Waterford Institute of Technology

Institigid Teicneolaiochta Phort Lairge

Improving the Reliability and Performance of
FlexRay Vehicle Network Applications Using

Simulation Techniques

Robert Shaw B.Sc. (Hons)

M.Sc.

Supervisor: Brendan Jackman B.Sc., M.Tech.

Submitted to the Waterford Institute of Technology
Awards Council, 27 May 2009.

ACKNOWLEDGEMENTS

Acknowledgements

I would like to thank the following people for all their support and help over the

past two years of this project. Without them this thesis would not be possible.

Firstly I would like to thank Mr. Brendan Jackman for all his encouragement, guidance

and enthusiasm throughout this project.

I would also like to thank my fellow group members during the time span of this project,

for all their help, guidance and advice:

Frank Walsh, Group Supervisor, Department of Computing, Maths and Physics,
Waterford Institute of Technology

David Power, Group Supervisor, Department of Computing, Maths and Physics,
Waterford Institute of Technology

Gareth Leppla, Group Member, Department of Computing, Maths and Physics,
Waterford Institute of Technology

Richard Murphy, Group Member, Department of Computing, Maths and
Physics, Waterford Institute of Technology

John Walsh, Group Member, Department of Computing, Maths and Physics,
Waterford Institute of Technology

I would also like to thank my friends for all their support and patience while I undertook

this project.

Special thanks go to Gillian Chester who showed great patience, support and

encouragement throughout this project.

I would lastly and most importantly like to thank my parents who were more of a help

than they will ever know.

-1 -

DECLARATION

Declaration

I, Robert Shaw, declare that this thesis is submitted by me in partial fulfilment of
the requirement for the degree M.Sc., is entirely my own work except where otherwise
accredited. It has not at any time either whole or in part been submitted for any other

educational award.

Signature:

Robert Shaw,
27 May 20009.

- 1ii -

ABSTRACT

Abstract

Modern vehicles are becoming more and more sophisticated, with more
functions being controlled by a microprocessor unit. As new functions are developed
there is not only more of a demand on the control unit, but there is also more demand
placed on the communication network(s) within a car. There is also a growing need for
fast and dependable networks for new safety features such as X-by-wire applications.

A trend in the automotive industry to make cars more eco-friendly has emerged.
As the amount of applications increases then the number of wires within a car increases
and this can potentially add a large amount of weight leading to increased fuel
consumption. This along with the need for higher performance networks led to the
development of the FlexRay protocol.

FlexRay is a newly developed network protocol that is intended to address the
current and future needs of the automotive industry. It is backed by many automotive
manufacturers and suppliers. As such, FlexRay looks increasingly likely to become the
network application of choice for many companies, especially where safety critical
systems are implemented.

The purpose of this research was to design, implement and test a simulation
model of a FlexRay network node. This simulation model could be a benefit to system
developers to ensure accurate communication is achieved by tracing the flow of
information through a FlexRay-based system and ensuring all timing constraints are met.
The model was built using MATLAB, Simulink and SimEvents. The basis of the model
was a node that incorporated a separate host microcontroller and communications
controller. The communications controller was based on The Bosch E-Ray IP. The
simulation model comprised of the application, software driver, communications and
physical bus layers of a FlexRay based system. The model was then calibrated against a
real world system over a number of different test cases and constraints.

The final part of the research involved running tests to determine if the model
that has been built, was built in a correct manner i.e. validation of the simulation model.

The model was then evaluated for its ability to carry out its intended role.

