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Abstract.

 

Age-related macular degeneration (AMD) is the leading cause of blind registration in the devel-
oped world, and yet its pathogenesis remains poorly understood. Oxidative stress, which refers to cellular
damage caused by reactive oxygen intermediates (ROI), has been implicated in many disease processes,
especially age-related disorders. ROIs include free radicals, hydrogen peroxide, and singlet oxygen, and they
are often the byproducts of oxygen metabolism. The retina is particularly susceptible to oxidative stress
because of its high consumption of oxygen, its high proportion of polyunsaturated fatty acids, and its expo-
sure to visible light. In vitro studies have consistently shown that photochemical retinal injury is attributable
to oxidative stress and that the antioxidant vitamins A, C, and E protect against this type of injury. Further-
more, there is strong evidence suggesting that lipofuscin is derived, at least in part, from oxidatively dam-
aged photoreceptor outer segments and that it is itself a photoreactive substance. However, the relationships
between dietary and serum levels of the antioxidant vitamins and age-related macular disease are less clear,
although a protective effect of high plasma concentrations of 

 

a

 

-tocopherol has been convincingly demon-
strated. Macular pigment is also believed to limit retinal oxidative damage by absorbing incoming blue light
and/or quenching ROIs. Many putative risk-factors for AMD have been linked to a lack of macular pigment,
including female gender, lens density, tobacco use, light iris color, and reduced visual sensitivity. Moreover,
the Eye Disease Case-Control Study found that high plasma levels of lutein and zeaxanthin were associated
with reduced risk of neovascular AMD. The concept that AMD can be attributed to cumulative oxidative
stress is enticing, but remains unproven. With a view to reducing oxidative damage, the effect of nutritional
antioxidant supplements on the onset and natural course of age-related macular disease is currently being
evaluated. (

 

Surv Ophthalmol 45

 

:115–134, 2000. © 2000 by Elsevier Science Inc. All rights reserved.)
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Age-related macular degeneration (AMD) is the
leading cause of blind registration in the western
world,
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 and its prevalence is likely to rise as a conse-
quence of increasing longevity.
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 There is a general
consensus that cumulative oxidative damage is re-
sponsible for aging, and may, therefore, play an im-
portant role in the pathogenesis of AMD. In this arti-
cle, we review the literature germane to oxidative

processes in the retina and examine the evidence for
a causal link between oxidative stress and age-related
macular degeneration.

 

I. Classification and Grading of
Age-Related Macular Degeneration

 

We have adopted and modified the International
Classification and Grading System for Age-Related
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Maculopathy and Age-Related Macular Degenera-
tion in order to avoid confusing terminology.
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 Age-
related macular degeneration may be early or late.
Early AMD is characterized by any of the following
findings in the macular area: soft drusen; choroidal
or outer retinal hyperpigmentation associated with
drusen; and depigmentation of the retinal pigment
epithelium (RPE). Late AMD may be atrophic or
neovascular. Atrophic late AMD refers to any sharply
demarcated area of hypopigmentation, depigmenta-
tion, or apparent absence of the RPE in the macular
area. Neovascular late AMD describes any of the fol-
lowing findings in the macular area: RPE detach-
ment; choroidal neovascularization; scar/glial tissue,
whether epiretinal, intraretinal or sub-RPE; and
macular hard exudates unrelated to any other reti-
nal vascular disease.
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 Although there is no visual
acuity component to this classification system, early
AMD is typically associated with a Snellen acuity of

20/30 or better, whereas late AMD has a profound
negative impact on central vision.

 

II. Basic Biochemistry

 

A. OXIDATIVE PROCESSES

 

Chemically, oxidation refers to the removal of
electrons and reduction refers to the gain of electrons.
Animals release energy from dietary carbohydrates,
proteins, and lipids by oxidizing them to CO

 

2

 

 and
H

 

2

 

O. A series of reactions known as the tricarboxylic
acid (TCA) cycle is responsible for most of the oxida-
tion of fuels, and the energy yielded is conserved in the
form of the reduced electron-accepting coenzymes,
NADH and FAD(2H). The electrons of these coen-
zymes can be used to reduce oxygen (O

 

2

 

) to H

 

2

 

O via
the electron transport chain, and this reaction releases
energy for the conversion of adenosine diphosphate
and Pi to adenosine triphosphate (ATP) in a process
known as oxidative phosphorylation. Oxidative
phosphorylation occurs in the mitochondrion and is
catalyzed by ATP synthase. The electron transport
chain accounts for approximately 90% of our total
O

 

2

 

 consumption, the remainder being utilized by re-
actions involving oxidases or oxygenases.

 

B. REACTIVE OXYGEN INTERMEDIATES

 

Reactive oxygen intermediates

 

 (ROI) is an umbrella
term used to describe free radicals, hydrogen perox-
ide, or singlet oxygen. Free radicals are molecules
that contain one or more unpaired electrons in their
outer orbits,
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 and examples include the superoxide
anion (O

 

2
-

 

•), the hydroxyl free radical (OH•), the
hydroperoxyl radicals (HO

 

2

 

•) and the lipid peroxyl
radicals
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 (Table 1). Singlet oxygen (

 

1

 

O

 

2

 

) and hydro-
gen peroxide (H

 

2

 

O

 

2

 

) contain their full complement
of electrons, but in an unstable or reactive state.

In the cell, ROI continually “leak” from the active
sites of the enzymes involved in oxidative processes
by inadvertently interacting with O

 

2

 

 or other com-
pounds. Stimuli known to increase the production
of ROI include irradiation, aging, inflammation,
raised partial pressure of O

 

2

 

, air pollutants (O

 

3

 

,
NO

 

2

 

), cigarette smoke, and reperfusion injury.

 

20,135

 

TABLE 1

 

Reactive Oxygen Intermediates

 

Species Comment

Superoxide anion (O

 

2
-

 

) Produced by electron transport chain and at other sites
Hydrogen peroxide (H

 

2

 

O

 

2

 

) Contains no unpaired electrons; can generate a free radical through the Fenton reaction
Hydroxyl radical (OH

 

-

 

) The most reactive free radical
Lipid peroxyl radical 

(ROO•) An organic free radical
Singlet oxygen (

 

1

 

O

 

2

 

) O

 

2

 

 with antiparallel spins; damages molecules as it converts back to O

 

2

 

R 

 

5

 

 lipid; • 

 

5

 

 unpaired single electron in the outer orbital

Abbreviations Used in This Review
AMD: Age-related macular degeneration
ARM: Age-related maculopathy
ATP: Adenosine triphosphate
BDES: Beaver Dam Eye Study
BLSA: Baltimore Longitudinal Study of Aging
BMES: Blue Mountain Eye Study
CML: Carboxymethyl lysine
DHA: Docosahexanoic acid
EDCC: Eye Disease Case Control
NADH: reduced form of nicotinamide-
adenine dinucleotide
NEI: National Eye Institute
NHANES: National Health and Nutrition
Examination Survey
POLA: Pathologies Ooculaires Liees a l’age
PUFA: polyunsaturated fatty acids
Px: Peroxidase
ROI: Reactive oxygen intermediates
RPE: Retinal pigment epithelium
SOD: Superoxide dismutase
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In order to achieve a stable state, free radicals ex-
tract electrons from other molecules, which are
themselves rendered unstable by this interaction,
and a cytotoxic oxidative chain rection results. Hydro-
gen peroxide, although containing no unpaired elec-
trons, can generate free radicals through the Fenton
reaction (Fig. 1), and singlet oxygen can damage mol-
ecules as it converts back to normal oxygen.

 

C. REACTIVE OXYGEN INTERMEDIATES AND 
CELLULAR DAMAGE

 

Carbohydrates, membrane lipids, proteins, and
nucleic acids are all vulnerable to damage caused by
reactive oxygen species, and this damage is believed
to contribute to the pathogenesis of many diseases
(Table 2).

