

AUTOSAR (AUTomotive Open System ARchitecture) attempts to meet this

challenge by providing a means of managing the increased complexity of embedded

automotive systems. AUTOSAR completely separates an application from its

infrastructure. This means that an application, air conditioning for example, can

initially be deployed on a particular type of Electronic Control Unit (ECU) and then

later redeployed on a totally different type of ECU. The application is not concerned

with the implementation details of the infrastructure such as ECU hardware,

communications networks, the operating system etc.

The application is made up of software components which are discrete pieces of code

offering one or more pieces of functionality. These communicate with each other and

system services via well-defined communications interfaces. An application can be

created by selecting components with the required functionality from a library of

software components. This is not a trivial task even if the repository is relatively

small. The developer needs an effective means of matching their requirements to the

 TTHHEESSIISS IINNTTRROODDUUCCTTIIOONN

 3

stored software components. This thesis addresses this problem in the context of

automotive application development using AUTOSAR.

1.2 Research Questions

� What level of specification is needed to adequately document the

functionality of AUTOSAR software components to facilitate reuse within

the automotive industry?

� How should requirements be structured to facilitate their matching to

available software components?

� What level of process improvement can be achieved by automated matching

of application requirements to available components, compared to a manual

matching process?

1.3 Thesis Overview

This thesis is broken up into four main sections as follows:

1. Introduction

This section describes the background for the research and the research

questions. It also presents an overview of the thesis.

2. Literature Review

The literature review describes the areas of interest which this research

examines. These are as follows:

� Vehicle Electric/Electronic Architecture

� Automotive Software Development

� Software Reusability

� Component-Based Software Engineering

 TTHHEESSIISS IINNTTRROODDUUCCTTIIOONN

 4

� AUTOSAR

Following this, a summary of the literature review is provided.

3. Implementation

The implementation section describes the process carried out to develop a

framework for mapping requirements to AUTOSAR components and the

methods used to test this approach. It also presents a description of the

research methodology adopted.

4. Results and Analysis

This section contains the results obtained during testing of the process

developed in the previous section. It contains an analysis of the results along

with a set of conclusions and recommendations based on these results.

 5

Section 2: Literature

Review

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 6

 .2.

Vehicle Electrical/Electronic

Architecture

2.1 Overview

As with so many other inventions, the introduction of the automobile was fuelled by

a military need. Around 1769 a French military engineer, Nicholas Joseph Cugnot,

developed a steam-driven vehicle to pull artillery pieces. Cugnot was followed by

men such as James Watt and Richard Trevithick, who developed steam as a form of

power (Gillespie 1992). The steam-powered engine went on to power the industrial

revolution.

It was not until 1886 that the first practical gasoline powered automobiles were

created. Karl Benz and Gottlieb Daimler both developed their own versions

independently. The automobile continued to evolve throughout the late 19th and early

20th centuries. At the turn of the 20th century Henry Ford made a giant leap forward

when he introduced the production line to produce the Model T Ford. This had a

great effect not only on the automotive industry, but on manufacturing as a whole.

The next great revolution in the automotive industry came about in 1962 when

General Motors introduced a transistorized ignition system. This followed on from

two previous developments – the transistor, developed in 1948, and the integrated

circuit in 1959 (Chowanietz 1995). Shortly thereafter, further advances were made in

areas such as fuel injection (developed by Bosch in 1967), cruise control and anti-

lock braking systems (ABS). These were based around simple analogue circuits.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 7

Microprocessors were first used in a General Motors ignition control system in 1976.

This had the effect of allowing better control of ignition timing and hence increased

engine output and efficiency and reduced emissions (Chowanietz 1995). Soon other

manufacturers began to follow General Motor’s example. This was largely motivated

by the need to conform to new emissions legislation such as the US Clean Air Act of

1971.

Early automotive electrical and electronic systems consisted of a set of independent

Electronic Control Units (ECUs) tied to specific subsystems. For example, one ECU

might control engine management while another might control ABS. There was no

interaction between ECUs. This changed with the introduction of networking

technologies such as Controller Area Network (CAN) in the early 1990s. Now

various systems could communicate and work together to add new levels of

functionality. For example, a traction control system utilises functions from both the

powertrain and the chassis subsystems (Schäuffle and Zurawka 2003). It works by

exchanging information between these two subsystems across a vehicle network.

A trend which has emerged in the last couple of decades is the move towards

standardisation of many parts of vehicle electrical and electronic architectures. In the

early 1994 two consortia of organisations involved in the automotive industry

merged to form the OSEK/VDX steering community (Lemieux 2001, p.2).

OSEK/VDX comprises four main standards: an operating system, communication,

network management and an OSEK implementation language (OIL) (Lemieux

2001a). Later, in 2003 AUTOSAR (Automotive Open Systems Architecture) was

founded by an association of carmakers and automotive suppliers. Their aim was to

provide a standard software architecture and development interfaces for in-vehicle

electronic systems (AUTOSAR GbR 2006c). Tier 1 suppliers often have to develop

multiple versions of systems with essentially the same functionality. The cost of this

is then be passed on to each OEM. AUTOSAR allows OEMs and Tier 1 suppliers to

collaborate on common basic functions which had previously been implemented

differently for each OEM. The time and money previously spent on these functions

would be released for the development of competitive innovative functionality. In

May 2006 release 2.0 of the AUTOSAR specifications was published. This was

followed in December 2006 by release 2.1 (AUTOSAR GbR 2006d).

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 8

Standardisation efforts are not confined just to the electronics physically located

within a vehicle. Diagnostics for example, have also seen moves towards

standardisation. The ODX or Open Diagnostics Data Exchange defines a standard

means of specifying diagnostics and programming data to allow it to be transferred

between system suppliers, vehicle manufacturers and service dealerships (Augustin,

Backmeister et al. 2006). Version 2.1.0 was released in 2006 (Kricke 2007). These

milestones are illustrated graphically in Figure 2.1.

Fig 2.1 Milestones in Automotive E&E DevelopmentFig 2.1 Milestones in Automotive E&E DevelopmentFig 2.1 Milestones in Automotive E&E DevelopmentFig 2.1 Milestones in Automotive E&E Development

Modern electronic systems have grown vastly in size and scope. For example, in

1955, a vehicle might have had around 45 metres of wiring. Now, modern high-end

vehicles can have more than 4 kilometres of wiring. Furthermore, it has been

estimated by analysts that over eighty percent of innovation in the automotive

industry comes from electronics (Leen and Heffernan 2002, p.88-93). The diagram in

Figure 2.2 effectively captures some of the complexity involved in a modern

vehicle’s electronic systems.

1769176917691769
Cugnot
develops
steam-
powered

vehicle

1886188618861886
Benz and
Daimler

Independently
develop
gasoline
powered

vehicles

1962196219621962
General
Motors
introduce

transistorised
ignition

system

1967196719671967
Bosch
develop

electronic fuel

injection

Early 1990sEarly 1990sEarly 1990sEarly 1990s
Introduction

of CAN

2003200320032003
Launch of
AUTOSAR

partnership

1994199419941994
Founding of
OSEK/VDX
Steering

Committee

2006200620062006
Release of

ODX
Specification

Version 2.1.0

1971197119711971
General
Motors
introduce

microprocessor
-based ignition

system

May 2006May 2006May 2006May 2006
AUTOSAR

Release 2.0 is
published

December December December December
2006200620062006

AUTOSAR
Release 2.1 is

published

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 9

Fig 2.2Fig 2.2Fig 2.2Fig 2.2 Automotive Electric and Electronic Architecture Automotive Electric and Electronic Architecture Automotive Electric and Electronic Architecture Automotive Electric and Electronic Architecture

(Leen and Heffernan 2002, p.88-93)

It should be noted that Figure 2.2 is actually only a sub-set of the electronic

architecture in a modern vehicle. In reality the systems are much more complex,

containing significantly more control units and network connections. The following

section gives a breakdown of the components which make up a vehicle’s electrical

and electronic architecture.

2.2 Electric & Electronic Architectures

A modern automotive electric and electronic architecture consists of the following

items which are also illustrated in Figure 2.3:

� ECUs: Microcontrollers which run software to control some sub-function of

a vehicle.

� Communications Networks: These transmit data among ECUs and also

between the ECUs and their associated sensors and actuators.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 10

� Sensors: Hardware used to measure a physical quantity e.g. engine coolant

temperature or crankshaft speed. These are the inputs to an automotive

electric and electronic system.

� Actuators: Hardware used to physically control or influence some physical

aspect of an automotive system e.g. fuel injectors, spark plugs.

Fig 2.3 Automotive Electric and Electronic ArchitectureFig 2.3 Automotive Electric and Electronic ArchitectureFig 2.3 Automotive Electric and Electronic ArchitectureFig 2.3 Automotive Electric and Electronic Architecture

Sensors and actuators are relatively straightforward. ECUs and communications

networks however require a more thorough examination.

2.2.1 Electronic Control Units

Electronic Control Units or ECUs (sometimes referred to as Electronic Control

Modules or ECMs) are at the heart of automotive electronic systems. An ECU is

essentially a computer made up of hardware and software which implements some

automotive function to be controlled or monitored. The following is an overview of

the main components which make up an ECU (Bonnick 2001):

• A Central Processing Unit (CPU)

• Input/Output (I/O) devices

• Memory

ECUECUECUECU

ECUECUECUECU

Engine

Communications Network

Wheel SWheel SWheel SWheel Speed Sensorpeed Sensorpeed Sensorpeed Sensor

Spark PlugSpark PlugSpark PlugSpark Plug Actuator Actuator Actuator Actuator

GatewayGatewayGatewayGateway

Communications Network

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 11

• A program

• A clock

These are illustrated in Figure 2.4:

FigFigFigFig 2.4 ECU Architecture2.4 ECU Architecture2.4 ECU Architecture2.4 ECU Architecture

1. Central Processing Unit

A Central Processing Unit or CPU is the brains of an ECU. It is the area of an ECU

where data processing, mathematical operations, decision making and control signal

generation are carried out (Boehmer 1999). The CPU executes the instructions

contained within a program.

2. Input/Output devices

An ECU may have a number of input or output ports through which it may receive or

generate signals. These can in turn be connected to various devices. For example, in

Figure 2.4 the ECU is connected to a crankshaft position sensor which can send data

to the ECU via a port. On the other side, the ECU can send a signal to a spark plug in

order to make the spark plug ignite the fuel mix in a cylinder. It may be necessary to

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 12

perform some special processing on a signal e.g. analogue to digital conversion,

filtering to remove noise etc.

3. Memory

There are five basic types of on-board memory used in automotive applications

(memory on the same chip as a CPU): random access memory (RAM), read only

memory (ROM), erasable programmable ROM (EPROM), electronically erasable

programmable ROM (EEPROM) and flash memory (Boehmer 1999). RAM holds

data that the ECU is currently working on such as run-time variables. The various

forms of ROM hold the program code in addition to look-up tables such as ignition

timing maps. Flash operates in the same role as ROM, being most similar to EPROM

in that it can be electrically erased.

4. Clock

A clock is used to produce pulses which control the actions of the ECU. The clock

typically consists of an electronic circuit which makes use of a quartz crystal to

produce accurately timed, regular electrical pulses (Bonnick 2001) to control the

timing of operations in an ECU.

5. Program

Application software which makes use of the ECU’s hardware to perform one or

more tasks related to the operation of the vehicle.

2.2.2 Communications Networks

If ECUs in an electric and electronic architecture are to share information and

resources, then there is a need to provide them with some means of communicating

with each other. A common language and communications structure must be used.

There are numerous electronic applications in modern vehicles. Each will have

different requirements which must be fulfilled by the chosen network. For example, a

brake-by-wire system would need a high level of fault-tolerance, while in-vehicle

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 13

multimedia devices may need extensive synchronous bandwidth (Leen and

Heffernan 2002, p.88-93).

The following sub-sections detail three communications protocols currently in use in

automotive applications.

2.2.2.1 Controller Area Network

Controller Area Network or CAN is widely used for in-vehicle networks. It has

established itself as the standard for automotive applications (Denner V., Maier J. et

al. 2004, p.1072).

Network Structure

CAN is based around a linear bus topology as shown in Figure 2.5.

Fig 2.5 CAN Bus TopologyFig 2.5 CAN Bus TopologyFig 2.5 CAN Bus TopologyFig 2.5 CAN Bus Topology

On a CAN bus all nodes have the same priority (Denner V., Maier J. et al. 2004,

p.1072). Therefore, there is no single node which controls the bus. This allows

systems to be developed with a degree of redundancy – if one node fails, the bus will

still be able to operate. Depending on their length, CAN buses can support a bit rate

of up to 1Mbit/s.

CAN Messages

CAN is based around the concept of a message-oriented transmission protocol. Each

CAN message is given a unique identifier. However, the nodes or ECUs on the bus

are not given any form of identification. Instead, when a message is broadcast by an

ECUECUECUECU

ECUECUECUECU

ECUECUECUECU

ECUECUECUECU

ECUECUECUECU
CAN BUSCAN BUSCAN BUSCAN BUS

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 14

ECU, every ECU on the bus examines the message’s id to see if it is relevant to that

particular ECU. If it is not, then the message is simply ignored. This allows nodes to

transmit without any knowledge of what other nodes are on the bus. A CAN message

identifier can be 11-bits long (standard identifiers) or 29-bits long (extended

identifiers).

In this communications paradigm, it is possible for any node to transmit at any time.

There is no bus master regulating the transmission of messages and there is no fixed

schedule – a CAN bus is event-driven. Inevitably, it will happen that two nodes will

transmit messages at the same time. The CAN protocol employs a bus arbitration

scheme whereby priority is given to the message with the lowest id number. The

node that transmitted the message with the higher id will stop and wait for an

opportunity to retransmit the message i.e. when the bus is free, allowing the message

with the lower id to be sent first.

2.2.2.2. FlexRay

FlexRay was conceived by a group of automotive, semiconductor and electronic

systems manufacturers. Their aim was to create a bus which was deterministic, fault-

tolerant and could support high data rates (FlexRay Consortium 2007). These

features make FlexRay particularly suited to critical applications such as Brake-By-

Wire and Steer-By-Wire.

Network Structure

A FlexRay network can consist of up to two channels – channel A and channel B.

Each of these can support a data rate of up to 10 Mbit/s, giving a gross data rate of

20Mbit/s (FlexRay Consortium 2007). Figure 2.6 illustrates a dual-channel bus

configuration. Note that a node may be connected to either channel A or channel B

or both.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 15

Fig 2.6 FlexRay Bus ConfigurationFig 2.6 FlexRay Bus ConfigurationFig 2.6 FlexRay Bus ConfigurationFig 2.6 FlexRay Bus Configuration

Unlike CAN, there is no single FlexRay topology. Instead, networks can be

configured in a number of ways - as a passive bus, a passive star, an active star or a

combination of these (FlexRay Consortium 2005) e.g.

Fig 2.7 Single Channel Hybrid TopologyFig 2.7 Single Channel Hybrid TopologyFig 2.7 Single Channel Hybrid TopologyFig 2.7 Single Channel Hybrid Topology

The network in Figure 2.7 consists of a hybrid topology. Two of the elements

connected to the star are individual nodes, while the third is a bus made up of further

nodes. Further topologies may also be supported.

Communications Cycle

FlexRay, unlike CAN, is a time-triggered network. Media access control is based

around a recurring communications cycle (FlexRay Consortium 2005, p.100). A

section of the communications cycle does however cater for dynamic

communications.

The FlexRay communications cycle is broken up into four parts (FlexRay

Consortium 2005, p.100) – the static segment, the dynamic segment, the symbol

window and network idle time.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 16

Fig 2.8 FlexRay Communications CycleFig 2.8 FlexRay Communications CycleFig 2.8 FlexRay Communications CycleFig 2.8 FlexRay Communications Cycle

Static Segment

The static segment consists of a number of static slots. Each of these is assigned to a

message id to ensure that only one message is transmitted at that given time every

communications cycle.

Dynamic Segment

The dynamic segment is broken up into a number of mini-slots. Any node may

transmit an arbitrary message during one of these mini-slots. If two nodes want to

transmit at the same time, priority is given to the message with the lowest id number.

This ensures that collisions do not occur.

Symbol Window

The symbol window is used to transmit various commands e.g. to wake up a cluster

of nodes.

Network Idle Time

The network idle time contains the remaining number of macroticks from the

communications cycle. The main function of the network idle time segment is to

allow nodes to resynchronise themselves and ensure that they are all working off a

common global time (FlexRay Consortium 2005, p.107). Communications do not

occur during this period.

Execution of Communications Cycle

Every communications cycle (excluding startup) is executed with a fixed period of

macroticks (FlexRay Consortium 2005, p.101). A macrotick is an interval of time

which has been derived from the cluster-wide clock synchronisation algorithm. It is

made up of a number of microticks which are the smallest units of global time used

by FlexRay. The microticks’ sizes are determined by the communication controller

of each FlexRay node (FlexRay Consortium 2005, p.15).

Static Segment Dynamic Segment Symbol Window
Network Idle

Time

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 17

As has already been stated, FlexRay is based around a recurring communications

cycle. Therefore, the four slots outlined above are repeated for every communication

cycle i.e.

Fig 2.9 FleFig 2.9 FleFig 2.9 FleFig 2.9 FlexRay Communications Cycle TimingxRay Communications Cycle TimingxRay Communications Cycle TimingxRay Communications Cycle Timing

(FlexRay Consortium 2005, p.101)

2.2.2.3 Local Interconnect Network

Many functions in a vehicle do not require high levels of redundancy or high data

transmission rates provided by networks such as FlexRay or CAN. These include

non-critical systems such as electric windows or air-conditioning. It is desirable

therefore, to implement these features with a lower cost, lower speed network such as

LIN (Local Interconnect Network). A LIN bus may transmit data at a rate of up to

20kbit/s (LIN Consortium 2006).

Network Structure

A LIN bus consists of a single master node and one or more slave nodes (LIN

Consortium 2006). This is illustrated in Figure 2.10.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 18

Fig 2.10 LIN NFig 2.10 LIN NFig 2.10 LIN NFig 2.10 LIN Networketworketworketwork

A master node controls all activity on the bus. A slave node will only transmit or

publish a message if requested to by the master. To understand the operation of a

LIN bus, it is first necessary to look at the format of a LIN message frame.

A LIN message frame consists of two parts, a frame header and a response. The

master task transmits the frame header. The header is essentially a request for some

action to be performed. Each slave node listens to the bus. If a node detects a header

that it publishes, then it will transmit a response and carry out any necessary actions

in response to the request. An example of communications on a LIN bus is illustrated

in Figure 2.11.

Fig 2.11 LIN Communications ExampleFig 2.11 LIN Communications ExampleFig 2.11 LIN Communications ExampleFig 2.11 LIN Communications Example

In this example the bus master transmits the header for the message with an id of 01.

Slave 1 reads the message header and responds by transmitting the response,

containing the relevant data. Slave 2 also reads the message header, but since

Slave NodeSlave NodeSlave NodeSlave Node

MASTER NODEMASTER NODEMASTER NODEMASTER NODE

Slave TaskSlave TaskSlave TaskSlave Task

Master TaskMaster TaskMaster TaskMaster Task

Slave TaskSlave TaskSlave TaskSlave Task

Slave NodeSlave NodeSlave NodeSlave Node

Slave TaskSlave TaskSlave TaskSlave Task

MasterMasterMasterMaster SlaSlaSlaSlave 1ve 1ve 1ve 1 Slave 2Slave 2Slave 2Slave 2

 Message Header - ID 01

Response - ID 01

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 19

message 01 is not part of the list of messages that slave 2 acts on, it simply ignores

the header and does nothing.

2.2.2.4 Media Oriented Systems Transport

Media Oriented Systems Transport (MOST) is a synchronous network consisting of

up to 64 nodes (MOST Cooperation 2008). A single TimingMaster provides a

constant data signal to the system clock. TimingSlaves (all other devices on the

network) synchronise their operation according to this base signal. MOST is used

primarily for networking in-vehicle multimedia and infotainment systems. There are

two primary methods of transporting data on a MOST network:

Data Streaming

Data is transmitted as a continuous stream. This method is primarily used for

multimedia applications i.e. audio and/or video.

Packet Data Transmission

Data is transmitted in a burst-like manner. This method is primarily used for

transmitting data with large block sizes such as navigation maps and graphics.

2.2.3 Gateways

There may be a large number of communications networks present in a vehicle. For

example, a vehicle may use FlexRay for brake-by-wire and drive-by-wire systems,

CAN for the engine management electronics, LIN for electric windows, lights and

mirrors and MOST (Media Oriented Systems Transport) for the multimedia systems.

Systems connected to these networks need to share data. For example, it may be

necessary for the brake-by-wire system on the FlexRay network to communicate

with the engine management system on a CAN bus in order to provide traction

control.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 20

Each network however uses its own communications protocol. This is the ‘language’

which the nodes on that network use to communicate with one another. Therefore

there must be some means of translating between the different languages. This

functionality is provided by gateways. A gateway is an ECU which is used to

translate messages from one communications protocol to another (Heßling 2004,

p.1108). This process is illustrated in Figure 2.12.

Fig 2.12 Network GatewayFig 2.12 Network GatewayFig 2.12 Network GatewayFig 2.12 Network Gateway

In this example, Node A wishes to transmit data to Node C. Both nodes however are

on different networks. Therefore, Node A transmits the data as a standard CAN

message. The gateway has been set up to subscribe to this message. It receives the

data contained in the message and repackages it in a FlexRay message frame. This

can then be transmitted on the FlexRay network at the appropriate time e.g. during

the dynamic segment of the FlexRay network’s communications cycle.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 21

2.3 Summary

The scale and complexity of vehicle electric and electronic architectures has

continued to grow since the introduction of early automobiles. The rate at which

these systems have grown has greatly increased since the introduction of the

microcontroller. In this chapter, the basic parts which make up a vehicle’s electric

and electronic architecture have been introduced. These include sensors, actuators,

electronic control units or ECUs and network gateways. Further, three examples of

in-vehicle networks have been presented. The next step is to consider the

development of software which utilises the structures outlined above.

2.4 Relevance to Research

This chapter has outlined the main items which form an automotive electric and

electronic architecture. An understanding of these systems provides the context in

which the research is based. As this thesis is concerned with software components, it

is necessary to understand the environment in which those components operate.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 22

22..55 RReeffeerreenncceess

Augustin, D., M. Backmeister, D. Beiter, M. Dogan, D. Hallermayer, M. Hecker, M.
Hümpfner, M. Köhler, D. Kricke, M. Kolbe, M. Michard, M. Öhlenschläger, M.
Ramrath, D. Schleicher, M. Wallschläger, M. Watzal, M. Wolter and M. Zweigler
(2006). "ASAM MCD-2D (ODX) Version 2.1.0 Data Model Specification", ASAM
e. V.

AUTOSAR GbR (2006a). "Media Release - May 2nd 2006". www.autosar.org,
AUTOSAR GbR.

AUTOSAR GbR (2006b). "Media Release - October 16 2006". www.autosar.org,
AUTOSAR GbR.

Boehmer, D. S. (1999). " Automotive Electronics Handbook " R. K. Jurgen,
McGraw-Hill.

Bonnick, A. (2001). "Automotive Computer Controlled Systems", Butterworth-
Heinemann.

Chowanietz, E. (1995). "Automobile Electronics", BH Newnes.

Denner V., Maier J., Kraft D. and S. G. (2004). "Data processing and communication
networks in motor vehicles". Automotive Handbook, Robert Bosch GmbH: p.1072.

FlexRay Consortium (2005). "FlexRay Communications System Protocol
Specification Version 2.1 Revision A". www.flexray.com, FlexRay Consortium.

FlexRay Consortium. (2007, 23 Oct 2007). "FlexRay basics." from
http://www.flexray.com/index.php?sid=8a02e82a873cc4d9884dfed8d945a26b&pid=
12&lang=de.

Gillespie, T. D. (1992). "Fundamentals of Vehicle Dynamics", Society of
Automotive Engineers, Inc.

Heßling, M. (2004). "Mobile Information Services", Robert Bosch GmbH: p.1108.

Kricke, D. C. (2007). "ODX Introduction". TestingEXPO Tech Forum. Stuttgart,
DE, ETAS GmbH – LiveDevices Ltd. – Vetronix Corp.

Leen, G. and D. Heffernan (2002). "Expanding Automotive Electronic Systems."
Computer 35(1).

Lemieux, J. (2001). " Programming in the OSEK/VDX Environment ", CMP Books.

LIN Consortium. (2006). "LIN Specification Package Revision 2.1." Retrieved 24th
Oct 2007.

 VVEEHHIICCLLEE EELLEECCTTRRIICCAALL//EELLEECCTTRROONNIICC AARRCCHHIITTEECCTTUURREE

 23

MOST Cooperation (2008). "MOST Specification Rev 3.0".
www.mostcooperation.com, MOST Cooperation.

Schäuffle, J. and T. Zurawka (2003). "Automotive Software Engineering Principles,
Processes, Methods, and Tools", SAE International.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 24

.3.

Automotive Software Development

3.1 Overview

The role of software in automotive electric and electronic systems has been touched

on in the last chapter. This chapter presents an overview of development processes

and tools used to develop automotive applications. In addition, an introduction to

various standards relating to automotive software is given.

According to Broy, there are two primary factors which influence the continual rapid

inclusion of software into automotive systems (Broy 2005). Software allows new

innovative functionality to be added. This can be a unique selling point for a vehicle.

Also, cheaper and better technical solutions may be introduced for existing

functionality e.g. replacing carburettor-based injection systems with digital fuel

injection.

The first vehicles to employ software were introduced about 30 years ago. Initially

software was used to control isolated systems such as ignition. However, with the

introduction of various network systems, ECUs could share resources, leading to

increasingly complex systems such as anti-lock brakes. Currently, premium cars can

have over 70 ECUs connected through more than 5 different busses, running more

than 10,000,000 lines of code. Further, over 40% of vehicle production costs can be

attributed to electronics and software (Broy 2006).

It has been estimated in 2003 that eighty percent of all future innovations in the

automotive industry would be driven by electronic systems. Ninety percent of these

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 25

innovations would be driven by software (Grimm 2003). This is in part due to the

trend of manufacturers moving from hardware-based solutions to software-based

solutions (Schäuffle and Zurawka 2003, p.21). It is important therefore to consider

the unique aspects of automotive software and examine current development

methods.

3.2 Development Processes

There are a number of tools and processes used to develop software for the

automotive industry. This section describes some of the more widely used ones.

3.2.1 The V-Model

Automotive systems are typically developed via some form of a divide and conquer

strategy: a system is divided into more manageable sub-sections which are each

developed separately and later integrated. If necessary, sub-sections are further

decomposed and so on. An approach widely used in the automotive industry is the V-

Model as illustrated in Figure 3.1.

Fig 3Fig 3Fig 3Fig 3.1 .1 .1 .1 VVVV----ModelModelModelModel

(Beck 2002)

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 26

The phases V-Model are outlined below:

1. Requirements Definition: This specifies the set of elicited requirements for

the system which may include individual actions to be carried out by ECUs,

events etc.

2. Functional Design: The system is designed in terms of models, diagrams.

The logical structure of the system is designed in this phase.

3. System Partitioning: The system design is broken up into a number of

independent modules which can be developed separately by a number of

suppliers.

4. ECU Development HW/SW: The individual sub-systems are developed and

implemented by the various sub-system suppliers. Note that some modules

may still be developed in-house by the OEM (Original Equipment

Manufacturer).

5. ECU Test: Each ECU is tested in isolation to ensure that it fulfils the

requirements laid down.

6. Functional Integration: ECUs which work together to provide some

function e.g. powertrain management, are integrated together and tested to

ensure that they fulfil the requirements for that system and that they will

operate correctly as an integrated unit.

7. Integration: The separate systems are integrated together to produce the

complete E&E architecture for the vehicle. The full architecture is then tested

to ensure that all of the systems operate correctly as a complete implemented

architecture.

3.2.2 Model Based Software Development

There does not seem to be one standard definition of what exactly comprises model

based software engineering. However the main concept is that models are used

instead of straight code or more document-based methods.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 27

Huber et al. describe two types of model which can be used: process models and

product models (F. Huber, J. Philipps et al. 2002). A process model simply describes

some activity in the development process (F. Huber, J. Philipps et al. 2002) e.g.

‘generate test cases’, or ‘define component interfaces’.

Their definition of a product model is more useful however. It effectively describes

what comprises a model created during development. They define a product model

(F. Huber, J. Philipps et al. 2002) as being made up of various entities which describe

the system being developed, along with its environment and the relationships

between its entities. A product model describes the parts of a system which are

explicitly dealt with during the development process and handled by a development

tool. Domain concepts included in such a model may include a component or a state.

Scenarios or test cases may be included as can more semantically oriented concepts

such as “execution trace”.

Frequently, tool support is used to create models more efficiently. Often, these tools

allow a model to be tested and verified at an early stage. The following section

describes a number of tools which are currently used in the automotive industry.

3.3 Development Tools

Developers frequently make use of various tools to create product models. These

tools provide graphical user interfaces which allow a user to build up a visual

representation of a system. System components for example may be represented by

blocks and relations between components can be illustrated with lines connecting

blocks. Tools such as Simulink allow a user to run a simulation of the system which

has been modelled. This tool in particular is further described in a later section.

There are a number of advantages to using a tool-based approach which facilitates

simulation of a system. They allow early error detection and correction and early

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 28

verification and validation of a system (Won Hyun Oh, Jung Hee Lee et al. 2005).

This can reduce development time and costs as problems are uncovered early on in

the project lifecycle. Coupled with automatic code generators, modelling tools have

the potential to greatly simplify and streamline the development process.

There is a wide range of tools available to aid the development of automotive

software. Two categories of tools used are model based development tools and

hardware in the loop simulators.

3.3.1 Modelling Tools

This section will present an overview of one of the most widely used modelling tools

- Simulink. Simulink allows a user to model, simulate and analyse systems whose

output changes over time (The Mathworks Inc 2005). This makes it particularly

suited to embedded applications such as those found in automotive systems.

Simulink contains a number of libraries – each of which contains a set of blocks –

from which a system can be built. Examples include Ports & Subsystems, Maths

Operations and Signal Routing. These blocks can be used to define the functionality

of a system. An example is shown in Figure 3.2.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 29

Fig 3Fig 3Fig 3Fig 3....2222 SimulinkSimulinkSimulinkSimulink

The air conditioning system in Figure 3.2 has three inputs – an enable command

which indicates that the system should be turned on, a reading of the cabin

temperature and the desired temperature that the vehicle occupant has input. The

system has a single output which controls the hot/cold air mix vent. Note that it is

possible to include artefacts such as the scope included above to monitor signals such

as the output of the system.

While the above example is extremely simple, it demonstrates that it is possible to

model systems effectively with Simulink. In this way, complicated systems can be

modelled and tested at an early stage in the development process. Simulink can be

coupled with an automatic code generation tool such as Targetlink to allow models to

be translated into production code for deployment on an ECU.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 30

3.3.2 Code Generators

Code generators allow a user to create an executable piece of code either by

specifying a set of values or by a conversion of a model. Infineon’s DAvE or Digital

Application virtual Engineer is an example of the former method. DAvE allows a

developer to generate initialisation, configuration and driver code for Infineon’s

family of 8-, 16- and 32-Bit microcontrollers (Infineon 2006). This enables the

developer to rapidly set up a microcontroller i.e. configure communications ports,

timers, clock speed and so on without having to worry about how to actually

implement this low-level code. This leaves the developer free to concentrate on

writing the actual application code.

The second method outlined above consists of taking a model and translating it into

code. An example of this form of code generator is TargetLink by dSPACE.

TargetLink takes a control system which has been modelled in Simulink, and allows

the developer to generate code from that model, which can then be deployment on an

ECU (dSpace GmbH 2006). This method has the advantage of translating directly

from specification/design to implementation.

3.3.3 Hardware In The Loop Simulation

Hardware in the loop (HIL) simulation tools provide the ability to test and evaluate

an embedded system before it has been deployed in an actual vehicle. They can

highlight problems with scheduling and performance and can reveal input/output

errors, bus and energy management errors and errors with diagnostics functions.

Also, a HIL simulation can uncover any hardware/software incompatibilities

(Burmester 2007).

A HIL simulation consists of the following main parts: a board/ECU containing the

application under development and a HIL simulator as illustrated in Figure 3.3.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 31

Fig 3Fig 3Fig 3Fig 3....3333 HIL SimulatorHIL SimulatorHIL SimulatorHIL Simulator

Modified from (Gomez 2001)

The HIL simulator emulates the environment that the application will be deployed in.

For example, in the case of an engine control unit, the HIL simulator would model

the various physical components of the engine. These would include the spark plugs,

fuel injectors, a crankshaft sensor, engine coolant sensors, the various sensors

necessary for calculating air charge and so on. As far as the ECU is concerned, it is

connected to the physical components. This is the reason why HIL simulators are so

effective.

A HIL simulator will generate data which simulates the inputs the ECU would

receive during actual operation. The ECU will then process the data as per its design

and generate outputs. These are monitored by the HIL simulator which can then

make modifications to the inputs if necessary e.g. to simulate a change to a vehicle’s

speed as the ECU alters (from its perception) the fuel/air mix. The ECU will react

exactly as it would in the actual vehicle. This enables testing and validation to be

carried out before an actual vehicle is ready.

3.4 Standardisation

Recent years have seen the introduction of standardisation efforts within a number of

automotive application areas. Standardisation is extremely beneficial to the software

ECUECUECUECU

HIL HIL HIL HIL

SimulatorSimulatorSimulatorSimulator

ECU

Inputs

ECU

Outputs

Simulator

Inputs

Simulator

Outputs

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 32

development process. For example, a standardised software architecture and/or

operating system can reduce the amount of new software development which has to

be carried out and promotes reuse of previously implemented software modules. A

common approach to diagnostics will again reduce the amount of new development

which has to be carried out. The following sections describe some of the more recent

standardisation efforts within the automotive software community.

3.4.1 Diagnostics Tool Support

Modern vehicles in general contain a large number of sub-systems which have been

developed externally by Tier 1 suppliers. Each system which has been developed by

a supplier could potentially use a different approach to diagnostics and the modelling

of diagnostic data. This could lead to unnecessary complications for both OEMs and

aftermarket service dealerships.

A solution to this problem has been created by ASAM (Association for

Standardisation of Automation and Measuring Systems). The stated goal of ASAM is

“to develop, maintain, and deploy platform independent extensible standards, and to

enable products that use and are compliant with those standards.” (ASAM)ASAM

works in the area of automation, analysis, measurement and simulation.

ASAM have developed the Open Diagnostic data eXchange (ODX) as a means of

describing all of the diagnostic data for a vehicle and its ECUs. The aim of the ODX

is to simplify the support of the aftermarket service industry by providing a

standardised diagnostic data model which diagnostic tool makers can integrate into

their tools (Augustin, Backmeister et al. 2006). An OEM can specify diagnostic data

for a new vehicle in this format, and distribute this data to aftermarket service

dealerships. The service dealerships can then integrate this data into their existing

diagnostic tools. As a result, a new tool does not need to be developed for each new

vehicle model, greatly aiding OEMs and service dealerships.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 33

3.4.2 Diagnostic Protocols

There is a wide range of vehicles available from a large number of manufacturers in

today’s marketplace. The majority of these vehicles contain subsystems which are

not developed in-house. Potentially each sub-system developed for a vehicle could

use a different diagnostic protocol. This would greatly increase the work which

OEMs would have to carry out during systems integration.

There are a number of diagnostic standards available. Two examples are ISO-14229:

Road Vehicles – Diagnostic Services, and ISO-15765: Diagnostics On CAN. Both of

these are provided by the International Standards Organisation (ISO). The majority

of modern vehicles produced support the standards outlined here.

ISO-14229: Road Vehicles – Diagnostic Services

ISO-14229 specifies common requirements for diagnostic services. These services

allow a user to control diagnostic services on an embedded vehicle ECU which is

connected to a serial data link (ISO 2002). The standard specifies a set of services

but not any implementation details.

ISO-15765: Diagnostics on Controller Area Network (CAN)

ISO-15765 defines common requirements for vehicle diagnostics systems on CAN.

The application layer services defined for ISO-15765 have been developed in

compliance with the services laid down by ISO-14229: Road Vehicles – Diagnostic

Services (ISO 2001). ISO-15765 defines the communications layers necessary to

implement these services according to the ISO-OSI (Open Systems Interconnect)

reference model for network communications. It defines the application and network

layers. The data-link layer is specified by CAN.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 34

3.4.3 Operating System

One of the most widely used examples of an operating system standard for

automotive applications is the OSEK OS, which is part of the wider OSEK/VDX

environment.

OSEK/VDX originally started out as two separate projects. The first was being

developed by a group of German automotive manufacturers and was called OSEK –

“Offene Systeme und deren Schnittstellen fur die Elektronik im Kraftfahrzeug”,

roughly translated to English as “Open systems together with interfaces for

automotive electronics”. The second, VDX or Vehicle Distributed eXecutive, was

being developed in France by PSA and Renault. In 1994 these projects merged and

created OSEK/VDX (Lemieux 2001b).

The OSEK/VDX operating system is an open standard. It is a small, scalable real-

time operating system which has been designed for use on embedded systems which

have high memory constraints and a fixed set of functionality (Lemieux 2001b). The

operating system handles various items such as events and alarms and provides

resource management.

One of the central operational concepts of the OSEK OS is a Task. A task is

essentially a piece of code which can be scheduled – initiated, terminated, suspended

(depending on the category of the task) etc – by the operating system. The tasks

contain the code to carry out the functional aspects of a system.

OSEK/VDX contains a number of other standards. These include the following:

� OSEK COM: OSEK Communications (COM) defines both the interfaces

and protocols used for intertask and interprocessor communications between

applications (e.g. on different ECUs) or within a single application (running

on a single ECU) (Lemieux 2001, p.123-211).

� OSEK NM: OSEK Network Management (NM) defines a methodology and

the API services which make it possible for an application to monitor the

availability of nodes on a network (Lemieux 2001, p.213-256)

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 35

� OSEK OIL: OSEK OIL is the language which is used to configure the

various objects used in a specific OSEK/VDX implementation. A system may

be configured through the use of an OIL file, which contains the actual

configuration of the application (Lemieux 2001, p.14). OIL files provide

portability between different OSEK implementation tools i.e. the same

system may be implemented using different tools if the same OIL file is

reused in all cases.

3.4.4 Architecture

One of the most recent efforts at producing a standard software architecture for

automotive applications is known as the Automotive Open System Architecture or

AUTOSAR. AUTOSAR is essentially a standardised software architecture for

embedded automotive applications. One of the main goals of AUTOSAR is to

separate an application from its infrastructure. An application is made up of a set of

discrete software components and the infrastructure is managed by the Basic

Software modules as shown in Figure 6.1.

Fig Fig Fig Fig 3.4 Abstracted3.4 Abstracted3.4 Abstracted3.4 Abstracted view of AUTOSAR Architecture view of AUTOSAR Architecture view of AUTOSAR Architecture view of AUTOSAR Architecture

The basic software fulfils the infrastructural requirements, covering items such as the

operating system, inter-ECU communications, hardware management etc. Standard

Application Application Application Application
SWSWSWSW----CCCC

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
InterfaceInterfaceInterfaceInterface

Actuator Actuator Actuator Actuator
SWSWSWSW----CCCC

Sensor Sensor Sensor Sensor
SWSWSWSW----CCCC

Application Application Application Application
SWSWSWSW----CCCC

Basic SoftwareBasic SoftwareBasic SoftwareBasic Software

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
IIIInterfacenterfacenterfacenterface

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
InterfaceInterfaceInterfaceInterface

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
InterfaceInterfaceInterfaceInterface

ECU HardwareECU HardwareECU HardwareECU Hardware

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 36

interfaces to the basic software allow software components to be developed without

regard for the hardware that the system is to be deployed on. This can greatly

simplify development. In addition, software components which have been created for

a past system can be reused in future developments e.g. in the latest edition of a

particular car model. AUTOSAR is discussed in greater detail in Chapter 6.

3.5 Summary

There is a wide range of tools and processes available to aid the development of

automotive software. The automotive industry is moving towards standardised

methods for diagnostics, operating systems and architectures. These will further aid

the software developer in their task.

3.6. Relevance To Research

As with the previous chapter, an understanding of the practices and tools used to

develop automotive software provides a context for this research. The framework

that will be developed must be able to be integrated into the automotive software

development process to ensure its validity. Understanding the move towards

standardisation is also important as this will affect the direction that the research

takes. The development of the framework to map requirements to AUTOSAR

components will have to take into account these standards, again to ensure its

validity.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 37

3.7 References

ASAM. "ASAM Standards Status Overview." Retrieved 14/12, 2007, from
www.asam.net.

Augustin, D., M. Backmeister, D. Beiter, M. Dogan, D. Hallermayer, M. Hecker, M.
Hümpfner, M. Köhler, D. Kricke, M. Kolbe, M. Michard, M. Öhlenschläger, M.
Ramrath, D. Schleicher, M. Wallschläger, M. Watzal, M. Wolter and M. Zweigler
(2006). "ASAM MCD-2D (ODX) Version 2.1.0 Data Model Specification", ASAM
e. V.

Beck, D. T. (2002). "Vector's Development Process for Automotive Electronic
Systems". Vector Congress, Stuttgart, Vector Informatik GmbH.

Broy, M. (2005). "Automotive Software and Systems Engineering". Second ACM
and IEEE International Conference on Formal Methods and Models for Co-Design,
2005. MEMOCODE '05., IEEE.

Broy, M. (2006). "Challenges in Automotive Software Engineering". ICSE 06,
Shanghai, China, ACM.

Burmester, S. (2007). "Durchgängige Werkzeugunterstützung im Testprozess bei der
ECU Entwicklung". Automobil Elektronik, dSpace GmbH.

dSpace GmbH (2006). "Production Code Generation Guide For TargetLink 2.2",
dSpace GmbH.

F. Huber, J. Philipps and O. Slotosch (2002). "Model Based development Of
Embedded Systems". Embedded Intelligence, WEKA Fachzeitschriften-Verlag.

Gomez, M. (2001). "Hardware-in-the-Loop Simulation." Retrieved 13/12/2007,
2007.

Grimm, K. (2003). "Software Technology in an Automotive Company - Major
Challenges". 25th International Conference on Software Engineering, IEEE.