-iv -

TABLE OF CONTENTS

Table of Contents
ACKNOWICAGEMEILS..........eoeeeiteeeet ettt ettt et st sbe e st eae e ettt e nes i
DECIATALION ...ttt ettt et et b e ettt ae et e be b beeneeneen iii
ADSITAC ...ttt ettt h et e he bbbt a e et b bt e h e et st e e b ea bt ettt st et en iv
TADIE Of CONIERLS ...ttt ettt ettt ettt e sat e s it e st e st e et e eaneeueeas v
TADIE Of FIGUEFES.c...coueeiiieieteeteetee ettt ettt ettt ettt st e st e st e st e et e e neeaeeas X
TADIE Of TADIES ...ttt st st ettt neea xvi
SECTION I: THESIS OVERVIEW 1
CHAPTER | . THESIS OVERVIEWcuuutiiiiiiiiiieeeiitiieeeeeiteeeasssaseeeesasssseesassssesessssssssessassssessssssssesssssssssssssssens 2
1.1 Problem SPeCIfiCAtiON.c.ccueeeveiriririiiiiieitet ettt ettt sttt sttt sae st 2
1.2 ReSCATCH QUESTIOMNSoceeeevveeeeeieeeeeeeeeeeeeette e e e te e e e s s eaaeeeessssaeaesssbeeaaesssaaeesssssaeesssssseeeesssseeeanns 2
1.3 DOCUMENT LAYOUL.....c..eeneeieiieeeeteee ettt ettt ettt ettt et e st st eaeesaneeaee s 3
L4 RESOEEIICES ...ttt ettt ettt ettt et e sttt et e st b e e abee st e e sabaeeabeesabeas 5
SECTION II: LITERARY REVIEW 6
CHAPTER 2 . LITERARY REVIEW INTRODUCTION.........cutttiieeirieieeeiiieeeeeirreeeessnnseeessssssaesessssseesssssssessassssens 7
20 SCOPE......eeeieeeiieeee ettt s e ettt ettt et 7
2.2 TEFMUTOLOZY ..ottt ettt et e st e et e et eseteesteeabeesbeenbeeaseanseenseenseensaeassensaesneans 8
2.3 CrIteriaQ fOI DISCUSSTIONc.eeeueereieiiiiieie ettt et et ettt ettt sttt ettt naee e 9
2.4 Limits Of the REVIEWccc.covuiiiiiiiiiiiiieiit ettt ettt st et st ebt e ettt et e eaees 9
CHAPTER 3 . AUTOMOTIVE INETWORKS.......0uutiiiiiuriieaeiiteeeeaatrseeeeasseeeesssssseessssssseesssssssssssssssssessssssssesanes 10
3oL IRIFOAUCIION ...ttt st sa e st ebe s 10
3.2 AULOMOTIVE NEIWOTKS ...ttt st s e st 10
3.3 NetWOrking TYPE OVEFVIEW........cc.covuieuuiriiiiieieeiietteite ettt ettt et satesatesbeesaeesaeesasesaeeearenas 12
3.4 Automotive NetWOrk PTOTOCOLSccccocovceririeciiiiieiiiiiesiteeeie ettt ettt ne e 14
3.5 Event-TrigQered PrOIOCOLSccovevimviiiriiciiiiieteeesite ettt ettt sttt ne e 16
3.6 Time-Triggered PrOTOCOLScocueeuiiiiiiiiiiiiieeete ettt ettt sttt st st 23
3.7 Automotive NetWOrk DESIGILc..cvevueveririeriiiiiieeteeestteie ettt sttt ettt sae sttt sse b enenees 30
3.8 CORNCIUSTION ...ttt sa e st n e er e 38
3.9 REFOTOICESeoneeeeieeee ettt ettt ettt ettt e st e e sbb e st be e s bt e e sbe e s bee ettt e eabeeeeabaens 38

TABLE OF CONTENTS

CHAPTER 4 . FLEXRAY ..ottt 45
B IIFOAUCTION ...ttt ettt s st et et be e e enne 45
4.2 NEtWOTK TOPOIOZY ..ottt ettt ettt ettt ettt et n 46
4.3 FIEXRAY HATAWAT..........cceeneiiiiiieieee ettt ettt ettt ettt ettt ettt s 47
4.4 Global Time ANd TIMINGccccoevireiiiriiriiieeeeteee ettt sttt sttt ettt ettt ean e 48
4.5 Media Access CONITOL............c.cocooiveeiiniiiiieieiiieeit ettt sttt s 51
G0 FTAIE FOTMAL ...ttt ettt ettt shb ettt e abe e st e et e s it e e sabeesaeas 53
4.7 COAING & DECOAING ..ottt ettt ettt s 56
Be8 WAKCUP ...ttt et ettt sa e e a e st eht e ettt ettt s

4.9 Conclusion

CHAPTER 5 . PERFORMANCE ANALYSISoouiiiiiiiiiiiiiiiiiiiini et 66
ST IRIFOAUCTION ...ttt st sa e st n e bt e 66
5.2 System Performance and ANGLYSIScouueeuecuirirsieiiiiesiinieeieeet ettt sttt 66
5.3 SOfIWATE MEITICS .ottt et ettt e st sbe e et sbeesaaesaeeentenae 73
5.4 Previous SYSTEIMS ATALYSTScc.veeeveieeieeeeieeeeieeestteeeteeeseeeiteesteessseassssesssseeesssesasesssseessseessssenns 80
5.5 CONCIUSTION ...ttt st sb e sae 103
5.0 REJETOICES. ..ottt ettt ettt ettt e sa ettt ettt 104

CHAPTER 0 . E-RAY ..ottt sttt ettt ettt st 107
O. 1 TRITOAUCTION ...ttt st sttt b e b e sae 107
0.2 FOATUTES ...ttt ettt et e s ate s ate s ateeabeeateanbeebee bt esseeeseesssanseesnsansseenseenseanee 107
0.3 COMPOTEONLS ...ttt ettt sttt st ettt e a e e et e e sb e e sbeenbe e bt e beeeaaenaeeeaee 108
0.4 REGISIET MAP.....c.ooeeeeeeee et e te st e e e te et e e beeebeesseesseesasanseesnsessseenseenseenne 110
6.5 Communication CORLFOILET STALEScueeueeeeeieeieeieeie ettt ettt eees 112
6.6 ErrOr HANAIING ...ttt ettt ettt ettt 116
6.7 MeSSAZE HANAIINGccoueeiuiiiiiiiiiiiiiiiteee ettt ettt 120
6.8 MeESSAZE RAM ...ttt ettt et ettt ettt ettt 124
6.9 Filtering and MASKINGccoevueeiiriiiniiieieeie ettt ettt ebe et s sbe s eaeenre 129
O JO FIF O ...ttt ettt sttt eb et s bt nnenae 131
0. 11 PACKAGING ...ttt ettt e et e et e e be e b e e ebeesseanseansbenseeensennseenes 133
6. 12 CONCIUSION ...ttt s st st st eb e s bt sae 134
0. 13, RESOTONCES ..ottt ettt ettt e a e et sa e bttt ettt et eae 134