 

48,81

 

1. Lipids

 

The formation of lipid free radicals and lipid per-
oxides, known as free radical auto-oxidation, is not
subject to the kinetic barriers of spin restriction,
which normally retard the oxidation of organic mol-
ecules. Polyunsaturated fatty acids (PUFAs) are par-
ticularly susceptible to free radical damage because
their conjugated double bonds are convenient
sources of hydrogen atoms, which contain one elec-
tron. The lipid radical then combines with oxygen to
form lipid peroxyl radicals and lipid peroxides,
which can achieve a steady state only by stealing elec-
trons from other polyunsaturated fatty acids, thus
creating a cytotoxic cascade of reactions that con-
sume valuable PUFAs and produce damaged mole-
cules. Degradation of the lipid eventually occurs,

forming products such as malondialdehyde, which is
found in the blood and urine and which can be used
as a marker of free radical damage.

 

2. Protein

 

Fragmentation, cross-linking, and aggregation of
proteins, as well as enhanced vulnerability to proteol-
ysis, can result from oxidation of their amino acids.

 

3. Nucleic Acids

 

The oxidized bases of DNA arising from interac-
tions with ROI contribute significantly to aging and
age-related disorders.

 

6

 

D. DEFENSE MECHANISMS AGAINST 
OXIDATIVE STRESS

 

Mechanisms used to protect against the effects of
oxygen toxicity include cellular compartmentaliza-
tion, repair, enzymantic removal of the ROI, and
‘scavenging’ of free radicals by vitamins and other
compounds.
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1. Compartmentalization

 

Compartmentalization refers to the separation of
ROI from cellular components that are susceptible
to oxidative damage. For example, enzymes involved
in the generation of H

 

2

 

O

 

2

 

 are found in peroxisomes
which have a high content of antioxidant enzymes
and which utilize the H

 

2

 

O

 

2

 

 for other oxidative reac-
tions within the same organelle.

 

2. Repair

 

DNA repair involves replacing the distorted re-
gion of the helix by action of a DNA polymerase, fol-
lowed by closure of the break by action of a ligase.
Damage to a single base is repaired using DNA gly-
cosylases. Oxidized amino acids of proteins are re-
paired by protein degradation and resynthesis of
new proteins, and mechanisms to remove oxidized
fatty acids from membrane lipids also exist.

 

3. Antioxidant Enzymes

 

There are several enzymes with antioxidant activ-
ity, and these include superoxide dismutase, cata-
lase, and glutathione peroxidase (Fig. 2).

 

4. Antioxidant Vitamins

 

Vitamins C, E, and certain carotenoids can react
directly and nonenzymatically with ROI, yielding
harmless products and, thereby, terminating the
free radical chain reaction.

 

5. Other Antioxidant Compounds

 

Other substances involved in the retinal antioxi-
dant defense system include metallationein, mela-
nin, and glutathione.

Fig. 1. Simplified version of the Fenton reaction. The hy-
droxyl radical is generated from hydrogen peroxide by the
transfer of single electrons. OH• 5 hydroxyl radical. H2O2 5
hydrogen peroxide.

 

TABLE 2

 

Some of the Clinical Conditions Associated 
with Oxidative Injury

 

Ischemia/reperfusion injury
Atheroma
Cervical cancer
Diabetes
Chronic obstructive airway disease
Aging
Retinopathy of prematurity
Parkinson’s disease
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III. Generation of Reactive Oxygen 
Intermediates in the Retina

 

In vivo, ROIs may occur as the byproducts of cellu-
lar metabolism

 

123

 

 or as the result of photochemical
reactions.
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 The retina is an ideal environment for
the generation of reactive oxygen species for several
reasons. First, oxygen consumption by the retina is
much greater than by any other tissue.
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 Second,
the retina is subject to high levels of cumulative irra-
diation. Third, photoreceptor outer segment mem-
branes are rich in polyunsaturated fatty acids, which
are readily oxidized and which can initiate a cyto-
toxic chain-reaction.

 

14

 

 Fourth, the neurosensory ret-
ina and the retinal pigment epithelium (RPE) con-
tain an abundance of photosensitizers.

 

55,75,180

 

 Finally,
the process of phagocytosis by the RPE is itself an ox-
idative stress and results in the generation of ROI.
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A. RETINAL IRRADIATION

 

Photochemical retinal injury was first described by
Ham et al, who reported the histopathologic find-
ings of 20 rhesus monkey retinas that had been ex-
posed to blue light (441 nm) for 1000 seconds.

 

83

 

 It
was noted that short-wavelength light resulted in
damage to the photoreceptor outer segments, cellu-
lar proliferation, and mitotic figures in the RPE and

choroid, and hypopigmentation of the RPE, which
resembled atrophic changes seen in AMD.
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 The
sensitivity of the retina to light damage as a function
of wavelength was then studied by the same investi-
gators, who induced retinal injury in rhesus mon-
keys using eight different monochromatic wave-
lengths. It was found that the power required to
cause photic damage was 70 to 1000 times lower for
blue light (441.6 nm) than for the infrared wave-
lengths (1064 nm), depending on the duration of
exposure (1 to 1000 seconds).

In 1983, Wiegand et al published their findings in
albino rats exposed to constant illumination.
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 In
brief, the main effect of light exposure was selective
degeneration of photoreceptors, a reduction of the
long-chain polyunsaturated fatty acid 22:6

 

v

 

3 and an
increase in the levels of lipid conjugated dienes.
Both the loss of PUFAs and the increase in conju-
gated dienes, an accepted measure of lipid hydro-
peroxides,

 

22

 

 provide compelling evidence that lipid
peroxidation plays a role in retinal light damage.

Wu et al have recently confirmed that the mecha-
nism of blue light-induced cell death is apoptosis,

 

228

 

and Organisciak et al have demonstrated that retinal
light damage induces the expression of the antioxida-
tive stress protein heme oxygenase-1 (HO-1).

 

154

 

 In ad-

Fig. 2. The roles of key antioxidant enzymes in quenching hydrogen peroxide and the superoxide radical. The essential
nutrient cofactors of the enzymes are indicated in brackets. 2O2

-• 5 superoxide radical. H2O2 5 hydrogen peroxide.
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dition, photoreceptor loss is dramatically reduced by
administration of a synthetic antioxidant agent. Again,
these observations are consistent with the putative in-
volvement of oxidative stress in retinal light damage.
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In 1990, Lam et al performed rhodopsin measure-
ments and morphologic studies on 12 albino rats ex-
posed to continuous illumination that ranged in
wavelength from 490 to 580 nm after receiving intra-
peritoneal injections of dimethylthiourea, an anti-
oxidant that scavenges hydrogen peroxide and the
hydroxyl radical.

 

43,69,125

 

 It was shown that dimethylth-
iourea-treated animals had significantly better pres-
ervation of photoreceptor nuclei and significantly
higher levels of rhodopsin than control animals, in-
dicating that the hydroxyl radical and hydrogen per-
oxide play an important role in mediating retinal
photochemical damage. In 1999, these findings were
corroborated by Ranchon et al, who also observed
that the natural antioxidant 

 

Ginkgo biloba

 

, which is
known to scavenge superoxide, hydroxyl, and peroxyl
radicals

 

76,137,167

 

 and to inhibit the production of ROIs,

 

168

 

protected the retina from light-induced damage.

 

172

 

B. POLYUNSATURATED FATTY ACIDS

 

The photoreceptor membranes of both rods and
cones contain a lipid bilayer that provides a stable
matrix that is passively permeable to ions, thereby
accommodating subcellular compartmentalization
and the stabilization of integral membrane proteins
such as rhodopsin. Polyunsaturated fatty acids ac-
count for about 50% of the lipid bilayer of rod outer
segment membranes, and proteins make up the re-
maining 50%. Docosahexanoic acid (DHA) (22:6

 

v

 

-
3), the most highly polyunsaturated fatty acid occur-
ring in nature, makes up approximately 50% of the
vertebrate rod photoreceptor phospholipids.
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 This
very high proportion of long-chain PUFAs found in
all phospholipid classes is a feature unique to retinal
lipids.