Infineon. (2006). " Getting started with XC164CS starterkit using DAvE, Tasking
EDE & CrossView Pro Debugger." Retrieved 30/01, 2008.

ISO (2001). "ISO-15765 Road vehicles — Diagnostics on Controller Area Network
(CAN) - Part 1: General Information", International Standards Organisation (ISO).

ISO (2002). "ISO-14229 Road vehicles — Diagnostic services — Part 1:
Specification and requirements", International Standards Organisation (ISO).

Lemieux, J. (2001). "Programming in the OSEK/VDX Environment", CMP Books.

Schäuffle, J. and T. Zurawka (2003). Automotive Software Engineering Principles,
Processes, Methods, and Tools, SAE International: p.21.

 AAUUTTOOMMOOTTIIVVEE SSOOFFTTWWAARREE DDEEVVEELLOOPPMMEENNTT

 38

The Mathworks Inc (2005). "Learning Simulink 6", The Mathworks Inc.

Won Hyun Oh, Jung Hee Lee, Hyoung Geun Kwon and H. J. Yoon (2005). "Model-
Based Development of Automotive Embedded Systems: A Case of Continuously
Variable Transmission (CVT)". 11th IEEE Conference on Embedded and Real-Time
Computing Systems and Applications, IEEE.

 AAUUTTOOSSAARR

 39

.4.

AUTOSAR

4.1 Introduction

AUTomotive Open System ARchitecture, or AUTOSAR is a standardised

architecture for automotive Electric and Electronic (E&E) systems. The initiative

was developed as a collaboration between a number of organisations operating in the

automotive industry. These include the core AUTOSAR partners: the BMW Group,

Bosch, Continental, Daimler, Ford, Opel, PSA Peugeot Citroën, Toyota and

Volkswagen AG (AUTOSAR GbR 2006f). The aim of AUTOSAR is to separate an

application from the underlying infrastructure i.e. the hardware, operating system and

communication buses.

Apart from the financial motivations, there are a number of technical factors that

have motivated the development of a standard architecture for electric and electronic

(E&E) systems (AUTOSAR GbR 2006b). These include:

- The need to manage increasing E&E complexity.

- Improving flexibility during production, modification and updating of

E&E systems.

- Improving scalability, that is, the ability to grow the size of a system.

- Improving quality and reliability.

- Enabling the early detection of errors during a project’s design phase.

The AUTOSAR architecture is a good example of a component based system. All of

the higher application-level tasks are handled by the software components.

Communications, task scheduling, hardware management and all other

 AAUUTTOOSSAARR

 40

infrastructural requirements are handled by lower level software modules. Figure 4.1

shows an abstracted representation of the AUTOSAR architecture. This diagram

illustrates a number of software components, working together with various drivers,

services etc. As was already discussed in Section 4.1, software components

communicate via-well defined interfaces. Again, these are illustrated in Fig 4.1.

Fig Fig Fig Fig 4.1 Abstracted4.1 Abstracted4.1 Abstracted4.1 Abstracted view of AUTOSAR Architecture view of AUTOSAR Architecture view of AUTOSAR Architecture view of AUTOSAR Architecture

4.2 Virtual Functional Bus (VFB)

The Virtual Functional Bus (VFB) (AUTOSAR GbR 2005a) is an abstracted view of

the interconnections between software components throughout an entire vehicle and

between software components and their related infrastructure. All of the

implementation details – communications protocols, interaction with an OS and

hardware, which ECU each software component is located on etc – are hidden.

The VFB is used to provide a means of virtual integration of software components

that is independent of an actual implementation. Therefore, components can be

integrated and their communications links can be determined at an early stage. This

information is then used at a later stage for implementation and deployment on

ECUs. In an actual deployed system the Run Time Environment (RTE) encapsulates

the VFB abstraction. The RTE uses the Operating System (O/S), AUTOSAR COM

and other Basic Software Modules to implement the encapsulation. Figure 4.2

illustrates an AUTOSAR system viewed at the VFB level.

Application Application Application Application
SWSWSWSW----CCCC

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
InterfaceInterfaceInterfaceInterface

Actuator Actuator Actuator Actuator
SWSWSWSW----CCCC

Sensor Sensor Sensor Sensor
SWSWSWSW----CCCC

Application Application Application Application
SWSWSWSW----CCCC

InfrastructureInfrastructureInfrastructureInfrastructure

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
InterfaceInterfaceInterfaceInterface

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
InterfaceInterfaceInterfaceInterface

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
InterfaceInterfaceInterfaceInterface

 AAUUTTOOSSAARR

 41

Fig Fig Fig Fig 4.2 Virtual Functional Bus4.2 Virtual Functional Bus4.2 Virtual Functional Bus4.2 Virtual Functional Bus

The following sub-sections specify the main components of the AUTOSAR system

as viewed at the VFB level.

4.2.1 Communications Mechanisms

At the VFB level, communication between components is described by the following

concepts:

Interface

An interface is a contract which must be fulfilled by a component which implements

that interface. An interface describes what information is transmitted between ports

of components (AUTOSAR GbR 2006e) and the behaviour of that port. It is not an

artefact that is actually implemented. Rather, an interface is used to specify how a

port is to be configured. It details the operations (in the case of client-server

communications) and data items which are recognised and potentially used by the

ports they characterise. Note that a software component does not necessarily have to

use all of the operations and/or data items defined in a particular interface.

Interfaces can aid a developer in the integration of software components. This is due

to the fact that the ports of components which are characterised by the same interface

will always match with each other.

 AAUUTTOOSSAARR

 42

Port

A port implements an interface. It is the point of a software component through

which it can interact with other components (AUTOSAR GbR 2005a) . A port can

either provide data or services (P-Port) or require data or services (R-Port). In the

former case, the port provides the data/services defined in an interface, and in the

latter case, the port requests the data/services defined in an interface from another

component. For example, a component may have a P-Port which is used to transmit a

sensor reading which has been filtered (e.g. analogue to digital conversion), while

another component my receive that data via an R-Port and perform some calculation

using that value.

There are four types of port used: client, server, sender and receiver. These are used

in client-server and sender-receiver communications respectively. Both of these

communications paradigms are explained in section 4.4.4.

Connector

A connector is used to connect ports, defining the transfer of data between two ports

with compatible interfaces. Essentially it specifies the mapping between two ports. A

connector will connect exactly one P-Port to exactly one R-Port (AUTOSAR GbR

2005c) .

Fig. 3.3 below illustrates these concepts.

Fig Fig Fig Fig 4.3 VFB Communications Mechanisms4.3 VFB Communications Mechanisms4.3 VFB Communications Mechanisms4.3 VFB Communications Mechanisms

Figure 4.3 consists of two software components. Software Component 1 (SW-C 1)

has an R-Port indicating that it requires a piece of data, while SW-C 2 has a P-Port

SWSWSWSW----C C C C

1111

SWSWSWSW----C C C C

2222

Connector

P-Port defined by an

interface as a Server

R-Port defined by an

interface as a Client

 AAUUTTOOSSAARR

 43

indicating that it provides that piece of data. In this case, an interface is used to

define SW-C 1’s R-Port as a client i.e. it requires that some operation (also defined in

the interface) is carried out. An interface define SW-C 2’s P-Port as a server i.e. it

provides some operation. A connector maps the R-Port of SW-C 1 to the P-Port of

SW-C 2.

4.2.2 Basic Software

The VFB abstraction hides all of the infrastructural aspects of an AUTOSAR

architecture. However, to present a complete view of AUTOSAR, the main basic

software modules fulfilling these infrastructural requirements are described below.

Section 4.3 gives a brief description of the Runtime Environment. Figure 4.4

illustrates the layered architecture of AUTOSAR, including the Basic Software

modules.

Fig Fig Fig Fig 4.4 AUTOSAR Architecture Layers4.4 AUTOSAR Architecture Layers4.4 AUTOSAR Architecture Layers4.4 AUTOSAR Architecture Layers

 AAUUTTOOSSAARR

 44

Interaction with Hardware

The VFB provides components with access to microcontroller peripherals, ECU

electronics, sensors and actuators. This is performed through the use of a number of

software modules - the Microcontroller Abstraction Layer, the ECU abstraction and

Complex Device Drivers (AUTOSAR GbR 2005b).

Microcontroller Abstraction Layer (MCAL)

The MCAL provides software components with access to the peripheral hardware of

a microcontroller via a defined API. The goal of the MCAL is the abstraction of

standard peripheral microcontroller hardware. It allows software components to use

facilities such as FLASH memory, watchdog timers etc without having to know the

specifics of how to access or operate the hardware. The MCAL should abstract the

functionality of at least the following:

- Digital Input/Output

- Analogue/Digital Converter

- Pulse Width (De)Modulator

- EEPROM (Electronically Erasable Programmable Read-Only Memory)

- FLASH

- Capture Compare Unit

- Watchdog Timer

- Serial Peripheral Interface

- I2C Bus (Inter-Integrated Circuit Bus)

Drivers for the above, along with those for other required peripherals, are held in the

MCAL.

ECU Abstraction

The ECU Abstraction is written for a specific ECU and uses the MCAL directly. The

ECU Abstraction has the responsibility of abstracting everything installed on the

ECU. It provides sensor and actuator software components with the electronic values

of an ECU e.g. electrical signals from sensors.

 AAUUTTOOSSAARR

 45

Complex Device Drivers

This is a special form of software component which makes the functionality of a

special piece of hardware (microcontroller peripheral, sensor, actuator etc) usable for

other software components. A complex device driver is ECU specific. It should only

be used if the performance of the complex device driver is much better than that of

the ECU Abstraction and MCAL or if there is no suitable interface in the MCAL.

This may be the case, for example, if some special form of signal processing is used.

Operating System (OS)

The AUTOSAR OS is based on the standard OSEK operating system. OSEK OS is

widely used in the automotive industry and has a proven track record in vehicle

ECUs. It contains the following features which make it a suitable basis for the

AUTOSAR OS (AUTOSAR GbR 2008) (Lemieux 2001b):

• Fixed priority-based scheduling: Tasks are given a priority level which is

statically defined i.e. it does not change during the execution of the program.

This ensures that critical tasks (e.g. safety critical tasks) always run before

less important tasks. (The exception to this is the priority ceiling protocol

which temporarily raises the priority of a task to the highest possible priority

assigned to a particular resource. This ensures that the task has control of that

resource for the duration of its operation).

• Facilities for handling interrupts: Interrupts are key to the operation of real-

time systems as they are used to handle external asynchronous events. There

are three categories of interrupts. Category 1 interrupts are the fastest form of

interrupt service routine (ISR). These do not require an OS application

programming interface (API) call i.e. they do not interact with the OS. They

generally generate an output such as a frequency signal or a pulse width

modulation signal. Category 2 interrupts call API services. They may be used

to perform tasks such as counting a series of pulses or identifying external

events. Category 3 ISRs are a combination of the previous two e.g. the ISR

may only occasionally have to make an API call. This form of ISR is optional

according to OSEK.

 AAUUTTOOSSAARR

 46

• A startup interface through StartOS() and the StartupHook(): The

former causes all of the objects defined in the OIL file (OSEK

Implementation Language file. Contains definition of the application) to be

initialised. The latter allows a developer to include any other necessary

initialisation required for the application.

• A shutdown interface through ShutdownOS() and the

ShutdownHook(): These allow all of the objects which were opened

during startup to be closed.

OSEK OS must provide the ability of inter-task i.e. internal communication as

defined in OSEK COM. AUTOSAR however performs this task using either the

RTE or AUTOSAR COM. Therefore the AUTOSAR OS does not need to support

internal communications.

Some systems will most likely continue to use proprietary OSs. In this case, the OS

must be abstracted to an AUTOSAR OS as the interfaces to the OS must be

AUTOSAR compliant.

Communication

This software module is concerned with the various aspects of inter-ECU

communications networks e.g. CAN, LIN, FlexRay etc. It handles both data transfer

and network management.

AUTOSAR Services

The AUTOSAR glossary states that “An AUTOSAR service is a logical entity of the

basic software offering general functionality to be used by various AUTOSAR

software components. The functionality is accessed via standardised AUTOSAR

interfaces.” (AUTOSAR GbR 2006a). Examples of this general functionality could

include timer services, VFB bus monitor, signal filters, car mode manager (ignition,

driving etc) and so on.

 AAUUTTOOSSAARR

 47

4.3 Runtime Environment (RTE)

The RTE (AUTOSAR GbR 2007) implements the interfaces between software

components described by the VFB. It also allows software components to make use

of an ECU’s resources without any direct interaction between the component and the

ECU, O/S, Basic Software Modules etc. To access the ECU’s resources, a software

component simply makes a request to the RTE, which then handles any interaction

with the lower levels. Note that the functionality of Basic Software is accessed via

standardized AUTOSAR services defined in the RTE specification. Therefore the

RTE is the link between software components and the services and hardware on an

ECU and between software components throughout the entire vehicle network.

4.3.1 RTE Generation

Each ECU in an AUTOSAR-based system contains its own instance of a RTE which

has been configured specifically for that ECU during the RTE generation process.

The RTE generator tool will create API functions which form the communications

between software components and which link software components to the operating

system and basic software modules. There are two stages to the RTE generation

process:

• RTE Contract Phase: In this phase software component information (mainly

interface definitions) is used to create a component header file. This file

contains a definition of the APIs which allow a software component to access

the RTE and its services. Note that the software component internal

behaviour description file detailing Runnable Entities and RTE Events is also

used in this process.

• RTE Generation Phase: An ECU configuration description is used as an

input to the RTE generation tool. This file contains details relating to the

software components to be deployed on an ECU such as the mappings of

application level signals to COM messages. Each ECU will have a

 AAUUTTOOSSAARR

 48

corresponding configuration description which is used to generate a specific

RTE for each ECU.

4.4 Software Component

Software components (AUTOSAR GbR 2006e) fulfil the application requirements of

an AUTOSAR system. They provide the core functionality i.e. the control logic

necessary for some task. In an engine management system, software components

might control features such as the ignition timing, injector pulse width, exhaust gas

recirculation strategy and so on. The infrastructure – sending and receiving of CAN

messages or OS scheduling, for example – is handled by basic software modules.

These lower level tasks are not in the domain of AUTOSAR software components.

Due to the separation of application and infrastructure in AUTOSAR systems,

software components become independent from the following (AUTOSAR GbR

2006b):

- The type of microcontroller that a software component is mapped to.

- The type of ECU that the software component is mapped to.

- The physical location of related software components on the vehicle

network.

- The number of instances of a particular software component in a system

or on an ECU.

4.4.1 Atomicity of Software Components

Every implemented AUTOSAR software component is an atomic unit (AUTOSAR

GbR 2006, p.17). Therefore, a software component cannot be divided into smaller

parts to be distributed over multiple ECUs. It is a whole unit and must be deployed as

such. This atomicity, coupled with the Virtual Functional Bus concept explained in

 AAUUTTOOSSAARR

 49

Section 4.2, allows a software component to be deployed without regard to the

location of other software components with which it communicates. In some cases

however it may be necessary to locate a software component on a specific ECU for

performance and efficiency reasons. This is typical of sensor and actuator software

components which are dependent on a particular piece of hardware. It also may be

true of some application software components which require data at a higher rate

than can be supplied by the vehicle network being used.

A software component may also be deployed independently of the number of times

the component is instantiated on an ECU or in the whole system e.g. a car may have

two instances of a software component which controls cabin temperature - one for

the passenger and one for the driver.

4.4.2 Compositions

AUTOSAR software components that are logically interconnected may however be

packaged together as a larger single component. This is referred to as a composition.

A composition allows the encapsulation of a number of pieces of functionality

(AUTOSAR GbR 2006, p.27). For example, a composition that calculates the pulse

width for petrol injectors may contain two atomic software components – one which

calculates the base injector pulse width from the desired fuel mass flow rate (SWC-

1), and one which adjusts this value based on operating conditions (SWC-2). Figure

4.5 shows a view of the composition from a logical point of view. Figure 4.6 shows

the actual implemented software components.

 AAUUTTOOSSAARR

 50

Fig Fig Fig Fig 4.5 Logical View of a Composition4.5 Logical View of a Composition4.5 Logical View of a Composition4.5 Logical View of a Composition

Fig Fig Fig Fig 4.5 I4.5 I4.5 I4.5 Implementation of a Compositionmplementation of a Compositionmplementation of a Compositionmplementation of a Composition

Unlike atomic software components, the software components in a composition may

be distributed over several ECUs. They do not necessarily need to be located

together.

In reality a composition is never actually implemented. It is a logical, design phase

artefact and is only used to facilitate the design of a system. In the final

implementation, a composition’s sub-components will be mapped to atomic

AUTOSAR components.

4.4.3 Sensor/Actuator Components

This is a special class of software component (AUTOSAR GbR 2006b). Typically,

the details of the underlying microcontroller and hardware are hidden from software

components. However, in this case, while the component is still independent of any

SWCSWCSWCSWC----1111

SWCSWCSWCSWC----2222

InfrastructureInfrastructureInfrastructureInfrastructure

 CompositionCompositionCompositionComposition

SWCSWCSWCSWC----1111

SWCSWCSWCSWC----2222
DataDataDataData

InfrastructureInfrastructureInfrastructureInfrastructure

 AAUUTTOOSSAARR

 51

given ECU it is dependent on a particular sensor/actuator. Therefore it must know

the details of that particular piece of hardware. It makes sense, for performance

reasons, to locate these software components and their corresponding hardware on

the same ECU. However, this is not essential.

4.4.4 Communications Modes

There are two main methods by which software components communicate with each

other. These are client-server and sender-receiver communications (AUTOSAR GbR

2006, p.35-43).

1. Client-Server Communication

Client-server communications are service oriented. A client-server interface declares

one or more operations that a client can invoke on a server.

In this mode, a client requests that some function or operation is performed by the

server. This is analogous to making a remote method invocation in Java. A software

component can be both a client and a server. Fig 3 illustrates this communications

method. The Light Controller SW-C requests that the Light Actuator SW-C performs

the operation Turn_on_lights(). In this example, the Light Controller SW-C is a client

while the Light Actuator SW-C is the server. The latter performs the operation and

reports back the result of the operation to the Light Controller SW-C. Note that a

response is not always required.

Fig Fig Fig Fig 4.6 Client4.6 Client4.6 Client4.6 Client----Server CommunicatServer CommunicatServer CommunicatServer Communicationionionion

Light ControllerLight ControllerLight ControllerLight Controller
SWSWSWSW----CCCC

Light ActuatorLight ActuatorLight ActuatorLight Actuator
SWSWSWSW----CCCC

Turn_on_lights()

Result

 AAUUTTOOSSAARR

 52

2. Sender-Receiver Communication

Sender-receiver communications are data based. A sender-receiver interface contains

one or more data elements or mode groups. The former, as its name suggests is

simply some piece of data. The latter allows for the transmission of various modes

which describe the state of the vehicle (or some aspect of it) e.g. start-up, normal

driving, shutdown etc.

In sender-receiver communications, a sender will transmit data asynchronously to

one or more receivers. There is no handshaking involved and the sender does not

receive any message indicating whether the data was received or not. Fig 3.4 shows

the Crankshaft Sensor SW-C (sender) transmitting a data value i.e. RPM to a

Dashboard SW-C (receiver). Note that modes can also be transmitted in the same

way e.g. car starting, car shutdown etc.

Fig Fig Fig Fig 4.7 Sender4.7 Sender4.7 Sender4.7 Sender----Receiver CommunicationReceiver CommunicationReceiver CommunicationReceiver Communication

4.4.5 Communication Attributes

The VFB defines communications in terms of ports and interfaces. These describe

the overall structure of communications. They do not however define essential

information such as whether or not communications needs to be done reliably, if an

init value should be used if real data is not available, should a queue be used when

receiving events and if so how long etc. These and the other communications

attributes are held in communication specification (ComSpec) classes which are in

turn linked to specific data elements or operations. The exact ComSpec attributes

Crankshaft Crankshaft Crankshaft Crankshaft
Sensor SWSensor SWSensor SWSensor SW----CCCC

Dashboard Dashboard Dashboard Dashboard
SWSWSWSW----CCCC

RPM

 AAUUTTOOSSAARR

 53

used in a particular instance depends on a number of factors including the

communications paradigm used (sender-receiver or client-server), whether a data-

element represents actual data or an event and so on.

4.4.6 Internal Behaviour

The AUTOSAR Software Component Template (AUTOSAR GbR 2006e) defines

the meta-class “Internal Behaviour” as describing the aspects of a software

component relevant to the operation of the RTE. This class describes internal aspects

of a software component including runnable entities and the events they respond to,

PerInstanceMemory and ExclusiveAreas.

Runnable Entities

A runnable entity is a sequence of instructions contained within a software

component which can be executed by the RTE (AUTOSAR GbR 2005a). Essentially

runnables encompass the various pieces of functionality of the component. For

example a runnable may be set up to run when a piece of data is received or when an

operation is called on a server. Runnables are the smallest piece of code in a software

component which can be scheduled by the operating system. There are a number of

categories (Cat) of runnable entities (AUTOSAR GbR 2005a). These vary according

to their scheduling complexity.

• Cat 1A: Finite execution Time. No wait points. Accesses data elements

through DataReadAccess and DataWriteAccess.

• Cat 1B: Similar to Cat 1A but can also explicitly send data (DataSendPoints),

explicitly read data (DataReceivePoints) and invoke services

(ServerCallPoints).

• Cat 2: Allowed to “wait” e.g. for a response from a service request, to receive

data or for RTE events.

• Cat 3: These use APIs to directly access the OS i.e. they do not access its

resources with standard RTE APIs. While this category of runnable is listed

in the VFB specification it is not currently supported by AUTOSAR.

 AAUUTTOOSSAARR

 54

The various methods of reading and writing data elements, invoking services etc

mentioned in the descriptions of runnable categories require further explanation.

These methods are as follows:

• DataReadAccess: This can be used to access a data element of an RPort. A

runnable is given the location of the data it requires. It does not need to

invoke an operation on the RTE to access the data.

• DataWriteAccess: This can be used to access the data of a PPort. A runnable

is given the location where it can write the data. It does not need to invoke an

operation on the RTE to write the data. In this case the runnable must ensure

that the data element is in a consistent state when the runnable returns. The

data will only be sent when the runnable terminates.

• DataSendPoint: A DataSendPoint is associated with a particular data element

provided by a PPort of a software component. It allows a runnable to invoke

an RTE operation instructing the RTE to send out the data on the associated

sender port of the software component.

• DataReceivePoint: A DataReceivePoint is associated with a particular data

element of an RPort. Using this, a runnable can invoke a method on the RTE

which will tell the RTE to receive the next value for this data element.

DataReceivePoints can also be used to receive events. In this case a queue

may be enabled and if so, the next value for the data element will be taken

from this queue.

• ServerCallPoint: The runnable may invoke a specified method (client-server

communications). The ServerCallPoint may be synchronous or asynchronous.

In the case of the former the runnable will block until it receives a response.

In the case of the latter, the runnable will continue but an RTEEvent will

occur when the response is received.

RTE Events

An RTE Event (RTEEvent according to AUTOSAR naming conventions) as its

name suggests is a predefined event which may occur on the RTE. These events are

used to prompt some response e.g. invoke an operation etc. The responses are

typically handled by runnable entities. Thus, RTEEvents can be seen as the trigger

 AAUUTTOOSSAARR

 55

which starts the execution of a runnable. In this case a specific RTEEvent is assigned

to a runnable e.g. “trigger runnable_a if data received on receiver port X”.

Alternatively, it is possible for the RTE to provide “wait-points”. These will allow a

runnable to block until a particular event in a sequence of events occurs. AUTOSAR

defines seven RTEEvent types:

- AsynchronousServerCallReturnsEvent

- DataSendCompleteEvent

- DataReceivedEvent

- DataReceiveErrorEvent

- OperationInvokedEvent

- TimingEvent

- ModeSwitchEvent

PerInstanceMemory

It can be defined in the software component description file whether or not a

component supports multiple instantiation. If this is enabled then each instance will

typically require an allocation of memory. The types required (valid C typedefs) are

specified in the PerInstanceMemory section of the software component description

file. The RTE provides mechanisms which allow each instance to access its own

specific memory blocks. If a software component does not support multiple

instantiation then it does not need to use the PerInstanceMemory class but can

instead use static variables.

ExclusiveAreas

An ExclusiveArea is used as a scheduling tool. An ExclusiveArea essentially

prevents runnables from pre-empting each other. For example, if two or more

runnable entities refer to a particular ExclusiveArea, then only one of the runnables

may execute in that runnable area i.e. the runnables cannot execute concurrently. The

inclusion of this in the internal behaviour of a software component does not prescribe

a specific implementation e.g. mutual-exclusion.

 AAUUTTOOSSAARR

 56

4.5 AUTOSAR Development Process

The AUTOSAR approach to systems development, known as the AUTOSAR

Methodology, is described using the Software Process Engineering meta-model

(SPEM). There are two artefacts used in Figure 4.9 to illustrate the Methodology.

Fig Fig Fig Fig 4.8 SPEM Blocks4.8 SPEM Blocks4.8 SPEM Blocks4.8 SPEM Blocks

Figure 4.9 shows an illustration of the AUTOSAR Methodology as given in the

AUTOSAR Technical Overview (AUTOSAR GbR 2006b).

.

Fig Fig Fig Fig 4.9 AUTOSAR Methodology4.9 AUTOSAR Methodology4.9 AUTOSAR Methodology4.9 AUTOSAR Methodology

Work-Product: “A <<Work-Product>> a piece of
information or a physical entity produced by or used by an
activity.” (AUTOSAR GbR 2006b)

Activity: “An <<Activity>> describes a piece of work
performed by one or a group of persons: the tasks,
operations, and actions that are performed by a role or with
which the role may assist.” (AUTOSAR GbR 2006b)

.XML.XML.XML.XML

.XML.XML.XML.XML

.XML.XML.XML.XML

.XML.XML.XML.XML exeexeexeexe

Configure

System

System
Configuration
Description :

System

System
Configuration

Input :

System

Extract ECU-
Specific

Information

ECU Extract
of System

Configuration

: System

Configure

ECU

ECU
Configuration

Description

Generate

Executable

ECU

Executable

 AAUUTTOOSSAARR

 57

The first task is to define the System Configuration Input. Software components and

hardware must be selected and the system constraints must be decided on. This will

involve filling out the following templates (AUTOSAR GbR 2006b):

– A software component template for each software component

– An ECU resource template for each ECU detailing items such as the processor,

memory, sensors etc.

– A system constraints template containing constraints relating to buses, mapping

of software components that belong together etc.

The main task in the Configure System phase involves mapping components to

ECUs. Its output – the System Configuration Description includes all system

information such as bus topology, and the mappings of software components to

ECUs.

Each of the subsequent steps must be repeated for each ECU in the system. Extract

ECU-Specific Information involves taking the information relevant to a particular

ECU from the System Configuration Description and then generating an ECU

Extract of System Configuration.

Configure ECU adds all of the relevant information required for implementation such

as task scheduling, assigning runnable entities to tasks, configuration of basic

software modules etc. The deliverable from this stage is the ECU Configuration

Description. This is then used to build the executable file that is deployed on the

ECU.

4.6 Summary

The prevalent trend in the automotive industry is that E&E systems are becoming

more complex while development times are decreasing. AUTOSAR offers a

 AAUUTTOOSSAARR

 58

potential solution to this through the introduction of a standardised architecture and

the ability to assemble an application from software components.

4.7 Relevance to Research

As this research is primarily concerned with the reuse of software components in

automotive applications, it will take place in the context of the AUTOSAR

environment. Therefore it is necessary to understand the AUTOSAR architecture – in

particular the software components – and the development processes used.

The first research question proposed asks about the level of specification needed to

document a component’s functionality to facilitate its reuse. The software component

description file is insufficient on its own for this task. Firstly, a component’s

interfaces may describe the services it provides but does not show the approach used

by the component. Secondly, two components may perform the same function but

provide it via different interfaces. This could make component selection more

difficult. Finally there is the problem of interface naming. An interface could for

example be given the name X and include the data elements A and B. Poor naming

and documentation practices can hinder the development process.

It is necessary therefore to devise some means of augmenting the information

provided in a software component description file to facilitate the selection of

software components. This forms an important part of this research.

 AAUUTTOOSSAARR

 59

4.8 References

AUTOSAR GbR (2005a). "Specification of the Virtual Functional Bus".
www.autosar.org, AUTOSAR GbR.

AUTOSAR GbR (2006a). "AUTOSAR Glossary". www.autosar.org, AUTOSAR
GbR.

AUTOSAR GbR (2006b). "AUTOSAR Technical Overview ". www.autosar.org,
AUTOSAR GbR.

AUTOSAR GbR (2006c). "Software Component Template ". www.autosar.org,
AUTOSAR GbR.

AUTOSAR GbR (2006d). www.autosar.org, AUTOSAR GbR.

AUTOSAR GbR (2007). "Specification of RTE Software". www.autosar.org,
AUTOSAR GbR.

AUTOSAR GbR (2008). "Specification of Operating System". www.autosar.org,
AUTOSAR GbR.

Lemieux, J. (2001). "Programming in the OSEK/VDX Environment", CMP Books.

 SSOOFFTTWWAARREE RREEUUSSEE

 60

.5.

Software Reuse

5.1 Introduction

“Software Reuse is the systematic practice of developing software from a stock of

building blocks, so that similarities in requirements and/or architecture between

applications can be exploited to achieve substantial benefits in productivity, quality

and business performance”(Morisio, Ezran et al., p.340-357).

This definition poses an interesting question: what exactly are the building blocks

used to develop software? The most obvious answer to this is code. Reuse may be

achieved through technologies such as software components or object libraries.

However, it is possible to reuse other software engineering artefacts.

The above definition states that software can be reused if there are similarities in the

requirements and/or architecture. If system requirements or architectures are similar

over a range of projects then it makes sense to consider these as candidates for reuse.

Frakes’ definition of software reuse includes these items. He states that “Software

reuse is the use of existing software knowledge or artefacts to build new software”

(Frakes 2000, 115-116).

This chapter illustrates the various strategies outlined above and presents a number

of methods of achieving reuse.

 SSOOFFTTWWAARREE RREEUUSSEE

 61

5.2 Reuse Strategies

There are three main points at which reuse can be practised: at the implementation

level, at the design stage and during requirements elicitation. Reuse during

implementation consists of reusing previously written pieces of code. Design reuse

involves reusing past design level artefacts such as models and software

architectures. If reuse is performed during requirements elicitation, then requirements

from past systems may be used to form a basis for the requirements of the current

system under development. Each of these strategies is discussed in greater detail

below.

5.2.1 Code Reuse

There is already a significant amount of code reuse carried out in industry. Libraries

that provide common functions such as file access or mathematical operations are

used every day by developers. These code libraries are often taken for granted, and

as this method is so frequently used in industry, it is not often thought of as code

reuse (Waldo 1998).

Libraries of software components may also be used as a means of achieving code

reuse. Software components are software artefacts that encapsulate one or more

pieces of functionality. Each component communicates with other components and

its system environment via well-defined interfaces. Therefore, if the interfaces can be

fulfilled by a new system – required data is supplied to the component and the

component’s provided data is handled by the system, then the component can be

integrated into that system.

A more detailed overview of component-based software engineering is presented in

Chapter 6.

 SSOOFFTTWWAARREE RREEUUSSEE

 62

5.2.1.1 Benefits of Code Reuse

Vitharana describes four benefits which may be achieved by component-based

software engineering (Vitharana 2003, p.67-72).

Enhanced Quality

A component that is used in more than one application or system will undergo tests

for each application it is deployed in. There will be a better chance to discover

potential bugs and/or improvements.

Simplified Maintenance of Systems

In a component-based environment, obsolete components may be replaced by newer

or updated ones as long as the same interfaces are used for the new component.

Leveraged Costs Developing Individual Components

A component may be used in many applications. It does not have to be created from

scratch each time.

Reduced Lead Time

Development time is reduced as it is possible to create an entire system by

assembling pre-existing components. Alternatively, systems can consist of a mix of

new and reused code. This again reduces the amount of code which must be

developed.

These benefits are described further in Chapter 6.

5.2.1.2 Challenges of Code Reuse

There are a number of challenges which must be addressed when reusing code.

Again, these are given in greater detail in Chapter 5.

Training

Component-based software engineering is still fairly young compared to traditional

software engineering practices. Therefore it is necessary to provide training for staff

 SSOOFFTTWWAARREE RREEUUSSEE

 63

in the new techniques and technologies required. It also may be necessary to hire

new staff (Vitharana 2003, p.67-72).

Integration

Software components may not integrate properly. Also, pre-existing components

may not provide their specified functionality (Vitharana 2003, p.67-72).

Identifying Components

It is necessary to have an effective classification and coding system to allow

components to be easily identified and discovered (Vitharana 2003, p.67-72) .

Matching Components to Requirements

It may be difficult to match the requirements provided in a requirements document to

a component’s specifications (Vitharana 2003, p.67-72).

Version Control

A component may undergo several modifications throughout its lifecycle. Therefore

there must be some means provided of tracking and managing the different versions

of components (Vitharana 2003, p.67-72).

Interdependence of Components

It is often the case that component selection decisions are heavily interdependent.

One selection decision can constrain others (Kurt Wallnau, Scott Hissam et al. 2001).

Therefore careful decisions must be made when selecting components, since picking

one component may prohibit the use of others.

Size of Reusable Software

The size of a piece of software can affect its potential for reuse. For example, if a

software component is too small and trivial, then programmers may feel that they can

make it themselves. If it is too complicated, then after taking the time to understand

the component, developers may believe that they can make a better version

themselves (Zhu 2005).

 SSOOFFTTWWAARREE RREEUUSSEE

 64

5.2.2 Design/Architectural Reuse

A software architecture specifies the way that a system is composed from individual

components and the ways in which those components interact with each another

(Clements, Kazman et al. 2002). Many organisations have realised that a software

architecture is the result of a significant amount of investment (Bass, Clements et al.

1998, p.329). Therefore, there is a desire to obtain the maximum amount of return for

each architecture.

An architecture can be reused in one of two ways (Bass, Clements et al. 1998,

p.329). The first is within a single organisation, whereby the organisation uses the

architecture as a basis for a product family. This is the case with software product

lines. The second method occurs when an architecture is used within a community

i.e. across more than one organisation. A common architecture may lead to a market

for common components. AUTOSAR is an example of a common architecture used

in the automotive industry.

Design reuse does not necessarily have to be confined to architectural reuse. Other

design level artefacts such as diagrams or Simulink models are also candidates for

reuse.

5.2.2.1 Benefits of Architectural/Design Reuse

Leveraged Costs

A software architecture requires a significant investment by an organisation’s

engineers. Since a lot of design work has already been completed during the

development of the architecture, a significant amount of this design does not have to

be repeated for subsequent products in the line (Clements and Northrop 2002a).

Reuse of performance modelling and analysis

A new product can be fielded with a high degree of confidence that any problems

have been worked out as modelling and analysis data is reused for subsequent

projects (Clements and Northrop 2002). It is likely that any problems e.g. with

 SSOOFFTTWWAARREE RREEUUSSEE

 65

communications, hardware interfacing, scheduling etc have been adequately

modelled and analysed and that any problems such as deadlock or data consistency

have been resolved.

5.2.2.2 Costs of Architectural/Design Reuse

Investment

The development of architecture for a software system represents a significant

investment in both time and finances. Significant investment must also be made to

maintain a product line architecture (Clements and Northrop 2002a). For example the

AUTOSAR development partnership was formed in 2003. Work on the standard has

continued on into 2008. Companies must retrain staff and develop or purchase tools

to support AUTOSAR. New development practices, validation steps etc must be

introduced.

Managing Variations

The architecture must be able to support the variations present in the product line.

This can impose an additional constraint on the architecture and will therefore

require greater skill to define (Clements and Northrop 2002a). It should be possible

to use the architecture as a basis for a number of systems rather than it being tailored

from the start to suit only one or a small number of specific products.

5.2.3 Requirements Reuse

It is advantageous to perform reuse at a higher level of abstraction than code. At

higher levels of abstraction, it can be easier to understand a component’s

functionality and justify its use (Periyasam and Baram 1997). Also, a major problem

with software reuse is the difficulty of identifying reusable components. Often

reusable code may be accompanied by an informal document which does not

adequately describe the functionality of the code. As requirements form the starting

 SSOOFFTTWWAARREE RREEUUSSEE

 66

point for any software development project, the reuse of past requirements can lead

to further reuse of design and code artefacts.

5.2.2.1 Benefits of Requirements Reuse

Increase in productivity

Introducing reuse starting at the requirements level can lead to an increase in

productivity (Roudiès and Fredj 2001).

Leads to reuse of design level artefacts

The reuse of requirements can point a developer towards subsequent design level

artefacts such as a particular product line architecture. Costs and time are thus saved

at more than one point i.e. requirements and design do not have to be developed.

5.2.2.2 Challenges of Requirements Reuse

Transformation of working methods

To enable successful reuse of requirements, there needs to be a change in working

practices (Roudiès and Fredj 2001). These may include the ways in which

requirements are created and managed and may necessitate a move away from more

traditional practices.

5.3 Software Reuse Practices

There are a number of tools and methods used to facilitate software reuse. This

section presents four different approaches – software product lines, software

components, domain analysis and the model driven architecture. Note that these

approaches are not necessarily separate. They can be used to complement each other.

 SSOOFFTTWWAARREE RREEUUSSEE

 67

For example, a software product line may be based on a particular architecture which

has been created through a domain analysis and the individual products in the

product line may be constructed using reusable software components.

5.3.1 Software Components

Software components and component-based software engineering are described in

Chapter 6. A software component is essentially a discrete piece of code which

communicates via well-defined interfaces. They can be thought of as building blocks

which can be assembled to form a complete software system.

A software component may be reused in many applications. If a system is able to

meet a component's interfaces then it should be possible to integrate the component

into the new system under development.

5.3.2 Software Product Lines

A software product line is “a collection of systems sharing a managed set of features

constructed from a common set of core software assets. These assets include a base

architecture and a set of common, perhaps tailorable, components that populate it.”

(Bass, Clements et al. 1998). These assets may also include domain models,

requirements, documentation, specifications, tests and so on (Clements and Northrop

2002b). This definition ties together two reuse strategies – code reuse in the form of

software components which have already been defined, and architectural reuse.

There are three activities which are essential to product line development. These are

– core asset development, product development and management involvement.

 SSOOFFTTWWAARREE RREEUUSSEE

 68

5.3.2.1 Core Asset Development

The aim of core asset development (Clements and Northrop 2002, p.31-37) is to set

up the production capability for products i.e. to put everything in place to enable

products to be created. To do this, three items (the outputs of core asset

development) must be created. These are the product line scope, core assets and a

production plan.

Product Line Scope

The product line scope describes the products that make up a product line and/or

products that may be added in the future. It is important to determine the correct

scale for the product line scope. Too small a scope will lead to core assets which are

too specific and hence difficult to reuse. If the scope is too large on the other hand,

then the core assets may not be able to include the variability necessary to support a

large number of products. This could lead to development returning to a more

traditional development practice in which reuse of assets is not prevalent. The

product line scope should change as the market changes.

Core Assets

One of the main core assets is the product line architecture. The product line

architecture specifies the structure of products in the line and interface specifications

for the components used. It also presents a set of variation points to allow the

individual products to be created. Figure 5.1 illustrates a simple product line

architecture for an engine unit. This diagram is presented in UML.

Fig Fig Fig Fig 5.1 Product Line Architecture5.1 Product Line Architecture5.1 Product Line Architecture5.1 Product Line Architecture

 SSOOFFTTWWAARREE RREEUUSSEE

 69

The Engine Management architecture contains four direct sub-systems: ignition, fuel

injection, a crank sensor, and a throttle sensor. All of these modules with the

exception of fuel injection are common to every product in the line. The fuel

injection sub-system is a variation point with two possible configurations. In this

case, the fuel injection system may inject fuel directly into the cylinders, or into the

intake manifold.

The above example is a very high-level view of a product line and a variation point.

In reality, the variation points may be defined at a much lower level e.g. a set of

sensors which may vary by an event-driven or time-triggered reporting mechanism.

Other core assets include software components which have been developed for reuse

across the product line along with any relevant documentation, test cases etc.

Requirements specifications, domain models and any Commercial off-the-shelf

(COTS) components used are further examples of core assets.

Finally, there are a number of core assets which exist at a non-technical level. These

include training necessary for a given product line, technical management process

definitions for that product line, along with the business case for using a product line

for the given set of products and the set of identified risks for building the products.

Production Plan

A production plan will describe how products for a specific product line are

constructed from the set of core assets. Each core asset has an attached process which

states how the asset is to be used during the development of a product. The

production plan is made up of these processes along with any ‘glue’ needed to

integrate the assets.

5.3.2.2 Product Development

At a simple level, product development consists of taking core assets and applying a

production plan to produce a product (Clements and Northrop 2002, p.37-44).

Product development combined with core asset development may be viewed as a

single iterative process. For example, building a product may lead to the

 SSOOFFTTWWAARREE RREEUUSSEE

 70

development or modification of new or existing core assets. These new/modified

assets can then be fed back into product development. In addition, construction of a

new product might necessitate changes being made to the product line scope.

5.3.2.3 Management Involvement

Two levels of management must be involved for successful product line development

(Clements and Northrop 2002, p.45-48). Managers at the technical level oversee the

development of core assets and product development. Managers at the organisational

level handle items such as organisational resources (personnel etc), funding models

and overall organisational decisions relating to the product lines. There should also

be in place a product line manager and a product line champion who provides

leadership in attempting to achieve product line goals.

5.3.3 Domain Analysis

Software reuse only becomes possible when the features and capabilities which are

common to applications or systems within a domain can be defined prior to software

development (Kang, Cohen et al. 1990). For example, if software reuse is to be

performed in the context of an engine management system, then it is necessary to

know how an engine works, including factors such as sensor data that must be read

and actuators which are under ECU control. Therefore, a study must be performed on

the domain in question.

Domain analysis consists of collecting domain knowledge, which may take the form

of technical literature, information from domain experts etc, and forming this raw

data into a model which represents the concepts present in the domain. The resultant

output – the domain model - is a problem-oriented analysis of a domain which

includes the similarities and variations of the set of systems in that domain

(Keepence, McCausland et al. 1996, 35-42). There is no single prescribed method for

representing a domain. Therefore, any number of representations may be used, from

simple textual descriptions of domain concepts, to a structured modelling language

 SSOOFFTTWWAARREE RREEUUSSEE

 71

such as the UML. Two examples of a simple domain model for automotive sensors

are presented to illustrate both of these approaches. Figure 5.2 shows a text-based

domain model. Figure 5.3 expresses the same domain knowledge in terms of a UML

class diagrams.