CHAPTER 7 . DISCRETE EVENT SIMULATIONcutviiiiiiiiiieeeiieeeeeeettteeeessreeeessnsesesssssssessssssssessssssssseenns 136
Tod INEFOAUCTION ...ttt s st e nes 136
T2 SYSTOILS ...ttt et sttt ettt e b e et ettt ettt st e st ereebeens 137
7.3 SIMUIATION PTOCESS ...ttt st ettt 139

- Vi -

TABLE OF CONTENTS

7.4 BUILAING MOAELS........ceeneiiiieeieeetete ettt ettt sae st aen 140
7.5 Validation & VerifiCAtIONccccooviiiiiiiiiiiiit ittt e 144
7.0 TESES ANA ATALYSTS.....ooeecevieeiieeiieeceeeeteeete e ettt e e te e e rteeeaaeesbeesstaeessseessssaasssaeessseassssesassessnsaenns 145
7.7 Simulation of Queues, Statistics and Random NUMDETSc.cccceuvuerouenoeniiesiensinieeeeeene 146
7.8 SIMUIALION SOFIWATE ...ttt ettt ettt et sae st aen 150
7.9 MATLAB, Simulink and SIMEVENLS............c..cccovirierecuininiiiieiesiinieeeeseesese e nes 152
7.10 Simulation SOftware SEleCtionoueceeviririeicciiniietiteesere ettt aen 162
Tod T CORNCIUSTON ...ttt sae st e 165
Tod L. REFEEEICES. ...ttt sttt et et sae st e nes 166
CHAPTER 8 . FLEXRAY SOFTWARE DRIVERS.........cociiiiiiiiiieiiiiteeeeitiieeeeiiieeeesseveeeeessssaesssessssessssssseseenns 170
Sl IRIFOAUCTION ...ttt s st sttt b e s sb e anesae 170
8.2 COMMSTACK ...ttt ettt ettt st sttt be bt et esaesbe s ease e 171
B3 AUTOSAR ...ttt ettt sttt sttt st b st be e aenees 174
8.4 FUJitSU FIEXRAY DFIVETc.eouiiiiiiiiiniiiiieteeeeit ettt sttt ettt sttt et ebe et e s sbe s ease e 179
8.5 CONCIUSTION ...ttt st sttt b e sb e sae 182
80 REJETOICES. ...ttt st ettt et ettt ettt ettt eaee 182
CHAPTER 9 . LITERARY REVIEW CONCLUSIONccciiiutitieeiiiteeeeeitteeeesnteeesesnreeeeessssseesssssssssssssssseenns 185
9.1 Literary REVIEW SUIMIATY..........cccucevueeiutaiiieiienieeie ettt ettt ettt ettt et e se e be e saee 185
9.2 AVAILADLE LILETALUFE ... e st et teete e beesbeeebeeebeenseanseansbansaeensennseenes 186
9.3 A1€AS Of FUTTRET STUAY ..ottt ettt ettt ettt 186
SECTION III: MODEL DEVELOPMENT 187
CHAPTER 10 . METHODOLOGYcouiviiiimiiiiiiiiiiiiie e st sn s s sae s aene 188
JOT INITOAUCTION ...ttt ettt e et e s sbe e ateenbeenbeenbeesseebeeeseasseesseansean 188
10.2 STULALION PFOCESS ..ottt ettt ettt et s beste s beeseeseesbeebeeeseasseesseessnan

10.3 Simulation Process in Relation to the Research

10.4 CONCIUSION ..ot
JO.6 RESETEICES ...ttt sttt ettt st st et et
CHAPTER 11 . SIMULATION MODEL DEVELOPMENTcccceitttiieettieeeeiiieeeeesnreseeessssaeessssssseesssssssseenns 195
LT IRETOQUCTION ...ttt ettt s et ebe et ne e 195
11.2 Specification DevelOPMENt PrOCESSccuecueerueereeiiinieniese ettt et et saeeseeen 197
11.3 Simulation Model SPECTfICALIONScouceevuirireiiiiiiiiniectestese ettt e 198
T1.4 MOAEL MELITICS ..ottt sttt ettt st s et 207
T1.5 TRE MOAEL ...ttt bt sttt b et be e 212