Docosahexanoic acid and its precursor, the essen-
tial fatty acid 

 

a

 

-linoleic acid, are entirely of dietary
origin. As DHA contains six double bonds, and as
the susceptibility of unsaturated fatty acids to oxida-
tion correlates directly with the number of double
bonds,

 

227

 

 the retina is inherently susceptible to lipid
peroxidation. Lipid peroxidation of membrane PU-
FAs results in loss of membrane function and struc-
tural integrity.

 

7,9

 

The susceptibility of the human retina to lipid
peroxidation is region- and age-dependent. De La
Paz and Anderson compared in vitro lipid peroxida-
tion of macular and peripheral retina in 15 human
cadaver eyes. It was found that the susceptibility of
the posterior pole retina to lipid peroxidation was
positively related to age (r

 

2

 

 

 

5

 

 0.537), but no such re-
lationship was noted for peripheral retina.
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 Further,

lower levels of DHA have been reported in the hu-
man macular region compared with the peripheral
retina, suggesting that the macula is faced with a
greater oxidant challenge than peripheral tissue.

 

212

 

It appears, therefore, that the ability to present an an-
tioxidant defense at the macula, where it is most
needed, diminishes with increasing age.

The susceptibility of rod outer segment mem-
branes to lipid peroxidation can be altered by dietary
modification. Bush et al reported on male rats that
were reared in a cyclic (12 hr/12 hr) light/dark envi-
ronment and fed a diet deficient in DHA and 

 

a

 

-linoleic
acid.
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 Retinal DHA levels were 65–75% lower in ani-
mals with restricted diets compared with control ani-
mals. DHA-deficient rats exhibited significantly less rod
outer segment membrane disruptions, light-induced
disk-shedding, and loss of rhodopsin, as compared
with control animals. In a more recent study, Orga-
nisciak et al confirmed that a diet deficient in linoleic
acid protects against retinal light damage in rats.
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C. RETINAL CHROMOPHORES

 

Chromophores, or photosensitizers, are mole-
cules that absorb light to produce a chemical reac-
tion that would not occur in their absence. Photo-
chemical damage may be defined as injury arising
from absorption of UV and visible light by a chro-
mophore, which results in an electronic transition of
the substrate to the excited state.

 

146

 

 The retinal chro-
mophores include rhodopsin, melanin, lipofuscin,
and the mitochondrial respiratory enzymes, such as
cytochrome c oxidase.

 

1. Rhodopsin

 

It has been shown that light-induced rod cell de-
generation in the rat is rhodopsin-mediated, and
that the severity of injury is related to the extent of
rhodopsin bleaching and the pre-exposure rhodop-
sin content.

 

157,174,175

 

 The oxidative nature of the
rhodopsin-mediated light damage is supported by
the findings of Organisciak et al, who have shown
that augmented retinal antioxidant defenses can en-
hance rhodopsin preservation following exposure to
visible light.

 

153,156,158

 

 Furthermore, retinal photic in-
jury associated with loss of rhodopsin induces ex-
pression of the antioxidative stress protein 

 

heme oxy-
genase and can be ameliorated by administration of
dimethylthiourea.154

2. Lipofuscin

Lipofuscin is a lipid-protein aggregate that auto-
fluoresces when excited with short wavelength light.
It occurs within the lysosomes of a variety of meta-
bolically active post-mitotic cells of neuronal and
non-neuronal origin. Because it accumulates with
age, lipofuscin is referred to as an “age pigment,”
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and is considered a marker of cellular senescence.
Furthermore, its presence correlates with a variety of
age-related diseases.

In the RPE, lipofuscin granules are typically con-
centrated around the nucleus in the basal half of the
cell. RPE cell lipofuscin is contained within granules of
relatively uniform size,64 and Wing et al have demon-
strated a progressive accumulation of these granules
with increasing age and noted that their concentra-
tion peaks in the posterior pole.226 However, a focal
reduction in RPE lipofuscin concentration at the
fovea has been consistently demonstrated.220,226 Unlike
the lipofuscin of most tissues, which is derived from
the incomplete autophagic degradation of spent in-
tracellular organelles, RPE lipofuscin is also derived
from phagocytosed photoreceptor outer segments.113

Thus, RPE lipofuscin is likely to be both unique and
heterogenous. Although its composition remains
largely unknown, some lipids and the Schiff base reac-
tion product N-retinylidene-N-retinylethanolamine
(A2-E) have been identified.61

There is a growing body of evidence indicating
that lipofuscin compromises RPE cellular function,
and histopathological studies have demonstrated an
association between high levels of lipofuscin and de-
generation of RPE cells and the adjacent photore-
ceptors.56 To our knowledge, three possible mechan-
sims exist whereby lipofuscin may disrupt RPE cellular
activities. First, metabolic processes may fail simply
because of the reduction in functional cytoplasmic
space and distortion of cellular architecture that results
from the presence of intracellular lipofuscin.230,231

Second, lipofuscin may actually induce oxidative dam-
age of surrounding tissues, as it acts as a photosensitizer
for generation of reactive oxygen intermediates.21,75

And third, RPE lysosomal degradative functions are in-
hibited by N-retinylidine-N-retinylethanolamine, thus
limiting the cell’s capacity to digest intra- and extra-
cellular material.100 The current evidence supports the
latter two options either alone or in combination.

Blue light-induced generation of reactive oxygen
intermediates by lipofuscin has been demonstrated
in vitro by Rozanowska et al.180 First, these investiga-
tors evaluated blue light photoreactivity in human
RPE cells and found a marked age-related increase
in the rate of photo-dependent oxygen uptake, and
demonstrated that the induced O2 uptake was almost
six times faster for lipofuscin (0.547 6 0.110 mM/s)
than for melanin (0.095 6 0.022 mM/s). Next, the
aerobic photoactivation of lipofuscin was shown to
yield singlet oxygen, the superoxide anion, hydrogen
peroxide, and lipid hydroperoxides. These findings
established lipofuscin as the major chromophore of
the RPE, and confirmed that aerobic photoactiva-
tion of lipofuscin forms several potentially cytotoxic
ROIs.180 Further study has revealed that the lipofuscin-

mediated generation of ROIs in response to irradia-
tion is wavelength-dependent, being greatest for the
blue region of the visible spectrum.181

This photoinducible free radical generation by lipo-
fuscin has been shown to result in lipid peroxidation
and enzyme inactivation,216 as well as RPE cellular dys-
function.47 A2-E is a lysosomotropic agent that has the
capacity to compromise both lysosomal function and
integrity. Moreover, it is also capable of photoinducible
generation of ROI, albeit to a lesser extent than RPE li-
pofuscin. Thus, it is probable that both mechanisms
play a part in RPE dysfunction through lysosomal dam-
age. To what extent these changes are implicated in
the pathogenesis of AMD has yet to be determined.

3. Melanin

In an apparent contradiction, both photoprotective
and phototoxic functions have been attributed to ocu-
lar melanin.184 However, there is a general consensus
that under typical in vivo conditions, melanin-medi-
ated photooxidation is relatively unimportant.170,180,184

4. Cytochrome c Oxidase

Cytochrome c oxidase is an important mitochon-
drial enzyme involved in oxidative phosphoryla-
tion.27 The absorbance of this enzyme varies accord-
ing to its redox status,149 and has a peak absorption
of 440 nm in its reduced form.134 It has been postu-
lated that blue light-induced retinal damage is medi-
ated by mitochondrial respiratory enzymes.170,171

This hypothesis is supported by the observed reduc-
tion in the RPE content of cytochrome c oxidase
content following exposure to blue light.32 However,
if cytochrome c oxidase is a major retinal chro-
mophore, it is surprising that photochemical dam-
age of the retina is not associated with gross struc-
tural alterations in the mitochondrial-rich ellipsoid
regions of the photoreceptor inner segments.