Fig Fig Fig Fig 5.2 Text5.2 Text5.2 Text5.2 Text----Based Domain ModelBased Domain ModelBased Domain ModelBased Domain Model

Fig Fig Fig Fig 5.3 UML5.3 UML5.3 UML5.3 UML----Based Domain ModelBased Domain ModelBased Domain ModelBased Domain Model

In the example shown in Figure 5.4 a domain model for an engine management

system is to be constructed. The inputs to this domain analysis project are knowledge

from mechanical engineers, software engineers, electronic engineers, engine

Automotive Sensors

� There are three categories of
sensors used – angular position
sensors, temperature sensors and
pressure sensors.

� Angular position may be
measured in radians or degrees.

� Temperature may be measured in
Celsius (°C) or Fahrenheit (°F).

� Pressure is measured in Pascals
(Pa)

Physical

Quantity

Sensor

Angular

Position

Sensor

Temperature

Sensor

Pressure

Sensor

Measures

Angular

Position

Temperature Pressure

Unit

0 ..* 1

 SSOOFFTTWWAARREE RREEUUSSEE

 72

technical specifications and modelling standards. The output is a set of UML

diagrams describing the domain concepts.

Fig Fig Fig Fig 5.4 Engine Management Domain Analysis5.4 Engine Management Domain Analysis5.4 Engine Management Domain Analysis5.4 Engine Management Domain Analysis

5.3.4 Model Driven Architecture (MDA)

The MDA (OMG 2003f) was created by the Object Management Group (OMG). The

OMG is an international non-profit consortium whose members range from end-

users to large scale corporations involved in the computer industry. Founded in 1989,

the OMG is heavily involved in developing standards and specifications which

impact the world of computing. These include the Unified Modelling Language

(UML) and the aforementioned Model Driven Architecture (MDA).

The MDA is an approach to software development which, as its name suggests, relies

mainly on models. Its three primary goals are to facilitate the portability,

interoperability and reusability of software architectures. These are achieved through

the architectural separation of concerns. Essentially, the MDA separates the overall

operation of a software system from the details of how the system makes use of its

environment i.e. hardware, operating system, programming language etc. Therefore,

a software architecture model which specifies the operation of a Climate Control

Unit, for example, may first be implemented on a particular microcontroller for a

 SSOOFFTTWWAARREE RREEUUSSEE

 73

certain car. Later that same architecture model may be reused to recreate the same or

a similar climate control unit on a totally separate microcontroller for the newest

model of that same car.

5.3.5.1 MDA Approach

MDA operates by taking a set of requirements for a system and then structuring them

into general models detailing what a system does but not how it does it. These are

then transformed into more specific models which more closely match the final

system operation until a final implementation is achieved. The MDA approach

makes use of three main model types:

1. Computation Independent Model

2. Platform Independent Model

3. Platform Specific Model

Computation Independent Model – CIM

The CIM (OMG 2003a) is the highest level of abstraction of a system used in the

MDA. The CIM describes the situation or environment that the system will operate

in, and a high level view of what the system is supposed to do. This essentially

means that a CIM represents the overall requirements of that system. For example, a

CIM may include the following requirements for a fuel injection system:

1. The fuel injection system shall take into account vehicle operation conditions

such as engine start-up and coasting.

2. The fuel injection system shall provide a means of controlling the

recirculation of exhaust gasses.

3. There must be a means of detecting and controlling engine knock.

The CIM is analogous to a domain model in that both can show a high level view of

a system. They both describe the main concepts of the system without regard for any

implementation specific details.

 SSOOFFTTWWAARREE RREEUUSSEE

 74

Platform Independent Model – PIM

The PIM (OMG 2003b) is a more detailed description of a system – what it is and

what the system actually does. This level of abstraction illustrates, from a logical

point of view, exactly what the system does but not how it will do it. Any specifics of

how it will be implemented, what programming language, software and hardware

will be used, are hidden at this point.

A PIM may make use of various models such as class diagrams and data-flow

diagrams from the UML to aid the understanding of the system. Figure 5.5 shows an

example of a simple PIM for the fuel injection system.

Fig Fig Fig Fig 5.5 Fuel Injector PIM5.5 Fuel Injector PIM5.5 Fuel Injector PIM5.5 Fuel Injector PIM

Platform Specific Model – PSM

The PSM (OMG 2003c) is shows how a system is implemented on a chosen

platform.

Transformation

The MDA revolves around the concept of transformation – that is, transforming one

model into another. A CIM is transformed into a PIM, which is in turn refined to

produce one or more PSMs. This allows the system to be implemented on each of the

selected platforms. In this way, a system can be designed, from concept to

implementation, through refinement from an initial system specification to its final

implementation.

Determine
Engine

Operating
Mode

Injector 3

Calculate
Injector

Pulse-Width

Knock Sensor

Crankshaft
Position
Sensor

Acceleration
Sensor

Injector 1

Injector 2

Injector 4

 SSOOFFTTWWAARREE RREEUUSSEE

 75

In the example illustrated in Figure 5.6 a fuel injection application is transformed

from general requirements (CIM) into a generic PIM which details exactly what the

application should do, but not how it does it, and finally into two separate PSMs.

These describe the implementation of the same application on an Infineon and a PIC

microcontroller respectively.

Fig Fig Fig Fig 5.6 MDA Transformations5.6 MDA Transformations5.6 MDA Transformations5.6 MDA Transformations

The above example is a simplified view of the MDA process. In reality, there may be

any number of intermediary stages between the initial CIM and the final

implemented PSMs. In this case, the MDA may be applied multiple times, with the

PSM from one stage becoming the PIM for the next stage. For example, Figure 5.6

may be extended to include more than one microcontroller in both the Infineon and

PIC ranges as shown in Figure 5.7.

Fig Fig Fig Fig 5.75.75.75.7 Multiple MDA TransformationsMultiple MDA TransformationsMultiple MDA TransformationsMultiple MDA Transformations

As can be seen, multiple transformations between models take place. Firstly there is

the initial transformation from the Fuel Injection CIM to a Fuel Injection PIM. Next,

Fuel Injection
CIM

Fuel
Injection PIM

Infineon PIM

PIC PIM

C166 PSM

C167 PSM

16F877 PSM

18F2420 PSM

Fuel Injection
CIM

Fuel
Injection PIM

Infineon PSM

PIC PSM

 SSOOFFTTWWAARREE RREEUUSSEE

 76

there is the transformation from the PIM to the Infineon and the PIC PSMs. These

are further refined, being used as PIMs in the next step of the transformation. For

example, the Infineon PSM is specific to the Infineon family of microcontrollers but

it can be further refined for a specific member of that family e.g. the C167 controller.

Here, the Infineon PSM is now considered to be a PIM, as it is independent of the

actual microcontroller model number. This allows the more specific PSMs to be

created. This can be repeated any number of times for more specific variants of each

controller.

What is a platform?

The above example serves to illustrate the confusion that can arise when trying to

define platform. The OMG states in the MDA Guide that the definition of a platform

depends on what level a system is viewed at. For example, the decision may be made

to implement an application using software components. At this point, the platform is

a generic component-based architecture. This may be further refined, implementing

the system on a CORBA (Common Object Request Broker Architecture) or EJB

(Enterprise Java Beans) component architecture. Now, at this level (which is closer

to the final implementation), the platforms are considered to be the CORBA and EJB

architectures.

Mapping

If a PIM is to be transformed into a PSM, then it is necessary to be able to map

elements defined in the former, to elements in the latter. There are five main ways of

achieving this (OMG 2003d):

1) Model Type Mappings

 The mapping is performed by taking a PIM which has been prepared according to

some process independent modelling language, and mapping it to a PSM according

to a corresponding PSM language.

 SSOOFFTTWWAARREE RREEUUSSEE

 77

2) Model Instance Mappings

Model elements in the PIM are identified, which should be transformed in a

particular way (dependant on the particular target platform). This is achieved

through the use of marks. A mark is applied to a PIM element to show how it is to

be transformed e.g. a generic communications module may be marked to be

transformed into an AUTOSAR sender-receiver communications interface in the

PSM. Note that marks may also be used to indicate quality of service requirements.

3) Combined Type & Instance Mapping

As its name suggests, this is simply a combination of the above two approaches.

4) Marking Models

A mark is used to indicate that a particular item e.g. a UML stereotype, a type from

a model etc will be used in a transformation. For example, if a particular entity X is

applied as a mark to a class or object in a PIM, then this indicates that the entity X’s

template of a mapping will be used to transform the PIM to a PSM.

5) Templates

A template is a parameterised model which is used to define a particular type of

transformation. Templates can be used in Model Type Mapping as rules to guide

the transformation of a pattern of elements. Templates may also be used in

conjunction with marks, allowing certain model elements which have been marked

(again in a certain pattern), to be transformed according to a given template.

Transformation Methods

The mapping tools described in the previous section may be utilised in various ways

in order to allow models to be transformed. The OMG identifies four possible

approaches to transforming models (OMG 2003e). These, and further approaches

may be implemented through a combination of manual and automatic transformation,

the use of marks, templates etc.

 SSOOFFTTWWAARREE RREEUUSSEE

 78

A significant quantity of the work in the MDA approach involves the process of

transforming a PIM into a PSM. The OMG identifies four main types or methods

which could be used. These are:

1) Manual Transformation

The transformation is carried out based on design decisions made by system

developers.

2) Transformation a PIM Prepared Using a Profile

A PIM may be prepared according to a platform independent UML profile. This

may then be transformed, possibly with the use of marks, into a PSM according to

a platform specific UML profile.

3) Transformation Using Patterns and Markings

Here, the specification for a mapping may contain patterns and marks which

identify elements within those patterns. Elements from a PIM are then marked.

These marked elements are transformed according to the corresponding elements in

the patterns into a PSM.

4) Automatic Transformation

In this approach, a developer may be able to supply all of the required information in

a PIM to allow a tool to convert it into a final implementation e.g. deployable code.

A component-based software system such as AUTOSAR is one example of an area

where this approach is applicable. All that needs to be done is to select the required

functionality for the application, and the tool could select the appropriate

components and configure the Runtime Environment.

 SSOOFFTTWWAARREE RREEUUSSEE

 79

5.4 MDA and the AUTOSAR Build Process

It is possible to draw parallels between the approach proposed by the MDA and the

processes involved in building an AUTOSAR-based system. This is due to the way

in which AUTOSAR separates an application from its infrastructure.

The application side of an AUTOSAR system is fulfilled by software components.

They contain the logic necessary to carry out various tasks such as fuel injection,

anti-lock brakes and so on. All of the infrastructural requirements – communications,

memory management etc – are handled by the basic software modules.

There are two steps involved in developing software components for an AUTOSAR

system (LiveDevices Ltd 2004). Firstly, a set of software components which will

fulfil the functional requirements of the system must be built or selected. It is

possible to do this without any knowledge of the platform that the components will

be deployed on. The output of this stage is a set of code files and a corresponding set

of XML files which describe each of the software components.

The next phase involves deploying the software components. The components are

allocated to the ECUs and are integrated with the basic software of the ECUs. This

requires the software component description files and two other files which must be

defined. The first is the ECU Configuration Description file. This contains the

mappings of components to the system’s ECUs, along with a description of the ECU

resources. The second file is the System Configuration Description file. This file

contains information such as the network topology and how communications

between ECUs is mapped to the physical networks. Note that to create these files, the

developer requires a set of ECU Resource Descriptions, each of which describes the

resources of their corresponding ECU, and a System Constraints Description file,

which defines items such as the physical network to be used and so on.

An automated tool can then take these files and configure the software for each ECU.

This includes generating a Run-Time Environment (RTE) for each ECU, configuring

the basic software modules and integrating the software components. The output

 SSOOFFTTWWAARREE RREEUUSSEE

 80

from this task is the set of system ECUs containing the final deployed application

and properly configured basic software.

Figure 5.8 illustrates steps from the AUTOSAR build process and relates them to

similar steps in the MDA. It is broken up as follows: The initial set of system

requirements describe what is desired of the system without specifying how it is to

be carried out. This relates to a computation independent model. The next section

consists of the set of software components. These contain the functionality of the

system but since they can be developed without any knowledge of the final platform

they are to be deployed on, they relate to a platform independent model. The final

section is the deployed AUTOSAR system. Here, the platform specific details i.e. the

ECUs, physical networks etc are known and the software components have been

deployed. This section relates to the platform specific model.

Note that each of the steps carried out in the AUTOSAR development process is

essentially a refinement of the output of the previous stage, resulting in a more

specific output until a final system is deployed. This is similar in concept to the

refinement steps carried out when a MDA CIM is transformed into a PIM and then a

PSM.

 SSOOFFTTWWAARREE RREEUUSSEE

 81

Fig Fig Fig Fig 5.85.85.85.8 Comparison of AUTOSAR and MDAComparison of AUTOSAR and MDAComparison of AUTOSAR and MDAComparison of AUTOSAR and MDA

5.5 MDA and Simulink/TargetLink

The MDA process parallels system development using Simulink and TargetLink.

Simulink and TargetLink have already been described in Chapter 3. Simulink is a

model-based development tool that allows a user to model a system using various

blocks representing mathematical operations, events and so on. TargetLink works in

conjunction with Simulink to convert models into code.

Requirements Requirements Requirements Requirements
EngineeringEngineeringEngineeringEngineering

System
Requirements

Software
Components

Develop Software Develop Software Develop Software Develop Software
ComponentsComponentsComponentsComponents

Deployed

AUTOSAR
System

Generate SystemGenerate SystemGenerate SystemGenerate System
System System System System

ConstraintsConstraintsConstraintsConstraints

ECU Resource ECU Resource ECU Resource ECU Resource
DescriptionsDescriptionsDescriptionsDescriptions

Computation

Independent

Model

Platform

Independent

Model

Platform

Specific

 Model

 SSOOFFTTWWAARREE RREEUUSSEE

 82

The starting point for any system is a set of requirements. These requirements are

interpreted by a developer and used to model the required system using Simulink.

The Simulink model may be thought of as a PIM in that it models the operation of a

system but is not specific to a particular platform or programming language. Next the

Simulink blocks must be converted into TargetLink blocks. This is analogous to the

marking process in the MDA which allows a PIM to be converted into a PSM.

Finally the marked blocks (TargetLink blocks) are converted directly into code files

which can be deployed on a microcontroller. Figure 5.9 illustrates the relationship

between Simulink/TargetLink and the MDA.

Fig 5.9 Comparison of Simulink/TargetLink and MDAFig 5.9 Comparison of Simulink/TargetLink and MDAFig 5.9 Comparison of Simulink/TargetLink and MDAFig 5.9 Comparison of Simulink/TargetLink and MDA

Requirements Requirements Requirements Requirements
EngineeringEngineeringEngineeringEngineering

System
Requirements

Simulink
Model

Model using Model using Model using Model using
SimulinkSimulinkSimulinkSimulink

Code Files

Generate CodeGenerate CodeGenerate CodeGenerate Code

Computation

Independent

Model

Platform

Independent

Model

Platform

Specific

 Model

Mark ModelMark ModelMark ModelMark Model

 SSOOFFTTWWAARREE RREEUUSSEE

 83

5.6 Summary

There are a number of strategies which may be applied when attempting to reuse

software or software engineering artefacts. These include reuse of code, designs and

requirements. These strategies are embodied in various techniques and tools which

are used in industry. Examples of these include software component reuse, software

product lines, domain analysis and the model driven architecture. Each of these can

be used in isolation or in conjunction with another technique to achieve software

reuse. Each method has various benefits attached to it but also a number of

challenges which must be overcome.

5.7 Relevance to Research

The concept of reuse is key to this research. The core items in the research include

reusable software components, potentially reusable requirements and a reusable

architecture – AUTOSAR. Therefore, an understanding of each of these is

fundamental to the research.

 SSOOFFTTWWAARREE RREEUUSSEE

 84

5.8 References

Bass, L., P. Clements, R. Kazman, P. Oberndorf, K. Wallnau and A. M. Zaremski
(1998). "Software Architectures in Practice", Addison Wesley.

Clements, P., R. Kazman and M. Klein (2002). "Evaluating Software Architectures
Methods and Case Studies", Addison Wesley.

Clements, P. and L. Northrop (2002b). "Software Product Lines - Practices and
Patterns", Addison Wesley.

Frakes, W. B. (2000). "Practical Software Reuse (Panel Position Paper)". 3rd IEEE
Symposium on Application-Specific Systems and Software Engineering Technology
(ASSET'00), IEEE.

Kang, K. C., S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson (1990).
"Feature-Oriented Domain Analysis (FODA) Feasibility Study", Software
Engineering Institute - Carnegie Mellon University.

Keepence, B., C. McCausland and M. Mannion (1996). "A New Method For
Identification of Reusable Software Components". IEEE Symposium and Workshop
on Engineering of Computer Based Systems (ECBS), IEEE.

Kurt Wallnau, Scott Hissam and Robert C. Seacord (2001). "Half Day Tutorial in
Methods of Component-Based Software Engineering Essential Concepts and
Classroom Experience". ESEC/FSE, Vienna, Austria, ACM.

LiveDevices Ltd (2004). "RTA - RTE User Guide", LiveDevices Ltd.

Morisio, M., M. Ezran and C. Tully "Success and Failure Factors in Software
Reuse." IEEE Transactions on Software Engineering 28(4): p.340-357.

OMG (2003). "MDA Guide Version 1.0.1", OMG.

Periyasam, K. and J. C. Baram (1997). "A Method For Structural Compatibility in
Software Reuse Using Requirements Specification". COMPSAC '97 - 21st
International Computer Software and Applications Conference, IEEE.

Roudiès, O. and M. Fredj (2001). "A Reuse Based Approach for Requirements
Engineering". ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA ’01).

Vitharana, P. (2003). "Risks and Challenges of Component-Based Software
Development." Communications of the ACM 46(8): p.67-72.

Waldo, J. (1998). "Code Reuse, Distributed Systems, and Language-Centric
Design". Fifth International Conference on Software Reuse (ICSR'98), IEEE.

 SSOOFFTTWWAARREE RREEUUSSEE

 85

Zhu, H. (2005). "Challenges To Reusable Services". 2005 IEEE International
Conference on Services Computing (SCC’05), IEEE.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 86

.6.

Component-Based Software

Engineering

6.1 Overview

Component-Based Software Engineering (CBSE) is, in practice, a relatively new

method of developing software applications and systems. The goal of CBSE is to

create systems by composing reusable components at a finer level of granularity than

a complete application (Heineman and Councill 2001) i.e. systems are developed by

assembling various software components into a larger whole. This is analogous to the

way a house is built using individual bricks, tiles, panes of glass etc. This chapter is

broken up as follows. First the concept of a software component is introduced. Next

the benefits and challenges of CBSE are presented. Finally a number of approaches

used to identify, select and store software components are discussed.

6.2 Software Components

A software component can be defined as “a software element that conforms to a

component model and can be independently deployed and composed without

modification according to a composition standard.” (Heineman and Councill 2001)

This is a very general statement but it provides an effective starting point from which

to develop a complete understanding of a software component.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 87

Components can be viewed as the building blocks which are used to make up a

system. They each represent one or more logical or organizational-related tasks,

which, when working together, provide the full functionality of the system. Figure

6.1 presents a simplified illustration of three software components which may be

used to control the cabin temperature of a car.

Fig Fig Fig Fig 6.16.16.16.1 Air Conditioning Unit Software ComponentsAir Conditioning Unit Software ComponentsAir Conditioning Unit Software ComponentsAir Conditioning Unit Software Components

The main software component in this example is the Cabin Temperature Controller.

It contains the control logic for the system. Two other components are necessary to

allow cabin temperature to be effectively controlled. The first is the Cabin

Temperature Sensor. This receives a signal (temperature) from a physical sensor in

the car cabin, and passes this to the Controller component. The Controller can then

compare this value to the Desired Temperature – set by the user – to determine if any

change must be made to the ratio of hot and cold air entering the cabin. This data is

then passed to the Hot/Cold Air Mix Vent software component, which will in turn

change the position of a vent to alter the air mix as required. As can be seen, the

three software components all work together to provide the full functionality of a

system to monitor and control a car’s cabin temperature.

6.2.1 Interfaces

Communications between components is achieved through the use of well-defined

communications interfaces. An interface is a contract that specifies services a

component provides or services it needs others to fulfil. Interfaces are therefore

classified as either “provide” or “require” interfaces. A provide interface defines the

Cabin
Temperature

Sensor

Cabin
Temperature
Controller

Cabin Temperature

Hot/Cold Air Mix

Vent

Hot/Cold Air Ratio

Desired Temperature

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 88

services that a component makes available to others. A component that has a require

interface, as its name suggests, needs some other component to supply some service

and/or data for it to operate fully. Figure 6.2 illustrates these concepts.

Fig Fig Fig Fig 6.26.26.26.2 Component InterfacesComponent InterfacesComponent InterfacesComponent Interfaces

In Figure 6.2 Component A requires (through a require interface) a service to be

fulfilled by another component. This is done by Component B which provides that

service through a provide interface. Software components work together in this way

to fulfil the requirements of an entire system.

Interfaces must conform to standards laid out in the specification of the component

architecture (McArthur, Saiedian et al. 2002) i.e. the component model, or according

to an interface definition language.

For example, AUTOSAR specifies two main communication modes, implemented as

interfaces. These are sender-receiver and client-server interfaces(AUTOSAR GbR

2006e). In the former case, a sender will transmit data to one or more receiver

components. In the latter case, client software components may request that some

operation is carried out by a server component. This is analogous to remote method

invocation in languages such as Java. The messages are passed via a set of software

modules (the Runtime Environment, which handles the interaction with basic

software modules such as the operating system, communications etc) to their desired

destination.

Component AComponent AComponent AComponent A Component Component Component Component BBBB

Require Interface Provide Interface

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 89

6.2.2 Component Model

Each component architecture/infrastructure (CORBA, AUTOSAR etc) has a specific

component model. This details composition and interaction standards which must be

adhered to by components conforming to that model. It should contain the following

pieces of information (Sparling 2000, p.47-53):

- A set of design principles and modelling standards

- A standard set of analysis, design, development & testing tools

- A uniform set of document standards

- A description of the goals of component based development.

6.2.3 Components versus Objects

From a conceptual point of view, a component is quite similar to a software object,

so what’s the real difference? To answer this satisfactorily, it is necessary to look at

the implementation of both.

Internally a component and an object may be extremely similar. In fact, there is no

reason why a software component cannot be implemented as a single object.

However, a component could also potentially be implemented by a group of objects,

or it may contain no object-oriented code at all. It may simply be made up of basic

procedural C code. Also, unlike objects, component names may not be used as type

names (Weinreich and Sametinger 2001, p.36). A number of component suppliers

may for example create components with totally different functionality but which

have the same name. They are in reality two different “types”.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 90

6.3 Benefits & Challenges of CBSE

6.3.1 Benefits

The following is a list of some of the potential benefits to be gained when adopting

CBSE:

Software Reuse

A component-based architecture is a plug and play environment (McArthur, Saiedian

et al. 2002). Therefore components used in one system can be plugged in to another

future system. This ability to reuse software is one of the greatest advantages CBSE

has over most other traditional software engineering practices and leads on to further

advantages.

Vitharana identifies four advantages that CBSE gives to the software development

process (Vitharana 2003, p.67-72). These are:

Enhanced Quality

A component that is used in more than one application or system will undergo tests

for each application it is deployed in. Therefore, the component will be better

understood both in isolation and in the context of multiple deployments. There will

be more opportunities to discover bugs and potential improvements which can be

made. The view that reuse can improve quality is further supported by a study carried

out on software reuse in Statoil ASA (Slyngstad, Gupta et al. 2006).

Simplified Maintenance of Systems

In a component-based environment, obsolete components may be replaced by newer

or updated ones. If the interfaces used in the new component conform to the ones

used in the older version, then this operation may be carried out without the need to

rewrite code in other areas of the system. The old component can be easily removed

and the newer one inserted in its place.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 91

Leveraged Costs When Developing Individual Components

A component may be used in many applications. It does not have to be created from

scratch each time.

Reduced Lead Time

Development time is reduced as it is possible to create an entire system by

assembling pre-existing components. Even systems which require some new

software to be developed can make use of pre-existing components which fulfil some

of their requirements. All of this serves to reduce the amount of code that must be

developed from scratch and this can reduce the time to market.

6.3.2 Challenges of CBSE

There are a number of challenges which must be addressed during CBSE such as:

Training

CBSE is still fairly young compared to traditional software engineering practices.

Therefore it is necessary to provide training for staff in the new techniques and

technologies required. It also may be necessary to hire new staff (Vitharana 2003,

p.67-72).

Integration

Software components may not integrate or they may not provide their specified

functionality (Vitharana 2003, p.67-72). This problem could affect assemblers of

components, who purchase software components from third-parties, to a greater

extent than those who develop and reuse in-house components.

Identifying Components

It is necessary to have an effective classification and coding system to allow

components to be easily identified and discovered (Vitharana 2003, p.67-72). This is

especially needed when the number of components stored is large. Otherwise, it will

become more and more difficult to find components which satisfy system

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 92

requirements. It should not take more effort to identify a relevant component than it

takes to develop a new one from scratch.

Matching Components to Requirements

It can be a challenge to break up a requirements document into parts which can be

matched against components in a repository. In addition, there may be a difficulty in

matching a component’s specifications, which may be given in a particular notation,

to the requirements which may be specified in a totally separate way e.g. in English.

In addition, the set of components selected must be checked to ensure that they fulfil

the system requirements (Vitharana 2003, p.67-72).

Version Control

A component may undergo several modifications throughout its lifecycle. Therefore

there must be some means provided of tracking and managing the different versions

of components (Vitharana 2003, p.67-72).

Interdependence of Components

It is often the case that component selection decisions are heavily interdependent.

One selection decision can constrain others (Kurt Wallnau, Scott Hissam et al. 2001).

Therefore, careful decisions must be made when selecting components as picking

one component may prohibit the use of others.

Size of Reusable Software

The size of a piece of software can affect its potential for reuse. For example, if a

software component is too small and trivial, then programmers may feel that they can

make it themselves. If it is too complicated, then after taking the time to understand

the component, developers may believe that they can make a better version

themselves (Zhu 2005).

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 93

6.4 Component Identification, Selection and Storage

The challenges associated with the identification and selection of relevant software

components have already been introduced. This research will address two of these

challenges: identifying components and matching requirements to components.

Before doing this, it is necessary to look at some of the current methods which aim to

solve these issues.

6.4.1 Classifying Components

There are a number of methods which are in place or have been proposed to allow

relevant components to be identified and classified. These include the following

methods:

6.4.1.1 Group Technology Classification and Coding Schemes

Classification and Coding (C&C) schemes are already widely used in the

manufacturing industry to identify physical components or parts. Group technology

is a prime example of this. The Classification & Coding (C&C) methods used in

group technology may be used to derive a means of identifying software components

for easy design and retrieval (Jain, Vitharana et al. 2003)

Classification and coding are constantly mentioned together and so the assumption is

often made that they are the same single entity or task. However, this is not true.

Each is a separate process in its own right (Snead 1989).

Classification is the process of grouping items together based on the same specific

attributes and characteristics. In manufacturing, this may be the shape and

dimensions of a part. Software components may be grouped based on application

areas, interfaces etc. Coding is some shorthand notation for the database of classified

objects e.g. a set of digits which identify the characteristics of a particular

component.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 94

There are a number of techniques which may be used in a C&C system. Each of

these is not necessarily distinct and different approaches may be used in conjunction

with each other.

6.4.1.1.1 Logic Trees

These are created by making choices at decision points e.g. at one level, is a

component used in powertrain or chassis systems. There are three main types of logic

trees (Snead 1989, p.60-61). These are:

Binary Logic Trees

At each decision point there are only two choices e.g.

Fig 6.3 Binary Logic TreeFig 6.3 Binary Logic TreeFig 6.3 Binary Logic TreeFig 6.3 Binary Logic Tree

The advantage of this approach is that it is relatively easy to construct and to classify

components as the user is only given two choices at each point. Binary logic trees

can however become quite deep.

Poly Trees

A poly tree differs from a binary tree in that more choices can be made at each level

e.g.

Fig Fig Fig Fig 6.4 Poly Logic Tree6.4 Poly Logic Tree6.4 Poly Logic Tree6.4 Poly Logic Tree

Automotive SystemsAutomotive SystemsAutomotive SystemsAutomotive Systems

PowertrainPowertrainPowertrainPowertrain ChassisChassisChassisChassis

Fuel InjectionFuel InjectionFuel InjectionFuel Injection IgnitionIgnitionIgnitionIgnition

Body/ComfortBody/ComfortBody/ComfortBody/Comfort

Exhaust Gas Exhaust Gas Exhaust Gas Exhaust Gas
RecirculationRecirculationRecirculationRecirculation

Automotive SystemsAutomotive SystemsAutomotive SystemsAutomotive Systems

PowertrainPowertrainPowertrainPowertrain ChassisChassisChassisChassis

Fuel InjectionFuel InjectionFuel InjectionFuel Injection IgnitionIgnitionIgnitionIgnition

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 95

Due to the fact that poly trees allow more than one decision to be made at each level,

they may be shallower than equivalent binary trees. However, since multiple choices

can be made at each level, errors can be made when making classifications. For

example, in Figure 6.4 a sensor used in exhaust gas recirculation may be erroneously

assigned to the Fuel Injection branch. Exhaust gas recirculation does play a part in

fuel injection systems but in light of the existing tree structure, this would obviously

be the wrong branch to assign it to. In this way poly trees can be more difficult to use

than other systems.

N-Trees

Both of the above tree types only let a user traverse one path to make a selection.

They are referred to as mutually exclusive path trees or ‘E-Trees’. An N-Tree is a

non-mutually exclusive logic tree. Multiple nodes may be simultaneously selected,

allowing several paths to be traversed at the same time. Therefore components do not

need to be placed in a hierarchal form - no attribute is considered more important

than the other. An N-Tree is implemented in the same format as the previous two

types. It is the control logic that allows this multiple selection of paths. Figure 6.5

contains the same tree as shown in Figure 6.4. Here two child nodes at the same level

are selected as the user wishes to develop a fuel injection system in conjunction with

an exhaust gas recirculation system. In the previous examples, this would not be

allowed. Only one node could be selected.

Fig Fig Fig Fig 6.5 N6.5 N6.5 N6.5 N----TreeTreeTreeTree

6.4.1.1.2 Code Types

There are three basic code types used in C&C systems (Snead 1989, p.61-63). These

are:

Automotive SystemsAutomotive SystemsAutomotive SystemsAutomotive Systems

PowertrainPowertrainPowertrainPowertrain ChassisChassisChassisChassis

Fuel InjectionFuel InjectionFuel InjectionFuel Injection IgnitionIgnitionIgnitionIgnition

Body/Body/Body/Body/ComfortComfortComfortComfort

Exhaust Gas Exhaust Gas Exhaust Gas Exhaust Gas

RecirculationRecirculationRecirculationRecirculation

Selected

Nodes

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 96

1. Monocode

This is the closest of the three code types to the logic trees described in the previous

section. It can be viewed as having the same form as an E-Tree. Monocode consists

of a set of digits. The first digit is the highest level in the hierarchy; the next digit is

the next level down and so on. Each digit is dependent on the previous one i.e. its

parent. For example:

Fig Fig Fig Fig 6.6 Mono6.6 Mono6.6 Mono6.6 Mono----CodeCodeCodeCode

2. Polycode

Each digit represents a distinct attribute of an item. Unlike Monocode however, each

digit is independent i.e. it does not depend on any other digit in the code. Digits are

assigned values by asking questions about an item’s properties. The same questions

must be asked about every item coded, even if a property does not relate to it. As a

result of this, item codes can become quite long and coding tedious. This form of

coding differs from logic trees in that it is unstructured in its approach. The following

is an example of a polycode system:

Possible Values Digit Feature

1 2 3

1 Type Table Chair Stool

2 No of Legs Odd No Even No -

3 Material Wood Metal Plastic

4 Colour Black White Brown

Table 6.1 Polycode Example

3. Hybrid

Most coding systems used in industry consist of a mix of the above two approaches.

A population can be divided into groups using Monocode. The initial digits in the

CylinderCylinderCylinderCylinder PanelPanelPanelPanel 1st Digit

PipePipePipePipe FlagFlagFlagFlag----PolePolePolePole GratingGratingGratingGrating DoorDoorDoorDoor 2nd Digit

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 97

code are assigned for this function. Further classification may be applied to each

group using Polycode. Digits are assigned to each item within a given group by

asking questions about properties relating only to that group

There are currently a number of methods used in software engineering to classify

traditional reusable artefacts. These include attribute-value, keyword, hypertext and

faceted classification (Vitharana, Zahedi et al. 2003, p.97-102). There are a number

of other approaches which have been proposed by various researchers. Section

6.4.1.2 describes faceted classification of software components in greater detail.

6.4.1.1.3 Evaluation

Initially a C&C scheme appears to present an immediate solution to the problem of

identifying software components. If this process can be used to identify physical

components, then why can’t it be used to identify software components? A group-

technology-type C&C scheme could indeed be used to very precisely identify a

component. The main issue to be addressed is the selection of a C&C scheme. Too

precise a scheme could lead to difficulty in selecting a component as the developer

may spend too much time evaluating low-level characteristics of a component. Too

general a scheme will cause the developer to have to sift through an unnecessary

number of components as a search may turn up a large number of candidate

components.

A further problem is that a C&C scheme is really geared towards the selection and

identification of a single component. It may be difficult to integrate such an approach

into a tool which would allow the matching of a complete set of system requirements

to a number of components which interact and fulfil those requirements.

6.4.1.2 Faceted Classification

Vitharana et al. describe the use of facets as the basis of a C&C scheme (Vitharana,

Zahedi et al. 2003, p.97-102). A facet is essentially a category which may be coupled

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 98

with a corresponding description of that facet. In this approach a set of facets or

categories and a set of corresponding descriptions are identified for a particular

domain. Facet-description pairs are then used to identify reusable artefacts e.g

software components.In the context of automotive systems there may be a facet

category called “Application Domain” which is used to define which domain a

particular software component belongs to. The facet may be assigned the value

“Powertrain”. Therefore if this facet value is assigned to a software component, it

indicates that the component is used in powertrain systems. An example of potential

automotive facets is given in Table 6.2.

Facet Description Example

Application

Domain

Main functional area of a vehicle

which the component is used in

Powertrain, Chassis,

Safety

Component

Type

The base type of the software

component

Sensor, Actuator,

Application

Table 6.2 Automotive Facet Example

In the approach proposed by Vitharana et al. a component is described at a number of

levels by facets. For example, at the component level (the highest level in the

component structure), a role facet describes the role of that component in potential

applications e.g. a ticket purchasing component may be used in an online cinema

booking application. Next a rule facet can be used to describe any rules that

characterise the component e.g. this component must have 1MB of memory

available. Other facets can then be used to describe the functions of the component

e.g. ticket sales management, elements associated with the component e.g. cinema,

music concert, events associated with the component e.g. book ticket, issue refund,

or users of the component e.g. ticket vendor.

An iterative approach can be used to search for a component in the repository.

Initially a broad search is made, which is subsequently refined through a number of

iterations until a small set of components has been retrieved for closer examination

by a user. For example, a user may first look for all components which contain the

role facet ticket purchasing. The set of components returned may be further refined

by looking at other facets such as the role or function facets.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 99

A set of well-defined classifiers may also be used. For example, a component may be

defined as being a system e.g. operating system, an algorithm such as analogue to

digital conversion, or an application such as ticket booking. Components may also be

broken up into industry categories such as manufacturing, airline etc. In the

automotive context, this may be replaced by functional domains such as those

described in AUTOSAR i.e. powertrain, body/comfort, safety, man/machine

interface, multimedia/telematics and chassis. These classifiers are based more on the

traditional group technology C&C methods than facets (Jain, Vitharana et al. 2003,

p.48-63).

The approach proposed by Jain et al. consists of two items. Firstly, a relational

database holds all of the structured information such as the well-defined classifiers.

The less structured information i.e. the facets, is stored in Extensible Markup

Language or XML. Components can be searched for using a structured search of the

relational database, or a semi-structured approach where the text based facet

descriptions are queried, or a combination of both.

De Lucena has developed another approach based on facets (de Lucena Jr. 2001).

The aim is to create a facet-based classification scheme for software components

used in industrial automation processes. Components are classified according to a set

of ten mandatory facets. In addition, a number of optional facets may be included as

necessary. The mandatory facets consist of the following (de Lucena Jr. 2001):

1. Application Domain: There are two main application divisions used in

industrial automation - product automation and plant automation.

2. Specialisation of the Domain: Describes the area in which the component is

used in greater detail. For example, a specialisation in the domain of process

automation may be a packaging system.

3. Industrial Automation Task: This is a high level classification of the

component, not a functional description. This facet may have a value of –

sensor, actuator, command, communication etc.

4. Hierarchic Classification: This is the management level of the component

(the level at which the component is used). The levels include – Business

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 100

Level, Production Level, Process Control Level, Process Variable Level and

Field Level.

5. Implemented Functionality: A set of keywords which describe the

component's implemented functionality. A textual description of the

component is stored elsewhere.

6. Trigger Type: States if the component is initiated by a particular event or

periodically at a given time interval i.e. event-triggered or time-triggered.

7. Real-Time Characteristic: Is the component hard real-time, soft real-time or

not real-time at all?

8. Component Technology: This describes the programming language or the

architecture used by the component. Examples include C++, CORBA,

AUTOSAR and JavaBeans

9. Hardware Platform: The hardware originally used by the component. Other

hardware platforms which the component has been successfully implemented

on may also be included.

10. Operating System: All possible operating systems which the component can

be successfully deployed on.

The searching method used here relies on tool support. The user selects values for

each of the facet, which has the effect of narrowing the amount of selected

components. If a value is not selected for a particular category (facet), then all of the

components for that category are displayed.

Locating a set of component using the tool is only the first step in the process. Next,

the potential candidate components must undergo a technical evaluation to find the

most suitable. This is followed by the final decision making process. This stage is

influenced by various factors including commercial considerations such as the price

of the component. If no suitable component is found, then a tool will assist the user

in creating an order or request for a component to fulfil the desired role.

6.6.1.2.3 Evaluation

Faceted classification of components presents a more refined and potentially more

applicable form of a C&C scheme than a group technology-based method. The main

issue to be addressed is the definition of facets. This must be carefully controlled and

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 101

managed. Otherwise potential issues may arise such as multiple facets existing which

actually define the same characteristic or poor definitions of facets. If this issue can

be addressed, then facets could indeed provide an effective method of identifying and

retrieving software components.

6.6.2 Matching Components to Requirements

An alternative to more traditional search and retrieval techniques is to provide some

means of mapping directly from a set of requirements to a set of software

components. This section describes some of the methods which attempt to carry out

this task.

6.6.2.1 Design Spaces

Design spaces have been proposed by Baum et al. as a method of mapping

requirements to reusable components (Baum, Becker et al. 2000, 155-163). A design

space is a multidimensional space of design choices. It contains a set of dimensions

which describe relevant criteria of items in a specific domain. For example, the

domain of AUTOSAR runnables may include the following dimensions: runnable

category and “wait for event”. The choices within each dimension are referred to as

categories. This is illustrated in Figure 6.7.

Fig Fig Fig Fig 6.7 Design Space6.7 Design Space6.7 Design Space6.7 Design Space

Runnable CategoryRunnable CategoryRunnable CategoryRunnable Category
CategoryCategoryCategoryCategory

Cat 1Cat 1Cat 1Cat 1

Cat 2Cat 2Cat 2Cat 2

Wait for EventWait for EventWait for EventWait for Event

YesYesYesYes

NoNoNoNo

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 102

Note that selecting the Cat1 runnable restricts the possible options for ‘Wait for

Event’ to ‘No’. This means that a category 1 runnable cannot wait for an event to

occur during its lifecycle. These correlations between categories represent expert

knowledge of the domain.

The original design spaces concept was made up of two sub-spaces - a requirements

and a structural design space. The former details the externally observable behaviour

of a system while the latter addresses internal structural issues and implementation

details. However, Baum et al. have altered design spaces (Baum, Becker et al. 2000,

155-163). One of the main changes is the replacement of the requirements and

structural subspaces with a set of separate but interrelated design spaces. The

requirements design space has been replaced by an application and a requirements

design space. The structural design space has been replaced by a set of component

design spaces.

Design spaces allow a questionnaire to be developed which guides a developer

through the requirements elicitation process. The developer is presented with the

dimensions of the design spaces in a question format, allowing the user to select the

variations they want for the system under development. The questionnaire is based

on the Application Design Space, which consists of the application level aspects of

the domain model, independent of any platform specific details. This allows the

developer to design a system without having to consider the choice of hardware or

infrastructure the system is to be deployed on.

There are four steps involved in mapping requirements to software components:

1. Create a platform design space profile

A Requirements Design Space is used to create the profile. The requirements design

space like the application design space is created from the domain model. In this case

however, it contains requirements on the run-time platform e.g. ‘is multi-thread

support required?’ The questions from the application design space are mapped into

questions in the requirements design spaces, allowing questions answered at the

application level to fill in some if not all of the questions at the requirements design

space level.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 103

2. Select platform architecture

 This step often depends on human experts to select the most appropriate

architecture. A platform architecture is an abstraction of a set of platform variants

which follow a similar design rational. Components may be developed for a specific

architecture. Therefore it is necessary to first select an architecture before

components can be chosen.

3. Create Component Profiles

It is necessary to map platform requirements to the requirements for components. A

Component Design Space is associated with every component type. The component

design space describes all of the available properties for components of that type. In

a similar fashion to step 1, the requirements design space is mapped to profiles in the

component design spaces

6. Select Components

The above steps have narrowed the search space of available software components,

providing a much smaller set that the developers can now choose from.

The approach outlined above assumes that generic components are used, which can

be tweaked or adjusted as necessary. This can be aided by tool support, thus creating

the final system.