TABLE OF CONTENTS

T1.6 CONCIUSTON ..ottt ettt sa e sttt et ebe et e b e 238
T 1.7 REJETEICES.......eonieiieieeeeee ettt st et st ettt ettt et esbeesbeesaeen 238
CHAPTER 12 . VERTFICATION.......0eciiiuutteeiiitreeesastrreeeeesseesessasssssesassssesssssssssesssssssssssssssseesssssssesssnssssseeans 240
T2, 1 INETOQUCTION ...ttt ettt st s et et 240
12.2 VOFIfICALION ...t e s st ettt et e sre e s 241
12.3 Model Subsysten DeBDUGGING............ccoceevueeuieiuiiiiiiiiiiesie ettt ettt saeeneeen 243
12.4 Simulation Model VerifiCAtion..............cuuucucciviveeiiiiiniiiieiesteseeiseee et 247
12.5 MOdel EXECULION TIMEc.eovueeeeeeiieniiniisiicieee sttt ettt ettt sttt b e e nae e 257
12.60 CONCIUSTON ...ttt ettt st sa e sttt ebe et e b e 259
T 2.7 REJETONCES ..ottt ettt ettt ettt ettt ettt e st e e s bt e e e sabe e s be e s bbe e sabeeensbeesabeean 260
SECTION IV: MODEL CALIBRATION & VALIDATION 261
CHAPTER 13 . CALIBRATIONooiiuiiiiiiniiiiiiieiiic i 262
T3] INETOAUCTION ...ttt ettt st s et et
13.2 TSt EQUIPITENT ...ttt ettt ettt ettt ettt et e st e e s bt e e ate e s be e s bbe e sabeeensbaesabeeas
13.3 Calibration Procedure
13.4 CaliDration TeSt CASEScceeieeeeneniniieeiesie sttt ettt et ere et 285
13.5 Calibration Data & RESUILScoeoeririeiiiiniiiieieiinieeieeeteseeeie ettt see e 287
136 CONCIUSTON ...ttt s et et 320
I3.7 REJETONCES. ..ottt ettt ettt ettt et e st e e s bt e e e abe e s be e s bbe s sabeeensbeesabeeas 321
CHAPTER 14 . VALIDATIONcouiiiiiiiiiiiiiiiiiiinii et 323
T4] INITOAUCTION ...ttt ettt st et 323
14.2 Validation ProCeAUTe...................ccovemimireeciiniiieeieciiieeit ettt st 324
14.3 Validation Data COILECTION..............cc.coeeereesiiriieeieciiieeie ettt ettt nee e 326
144 VALIAQIION REVIEW ...ttt sttt ettt sa e she ettt ere e nee e 328
14.5 Conclusion
TA.6 RESETONCES ..ottt ettt ettt ettt ettt e s s e s abeenbeenbeenseebeebeeeseesseesseesnean 345
SECTION V: CONCLUSION 346
CHAPTER 15 . CONCLUSIONcoooiiiiiiiiiniiiiiiiiiic s n s sas s aene 347
IS5 1 INETOAUCTION ..ottt ettt et b e st sa e bt ettt et ebe et e s e e 347
15.2 RESCATCI SUMIATY ...ttt sttt ettt st sa e sttt b e e et e e e 347
15.3 ReSCATCIH QUESTIONSc.evveeevveeeeeeeeieeeeaeeeeteeeeae e eeteeetveeeeteeetsaesteeestseaessesesessasseeesesessaesnrees 348

TABLE OF CONTENTS

15.4 ReSEArCH CONCIUSIONS.........coceeeeeeeeeeiieieee ettt st et e ae e steeebeesseasseesseesnean 350
15.5 A7A Of FUTTREE STUAY ...ttt sttt et ettt e sae e 353
I5.6 REFETONCES.......eonieniieieeeeeete ettt st ettt et ettt et e st e b e sbeesaean 354
SECTION VI: BIBLIOGRAPHY 356
SECTION VII: APPENDICES 1
APPENDIX A: MODEL COLOUR CODING I
APPENDIX B: MODEL VARIABLES & ATTRIBUTES \Y%
APPENDIX C: THE MODEL XVI
SOUTCE COUE........cuoeeeiiiiiciieieeece ettt ettt sa e et enes Xvil
APPENDIX D: TECHNICAL PAPERS XVIII

2008 IEEE International Symposium on Industrial Electronics, 30 June - 2 July 2008, Cambridge,
United Kingdom ‘An Introduction to FlexRay as an Industrial Network’ Robert Shaw, Brendan
JOUCKIUATL ..ottt ettt ettt ettt b bt sa e st et aen XIX