5. Blood-borne Photosensitizers

Protoporphyrin IX (PP IX) is a precursor of he-
moglobin found in erythrocytes and plasma that
produces singlet oxygen and the superoxide anion
when irradiated with blue light.79 The authors postu-
lated, therefore, that retinal damage seen in AMD
may be induced by reactive oxygen intermediates
generated by blood-borne photosensitizers of the
highly vascular choriocapillaris. An accelerated pat-
tern of age-related changes in Bruch’s membrane in
protoporphyric mice exposed to blue light has since
been demonstrated.78 To our knowledge, this line of
enquiry has not been pursued further.

D. RESPIRATORY BURST

ROIs are generated during phagocytosis, and RPE
phagocytosis of photoreceptor outer segments has
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been shown to increase extracellular H2O2 production
ninefold.205 Furthermore, significantly greater amounts
of catalase and metallothionein, and gene expression
of these antioxidant substances, have been observed
on exposure of cultured RPE cells to bovine photore-
ceptor outer segments or to H2O2, as compared to
control. In other words, RPE phagocytosis of photore-
ceptor outer segments is an oxidative stress, and H2O2

is probably the ROI involved. As phagocytosis is a
primary function of the RPE, it is possible that it plays
a role in the pathogenesis of AMD.

IV. Oxidative Stress and Age-Related 
Macular Degeneration: The Evidence

In this section, we examine the evidence in sup-
port of the view that oxidative stress contributes to
the development of AMD. First, we discuss the rela-
tionship between oxidative damage and the process
of aging. Next, we review the literature germane to
antioxidant status and AMD. Finally, we explore the
relationships between pro-oxidants and AMD.

A. OXIDATIVE STRESS AND AGING

Aging has been defined as “ the progressive accu-
mulation of changes with time that are associated
with or responsible for the ever-increasing suscepti-
bility to disease and death which accompanies ad-
vancing age.”95 The free radical theory of aging and
the evolutionary theory of aging are of particular rel-
evance to our discussion.

1. The Free Radical Theory of Aging

The free radical theory of aging proposes that aging
and age-related disorders are the result of cumulative
damage arising from reactions involving ROIs. This
theory is particularly enticing, as it explains many age-
related phenomena, such as the relationship between
longevity and basal metabolic rate, the clustering of
degenerative disorders in the end-stages of life, the
beneficial effect of caloric restriction on life-span
and the greater longevity of females.95 Age-related
oxidative damage has been demonstrated in collagen,
elastin, mucopolysaccharides and nuclear and mito-
chondrial DNA, and lipid peroxidation has been
shown to contribute to lipofuscinogenesis.39,124,143,203

Furthermore, there is an age-related rise in systemic
oxidant load, and age-related morbidity is associated
with low antioxidant defenses.109,122,164,179

2. The Evolutionary Theory of Aging

The evolutionary theory of aging proposes that there
is a decline in the force of natural selection with in-
creasing age, and that we may have evolved with genes
which promote senescence once we have passed our
period of procreation.84 In other words, we do not
eliminate genes that have a detrimental effect in later

life if they have a beneficial effect, or no effect, in early
life. The genetic basis of longevity has been dramati-
cally demonstrated in C. elegans, where a mutation of
the age-1 locus results in a 70% increase in mean life-
span and a 110% increase in maximum life span.72,73

The free radical and evolutionary theories of aging
are compatible. Transgenic flies (Drosophilia melano-
gaster) with simultaneous overexpression of the cop-
per-zinc superoxide dismutase (Cu/Zn SOD) and cat-
alase genes, the main defense systems against oxidative
stress, exhibited as much as one-third extension of life-
span, a prolonged mortality rate doubling time and de-
layed loss of physical performance, as compared with
control flies.159 These findings represented the first di-
rect evidence of a causal link between oxidative stress
and aging and age-related disorders.

3. Aging and Ocular Senescence

The eye is not an isolated organ, but rather one of
many systems subject to the processes of aging. It is
known that mortality, blindness, and other condi-
tions tend to increase exponentially with age.217 It
does not follow, however, that morbidity is the inevi-
table result of normal aging, as the former is spo-
radic, whereas the latter is universal.

If the free radical theory of aging applies to the
eye, an altered antioxidant/oxidant balance should be
evident for age-related ocular diseases, such as AMD,
cataract and glaucoma.218 The Lens Opacities Case-
Control Study found multivitamin supplements
and/or higher levels of dietary antioxidant index to
be protective for all types of cataract,129,130 and higher
plasma levels of vitamin E were inversely related to
risk of nuclear opacities in the Longitudinal Study of
Cataract.128 Oxidative damage has also been hypothe-
sized to play a role in the pathogenesis of glaucoma,
as the trabecular meshwork is exposed to high levels
of oxidative stress arising from aerobic metabolism,
high aqueous concentrations of hydrogen peroxide
and photochemical reactions in the anterior segment.
A recent study has demonstrated a decline in the
specific activity of human trabecular superoxide dis-
mutase, but not catalase, with increasing age, thus
supporting the view that oxidative stress may be etio-
logically involved in primary open angle glaucoma.50

B. ANTIOXIDANT STATUS AND AMD

Much of the research into the relationship be-
tween oxidative stress and AMD has focused on the
the antioxidant status of subjects with and without
the disease, and the limitations of these studies war-
rant comment. The cross-sectional epidemiologic
studies investigating dietary intake of antioxidants
do not lend themselves to consistent and reliable
data because of bias and confounding.33,197 Sources
of bias include selection of subjects and recall bias
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with respect to nutritional intake. Confounding re-
fers to the mixing of effects, which results in mask-
ing of true associations. For example, the National
Health and Nutrition Examination Survey (NHANES)
finding that a diet rich in fruit and vegetables pro-
tects against age-related macular disease may simply
reflect the fact that people with better diets take bet-
ter care of themselves.77 In other words, the observa-
tional nature of the epidemiological studies does not
allow us to establish whether or not the observed as-
sociation is causative. Furthermore, evaluation of
dietary intake by questionnaire takes no account of
the digestive and absorptive idiosyncracies of the
individual or of tissue availability of the nutrient
under investigation. Serum levels of antioxidant
substances of dietary origin are also of limited value,
because they reflect recent nutritional intake only,
and this is especially important for substances that
have a low biological turnover, such as macular
pigment.

With full appreciation of these limitations, each
antioxidant will be discussed in relation to AMD
and/or retinal light damage. In order to present a
balanced view, we take care to refer to all studies that
have investigated the antioxidant under discussion.

1. Vitamin C

Ascorbate is the most effective aqueous-phase anti-
oxidant in human blood,71 and it is thought to be es-
sential for protection against disease processes and
degenerative disorders caused by oxidative stress.95

a. Vitamin C and Light Damage

Organisciak et al injected cyclic light and dark–
reared weanling albino rats with L-ascorbic acid,
ascorbate derivatives, or a water vehicle (control
animals), and then exposed the animals to intense
visible light.158 In terms of pre-exposure rhodopsin
levels, L-ascorbate, Na-ascorbate, and dehydroascor-
bate were found to protect cyclic light and dark–
reared rats against rod cell loss (57–62% versus 38%
of control) in a dose-dependent manner, but no
such protective effect was found for D-ascorbate.
Further, vitamin C supplements resulted in raised
retinal ascorbate levels and were protective only if
given prior to light exposure. And finally, ascorbate
supplements were associated with preservation of
rod outer segement docosahexaenoic acid, suggest-
ing that it is the antioxidant properties of the vita-
min C that account for its protective effect.158

b. Dietary Vitamin C and AMD

The NHANES reported that a diet containing
high quantities of foodstuffs rich in vitamins A and C
was negatively associated with AMD.77 The Eye Dis-
ease Case Control Study (EDCC) and the Beaver

Dam Eye Study (BDES) also reported a protective ef-
fect associated with high intake of oral vitamin C,
but the association was not statistically significant in
these latter studies.187,213 The Blue Mountains Eye
Study (BMES), however, found no such protective
effect for dietary ascorbate.192 The inconsistency of
the findings suggests that the putative protective ef-
fect of dietary ascorbate may be too weak to identify
in the sample sizes reported, and such an effect can-
not be dismissed until larger studies are undertaken.