6.6.2.1.1 Evaluation

Design spaces present an interesting approach of mapping requirements to

components. A significant investment must be made in creating the design spaces

initially. Significant rework of the design spaces may have to be carried out to

facilitate the introduction of new components with functionality that was not

originally planned for. Therefore, this approach while effective in the selection of

components, may represent too much of an investment to create and maintain

compared to other methods.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 104

6.6.2.2 Requirements Elicitation through Model-Driven Evaluation

of Software Components

Chung et al. have conducted research into eliciting requirements via a model-driven

evaluation of software components (Chung, Ma et al. 2006). In this method, a

stakeholder’s requirements are structured into an AND/OR tree format (which in this

case can also contain NOT statements). This is similar to the way in which a query is

entered into a Web browser. This is shown in Figure 6.8.

Fig Fig Fig Fig 6.8 AND/O6.8 AND/O6.8 AND/O6.8 AND/OR TreeR TreeR TreeR Tree

The user requirements are structured in a query. This query can then be automatically

decomposed into a set of sub-queries as shown in Figure 6.8. The second level nodes

(sub-queries 1 and 2) may represent composite component. The leaf nodes are taken

as the search criteria for component descriptions.

Software component descriptions may be given in any syntactically and semantically

well-defined notation such as the UML. For example, a class diagram may be used,

with each class representing a software component.

Query:
System Control AND
fuel injection NOT

diesel AND
ignition AND knock

control

Sub-query 1:
System Control AND
fuel injection NOT

diesel

Sub-query 2:
ignition AND knock

control

System
Control

Fuel
injection

- diesel

(Minus sign in sub query denotes logic NOT)

Ignition Knock
control

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 105

Components are first matched against the leaf nodes. This process may be carried out

using a keyword search, with each leaf node being evaluated in sequence. For

example, in sub-function 1, the leaf node System control is evaluated first, followed

by Fuel Injection and NOT Diesel. If an exact mach to one of the nodes is not found,

then the user may be presented with the option of relaxing the requirement to fit

another component which is not an exact match. Alternatively, the component may

have to be modified or a new one developed.

Following the selection of components to fit the individual requirements in the query,

the relationships among the components must be examined, with composite

components being included if necessary. A final selection of components can then be

made, or the user may go back and refine the requirements query based on the

components which have been uncovered.

6.2.2.2.1 Evaluation

This method is potentially a very effective mapping approach. The main issue to be

addressed is the mapping of user specified keywords to software component

descriptions. Two possible solutions to this are:

1. A thesaurus-type program which will recognise user-specified keywords and

will be able to map them to equivalent terms in the software component

descriptions.

2. Facets may be used to build up the user query. The user may be restricted to

selecting terms which have been stored as facets in a repository to build up

their query.

6.6.2.3 Agent-Based Matching

Hara et al. propose a method of reusing software components based on an agent

model (Hara, Fujita et al. 2000), which makes use of the ADIPS Repository Protocol

(ARP). ADIPS is an agent oriented programming environment created by Hara et al.

(Shigeru Fujita, Hideki Hara et al. 1998, 57-70). This method consists of three main

components; an agent virtual machine, a component repository and a design support

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 106

environment. The software component repository is in turn made up of repository

agents. These are made up of software components along with design knowledge.

The structure of this approach is illustrated in Figure 6.9.

Fig Fig Fig Fig 6.9 ADIPS Framework6.9 ADIPS Framework6.9 ADIPS Framework6.9 ADIPS Framework

The approach proposed here is essentially a method of upgrading an application. The

application user is able to request some new functionality that is to be added to their

application. The requirements for a new component are sent via the user’s agent

virtual machine. This is an operational environment where a number of agent

systems work together as distributed application systems offering services to users.

The requirement is broken down and matched by the repository agents to the most

suitable component. Note that an exact match is not required.

It is possible to create and modify a component via the design support environment.

This is carried out by a component programmer.

6.2.2.3.1 Evaluation

The above approach relates more to distributed desktop applications than to

embedded automotive software. In the latter environment, there is little demand for

new functionality ‘on-the fly’. Any changes which need to be made to an automotive

software system will be carried out by OEMs when developing a new vehicle.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 107

6.5 Summary

A software component is a software artefact which can be individually identified. It

both provides and requests services via well-defined interfaces. To ensure

correctness, a software component must conform to a set component model e.g. the

AUTOSAR software component template.

Component-based software engineering can provide many benefits to system

developers. These include the reuse of existing software, enhanced software quality,

simplified maintenance of systems and reduced development time.

However there are also a number of challenges which must be overcome. These

include the need for additional training in CBSE methods, the difficulty of

integrating software components and the difficulty of identifying, selecting and

matching components to requirements.

There are a number of methods used to facilitate the storage, identification and

retrieval of software components. These include various group technology style C&C

schemes and faceted-based classification. Alternatively, it is possible to map directly

from requirements to a set of software components in certain circumstances

6.6 Relevance To Research
The automotive industry is beginning to make the shift to software components

through the introduction of the AUTOSAR architecture. Therefore software

components are a necessary topic to consider when investigating automotive E&E

systems. Furthermore, since the main focus of this research is software components,

it is necessary to understand the general principles behind component-based systems

before any more meaningful work is carried out.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 108

The ability to locate and identify software components is one of the main issues

which needs to be addressed in component-based software engineering and by this

research. The first research question presented in this thesis deals with the level of

specification of a component’s functionality i.e. how the component is to be

identified. The second question asks how requirements should be structured in order

to be matched to software components. This is essentially covers the same problem

outlined in this chapter of locating particular software components.

Facets and a group technology style C&C scheme seem to be promising as potential

solutions to this problem. Mapping directly between requirements and components

presents an interesting avenue of research. This approach could be combined with

one of the component matching techniques mentioned earlier and potentially

integrated into a tool-based solution.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 109

6.7 References

AUTOSAR GbR (2006). "Software Component Template ". www.autosar.org,
AUTOSAR GbR

Baum, L., M. Becker, L. Geyer and G. Molter (2000). "Mapping Requirements to
Reusable Component using Design Spaces". Fourth International Conference on
Requirements Engineering, IEEE.

Chung, L., W. Ma and K. Cooper (2006). "Requirements Elicitation through Model-
Driven Evaluation of Software Components". Fifth International Conference on
Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS 2006), IEEE.

de Lucena Jr., V. F. (2001). "Facet-Based Classification Scheme for Industrial
Automation Software Components". Sixth International Workshop on Component-
Oriented Programming At ECOOP 2001, Budapest, Hungary, Microsoft.

Hara, H., S. Fujita and K. Sugawara (2000). "Reusable Software Components based
on an Agent Model". 7th International Conference on Parallel and Distributed
Systems; Workshops (ICPADS'00 Workshops), IEEE.

Heineman, G. T. and W. T. Councill (2001). "Component-Based Software
Engineering - Putting the Pieces Together", Addison-Wesley.

Jain, H., P. Vitharana and F. M. Zahedi (2003). "An Assessment Model for
Requirements Identification in Component-Based Software Development." The
DATA BASE for Advances in Information Systems 34(4): p.48-63.

Kurt Wallnau, Scott Hissam and Robert C. Seacord (2001). "Half Day Tutorial in
Methods of Component-Based Software Engineering Essential Concepts and
Classroom Experience". ESEC/FSE, Vienna, Austria, ACM.

McArthur, K., H. Saiedian and M. Zand (2002). "An evaluation of the impact of
component-based architectures on software reusability", Elsevier Science B.V.

Shigeru Fujita, Hideki Hara, Kenji Sugawara, Tetsuo Kinoshita and N. Shiratori
(1998). "Agent-Based Design Model of Adaptive Distributed Systems." Applied
Intelligence 9(1): 57-70.

Slyngstad, O. P. N., A. Gupta, R. Conradi, P. Mohagheghi, H. Rønneberg and E.
Landre (2006). "An Empirical Study of Developers Views on Software Reuse in
Statoil ASA". ISESE 06, Rio de Janeiro, Brazil, ACM.

Snead, C. S. (1989). "Group Technology - Foundation for Competitive
Manufacturing", Van Nostrand Reinhold.

Sparling, M. (2000). "Lessons Learned Through Six Years of Component-Based
Development." Communications of the ACM 43(10): p.47-53.

 CCOOMMPPOONNEENNTT--BBAASSEEDD SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG

 110

Vitharana, P. (2003). "Risks and Challenges of Component-Based Software
Development." Communications of the ACM 46(8): p.67-72.

Vitharana, P., F. M. Zahedi and H. Jain (2003). "Design, Retrieval, And Assembly in
Component-based Software Development." Communications of the ACM 46(11):
p.97-102.

Weinreich, R. and J. Sametinger (2001). "Chapter 3: Component Models and
Component Services: Concepts and Principles". Component-Based Software
Engineering - Putting the Pieces Together. George T. Heineman and W. T.Councill,
Addison-Wesley: p.36.

Zhu, H. (2005). "Challenges To Reusable Services". 2005 IEEE International
Conference on Services Computing (SCC’05), IEEE.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 111

.7.

Requirements Engineering

7.1 Overview

Systems are often delivered late, over budget, and don’t do what users really want.

They are often never used to their full potential. Contributing to this are problems

with the initial system and software requirements (Sommerville and Sawyer 1997).

Requirements elicited from various stakeholders in a system development project

may be incomplete, inconsistent, ambiguous or incorrect and may not reflect the real

needs of a customer. Furthermore, it is possible for misunderstandings to occur

between customers, analysts and developers.

This chapter examines what a requirement is and presents an overview of the

processes involved in requirements engineering.

7.2 Requirements
A requirement is a description of how a system or some property of that system

should behave. There are two types of requirements: functional and non-functional

requirements.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 112

Functional Requirements

A functional requirement describes a specific task that a system must support (Dai

and Cooper 2005). An example of a functional requirement may be that a spell-

checker must be included in a word processor.

Non-Functional Requirements

A non-functional requirement specifies some important constraint on a software

system. This includes qualities such as security, performance, availability,

extensibility and portability (Cleland-Huang, Settimi et al. 2006). An example may

be that data must be transmitted at a rate of 1Mb/s.

The definition of a requirement according to the Institute of Electrical and

Electronics Engineers (IEEE) is:

1. A condition or capability needed by a user to solve a problem or achieve an

objective

2. A condition or capability that must be met or possessed by a system or

system component to satisfy a contract, standard, specification, or other

formally imposed document

3. A document representation of a condition or capability as in definition 1 or 2.

A requirements document should state what is done by a system but not how it does

it. Implementation details included at this point can constrain the system too much

and reduce the possible solutions which may be developed. While this idea seems

reasonable, it is in practice too simplistic. Two of the main reasons for this are:

1. Readers of a requirements document are often practical engineers. They may

be able to relate better to implementation descriptions than an abstract

problem description.

2. A project is, in many cases, only part of a larger system. It may be necessary

to specify implementation requirements to ensure that the system is

compatible with the environment it is to be deployed in, and that it conforms

to any standards or organisational concerns laid down.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 113

7.3 Requirements Engineering

“Requirements engineering is the branch of software engineering concerned with the

real-world goals for, functions of, and constraints on software systems. It is also

concerned with the relationship of these factors to precise specifications of software

behavior, and to their evolution over time and across software families.” (Zave 1995,

214-216)

Nuseibeh and Easterbrook state that this is an attractive definition of requirements

engineering for the following reasons (Nuseibeh and Easterbrook 2000, 37-46):

1. This definition stresses the importance of real-world goals which are the

motivating factors for a system to be developed.

2. The “precise specifications” described form the basis for analysis and

validation of requirements, and defining and verifying what designers must

build.

3. The definition acknowledges the fact that in the real world, things change

and that requirements should be able to evolve.

There are four key areas of requirements engineering – requirements elicitation,

requirements analysis and negotiation, requirements validation and requirements

evolution. Each of these is described in the following sections.

7.3.1 Elicitation

Requirements elicitation is “the process of discovering the requirements for a system

by communicating with customers, system users and others who have a stake in the

system development.” (Sommerville and Sawyer 1997)

A common perception is that requirements elicitation consists of simply asking

stakeholders what they want in a system, be it through interviews, questionnaires or

some other medium. While these activities do make up part of the elicitation process,

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 114

there is more involved (Kotonya and Sommerville 1998). When developing a

business system, the organisation and environment in which the system will operate

must be analysed. It is also useful to consider any business processes which will

make use of the system. In an automotive context, it would be important to consider

the networked environment in which the system is to be deployed, as it is unlikely to

be a standalone system.

Sommerville presents four dimensions of requirements elicitation. While these are

given in the context of a commercial business application, the concepts are still

applicable to the domain of embedded systems.

1. Application Domain Understanding

An understanding must be developed of the general area in which the system

is used. For example when planning a fuel injection system, a general

knowledge of powertrain systems should be developed.

2. Problem Understanding

The problem is understood in terms of the specific environment in which the

system is to be deployed. This is a specialisation and extension of the general

domain knowledge previously obtained. For example, the fuel injection

system may be considered in terms of the specific manufacturer’s

organisation of E&E systems.

3. Business Understanding

This is an understanding of how systems interact and contribute to different

business goals. In an automotive context, this may include developing

knowledge of how the fuel injection system operates with other aspects of

engine management and other systems to provide the full functionality of the

vehicle, or meet emissions regulations.

4. Understand Needs and Constraints of System Stakeholders

The main considerations at this point are work processes which the system

will support and the role of existing systems in these work processes.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 115

Requirements elicitation is an iterative process. Elicited requirements must be

analysed to ensure that they are correct and consistent. Negotiation with stakeholders

can then be carried out to ensure that they are satisfied with the requirements. If not,

then further elicitation, analysis and negotiation may be carried out until a final set of

requirements has been specified.

Elicitation Tools

A number of tools or methods are used to elicit requirements. These include

interviews, observation and scenarios. Examples of requirements elicitation

techniques are given below:

Scenarios

A scenario is used to elicit and clarify requirements through interaction with a real-

world example. A scenario can be thought of as a story which shows how a system is

used (Kotonya and Sommerville 1998). Scenarios may be used in conjunction with

other tools such as UML use cases. A use case describes a typical sequence of events

and a set of alternative sequences to handle events which are not in the typical course

of events. A scenario can be used for each of these sequences to individually describe

their behaviour (Booch, Rumbaugh et al. 1999, p.224-225).

Prototyping

Prototyping may be used in a similar way to scenarios. A user is presented with a

mock-up of the implemented system. This may be a paper model, a graphical user

interface or a Simulink model. The existence of, and interaction with a prototype can

help users and developers to quickly determine if the currently elicited requirements

are correct, and can help with the discovery of new requirements as potential

improvements to the prototype are determined.

Reuse of Past Systems’ Requirements

It may be possible to reuse requirements from previous projects. This may be the

case if similar systems are being developed e.g. a fuel injection system being

developed for car X will share many of the same requirements as those for an already

existing fuel injection system for van Y. Aspects such as calculation of the injector

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 116

pulse-width and injection timing, while possibly different in their implementation,

may share a lot of similarities at the requirements level. There is also the potential for

this to lead on to subsequent reuse at the design, coding and testing stages.

Requirements reuse has the benefit of reducing costs as the reused requirements have

already been successfully analysed and verified in past systems. Of course, there is

always the chance they may not fully integrate into the current project without

modification, if at all.

7.3.2 Requirements Analysis & Negotiation

Elicited requirements must be checked to ensure that they are complete.

Requirements analysis and negotiation is the process of discovering problems with

requirements and ensuring that all stakeholders agree on the set of requirements. The

set of requirements is analysed for any conflicts, overlaps, omissions or

inconsistencies. Negotiations are carried out with stakeholders to ensure that the set

of requirements can be agreed upon by everyone. It may be necessary to change or

remove certain requirements to ensure that others may be fulfilled. The output of this

stage is a draft requirements document.

Requirements analysis is not the same as requirements validation. The latter task

presupposes that the requirements to be validated are complete and have been agreed

upon by stakeholders. Therefore, requirements analysis and negotiation must be

completed before validation can be carried out.

7.3.3 Requirements Validation

The aim of requirements validation is to check the draft requirements document -

created during the elicitation, analysis and negotiation stages – for consistency,

completeness and accuracy. The main concern at this point is the way in which

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 117

requirements are described. The requirements document obtained from this stage

must present a clear and unambiguous description of the system to be used in the

design and implementation stages.

There are a number of tools used to validate a set of requirements. The most common

method is reviews, which may take the form of structured meetings. If models have

been used in the requirements document, then they may be validated using CASE

(Computer Aided Software Engineering) tools. Of course this is dependant on the

models being developed in a language supported by a CASE tool. Alternatively, it

may be helpful to convert the model into a natural language format.

Rewriting the requirements in the form of a draft user manual can aid in the

validation process. This process can help authors of requirements to see them in a

different way. Also, to be able to rewrite a requirement the author must be fully able

to understand it.

A prototype, as described in the previous section, can also prove to be useful during

validation. The validation prototype may however require more detail than one built

during analysis. The reason being that during analysis, the prototype may simply be

implemented to help describe one or more difficult requirements. Simpler ones

which may be taken for granted e.g. login, may be omitted. During validation, it is

important that a practical, realistic prototype is developed which presents a true

picture of all of the requirements specified in the document.

In the context of the automotive industry, there are a number of tools which can be

used to ensure early validation of requirements. Two of the most commonly used

types are model-based development tools and hardware in the loop simulators. Both

of these approaches are described in greater detail in chapter 3.

Model-Based Development Tools

Model-based development tools provide an effective method of creating a mock-up

or prototype of a potential system which is independent of any particular

implementation. Building a model and then simulating its behaviour can uncover

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 118

previously unknown requirements or highlight invalid ones. Simulink is an example

of a model-based development tool.

Hardware in the Loop Simulators

Hardware in the loop (HIL) simulators are used to test a system before it is actually

deployed in a vehicle. The simulator generates artificial inputs e.g. dummy sensor

values, and monitors the outputs, making any necessary changes to the inputs. In this

way, problems with the system can be uncovered before the system has been

deployed. Requirements, design etc can then be modified as appropriate.

7.3.4 Evolution of Requirements

A software system will experience changes as a stakeholder’s requirements change

and as the environment in which the system operates changes. It must be possible to

recognise changes and to manage any changes to requirements documentation.

Changes may be discovered through continuous elicitation, re-evaluating risk, and

monitoring systems in their environment (Nuseibeh and Easterbrook 2000, 37-46).

It is necessary to provide some means of tracking requirements through the

development process to ensure that as requirements change, so too do later artefacts

based on those requirements. Tool support can aid in this task.

7.4 Automotive Requirements Engineering

7.4.1 Factors Influencing Requirements

There are a number of factors which contribute towards or otherwise influence

automotive system requirements.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 119

Requirements Frequently Change

Increased complexity, parallelisation of work (i.e. a number groups within an

organisation working with separate requirements documents which cover some of the

same information) and time restrictions in the development process can lead to the

need to introduce assumptions about the system early on in the development process.

These assumptions may be changed or removed during later stages (Weber and

Weisbrod 2002).

Environmental Legislation

A vehicle must comply with emissions regulations as laid down e.g. European light-

duty vehicles must meet the Euro 5 standard as defined in Directive 98/70/EC

(European Parliament Council 1998). This will form a part of the set of vehicle

requirements and will influence the design of the vehicle components.

Reliability and Safety

Early computer controlled automotive electronics were used mainly in non-safety-

critical areas such as comfort systems. In modern vehicles however, electronics are

used to control systems such as anti-lock brakes, fuel injection, traction control etc,

systems which are critical for the operation of the vehicle and the safety of

passengers. Such systems require a high level of reliability and safety (Grimm 2003),

and this must be taken into consideration when creating a set of requirements.

7.4.3 Industrial Practice

In the automotive industry, requirements engineering is carried out in a similar

fashion to traditional software projects, taking into consideration the above factors.

The following is a description of the requirements engineering process as carried out

by a research partner company which is involved in the development of powertrain

control systems.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 120

Initially, a high level requirements document is created based on the features a

customer wants to be included in a system. This high-level document is analysed by

a team that decide how to implement each customer requirement. Other requirements

are created as a result of the customer requirements e.g. safety features, diagnostics

and interaction with other components.

This analysis leads to the production of a detailed requirements document. This is

developed by a team and reviewed both internally and externally. Following this, the

system is designed and built.

Each requirements document has an associated test report, detailing various test

cases. Every requirement in the requirements document has a corresponding entry in

the test report document.

The above process takes place at a functional level. At this level the testing carried

out is black-box testing. A similar process is carried out at a lower layer, using

Yourdon modelling as the design methodology. This is a method of analysis and

design which attempts to follow a more structured approach, similar to engineering

fields (Hoffer, George et al. 2002). Here, white-box testing is carried out. In

summary for each item of functionality, five design documents are created – a

customer requirements document, a functional requirements document, a functional

test report, a Yourdon design diagram and a white-box test report.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 121

Fig Fig Fig Fig 7.17.17.17.1 Industrial Practice FlowchartIndustrial Practice FlowchartIndustrial Practice FlowchartIndustrial Practice Flowchart

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 122

7.5 Representing Requirements

There are a number of different approaches which can be used to represent a set of

requirements. These range from informal textual descriptions to various modelling

techniques. This section provides an overview of some of the methods used.

7.5.1 Data-Flow Diagrams

Data-flow models are used to model the data interactions that a system or part of the

system has with other activities or entities. These may be internal or external to the

overall system (Kotonya and Sommerville 1998, p.142-145). There is a lack of

standardisation in industry regarding data-flow diagrams (DFDs). However a DFD

will generally include the following concepts (Kotonya and Sommerville 1998,

p.142-145):

� Data-Flows, represented by arrows.

� Transformations of data into other data, represented by bubbles

� Data source and destinations, also called terminators, represented by

rectangles.

� Data stores, represented by two parallel lines.

DFDs are used in a number of analysis and design approaches. For example the

Yourdon Structured Method introduced in Section 7.4.3 uses DFDs as a means of

modelling system behaviour (Cooling 1991, p.344-358).

Requirements analysis using DFDs may be carried out as follows. First a top-level

DFD is created which shows a black-box view of the system. This is called a

context-level DFD as it describes the overall context of the system. Figure 7.2

illustrates a top-level DFD for a basic vehicle heating, ventilation and air-

conditioning unit. This unit controls two functions:

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 123

� The hot/cold air mix entering the cabin and hence the temperature of the

cabin.

� The direction of the flow of air into the cabin e.g. towards the windscreen, the

driver’s feet etc.

Fig Fig Fig Fig 7.27.27.27.2 ContextContextContextContext----Level DFDLevel DFDLevel DFDLevel DFD

A system may be subsequently decomposed to describe more detailed requirements

by creating a separate DFD for each transformation bubble. This may be carried out

at multiple levels to build up a hierarchy of DFDs. Figure 7.3 illustrates the first level

of decomposition for the Control Cabin Climate bubble in Figure 7.2. This contains

a data store which holds the settings for the unit from the last time it was activated.

Fig Fig Fig Fig 7.37.37.37.3 DecompDecompDecompDecomposition of Contextosition of Contextosition of Contextosition of Context----Level DFDLevel DFDLevel DFDLevel DFD

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 124

7.5.1.1 Evaluation

DFDs show the data interactions of a system. They describe transformations which

may be performed on the data, data stores and the sources and destinations of data.

As such they are suited to describing the overall behaviour of a system. They could

be used to show a hierarchal decomposition of an automotive system starting at a

high level such as control engine management, decompose this into subsystems, and

eventually reach the level of sensor or actuator software component entities and

transformations (e.g. an entity fuel injector and a transformation inject fuel quantity).

7.5.2 The Unified Modelling Language

The Unified Modelling Language (UML) is an object-oriented modelling language

which is widely used for both analysis and design. It consists of a suite of different

model types, each of which specialises in the description of a particular aspect of a

system under development. This can range from use cases which show the sequence

of events that occur when a system or part of a system is interacted with, to class

diagrams which illustrate the objects in a system.

The two most essential and commonly used analysis steps are (Larman 1998, p.10-

11):

1. Define Use Cases

2. Define a Conceptual Model

7.5.2.1 Use Case

A use case describes a process. It is not strictly an object-oriented concept (Larman

1998, p.10-11) but can be used in a variety of contexts which require a process to be

described in a stepwise fashion. It describes a sequence of actions along with any

variations which will provide some useful result to an actor (a person interacting with

the system) (Booch, Rumbaugh et al. 1999, p.222). Figure 7.4 shows an expanded

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 125

use case for a hotel booking system. The expanded use case provides more detail

than a high-level use case which only describes the actors, type of use case and a

textual description of the sequence of events.

Fig Fig Fig Fig 7.47.47.47.4 Expanded Use CaseExpanded Use CaseExpanded Use CaseExpanded Use Case

An expanded use case has the following fields (Larman 1998, p.51-52):

� Use Case: The name of the use case

� Actors: A list of the actors. These are the participants in the use case.

� Purpose: The intent behind the use case.

� Overview: A high-level description of the use case i.e. a summary.

Use Case: Book Room

Actors: Guest (initiator), Receptionist

Purpose: Capture the booking of a hotel room and its

payment.

Overview: A guest arrives at the reception desk and

requests a room. The receptionist checks for

an available room, assigns it to the guest and

then accepts payment.

Type: Primary and essential

Cross-References: Functions: R1.1,R2.3

Typical Course of Events

Actor Action System Response

1. This use case begins when a
guest arrives at reception and
requests a room.

2. The receptionist checks for an
available room

3. Displays a list of available
rooms

4. The receptionist assigns a
room to the guest

5. Records room assignment and
guest details.

6. The receptionist requests
payment from the guest.

7. The guest pays the
receptionist who then records
the payment

8. Records payment and prints a
receipt.

Alternative Courses

Line 2: No rooms available. Receptionist requests alternative
booking date from guest

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 126

� Type: Whether the use case is a primary (major/common), secondary

(minor/rare) or optional (may not be tackled) use case. This field also

indicates if the use case is essential or real. An essential use case does not

contain much technology or implementation detail. Instead it is concerned

with describing the process in terms of essential activities and motivations. A

real use case describes a process with a greater emphasis on implementation

details such as input and output technology (Larman 1998, p.58-60).

� Cross References: Any related functions or use cases.

� Typical Course of Events: Describes the interaction between the actors and

the system. It only describes the most common sequence of events.

� Alternative Courses: Variations from the typical course of events i.e.

exceptions to the usual sequence.

7.5.2.2 Conceptual Model

A conceptual model describes the concepts within a problem domain (Larman 1998,

p.85). It describes the objects that occur within that domain along with the

relationships between them. There are three items which make up a conceptual

model:

� Concept: A concept is an idea, a thing or an object (Larman 1998). It may

represent a notion such as a room booking or a physical item such as an

actual room.

� Attribute: An attribute defines a property of a concept. For example, a room

concept may have an attribute called room number or size.

� Association: A link between concepts showing their relationship. For

example, if there are two concepts, payment and room booking, an

association could be used to show that a payment is made for a booking. Each

end of an association shows the multiplicity of a concept in the relationship.

This is the amount of times a single instance of a concept is used in that

relationship e.g. one payment is made for one booking. One room booking

may be for one or more rooms (a ‘many’ multiplicity is indicated by an

asterix ‘*’).

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 127

Figure 7.5 illustrates a simple conceptual model for the hotel booking system. It

contains the three main concepts which must be included in this system: a room, a

record of the booking for the room and a payment for that booking.

Fig Fig Fig Fig 7.57.57.57.5 Conceptual ModelConceptual ModelConceptual ModelConceptual Model

7.5.2.3 Evaluation

The UML is an object-oriented modelling language. Object-oriented tools can be

used to describe component-based software development concepts. An object

typically represents a distinct item which has a particular set of distinguishing

features (its attributes) and a set of functions which may be performed on that object

(its operations). A software component is also a distinct entity. It typically works

with particular signals or data items (its attributes) and encompasses one or more

pieces of functionality (its operations).

In the UML for example, the concepts in a conceptual diagram can represent the

various software components of an automotive system such as fuel injector. These

can be easily mapped to software components. Use cases provide an effective means

of describing the operation of a system and its interactions with a user e.g. driver.

These could potentially be modified to show the operation of embedded systems by

choosing non-human entities as actors. Design class diagrams described in Chapter

12 fully encompass the concepts outlined above for a software component i.e. a

discrete entity with attributes and operations.

RoomRoomRoomRoom

Room No

Room Rate

BookingBookingBookingBooking

Guest
Start Date
End Date

Is for

0..*

1..*

PaymentPaymentPaymentPayment

Amount

Is made for 1 1

Association

Object/

Concept

Attribute

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 128

This research focuses on AUTOSAR software components. An important factor to

consider therefore when choosing a method of representing requirements is the

analysis and design methods currently used by AUTOSAR. The majority of

diagrams used in the AUTOSAR specifications are UML class diagrams. As UML is

already so widely used in defining AUTOSAR it would make sense to integrate it

into the component selection process to be defined.

7.5.3 Controlled Requirements Expression

Controlled Requirements Expression (CORE) has been designed specifically for the

requirements analysis process (Cooling 1991). It has been widely used in various

avionics and defence applications. The CORE process consists of a set of prescribed

steps which result in a set of system requirements models (Cooling 1991, p.332).

These can then be used as inputs to the design stage.

The fundamental steps of the CORE process are as follows. Initially the various

viewpoints for the system must be identified. A viewpoint describes a user or

subsystem’s view of the overall problem to be solved (Cooling 1991, p.332) i.e. the

system to be developed.. These can be shown in a viewpoint structural model as

shown in Figure 7.6. This diagram shows the viewpoints for a fuel injection system.

Fig Fig Fig Fig 7.6 Vie7.6 Vie7.6 Vie7.6 Viewpoint Structural Modelwpoint Structural Modelwpoint Structural Modelwpoint Structural Model

The analyst must then collect the data which can be used to construct models of the

various viewpoints in the system. These can be illustrated using a viewpoint diagram

as described in Section 7.5.2.1. The analyst must then combine the information from

Overall System Viewpoint Diagram
(Environment)

Driver Fuel
Delivery

Diagnostic
System

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 129

the different viewpoints and handle any loose-ends, inconsistencies and any conflicts

which may arise. The information resulting from this process forms the requirements

document (Cooling 1991, p.332).

There are three main model types used in CORE. These are:

� Viewpoint diagrams

� Data-structure diagrams

� Thread diagrams

These models are used in conjunction with textual documents to define the

requirements for a system.

7.5.2.1 Viewpoint Diagram

Viewpoint diagrams are one of the central models used in CORE. They define a

problem as seen from a particular point of view (Cooling 1991, p.332). This can

include the views of both system users (e.g. vehicle driver) and parts of the system

(e.g. engine management unit). A viewpoint diagram consists of five fields (Cooling

1991, p.333-336):

� Viewpoint Source: Where data to the viewpoint comes from.

� Inputs: Information input into the viewpoint.

� Actions (Processes): The tasks that happen within a viewpoint.

� Outputs: Information output as a result of viewpoint actions.

� Destinations: Where the output data goes to.

Figure 7.7 illustrates a viewpoint diagram for a simple fuel injection control unit.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 130

Fig Fig Fig Fig 7.7 Viewpoint Diagram7.7 Viewpoint Diagram7.7 Viewpoint Diagram7.7 Viewpoint Diagram

Note that arrows are used to indicate the relations between fields in the viewpoint

diagram.

7.5.2.2 Data Structure Diagram

The aim of a data structure diagram as its name suggests is to aid with an analysis of

the structuring of data from viewpoint diagrams. It shows three main items (Cooling

1991, p.333-336):

• The data that a particular viewpoint produces.

• The order in which a viewpoint produces data.

• Any repeated or optional data groups.

Figure 7.8 shows a data structure diagram for an exhaust gas recirculation (EGR)

control system.

Fig Fig Fig Fig 7.8 Data Structure Diagram7.8 Data Structure Diagram7.8 Data Structure Diagram7.8 Data Structure Diagram

Output From Exhaust Gas
Recirculation Control Viewpoint

(Viewpoint 12v2)

Mode
Selection

Gas Flow
Rate

Valve
Position

Startup Coasting Load

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 131

7.5.2.3 Thread Diagram

A viewpoint diagram is limited in its ability to describe the behaviour of a system.

Thread diagrams specify a system’s behaviour in terms of dataflows and actions

(Cooling 1991, p.333-336). Figure 7.9 shows the structure of an action as used in

thread diagrams and its corresponding dataflow lines.

Fig Fig Fig Fig 7.9 Action and Dataflows7.9 Action and Dataflows7.9 Action and Dataflows7.9 Action and Dataflows

An action block can represent a simple action which takes inputs and produces

outputs. However an action block may also be used to define aspects of control logic

such as iterative control and selection control (if-then-else). Figure 7.10 (a) shows an

iterative control block and Figure 7.10 (b) shows a selection control block. The

iterative control block is indicated by an asterix (*) in its Action Type section. The

selection control blocks contain a circle which indicates that the blocks are optional.

Both block-types are influenced by a control signal. In the case of the former this

controls the extent of the iterations while in the latter it determines which block is

selected (Cooling 1991, p.333-336).

Fig Fig Fig Fig 7.10 Iteration and Selection Control Blocks7.10 Iteration and Selection Control Blocks7.10 Iteration and Selection Control Blocks7.10 Iteration and Selection Control Blocks

(Cooling 1991, p.336)

(a) Iteration Control (b) Selection Control

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 132

Figure 7.11 illustrates a simple thread diagram for a fuel injector viewpoint. In this

example a fuel injector is activated when the crankshaft reaches a predetermined

position. This is checked periodically. If the position has not been reached then no

action is performed.

Fig Fig Fig Fig 7.11 Fuel Injector Thread Diagram7.11 Fuel Injector Thread Diagram7.11 Fuel Injector Thread Diagram7.11 Fuel Injector Thread Diagram

7.5.2.4 Evaluation

CORE has already been successfully used in various types of embedded applications

such as aerospace systems. As such it already has a proven track-record for real-time

systems. Viewpoints provide an effective means of describing the role of a particular

entity in the overall system. The concepts of inputs, processes and outputs could be

used to effectively specify a software component’s functionality, thus providing a

black-box view of the component.

Thread diagrams on the other hand may be less useful. They describe the control

logic of a system which may not be too useful in a software component environment.

They may be at too low a level of abstraction, describing more implementation-

relevant details. It would be more useful to specify requirements for an AUTOSAR

system in terms of the various aspects of functionality required and the signals which

will be used. This can be provided by viewpoint diagrams. Data Structure Diagrams

may be useful in describing the data produced by a software component and the

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 133

sequence in which it is produced. This could be especially important when

integrating components together in a system.

7.6 Summary

Incomplete or incorrect requirements can lead to problems with system development.

The final delivered project may be over budget and over time and may not fulfil the

needs of the project stakeholders. It is clear that correct requirements elicitation,

analysis, negotiation and validation must be carried out to ensure the success of any

software engineering endeavour. While the process of requirements engineering can

often be vague and imprecise, tools such as structured interviews, scenarios and

prototypes can greatly aid the requirements engineer in their task.

7.7 Relevance to Research

Requirements are a key concept in this research. The second research question

proposed asks how requirements should be structured to facilitate their mapping to

software components. Therefore it is crucial to consider what a good requirement is

and how it is constructed. Effective reuse of past requirements necessitates that those

requirements are correct and complete. Consideration must also be given to current

industry practices to ensure that the format of requirements specifications to be

developed is relevant to industry.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 134

7.8 References

Booch, G., J. Rumbaugh and I. Jacobson (1999). " The Unified Modelling Language
User Guide ", Addison Wesley.

Cleland-Huang, J., R. Settimi, X. Zou and P. Solc (2006). "The Detection and
Classification of Non-Functional Requirements with Application to Early Aspects".
14th IEEE International Requirements Engineering Conference, IEEE.

Cooling, J. E. (1991). "Software Design for Real-Time Systems", International
Thomson Publishing.

Dai, L. and K. Cooper (2005). "Modeling and Analysis of Non-Functional
Requirements as Aspects in a UML Based Architecture Design". Sixth International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing and First ACIS International Workshop on Self-
Assembling Wireless Networks, IEEE.

European Parliament Council (1998). "Directive 98/69/EC of the European
Parliament and of the Council of 13 October 1998 relating to measures to be taken
against air pollution by emissions from motor vehicles and amending Council
Directive 70/220/EEC", European Parliament Council.

Grimm, K. (2003). "Software Technology in an Automotive Company - Major
Challenges". 25th International Conference on Software Engineering, IEEE.

Hoffer, J. A., J. F. George and J. S. Valacich (2002). "Modern Systems Analysis &
Design", Prentice Hall.

Kotonya, G. and I. Sommerville (1998). "Requirements Engineering Processes and
Techniques", John Wiley & Sons Ltd.

Larman, C. (1998). "Applying UML and Patterns", Prentice Hall.

Nuseibeh, B. and S. Easterbrook (2000). "Requirements Engineering: A Roadmap".
22nd International Conference on Software Engineering, Limerick, ACM.

Sommerville, I. and P. Sawyer (1997). "Requirements Engineering A Good Practice
Guide". West Sussex, John Wiley & Sons Ltd.

Weber, M. and J. Weisbrod (2002). "Requirements Engineering in Automotive
Development - Experiences and Challenges". IEEE Joint International Conference on
Requirements Engineering, IEEE.

Zave, P. (1995). "Classification of Research Efforts in Requirements Engineering".
Second IEEE International Symposium on Requirements Engineering.

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 135

 8.

Literature Review Summary

Modern automotive electric and electronic systems are continually growing in

complexity. This has been facilitated through the introduction of technologies such

as in-vehicle networks and developments in embedded controllers. Recent trends

have seen moves towards the standardisation of many automotive systems. These

include diagnostics protocols, operating systems and software architectures.

AUTOSAR is a standardised software architecture that separates an application from

its infrastructure. Software components contain the application. They are the control

logic of a system. The infrastructure (memory management, communications,

operating system etc) is managed by basic software modules. Therefore an

application may be developed independently of the hardware and infrastructural

requirements and deployed on a wide range of platforms. Also, software components

may be assembled into different applications which require their functionality.

Reuse of code, in this case software components, is only one example of reuse which

is practiced in the software industry. In fact reuse is often carried out at a number of

different levels. These include the reuse of architectures and design models and the

reuse of requirements.

AUTOSAR is a relatively new component-based architecture. Therefore particular

attention must be paid to general component-based software engineering practices

where research has already been carried out. Experiences of practitioners and

researchers in the area of component-based engineering have revealed a number of

 RREEQQUUIIRREEMMEENNTTSS EENNGGIINNEEEERRIINNGG

 136

benefits to such an approach. These include the reuse of existing code which leads to

reduced costs and development time and increased quality. The maintenance of

systems is also simplified. However there are also a number of challenges which

must be overcome. These include the difficulty in managing components – their

storage, identification, retrieval and multiple versions of the same component. Also

there may be difficulty in integrating software components and interdependence

between certain components. The size of components may also be an issue especially

in the context of embedded systems which have limited resources.

In any software development process requirements engineering is a key process. If

requirements are not correct, complete and clear then the resulting system will more

than likely not carry out the desired functionality. There are a number of tools such

as scenarios, CORE, UML diagrams etc which may be used to aid the requirements

engineering process and help in the correct specification of requirements. These

approaches must be considered when developing the framework to map requirements

to AUTOSAR software components.

 137

Section 3: Implementation

 FFRRAAMMEEWWOORRKK DDEEVVEELLOOPPMMEENNTT

 138

 9.

Framework Development

9.1 Introduction

The implementation section describes the development of a framework for mapping

functional requirements to AUTOSAR software components and the creation of a

testing methodology to validate the framework. The development process described

in this section consists of the following steps:

1. Define a standardised means of describing a software component’s

functionality

The aim of this step is to determine a method of specifying software components

in a clear and logical way that facilitates their easy identification and discovery.

This will have the benefit of improving component reuse and could potentially

reduce system development time by reducing the time spent searching through a

library of candidate software components. The development of a component

identification scheme is described in Chapter 10.

2. Define a standardised means of specifying functional requirements and a

method of mapping the requirements to the component descriptions

Currently, a system designer must search through a library potentially containing

hundreds if not thousands of components to find one which best suits a particular

task. One of the main barriers to matching user requirements with existing

components is that requirements are often expressed in English. It may also be

difficult to determine how to group and/or break up requirements in such a way

that they can be fulfilled by a set of components. With this in mind, it can be

 FFRRAAMMEEWWOORRKK DDEEVVEELLOOPPMMEENNTT

 139

seen why a user’s requirements should be formatted according some

standardised structure.

This step of the development process defines a method of specifying functional

requirements in a structured manner which facilitates their translation to a set of

software components. It also addresses the development of a scheme to perform

this mapping process. The development of the mapping process and the

requirement specification method is outlined in Chapter 11.

3. Develop a tool that provides support for the methods developed

When a suitable means of encoding a component’s functional specifications has

been determined, it will be necessary to develop a repository that stores software

components. The tool will provide support for a user to create a set of

requirements and automatically map these requirements to a set of software

components. The development of the tool is outlined in Chapter 13.

4. Test the framework in conjunction with automotive experts.

In this step a methodology is developed which will be used to test the

effectiveness of the framework as supported by the software tool. The

development of the testing process and the test cases used is described in

Chapter 14.

Steps 1 and 2 deal with the development of the framework. Both of these steps are

interrelated i.e. the development of a means of describing software components will

affect how requirements should be structured and vice versa. However for clarity

each is described in a separate chapter.

There are two main tasks which must be carried out to facilitate the development of

the mapping framework, the software tool and the tests. These are:

 FFRRAAMMEEWWOORRKK DDEEVVEELLOOPPMMEENNTT

 140

1. Create a set of software components

A set of software components must be created for use in the framework. More

specifically it is the AUTOSAR software component description files which are

needed as these are currently used to identify components.

As AUTOSAR is still in its infancy, there is not an abundance of systems that use

AUTOSAR software components. Therefore it will be necessary to select an

application area from which to generate software components and determine the

functions which may be under electronic control. Examples of automotive

applications which may potentially be used include powertrain, body control and

climate control. This process ties in with the domain analysis process outlined next.

2. Carry out a domain analysis

A domain analysis of the selected area will consist of identifying the various parts of

the application under computer control. In the case of a climate control system, these

may include cabin temperature sensors, air vent actuators and various control

algorithms. The identified areas of control will then be mapped into AUTOSAR

software components. Also, the method chosen to create component descriptions and

requirements will be based on facets. This is outlined in Chapters 10 and 11. The

facets are the language which describes an automotive application domain. Therefore

it is necessary to carry out a domain analysis to allow a set of facets to be created.