-ix -

TABLE OF FIGURES

Table of Figures

FIGURE 3.1: COMPUTER COMPONENTS AND POSSIBLE CONNECTIONSccotterieienieniinieerenennenieenenenneeneenes 11
FIGURE 3.2: EVENT-TRIGGERED AND TIME-TRIGGERED NETWORK PATTERNS.....c..cccunieieniinienierenenieeneenes 13
FIGURE 3.3: AUTOMOTIVE NETWORK APPLICATIONScouetttteuittesesuesesessesesesseseseesesensesesensesesssessesssssseses 15
FIGURE 3.4: AUTOMOTIVE NETWORKS FUNCTIONALITY BREAKDOWNcueteuetiunirnisriisesesesesesssnsssnsnsnnns 15
FIGURE 3.5: CAN BUS ...ttt ettt ettt st sttt bbbt e st e s bt sat et e bt ebe et enaesaeebenns 17
FIGURE 3.6: CAN BUS ARBITRATIONc.ueeuiiiiiiinriiiteteientinieeieeste st et esenenteeneetessessesseeseensesaesueemsennensesseenes 18
FIGURE 3.7: CAN STANDARD FRAME FORMATccceectiiitiniieitennenieeieereteteeneetesiessesseeseensesaesueennennenseeneens 18
FIGURE 3.8: LIN BUS WITH SINGLE MASTER NODE AND ‘N’ SLAVE NODESc.ccueieuteueuiteieeeeeeineeseeneeeseenenes 19
FIGURE 3.9: LIN COMMUNICATIONc.veveutteteutetesestesesestasesessesessasssessssssessssesenssesessesesessesesessesessssssesessssess 20
FIGURE 3.10: MOST2S5 FRAME ..c..eeitiittittniieititeete et et te st sieestesaesheeuteat ettt eae et esbenbesbeebtensesaesueensensenbesueens 22
FIGURE 3.11: MOST2S5 FRAME ...cotitiiiiiiiniietiieett ettt st ettt eae et e ae e sae st e neneeneenis 23
FIGURE 3.12: TTP BUS TOPOLOGYcevtuieuiiuriienteeiteteientesieeseesaesieemeessesenteeseessessessessesssensesaesseensensensesseenes 24
FIGURE 3.13: TTP COMMUNICATION CYCLEeevtiuteiiieiinieeiiennesieeieeneseteeneetesiessesseeseennesaesueennennensesneens 25
FIGURE 3.14: FLEXRAY FRAME.........0eoetiteteteteteteansessstessssesesesesesesassssssssssesesesesesesasessssssasssssesesesesesessssssssssnns 26
FIGURE 3.15: FLEXRAY HYBRID TOPOLOGY ...uutuvetiuiiettetatesitesesessssessssssessssesenessesessesesessesesensesessssssesesseseses 26
FIGURE 3.16: FLEXRAY BUS ACCESS.....cuteutiutiteetieteteienitnieetessesieeneesseseteeseetessessesseeseensesaesseensensensesseenes 27
FIGURE 3.17: CYCLE MULTIPLEXING.....c.ceeuteutitenttentetetentinieeseessesreeneessessenseeseetessessesseeseensesaesusemsensensesseenes 28
FIGURE 3.18: RATE DIFFERENCEScccutiuiiuiitiientieiteteientinieeitesae st entessenesneene et esaessesseessennesaesueennennensesneens 29
FIGURE 3.19: OFFSET DIFFERENCESccveutteteutetettstetesesteseseatesesesssseseasssessssesensasesessesesessesesessesessssssesesssseses 30
FIGURE 3.20: RATE AND OFFSET CORRECTION APPLIEDc.cecuertiiuiriieietenteeneeteniennenieeneensesaesneennennensesseens 30
FIGURE 3.21: DAVINCI FLEXRAY SCHEDULE DESIGNcveteteirtineisiertssesesesesssesesssssssesesesesesessssssssssns 32
FIGURE 3.22: EB TRESOS PRODUCT FAMILYcotvttiuietiieiinieeitennesieeneeneseteeneeeesiessesseeseennesaesueemsennensesseenes 33
FIGURE 4.1: A PASSIVE BUS TOPOLOGYc.uveutiurenrientetenietirieeneessesieeneesesseseeseestessessesseessensessesseensensensesseenes 46
FIGURE 4.2: SINGLE CHANNEL HYBRID NETWORK0etetetetetetesesnsissssssssesesesesssnsessssssssssesesesesesessssssssnsans 46
FIGURE 4.3: LOGICAL INTERFAGCE0evteteteteteaesesssisssssesesesesesesasssssssssesssesesesasasessssssssssssesesesesesessssssssssnns 47
FIGURE 4.4: TIMING HIERARCHYcuveitiiuiiiiiiiientieiteietesttsie e e eeeess st ene et e b sne s esnesaesaeemnesnenseneens 48

.. 50
FIGURE 4.6: COMMUNICATION CYCLE.......ccctttittetterteeteateeteaseenseenseenssesssesasesssesnsesssesnsessseessesssessseessessseanes 51
FIGURE 4.7: FRAME FORMATccteiteettettettetiseeseessessessessesssessassesssassessessassessssssessessensssssessessesseessensensensesses 53
FIGURE 4.8: ENCODED BIT STREAMccetuttiitieieittaiteesteeeiteesteeessteesbeesssteasseeasseesssseesssessnsseessseesssseessens 56
FIGURE 4.9: RECEIVED BIT STREAMciiutiiitiiieitteteeteeitteateeatt et ettesbtesbtesatesitesatesabesabesseenaeenseeseeesseenseenne 58
FIGURE 4.10: CAS AND MTS ENCODINGcoiuttiitiieetieiieeteettettestte st sitesitesitesatesatesee s st esaeenseeseeesbeenneenne 59
FIGURE 4.11: WAKEUP PATTERN USING TWO WAKEUP SYMBOLScecvertiitierieriesiensieseessesessesssessensessesseenes 60
FIGURE 4.12: SAMPLING AND MAJORITY VOTING OF A RECEIVED BIT PATTERN AT THE INPUTcccccoueenne 62