c. Plasma Vitamin C and AMD

The EDCC Study reported that low plasma levels
of vitamin C were associated with increased risk of
AMD, but high levels were not found to be protec-
tive. Further, an antioxidant index, comprising
plasma carotenoids, selenium, ascorbate, and vita-
min E, was inversely related to AMD.1 The Baltimore
Longitudinal Study of Aging (BLSA) reported a
nonsignificant protective effect associated with the
highest quintile of plasma vitamin C levels versus the
lowest quintile (odds ratio: 0.55), and observed a sig-
nificant protective effect for an antioxidant index
which included a-tocopherol, ascorbate, and b-caro-
tene.222 These findings were not reproduced in the
POLA Study, a population-based investigation of an-
tioxidant status and age-related ocular disease
among 2157 subjects aged 60 years or older, which
failed to identify an inverse association between
plasma ascorbate and AMD.54

2. Vitamin E

Vitamin E is the major chain-breaking antioxidant
of cellular membranes.35,161,162 It exists in four com-
mon forms, including a-tocopherol, b-tocopherol,
g-tocopherol, and d-tocopherol.57 Of these, a-toco-
pherol is the most effective scavenger of free
radicals25 and the most predominant tocopherol in
human retina and plasma.5,93 Selenium, a micron-
utrient, complements the antioxidant function of
vitamin E.35

a. Vitamin E and Retinal Light Damage

The retina contains high quantities of a-toco-
pherol (in the rod outer segments) and RPE,74,101

and the concentrations within these tissues are very
sensitive to dietary intake of the vitamin.198

Organisciak et al found that the RPE content of vi-
tamin E, which was 4 to 7 times that of the neural ret-
ina, rose with increasing age, and speculated that this
rise was in response to increasing oxidative stress.152 It
has also been noted that the central neural retina
closely regulates its vitamin E content,41 and analogies
with the carotenoids of macular pigment are inescap-
able.94,193,194 Interestingly, carotenoids and a-toco-
pherol can act synergistically as radical scavengers.163
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The concentration of vitamin E in the rhesus
monkey retina-RPE-choroid reaches a maximum at
the fovea and at eccentricities of 1.0 mm or more
and declines to a minimum near the foveal crest.40 It
has been postulated that this minimum a-tocopherol
concentration in the region of the foveal crest results
in an area of vulnerability, thus accounting for the fre-
quent occurrence of atrophic AMD at this site.183

Evidence in support of the concept that vitamin E
protects against retinal oxidative damage includes:
1) vitamin E deficiency results in retinal degenera-
tion,96 excessive RPE lipofuscin,96 and a decrease in
the PUFA content of rod outer segments and the
RPE;63 2) in vitro experiments have shown that bo-
vine rod outer segments challenged with oxygen ex-
hibit substantial destruction of membrane structure,
and that this oxidative damage can be limited by
high levels of endogenous vitamin E;62 and 3) dark-
rearing, which results in increased vulnerability to
retinal light damage,15 is associated with reduced
ascorbate and vitamin E levels in the rat retina.166 It
should be noted, however, that some researchers have
failed to demonstrate that vitamin E and selenium pro-
tect against photochemical damage of the retina.111,200

In brief, if retinal vitamin E does protect against
photochemical damage, its role is likely to be a com-
plex one. Further study, which takes into account
the interrelationships between vitamin E and other
retinal antioxidants, such as ascorbate, lutein, and
zeaxanthin, as well as vitamin A, is indicated.

b. Dietary Vitamin E and AMD

Dietary intake of vitamin E is very difficult to esti-
mate, because the long-term consumption of oils, in
which the a-tocopherol concentration varies consid-
erably, is difficult to determine by questionnaire. For
example, people frequently change their brand of
cooking oil, and are unaware of the type used in the
processed and ready-made foods they purchase. Fur-
ther, the bioavailability of vitamin E in supplements
varies considerably.4 Future studies should endeavor
to minimize the impact of such measurement error
by including large numbers of subjects, and they
should address other important issues, such as the
source of the vitamin compound (a-tocopherol is
more commonly found in supplements than g-toco-
pherol), interactions between the various tocopherols,93

and consumption of polyunsaturated fatty acids.44

To our knowledge, only the BDES and the EDCC
study have investigated the relationship between di-
etary intake of vitamin E and AMD. The BDES re-
ported a significantly increased risk of large macular
drusen associated with the lowest versus highest
quintile of past dietary intake of vitamin E (odds ra-
tio: 0.4; P 5 0.04).213 However, the significance of

this relationship was lost if total vitamin E intake was
considered (diet and supplements) or if recent di-
etary intake (within 5 years of onset of disease) was
studied. The EDCC found no significant inverse as-
sociation between dietary intake of vitamin E, with
or without supplements, and neovascular AMD.187

c. Plasma Vitamin E and AMD

The POLA Study represents the most recently
published and the most extensive investigation of
the relationship between plasma a-tocopherol and
age-related macular degeneration.54 Fasting blood
levels of vitamin E, after multivariate adjustment,
showed a weak negative association with AMD (P 5
0.07). Lipid standardized plasma a-tocopherol had a
significant inverse relationship with early (P 5 0.04)
and late (P 5 0.003) AMD, representing a risk re-
duction for AMD of 82% for those in the highest
quintile versus the lowest quintile. In order to cor-
rect for confounding, which arises from the fact that
atherosclerosis is related to a-tocopherol169 and is
probably also related to age-related macular disease,215

the investigators adjusted for variables related to car-
diovascular disease, and the significant inverse associa-
tion remained unchanged. The POLA study findings
are consistent with those of the BLSA and the BDES, al-
though the statistical significance of the protective ef-
fect of serum a-tocopherol in the BDES was lost after
adjusting for serum lipids.139,222 Although the EDCC
and the BMES found no significant associations be-
tween plasma levels of vitamin E and AMD, it should be
noted that the former did detect a significant protec-
tive effect for a serum antioxidant index which in-
cluded a-tocopherol and the latter study comprised
only a small number of patients (N 5 156).1,191

3. Vitamin A

Vitamin A (retinol) is essential for vision, as it must
be available in the retina as a precursor of 11-cis-retinal
for the regeneration of rhodopsin. Vitamin A exists
in the following three oxidation states: an alcohol (ret-
inol), an aldehyde (retinal), and an acid (retinoic
acid). Until recently, there was no evidence of retinol’s
antioxidant activity in photoreceptor cells. In an exper-
iment reported by Keys et al, physiological concentra-
tions of retinol added to liposomes composed of rod
cell phospholipids were found to protect the lipids
from oxidation.114 Therefore, as the chain reaction of
lipid peroxidation within the membrane is broken, a
small amount of retinol may protect large concentra-
tions of membrane lipids. Vitamin A is also involved in
the repair of cells that have been oxidatively dam-
aged.35 Of note, in the retina, vitamin E is believed to
protect vitamin A from oxidative degeneration.177
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a. Dietary Vitamin A and AMD

The NHANES reported a 40% reduction in risk
for AMD in persons who consumed foods rich in vi-
tamin A at least once per day, as compared with
those who ate these foods less than once per week
(Odds ratio: 0.59; confidence interval: 0.37–0.99).77

However, this protective effect of dietary vitamin A
has not been confirmed in subsequent reports,
and17,187,192,213 it is possible that the NHANES finding
simply represents a protective effect of dietary caro-
tenoids, which are found in the same foods.195 This
hypothesis is consistent with the findings of the
BDES, which failed to detect a significant association
between total dietary vitamin A (pro-vitamin A caro-
tenoids plus retinol), or simply dietary retinol, and
early AMD, but did detect a weak inverse relation-
ship between past consumption of pro-vitamin A car-
otenoids and early AMD (odds ratio: 0.29) and a sig-
nificant inverse relationship between pro-vitamin A
carotenoids and the presence of large drusen.213 In
other words, the protective effect of pro-vitamin A car-
otenoids could not be attributed to vitamin A per se.

b. Plasma Vitamin A and AMD

With respect to plasma retinol and AMD, the POLA
study failed to detect a significant association.54

4. Carotenoids

Carotenoids are naturally occurring pigments that
are essential to photosynthetic organisms, as they cap-
ture radiant energy.120 In mammals, these compounds
are entirely of dietary origin. There are between 40 and
50 carotenoids in a typical Western diet,115,116 of which
34 have been identified in human milk and serum.118

Some carotenoids can be converted to vitamin A and
are, therefore, said to have pro-vitamin A activity.