The process used is outlined in Chapter 12.

Both of these tasks are performed in conjunction with the steps outlined earlier in

this chapter. All of the steps mentioned are illustrated in Figure 9.1.

 FFRRAAMMEEWWOORRKK DDEEVVEELLOOPPMMEENNTT

 141

Fig 9.1 Framework Development FlowchartFig 9.1 Framework Development FlowchartFig 9.1 Framework Development FlowchartFig 9.1 Framework Development Flowchart

Create

Requirements

Specification

Method

Create SWC

Description

Method

Develop Tool

Support

Test

Framework

Create SWCs
Domain

Analysis

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 142

 10

Software Component Identification

10.1 Introduction

One of the major barriers to reuse of software components is the difficulty in

identifying and selecting the correct component. The following chapter aims to solve

this problem by presenting a method of identifying components based primarily

around the use of facets.

This chapter is broken up as follows: firstly the requirements for a component

identification scheme are presented. Next, a method of identifying components is

selected and discussed, showing how this approach fulfils the requirements laid

down. The final section illustrates how this approach is used to identify AUTOSAR

software components

10.2 Identification Scheme Requirements

There are a number of requirements which a component identification scheme must

meet before it is considered for use in this research. These requirements are as

follows:

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 143

1) Appropriate Level of Granularity

This influences a number of the subsequent requirements. Granularity here refers to

the level of detail contained in the component identification scheme. An appropriate

level of granularity must be chosen whereby component descriptions are detailed

enough to adequately describe a component’s functionality and yet are at a high

enough level that a developer is not bogged down in low-level details. Furthermore,

if too coarse a level of granularity is chosen, this will result in component

descriptions which are too general or broad to be of any real use. A search through a

repository of components could return a large set of components, the majority of

which do not fulfil the system requirements. The systems engineer must then sift

through to these to find the correct one. If the level of granularity is too fine, the

engineer may spend an unnecessary amount of time evaluating a large volume of

low-level criteria.

2) Ability to Describe Real-World Concepts

AUTOSAR software components operate in an embedded environment. The signals

they process and the functions they perform are influenced by and in turn influence

real-world artefacts. Therefore the component identification scheme chosen should

allow a user to specify the component’s functionality in terms of real-world concepts

rather than some abstract representation.

For example, this research takes place in the context of automotive powertrain

systems. In this case the identification scheme should be able to identify a

component’s functionality in terms of functions which are performed on the

powertrain. Therefore, it should be possible to describe an engine management

system in terms that an engineer can easily understand such as fuel injection and

ignition.

3) Ease of Use

The method chosen should promote the reuse of software components and not hinder

it. Therefore, the component identification scheme should be relatively easy to use,

not requiring extensive training.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 144

4) Can be Integrated into Tool Support

Part of this research deals with the potential improvements which can be achieved

when using a tool-based method of selecting components rather than a manual

approach. It is necessary therefore to be able to integrate the chosen component

identification scheme into a software-based tool. This will allow metrics to be

gathered by the tool which will be used in the assessment of the component

identification scheme. Also it is important that tool support is relevant and could be

implemented in the automotive industry.

10.3 Selection of Component Identification Scheme

An evaluation has been made of the component identification and selection schemes

described in Chapter 6. The evaluations are presented in Table 10.1. Some of these

e.g. model driven evaluation, do not prescribe a specific method of identifying

components (with a particular type of identifier for example) and instead concentrate

more on the searching process.

Scheme Appropriate

Level of

Granularity

Ability To

Describe Real-

World Concepts

Ease of Use Ability To Be

Integrated Into

Tool Support

Group

Technology

Trees

Yes Yes No Yes

Group

Technology

Codes

Yes Yes No Yes

Facets Yes Yes Yes Yes

Design Spaces Yes Yes No Yes

Model Driven

(And/Or Trees)
Yes Yes Yes Yes

Agent-Based

Modelling
Yes Yes No No

Table 10.1 Component Selection and Identification Scheme Ranking

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 145

Based on the evaluations made, the most suitable methods found are faceted-based

classification and model driven evaluation. However model driven evaluation does

not prescribe a specific method of tagging software components with an identifier.

There is no specific method used to create a component’s functional specification

other than the use of some well-defined notation such as the UML (see is stated in

Section 6.6.2.2). Facets on the other hand can be used to construct functional

specifications for a software component. Therefore a faceted-based classification

scheme was chosen as the most suitable method of identifying and selecting software

components. This section shows how faceted-based classification meets the

requirements presented in the previous section and then describes how facets have

been adapted for use with AUTOSAR components.

The following list describes how such a scheme meets the requirements laid down in

the previous section.

1) Appropriate Level of Granularity

There is no prescribed level of abstraction which facets must conform to. Therefore

in this research, it is possible to create facets at the level of abstraction or granularity

that best fits the needs of automotive software developers.

2) Ability to Describe Real-World Concepts

A facet essentially consists of an identifier and a description. Therefore facets can

readily be used to model real-world concepts. The only limitation is the facet

author’s ability to describe a particular item.

3) Ease of Use

Facets are an extremely simple concept to understand and master. The only potential

difficulty is in creating a method of searching and sorting a list of facets.

4) Can be Integrated into Tool Support

There are numerous methods that could potentially be used to implement facets in a

software development support tool. At its simplest level, all that is needed is some

means of storing a name and description pair (the facets) and linking these to

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 146

software components. This could even be achieved with as little as a relational

database.

10.4 Implementation of Facet-Based Classification

There are a number of factors which must be considered when implementing a facet-

based classification scheme. The primary concern is the categories of facets to be

used. These will decide how a particular domain is represented and must therefore

be carefully selected. AUTOSAR software components are accompanied by a

corresponding XML file that describes various details about the component –

interfaces, ports, units etc. As such, this description file is an obvious starting point

for the creation of facets.

10.4.1 Facet Candidates from Component Description File

There are a number of potential candidates for facets in a software component

description file. The two most suitable options are the sections of relating to

interfaces and resource consumption.

Interfaces

An interface defines the exchange of information between the ports of software

components. To do this, an interface will describe the names and signatures of

operations and data elements exchanged between software components (AUTOSAR

GbR 2006e).

Initially it seems that interfaces would make ideal candidates for facets. They specify

the data that is transferred and also advertise any operations that a component

performs e.g. get velocity or set valve position. However, under the current release of

AUTOSAR specifications the naming and descriptions of interfaces are entirely

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 147

dependent on the software component author. There are no standard interfaces and

interface descriptions for common functions. It is entirely possible and indeed valid

under the current AUTOSAR specifications to label an interface as ‘X’ and describe

it as ‘Interface - data transfer’. This is of little help to an engineer searching for a

particular software component. This lack of standardisation can also lead to

confusion. For example, consider the two components shown in Figure 10.1.

Fig 10.1 Components With Identical FunctionaliFig 10.1 Components With Identical FunctionaliFig 10.1 Components With Identical FunctionaliFig 10.1 Components With Identical Functionalitytytyty

Both of these software components have required ports which are linked to

interfaces. These interfaces define the transfer of temperature data from the basic

software to the software components. In this example both interfaces seem to

perform the same task, so how is the systems engineer supposed to decide on the best

one to use? A number of interfaces offering the same functionality but under

different names would unnecessarily complicate the task of searching for

components which perform a particular function.

Phase 2 of AUTOSAR will attempt to address this through the standardisation of

interfaces (Fennel, Bunzel et al. 2006). While this should solve the problems outlined

above, at the time of this research no such facility exists.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 148

It is important that a developer understands the internal functionality of a software

component. Suppose that one of the software components outputs a command to

change the position of a valve. There is currently no standardised means of

determining what goes on inside the software component. All that is revealed by its

interfaces is that the component reads the temperature from a sensor and outputs a

command to change a valve’s position. An engineer does not necessarily know what

process the component uses to determine the valve position. The information

provided by interfaces and a set of text descriptions on their own may be insufficient

for this task. Also there may be some unseen processes which the engineer may need

to know about.

There is a further problem with identifying a software component based solely on its

description file and its interface descriptions. A particular software component may

provide the functionality required by a developer. However if its interfaces do not

match what the developer is looking for then they may miss his component. If the

internal functionality of the component is known but the interfaces do not match up

to other selected components or to the overall design then it may still be possible to

create another intermediary software component. This would bridge the gap between

mismatched interfaces, possibly converting the data from one component into a form

useable by the interface of another.

Resource Consumption

The AUTOSAR Software Component Template provides for the description of the

resource consumption of software components (AUTOSAR GbR 2006e). This may

include static and dynamic memory needs and execution time. Resource

consumption will have to factor into an engineer’s thinking at some point during the

development process. Therefore this section of the Software Component Template is

a prime candidate to be used in the creation of facets.

Currently this research focuses on determining a method of identifying and selecting

software components based on a high-level description of the components’

functionality. Therefore, while it is important for a systems engineer to consider the

resources used by a software component, they are not included in the framework at

this point. However, the framework that is developed in this research is not intended

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 149

to be a stand-alone entity. It should be considered as part of an iterative process with

a number of refinement steps as with tools such as the MDA.

Figure 10.1 illustrates a potential approach to such a process, making use of the

framework and other evaluation criteria such as resource consumption. In this

example the framework described in this research takes a set of user requirements

and maps them to an initial set of software components which best fits the

requirements laid down.

The next step is to evaluate this set of components to see if they can be deployed on

the intended hardware. This will be determined from the ECU resource description

files and the Resource Consumption section of each software component’s

description file. In addition, any system constraints which may influence the

selection of software components are also taken into account. If the set of selected

software components is deemed to be invalid, then the set will have to be modified

i.e. some components may have to be replaced. This is repeated until a final valid set

of component can be deployed.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 150

Fig 10Fig 10Fig 10Fig 10....2222 Framework Applied to PotFramework Applied to PotFramework Applied to PotFramework Applied to Potential Development Processential Development Processential Development Processential Development Process

10.4.2 Facets Based on CORE

The problems associated with creating categories of facets from a software

component description file have been outlined in Section 10.4.1. As has already been

stated, it is desirable to have some means other than interfaces and text descriptions

to describe the internal processes of a software component. Also at the time of this

research, AUTOSAR has not yes standardised a set of interfaces (and hence their

data elements). Therefore a standardised means of describing operations and data

elements is required.

Requirements

Map to SWCsMap to SWCsMap to SWCsMap to SWCs

Selected
SWCs

Evaluate SWCsEvaluate SWCsEvaluate SWCsEvaluate SWCs

Deployed
SWCs

Framework Level

System System System System
ConstraintsConstraintsConstraintsConstraints

ECU Resource ECU Resource ECU Resource ECU Resource
DescriptionsDescriptionsDescriptionsDescriptions

SWC SWC SWC SWC
Description FileDescription FileDescription FileDescription File

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 151

CORE viewpoint diagrams contain fields which represent this required information

i.e. inputs, processes and outputs. Therefore, to facilitate the mapping of

requirements to software components, it was decided to specify the various parts of a

system according to a restricted version of a CORE viewpoint diagram (Cooling

1991, p.334) as shown in Figure 10.3. The diagram’s fields are taken as the facet

categories which will be used to create software component functional specifications.

Fig 10Fig 10Fig 10Fig 10....3333 Modified Viewpoint DiagramModified Viewpoint DiagramModified Viewpoint DiagramModified Viewpoint Diagram

Figure 10.3 is a restricted viewpoint diagram in that unlike the full viewpoint

diagram, Figure 10.3 omits the source and destination fields. A software component

may be implemented without any knowledge of other artefacts in the system:

hardware, other software components etc. They may be deployed in a variety of

contexts. Therefore it is not appropriate and potentially restrictive to list specific

sources and destinations for inputs and outputs.

The viewpoint diagram has already been discussed in Chapter 6 and its usage in this

framework will be explained further in Chapter 11. At this point, the important thing

to take from this diagram is that a system has inputs and outputs and performs a

number of actions or processes.

Software components can be thought of as small systems which work together to

form a larger composite system. A component may have one or more inputs and

outputs and will carry out some actions or processes. Therefore, the method of

modelling a system as defined by viewpoint diagrams may be applied to software

components.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 152

The sections illustrated in the modified viewpoint model in Figure 10.3 are taken as a

basis for the creation of facets to identify software components as follows:

Actions

An action facet describes some task that a software component performs. This may

include measuring a real world value in the case of a sensor software component,

performing a calculation based on some inputs, or manipulating a physical entity in

the case of an actuator software component.

Signals

Both inputs and outputs to and from a software component can be described by the

common Signals facet. A signal facet describes a piece of data which is transferred

either between hardware and a software component in the case of sensor/actuators or

between two or more software component as a result of a calculation or operation.

Signal facets essentially provide standardised descriptions for the data items and

operation arguments contained in AUTOSAR interfaces.

It may also be necessary at times to further classify signals in terms of their physical

type. For example the signal facet engine_speed may be further described as being of

type revolutions_per_minute. This necessitates the creation of a third type of facet.

Physical-Quantities

A Physical-Quantity facet describes some real-world unit. Examples include

temperature, pressure, velocity and acceleration.

The three facet types are summarised in Table 10.1.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 153

Facet Description

Action A task which a software component performs e.g. measure

signal, turn on actuator, perform calculation

Signal

A piece of data which is transmitted or received by a software

component. May be to/from a sensor/actuator or the result of an

operation.

Physical-

Quantity

A physical real-world unit such as temperature, velocity etc.

Table 10.1 Summary of Facets

10.4.3 Implementation Example

The following example describes how to classify a software component based on the

classification scheme outlined in Section 10.4.2. The example is broken up into a

number of parts. First a set of tables is presented which show a repository of facets.

Next a software component is shown along with a description of the component and

its interfaces. The final section shows how the facets outlined in the tables are used

to classify the software component.

10.4.3.1 Facet Repository

Tables 10.2 to 10.4 describe a repository from which the facets used to describe the

software component are taken. Table 10.2 describes the Action facets and the second

table describes the Signal facets.

Name Description

Measure_Temp Reads a temperature value from a temperature sensor.

Measure_Crank_Pos Reads the current position of the crankshaft

AtoD_Conversion Converts an analogue signal to a digital signal

DtoA_Conversion Converts a digital signal to an analogue signal

Calc_AirCharge Calculates the mass flow rate of air into the intake manifold

Activate_Injector Turns on a fuel injector solenoid

Table 10.2 Action Facets

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 154

Name Description Physical-Quantity Type

Engine_Coolant_Temp Current temperature of the engine

coolant

Temperature

Crank_Pos Current position of the crankshaft Degrees

Air_Charge Mass flow rate of air entering the

intake manifold

Mass Flow Rate

On_Off Activation/Deactivation signal for a

solenoid

-

Table 10.3 Signal Facets

Name Description

Temperature Measure of the temperature of a body. Measured in degrees Celsius (°C)

Degrees Measure of an angle (°).

Mass_Flow_Rate Rate of flow of a mass of fluid. Measured in kilograms per second (kg/s)

Table 10.4 Physical-Quantity Facets

10.4.3.2 Software Component

The software component in Figure 10.4 example controls the operation of a simple

engine coolant temperature sensor. The function of the sensor as its name suggests, is

to monitor the temperature of the engine coolant. The software component will read

this data, convert it into a digital signal and then broadcast it to other components.

Fig 10Fig 10Fig 10Fig 10....4444 Temperature Sensor Software CoTemperature Sensor Software CoTemperature Sensor Software CoTemperature Sensor Software Componentmponentmponentmponent

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 155

In this example the software component has two interfaces: Measure Temperature

and Broadcast Temperature.

The require interface Measure Temperature in this case is a client. It requests that the

temperature sensor hardware provide it with the most recent temperature reading. It

does this via an operation getTemp(), which in turn has a single return value: temp.

The provide interface Broadcast Temperature is a sender interface. It periodically

transmits the result of the analogue to digital conversion on the temperature reading

to other software components in the system. A single data element, eng_Temp, is

used to carry this out.

10.4.3.3 Mapping Software Component to Facets

The temperature sensor software component may be described using facets as

follows. The first step is to identify the functionality of the software component and

match it up with the relevant entries from the Action facet table. This specifies

exactly ‘what’ the component does using a standardised vocabulary.

Next, the inputs and outputs of the software component must be specified. Sender-

receiver interfaces are straightforward. Each data item in a sender-receiver interface

is mapped directly to a single facet. For Client-server interfaces, each data item that

is passed via an operation e.g. a return value, must also be mapped to a facet. The

mappings for the temperature sensor software component are as follows:

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 156

Fig 10Fig 10Fig 10Fig 10....5555 Describing Component with FacetsDescribing Component with FacetsDescribing Component with FacetsDescribing Component with Facets

The approach described above provides an effective method of classifying software

components. The language which is created through the use of facets can continue to

evolve as new software components are stored in the repository. However the

component identification scheme can only be truly effective if the creation and

maintenance of facets is carefully managed. The AUTOMAP tool as described in

Chapter 13 allows the repository of facets to be effectively managed. In an actual

industry setting it would be necessary to incorporate a facet validation process to

ensure consistency and avoid duplication of facets. There must also be a suitable

method of matching up a set of system requirements to these component

descriptions. Chapter 11 describes this process.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 157

10.5 Summary

This chapter has presented a scheme of describing a software component’s

functionality and its inputs and outputs in terms of a set of facets. These facets are

stored in a repository which can be thought of as a kind of dictionary for the

application domain that the software component is developed for. The facets form

the standardised ‘language’ which is used to describe software components. Thus as

more components with new functionality are added, this language will have to grow

and evolve. The use of a tool to manage facets and assign them to software

components is discussed in Chapter 13.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 158

10.6 References

AUTOSAR GbR (2006). Software Component Template. www.autosar.org,
AUTOSAR GbR.

Cooling, J. E. (1991). "Software Design for Real-Time Systems", International
Thomson Publishing.

Fennel, H., S. Bunzel, H. Heinecke, J. Bielefeld, S. Fürst, K.-P. Schnelle, W. Grote,
N. Maldener, T. Weber, F. Wohlgemuth, J. Ruh, L. Lundh, T. Sandén, P.
Heitkämper, R. Rimkus, J. Leflour, A. Gilberg, U. Virnich, S. Vodet, K. Nishikawa,
K. Kajio, K. Lange, T. Scharnhorst and B. Kunkel (2006). Achievements and
exploitation of the AUTOSAR development partnership, CTEA.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 159

11

Mapping Requirements to Components

11.1 Introduction

A component identification scheme on its own does not guarantee that the correct

software components will be selected. ‘Correct’ components are ones which meet the

system requirements laid down. The most effective way of ensuring that a set of

requirements is fulfilled is to provide some means of mapping directly between the

requirements and the software components.

This chapter presents a method of specifying a system’s requirements in a format

which can be directly mapped to a set of software components. To do this, the

chapter has been broken up as follows: firstly the requirements for a requirements

specification scheme are listed. Next, a method of specifying a set of requirements is

explained. This is accompanied by a description of how the method used fulfils the

requirements laid down. Finally, an example is given showing how a set of

requirements may be structured using the above format and mapped to a set of

software components.

11.2 Requirements for Requirements Specifications

There are a number of requirements which must be fulfilled when deciding on a

method of specifying system requirements. These are as follows:

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 160

1) Ability to Adequately Describe System Requirements

The method chosen should allow a developer to precisely specify the requirements

for a system. They should not have to fundamentally alter a requirement because the

method chosen cannot adequately describe it.

2) Easy to Understand

The method chosen to represent requirements should be easy to read and understand.

It should not consist of an obscure mathematical or modelling representation that can

only be understood by a small minority with extensive training in the method chosen.

The requirements specification scheme should be relatively straightforward to use.

3) Can be Easily Mapped to Component Descriptions

The requirements specification scheme chosen should facilitate the mapping of

requirements to software component descriptions. A complex transformation method

should not be needed.

4) Can be Integrated into Tool Support

As with the component identification scheme, it should be possible to integrate the

requirements specification scheme in a software tool. If both of these schemes are

implemented in a tool, then it should be possible to create an automated method of

translating the requirements into a set of software components. This could be of great

benefit to a systems engineer but will need to be tested to determine the advantages

of using the approach in a tool-based context.

11.3 Selection of Requirements Specification Scheme

The method chosen to represent requirements is based a combination of CORE

viewpoint diagrams and use cases as defined in the UML. Each of these contributes

to the modelling of requirements in a different way. Firstly the input, output and

action fields of a viewpoint diagram are used to describe the specific details of

requirements i.e. the data which is later mapped to software components. A modified

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 161

version of a use case provides the structure for this information. This will also

contain a high level overview of the system under development.

The following list describes how such a scheme meets the requirements laid down in

the previous section.

1) Ability to Adequately Describe System Requirements

CORE viewpoint diagrams allow a developer to specify a system or parts of a system

in terms of inputs, processes and outputs. Each of these may be specified as a piece

of text. Therefore, even if a requirement is expressed in an informal document, it

should be possible to specify it in a viewpoint diagram.

2) Easy to Understand

The viewpoint model used in this research is in fact a restricted version of the

original, not making use of the viewpoint source and destination fields. Therefore it

only consists of inputs, processes and outputs – three very simple concepts to grasp.

The use case format holds the data in a well-structured format which presents

individual requirements and system inputs and outputs in a clear and unambiguous

manner, allowing them to be easily understood.

3) Can be Easily Mapped to Component Descriptions

Both requirements specifications and component descriptions are structured along

the viewpoint model concepts of inputs, processes and outputs. If requirements are

specified in terms of the same facets which are used to describe software

components, then the mapping process will be greatly simplified.

4) Can be Integrated into Tool Support

If the approach proposed in point three is adopted, then it should be a relatively easy

task to implement requirements specifications in a tool. Also, it is possible to quickly

develop a use case-type form using tools such as Microsoft’s Visual Studio. A

potential issue however is the implementation of an algorithm to match the

requirements to component descriptions.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 162

11.4 Describing Requirements with Facets

This section explains how facets based on the CORE viewpoint diagram are used to

specify a set of requirements and how these requirements are structured in a modified

version of a UML use case. As was stated in Chapter 7, a viewpoint diagram consists

of the following fields (Cooling 1991, p.334):

� Viewpoint Source: The source of data inputs to the viewpoint.

� Inputs: A list of the data inputs to the viewpoint.

� Actions/Processes: The actions or tasks which occur within the viewpoint.

� Outputs: A list of the data items output from the viewpoint as a result of one

or more actions.

� Destinations: Where the output data items go to.

Chapter 10 describes how the input, action and output fields are taken as a basis for

the creation of facets used in the classification of software components. These facets

form a standardised language which describes the functionality of software

components. It makes sense to allow a developer to specify their requirements in

terms of this standardised vocabulary since it already describes the key concepts in a

particular application domain. This will facilitate the direct mapping of requirements

to software components. If a facet describing a particular function or signal is not yet

present in the language, then this will indicate to the developer that the function or

signal has not yet been implemented. In this way, new candidate software

components can be identified for development.

Figure 11.1 shows how the input, output and action fields are integrated into a

modified version of a UML use case. This is followed by a description of each of the

fields in the use case.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 163

Fig 11Fig 11Fig 11Fig 11.1 .1 .1 .1 Modified Use CaseModified Use CaseModified Use CaseModified Use Case

� Name: The name of the use case and hence the name of the system described

by the use case.

� Description: A high level textual overview of the system. This should

present a broad picture of the overall operation of the system without

containing a significant amount of requirement specific detail.

� Input Signals: Inputs to the system. These are taken from the repository of

signal facets to ensure that a common vocabulary is used and to facilitate

mapping to software components.

� Output Signals: Outputs produced by the system. Again these are taken from

the repository of signal facets.

� Functional Requirements: The tasks or actions which the system must

perform. These are typically taken from the repository of action facets.

Alternatively a child use case may be listed here as a functional requirement.

This allows a functional decomposition of the requirements for a complex

system to be carried out. Each functional requirement may be accompanied

by a corresponding description provided by the author of the use case. The

description field has no bearing on the mapping process and is only included

Name: New System

Description: This is a description of a new system under

development. The system reads in certain data and carries out a

number of tasks before generating an output..

Input Signals:
Input Signal 1

Input Signal 2

Output Signals:
Output Signal 1

Functional Requirements: Description:

Requirement 1 Description of the first

 functional requirement

Requirement 2 Description of the second

 functional requirement

Requirement 3 Description of the third

 functional requirement

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 164

for administrative or explanatory purposes e.g. justifying the need for a

requirement or explaining its place in the context of the overall system.

11.5 Building a Modified Use Case

The following example describes how to construct a modified use case for a simple

heating, ventilation and air conditioning (HVAC) unit based on an informal

requirements document. The example is broken up into a number of parts. First the

informal requirements document is presented. Next, the extraction of requirements

and the process of mapping these to facets is described. This is followed by the

construction of a modified use case. Finally, the mapping of the requirements to a

software component is shown.

11.5.1 Informal Requirements Document

The requirements for a heating, ventilation and air conditioning (HVAC) unit are

shown in Figure 11.2. In this case they take the form of a textual document which

states the requirements in an informal manner.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 165

Fig 11Fig 11Fig 11Fig 11....2222 Informal RequiremenInformal RequiremenInformal RequiremenInformal Requirements Documentts Documentts Documentts Document

The document shown in Figure 11.2 is not that useful to system developers. The

requirements in their current form may be difficult to map to a set of pre-existing

software components. Therefore, the requirements must be extracted and presented

in a more structured format. This process is presented below.

11.5.2 Extracting Requirements

The first step in creating a modified use case is to determine the requirements as

stated in the requirements document. The exact approach taken will depend on the

structure of the requirements document used. In this case two lists were made. The

first contains the actions that are described in Figure 11.2, while the second describes

all of the candidates for data items which can be seen in the text.

HVAC Unit

This document describes the requirements for a
heating, ventilation and air conditioning (HVAC)
unit.

The HVAC unit shall provide some means of
cooling and removing moisture from air to be sent
to the cabin. A vehicle user should be able to
change the direction of airflow to different parts of
the cabin. These zones are: the windscreen, the feet
of the driver and front passenger, the faces of the
driven and front passenger, and combinations of
these. There must be a fan present to blow air into
the cabin. Also there must be a means of
controlling the temperature of the air entering the
cabin. Hot air is filtered in from the engine; the
quantity supplied being controlled by a valve. The
system should automatically adjust the temperature
of the cabin to meet the user specified temperature.
All of the features described should be controlled
by user inputted commands

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 166

HVAC Unit Actions

� Cool air

� Remove moisture from air

� Change airflow direction

� Blow air

� Control temperature

� Control quantity of hot air

� Adjust Temperature

HVAC Unit Signals

� Air humidity

� Cabin zone

� Air temperature

� Hot air quantity

� User specified temperature

� User command

.

The actions and signals listed will have to be assessed to determine which ones

actually need to be implemented and which ones are simply descriptive. Also, it is

necessary to determine if any extra actions or signals must be defined to more

precisely state the requirements for the system. For example the signal User

Command as taken from the requirements document represents, all user commands

to the system e.g. turn on fan, set cabin temperature etc. It would be more beneficial

to explicitly state these requirements and their corresponding signals. This will leave

less room for ambiguity at later stages of the development process. The actions and

signals are assessed below.

HVAC Unit Actions

� Cool air: Valid action.

� Remove moisture from air: Valid action but is handled by the activation of

the air conditioning unit. Therefore this has been removed.

� Change airflow direction: Valid Action

� Blow air: Valid action.

� Control temperature: Valid action

� Control quantity of hot air: Valid action but relates to the same task as

Control Temperature. Therefore it is discarded.

� Adjust Temperature: Valid action but relates to the same task as Control

Temperature. Therefore it is discarded.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 167

HVAC Unit Signals

� Air humidity: Unnecessary as a value to monitor as dehumidification will be

provided by the air cooling effect of the air conditioning.

� Cabin zone: Valid input signal. Will need to be selected by a user.

� Air temperature: Valid input signal. Must be monitored by the system to

allow the cabin temperature to be controlled.

� Hot air quantity: Valid output signal. The system must be able to control the

amount of hot air supplied to increase/decrease cabin temperature.

� User specified temperature: Valid input signal. User specified set-point

which is used to control the cabin temperature.

� User command: Invalid input signal. This covers a number of signals, some

of which are given above. Others must be added such as an on/off command

for the air conditioning unit.

The final lists of actions and signals are presented below. Note that a number of

items have been added which were not originally considered during the construction

of the informal requirements document. These include user input signals for the

components of the HVAC system such as an on/off command for air conditioning

unit and a fan speed setting.

HVAC Unit Actions

� Cool air

� Change airflow direction

� Blow air

� Control temperature

� Measure cabin temperature

HVAC Unit Signals

� Cabin zone

� Air temperature

� Hot air quantity

� User specified temperature

� Air conditioning on/off signal

� Fan speed

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 168

11.5.3 Mapping Requirements to Facets

The next step is to specify the actions and signals in terms of the standardised

domain language which is held in the facet repository. The following three tables list

the action, signal and physical quantity facets stored in the facet repository.

Action Facets

Name Description

Measure_Temp Reads a temperature value from a temperature sensor

Measure_Crank_Pos Reads the current position of the crankshaft

AtoD_Conversion Converts an analogue signal to a digital signal

DtoA_Convertion Converts a digital signal to an analogue signal

Set_Fan_Speed Sets the speed of a fan motor

Cabin_Temp_CL_Control Closed loop control of cabin temperature. Takes a user set temperature

point and adjusts a vent to let in more/less hot air based on a reading of

the current cabin temperature

Cabin_Temp_OL_Control Open loop control of cabin temperature. Takes a user set temperature

point and adjusts a vent to a predetermined position to let in the correct

amount of hot air

Set_Airflow_Direction Sets the direction of the flow of air into the vehicle’s cabin based on a

user specified position

Activate_Demister Controls the activation and deactivation of a heating element for a

window demister

Activate_Aircon Controls the activation and deactivation of an air conditioning unit

Table 11.1 Action Facets

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 169

Signal Facets

Name Description Physical-Quantity Type

Cabin_Temp Current temperature of the vehicle

cabin

Temperature

Temp_Command Temperature set point entered by the

user to the ECU

Temperature

Fan_Speed Rotational speed of a fan Rotational Speed

Fan_Command User specified level for the fan speed

provided in increments e.g. 1-6

entered to the ECU

-

Aircon_On/Off Command from ECU to turn on air

conditioning unit

-

Aircon_Command On/Off command from user to ECU -

Air_Dir_Command Command from user to ECU to set

the direction of air entering the

vehicle cabin

-

Air_Dir_Vent_Pos Pre-determined command from the

ECU to vent actuators to control their

position and hence the direction of

air entering the vehicle cabin

-

Air_Mix_Vent_Pos Command from the ECU to vent

actuators to control their position and

hence the amount of hot air entering

the vehicle cabin

Coolant_Temp Temperature of the engine coolant Temperature

Table 11.2 Signal Facets

Physical-Quantity Facets

Name Description

Temperature Measure of the temperature of a body. Measured in degrees Celsius (°C)

Degrees

Measure of an angle (°)

Rotational Speed The speed of rotation of an object. Measured in revolutions per minute

(RPM).

Mass_Flow_Rate Rate of flow of a mass of fluid. Measured in kilograms per second (kg/s)

Table 11.3 Physical-Quantity Facets

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 170

The requirements and system inputs and outputs which have been extracted from the

informal requirements document must now be described in the domain language. To

do this, each requirement and signal must be mapped to an equivalent facet in the

repository. In the case of the HVAC unit, the mappings are as follows:

HVAC Unit Action Facet(s)

Cool air Activate_Aircon

Change airflow direction Set_Airflow_Direction

Blow air Set_Fan_Speed

Control temperature Cabin_Temp_CL_Control

Measure cabin temperature Measure_Temp

Table 11.3 Mapping HVAC Actions to Action Facets

HVAC Unit Signal Facet(s)

Cabin zone Air_Dir_Command

Air_Dir_Vent_Pos

Air temperature Cabin_Temp

Hot air quantity Air_Mix_Vent_Pos

User specified temperature Temp_Command

Air conditioning on/off signal Aircon_On/Off

Aircon_Command

Fan Speed Fan_Speed

Fan_Command

Table 11.4 Mapping HVAC Signal to Signal Facets

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 171

11.5.4 The Modified Use Case

The requirements for the HVAC unit can now be presented in a modified use case.

This is illustrated in Figure 11.3. Note that as was previously stated, the main use

case description is a high–level abstraction of the system which does not include any

detailed requirements. Descriptions have also been added for three of the individual

requirements. These aid stakeholders who have not authored the use case in

understanding the requirements laid down and in the case of Set_Fan_Speed, provide

information for later stages of the development process.

Fig 11.3Fig 11.3Fig 11.3Fig 11.3 HVAC Use CaseHVAC Use CaseHVAC Use CaseHVAC Use Case

It can be seen upon comparison of the informal requirements document and the

modified use case shown in Figure 11.3 that the latter presents a much more

structured and precisely defined set of requirements. It is now possible to map these

to software components. The following section shows how this process is carried out.

Name: HVAC Unit

Description: The HVAC unit controls air conditioning, cabin

temperature and the air fan based on commands from the user.

Input Signals:
- Air_Dir_Command

- Cabin_Temp

- Temp_Command

- Aircon_Command

- Fan_Command

Output Signals:
- Air_Dir_Vent_Pos

- Air_Mix_Vent_Pos

- Aircon_On/Off

- Fan_Speed

Functional Requirements: Description:

Activate_Aircon -

Set_Airflow_Direction -

Set_Fan_Speed Will need maximum of six

 increments

Cabin_Temp_CL_Control Uses PID loop control

Measure_Temp Provides feedback data for

 closed loop cabin temperature

 control

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 172

11.6 Mapping Process

The mapping of requirements which have been structured according to the pattern

described in Section 11.3 to software components is a relatively straightforward

process. This is due to the fact that the functional requirements and the system inputs

and outputs from a modified use case are taken from the same collection of facets

which are used to describe the software components in a repository. This section will

show how this mapping process may be carried out.

There are three items from a use case which can be mapped directly to the facets

used to describe software components. These are:

� Input Signals: These describe the inputs to the system. A system may consist

of one or more software components. Therefore, the inputs listed only

describe the inputs to the overall system, not inputs to components which are

fulfilled by other components within the system. Input signals are mapped to

input facets of software components.

� Output Signal: These describe the outputs of the system. As with inputs, the

output signals only describe signals that leave the system, not ones which are

only used between software components within the system. Output signals

are mapped to Output facets of software components.

� Functional Requirements: Functional requirements describe the tasks which

the system must perform. As such they map to the Action facets of software

components.

11.6.1 Mapping Example

In the following example a use case is created to describe the requirements for a

closed loop cabin temperature control system. This is a subset of the previous HVAC

Unit use case example.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 173

Fig 11.4Fig 11.4Fig 11.4Fig 11.4 Cabin Temperature Control Use CaseCabin Temperature Control Use CaseCabin Temperature Control Use CaseCabin Temperature Control Use Case

A software component repository has been created and populated with the following

software components:

Software

Component

Actions Inputs Outputs

Cabin_Temp_Sensor Measure_Temp

AtoD_Conversion

Cabin_Temp Cabin_Temp

Coolant_Temp_Sensor Measure_Temp

AtoD_Conversion

Coolant_Temp Coolant_Temp

Cabin_Temp_Controller Cabin_Temp_CL_Control Cabin_Temp

Temp_Command

Air_Mix_Vent_Pos

Cabin_Temp_Controller1 Cabin_Temp_OL_Control Temp_Command Air_Mix_Vent_Pos

Table 11.5 Component Repository

The ‘functional requirements to actions’ mapping is the controlling factor. Initially a

larger set of components which fulfil one or more of the requirements may be

selected. Components are then selected from this set based on the matching of their

inputs/outputs to the system inputs/outputs or if their inputs or outputs match up to

the outputs or inputs respectively of other components selected. The mappings are

carried out as follows:

Functional Requirements: Description:

Cabin_Temp_CL_Control Uses PID loop control

Measure_Temp Provides feedback data for

 closed loop cabin temperature

 control

Name: HVAC Unit

Description: The HVAC unit controls air conditioning, cabin

temperature and the air fan based on commands from the user.

Input Signals:
- Cabin_Temp

- Temp_Command

Output Signals:
- Air_Mix_Vent_Pos

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 174

Requirement Component

Options

Selected

Component

Reason

Measure_Temp

Cabin_Temp_Sensor

Coolant_Temp_Sensor

Cabin_Temp_Sensor Cabin_Temp_Sensor’s

input matches to a system

input.

Coolant_Temp_Sensor’s

input does not

Cabin_Temp_CL_

Control

Cabin_Temp_Controller

Cabin_Temp_Controller Only component which

fulfils this requirement

Table 11.5 Selecting Components

The selected software components can now be integrated and deployed e.g.

Fig 11.5Fig 11.5Fig 11.5Fig 11.5 System with Multiple ComponentsSystem with Multiple ComponentsSystem with Multiple ComponentsSystem with Multiple Components

The above example consists of a relatively simple system. More complex systems

consisting of a large set of software components still present a number of problems

including the following:

� It may be difficult to select components which both fulfil the stated

requirements and can also be integrated together with the minimum amount

of work.

� Also, the above scheme, while it does effectively provide a means of

mapping requirements to components may still prove to be difficult to use if

there is a large number of software components present in the repository.

Selecting and integrating the most suitable components becomes even more

difficult for large component sets.

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 175

Therefore it is necessary to integrate the approach laid down along with the

component identification scheme into a software tool. A software-based tool will

allow the full potential of the framework to be realised and will significantly reduce

the complexity of applying the framework to a large repository of software

components. The software tool developed as part of this research is outlined in

Chapter 13.

11.7 Summary

This chapter has presented a requirements specification scheme in which

requirements are defined by facets. These facets, as with the component

identification scheme, are based on the viewpoint diagram concepts of inputs,

outputs and actions. The facets form a standard language which is used to more

effectively specify requirements and to describe the functionality of software

components. The requirements are formatted in a modified use case and can then be

mapped to software components. The steps involved in this have also been outlined

in this chapter. The next step is to integrate the requirement and component

identification and matching schemes into the overall framework .

 SSOOFFTTWWAARREE CCOOMMPPOONNEENNTT IIDDEENNTTIIFFIICCAATTIIOONN

 176

11.8 References

Cooling, J. E. (1991). "Software Design for Real-Time Systems", International
Thomson Publishing

 DDOOMMAAIINN AANNAALLYYSSIISS

 177

12

Domain Analysis

12.1 Introduction

Chapters 10 and 11 describe the steps used to identify software components and

construct requirements which are mapped to these components. They show how

facets are used to achieve both of these tasks. This chapter will show how a set of

facets may be created for a specific application.

The research presented in this thesis is based on embedded automotive applications.

An analysis must therefore be performed on an automotive application area to

provide a context in which to perform the research.

The decision was made to focus on a spark ignition powertrain system. Within this

domain, the analysis concentrates on the ignition and fuel injection systems. It was

felt that these areas provided a sufficient level of complexity to the research and

represent a key part of automotive systems.

This chapter is broken up as follows: initially, a more thorough explanation of class

diagrams is presented. The subsequent section gives an overview of spark ignition

engines. The final section describes the resulting domain models and their

development.

 DDOOMMAAIINN AANNAALLYYSSIISS

 178

12.2 Design Class Diagrams

A domain analysis is a prerequisite for the creation of facets. The knowledge

gathered through the analysis process should be presented in such a way that it can

be easily represented by action, signal and physical-quantity facets. UML class

diagrams were chosen as they are particularly suited to this task.

UML conceptual diagrams (also called class diagrams) were briefly introduced in

Chapter 5. This section describes a similar type of model used in the UML. A class

diagram is used to model a static view of a system. It illustrates the classes in a

system along with the various relationships between classes (Booch, Rumbaugh et al.

1999, p.105-116). Class diagrams are typically used during the design stage of a

software development project.

A class diagram consists of blocks called classes and a number of types of

connectors which are used to show the relationships between classes. A class may

include a set of operations which may be performed on the class and a number of

attributes. These are illustrated in Figure 12.1.

Fig Fig Fig Fig 12.1 Employee Class12.1 Employee Class12.1 Employee Class12.1 Employee Class

There are a number of connectors which may be used to indicate various

relationships between classes. These include:

� Association: An association simply shows a link between two classes. For

example, an association works in may be used to show that an employee

works in a department. This is illustrated in Figure 12.2. Note that each side

of the association has a multiplicity. This shows how many instances of each

 DDOOMMAAIINN AANNAALLYYSSIISS

 179

class may participate in an association. An asterix (*) shows that many

instances of a class may participate, 1..* shows that one to many instances of

a class may participate, 0..1 shows that zero or one instance of a class may

participate and so on.

Fig Fig Fig Fig 12.2 Association Between Classes12.2 Association Between Classes12.2 Association Between Classes12.2 Association Between Classes

� Aggregation: An aggregation is a form of association which shows the

relationship between a class and its various parts (Booch, Rumbaugh et al.

1999). These are also represented by classes. For example a department in a

company may be made up of offices and equipment. An aggregation is

represented by a solid diamond. This is illustrated in Figure 12.3.

Fig 12.3 AggregationFig 12.3 AggregationFig 12.3 AggregationFig 12.3 Aggregation

� Generalisation: A generalisation/specialisation relationship consists of child

classes which are specialisations of the parent class (Booch, Rumbaugh et al.

1999). The children take on the characteristics of the parent and add their

 DDOOMMAAIINN AANNAALLYYSSIISS

 180

own behaviour and structure i.e. attributes and operations. A generalisation is

shown by a hollow arrowhead pointing to the parent as illustrated in Figure

12.4. In this example the parent class is payment. There are two types of

payment, cash and credit card.

Fig Fig Fig Fig 12.4 Generalisation12.4 Generalisation12.4 Generalisation12.4 Generalisation

There are typically three ways in which a class diagram is used (Booch, Rumbaugh

et al. 1999, p.105-116):

1) To model a system’s vocabulary.

2) To model simple collaborations between classes.

3) To model a logical database schema.

The domain models will be used to model the facets which make up an application

domain. This is the vocabulary of that domain. Also, the facets are to be stored in a

database i.e. in the mapping tool’s facet repository. These two factors indicate that

class diagrams are particularly suited for use in creating the domain models.

 DDOOMMAAIINN AANNAALLYYSSIISS

 181

12.3 Spark Ignition Engines

The information used to produce the domain models comes from a number of

sources. These include:

• The Bosch Automotive Handbook - 6th Edition (Bosch 2004).