TABLE OF FIGURES

FIGURE 5.1: INTERRUPT-DRIVEN RESPONSE TIMEc0ccttetietetenteeseeseesessessenssessessessesssessessessessesssessessessanns 68
FIGURE 5.2: TIMING CHART EXAMPLE......cccttittiitiitaitteittettett et ettesitesbtesitesitesatesatesteeneenaeanaeesbeesbeesaeenne 70
FIGURE 5.3: STANDARD MEMORY MAPcccutiiiiiiiiitiiiieittettett et et e itesttesatesitesate s bt sbe s et enaeenteesaeesbeesaeenne 71
FIGURE 5.4: THE EFFECT OF BAD SOFTWARE ON A COMPANYcc.ttiiiiitiiniieniieniiesiesieeiesnteeseeesteeseeesueesaeenne 75
FIGURE 5.5: NUMBER OF FAULTS FOUND IN SOFTWAREeeittiittiiiertieniiesieeresieeseenseesseesseasseesseessessseanes 76
FIGURE 5.6: FLEXRAY CONCEPTUAL ARCHITECTURE........ccctttttitteiteniienttenitesitesie st etesseeesaeesteeseeesieeneenne 81
FIGURE 5.7: SCHEDULED TRANSMISSION DEFINITION........ccucectetieteettetetensesseessesessesseessesessessessesssessessesssens 32
FIGURE 5.8: FLEXRAY MODEL SYSTEM BASEc.utttittitieittetiettettettesitesttesitesitesate et seesneesaeesseeseeesseenseenne 84
FIGURE 5.9: SYSTEM DEVELOPMENT PROCESS.cceuttiutteittetiettettenttenttesttesieesttesatesnteseessseesaeenseesseesseesueenne 85
FIGURE 5.10: THE SMART DESIGNER WORKFLOW.........ceittettattenttenteesseenseessesssessesseansesssesssesssessseessessseenes 86
FIGURE 5.11: THE SMART SIMULATOR ARCHITECTUREc.cecvertiitieeieiensenseessessessenseessessesessesseessessessesseenes 87
FIGURE 5.12: SMARTOSEK ENGINE CONTROL SYSTEM........ccuetiiteetiereetessessenssesessesseessessessessessesssessessenseens 88
FIGURE 5.13: EVENT STREAM WITH P=4 AND J=1 ..ottt 89
FIGURE 5.14: SYMTAS DEVELOPED MODEL........cccovertesteetietressensesseessesessenseessessessessesssessessessessssssessessessesses 90
FIGURE 5.15: SCHEDULING ALGORITHMccottitiiititieiitenttettetteitenitesttesitesitesatesateseesneenaeenseesseesseenseenne 91
FIGURE 5.16: NETWORK GATEWAY SIMULINK/STMEVENTS MODELccveotteieiesieeiieiiesrensesseessessensesseeseenns 93
FIGURE 5.17: AUTOMESH ARCHITECTUREcc0eettetertetesteestessessesseessessessanseessessessessesssessessessesseessessessessesses 94
FIGURE 5.18: ABSTRACT DISTRIBUTED SYSTEMuceitteiitetiattettenitenttenttesitesitesatesntesbesnseesseenseesseesseesueenne 96
FIGURE 5.19: CO-SIMULATION MAPPED EXAMPLE..........cecutittitiantientienitentiestesitesiesteseesseeenaeenseeseeesseenueenne 96
FIGURE 5.20: SIMULATOR COMMUNICATION STRUCTUREcc.cterttitieiiantieniienieesiesteseessteeneeenteeseeesseenneenne 97
FIGURE 5.21: NS-2 MODEL SHOWING THE INTERFACE MODULEecvertintierieieniensieseessesessesssessensessesseenes 98
FIGURE 5.22: ROUTER BLOCK MODELceiutiiuttittateeiteeitteateeattebtettesitesbtesaeesitesatesatestesseenaeanseesseenseesueenne 99
FIGURE 6.1: BLOCK DIAGRAM OF THE WORKINGS OF AN E-RAY CHIPcocctiiiiniiniiiieniceceeceeeeee 108
FIGURE 6.2: POSSIBLE COMMUNICATIONS CONTROLLER STATESeeittitiiniteniieniieniieniesteseeseesneeenneeneeas 112
FIGURE 6.3: STATE DIAGRAM FOR NODE ENTERING STARTUP........cccutitieniieniieniieniiesiieeieeteeneeeneeeseeesneeseees 114
FIGURE 6.4: RAM BLOCKS WITH LOCAL PARITY GENERATORS AND CHECKERSccevuirveerieriesienerenrennas 119
FIGURE 6.5: HOST — MESSAGE RAM INTERFACEcccotettittettetiatieteesiesssestesaaesssesnsesnsesnsesnsesnseensessseas 121
FIGURE 6.6: DOUBLE BUFFER STRUCTURE INPUTceccttitttiuiteiteeteetteteeteesitenteesitesitesatesiteseesnneseesseenneas 122
FIGURE 6.7: SWAPPING INPUT BUFFER COMMAND MASK & INPUT BUFFER COMMAND REGISTER BITS....... 122
FIGURE 6.8: DOUBLE BUFFER STRUCTURE OUTPUTeeettteuiteiteenteenieeieeieesttenttesieestaesatesseeseesnsesneeenseenaeas 123

FIGURE 6.9: SWAPPING OUTPUT BUFFER COMMAND MASK & OUTPUT BUFFER COMMAND REGISTER BITS 123

FIGURE 6.10: TRANSIENT BUFFER RAMSoooiiitiiiiiiiieeiieiiiie ettt ettt ettt ste et s esesseesaesaesaesssessansas 124
FIGURE 6.11: MESSAGE RAM CONFIGURATION EXAMPLEcccteetetesteetieeresensesesessesessesseessessessesssessesses 125
FIGURE 6.12: HEADER SEGMENT IN MESSAGE RAMccciiiiiiiiiiiiiiiiiieieteeee et 126
FIGURE 6.13: DATA PARTITION IN MESSAGE RAM EXAMPLE........ccctimiiiiiniienie ettt et 128
FIGURE 6.14: EMPTY, NOT EMPTY AND OVERRUN STATES......cc00ecteetetestertiesresensesssessesessessesssessessessssssesses 132
FIGURE 7.1: DISCRETE-SYSTEM STATE VARIABLEccueetiettitieteetetestesseessessessesssessessesessesssessessesssessenses 138
FIGURE 7.2: CONTINUOUS-SYSTEM STATE VARIABLEcocttiitiiieiieiteiienitenitesitesitestesiteseesnesneeeeeeneeas 138