The antioxidant properties of the carotenoids are
now well established and include the ability to
quench singlet oxygen and triplet sensitizers,38,68,121,

151,210 interact with free radicals18,24,99,108,121 and prevent
lipid peroxidation.7,132,160,214,232 It has been shown that
a carotenoid’s antioxidant activity is enhanced at low
oxygen tension108 and that the carotenoids interact
with other antioxidants.59 For example, the caro-
tenoids appear to protect or repair a-tocopherol59

and to act synergistically with vitamin C in protecting
against oxidative damage.160

Of the 34 carotenoids identified in human serum,
only lutein and zeaxanthin are found in the retina
where they are collectively known as macular pig-
ment.193 The concentration of lutein and zeaxanthin
peaks at the center of the fovea, diminishes with ec-
centricity and is optically undetectable a distance of
1.2 to 1.5 mm from the foveola.90,194 Macular pig-
ment is contained mainly within the photoreceptor

axons of the receptor axon layer, but is also seen in
relatively high concentrations in the interneurons of
the inner plexiform layers.193 In common with all
mammalian carotenoids, macular pigment is en-
tirely of dietary origin and can be augmented with
appropriate dietary modification.88,126,127

Direct oxidation products of lutein and zeaxan-
thin have been reported in human retina, indicating
that these carotenoids do act as antioxidants in the
macula.117 The inhibition of lipid peroxidation is de-
sirable in the retina, not least because of the high
concentration of polyunsaturated fatty acids in the
photoreceptor membranes.

Macular pigment is also believed to limit retinal
oxidative damage by filtering out blue light. We have
already discussed photochemical damage of the ret-
ina, and we have emphasized that the threshold for
damage is lowest for the blue region of the visible
spectrum. The absorbance spectrum of macular pig-
ment peaks at 460 nm,165 and it has been calculated
that the macular carotenoids reduce the amount of
blue light incident on the photoreceptors of the
fovea by approximately 40%.193 This filtering effect
reduces chromatic aberration,176 and short wave-
length sensitivity. It is also believed to be responsible
for the relative preservation of foveal short-wave-
length cone sensitivity with age.80

a. Dietary Carotenoids and AMD

It has been shown that dietary intake of lutein and
zeaxanthin is positively related to the optical density
of macular pigment for males only and to serum lev-
els of these carotenoids for both genders.86 How-
ever, studies investigating dietary carotenoid intake
should be interpreted with caution, because there
are so many confounding variables, such as the indi-
vidual’s absorptive and digestive characteristics. Fur-
thermore, there is still a lack of sufficient data re-
garding the carotenoid content of foods.

The EDCC study found that a high dietary intake
of carotenoids protected against AMD.187 After ad-
justing for other risk-factors, the highest quintile of
carotenoid intake was associated with a 43% reduc-
tion in risk for AMD (odds ratio: 0.57; confidence in-
terval: 0.35–0.92; P for trend: 0.02). Interestingly, of
the carotenoids, lutein and zeaxanthin were found
to be the most protective. The BDES, which in-
cluded a prospective arm, reported that past intake
of a-carotene, b-carotene and pro-vitamin A caro-
tenoids, as well as baseline intake of pro-vitamin A
carotenoids, was associated with a significantly re-
duced risk of large drusen at 5 years follow-up. How-
ever, no such protective effect for dietary intake of
lutein and zeaxanthin was detected.213

The two other studies investigating carotenoid
consumption and AMD considered b-carotene only,
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and failed to detect a significant protective effect as-
sociated with this compound.192,222 It should be em-
phasized here that b-carotene is not found in hu-
man retina.

b. Serum Carotenoids and AMD

Serum levels of carotenoids are less problematic
for epidemiologic studies because they obviate the
need to calculate the carotenoid content of foods,138

and they circumvent the problem of interindividual
variability in digestive and absorptive characteris-
tics.29 However, the main limitation of such blood
levels rests on the fact that the concentrations at the
time of sampling reflect only recent nutritional in-
take. As macular pigment has a very slow turnover,126

recent dietary intake and current serum levels of
these carotenoids are of limited value.

The EDCC study reported a significantly decreased
risk of neovascular AMD associated with medium
and high serum levels of carotenoids, which was cal-
culated as the sum of lutein, zeaxanthin, a-carotene,
b-carotene, cryptoxanthin, and lycopene, compared
with those in the low group.2 Further, high levels of
the individual retinal carotenoids, lutein, and zeax-
anthin, were also found to be protective.1 The BDES,
which included a smaller number of patients (BDES:
N 5 167; EDCC: N 5 421), did not corroborate
these findings, but did report that low levels of lyco-
pene were associated with increased risk of AMD.139

The BLSA and the BMES measured only serum
b-carotene, which is not found in the retina, and
failed to detect a protective effect associated with
high serum levels of this carotenoid.191,222

c. Macular Pigment and AMD

Unfortunately, investigations into the relationship
between macular pigment and AMD have been lim-
ited to observational data correlating measurements
of the pigment to risk of developing the disease.

In 1988, Bone et al quantified macular lutein and
zeaxanthin by high-performance liquid chromatog-
raphy in 87 human eyes from donors ranging in age
from 3 to 95 years and observed no dependence on
age for either carotenoid.19 These findings were con-
sistent with those of Werner et al.221 However, it has
since been shown that several factors influence the
optical density of macular pigment, including smok-
ing habits,92 iris color,87 lens density,91 and gender.86

In a recent study in which we have corrected for these
confounding variables, we found a significant inverse
relationship between macular pigment optical density
and age in 46 healthy caucasian subjects ranging in
age from 21 to 80 years (r 5 0.446; P 5 0.003; unpub-
lished data). Our finding, therefore, supports the
view that declining macular pigment may be associ-
ated with increasing risk for AMD.

Of the other putative risk-factors for age-related
macular disease, light iris color, tobacco use, female
gender, and increasing lens density are all associated
with low macular pigment optical density.86,87,91,92 In-
terestingly, an increased oxidant load and reduced
antioxidant defenses have been linked to cigarette
smoking,147 and light iris color transmits substan-
tially more light to the retina.211 The inverse rela-
tionship between lens density and macular pigment
optical density suggests that oxidative stress may rep-
resent a common pathogenesis for cataract and
AMD, as the crystalline lens and the macula both ac-
cumulate lutein and zeaxanthin to the exclusion of
all other carotenoids and, therefore, may share an
uptake mechanism.106,129,229 In other words, an indi-
vidual who accumulates large quantities of lutein
and zeaxanthin in the crystalline lens and the retina
is less likely to develop cataract and AMD. This hy-
pothesis is supported by observations that cataract is
associated with increased risk of AMD.30,133

Further evidence that macular pigment may protect
against AMD was provided by Weiter et al, who demon-
strated that the pattern and extent of foveal sparing in
annular macular degeneration, such as atrophic AMD,
closely matched the distribution of the pigment.219

Moreover, it has been shown that the expected age-
related decline in photopic sensitivity, which is also an
early feature of AMD,8,60 is not seen in older subjects
with high quantities of macular pigment.89

And finally, Landrum et al used HPLC to measure
lutein and zeaxanthin in 22 eyes with early AMD and
15 healthy human donor eyes; they found signifi-
cantly lower quantities of these carotenoids in the
macula and whole retina of the diseased eyes.127 The
investigators speculated that, since the decrease in
lutein and zeaxanthin was noted across the retina
and not simply at the site of disease, low macular pig-
ment is causally important in the pathogenesis of
AMD and not simply the consequence of the patho-
logical process.