• The Automotive Electronics Handbook – 2nd Edition (Jurgen 1999).

• Hilier’s Fundamentals of Motor Vehicle Technology 2 – Powertrain

Electronics (Hillier, Coombes et al. 2006).

There are a number of systems in a spark ignition engine which are under electronic

control. These include fuel injection, ignition timing, exhaust gas recirculation

control and lambda fuel control. These and a number of other sub-systems are

described below.

12.3.1 Fuel Injection

There are a number of ways of supplying fuel to the engine. These include single-

point, multi-point and direct fuel injection (Hillier, Coombes et al. 2006, p.77-162).

1. Single-Point Injection: Also called throttle body injection. A single injector

is used to inject fuel directly over the throttle butterfly/ throttle valve.

2. Multi-Point Injection: In multi-point fuel injection systems, there is a fuel

injector for each cylinder. An injector is located just upstream of the intake

valve of its corresponding cylinder (Hirschlieb, Schiller et al. 1999d).

3. Direct Injection: Similar to multi-point injection. In this case however, an

injector is located in each cylinder and injects the fuel directly. It does not

pass through an intermediary valve as with the previous two methods.

Regardless of the method of supplying the fuel, the fundamentals of determining how

much fuel is needed remains roughly the same. An ECU will calculate the correct

amount of fuel based on the following formula (Hirschlieb, Schiller et al. 1999):

 DDOOMMAAIINN AANNAALLYYSSIISS

 182

There are three methods commonly used to measure the air mass flow rate (also

known as air charge). These are (Hirschlieb, Schiller et al. 1999):

1. Speed Density: In the speed density method, the ECU calculates the air mass

flow rate based on the air intake manifold pressure, air inlet temperature and

engine speed or RPM. If the engine uses exhaust gas recirculation (EGR)

corrections need to be made as some of the airflow into the engine will

include exhaust gases.

2. Air Flow Measurement: The airflow is measured at the air inlet using a

vane-type sensor. A temperature sensor allows corrections to be made to

compensate for changes in air density. EGR corrections do not need to be

made as it is only fresh air that is measured.

3. Air Mass Measurement: The mass flow rate of the incoming air is measured

directly with a hot –wire or hot-film air mass flow sensor.

The result of the fuel mass flow rate calculation is used to determine the base pulse

width of the fuel injector solenoids. The injector pulse width controls the amount of

time a fuel injector remains open and hence the quantity of fuel supplied. Corrections

must be made to the base pulse width due to factors such as changes in vehicle

operating conditions and lambda control corrections (explained in section 12.3.2).

The result is the effective pulse width which is the actual value used to control the

fuel injectors.

Am

requested air-fuel ratio

Fm =

Where Fm = fuel mass flow rate

Am = air mass flow rate

 DDOOMMAAIINN AANNAALLYYSSIISS

 183

12.3.2 Lambda Control

Lambda control is a sub-system of fuel control. Lambda (λ) can be defined as “the

excess-air factor that indicates the deviation of the actual air/fuel ratio from the

theoretically required ratio.” (Hirschlieb, Schiller et al. 1999) The lambda sensor

measures the level of oxygen in the exhaust gas. This information is then passed back

to the fuel control system allowing corrections to be made to the air-fuel mix.

A value for lambda can be calculated using the following formula (Hirschlieb,

Schiller et al. 1999):

Ideally, this formula should return a result of λ = 1, indicating an ideal balance of

fuel and air. In reality, the value of λ will oscillate between a rich mix (λ < 1) i.e. too

much fuel, and a lean mix (λ > 1) i.e. too much air.

12.3.3 EGR Control

Exhaust Gas Recirculation or EGR control is used to reduce the amount of nitrogen

oxides (NOx) escaping into the atmosphere. A portion of the exhaust gases is routed

back into the fuel-air mix. This has the effect of lowering the peak combustion

temperature and hence reduces the production of nitrogen oxides. Eventually a point

is reached where hydrocarbon emissions begin to increase. The optimal level of

exhaust gases to be added to the mix occurs just prior to this point.

The flow of exhaust gases back into the fuel-air mix is regulated by a valve under

ECU control. The required valve position may be determined from a RPM/engine

load table of optimal EGR opening positions held in ROM (Hirschlieb, Schiller et al.

1999).

λ =
Quantity of air supplied

Theoretical requirement (14.7) for petrol

 DDOOMMAAIINN AANNAALLYYSSIISS

 184

Some systems may include a sensor that indicates the current position of the EGR

valve. Others may use a pressure sensor to detect the gas pressure in the recirculation

pipe. Both of these sensor types allow the quantity of gas flowing in the EGR system

to be determined

12.3.4 Ignition Timing Control

According to the description of ignition control systems provided by Hirschlieb et al,

(Hirschlieb, Schiller et al. 1999) the base ignition timing for various values of engine

load and RPM are typically stored in a table in ROM. The aim is to produce the

optimal levels of torque, emissions, driveability, and fuel economy and to reduce

engine knock.

As with injection control, corrections need to be made to this signal based on factors

such as vehicle operating conditions, EGR control and temperature. In this case,

engine knock must also be considered.

Knock occurs when the ignition timing of the fuel-air mix in a cylinder advances to a

point where uncontrolled combustion occurs. The solution is to retard the activation

of the corresponding spark plug to a point where knock stops. A sensor is used to

detect the occurrence of engine knock.

12.3.5 Engine Control System Example

Figure 12.5 shows an example of an engine control system. This system uses the

speed density method for determining the mass of the air entering the system. The

diagram illustrates the main functions under ECU control. It also includes the sensors

and actuators used. Note that the example is a high-level abstraction of a control

system. In an actual vehicle there may be many more aspects of the powertrain and

 DDOOMMAAIINN AANNAALLYYSSIISS

 185

fuel delivery systems under electronic control e.g. monitoring fuel level, electrical

fuel pump etc.

Fig Fig Fig Fig 12.5 SI Engine Example12.5 SI Engine Example12.5 SI Engine Example12.5 SI Engine Example

12.4 Domain Models

This section shows how the information described in Section 12.3 and in the

corresponding reference material is presented in a set of class diagrams. Two sets of

class diagrams were produced. The first set contains diagrams which describe the

information uncovered during the domain analysis. It represents a first attempt at

representing the information required by ECUs in the selected domain. The second

set of diagrams is a refinement of the first and directly models the facets which are to

be stored in the facet repository.

 DDOOMMAAIINN AANNAALLYYSSIISS

 186

12.4.1 Initial Domain Models

The initial domain models present a hierarchal decomposition of a spark-ignition

engine. They show the main sub-systems of an engine along with relevant operations

and attributes for those sub-systems. Variants of sub-systems, including those which

are not under ECU control, are also shown e.g. the different modes of supplying fuel

to the fuel rail. This section presents each of the diagrams along with a description.

The initial domain models were constructed in the following manner:

1. Identify the main functional areas of the problem domain. These form the top

level classes in the diagram.

2. Identify subsystems in each of the main functional areas. These are also

represented by classes in the domain models. This step may have to be

repeated for further subdivisions of more complex subsystems e.g. fuel

injection. Aggregations are used to show the sub-systems which make up a

functional area while generalisation relationships are used to illustrate

different specialisations of a sub-system. For example, direct injection and

single-point injection are two types of fuel injection systems.

3. For each class (functional area, subsystem etc), identify any actions,

processes or tasks which fall under ECU control at that level. These become

the operations of the classes.

4. For each class (functional area, subsystem etc), identify data which are

measured, outputted or in some way used by ECUs. These become the

attributes of the classes e.g. an attribute of a sensor class would be the data

which it reads.

SI Engine

The Spark-Ignition (SI) Engine diagram as shown in Figure 12.6 represents the

highest level of abstraction of the system. The SI Engine class consists of the

following sub-systems:

 DDOOMMAAIINN AANNAALLYYSSIISS

 187

• Fuel System: This describes the system which controls how fuel is delivered

from the fuel tank to the cylinders. There are a number of sub-systems which

make up a fuel delivery system. Therefore another diagram is used to

illustrate them.

• Ignition System: This illustrates the system which controls the activation of

the spark plugs that ignite the fuel-air mix in the engine’s cylinders. As with

the fuel system, there are a number of sub-systems which form the ignition

system. Therefore this system will again be described in a separate class

diagram.

• Engine Coolant Sensor: This sensor monitors the temperature of the engine

coolant.

• Throttle Position Sensor: This measures the position of the throttle

butterfly. It is used to determine the amount of fuel to supply to the cylinders.

• Crankshaft Sensor: This measures both the position and rotational speed of

the crankshaft. The data measured is used by a number of the other sub-

systems e.g. fuel injection, determining ignition timing.

Fig Fig Fig Fig 12.6 SI Engine Class 12.6 SI Engine Class 12.6 SI Engine Class 12.6 SI Engine Class DiagramDiagramDiagramDiagram

Fuel System

The fuel system is the most complex of the sub-systems which have been examined

during the domain analysis. The class diagram in Figure 12.7 shows the three main

 DDOOMMAAIINN AANNAALLYYSSIISS

 188

types of fuel injection systems: direct injection, intake manifold injection and single

point injection, along with their associated sub-systems, including the required

pumps and sensors. Figure 12.7 also includes other subsystems necessary for fuel

injection air intake measurement, exhaust gas recirculation lambda sensing, fuel level

monitoring and evaporative emissions control.

 DDOOMMAAIINN AANNAALLYYSSIISS

 189

Fig 12.7Fig 12.7Fig 12.7Fig 12.7 Fuel System Class Diagram Fuel System Class Diagram Fuel System Class Diagram Fuel System Class Diagram

 DDOOMMAAIINN AANNAALLYYSSIISS

 190

Ignition System

The ignition system controls the activation of spark plugs at the correct time. It

consists of subsystems which control the ignition timing and alter it due to the

occurrence of combustion knock, detected by a knock sensor.

Fig Fig Fig Fig 12.8 Ignition System Class Diagram12.8 Ignition System Class Diagram12.8 Ignition System Class Diagram12.8 Ignition System Class Diagram

Physical Quantities

There is a need to define facets which describe physical quantities. There are a

number of signals which are monitored or controlled by ECUs. The majority of these

(excluding simple on/off signals for solenoids for example) are based on real-world

units. Physical Quantity facets define these units. Figure 12.9 illustrates the main

types of physical quantity which have been identified.

 DDOOMMAAIINN AANNAALLYYSSIISS

 191

Fig Fig Fig Fig 12.9 Physical Quantity Class Diagram12.9 Physical Quantity Class Diagram12.9 Physical Quantity Class Diagram12.9 Physical Quantity Class Diagram

12.4.2 Refined Domain Models

The initial domain models produced reflect the information gathered through the

domain analysis. However more complex systems lead to even more complex

diagrams. This can be seen in Figure 12.7. If the facet repository follows such a

structure, then it may be difficult to navigate. Therefore it was decided to refine the

domain models to produce a smaller set of diagrams which can be more easily

navigated. Furthermore, the initial domain models describe some systems which may

not be under ECU control e.g. certain pump systems in Figure 12.7. The focus of the

domain models is on systems which are under electronic control. Therefore it is

possible to streamline the models by removing non-electronic systems.

A number of extra facets were added during testing of the AUTOMAP application.

For completeness these have been included. Note that where these extra facets are

included, they are clearly indicated. Two refined models were produced.

12.4.2.1 AUTOSAR Class Diagram

Figure 12.10 represents both the action and signal facets. It is a refinement of the

information given in Figures 12.6, 12.7 and 12.8 and only shows the information

which will be stored as facets in the repository. The model follows the AUTOSAR

 DDOOMMAAIINN AANNAALLYYSSIISS

 192

pattern for the functional domains of a vehicle. However in this case only the

chassis, powertrain and body/comfort domains are used.

At this point a new concept must be introduced. A vehicle functional domain may be

broken up into a number of systems. These may be further subdivided into sub-

systems and so on. Therefore the concept of a Part is introduced. A Part is simply a

functional area of a vehicle which is controlled or monitored by an ECU e.g. ignition

or EGR control. A part lists the various actions and signals which may be used in that

particular functional area.

The AUTOSAR diagram is broken up as follows: classes represent Parts, attributes

represent Signal facets and operations represent Action facets. Figure 12.10 shows

the class diagram.

The initial class diagrams representing a spark–ignition engine were refined to

produce this model as follows:

� The main functional areas of a vehicle’s powertrain system were identified.

These are independent of any particular implementation format e.g. direct

injection, single-point injection. The Fuel Injection class for example

contains operations and attributes relevant to both of these methods of fuel

injection.

� The signals and operations for each functional area were identified from the

initial class diagrams and inserted where appropriate.

Note that a number of classes were added for use in the testing process. These

include all of the classes in the Body_Comfort domain and the Oil_Distribution and

Monitoring classes. Further, a number of facets were added. These are indicated

where appropriate in Table 12.1.

 DDOOMMAAIINN AANNAALLYYSSIISS

 193

Fig 12.10 AUTOSAR Class DiagramFig 12.10 AUTOSAR Class DiagramFig 12.10 AUTOSAR Class DiagramFig 12.10 AUTOSAR Class Diagram

 DDOOMMAAIINN AANNAALLYYSSIISS

 194

Facets

Table 12.1 shows the facets for each class along with the description which is used

in the facet repository.

Class Facet Type Description Notes

AUTOSAR

Chassis

Powertrain On_Off Signal Used to signal that an
actuator should be
activated or deactivated

 Vehicle_Speed Signal Current speed of the
vehicle

 Vehicle_Acceleration Signal Rate of change in
velocity of the vehicle.
Can be positive or
negative (decelerating)

 Number Signal Generic number Added
during
testing

 Engine_Temperature Signal Temperature of the
engine

 Alive_Signal Signal Indicates to sub-systems
such as aircon and the
fuel pump that the
engine is currently
running and that the sub-
system should remain
active

 Measure_Engine_Temp Action Gets the temperature of
the engine from the
engine temperature
sensor hardware

 Measure_Velocity Action Measures the velocity of
the vehicle

 Measure_Acceleration Action Measures the rate of
change of velocity of the
vehicle

Fuel_System Lambda Signal Excess oxygen in the
exhaust

 Fuel_Volume_FlowRate Signal Volume flow rate of the
fuel into the fuel rail

 Measure_Excess_Oxygen Action Measures the oxygen in
the exhaust (Lambda)

 Measure_Fuel_Flow Action Measures flow rate of
fuel into the fuel rail

Fuel_Injection Injector_Pulse_Width Signal Time duration to keep a
fuel injector open
(active) for

 Fuel_Injector_No Signal Number of the fuel
injector to
activate/deactivate

 On_Off Signal Command to
activate/deactivate a fuel
injector solenoid

 Control_Fuel_Injection Action Controls all aspects of
fuel injection based
solely on the throttle
position and the current
engine speed

 DDOOMMAAIINN AANNAALLYYSSIISS

 195

 Calc_Base_Injector_Pulse
_Width

Action Determines the amount
of time a fuel injector
should remain open
without taking into
account any
modifications which
need to be made such
as vehicle operation
conditions.

 Calculate_Lambada_Corre
ctions

Action Determines the changes
which need to be made
to the fuel mix (ie the
injector base pulse
width) based on
readings from the
excess oxygen
(lambada) sensor

 Calculate_Operating_Cond
itions_Corrections

Action Determines the changes
which need to be made
to the fuel mix (ie the
injector base pulse
width) based on the
vehicle operating
conditions e.g. coasting,
full load

 Activate_Fuel_Injector Action Activates and
deactivates one or more
fuel injection solenoids

 Control_Injection_Timing Action Controls the activation
timings of fuel injectors.

Air_Intake_Mea
surement

Air_Mass_Flow_Rate Signal Measurement of the
mass flow of air into the
intake manifold. Also
known as air charge

 Intake_Manifold_Pressure Signal Pressure of air in the
intake manifold

 Air Volume Signal Volume of a particular
body of air

 Air_Temperature Signal Temperature of a
particular body of air

 Measure_Intake_Manifold_
Pressure

Action Determines the air
pressure in the air intake
manifold

 Calculate_Air_Mass_Flow_
Rate

Action Calculates the air charge
or air mass flow rate.
This is the flow of air
which is used in the
combustion process.

 Airflow_Temperature_Corr
ections

Action Determines the
temperature of the
incoming air, to allow the
correct air mass flow
rate to be calculated

 Burnoff_Wire Action Burns off any residue
which may have
collected on a hot-wire
air mass sensor

 Measure_Oxygen_Content Action Determines the amount
of oxygen present in a
body of gas

 Measure_Air_Pressure Action Measures the pressure
of a body of air

 Measure_Airflow_Volume Action Measures the volume of
air passing a particular
point

 DDOOMMAAIINN AANNAALLYYSSIISS

 196

 Measure_Air_Mass Action Measures the mass of a
given body of air

 Measure_Air_Temp Action Measure the
temperature of a body of
air

EGR_Control Lambda Signal Excess air level in the
exhaust

Should
be
"Exces
s
oxygen
"

 EGR_Valve_Pos Signal Position of the EGR
valve

 Aegr Signal Flow rate of exhaust
gases back into fuel/air
mix

 Set_EGR_Valve Action Controls the opening
and closing of the
exhaust gas recirculation
valve

 Measure_Aegr Action Measure volume flow
rate of exhaust gas
recirculating to be added
to the fuel/air mix

 Measure_EGR_Flow_Corr
ections

Action Make changes to an
airflow measurement
due to exhaust gases
present in the airflow

Fuel_Tank Fuel_Level Signal Volume of the fuel in a
fuel tank

 Measure_Fuel Action Measures the level of
fuel in the tank

Fuel_Pump Adjust_Pump Action Control the amount of
fuel delivered by a pump

 Activate_Deactivate_Pump Action Turns a pump on or off Added
During
Testing

Ignition Spark_Plug_No Signal Number of the spark
plug to be activated

 On_Off Signal Command to activate a
spark plug

 Control_Ignition_Timing Action Determines the correct
time to activate the spark
plugs and then activates
them.

 Activate_Spark_Plug Action Turn on the relevant
spark plug hardware

 Make_Operating_Condition
s_Modifications

Action Modify the ignition timing
based on operating
conditions modifications

 Make_Knock_Modifications Action Modify the ignition timing
to minimise engine
knock

Engine_Knock_
Control

Cylinder_No Signal Number of the cylinder
that is experiencing
knock

 Cylinder_Block_Pressure Signal Pressure measured on
the cylinder block

 Knock_Vibration Signal Vibrations in engine
block which indicate
engine knock

 Detect_Knock Action Detect that engine knock
is occuring and the
cylinder that is
experiencing knock

 DDOOMMAAIINN AANNAALLYYSSIISS

 197

 Measure_CylinderBlock_Pr
essure

Action Measures the pressure
on the cylinder block

 Measure_Engine_Vibration
s

Action Measures engine
vibrations which indicate
the occurance of engine
knock

Coolant_Syste
m

Coolant_Temp Signal Temperature of the
engine coolant

Added
during
testing

 Coolant_Vol Signal Volume of the engine
coolant

Added
during
testing

 Coolant_Level Signal Percentage of coolant in
the system relative to the
maximum possible

Added
during
testing

 Measure_Coolant_Temp Action Measures the
temperature of the
engine coolant

Added
during
testing

 Measure_Coolant_Vol Action Measures the volume of
engine coolant

Added
during
testing

 Calculate_Coolant_Lev Action Calculates the
percentage of coolant in
the engine relative to the
maximum possible level
based on volume and
temperature values

Added
during
testing

Oil_Distribution Oil_Vol Signal Volume of oil Added
during
testing

 Oil_Temp Signal Temperature of a body
of oil

Added
during
testing

 Oil_Level Signal Percentage of oil in a
system relative to the
total possible quantity of
oil for that system

Added
during
testing

 Measure_Oil_Vol Action Measure the volume of
oil in the engine

Added
during
testing

 Measure_Oil_Temp Action Measure the
temperature of the oil in
the engine

Added
during
testing

 Calc_Oil_Level Action Calculate the percentage
of oil in the system
relative to the total
possible amount

Added
during
testing

Crankshaft Crankshaft_Position Signal Current rotational
position of the
crankshaft. Measured in
degrees

 Crankshaft_Speed Signal Rotational speed of the
main crankshaft

 Measure_Crankshaft_Posit
ion

Action Determines the position
of the crankshaft

 Measure_Crankshaft_Spee
d

Action Determines the
rotational speed of the
crankshaft

Monitoring Diagnostics_Data_Element Signal Generic container for
diagnostics data

Added
during
testing

 Transmit_Monitoring_Data Action Transmits monitored
data to an external
system

Added
during
testing

 DDOOMMAAIINN AANNAALLYYSSIISS

 198

 Record_Data Action Store data for later

analysis
Added
during
testing

 Throttle_Pos Signal Position of the throttle

 Measure_Throttle_Pos Action Measures the curent
position of the throttle

Body_Comfort Body Temp Signal Temperature of car body Added
during
testing

Cabin Cabin_Temp Signal Temperature of the
vehicle cabin

Added
during
testing

 Measure_Cabin_Temp Action Measures the current
temperature in the
vehicle cabin

Added
during
testing

Heated_Seats On Off Signal Command to turn on or
off the heating element

Added
during
testing

 User_Command Signal Command from user
controlled switch to turn
on or off the seat heating
element

Added
during
testing

 Activate_Deactivate Action Turns on or off the seat
heating element

Added
during
testing

 Adjust_For_RPM Action Shutoff heating element
if RPM falls below a
threshold value to save
battery charge

Added
during
testing

Dehumidifier Level_Command Signal Level to set the
dehumidifier at

Added
during
testing

 Set_Level Action Set the level of the
dehumidifier

Added
during
testing

AirCon Valve_Pos Signal Angular position of a
valve in the aircon
system

Added
during
testing

 Vent_Dir Signal Desired direction of the
airflow

Added
during
testing

 AirMix_Adjustment Signal The amount to adjust the
air mix by. May be
positive or negative

Added
during
testing

 User_Set_Temp Signal The temperature level
that has been set by the
user of the aircon unit

Added
during
testing

 Control_Airflow_Direction Action Adjust a vent to control
where the air is blowing
to i.e. face, windscreen,
feet etc

Added
during
testing

 Control_Air_Mix Action Calculate the necessary
changes required to
make to the hot/cold air
mix to ensure it meets
the user specified
temperature

Added
during
testing

 Control_AirMix_Vent Action Adjust the vent which
controls the amount of
hot/cold air entering the
cabin

Added
during
testing

Fan Fan_Speed Signal Speed of the fan in RPM Added
during
testing

 DDOOMMAAIINN AANNAALLYYSSIISS

 199

 Set_Fan_Speed Action Control the speed of the
fan

Added
during
testing

 On_Off Signal Command to turn on or
off a demister

Added
during
testing

 Set_Demister Action On off command to turn
on or off the demister
hardware

Added
during
testing

 Demister_Command Action User inputted command
to turn on or off the
demister

Added
during
testing

Table 12.1 AUTOSAR Facets

 DDOOMMAAIINN AANNAALLYYSSIISS

 200

Physical Quantities

The PHYSICAL-QUANTITIES diagram shows both physical quantity groups and

physical quantities as classes. These are the ‘types’ which may be given to signal

facets. A signal facet may optionally be assigned a physical-quantity facet which

provides more information regarding the signal. This is especially important for

signals from sensors or to actuators. Figure 12.11 shows the class diagram which

represents the physical quantity facets. As with the AUTOSAR diagram, a number of

extra facets were added during testing. Again these are noted where appropriate.

In this case the refinement process was more straightforward. Parent classes were

created to represent the physical-quantity groups. This ensures that the diagram

corresponds to the structure laid out in Chapter 10 for physical quantity facets. As

with the AUTOSAR diagram, a number of extra classes were added during testing.

These are indicated where necessary.

FigFigFigFig 12.11 Refined Physical Quantity Class Diagram 12.11 Refined Physical Quantity Class Diagram 12.11 Refined Physical Quantity Class Diagram 12.11 Refined Physical Quantity Class Diagram

Facets

Table 12.2 shows the facets for each class along with the description which is used

in the facet repository.

 DDOOMMAAIINN AANNAALLYYSSIISS

 201

Class Facet Type Description Notes

PHYSICAL-
QUANTITIES

Temperature Celsius Physical-
Quantity

A measure of hot

Rotational_
Motion

RPM Physical-
Quantity

Revolutions per minute Renamed
from Angular
Velocity

 Degree Physical-
Quantity

A unit of angle
measurement. Represents
1/360th of a full rotation

Renamed
From
Angular
Position

Linear
Motion

Velocity Physical-
Quantity

Rate of change of position.
Measured in meters per
second

 Acceleration Physical-
Quantity

Rate of change of velocity.
Measured in metres per
second squared

Pressure Pressure Physical-
Quantity

Pa

Time Pulse_Width Physical-
Quantity

Total cycle time for an
electical pulse. Measured
in milliseconds

Added
during
testing

Mass Mass Physical-
Quantity

A measure of how much
matter there is in an object

Added
during
testing

 Mass_Flow_
Rate

Physical-
Quantity

Rate of flow of a mass of
fluid. Measured in kg/s

Added
during
testing

Volume Fluid_Volume Physical-
Quantity

Volume of a fluid.
Measured in litres

 Volume_Flow_
Rate

Physical-
Quantity

Rate of flow of a flued.
Measured in litres per
second

Added
during
testing

Lambda Lambda Physical-
Quantity

Excess air ratio Renamed
from Oxygen
Level

Humidity Relative
Humidity

Physical-
Quantity

the ratio of the partial
pressure of water vapor in
a gaseous mixture of air
and water vapor to the
saturated vapor pressure
of water at a given
temperature -
http://en.wikipedia.org/wiki/
Humidity

Added
during
testing

Table 12.2 Physical-Quantity Facets

The facets which have been created as part of the domain analysis must be stored in

a repository as described in Chapter 12. This will allow them to be used in the

construction of requirements and in the identification of software components.

 DDOOMMAAIINN AANNAALLYYSSIISS

 202

12.5 Summary

This chapter has presented a potential approach to a domain analysis as conducted

for this research. It has produced a set of facets which are used during the testing

process to determine the effectiveness of the mapping framework.

 DDOOMMAAIINN AANNAALLYYSSIISS

 203

12.6 References

Booch, G., J. Rumbaugh and I. Jacobson (1999). "The Unified Modeling Language
User Guide", Addison Wesley.

Bosch (2004). "Automotive Handbook", Robert Bosch GmbH.

Hillier, V. A. W., P. Coombes and D. R. Rogers (2006). "Hillier's Fundamentals of
Motor Vehicle Technology 2 - Powertrain Electronics", Nelson Thornes Ltd.

Jurgen, R. K. (1999). "Automotive Electronics Handbook", McGraw-Hill.

 SSOOFFTTWWAARREE TTOOOOLL

 204

13

Software Tool

13.1 Introduction

Chapters 10 to 12 have outlined the various steps which form the process used to

map requirements to software components. This chapter will describe the

implementation of a software application which provides support for this framework

process through the provision of a set of tools. It starts by explaining the need for

software tools in this process and then describes the implementation of the

AUTOMAP software application.

13.2 The Need for Tool Support

The framework outlined in the Chapters 10 to 12 provides a useful foundation upon

which to map a set of requirements to software components. It provides a clear and

efficient method of identifying software components and an effective method of

structuring the system requirements. However, to be truly effective, the framework

must have a set of tools to facilitate its implementation. This section will describe

why software tools should be integrated into the framework.

 SSOOFFTTWWAARREE TTOOOOLL

 205

Creating a Use Case

Integrating a use case form/window with a facet repository would allow a user to

rapidly select the inputs, outputs and actions necessary to describe a set of

requirements. A tool could provide support for accessing and identifying the

relevant facets.

Describing Software Components

A developer must carry out a number of tasks in order to adequately describe a

software component using facets. They must first examine a component’s

AUTOSAR description file to determine which tasks it performs. Next they assign a

number of action facets to that component to describe these tasks. If no action facet

adequately describes a task performed by the component, then a new action facet will

have to be created. This process must then be repeated for the software component’s

inputs and outputs. This is quite a complicated process. Again, one of the most

restrictive factors is the discovery of relevant facets. A software tool could support

this process along with the ‘tagging’ of software components with the relevant facets.

Mapping Process

The mapping process would be extremely tedious for a large system if carried out by

hand. A software tool could remove most of this effort and keep it hidden from the

user. This would allow them to focus on other tasks within the development process,

leading to increased productivity and reduced development time.

Managing Facets

A domain such as powertrain systems will contain a large number of potential facets.

This can be seen in the domain analysis performed in Chapter 11. As the number of

domains examined increases, so too will the number of facets. Also, automotive

systems are growing in complexity: applications previously handled solely by

mechanical means are now coming under ECU control e.g. steer-by-wire. This will

again increase the number of facets which are needed. There must be some means of

managing this complexity which affects the storage and retrieval of facets.

 SSOOFFTTWWAARREE TTOOOOLL

 206

A software-based repository could be used to store these facets. The facets could be

structured in a hierarchy according to their domain/sub-domain. For example, all

facets associated with powertrain systems would be stored under a powertrain section

of the repository. Some means could also be provided to help with the discovery of

relevant facets.

Evaluating Potential Solutions

In a large set of software components, there may be a number of different

combinations of software components that can fulfil a particular set of requirements.

However the repository may not contain all of the software components needed to

fulfil a particular set of requirements i.e. only partial solutions may exist. A software

tool could provide some means of allowing the user to evaluate the candidate

solutions to determine the most suitable one for their needs.

13.3 AUTOMAP

The AUTOMAP application has been developed with the aim of promoting the reuse

of software components by supporting the mapping framework. It provides facilities

for cataloguing software components and a means of structuring user requirements to

allow a set of components matching those requirements to be selected.

The AUTOMAP tool may be used as follows. Initially a set of facets determined

through a domain analysis is created and stored in the facet repository. AUTOSAR

software components (more specifically, their description files) can then be

examined and ‘tagged’ with information from the facet repository. The result is a set

of software component descriptions which contain standardized terms for their

inputs, outputs and the actions they perform. This data can then be stored in the

software component repository. When a new system is to be developed, a user will

take the requirements specifications for that system and will translate those

 SSOOFFTTWWAARREE TTOOOOLL

 207

specifications into one or more modified use cases through a dedicated use case

form. This allows the functional requirements of the system, in addition to the system

inputs and outputs to be specified using the standard terms stored in the facet

repository.

Finally, the requirements are matched through automatically to software components.

This produces a set of candidate solutions, each of which fulfils some or all of the

requirements. The solutions must then be evaluated by the user to determine which

one best fits their needs. Figure 13.1 illustrates the structure of the AUTOMAP

application. Each part of the AUTOMAP application is described in the subsequent

sections.

Fig 13.1Fig 13.1Fig 13.1Fig 13.1 AUTOMAP StructureAUTOMAP StructureAUTOMAP StructureAUTOMAP Structure

 SSOOFFTTWWAARREE TTOOOOLL

 208

13.3.1 Use Case

The modified use case contains a structured set of requirements which the selected

components must fulfil. It follows the structure outlined in Chapter 11.

Requirements are specified using facets contained in the facet repository. Signal

facets are used in the use case to create lists of inputs and outputs. Action facets are

used to specify the functional requirements of the system. Figure 13.2 shows the

layout of the use case form.

Fig 13.2Fig 13.2Fig 13.2Fig 13.2 Use Case FormUse Case FormUse Case FormUse Case Form

 SSOOFFTTWWAARREE TTOOOOLL

 209

13.3.1.1 Use Case Operations

The use case form allows a user to perform the following actions:

1. Add and delete input signals.

2. Add and delete output signals.

3. Add and delete functional requirements.

4. Enter a description for each functional requirement to explain or justify the

need for a requirement.

5. Generate sets of software components i.e. map the requirements to

components.

6. Save and load use cases.

13.3.2 Facet Repository

The facet repository is one of the core concepts in the AUTOMAP application. It

contains a list of actions, signals and sub-systems which relate to a particular

functional domain. For example, the powertrain may contain the action “turn on fuel

injectors”, the signal “crankshaft position” or the sub-system “Exhaust Gas

Recirculation”. This in turn has its own set of actions, signals and sub-functions. The

actions, signals and sub-functions are the ‘language’ used by a user to describe both

software components and system requirements.

13.3.2.1 Repository Structure

The facet repository is stored using XML (exTensible Markup Language). The

structure of the facet repository reflects the structure laid out in this section and is

divided into two main sections: AUTOSAR and PHYSICAL-QUANTITIES. The

XML schema for the facet repository is presented in Appendix A.

 SSOOFFTTWWAARREE TTOOOOLL

 210

AUTOSAR

The AUTOSAR section contains the facets which describe the functionality and

information used in vehicle E&E systems. It has been further divided into six

functional domains as defined by AUTOSAR (AUTOSAR GbR 2006). The

functional domains are:

� Chassis

� Powertrain

� Safety (active/passive)

� Man Machine Interface

� Body/Comfort

� Multi-media/Telematics

A domain can be divided up into a number of functional areas. For example the

powertrain domain contains engines, transmission systems and so on. Each of these

can then be further subdivided into sections describing aspects of that sub-domain.

Engine systems may be broken up into a number of categories: spark-ignition,

compression ignition, electric etc. In the AUTOMAP application these sub-sections

are called parts. Each part is made up of three further sub-sections:

� Actions: Contains the action facets for a particular functional part.

� Signals: Contains the signal facets for a particular functional part.

� Parts: Lists any sub-sections of a particular functional part.

Figure 13.3 illustrates the structure of the facet repository’s AUTOSAR section.

 SSOOFFTTWWAARREE TTOOOOLL

 211

Fig 13.3 AUTOSAR Section of Facet RepositoryFig 13.3 AUTOSAR Section of Facet RepositoryFig 13.3 AUTOSAR Section of Facet RepositoryFig 13.3 AUTOSAR Section of Facet Repository

PHYSICAL-QUANTITIES

The PHYSICAL-QUANTITIES section holds the facets which describe real-world

measurable values such as temperature and linear velocity. It may be broken up into

a number of physical-quantity groups, each containing a specific set of physical

units. For example a sub-section called linear motion may contain two unit facets:

acceleration and velocity. Figure 13.3 illustrates an example of the PHYSICAL-

QUANTITIES section of the facet repository.

Fig 13.4 PHYSICALFig 13.4 PHYSICALFig 13.4 PHYSICALFig 13.4 PHYSICAL----QUANTITY Section of FaQUANTITY Section of FaQUANTITY Section of FaQUANTITY Section of Facet Repositorycet Repositorycet Repositorycet Repository

13.3.2.2 Repository Operations

The facet repository allows a user to perform the following actions:

PhysicalPhysicalPhysicalPhysical----

QuantitiesQuantitiesQuantitiesQuantities

Linear MotionLinear MotionLinear MotionLinear Motion Acceleration

Velocity

Rotational MotionRotational MotionRotational MotionRotational Motion Angular Velocity

Angular Position

AUTOSARAUTOSARAUTOSARAUTOSAR ChassisChassisChassisChassis

PowertrainPowertrainPowertrainPowertrain Actions Startup Diagnostics

Signals Diagnostic Stream

Parts EngineEngineEngineEngine Actions

Signals

Parts

Start Engine

Engine Speed

Fuel SystemFuel SystemFuel SystemFuel System

Ignition SystemIgnition SystemIgnition SystemIgnition System

CrankshaftCrankshaftCrankshaftCrankshaft

 SSOOFFTTWWAARREE TTOOOOLL

 212

1. Add new parts as children of AUTOSAR functional domains and of other

parts.

2. Add new physical quantity groups.

3. Add new action, signal and physical-quantity facets.

4. Modify existing facets.

5. Remove existing facets, parts and physical-quantity groups.

The facet repository may be viewed using the form shown in Figure 13.4. This form

allows a user to perform all of the actions listed above.

FFFFig 13.5ig 13.5ig 13.5ig 13.5 Facet RepositoryFacet RepositoryFacet RepositoryFacet Repository

13.3.3 Software Component Repository

The software component repository holds a set of software component descriptions

which have been created using facets from the facet repository. Signal facets are

matched up with corresponding inputs and outputs of a software component while

action facets describe the functionality of the component. This process is described in

greater detail in Chapter 10.

 SSOOFFTTWWAARREE TTOOOOLL

 213

13.3.3.1 Repository Structure

The software component repository stores component descriptions in XML. Unlike

the facet repository these descriptions are stored as an unordered list. There should

be little need for a user to access the repository directly. The main exception is if a

user needs to describe a new software component. However, if a user is evaluating

software components for use, then a separate form is used. This is presented in

section 13.3.5. The XML schema for the software component repository is presented

in Appendix A.

13.3.3.2 Repository Operations

The component repository allows a user to perform the following tasks:

1. Add a new component description.

2. Match a component’s inputs and outputs to signal facets.

3. Add action facets to describe the functionality of the component.

4. Modify an existing component description.

5. Delete an existing component description.

These operations may be performed using the form shown in Figure 13.6.

 SSOOFFTTWWAARREE TTOOOOLL

 214

Fig 13.6Fig 13.6Fig 13.6Fig 13.6 Software Component RepositorySoftware Component RepositorySoftware Component RepositorySoftware Component Repository

Note that in the form shown in Figure 13.6 both provided and required interfaces are

listed along with their data elements. It is not explicitly stated whether an interface is

a client-server or a sender sender-receiver interface. The focus of this form is to

allow users to add action facets to describe a component’s functionality and signal

facets to describe its inputs and outputs. The abstracted view only shows the data

essential for this task. It is not necessary to know what communication paradigms is

used when tagging a component with action and signal facets. This information is

important however when selecting software components and integrating them in the

final deployed system.

13.3.4 Software Component Selection

The software component selector takes a set of user requirements specified in a use

case and attempts to match these to a set of software components. It also attempts to

ensure that a set of software components can work together with the minimum of

 SSOOFFTTWWAARREE TTOOOOLL

 215

extra code/ components which must be supplied by the user. This may be achieved

by selecting components whose interfaces are fulfilled by the system inputs/outputs

or by other components. This part of the AUTOMAP tool embodies the decision

making aspects of the mapping process. As such it remains hidden from the user. The

results of a selection process are displayed in the form outlined in Section 13.3.5.

13.3.4.1 Selection Algorithm

The aim of the selection algorithm is to find potential solutions to a set of

requirements. It presents the user with these solutions, allowing the user to select the

most suitable one. There are a number of steps which comprise the selection

algorithm. These are as follows:

1. The search space is pruned. All components which do not perform at least

one of the actions listed in the set of functional requirements are removed

from the search space.

2. For each remaining component in the search space:

a. Start new solution.

b. Add component to the solution.

c. Update list of requirements fulfilled by the solution.

d. For all other components in the search space

i. If (component’s signals match Use Case signals OR if

component’s signals connect with signals of other components

in solution) AND component does not duplicate requirements

already fulfilled in the solution:

1. Add component to solution

2. Update list of requirements fulfilled by the solution.

e. If Requirements still unfulfilled:

i. For all components in the search space and not in the current

solution

1. If component does not duplicate requirements already

fulfilled in the solution:

a. Add component to solution

 SSOOFFTTWWAARREE TTOOOOLL

 216

b. Update list of requirements fulfilled by the

solution.

3. Remove duplicate solutions.

4. Generate report of all candidate solutions.

There are a number of points to note about the matching algorithm. The first is that

after the pruning process in step 1, only software components which fulfil at least

one or more of the user requirements are present in the search space. The second

point concerns what exactly a ‘match’ is. Only exact matches of facets are catered for

in this algorithm i.e. a component’s functions must directly match one or more

requirements. A requirement cannot only partially meet a piece of a component’s

functionality and vice versa. Each requirement and function is specified as a discreet

entity with an action facet. This is also true of signals. For example, in step 2.d.i. a

component’s input signal can only match another component’s output signal if they

use the same signal facet.

The summary presented to the user shows all of the potential sets of software

components. This includes the number of fulfilled versus unfulfilled requirements

and the number of fulfilled versus unfulfilled provide and require interfaces. The

steps of the matching algorithm are illustrated in the flowchart shown in Figure 13.7.

 SSOOFFTTWWAARREE TTOOOOLL

 217

Fig 13.7 Selection AlgorithmFig 13.7 Selection AlgorithmFig 13.7 Selection AlgorithmFig 13.7 Selection Algorithm

 SSOOFFTTWWAARREE TTOOOOLL

 218

13.3.5 Selected Components

The selection process will result in potentially more than one set of software

components being generated. Each solution set will fulfil some or all of the

requirements specified in the use case. The results form shown in Figure 13.8 allows

a user to evaluate each of these solutions and determine the most suitable one to use.

Fig 13.8 Results FormFig 13.8 Results FormFig 13.8 Results FormFig 13.8 Results Form

The results form lists all of the possible solutions which have been determined for

the user requirements. A summary accompanies each solution which includes the

following information:

� Functions Fulfilled: The number of functions the solution fulfils versus the

total number of functional requirements specified.

� Required Data Items: The number of software component data inputs which

are supplied either by a system input as specified in the use case or by the

 SSOOFFTTWWAARREE TTOOOOLL

 219

outputs of other software components in the solution, versus the total number

of data items required by components in the solution.

� Provided Data Items: The number of data items output by components in

the system which are used as inputs to other components in the solution or by

the system outputs as defined in the use case, versus the total number of data

items output by components in the system.

The results form allows a user to examine the individual software components within

a particular solution. From here they may view the description and interface

information as supplied by the component’s AUTOSAR description file. The results

file also shows the action facets which describe the component’s functionality in

addition to the signal facets which are assigned to the data elements of a

component’s interfaces.

The aim of the results form is to allow a user to assess all of the potential solutions to

their requirements to determine the most suitable one. The summary data presented

in the form in conjunction with the ability to view individual components facilitates

this process.

13.4 Summary

This chapter has presented an overview of the AUTOMAP application. The

AUTOMAP application provides tools which support the framework to map

requirements to AUTOSAR software components as outlined in this research. It

allows a user to enter a number of facets which describe a functional domain. These

can then be used to describe software components and to construct a set of

requirements. The AUTOMAP application can then map these requirements to

software components stored in the component repository. A number of potential

solutions may be generated. The results form allows a user to assess these and

determine the most suitable solution to use.

 SSOOFFTTWWAARREE TTOOOOLL

 220

13.5 References

AUTOSAR GbR (2006b). "AUTOSAR Technical Overview ". www.autosar.org,
AUTOSAR GbR.