TABLE OF FIGURES

FIGURE 7.3: SIMULATION STUDY STEPSoeutitetiuttrteetstetettesesesseseseesesessesesesesansasesansssesensssesesssesessssesnns 140
FIGURE 7.4: SIMULATION MODELScvtrutitetiitettetente st siteieeeneere et etestesaesseeneessesaesseessensenseessennessensesanennes 142
FIGURE 7.5: FLIGHT CONTROL HILS SYSTEM.....cc.eectiriiniiniiiiiientietetenientine et ene e sae e 143
FIGURE 7.6: MODEL BUILDING, VERIFICATION AND VALIDATION.......cccvtiiiiiiiiiiiiniraeeereeeeeeeeeeeeeeesnnnnnnnneens 145
FIGURE 7.7: OPEN QUEUING NETWORKcveutteuetitetetestetentesesestsesessesesessesesensesessssesesessesessssesensssesensesesenes 149
FIGURE 7.8: CLOSED QUEUING NETWORKuuuuuuiiiiiiiieeieeeeeeeiiiiiiieeeeereeeeeeeseeseesssssssssresseesssessssssmmsssssseees 149
FIGURE 7.9: MATHWORKS PRODUCT OVERVIEWcutitiuiuiietenitesestesesiatesesenessesessesessssesesessssensssesensssesenes 153
FIGURE 7.10: FIRST MATLAB GRAPHICSccutettiieiinieniiititeett ettt sae et nesneene s sresaesanennes 154
FIGURE 7.11: MODERN MATLAB GRAPHccutitiiiiiiiiniiiiiientt ettt st e ene e s 154
FIGURE 7.12: MATLAB GRAPHICAL DEVELOPMENTcutteteuitetenietesestesessnessessseesessssssesessesensssesensssesenes 155
FIGURE 7.13: MATLAB ENVIRONMENTeuttitettteteutteeeststeseseseseseesesessesesensesessssesessssesesessssensssesensesesenes 155
FIGURE 7.14: AN M-FILE ...ttt ettt ettt ettt st sttt s e eeeneeaee et e eaneemreenneeneennes 156
FIGURE 7.15: SIMULINK ENVIRONMENTooutitiintiiieniteietitt et eeeniestesteeseesneseeeuessnennensesneeneeseesaesnesneennenaens 157
FIGURE 7.16: SIMULINK LIBRARYcoveututeteutteuetetetesessesessssesestsesesesesessesessnsesessssesessssssessssssensssesensssesenes 157
FIGURE 7.17: SIMEVENTS LIBRARY WINDOWccceerteriirieniiniritennientetentensenseeneessesiesseessessenseeseesessessesnennes 158
FIGURE 7.18: SIMEVENTS ENTITY GENERATOR OBJECTSveveutteuestetesenteseseneeseseseesesessssesessesensssesensssesenes 159
FIGURE 7.19: SIMEVENTS TUTORIAL BLOCKScueuvtettteteuttesesesesestseseseesesensesessseesessssesesessssensssesensssesenes 160
FIGURE 7.20: SINGLE SERVER PARAMETERS BOXcecutruiriiiuiiientieietetinstnieeeessesieseeessesnesseeseenesuessessnennes 161
FIGURE 7.21: TUTORIAL BLOCKS CONNECTEDcecteetirieniiniritentienteteniensenseeeessesieseeesesenseeseennessessessnennes 161
FIGURE 7.22: TUTORIAL RESULTScetttiutiiiemtiieeteetentestesieeiseetesne et etestesuesseeneesnesaesseessesnenseeneennensessessnennen 162
FIGURE 8.1: FLEXRAY SOFTWARE DRIVER OPTIONS........cctiutiiintiemteteientinieeeensesieeseesenenseeseenessessesanennes 171
FIGURE 8.2: COMMSTACK SYSTEM OVERVIEWcctiuiuiuiieteniteiesiseseneesessneesesessesesessesesessesensssesensssesenes 172
FIGURE 8.3: COMMSTACK SYSTEM ARCHITECTUREc..coutiiiniiinteiieietinieeeente e eieenenenneereenesiesnesanennes 173
FIGURE 8.4: COMMSTACK STATE DIAGRAMcoteriiiiniiiiiiientieteteientenieeeessesieseeesenenseeneenesnessessnennes 174
FIGURE 8.5: VIRTUAL FUNCTIONAL BUS CONCEPTccueruiiuriiinrientetenientinieeeensesieseeenenesneeseenessessesanennes 176
FIGURE 8.6: SOFTWARE COMPONENT COMMUNICATION INTERFACE TYPES.......c.c0etevetrieueeesireeeeeeseneeeesens 177
FIGURE 8.7: FLEXRAY STACK LAYOUTcoveutieteetieteeeetetestsseseseseseseesesessesesensesessseesesessesessssssensssesensssesenes 178
FIGURE 8.8: FUIITSU FLEXRAY DRIVER LAYERScceouiitiniiiiiiientieteieientenieeeesre e eeeenenesneeneenesaessesanennes 180
FIGURE 8.9: FUJITSU FLEXRAY DRIVER ARCHITECTUREcveuiteuenieteueneeeesineeseseseesessssesesessssensssesensssenenes 180
FIGURE 8.10: FUJITSU FLEXRAY DRIVER SERVICESc..ccctrtiiiniieieieieniinieeeensesieeeeenenenseeseesnesnessesanennes 181
FIGURE 10.1: SIMULATION STUDY STEPScuetetettteteuttssestssesesesesesessesensesesensesesessesessssesesessesensssesensssesenes 189
FIGURE 11.1: FLEXRAY DEVELOPMENT STEPSccctertiriiriiriritentieteteniensenseeeensesiesseesesenseeseenessessessnennes 196
FIGURE 11.2: FLEXRAY NODE ELEMENTSceoutettiieienieniiniretenteeneetesiensesseeneessesaesseessessenseeseesnessessessnennes 197
FIGURE 11.3: APPLICATION INPUTS, OUTPUTS AND CONSIDERATIONSveutueeueerirenesueaesestesenessesenessenenes 198
FIGURE 11.4: SOFTWARE DRIVER INPUTS, OUTPUTS AND CONSIDERATIONSuuuiviiririieieeeeeeeieeeennnennneens 199
FIGURE 11.5: COMMUNICATIONS CONTROLLER INPUTS, OUTPUTS AND CONSIDERATIONSc.ocvevenerennene. 199
FIGURE 11.6: PHYSICAL BUS INPUTS, OUTPUTS AND CONSIDERATIONSceoetiiiumirirerreeeeeeeeeeeeeeeeinnenneenns 200