5. Antioxidant Enzymes

Superoxide dismutase, catalase, and glutathione
peroxidase are antioxidant enzymes that form part
of the complex system that protects the retina from
oxidative damage, and all three enzymes are found
in the photoreceptors and in the RPE.10,11,173

a. Superoxide Dismutase

Superoxide dismutase (SOD) catalyzes the quench-
ing of the superoxide anion to produce hydrogen
peroxide and oxygen (Fig. 2).145 The SODs are metal-
loproteins, some that contain manganese (Mn-SOD)
and others that contain copper and zinc (CuZn-SOD).
In the POLA study, no association could be detected
between systemic SOD activity and AMD.53
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De La Paz et al measured SOD activity in central
and peripheral neurosensory retina of healthy hu-
man eyes from donors ranging in age from 7 to 85
years and found no age-related decline in the activity
of this enzyme at the macula.51 Frank et al, using a
polyclonal antibody to bovine erythrocyte CuZn-
SOD, measured superoxide dismutase immunoreac-
tivity in the macular RPE of 19 human donor eyes
without pathology and a similar number of eyes with
choroidal neovascular membranes (CNVM).70 A pos-
itive relationship between age and cytoplasmic and
lysosomal CuZn-SOD immunoreactivity was demon-
strated for eyes in both groups, but this relationship
achieved statistical significance only in the case of cy-
toplasmic levels of the enzyme in eyes with a CNVM.
Liles et al found that total RPE-SOD activity was sta-
tistically comparable for eyes with and without AMD,
and was unrelated to age.131 It appears, therefore,
that retinal SOD does not play an overtly important
role in protection against AMD beyond its contribu-
tion to the overall local antioxidant defense system.

b. Glutathione, Glutathione Peroxidase and 
Glutathione Reductase

Glutathione is a water-soluble tripeptide endoge-
nous to mammalian photoreceptor outer segment,
which scavenges oxidizing agents by reacting with
them. Glutathione is found in bovine retina,97 where
it has been shown to protect photoreceptor PUFAs
from oxidation independently of vitamin E or ret-
inol.114 The POLA Study has failed to detect a signifi-
cant inverse association between red blood cell glu-
tathione and AMD.54

Glutathione peroxidase (glutathione-Px) uses glu-
tathione as an electron donor to reduce organic hy-
droperoxides (Fig. 2).13 It is found in human retina
and is dependent on selenium as a cofactor.190 The
POLA study analyzed the relationship between anti-
oxidant enzymes and age-related macular disease in
2156 subjects and found that higher plasma levels of
glutathione-Px were significantly associated with a
nine-fold increase in the prevalence of late AMD,
but were unassociated with early AMD.53 This find-
ing suggests that glutathione-Px is one of the stron-
gest indicators of AMD ever identified. As plasma
glutathione-Px consists of the extracellular form of
the enzyme,136 the biologic meaning of the POLA
study’s finding has yet to be determined. It is worth
noting, however, that extracellular glutathione-Px is
found in retina, ciliary epithelium, and aqueous hu-
mor, and is believed to act as an extracellular antiox-
idant.36 It has been postulated, therefore, that in-
creased oxidative stress associated with AMD results in
upregulation of plasma glutathione-Px activity.

With respect to retinal glutathione-Px, De La Paz
et al found no effect of age on the specific activity of

this enzyme in normal human retinas,51 although re-
duced activity of glutathione-Px has been observed
in retinal homogenates of cynomolgus monkeys with
early onset AMD.148

Glutathione reductase does not act directly as an
antioxidant, but it is required for regeneration of
glutathione (Fig. 2). AMD is associated with signifi-
cantly reduced levels of plasma glutathione reduc-
tase,37 although there is no correlatlion between se-
verity of disease and RBC glutathione-reductase
activity.52

c. Catalase

Catalase is an iron (Fe)-dependent enzyme that
scavenges H2O2 either catalytically or peroxida-
tively.31,82 Catalase has been demonstrated in human
neurosensory retina and RPE.51,70,131

RPE catalase activity is significantly reduced in
eyes with AMD, and there is an age-related decline
in its activity.178 Tate et al observed an indistinguish-
able two-fold increase in RPE catalase activity in re-
sponse to a challenge with rod outer segments or ex-
ogenous H2O2, suggesting that phagocytosis of the
rod outer segments by the RPE is an oxidative stress
which probably produces H2O2.

205 This ROI is be-
lieved to act as an intracellular signal that induces an
increase in activity of key antioxidant enzymes, such
as catalase.

Significantly lower catalase activity has been re-
ported in the retinal homogenates of cynomolgus
monkeys with early onset macular degeneration, as
compared with normal relatives and unrelated con-
trols, but, consistent with human studies,52 no signifi-
cant difference was observed between the two groups
in terms of systemic catalase activity.149 Frank et al con-
firmed the inverse relationship between age and activ-
ity of RPE catalase, but found no difference in the RPE
content of this enzyme for eyes with and without AMD.
They concluded that it is probably unrelated to the
pathogenesis of age-related macular disease.70 Of note,
there is no age-related decline in catalase activity of the
central or peripheral neurosensory retina.51

In brief, therefore, the published literature re-
garding the relationship between retinal and sys-
temic catalase activity and age-related macular dis-
ease is inconsistent, although it appears that this
enzyme is unlikely to play a disproportionately im-
portant role beyond its function as a component of
the antioxidant defense system of the retina. Of
note, there is no characteristic ocular pathology as-
sociated with homozygous catalase deficiency.12

6. Zinc

Zinc (Zn) is the most abundant trace element in
the human eye.110 It is thought to play an important
role in mammalian antioxidant defenses, because it
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acts as a cofactor for CuZn-SOD142 and is involved in
the regulation of catalase activity.204 Furthermore,
zinc induces the synthesis of metallothionein, a
known scavenger of hydroxyl radicals,185 and stabi-
lizes membrane lipids against oxidation.209

Although there is a plausible rationale in support
of the view that zinc protects against age-related
macular disease, the clinical and epidemiologic evi-
dence is less convincing. The EDCC and the BDES
failed to detect a significant relationship between se-
rum zinc levels and the risk of AMD.2,139 The retro-
spective arm of the BDES did, however, detect a
weak protective effect for the highest quintile of di-
etary zinc intake, as compared with the lowest quin-
tile (odds ratio: 0.6),141 but this was confirmed only
for pigmentary macular changes in the prospective
arm of that study.213 The BMES found no significant
relationship between AMD and dietary intake of zinc
among 2900 participants.192

Stur et al conducted a 2-year, double-blind, ran-
domized, placebo-controlled trial of zinc supple-
ments in 112 subjects with neovascular AMD in one
eye.201 Although zinc supplements were associated
with raised serum levels of the trace element at final
follow-up, they were not found to affect the clinical
course of the condition in a benefical way.