 221

Section 4: Results and

Analysis

 TTEESSTTIINNGG

 222

14

Testing

14.1 Introduction

This chapter provides an overview of how the mapping framework was tested. It first

outlines the aims of the testing process. Next it shows the steps involved. This

includes a description of a manual software component selection approach which

will provide a comparison for AUTOMAP. Finally it describes the test cases which

have been created.

The testing process required that a set of software components be created. Initially

software components were generated using Simulink in conjunction with TargetLink.

However this proved to be a lengthy and time consuming process. The structure of a

software component description file was analysed and a tool was subsequently

developed which allowed the relevant sections of description files to be rapidly

generated.

14.2 Testing Process

The aim of the testing process is to determine the effectiveness of the mapping

framework in mapping functional requirements to software components. This

process is embodied in the AUTOMAP application. The effectiveness of this

approach is assessed by comparing AUTOMAP (which is based on the mapping

 TTEESSTTIINNGG

 223

framework) to a manual software component selection process. Both approaches

will be presented to a number of automotive experts. Each expert will complete a

number of test cases using both AUTOMAP and a manual component selection

process. The two processes will then be compared. A number of factors will be

examined. These include:

� The total time taken to complete each process.

� The effort which must be applied to examining individual software

components. This can be determined by the number of times that software

components are examined and the amount of time that each examination

takes during the process.

� How well the selected software components meets the requirements provided.

� The ability to integrate the selected components with each other.

14.2.1 Recording of Metrics

Metrics must be gathered for both AUTOMAP and the manual approach to allow for

a comparison of the two methods. AUTOMAP contains code which gathers the

relevant metrics. This is described in section 14.2.2.1. The manual approach required

that a simple tool be developed which simply lists the software components without

offering any support. This also contains code to record the relevant metrics. Section

14.2.1.2 describes the manual approach and the metrics gathered.

14.2.1.1 AUTOMAP

The AUTOMAP tool contains code which collects the following pieces of data:

� Time taken to complete a use case.

� Requirements, inputs and outputs entered in a use case.

� Time taken to view the results form and select a solution.

� All of the potential solutions generated.

 TTEESSTTIINNGG

 224

� The index of the solution selected by the user.

� A record for every time a user examines a software component. This includes

the name of the component and the amount of time it was examined in that

instance.

14.2.1.2 Manual Method

A component viewer application was developed which allows a user to browse

through a list of software components and view their descriptions and interfaces as

provided in their AUTOSAR software description files. Figure 14.1 shows a

screenshot of this application.

Fig 14.1 Component Viewer ApplicationFig 14.1 Component Viewer ApplicationFig 14.1 Component Viewer ApplicationFig 14.1 Component Viewer Application

The manual application collects the following pieces of data:

� Time taken to complete the selection process.

� A record for every time a user examines a software component.

 TTEESSTTIINNGG

 225

Users must manually record the software components they have selected using this

approach. This will allow the solutions obtained from the manual approach and

AUTOMAP to be compared.

14.2.3 Workflow

The following steps are performed for each of the test cases:

Manual Software Component Selection

1) The Component Viewer application is opened by the user.

2) The user selects a set of components from the list which they feel best meets

the system overview given in the requirements document. Particular attention

must be paid to the interfaces to ensure where possible that the interfaces

passing data between components match up.

3) The names of the components that have been selected are recorded in a Word

document or a text file.

4) The file is then saved under the name Test_X_Manual_Solution where X is

the number of the test case currently being working on.

5) When the process is completed, in the component viewer form the user

selects File->Save As to save a report. The report should be saved under the

name Test_X_Manual_Report. The report is saved automatically as an XML

file. The report records details such as the components viewed, the amount of

time spent looking at each software component and the total time spent

carrying out the process.

6) The user closes the application to ensure that a fresh report is created for the

next test case.

Tool Assisted Software Component Selection

1) The user opens the AUTOMAP application.

2) The New Use Case option is selected.

 TTEESSTTIINNGG

 226

3) The user enters inputs and outputs specified in the requirements document

into the use case form.

4) The user enters a list of requirements which match the system overview given

in the requirements document.

5) The use case is then saved under the name Test_X_UseCase, where X is the

number of the current test case. The file is stored as XML.

6) The Generate Components button is pressed. This causes a list of possible

solutions to be displayed.

7) The user then selects the solution which seems most appropriate to the

requirements outlined in the test case.

8) The solution report is then saved under the name Test_X_Solution where X is

the number of the current test case.

9) The user closes the application to ensure that a fresh report is created for the

next test case.

14.2.4 Test Cases

Three separate test cases were created. Each of these is based on a complete system

or a sub-system from the powertrain domain. The test cases were designed with

progressive levels of difficulty. For example, the initial test case describes a basic

system which measures crankshaft data from the engine hardware and outputs it for

other software components in the vehicle. This may be fulfilled by one or two

software components. The later test cases however increase in complexity, requiring

a corresponding increase in the number of software components to fulfil their

requirements.

It was decided to present the requirements as informal English descriptions. This

ensures that no bias is given towards AUTOMAP. If the requirements had been

stated more explicitly and each requirement presented as a separate item then there

would be a one-to-one mapping of the requirements in the test cases to the facets

used by the AUTOMAP tool to construct a modified use case. Obviously this would

 TTEESSTTIINNGG

 227

unfairly balance the results in favour of the AUTOMAP tool. Hence the requirements

are presented as relatively ambiguous text descriptions.

There are two classes of requirement: core (mandatory) and optional. The expert

conducting the tests is not made aware of the distinction.

� Primary: A core requirement is an essential piece of functionality for the test

case. Core requirements will be the primary means of assessing the suitability

of a selected set of software components. Primary requirements generally

include decision making requirements e.g. calculate_injection_timing.

� Secondary: A secondary requirement is of lesser importance to the operation

of the system outlined in a test case. Secondary requirements cover tasks such

as receiving inputs from sensors or controlling actuators. A test case for

example may state that a system requires data on the position of the

crankshaft. If in this instance the test case lists the crankshaft position as a

system input then the user has the option of adding a requirement to measure

the crankshaft position or ignoring the requirement. This is due to the fact

that the system input does not explicitly state the source of the data. It could

potentially come directly from the crankshaft sensor, necessitating a

requirement to measure the data, or it may be received from another software

component which is not part of the system outlined in the test case. This is

also true for outputs. An output data item may be sent to the actuator

hardware or to another software component controlling the hardware.

Therefore, if the source of an input or the destination of an output is

ambiguous, then the requirement is classed as secondary.

Each test case has the following format:

� Name: The name of the system to be developed.

� Description: A textual description of the system. This contains the actual

requirements which must be matched to software components. It describes

the various functions which the system will perform.

� Inputs: A list of inputs to the system. These may come from either physical

hardware or from software components external to the system.

 TTEESSTTIINNGG

 228

� Outputs: A list of outputs from the system. These may take the form of data

transmitted to software components external to the system or commands to

actuator hardware.

Each test case presented in this section is preceded by a brief introduction and a list

of the actual requirements as described by facets obtained from the domain analysis.

 TTEESSTTIINNGG

 229

Test Case 1

Test case 1 describes a simple system which receives data from one or more crank

sensors and transmits this data to other software components. The aim of this test

case is to familiarise users with both the manual method and the AUTOMAP tool.

This test case has the following requirements:

Core Requirements

� Measure_Crankshaft_Position

� Measure_Crankshaft_Speed

Optional Requirements

� None

The test case is presented as follows:

System: Crankshaft Data Measurement

Description: This system shall provide the ability to read data relevant to the

crankshaft and pass it on to other entities for their use.

Inputs: - Crankshaft position: The current angle of rotation of the crankshaft.

 - Crankshaft speed: The speed of rotation of the crankshaft. Measured in

revolutions per minute or RPM

Outputs: - Crankshaft position: The current angle of rotation of the crankshaft.

 - Crankshaft speed: The speed of rotation of the crankshaft. Measured in

revolutions per minute or RPM

 TTEESSTTIINNGG

 230

Test Case 2

Test Case 2 describes the requirements for an ignition system which attempts to

minimise the occurrence of combustion knock. It introduces the first set of optional

requirements. This test case has the following requirements:

Core Requirements

� Control_Ignition_Timing

� Make_Knock_Modifications

� Detect_Knock

� Measure_Engine_Vibrations

Optional Requirements

� Activate_Spark_Plug

� Measure_Crankshaft_Position

� Measure_Crankshaft_Speed

� Measure_Intake_Manifold_Pressure

The test case is presented as follows:

System: Ignition

Description: This system controls the activation and deactivation of the spark plugs

in a spark ignition engine. Each spark plug should be activated at a pre-

determined time. This time may be determined from the current position

of the crankshaft. When the crankshaft rotates to a particular angular

position, a spark plug is activated.

 There must be a means of measuring and controlling engine knock. This

occurs when the ignition timing is advanced too far for the current engine

operating conditions, leading to uncontrolled combustion. Engine knock

can be detected via an acceleration sensor which measures vibrations in

the engine. Engine speed (revolutions per minute or RPM) and engine

 TTEESSTTIINNGG

 231

load (intake manifold pressure) are used to determine how much a spark

plug’s activation should be retarded.

Inputs: - Current position of the crankshaft

- Engine speed

- Intake manifold pressure

Outputs: - Command to activate/deactivate physical the spark plug

 TTEESSTTIINNGG

 232

Test Case 3

Test Case 3 is the final and most challenging test case. It describes a fuel supply and

injection system. This test case contains the greatest number of core and optional

requirements. The requirements are as follows:

Core Requirements

� Calc_Base_Injector_Pulse_Width

� Calculate_Operating_Conditions_Corrections

� Calculate_Lambada_Corrections

� Control_Injection_Timing

� Calculate_Air_Mass_Flow_Rate

� Measure_EGR_Airflow_Corrections

� Activate_Deactivate_Pump

� Measure_Fuel

Optional Requirements

� Measure_Crankshaft_Position

� Measure_Crankshaft_Speed

� Measure_Throttle_Pos

� Set_EGR_Valve

� Measure_Excess_Oxygen

The test case is presented as follows:

System: Fuel Injection

Description: This system shall control all aspects of engine management relating to

the injection of fuel in a spark ignition engine. The two main aspects of

fuel injection to be considered are the amount of fuel to be delivered and

the time at which fuel is to be supplied.

 TTEESSTTIINNGG

 233

 The quantity of fuel to be supplied is controlled via pulse width

modulation – the duration of the pulse width determining how long an

injector should remain active. An initial pulse width is determined from

the Air Mass Flow Rate (which is the rate at which air is entering the

intake manifold) and the requested fuel-to-air ratio. The requested fuel-

to-air ratio is determined via a throttle position sensor which indicates the

driver’s desired fuel/air mix.

 The air mass flow rate for this system is to be based on the speed-density

method. In this method, the air mass flow rate is calculated via the engine

revolutions per minute (RPM), air inlet temperature and intake manifold

pressure.

 An exhaust gas recirculation (EGR) unit is to be fitted. The flow of

exhaust gases need to be taken into account when calculating the air mass

flow rate. The EGR system must be able to monitor and control the

position of a valve which increases/decreases the flow of exhaust gases.

 Modifications to the fuel/air mix must be made to ensure the best mix for

the vehicle operating conditions. Operating condition modifications are

determined based on data from a velocity sensor, the intake manifold

pressure and the engine RPM (revolutions per minute).

 To ensure that an efficient mix is being used, a lambda sensor will be

installed. This will measure the level of oxygen in the exhaust gas and

indicate if a mix is too lean or too rich. This data will be used to make

further corrections to the injector pulse width to reduce/increase the

amount of fuel supplied.

 The time at which fuel is injected is determined from the current

rotational position of the crankshaft. When a predetermined position is

reached, an activation signal is to be sent to the relevant fuel injector.

 TTEESSTTIINNGG

 234

 A pump will be used to deliver the fuel from the tank to the fuel rail. The

fuel tank will also require a fuel level sensor.

 Finally the RPM, engine coolant temperature and fuel level should be

output for systems such as the instrument panel.

Inputs: - Throttle position

- Engine RPM

- Air inlet temperature

- Intake manifold pressure

- EGR valve position

- Velocity of the vehicle

- Lambda (excess oxygen) reading

- Current position of the crankshaft

Outputs: - Command to activate/deactivate the physical fuel injector(s)

- Engine RPM

- Engine coolant temperature

- Fuel level

- EGR valve position

 TTEESSTTIINNGG

 235

14.2.5 Testers

Seven people with varying levels of experience and backgrounds were selected to

complete the testing process. This section gives a brief description of their

backgrounds and areas of expertise.

Tester 1

Tester 1 has industrial experience with various forms of embedded systems including

those in the automotive industry. This tester has lectured in embedded systems,

automotive software development and systems analysis and design techniques.

Tester 2

Tester 2 has experience in the field of non-automotive component-based software

engineering.

Tester 3

Tester 3’s primary background is in the area of electronics engineering. Tester 3 only

has a few months of industrial experience.

Tester 4

Tester 4 currently works in the automotive industry. This tester is engaged in

software development primarily in the area of comfort systems.

Tester 5

Tester 5 currently works in the automotive industry. This tester is engaged in

software development primarily in the area of powertrain systems.

Tester 6

Tester 6 is a qualified mechanic. This tester is not experienced in the area of

automotive software development or in general software development practices.

 TTEESSTTIINNGG

 236

Tester 7

Tester 7 currently works in the automotive industry. As with tester 4, this tester is

engaged in software development primarily in the area of comfort systems.

14.3 Summary

The testing process consists of a number of steps. Experts must attempt to select

software components which best fit the requirements laid out in each of the three test

cases. This will be performed using AUTOMAP and a manual approach. The data

will mainly be gathered automatically using code inserted into AUTOMAP and the

component viewing application in the case of the manual approach. In the case of the

manual method, the experts will manually note the components they have selected.

The data collected using both approaches will be analysed and compared to

determine the effectiveness of the mapping framework used in AUTOMAP.

 AANNAALLYYSSIISS

 237

15

Analysis

15.1 Introduction

This chapter presents the results obtained during the testing process. The first section

shows the selected software components in diagrammatic fashion. This is used to

examine the effort required to integrate the selected software components together

into a working system. The second section shows an examination of various metrics

which were logged during the testing process. This includes factors such as the time

taken to complete a selection process, the fulfilled requirements and so on. The third

section describes the testers’ experiences during the process as obtained from a

questionnaire. Finally, conclusions based on the gathered data are presented.

Seven people carried out the tests. These testers are numbered e.g. Tester 1, Tester 2

etc, to ensure their anonymity.

15.2 Selected Software Components

This section focuses primarily on the interactions between the software components

selected by testers. The selected software components were examined to determine

how well they integrate with each other and how much work must be carried out in

order to realise a correct solution. The detailed results data is presented in Appendix

B. What is presented in this chapter is the conclusions made from comparing each

 AANNAALLYYSSIISS

 238

tester’s solutions for both the manual and tool-assisted approaches. This was done to

determine which approach would require the least reworking to meet the

requirements laid down. The main factors which were examined were:

� The number of software components which must be added.

� The number of software components which must be discarded.

� Interfaces which may fully or partially match in terms of the data items they

use but not in terms of the interface names and/or extra data items used by

one of the interfaces.

Note that since all solutions for Test Case 1 produced complete solutions this test

case has not been included. The observations are listed in Table 15.1.

Tester Test Case
2

Test Case
4

1 Manual Manual

2 AUTOMAP Manual

3 AUTOMAP AUTOMAP

4 Manual AUTOMAP

5 AUTOMAP Equal

6 Manual Manual

7 AUTOMAP AUTOMAP

Table 15.1 Effort To Realise Solutions

The observations listed in Table 15.1 indicate that both approaches are roughly

equal. In seven instances AUTOMAP outperformed the manual approach in terms of

requiring the least amount of effort to modify solutions to meet the test case

requirements. The manual approach outperformed AUTOMAP in six instances and

in one case both approaches produced solutions which require roughly equal amounts

of effort to be completed.

 AANNAALLYYSSIISS

 239

15.3 Logged Metrics

This section deals with the data which was logged using the AUTOMAP tool and the

manual approach support tool. It is broken up into three sections. The first deals with

data relating to the effort which goes into a selection process. This includes the time

taken for the complete process, the average software component viewing time and

the number of software component views. The second section compares the results

obtained using both approaches in terms of the primary and secondary requirements

fulfilled by the solutions. The third section shows the data which was logged from

the use cases.

 AANNAALLYYSSIISS

 240

15.3.1 Timing and Viewing Data

Test Case 1

 No of SWC Views Average SWC
Viewing Time (s)

Total Time
(s)

Tester Manual Automap Manual Automap Manual Automap

1 4 0 15.53 0 158.33 273.69

2 1 0 2.9844 0 944.2969 466.92

3 2 6 677.71 6.94 1453 135.47

4 27 3 17.12 5.59 680.95 262.56

5 203 5 0.58 8.68 212.38 301.03

6 9 2 13.44097 37.4453125 188.875 117.984375

7 5 5 27.7971 8.8159 339.212147 400.3722

Table 15.2 Test Case 1 Timing & Viewing Data

Evaluation

� In all but one case (Tester 3) more software component views were made

using the manual approach.

� In all but two cases (Tester 5 and Tester 6) less time was spent on average

viewing a software component using AUTOMAP.

� In the case of Tester 3 over ten minutes were spent on average viewing a

single software component during the manual process. This may indicate an

external distraction (phone call etc).

� In four out of seven cases more time was spent on the manual method.

Conclusion

� The high number of software component views coupled with the low average

viewing time in the case of the manual approach for Tester 5 most likely

indicates that the tester was rapidly scanning through the list of components

without generally spending significant effort on examining each component.

� In two cases there was no time spent on examining software components

using AUTOMAP i.e. no components were selected for examination in detail.

This indicates that the summary information provided was considered

sufficient by the tester, not requiring significant examination of the selected

components.

 AANNAALLYYSSIISS

 241

� Both approaches yielded the same results in terms of requirements fulfilled.

However in the majority of cases greater effort went into the manual process,

indicating that AUTOMAP can save effort.

 AANNAALLYYSSIISS

 242

Test Case 2

 No of SWC Views Average SWC
Viewing Time (s)

Total Time
(s)

Tester Manual Automap Manual Automap Manual Automap

1 20 10 24.3 5.43 535.68 373.32

2 42 0 889.0781 0 1656.140625 428.203125

3 3 0 490.55 0 1565.69 403.53

4 364 9 6.41 4 2432.22 704.5

5 171 38 1.02 2.62 226.36 345.52

6 24 0 14.5514 0 468.96875 930.9375

7 17 8 15.1513 1.3614 343.7693339 281.0871

Table 15.3 Test Case 2 Timing & Viewing Data

Evaluation

� In all cases more software component views were made using the manual

approach. Often there was a significant difference e.g. Tester 4 making 364

views using the manual approach versus 9 using AUTOMAP.

� In all but one case (Tester 5) more time was spent on an average view using

the manual approach.

� In all but two cases (Tester 5 and 6) more time was spent completing the

process using the manual approach.

Conclusion

� As with the previous test case it appears that more effort was spent

completing the manual process.

� Testers 4 and 5 spent relatively short periods of time examining individual

software components using the manual process. This coupled with the high

number of component views indicates that they were rapidly scanning

through the list of available components, stopping on ones which appeared to

be relevant.

 AANNAALLYYSSIISS

 243

Test Case 3

 No of SWC Views Average SWC
Viewing Time (s)

Total Time
(s)

Tester Manual Automap Manual Automap Manual Automap

1 17 0 23.27 0 632.81 433.84

2 29 0 4.7247 0 218.6875 508.46875

3 17 0 16.6479779 0 326.109375 702.17

4 149 7 12.55 1.16 1969.91 337.88

5 177 29 3.9 3.87 726.88 953.53

6 23 8 29.0024 5.1895 729.625 1075.76563

7 956 10 1.9251 3.4267 1895.643043 553.4708

Table 15.4 Test Case 3 Timing & Viewing Data

Evaluation

� In all cases more software component views were made using the manual

approach.

� In all but one test case (Tester 7) more time was spent on an average view

using the manual approach.

� In four test cases more time was spent completing the process using

AUTOMAP.

Conclusion

� In this test case AUTOMAP exceeded the manual process in a number of

instances in terms of the total time taken for the process. This may be due to

users becoming familiar with the contents of the component repository in the

manual approach.

� However more views were made using the manual process. This is coupled

with a higher average viewing time in all but one case. This indicates that a

larger repository would lead to even greater effort and hence the manual

approach exceeding AUTOMAP in terms of effort exerted selecting

components.

 AANNAALLYYSSIISS

 244

15.3.2 Solution Requirements

Abbreviations:

� Man: Manual Approach

� Auto: Automap Approach

The tables in this section describe the requirements produced for each test case.

These include primary and secondary requirements. They also include extra

requirements i.e. requirements which were not specified in a test case but are still

useful in that application, incorrect requirements which do not add anything useful

and duplicate requirements i.e. a requirement that is fulfilled by more than one

component in the solution.

 AANNAALLYYSSIISS

 245

Test Case 1

 Primary Secondary Extra Incorrect Duplicate

Tester Man Auto Man Auto Man Auto Man Auto Man Auto

1 2 2 - - 0 0 0 0 0 0

2 2 2 - - 0 0 0 0 0 0

3 2 2 - - 0 0 0 0 0 0

4 2 2 - - 0 0 0 0 0 0

5 2 2 - - 0 0 0 0 0 0

6 2 2 - - 0 0 0 0 0 0

7 2 2 - - 0 0 0 0 0 0

Table 15.5 Test Case 1 Solution Requirements

Evaluation

� Both approaches produce solutions which contain the same number of

primary requirements.

Conclusion

� Both systems are equal in terms of the quality of systems produced.

 AANNAALLYYSSIISS

 246

Test Case 2

 Primary Secondary Extra Incorrect Duplicate

Tester Man Auto Man Auto Man Auto Man Auto Man Auto

1 1 3 4 1 0 1 1 0 0 0

2 1 2 0 0 0 1 0 0 0 0

3 1 1 0 4 0 0 0 0 0 0

4 3 0 3 3 0 0 0 0 0 0

5 0 2 2 3 0 1 0 0 0 0

6 1 0 2 0 0 0 3 2 0 0

7 0 0 1 3 0 0 1 0 0 0

Table 15.6 Test Case 2 Solution Requirements

Evaluation

� In two cases (Tester 4 and Tester 6) the manual method fulfilled more of the

primary requirements. Two cases fulfilled the same number of primary

requirements (Tester 3 and Tester 7). In all other test cases AUTOMAP

fulfilled more primary requirements.

� In two cases (Tester 1 and Tester 6) the manual method fulfilled more

secondary requirements. Two test cases fulfilled the same number of

secondary requirements (Tester 2 and Tester4). In all other test cases

AUTOMAP fulfilled more primary requirements.

� Three cases using AUTOMAP produced useful extra requirements.

� Three test cases using the manual method produced incorrect requirements

versus one case of incorrect requirements using AUTOMAP. In this case

incorrect requirements were specified by the user in the use case. See Table

15.11.

� No duplicate requirements were produced.

Conclusion

� In the majority of cases AUTOMAP produces systems which better fulfil the

requirements and contain fewer incorrect requirements.

 AANNAALLYYSSIISS

 247

Test Case 3

 Primary Secondary Extra Incorrect Duplicate

Tester Man Auto Man Auto Man Auto Man Auto Man Auto

1 3 2 6 0 0 0 0 2 0 0

2 4 0 0 0 0 0 0 2 0 0

3 1 6 0 1 0 0 3 1 0 1

4 6 6 0 4 0 0 0 2 0 1

5 3 7 5 1 0 0 0 0 0 0

6 4 3 1 1 0 0 2 2 0 0

7 5 2 1 6 0 0 4 0 1 0

Table 15.7 Test Case 3 Solution Requirements

Evaluation

� In four test cases the manual approach produced more primary requirements

versus two cases using AUTOMAP. In one case (Tester 4) an equal number

of requirements were fulfilled using both approaches.

� In two cases (Tester 1 and Tester 5) the manual approach fulfilled more

secondary requirements versus three cases using AUTOMAP. Two cases

fulfilled the same number of secondary requirements (Tester 2 and Tester 6).

� No useful extra requirements were produced.

� In two cases the manual approach produced solutions containing incorrect

requirements versus five cases using AUTOMAP.

� In one case the manual approach produced a duplicate requirement versus

two times using AUTOMAP.

Conclusion

� The manual approach produced more solutions which fulfilled a greater

number of primary requirements while AUTOMAP produces more solutions

which fulfilled a greater number of secondary requirements. AUTOMAP did

produce more solutions with errors and duplicate requirements (two and one

more respectively) than the manual approach. Therefore the manual approach

produced marginally better solutions than AUTOMAP. Tables 15.13 to 15.15

indicate that this is due to the requirements entered by the testers i.e. the

AUTOMAP solutions reflect the requirements entered. In fact in most cases

AUTOMAP delivered more correct requirements than were requested.

 AANNAALLYYSSIISS

 248

15.3.3 Use Cases

Note that in a number of cases use case data was not supplied by the tester along with

their test results. This is indicated where required. Input and output data was still able

to be gathered as this data was recorded in both the use case form report and the

results from solutions report.

 AANNAALLYYSSIISS

 249

Test Case 1

Test Case 1 contains:

� Two primary requirements

� No secondary requirements

� Two inputs

� Two outputs

 Primary Requirements Secondary Requirements

Tester Specified Delivered Extra Specified Delivered Extra

1 n/a n/a n/a - - -

2 2 2 0 - - -

3 n/a n/a n/a n/a n/a n/a

4 2 2 0 - - -

5 2 2 0 - - -

6 2 2 0 - - -

7 n/a n/a n/a n/a n/a n/a

Table 15.8 Test Case 1 Use Case Requirements

 Incorrect Requirements Extra Requirements

Tester Specified Delivered Extra Specified Delivered

1 n/a n/a n/a n/a n/a

2 0 0 0 0 0

3 n/a n/a n/a n/a n/a

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 n/a n/a n/a n/a n/a

Table 15.9 Test Case 1 Use Case Incorrect and Extra Requirements

 Inputs Outputs

Tester Correct Incorrect Extra Correct Incorrect Extra

1 2 0 0 2 0 0

2 2 0 0 2 0 0

3 2 0 0 2 0 0

4 2 0 0 2 0 0

5 2 0 0 2 0 0

6 2 0 0 2 0 0

7 2 0 0 2 0 0

Table 15.10 Test Case 1 Use Case Signals

 AANNAALLYYSSIISS

 250

Evaluation

� In all cases which provided a use case, two requirements were specified and

two delivered.

� In all cases the correct two inputs and correct two outputs were specified.

Conclusion

� The test case was understood by all and all testers were able to locate all of

the relevant requirements and signals.

 AANNAALLYYSSIISS

 251

Test Case 2

Test Case 2 contains:

� Four primary requirements

� Four secondary requirements

� Three inputs

� One output

 Primary Requirements Secondary Requirements

Tester Specified Delivered Extra Specified Delivered Extra

1 2 2 1 1 1 0

2 1 1 1 0 0 0

3 n/a n/a n/a n/a n/a n/a

4 0 0 0 3 3 0

5 1 1 0 3 3 0

6 0 0 - 0 0 -

7 0 0 0 3 3 0

Table 15.11 Test Case 2 Use Case Primary and Secondary Requirements

 Incorrect Requirements Extra Requirements

Tester Specified Delivered Extra Specified Delivered

1 0 0 0 0 1

2 0 0 0 0 1

3 n/a n/a n/a n/a n/a

4 1 0 0 0 0

5 0 0 0 0 1

6 2 1 1 0 0

7 0 0 0 0 0

Table 15.11 Test Case 2 Use Case Incorrect and Extra Requirements

 Inputs Outputs

Tester Correct Incorrect Extra Correct Incorrect Extra

1 2 0 1 1 0 1

2 3 0 0 1 0 0

3 3 0 0 1 0 0

4 3 1 0 1 0 0

5 3 0 0 1 0 0

6 2 0 0 0 2 0

7 3 0 0 1 0 0

Table 15.12 Test Case 2 Use Case Signals

 AANNAALLYYSSIISS

 252

Evaluation

� In all cases all specified primary and secondary requirements were delivered.

� In two cases extra primary requirements not specified by the tester were

delivered in the solution.

� In two cases incorrect requirements were entered in the use case. Only one

solution produced a user specified incorrect requirement. In this case two

were specified and only one delivered.

� In three cases useful extra functions not specified in the test case were

delivered.

� None of the testers selected more than two of the primary requirements

outlined in the test case. The highest number of secondary requirements

specified was three. This was achieved by three testers.

� In one case an incorrect input was specified and in one case two incorrect

outputs were specified.

Conclusion

� The low number of test case requirements entered by testers indicates that

they did not understand the test cases or could not locate the relevant

requirements (action facets) in the repository.

� The former conclusion is the most likely as most testers successfully located

the relevant signals. These are presented in a list format in the test case

document as opposed to the textual description which contained the

requirements.

 AANNAALLYYSSIISS

 253

Test Case 3

Test Case 3 contains:

� Nine primary requirements

� Eight secondary requirements

� Eight inputs

� Five Outputs

 Primary Requirements Secondary Requirements

Tester Specified Delivered Extra Specified Delivered Extra

1 1 1 1 0 0 0

2 0 0 0 0 0 0

3 n/a n/a n/a n/a n/a n/a

4 4 3 3 5 3 1

5 4 4 3 1 1 0

6 1 1 2 1 1 0

7 2 2 0 8 6 0

Table 15.13 Test Case 3 Use Case Primary and Secondary Requirements

 Incorrect Requirements Extra Requirements

Tester Specified Delivered Extra Specified Delivered
Duplicate

Requirements

1 1 1 1 0 0 0

2 1 0 1 0 0 0

3 n/a n/a n/a n/a n/a n/a

4 0 0 2 0 2 0

5 0 0 0 0 0 0

6 1 1 1 0 0 0

7 0 0 0 0 0 2

Table 15.14 Test Case 3 Use Case Incorrect, Extra and Duplicate Requirements

 Inputs Outputs

Tester Correct Incorrect Extra Correct Incorrect Extra

1 8 0 0 5 0 0

2 8 0 0 5 0 0

3 8 0 0 4 0 0

4 8 0 0 5 1 0

5 8 0 0 5 0 0

6 6 1 0 1 6 0

7 7 0 0 5 0 0

Table 15.15 Test Case 3 Use Case Signals

 AANNAALLYYSSIISS

 254

Evaluation

� In the majority of cases the specified primary and secondary requirements

were delivered.

� In four cases extra primary requirements not supplied by the tester were

delivered.

� In one case an extra secondary requirement not supplied by the tester was

delivered.

� In three cases incorrect requirements were specified. In two cases the

incorrect requirements were delivered. These and two more also delivered

extra incorrect requirements not specified by the tester.

� With the exception of Tester 6, all testers selected most if not all of the

correct signals.

Conclusion

� AUTOMAP delivered the majority of requirements specified along with extra

requirements which were not requested. These form part of the descriptions

of software components which contain specified requirements. This was true

for both correct and incorrect requirements.

� In all cases, testers selected only a subset of the requirements outlined in the

test cases.

� Testers did however in most cases input the correct inputs and outputs.

� Hence as with Test Case 2, the most likely explanation is that testers had

difficulty in identifying the relevant requirements from the textual description

provided.

 AANNAALLYYSSIISS

 255

15.4 Tester Opinions

A questionnaire was used to gather the opinions of the testers. All of the testers

found the AUTOMAP easier to use. One reason for this was the search function

provided by AUTOMAP. Some users felt that the descriptions of signals and actions

in AUTOMAP could be more concise while some stated that they should be more

descriptive. Another recurring issue was with the treeview implemented in the Data

Dictionary Viewer. Every time the viewer was opened the tree was fully collapsed. A

number of testers felt that it would be beneficial if the tree remembered its last state

when it was reopened. Also one tester commented that it would be useful to allow

multiple selections of items from the data dictionary.

One tester made the point that as developers become more familiar with AUTOSAR,

they may prefer to select software components using a manual approach.

 256

Section 5: Conclusion

 CCOONNCCLLUUSSIIOONN

 257

16

Conclusion

The aim of this research was to devise a means of mapping requirements to

AUTOSAR software components. Component-based software engineering is a

relatively new concept in the automotive industry. Therefore it was necessary to look

at research on component-based software engineering from other industries such as

aerospace and business application development. A number of potentially related

areas such as the MDA were also investigated to determine if they could be used in

the context of a mapping framework.

The selected approach was based on a faceted classification scheme. This allows a

common language to be created which can be used to describe software components

and functional requirements.

Three questions were posed at the start of this research. The work carried out

attempts to address these questions.

Question 1

What level of specification is needed to adequately document the functionality of

AUTOSAR software components to facilitate reuse within the automotive industry?

Answer

It was determined that the most effective way to document the functionality of a

software component is through a standardised language. Such a language is

 CCOONNCCLLUUSSIIOONN

 258

necessary to provide a common, unambiguous description of a component’s

functionality and the signals it uses.

Question 2

How should requirements be structured to facilitate their matching to available

software components?

Answer

It was determined that requirements should be stated in terms of the standardised

language which is used to describe software components. This facilitates the

mapping process. A modified use case was selected as a clear and effective method

of structuring the requirements.

Question 3

What level of process improvement can be achieved by automated matching of

application requirements to available components, compared to a manual matching

process?

Answer

The testing process undertaken during this research revealed that on average the

software components delivered by an automated matching tool are equal in quality to

a set selected using a manual process. An automated matching tool however

significantly reduces the amount of effort exerted during the matching process.

 CCOONNCCLLUUSSIIOONN

 259

Observations

A number of observations have been made in relation to the AUTOMAP tool and the

testing process. These are presented here.

The test cases were made up of two sections. The first was a text description which

contained the actual requirements. This was deliberately presented in this manner to

ensure that the requirements were not unduly biased towards AUTOMAP. The

second was a list of the main inputs and outputs to the system. Testers had difficulty

in identifying the correct requirements but had no problems with picking the correct

inputs and outputs. This indicates that the testers did not understand the system

requirements. A more clearly defined set of requirements would favour AUTOMAP

over the manual approach.

In AUTOMAP’s use case form inputs and outputs may be entered but if these signals

are to/from hardware then a requirement for this operation must be included e.g.

“Activate Spark Plug”. It would be more efficient to state the inputs and outputs

separately as is currently the case and then specify in the same section that a signal

relates to hardware or to a software component. This would eliminate the need to

state a separate requirement.

An earlier prototype of the AUTOMAP application allowed a user to add child use

cases to the list of functional requirements. While this is required by the mapping

framework, it has been omitted in the most recent version of AUTOMAP. This is due

to time constraints i.e. it could not be fully implemented in time for the testing stage

of this research. However it would be beneficial to fully implement this feature. This

would allow a multi-tiered system to be developed using AUTOMAP i.e. a system

with one or more sub-systems.

A number of improvements could be made to the matching algorithm. These include:

� After a software component has been selected as a starting point, the

remaining components are checked to see if their inputs/outputs match up to

the use case inputs/outputs and to those of the initially selected components.

 CCOONNCCLLUUSSIIOONN

 260

A more effective solution would be to also check a new software

component’s interfaces against the interfaces of all components which are

already part of the solution and not just against the main system

inputs/outputs and those of the initial component.

� If a component is added to a solution and another is found which implements

some of the same functionality as the original component, it will be discarded

even if it is more suitable for fulfilling the overall system requirements.

Therefore the ordering of component in the repository has an effect on the

solutions which are generated. While this approach can yield good results it is

not ideal. A more effective method would be to implement some form of

ranking system for components. The algorithm could allow selected

components to be discarded in favour of more suitable ones which are found

at a later stage in the matching process. This may necessitate some form of

backtracking as component selections are interdependent i.e. selecting one

software component may lead to others in turn being selected to match up

with it, or other components may be discarded.

Conclusion

A mapping framework as outlined in this research has definite benefits to offer.

These include increased productivity and the reduction of ambiguity in the

requirements engineering and development process. However this research has also

shown that the presentation of requirements is also key to the process. Requirements

may be complete in that they state exactly what is needed but they should also be

clear and unambiguous.

A potential avenue for future research would be to integrate the mapping framework

in a web-based component marketplace. This may be more difficult to achieve than

is the case with software components for other industries e.g. the financial sector,

due to the inherent relationship between AUTOSAR components and real world

vehicles and their hardware. It could however promote competition and hence

innovation which will benefit vehicle manufacturers and in turn their customers.

 CCOONNCCLLUUSSIIOONN

 261

Another area for future research would be to integrate a mapping framework into a

suite of tools to allow a direct mapping between requirements and deployed code. A

component selection tool such as AUTOMAP could be integrated with modules

which configure the RTE and basic software possibly based on component resource

requirements.

Finally the technology outlined in this thesis could be applied at multiple levels for

software components. It could for example be used to provide lower level

descriptions of a software component’s internal behaviour, resource consumption etc.

In conclusion, a mapping framework using a faceted-based classification scheme can

be used to increase productivity and reduce development time.

 262

Section 6: Appendices

AAPPPPEENNDDIIXX AA

 263

 A

Appendix A: XML Schemas

A.1 Facet Repository Schema

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Action">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Description" />

 <xs:element ref="Formula-Function" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Actions">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Action" minOccurs="0" maxOccurs="unbounded"

 />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Description">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Formula-Function">

 <xs:complexType mixed="true" />

 </xs:element>

AAPPPPEENNDDIIXX AA

 264

<xs:element name="Functional_Domain">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Actions" />

 <xs:element ref="Signals" />

 <xs:element ref="Parts" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Main_Area">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Functional_Domain" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Max-Value">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Min-Value">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Name">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Part">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Actions" />

 <xs:element ref="Signals" />

 <xs:element ref="Parts" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Parts">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Part" minOccurs="0" maxOccurs="unbounded"

 />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

AAPPPPEENNDDIIXX AA

 265

<xs:element name="Root">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Main_Area" />

 <xs:element ref="Unit_Group" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Signal">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Description" />

 <xs:element ref="Max-Value" />

 <xs:element ref="Min-Value" />

 <xs:element ref="Unit-Name" />

 <xs:element ref="Unit-Path" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Signals">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Signal" minOccurs="0" maxOccurs="unbounded"

 />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Symbol">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Unit">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Description" />

 <xs:element ref="Symbol" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Unit-Name">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Unit-Path">

 <xs:complexType mixed="true" />

 </xs:element>

AAPPPPEENNDDIIXX AA

 266

<xs:element name="Unit_Group">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="Name" />

 <xs:element ref="Unit" />

 <xs:element ref="Unit_Group" />

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:schema>

AAPPPPEENNDDIIXX AA

 267

A.2 Component Description Repository Schema

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Additional_Functionality">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Function" minOccurs="0"

maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Data_Element">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Description" />

 <xs:element ref="DDRep" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Data_Elements">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Data_Element" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="DDRep">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Description">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Function">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Functional_Domain">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="SWC" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Name">

 <xs:complexType mixed="true" />

 </xs:element>

 <xs:element name="Path">

 <xs:complexType mixed="true" />

 </xs:element>

AAPPPPEENNDDIIXX AA

 268

 <xs:element name="Provide_Interface">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Description" />

 <xs:element ref="Data_Elements" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Provide_Interfaces">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Provide_Interface" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Repository">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Functional_Domain" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Require_Interface">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Description" />

 <xs:element ref="Data_Elements" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Require_Interfaces">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Require_Interface" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SWC">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name" />

 <xs:element ref="Description" />

 <xs:element ref="Path" />

 <xs:element ref="Provide_Interfaces" />

 <xs:element ref="Require_Interfaces" />

 <xs:element ref="Additional_Functionality" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

AAPPPPEENNDDIIXX BB

 269

 B.

Appendix B: Detailed Results

B.1 Selected Software Components

This section focuses primarily on the interactions between the software components

selected by testers. The diagrams consist of the following elements:

� Software Components: These are represented by a box containing the name

of the component.

� Interfaces: These are connected to their corresponding software components

and contain a list of the data elements used in the interface. An interface

takes the form of underlined text which is external to the software

component which uses that interface. Note that required interfaces are

always shown on the left of a software component and provided interfaces

are always shown on the right.

� Data Elements: These are the signal facets which are used to describe the

data in an interface. These are used rather than the original data-element

names given in the AUTOSAR component description file. This helps to

determine if interfaces contain equivalent data items. A data element is

represented by text in italics below its parent interface.

� Connectors: These show the connections between software components. A

connector may connect two components with identical interfaces or they may

indicate that a provided interface only provides a subset of the data required

by another interface. A connector is represented by an arrow and is colour

coded to indicate which parts of interfaces are matched up by connectors.

AAPPPPEENNDDIIXX BB

 270

� Terminators: These show sources and destinations of data which are

external to the selected set of software components. This may be to/from

hardware in the case of sensor or actuator software components. If the data is

specified explicitly in the test case as an input or output then this is also

indicated. Finally, in the case of the AUTOMAP tests, if a user specifies the

data as an input or output in a use case then this is also stated. A terminator is

indicated by a line joined to a hollow circle. The keyword Extra indicates

that the input/output is not listed as a test case input/output but is used in

conjunction with one. For example, the output listed for Test Case 2 is

On_Off. This is a command to activate/deactivate a spark plug and may be

sent directly to the hardware. If an intermediary software component is used,

then it may be necessary for the software component controlling the ignition

timing to also transmit the number of the spark plug to be activated. This

number is the Extra output.

Figure B.1 illustrates these concepts.

Fig Fig Fig Fig BBBB.1 .1 .1 .1 Main ElementsMain ElementsMain ElementsMain Elements

Software
Component

B

New_Interface

Crankshaft_Speed

Software
Component

A

Transmit_Data

Data_B

Crankshaft_Position

Get Data A

Data_A

Hardware,
User Specified,

Test Case

Hardware,

Test Case

Set_Valve

Valve_Position

AAPPPPEENNDDIIXX BB

 271

B.2.1 Test Case 1

In all cases testers picked either the system illustrated in Figure B.2 or in B.3. Both

of these meet the requirements, inputs and outputs outlined in the test case. Also in

all cases the testers correctly specified the inputs and outputs using AUTOMAP.

Fig Fig Fig Fig B.B.B.B.2222 Test Case 1: Solution 1Test Case 1: Solution 1Test Case 1: Solution 1Test Case 1: Solution 1

Fig Fig Fig Fig B.3B.3B.3B.3 Test Case 1: Solution 2Test Case 1: Solution 2Test Case 1: Solution 2Test Case 1: Solution 2

Crankshaft

Sensor

Crank_Data
Get Crank_Speed

Crankshaft_Speed

Hardware,

Test Case

Get Crank_Position

Crankshaft_Position

Crankshaft_Speed

Crankshaft_Position

Test Case

Test Case

Crankshaft
Position
Sensor

Crank_Pos Get_Crank_Pos

Crankshaft_Position

Hardware,

Test Case

Crankshaft_Position

Crankshaft
Speed
Sensor

Crank_Speed Get_Crank_Speed

Crankshaft_Speed

Hardware,

Test Case

Crankshaft_Speed

Test Case

Test Case

AAPPPPEENNDDIIXX BB

 272

B.2.2 Test Case 2

Tester 1: Manual Method

Fig Fig Fig Fig B.B.B.B.4444 Test Case 2: Tester 1: Manual MethodTest Case 2: Tester 1: Manual MethodTest Case 2: Tester 1: Manual MethodTest Case 2: Tester 1: Manual Method

Evaluation

In this case the manual solution contains all of the sensor and actuator software

components required for the system outlined in Test Case 2. However all of the

sensor component outputs have no destination i.e. the tester has not included any

software component which requires the data they supply. The single test case output

is supplied by the single actuator component - Spark_Plug. However this component

requires data which is not yet supplied by a software component or by a test case

input. The system may be fully realised by including the Ignition Control 2 software

component which requires the data supplied by all of the software components listed.

In addition it requires engine coolant temperature data which may be supplied by a

coolant sensor software component. Therefore this system only requires that two

additional components are added. The knock sensor selected detects combustion

knock using an alternative method to the one prescribed in the test case. This

component may be used or swapped for another which uses the stated method.

Crankshaft

Sensor

Crank_Data
Get Crank_Speed

Crankshaft_Speed

Hardware,

Test Case

Get Crank_Position

Crankshaft_Position

Crankshaft_Speed

 Crankshaft_Position

MAP

Sensor
Intake_Manifold_Pressure Get Air Pressure

Air_Pressure

Hardware,

Test Case
Air_Pressure

No

Destination

Spark_Plug Spark_Plug_On_Command Set_Spark_Plug

Spark_Plug_No

Ignition – On_Off

Ignition – On_Off

No Source

Knock_

Sensor
Engine_Knock_No Get_Knock_Pressure

Cylinder_Block_Pressure

Hardware Cylinder_No

No

Destination

Hardware,

Test Case

AAPPPPEENNDDIIXX BB

 273

Tester 1: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.5555 Test Case 2: Tester 1: AUTOMAP MethodTest Case 2: Tester 1: AUTOMAP MethodTest Case 2: Tester 1: AUTOMAP MethodTest Case 2: Tester 1: AUTOMAP Method

Evaluation

The software components selected may be closer to a workable implementation in

this case than the manual method. All that is needed is to some means of supplying

data relating to the engine coolant temperature. This may be provided by either

Engine Coolant Sensor 1 or Engine Coolant Sensor 2 which both meet the missing

require interface of Ignition Control 1. The software component Knock_Sensor may

be discarded. Its output does not match up with a system output or with the inputs of

any of the other software components. However, while the system would be

complete in terms of fulfilled interfaces it would not fulfil the requirements laid

down in the test case. There must be some means of monitoring and controlling

engine knock. The Ignition Control 1 software component would need to be replaced

with one which makes adjustments to the ignition timing in order to control engine

knock. The software component Ignition Control 2 performs this task. Also note that

the tester has opted to receive the crank and manifold pressure data from a source

external to the system. Effort must be spent at some point to select software

components to supply this data, either during the development of this system or

another.

Ignition

Control 1

Set_Spark_Plug Test Case,

User Specified

Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Spark_Plug_No

Ignition – On_Off

Spark_Plug Spark_Plug_On_Command Set_Spark_Plug

Spark_Plug_No

Ignition – On_Off

Ignition – On_Off

Hardware,
Test Case,

User Specified

Knock_

Sensor
Engine_Knock_No Velocity_Change

Powertrain – Vehicle_Acceleration

Cylinder_No

No

Destination Hardware

Engine_Coolant_TempSR

Coolant_Temp

No Source

AAPPPPEENNDDIIXX BB

 274

Tester 2: Manual Method

Fig Fig Fig Fig B.B.B.B.6666 Test Case 2: Tester 2: Manual MethodTest Case 2: Tester 2: Manual MethodTest Case 2: Tester 2: Manual MethodTest Case 2: Tester 2: Manual Method

Evaluation

In this case the tester has opted to receive the crank and manifold pressure data from

an external source. Note that there is no provision in this system for knock control. If

the system is to be fully realised then the selected software component must be

replaced and a number of extra components must be selected e.g. a knock sensor

software component.

Ignition

Control

Set_Spark_Plug
Test Case

Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Spark_Plug_No

Ignition – On_Off

Test Case

Extra

AAPPPPEENNDDIIXX BB

 275

Tester 2: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.7777 Test Case 2: Tester 2: AUTOSAR MethodTest Case 2: Tester 2: AUTOSAR MethodTest Case 2: Tester 2: AUTOSAR MethodTest Case 2: Tester 2: AUTOSAR Method

Evaluation

As with the manual method, significant work must be carried out to fully realise the

system requirements. In this case however the selected software component does not

need to be replaced as it takes into account the occurrence of combustion knock.

Note that there is no source for two of Ignition Control 2’s inputs. Also the other

three are stated as inputs in the test case. These will need to be fulfilled by software

components at some point during the vehicle’s development lifecycle as will a

component which directly interacts with the actuator hardware.

Ignition

Control 2

Set_Spark_Plug
Test Case,

User Specified

Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Spark_Plug_No

Ignition – On_Off

 Test Case,

User Specified

Engine_Coolant_TempSR

No Source
Coolant_Temp

Engine_Knock_No

Cylinder_No

Extra

AAPPPPEENNDDIIXX BB

 276

Tester 3: Manual Method

Fig Fig Fig Fig B.B.B.B.8888 Test Case 2: Tester 3: Manual MethodTest Case 2: Tester 3: Manual MethodTest Case 2: Tester 3: Manual MethodTest Case 2: Tester 3: Manual Method

Evaluation

See Tester 2: Manual Method.

Ignition

Control

Set_Spark_Plug
Test Case

Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Spark_Plug_No

Ignition – On_Off

Test Case

Extra

AAPPPPEENNDDIIXX BB

 277

Tester3: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.9999 Test Case 2: Tester 3: AUTOMAP MethodTest Case 2: Tester 3: AUTOMAP MethodTest Case 2: Tester 3: AUTOMAP MethodTest Case 2: Tester 3: AUTOMAP Method

Evaluation

In this case all of the necessary sensors and actuators have been selected. However

none of the sensor software components transmit their data to another component or

to a system output. Also there is no source for the Spark_Plug software component’s

required data. What is needed is some means of processing the sensor data to

produce the desired output i.e. activation signals to the Spark_Plug software

components. A single software component Ignition Control 2 fulfils this task.

However this component receives both crankshaft speed and position data using a

single interface. The two selected crankshaft sensor software components transmit

data on separate interfaces. There are two possible solutions to this problem. The first

is to replace these two software components with a single one e.g. Crankshaft Sensor

which has the correct interface. The second is to create some intermediary software

component which receives data from the selected sensors using their existing

interfaces and then retransmits this data on a new interface which matches up to

Ignition Control 2’s require interface.

MAP

Sensor
Intake_Manifold_Pressure Get Air Pressure

Air_Pressure

Hardware,

Test Case
Air_Pressure

Spark_Plug Spark_Plug_On_Command Set_Spark_Plug

Spark_Plug_No

Ignition – On_Off

Ignition – On_Off

No Source

Knock_

Sensor 1

Engine_Knock_No Get_Vel_Change

Vehicle_Acceleration

Hardware Cylinder_No

No

Destination

Hardware,
Test Case

User Specified

Crankshaft
Position
Sensor

Crank_Pos Get_Crank_Pos

Crankshaft_Position

Hardware,

Test Case

Crankshaft_Position

No

Destination

Crankshaft
Speed
Sensor

Crank_Speed Get_Crank_Speed

Crankshaft_Speed

Hardware,

Test Case

Crankshaft_Speed

No

Destination

No

Destination

AAPPPPEENNDDIIXX BB

 278

Tester 4: Manual Method

Fig Fig Fig Fig B.B.B.B.10101010 Test Case 2: Tester 4: Manual MethodTest Case 2: Tester 4: Manual MethodTest Case 2: Tester 4: Manual MethodTest Case 2: Tester 4: Manual Method

Evaluation

The Ignition Control software component should be replaced with one which makes

modifications to the ignition timing based on data received from the knock sensor

e.g. Ignition Control 2. This would also require either the crankshaft software

components to be changed or an intermediary software component to be created as

was explained for Tester 3: AUTOMAP Method. Also, a software component would

be needed to measure the coolant temperature and supply this data to Ignition

Control 2.

Knock_

Sensor 1
Engine_Knock_No Velocity_Change

Vehicle_Acceleration

Hardware Cylinder_No

No

Destination

Test Case

Ignition

Control

Set_Spark_Plug

Crank_Data

Crankshaft_Speed

Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Spark_Plug_No

Ignition – On_Off

Crankshaft
Speed
Sensor

Crank_Speed Get_Crank_Speed

Crankshaft_Speed

Hardware,

Test Case
Crankshaft_Speed

Crankshaft
Position
Sensor

Crank_Pos Get_Crank_Pos

Crankshaft_Position

Hardware,

Test Case
Crankshaft_Position

Intake_Manifold_Pressure Get Air Pressure
Air_Pressure/
Intake_Manifold_Pressure

Hardware,

Test Case Air_Pressure/
Intake_Manifold_Pressure

MAP/Digital
Intake
Manifold
Pressure
Sensor

Extra

AAPPPPEENNDDIIXX BB

 279

Tester 4: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.11111111 Test Case 2: Tester 4: AUTOMAP MethodTest Case 2: Tester 4: AUTOMAP MethodTest Case 2: Tester 4: AUTOMAP MethodTest Case 2: Tester 4: AUTOMAP Method

Evaluation

This solution requires a number of software components to fulfil the test case. It does

not include any means of controlling the spark plug activation timing. It also lacks

software components which read engine coolant temperature data and detect the

occurrence of combustion knock. Finally a software component has not been selected

to interface with the physical spark plugs. Essentially what has been selected is a

collection of sensor software components which could be used in any number of

applications. Note that none of their provided interfaces transmit data to any other

software components or to a system output as specified by either the test case or by

the tester.

MAP

Sensor

Intake_Manifold_Pressure Get Air Pressure

Air_Pressure

Hardware,
Test Case,

User Specified

Air_Pressure

Crankshaft
Position
Sensor

Crank_Pos Get_Crank_Pos

Crankshaft_Position

Hardware,
Test Case,

User Specified

Crankshaft_Position

No

Destination

Crankshaft
Speed
Sensor

Crank_Speed Get_Crank_Speed

Crankshaft_Speed

Hardware,
Test Case,

User Specified

Crankshaft_Speed

No

Destination

No

Destination

AAPPPPEENNDDIIXX BB

 280

Tester 5: Manual Method

Fig Fig Fig Fig B.B.B.B.12121212 Test Case 2: Tester 5: Manual MethodTest Case 2: Tester 5: Manual MethodTest Case 2: Tester 5: Manual MethodTest Case 2: Tester 5: Manual Method

Evaluation

Again significant work is required to realise a complete solution. As with the

previous solution there is no destination for the outputted data. The majority of

sensor software components required must still be selected as does a central

component to determine the activation times of software components. Finally a spark

plug software component has not been selected.

No

Destination
Hardware,

Test Case Intake_Manifold_Pressure

Get Intake Pressure Digital
Intake
Manifold
Pressure
Sensor

Intake_Manifold_Pressure

Intake_Manifold_Pressure

Hardware,

Test Case
Crankshaft_Position

Get_Crank_Pos Crankshaft
Position
Sensor

Crankshaft_Position

Crank_Pos No

Destination

AAPPPPEENNDDIIXX BB

 281

Tester 5: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.13131313 Test Case 2: Tester 5: AUTOMAP MethodTest Case 2: Tester 5: AUTOMAP MethodTest Case 2: Tester 5: AUTOMAP MethodTest Case 2: Tester 5: AUTOMAP Method

Evaluation

This solution is quite close to realising the requirements outlined in the test case. It

requires two additional software components to supply data to interfaces which

currently have no source: one to read engine coolant temperature data from a sensor

and another to interface with a knock detection sensor. Note that this data was not

added by the tester as a system input. Also the interfaces between the two crankshaft

sensor components and Injection Control 2 do not match up requiring an

intermediary software component or a replacement of the two sensor components

with one which has the necessary interface.

Ignition

Control 2

Set_Spark_Plug Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Spark_Plug_No

Ignition – On_Off

Engine_Coolant_TempSR

No Source
Coolant_Temp

Engine_Knock_No

Cylinder_No

Crankshaft
Position
Sensor

Crank_Pos Get_Crank_Pos

Crankshaft_Position

Hardware,
Test Case,

User Specified

Crankshaft_Position

Spark_Plug Spark_Plug_On_Command Set_Spark_Plug

Spark_Plug_No

Ignition – On_Off

Ignition – On_Off

Hardware,
Test Case

User Specified

Test Case,

User Specified

Crankshaft
Speed
Sensor

Crank_Speed Get_Crank_Speed

Crankshaft_Speed

Hardware,
Test Case,

User Specified

Crankshaft_Speed

AAPPPPEENNDDIIXX BB

 282

Tester 6: Manual Method

Fig Fig Fig Fig B.B.B.B.14141414 Test Case 2: Tester 6: Manual MethodTest Case 2: Tester 6: Manual MethodTest Case 2: Tester 6: Manual MethodTest Case 2: Tester 6: Manual Method

Evaluation

This solution has two sensor software components which may be used in the test

case. The knock sensor selected may need to be swapped for one which detects

knock according to the method prescribed in the test case. The knock sensor is not

transmitting data to another software component or to a system output as outlined in

the test case. Neither is the engine monitor system. However all of the required

interfaces are fulfilled via hardware inputs or through another software component.

A complete solution will require a number of extra software components to be

selected. The Engine Monitor System component may be discarded as it is not

required for this test case.

Crankshaft

Sensor

Crank_Data
Get Crank_Speed

Crankshaft_Speed

Hardware,

Test Case

Get Crank_Position

Crankshaft_Position

Crankshaft_Speed

 Crankshaft_Position

Knock_

Sensor
Engine_Knock_No Get_Knock_Pressure

Cylinder_Block_Pressure

Hardware Cylinder_No

No

Destination

Engine
Monitor

System

Diagnostics Stream Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Diagnostics_Data_Element

No

Destination

Hardware

AAPPPPEENNDDIIXX BB

 283

Tester 6: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.15151515 Test Case 2: Tester 6: AUTOMAP MethodTest Case 2: Tester 6: AUTOMAP MethodTest Case 2: Tester 6: AUTOMAP MethodTest Case 2: Tester 6: AUTOMAP Method

Evaluation

The single software component selected in this solution does not transmit data to any

other software component or to a user or test case specified output. Its single input is

supplied by hardware. This solution also does not supply any of the functionality

outlined in the test case.

Air Mass
Calculator 1

Air_Mass_Flow_Rate Get_Air_Pressure

Air_Pressure

Hardware Air_Mass_Flow_Rate

No

Destination

AAPPPPEENNDDIIXX BB

 284

Tester 7: Manual Method

Fig Fig Fig Fig B.B.B.B.16161616 Test Case 2: Tester 7: AUTOMAP MethodTest Case 2: Tester 7: AUTOMAP MethodTest Case 2: Tester 7: AUTOMAP MethodTest Case 2: Tester 7: AUTOMAP Method

Evaluation

In this solution only two software components have been selected. The first, Intake

Manifold Air Mass Calculator 2, receives its inputs via system inputs specified in the

test case. Its output is not required by any other components in the solution or by a

system output. Also it does not fulfil any of the required functionality and may be

discarded. The second software component, Spark_Plug, has no source for its

required interface. However its provided interface is used to activate the physical

spark plugs. Note that a number of software components must be selected to fulfil the

requirements outlined in the test case.

Intake
Manifold
Air Mass
Calculator

2

Engine_Speed

Crankshaft_Speed

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate
Test Case

Spark_Plug Spark_Plug_On_Command Set_Spark_Plug

Spark_Plug_No

Ignition – On_Off

Ignition – On_Off

Hardware,

Test Case No Source

No

Destination

AAPPPPEENNDDIIXX BB

 285

Tester 7: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.17171717 Test Case 2: Tester 7: Manual MethodTest Case 2: Tester 7: Manual MethodTest Case 2: Tester 7: Manual MethodTest Case 2: Tester 7: Manual Method

Evaluation

See Tester 4: AUTOMAP method.

MAP

Sensor

Intake_Manifold_Pressure Get Air Pressure

Air_Pressure

Hardware,
Test Case,

User Specified

Air_Pressure

Crankshaft
Position
Sensor

Crank_Pos Get_Crank_Pos

Crankshaft_Position

Hardware,
Test Case,

User Specified

Crankshaft_Position

No

Destination

Crankshaft
Speed
Sensor

Crank_Speed Get_Crank_Speed

Crankshaft_Speed

Hardware,
Test Case,

User Specified

Crankshaft_Speed

No

Destination

No

Destination

AAPPPPEENNDDIIXX BB

 286

B.2.3 Test Case 3

Tester 1: Manual Method

Fig Fig Fig Fig B.B.B.B.18181818 Test Case 3: Tester 1: Manual MethodTest Case 3: Tester 1: Manual MethodTest Case 3: Tester 1: Manual MethodTest Case 3: Tester 1: Manual Method

Injection

Control

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Fuel_Injection – On_Off

 Test Case,

User Specified

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

Extra

Throttle_Position

Throttle_Pos

No Source

Test Case

MAP

Sensor
Intake_Manifold_Pressure Get Air Pressure

Air_Pressure

Hardware,

Test Case
Air_Pressure

Crankshaft

Sensor

Crank_Data
Get Crank_Speed

Crankshaft_Speed

Hardware,

Test Case

Get Crank_Position

Crankshaft_Position

Crankshaft_Speed

 Crankshaft_Position

Air
Temperature

Sensor

SR Air Temperature Get Air Temp

Air_Temperature

Hardware,

Test Case
Air_Temperature

Lambda

Sensor

Lambda_Data Get_Lambda_Reading

Fuel_System - Lambda

Hardware,

Test Case
EGR_Control - Lambda

No

Destination

EGR Control Set_Valve_PosSR Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

EGR_Valve_Pos

Aegr

Hardware,

Test Case

Get_Coolant_Temp

Coolant_Temperature

Velocity_Change

Powertrain – Vehicle_Acceleration

No Source

EGR airflow No

Destination

Test Case,

User Specified

AAPPPPEENNDDIIXX BB

 287

Evaluation

There are in total three required interfaces which have not been fulfilled in this

solution. Note that Injection Control and EGR Control both require the interface

Velocity Change. Two of the interfaces, Get_Coolant_Temp and Velocity_Change,

may be fulfilled through the introduction of corresponding software components to

measure coolant temperature and acceleration. There are also three provided

interfaces which do not have a specific destination. These are the outputs of Lambda

Sensor, Air Temperature Sensor and EGR Control. All of these provide data which is

stated as being necessary for the fuel injection system outlined in Test Case 3.

Therefore for a complete solution, the Injection Control software component should

be replaced by one or more software components which take into account these

factors. Note that the software components which calculate the air mass flow rate

based on the speed density method should take the air inlet temperature as an input.

However this was left out in error during creation of the components.

AAPPPPEENNDDIIXX BB

 288

Tester 1: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.19191919 Test Case 3: Tester 1: AUTOMAP MethodTest Case 3: Tester 1: AUTOMAP MethodTest Case 3: Tester 1: AUTOMAP MethodTest Case 3: Tester 1: AUTOMAP Method

Evaluation

The Basic Engine Management software component does not adequately meet the

requirements laid down in the test case and would need to be replaced. Both of its

inputs are however provided by the test case and stated by the user. Both of its

provided interfaces may be matched up later to the relevant actuator software

components. However only Set_Injector_Solenoid is relevant to this test case. The

second software component Intake Manifold Air Mass Calculator 2 has three

required interfaces, two of which are fulfilled by system inputs as specified by the

user and in the test case. The third interface EGR_airflow requires that a software

component be selected which provides the required information; for example the

software component EGR Control illustrated in Figure B.18. This would in turn

require that other components be selected to meet its requirements. The data

provided by Intake Manifold Air Mass Calculator 2 is relevant to this test case and

could be used by other components chosen to replace Basic Engine Management.

Basic Engine

Management

Set_Injector_Solenoid Test Case,

User Specified

Desired Speed

Crankshaft_Speed

Engine_Speed

Powertrain - Number

Powertrain – On_Off

Test Case,

User Specified

Extra
Throttle_Position

Intake
Manifold
Air Mass

Calculator 2

Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Aegr

EGR airflow

Aegr

No Source

Air_Mass_Flow_Rate No

Destination

Set_Spark_Plug

Spark_Plug_No

Powertrain – On_Off

No

Destination

Test Case,

User Specified

AAPPPPEENNDDIIXX BB

 289

Tester 2: Manual Method

Fig Fig Fig Fig B.B.B.B.20202020 Test Case 3: Tester 2: Manual MethodTest Case 3: Tester 2: Manual MethodTest Case 3: Tester 2: Manual MethodTest Case 3: Tester 2: Manual Method

Evaluation

In this solution none of the inputs are provided by selected software components.

The majority are fulfilled by inputs as specified in the test case requiring that the

components be selected at another stage. Two of the required interfaces,

Air_Mass_Flow_Rate and Velocity_Change have no source i.e. they are not provided

by a test case input or a software component. The provided interface of the selected

component may be used to transmit commands to fuel injection software components

to activate the corresponding hardware. This is allowed for in the test case outputs.

Note that this interface contains an extra data item Fuel_Injector_No which is used to

indicate the injector which should be activated. A number of extra software

components must be selected to fulfil the requirements in the test case.

Injection
Timing

Calculator

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Fuel_Injection – On_Off

Test Case

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

Extra

Throttle_Position

Throttle_Pos

No Source

Test Case

Lambda_Data

Fuel_System - Lambda

AAPPPPEENNDDIIXX BB

 290

Tester 2: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.21212121 Test Case 3: Tester 2: AUTOMAP MethodTest Case 3: Tester 2: AUTOMAP MethodTest Case 3: Tester 2: AUTOMAP MethodTest Case 3: Tester 2: AUTOMAP Method

Evaluation

The majority of the selected software component’s interfaces have been met by the

test case inputs and outputs and have also been specified by the tester as system

inputs and outputs. The exception to this is the provided interface Set_Spark_Plug

which is not required by this test case. However the Basic Engine Management

software component will need to be replaced by a more suitable software component

as it does not meet the majority of the requirements laid down in the test case.

Basic Engine

Management

Set_Injector_Solenoid Test Case,

User Specified

Desired Speed

Crankshaft_Speed

Engine_Speed

Powertrain - Number

Powertrain – On_Off

Test Case,

User Specified

Extra
Throttle_Position

Set_Spark_Plug

Spark_Plug_No

Powertrain – On_Off

No

Destination

AAPPPPEENNDDIIXX BB

 291

Tester 3: Manual Method

Fig Fig Fig Fig B.B.B.B.22222222 Test Case 3: Tester 3: Manual MethodTest Case 3: Tester 3: Manual MethodTest Case 3: Tester 3: Manual MethodTest Case 3: Tester 3: Manual Method

Evaluation

The first software component listed i.e. EGR Monitor 1 is not required by this test

case and may be discarded. This is also true of the Oil Temperature Sensor

component. The only remaining required interface which does not have a source is

the Injection Timing interface as used by Injection Timing Control. This will require

another component to be selected which determines the injection timing i.e. the pulse

width for the fuel injectors. This component in turn will require data from other

software components e.g. air mass flow rate, lambda readings etc. Some of these will

lead to a need for other software components. Again a software component which

controls the fuel injector hardware will be needed.

EGR

Monitor 1

EGR airflow

Aegr

Valve_Pos_Command

EGR_Valve_Pos

Diagnostics_Data_Element

Lambda_Data

Fuel_System - Lambda

No Source Diagnostics_Stream No

Destination

Test Case

Injection
Timing

Control

Injection_Timing

Injector_Pulse_Width

Crank_Pos

Crankshaft_Position

Fuel_Injector_No

Set_Injector_Solenoid

Fuel_Injection – On_Off

Fuel Level

Sensor
Fuel_LevelSR Get_Fuel_Level

Fuel_Level

Hardware Fuel_Level

Test Case

No Source

Test Case

Oil
Temperature

Sensor

Oil_Temp Get_Oil_Temp

Oil_Temp

Hardware Oil_Temp

No

Destination

Test Case

Extra

AAPPPPEENNDDIIXX BB

 292

Tester 3: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.23232323 Test Case 3: Tester 3: AUTOMAP MethodTest Case 3: Tester 3: AUTOMAP MethodTest Case 3: Tester 3: AUTOMAP MethodTest Case 3: Tester 3: AUTOMAP Method

Evaluation

Two software components have been selected which both calculate the air mass flow

rate. These are Calc Air Mass 2 Vane Sensor and Intake Manifold Air Mass

Calculator 2. The latter uses the speed density method as outlined in the test case.

Therefore the former software component may be discarded. The remaining

components form an effective core for the required system as they take into account

exhaust gases and lambda data as outlined in the test case. However two of the

required interfaces are unfulfilled requiring that additional software components be

selected. Further all of the other inputs are fulfilled by user and test case specified

system inputs. Components supplying this information will have to be selected at

some point e.g. during development of other systems. Also a fuel injector software

component will need to be selected.

Injection
Timing

Calculator

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Test Case,

User Specified

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

User Specified

Throttle_Position

Throttle_Pos

No Source

Test Case,

User Specified

Lambda_Data

Fuel_System - Lambda

Calc Air
Mass 2
Vane

Sensor

Get_Air_Volume

Air_Volume

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Get_Air_Temp

Air_Temperature

Hardware,
Test Case,

User Specified

Intake
Manifold
Air Mass

Calculator 2

Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Air_Mass_Flow_Rate

EGR airflow

Aegr

No Source

Air_Mass_Flow_Rate
Test Case,

User Specified

Hardware

AAPPPPEENNDDIIXX BB

 293

Tester 4: Manual Method

Fig Fig Fig Fig B.B.B.B.24242424 Test Case 3: Tester 4: Manual MethodTest Case 3: Tester 4: Manual MethodTest Case 3: Tester 4: Manual MethodTest Case 3: Tester 4: Manual Method

Evaluation

To candidate solutions were chosen by the tester. Both of these require the same

inputs. In both cases all of the required interfaces with the exception of

Air_Mass_Flow_Rate and Velocity_Change are fulfilled by test case inputs as

opposed to components selected by the user. Injection Control 1 provides data which

may be used by an injector software component. Injection Timing Calculator 1

transmits data relating to the opening duration of fuel injection solenoids. An

intermediary software component must be selected to use this data and in turn

activate the solenoids via other dedicated fuel injector software components. Both

cases will require fuel injector components.

Injection

Control 1

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Fuel_Injection – On_Off

Test Case

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

Extra

Throttle_Position

Throttle_Pos

No Source

Test Case

OR

Injection
Timing

Calculator

1

Injection_Timing Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Injector_Pulse_Width

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

Throttle_Position

Throttle_Pos

No Source

Test Case
No

Destination

AAPPPPEENNDDIIXX BB

 294

Tester 4: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.25252525 Test Case 3: Tester 4: ATest Case 3: Tester 4: ATest Case 3: Tester 4: ATest Case 3: Tester 4: AUTOMAP MethodUTOMAP MethodUTOMAP MethodUTOMAP Method

Evaluation

The majority of required interfaces in this solution are provided either by software

components within the solution. Throttle_Position as required by Injection Control is

supplied by a user and test case specified system input. An acceleration sensor

software component must be selected to fulfil the interface - Velocity_Change. The

interface EGR airflow requires data from an EGR control software component. If

EGR Control as used in Figure B.18 is selected then the only one extra software

component is needed to fulfil its required interfaces - a coolant temperature sensor

Injection

Control

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Fuel_Injection – On_Off

 Test Case,

User Specified

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

Extra,

User Specified

Throttle_Position

Throttle_Pos

No Source

Test Case,

User Specified

MAP

Sensor
Intake_Manifold_Pressure Get Air Pressure

Air_Pressure

Hardware,
Test Case,

User Specified

Air_Pressure

Crankshaft

Sensor

Crank_Data
Get Crank_Speed

Crankshaft_Speed

Hardware,
Test Case,

User Specified Get Crank_Position

Crankshaft_Position

Crankshaft_Speed

 Crankshaft_Position

Intake
Manifold
Air Mass

Calculator 2

Air_Mass_Flow_Rate Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Air_Mass_Flow_Rate

EGR airflow
Aegr

No Source

Airflow
Volume
Vane

Sensor 2

Get_Air_Volume

Air_Volume

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Get_Air_Temp

Air_Temperature

Hardware,
Test Case,

User Specified

Hardware

Test Case,

User Specified

AAPPPPEENNDDIIXX BB

 295

component. All other required data is present in the solution. Again a fuel injector

software component will need to be selected at some point. In order to meet the

requirements laid down Injection Control I would need to be replaced by a similar

software component such as Injection Timing Calculator which takes into account

lambda corrections to the fuel mix. This has the same interfaces as Injection Control

1 only requiring the addition of a lambda sensor software component.

AAPPPPEENNDDIIXX BB

 296

Tester 5: Manual Method

Fig Fig Fig Fig B.B.B.B.26262626 Test Case 3: Tester 5: Manual MethodTest Case 3: Tester 5: Manual MethodTest Case 3: Tester 5: Manual MethodTest Case 3: Tester 5: Manual Method

Evaluation

This solution is almost identical to the solution presented by Tester 1: Manual

Method. The only difference is the lack of a software component to determine the

intake manifold pressure in this solution. Therefore if the MAP Sensor component is

added then the work which must be carried out on this solution to meet the

requirements from the test case is identical to that outlined for Tester 1: Manual

Method.

Injection

Control

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Fuel_Injection – On_Off

 Test Case,

User Specified

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

Extra

Throttle_Position

Throttle_Pos

No Source

Test Case

Crankshaft

Sensor

Crank_Data
Get Crank_Speed

Crankshaft_Speed

Hardware,

Test Case

Get Crank_Position

Crankshaft_Position

Crankshaft_Speed

 Crankshaft_Position

Air
Temperature

Sensor

SR Air Temperature Get Air Temp

Air_Temperature

Hardware,

Test Case
Air_Temperature

Lambda

Sensor
Lambda_Data Get_Lambda_Reading

Fuel_System - Lambda

Hardware,

Test Case
EGR_Control - Lambda

No

Destination

EGR Control Set_Valve_PosSR Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

EGR_Valve_Pos

Aegr

Hardware,

Test Case

Get_Coolant_Temp

Coolant_Temperature

Velocity_Change

Powertrain – Vehicle_Acceleration

No Source

EGR airflow No

Destination Test Case

Test Case

Test Case,

User Specified

AAPPPPEENNDDIIXX BB

 297

Tester 5: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.27272727 Test Case 3: Tester 5: AUTOMAP MethodTest Case 3: Tester 5: AUTOMAP MethodTest Case 3: Tester 5: AUTOMAP MethodTest Case 3: Tester 5: AUTOMAP Method

Evaluation

This is almost a complete solution. Two required interfaces have not been fulfilled.

The first is Velocity_Change which may be met through the addition of an

acceleration sensor software component. The second, EGR airflow, may be fulfilled

by adding the EGR Control software component. This in turn will require the

addition of a coolant temperature sensor component. The majority of the inputs to

this system are provided by test case inputs. A fuel injector solenoid software

component should also be selected.

Injection
Timing

Calculator

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Test Case,

User Specified

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

User Specified

Throttle_Position

Throttle_Pos

No Source

Lambda_Data

Fuel_System - Lambda

Intake
Manifold
Air Mass

Calculator 2

Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Air_Mass_Flow_Rate

EGR airflow

Aegr

No Source

Air_Mass_Flow_Rate
Test Case,

User Specified

Test Case,

User Specified Fuel_Injection – On_Off

Hardware,
Test Case,

User Specified

Get_Crank_Pos

Crankshaft_Position

Crankshaft
Position
Sensor

Crank_Pos

Crankshaft_Position

Fuel Level

Sensor
Fuel_LevelSR Get_Fuel_Level

Fuel_Level

Hardware Fuel_Level

Test Case

AAPPPPEENNDDIIXX BB

 298

Tester 6: Manual Method

Fig Fig Fig Fig B.B.B.B.28282828 TTTTest Case 3: Tester 6: Manual Methodest Case 3: Tester 6: Manual Methodest Case 3: Tester 6: Manual Methodest Case 3: Tester 6: Manual Method

Evaluation

In this solution all of the software components with the exception of Injection

Control receive their required data via hardware. All of Injector Control’s fulfilled

interfaces have been met by test case inputs rather than by selected software

components. It does have two required interfaces which have not been met. The first,

Air_Mass_Flow_Rate may be fulfilled by a number of software components. These

mainly take data provided as test case inputs or by software components in this

system as their inputs. The most relevant ones also take EGR airflow as an input

which will require further components to be selected. The only software component

whose provided interface does not have a stated destination is Air Temperature

Sensor. This data should be used by a software component which calculates air mass

flow rate. However such an input has been omitted in error from the relevant

components. Note that a fuel injector software component will also need to be

selected.

Velocity_Change

Injection

Control

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Fuel_Injection – On_Off

Test Case

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Powertrain – Vehicle_Acceleration

Extra

Throttle_Position

Throttle_Pos

No Source

Test Case

Air
Temperature

Sensor

SR Air Temperature Get Air Temp

Air_Temperature

Hardware,

Test Case
Air_Temperature

Fuel Level

Sensor
Fuel_LevelSR Get_Fuel_Level

Fuel_Level

Hardware Fuel_Level

No

Destination

Test Case

Get_Coolant_Temp Transmit_Coolant_TempSR

Test Case Coolant_Temp

Engine
Coolant
Sensor 1

Coolant_Temp

Hardware

AAPPPPEENNDDIIXX BB

 299

Tester 6: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.29292929 Test Case 3: Tester 6: AUTOMAP MethodTest Case 3: Tester 6: AUTOMAP MethodTest Case 3: Tester 6: AUTOMAP MethodTest Case 3: Tester 6: AUTOMAP Method

Evaluation

The software component Spark_Plug 1 is not required by this test case and may be

discarded. The majority of the remaining inputs are met by test case or user specified

inputs or by hardware as is the case for Crankshaft Position Sensor. There are two

unfulfilled required interfaces: Air_Mass_Flow_Rate and Velocity_Change. These

may be fulfilled through additional software components as shown in Tester 6:

Manual Method. Note also that as with the manual method, the Injection Control

software component will have to be replaced with ones which take into account

lambda readings and EGR airflow.

Hardware

Velocity_Change

Injection

Control

Set_Injector_Solenoid Crank_Data

Crankshaft_Speed

Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Fuel_Injector_No

Fuel_Injection – On_Off

Test Case

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Powertrain – Vehicle_Acceleration

Extra

Throttle_Position

Throttle_Pos

No Source

Test Case,

User Specified

Hardware,
Test Case,

User Specified

Get_Crank_Pos

Crankshaft_Position

Crankshaft
Position
Sensor

Crank_Pos

Crankshaft_Position

Test Case

Spark_Plug

1

Spark_Plug_On_Command Set_Spark_Plug

Ignition – On_Off

Ignition – On_Off

No Source

AAPPPPEENNDDIIXX BB

 300

Tester 7: Manual Method

Fig Fig Fig Fig B.B.B.B.30303030 Test Case 3: Tester 7: Manual MethodTest Case 3: Tester 7: Manual MethodTest Case 3: Tester 7: Manual MethodTest Case 3: Tester 7: Manual Method

EGR

Monitor

EGR airflow

Aegr

Valve_Pos_Command

EGR_Valve_Pos

Diagnostics_Data_Element

No Source Diagnostics_Stream No

Destination

Test Case

Injection
Timing

Control

Injection_Timing

Injector_Pulse_Width

Crank_Pos

Crankshaft_Position

Fuel_Injector_No

Set_Injector_Solenoid

Fuel_Injection – On_Off

Fuel Level

Sensor
Fuel_LevelSR Get_Fuel_Level

Fuel_Level

Hardware Fuel_Level

Test Case

Test Case Test Case

Extra

Get_Coolant_Temp Transmit_Coolant_Temp_CS

Test Case Coolant_Temp

Engine
Coolant
Sensor

Coolant_Temp

Hardware

Injection
Timing

Calculator

1

Injection_Timing Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Injector_Pulse_Width

Air_Mass_Flow_Rate

Air_Mass_Flow_Rate

Velocity_Change

Powertrain – Vehicle_Acceleration

Throttle_Position

Throttle_Pos

No Source

Test Case

Air
Temperature

Sensor

SR Air Temperature Get Air Temp

Air_Temperature

Hardware,

Test Case
Air_Temperature

Engine
Monitor

System 2

Diagnostics Stream Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

Diagnostics_Data_Element

Velocity_Change

Powertrain – Vehicle_Acceleration

Lambda_Data

Fuel_System - Lambda

Test Case

No Source

No

Destination

No

Destination

AAPPPPEENNDDIIXX BB

 301

Evaluation

Two of the selected software components – Engine Monitor System 2 and EGR

Monitor are not needed for this test case and may be discarded. There are now two

remaining required interfaces which have not been fulfilled. These are

Velocity_Change and Air_Mass_Flow_Rate. As with other solutions

Velocity_Change may be fulfilled through the introduction of an acceleration sensor

software component. The interface Air_Mass_Flow_Rate may be fulfilled using a

software component which calculates this value such as Intake Manifold Air Mass

Calculator 2 and a corresponding MAP sensor component. This should provide a

destination for the Air Temperature Sensor software component’s output. However

as has already been pointed out, a number of components which should take this

information are missing the required interface due to an error during development. In

order to fulfil the requirements for EGR control and lambda corrections to the fuel

mix Injection Timing Calculator 1 would need to be replaced with a number of

components which provide this missing functionality. Finally injector software

components need to be selected at some point during the development cycle.

AAPPPPEENNDDIIXX BB

 302

Tester 7: AUTOMAP Method

Fig Fig Fig Fig B.B.B.B.31313131 Test Case 3: Tester 7: AUTOMAP MethodTest Case 3: Tester 7: AUTOMAP MethodTest Case 3: Tester 7: AUTOMAP MethodTest Case 3: Tester 7: AUTOMAP Method

Evaluation

This solution includes the majority of the sensor and actuator components required to

fulfil the test case. What it is lacking is the central components which will perform

the necessary calculations and hence the main functionality of the test case. Software

Air
Temperature

Sensor

SR Air Temperature Get Air Temp

Air_Temperature

Air_Temperature

No

Destination

Crankshaft

Sensor

Crank_Data
Crankshaft_Speed

Hardware,
Test Case,

User Specified Get Crank_Position

Crankshaft_Position

Crankshaft_Speed

 Crankshaft_Position

EGR Control Set_Valve_PosSR Crank_Data

Crankshaft_Speed

 Crankshaft_Position

Intake_Manifold_Pressure

Inake_Manifold_Pressure

EGR_Valve_Pos

Aegr

Get_Coolant_Temp

Coolant_Temperature

Velocity_Change

Powertrain – Vehicle_Acceleration

No Source

EGR airflow No

Destination Test Case

Lambda

Sensor

Lambda_Data Get_Lambda_Reading

Fuel_System - Lambda

Hardware,

Test Case
EGR_Control - Lambda

Injector

Solenoid
Solenoid_OnOff_Command Set_Injector_Solenoid

Fuel_Injector_No

Fuel_Injection – On_Off

Powertrain – On_Off

Test Case,

User Specified

No Source

Hardware,
Test Case,

User Specified

Get Crank_Speed

Get_Coolant_Temp Transmit_Coolant_Temp_CS

Coolant_Temp

Engine
Coolant
Sensor

Coolant_Temp

Hardware

Fuel Level

Sensor
Fuel_LevelSR Get_Fuel_Level

Fuel_Level

Hardware Fuel_Level

Test Case,

User Specified

No

Destination

Hardware,
Test Case,

User Specified

Hardware,
Test Case,

User Specified

Test Case,

User Specified

AAPPPPEENNDDIIXX BB

 303

components need to be introduced to calculate the air mass flow rate and from this

determine the injection timing e.g. Intake Manifold Air Mass Calculator 2 and

Injection Timing Calculator. The former will require a MAP sensor software

component or some equivalent. If these are added then all of the unfulfilled

interfaces will be met.

 AAPPPPEENNDDIIXX CC

 304

.C.

Appendix C: Source Code

 BBIIBBLLIIOOGGRRAAPPHHYY

 305

BBIIBBLLIIOOGGRRAAPPHHYY

CAN in Automation. (2001-2006a). "Controller Area Network (CAN) - Protocol."

CAN in Automation. (2001-2006b). "Controller Area Network (CAN), an overview."

Ford, N. J. and J. M. Ford (1993). "Introducing Formal Methods a less mathematical
approach". London, Ellis Horwood Limited.

Garlan, D. (2000). "Software Architecture: a Roadmap". 22nd International
Conference on Software Engineering, ACM.

Hirschlieb, G. C., G. Schiller and S. Stottler (1999). "Automotive Electronics
Handbook", McGraw-Hill.

Keepence, B. and M. Mannion (1999). "Using Patterns to Model Variability in
Product Families." IEEE Software 16(4): p.102-108.

Mellarkod, V., R. Appan, D. R. Jones and K. Sherif (2007). "A multi-level analysis
of factors affecting software developers’intention to reuse software assets: An
empirical investigation." Information & Management 44(7): p.613-625.

Philippow, I. and M. Riebisch (2001). "Systematic Definition of Reusable
Architectures". Eighth Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS 01), 2001.

Rincón, F., F. Moya and J. Barba (2005). "Model Reuse through Hardware Design
Patterns". Design, Automation and Test in Europe, IEEE.