7. Metallothionein

Metallothionein is an acute-phase stress protein
that participates in the detoxification of heavy met-
als and the maintenance of zinc and copper
homeostasis218 and scavenges hydroxyl radicals.98,185 It
has been demonstrated in human RPE, where it is in
lower concentration in the macular region than in the
periphery.206 Further, there is an age-related decline in
the macular RPE content of metallothionein.206

In 1995, Tate et al induced metallothionein gene
expression in cultured RPE cells by addition of H2O2

and by challenge with photoreceptor outer seg-
ments, thus confirming that phagocytosis is an oxi-
dative stress and that mettalothionein acts as an anti-
oxidant.205 The authors postulated, therefore, that
the age-related decline in macular RPE metallothio-
nein may result in an inability to mount a sufficient
defense against oxidative stress and, thus, contribute
to AMD. This hypothesis is supported by the observed
reduction in metallothionein synthesis in retinal ho-
mogenates of cynomolgus monkeys with early AMD.148

C. PRO-OXIDANTS AND AMD

1. Fatty Acids

To our knowledge, there are only three published
studies that have investigated the relationship be-
tween dietary intake of fats and age-related macular
disease.140,182,186 The BDES and the EDCC found that a
high intake of polyunsaturated fatty acids was associ-

ated with a higher risk of early and late AMD, respec-
tively, but the relationship was significant only in the
EDCC.140,186 A case-control study comparing plasma lev-
els of polyunsaturated fatty acids in 65 patients with
AMD and 65 control subjects found no statistically sig-
nificant difference between the two groups.182

2. Light and AMD

To our knowledge, there have been five epidemio-
logical studies investigating the relationship between
exposure to sunlight and the risk of age-related macu-
lar disease.2,42,46,102,208,223 Of these, the three case-control
studies failed to establish a significant association.2,46,102

The cohort studies, however, did detect a significantly
increased risk of AMD in association with higher cumu-
lative lifetime exposure to sunlight.42,46,207,208 The consis-
tency of the cohort studies does suggest a causal link
for sunlight, because cohort epidemiologic studies are
less prone to bias than case-control studies.144 As the en-
tire population is potentially exposed to sunlight, the
odds ratios of 1.36 and 2.19 for high exposure to blue
or visible light and AMD represent quite robust evi-
dence in support of the sunlight/AMD hypothesis.42,208

3. Lipofuscin and AMD

It has been shown that age, the strongest risk fac-
tor for ARM and AMD, correlates strongly with RPE
lipofuscin content.65 Indeed, 19% of RPE intracellu-
lar space is occupied by lipofuscin in 81–90-year-old
subjects, compared with just 1% in the first decade
of life.67 Also, massive quantities of lipofuscin have
been demonstrated in the RPE cells of eyes with
atrophic AMD.183 Furthermore, RPE cells that con-
tain excessive amounts of N-retinylidene-N-retinyl-
ethonalamine exhibit cell membrane blebbing and
cytoplasm extrusion into Bruch’s membrane,61 pro-
cesses that may contribute to drusen formation104,105,

220 and the development of AMD.66

4. Waste Products of Oxidative Processes in AMD

Olin et al measured plasma thiobarbituric acid re-
active substances, an estimate of lipid peroxides, in
the plasma of 62 elderly rhesus macaques, and
found that its circulating levels were significantly
higher in monkeys with . 10 drusen, compared with
those without drusen.150 Further direct evidence of a
role for oxidative process in age-related macular dis-
ease has been recently published by Hammes et al.85

Ne-(carboxymethyl) lysine (CML), which is a prod-
uct of either lipoprotein peroxidation or sequential
glycation and oxidation, is a biomarker of oxidant
stress in a tissue. CML was found in 11 of 11 human
subfoveal age-related neovascular membranes, but it
was not identified in the healthy retina of a donor
eye. Further, CML is present in soft drusen and adja-
cent RPE cells before the development of choroidal
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neovascularization, but not in control eyes.103 Al-
though the implication of these findings warrants
further exploration, it is consistent with an etiologic
role for oxidative stress in the pathogenesis of AMD.

V. Current Research and 
Future Perspectives

The National Eye Institute has set up the Age-Re-
lated Eye Disease Study, which is evaluating the role
of antioxidant supplements on the natural history of
AMD in a randomized, placebo-controlled clinical
trial involving 4753 patients in 11 centers.33 Recruit-
ment ended in August 1997 and a minimum follow-
up of 5 years is required.33 The Physicians Health
Study, sponsored by the National Heart, Lung, and
Blood Institute of the National Institutes of Health, is
to utilize funding from the National Eye Institute to
evaluate the effect of b-carotene (50 mg on alternate
days) in a randomized, placebo-controlled trial in-
volving 22,071 male physicians with a minimum fol-
low-up of 12 years.3 The Women’s Health Study will
also evaluate the impact of antioxidant supplements
on the risk of developing age-related macular disease,
but in postmenopausal female healthcare workers.23

Although the Age-Related Eye Disease Study, the
Physicians Health Study, and the Women’s Health
Study will provide valuable information regarding
the benefits and toxic effects of antioxidant supple-
ments with respect to age-related macular disease,
they will not directly investigate the putative role of
oxidative stress in the pathogenesis of AMD. For ex-
ample, a failure of antioxidant supplements to pro-
tect against age-related macular disease may simply
reflect the poor diet–plasma correlation of caro-
tenoids that has recently been identified in healthy
persons aged over 65 years.28 Also, the various anti-
oxidants have different chemical properties and in-
teract in a synergistic fashion, suggesting that the
maintenance of an effective antioxidant environ-
ment in a nonhomogenous biological state depends
on adequate concentrations of several antioxidants
in the relevant tissues.58 In other words, the absence
of a beneficial effect of dietary antioxidant supple-
ments does not exclude an etiopathogenic role for
oxidative stress in age-related macular disease.

Beyond the enhancement of antioxidant defenses,
the oxidant/antioxidant balance may also be altered
favorably by reducing oxidative stress. In a recent
study, for example, urinary indices of lipid peroxida-
tion increased significantly in 10 healthy, nonsmok-
ing male volunteers (mean age 6 SD: 32.6 6 1.7
years) after consumption of a diet high in PUFAs,
and decreased significantly after a diet deficient in
PUFAs, indicating that dietary restriction of polyun-
saturated fatty acids may limit oxidative stress.107 In

theory, prereceptorial absorption of blue light by in-
corporating narrow-band yellow filters into specta-
cles, contact lenses, or intraocular lenses may be an-
other means of limiting retinal oxidative stress.
Clearly, however, such measures cannot be justified
on the basis of current evidence.

VI. Summary
There is no shortage of research into the relation-

ship between oxidative stress and AMD, but firm evi-
dence of a causal link is still lacking. Certainly, the
concept that AMD is the result of oxidative damage
is provocative, because it is biologically plausible. To
date, research has focused on either the antioxidant
status of subjects with age-related macular disease or
the pathologic findings associated with laboratory-
based, experimentally-induced oxidative stress.

The published experimental data provide firm evi-
dence of oxidative damage occurring in the retina
and RPE, but the relationship between these events
and the onset of AMD remains unclear. The main
limitation of the in vitro techniques rests on the fact
that these studies tend to focus on too few variables,
and we are hopeful that the development of in vitro
models of retinal oxidative processes will make a
substantial contribution to this area of research.34,202

The identification of benzidine-reactive substances
by Kayatz et al also represents an advance in this
field and will enable investigators to study the forma-
tion, decomposition, and transportation of lipid per-
oxides in the retina at an ultrastructural level for the
first time.112

In conclusion, the role of oxidative stress in the
pathogenesis of AMD is biologically plausible, but
remains unproven. The task of confirming or refut-
ing a causative link between tissue damage by ROI
and the onset or progression of AMD, or indeed any
disease, is a challenging one. Ultimately, complex
models simulating in vivo conditions will be re-
quired to investigate the relative importance of the
various reactions involving free radicals, hydrogen
peroxide and singlet oxygen.

Method of Literature Search
References for this review were identified through

a comprehensive literature search of the electronic
MEDLINE database (1966–1999), and included
where appropriate. The literature search was not
confined to the English language, and relevant non-
English language publications were translated. Addi-
tional articles, textbooks, and abstracts, which were
unavailable on electronic archives, were selected
from review of the bibliographies of the articles
generated from the above search. To ensure the up-
to-date nature of our review article, current issues of
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Archives of Ophthalmology, Survey of Ophthalmology,
American Journal of Ophthalmology, Ophthalmology, Brit-
ish Journal of Ophthalmology, Experimental Eye Research,
Current Eye Research, and Investigative Ophthalmology
and Visual Sciences were regularly reviewed through-
out the period of writing. The following key words
and combinations of these words were used in com-
piling the search: age-related macular degeneration; anti-
oxidants; catalase; free radicals; glutathione; hydrogen
peroxide; light damage; lutein; macular pigment; metal-
lothionein; oxidative stress; retinal pigment epithelium; sin-
glet oxygen; superoxide dismutase; zeaxanthin; zinc.
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