- Xii -

TABLE OF FIGURES

FIGURE 11.7: TOP LAYER OF SIMULATION MODEL......c.cueteuttetesttetesisesassesessneesessseesessssesesessesensssesensssesenes 201
FIGURE 11.8: FLEXRAY MODEL SUBSECTIONSccctertiiteniiiritentienteteiensenseeseessesiesseessessenseeseesnessessessnennes 201
FIGURE 11.9: ENTITY PATHScvtitiitiitiiteietie ettt ettt s st 202
FIGURE 11.10: SLOT ENTITY PATHS.....ccvtiutiietiieettetete ettt eete et ettt st e esnesaeseee s esnesneeneennesnessesanennen 204
FIGURE 11.11: REQUEST ENTITY PATHSueutitetiutteteuttetentstesesesesensesasessesesessesansesesensesesensssesesssesensssensnns 204
FIGURE 11.12: FRAME ENTITY PATHS.....c.ceectitiitetieteienieniiet ettt eteste st eneesae s seeessenesneeneennesnessesanennes 205
FIGURE 11.13: CYCLE ENTITY PATHSucuteteutietettteteneeteeessssesesesesesesesessesesensesessssesessssesesessesensssesensssesenes 205
FIGURE 11.14: MODEL AS A FLOW OF DATAccvtettiieienieniieireteete et etesresuesseeneesaesieseeesesnesseeneesnesaessesanennen 207
FIGURE 11.15: E-RAY DATA FLOW PATH.....cotiitietieieienieniieireteste ettt sae s nenesneeneenesaesaesanennes 208
FIGURE 11.16: E-RAY BLOCK DIAGRAMceutuiueuiieteneietentsteseseseseseeseseseesesensesesessesessssssesessesensssesensesesenes 213
FIGURE 11.17: COMMUNICATIONS CONTROLLER TASKSc.veueutteuesietesesteseseneeseseseesesessssesessesensssesensssesenes 213
FIGURE 11.18: MODEL OF THE COMMUNICATIONS CONTROLLERveututetetiereseeeseesesessesesessesensssesensssesenes 214
FIGURE 11.19 TRANSIENT BUFFER RAM STRUCTUREc..cotiiiniiiiieietitinieeeeste e eieenenenneeneenesnesaesanennes 215
FIGURE 11.20: SYNCHRONISATION BLOCKc.vvettteteetsteeesteteseseseseseeseseseesessnsesessssesessssesesessesensssesensssesenes 216
FIGURE 11.21: CYCLE ENTITY FLOW DIAGRAMcoueiiiiiiniiiiriiintieiteteienttnieeaeesne e setesenenneeneenesaesaesanennes 217
FIGURE 11.22: INITIALISATION BLOCKcvetttetettteteessaesessssesesesesessesesessesesensesessssesessssssessssesensssesensesesenes 218
FIGURE 11.23: INITIALISE STATIC SEGMENT BLOCKc.vveuttetesiteseseeseseseesessneesessssesessssesesessssensssesensssesenes 218
FIGURE 11.24: STATIC SEGMENT BLOCKcoutiiietieieienieniieiteteere et etestessesseeneessesaesseessessenseeneesnessessessnennes 220
FIGURE 11.25: GET START OF CYCLEcuutiuiiuiiiietieiete st eete ettt ettt et esaesaesseenenesneeneesnesnesuesanennen 220
FIGURE 11.26: DYNAMIC SEGMENT BLOCKcuvtetteuieienieniieiritenteeneetesiessesseeneessesaesseessenesseeseennessessessnennes 221
FIGURE 11.27: DYNAMIC CHANNEL BLOCK0evetetetettretstetesesesesesssssssssssssesesesesessssssssssssessesesesasssasssnns 221
FIGURE 11.28: DYNAMIC ENABLE BLOCKuvtttetteieienieniieiretesttenteetesiestesseeneesnesaeseeessesnenseeneennessessesanennes 221
FIGURE 11.29: NETWORK IDLE TIME AND SYMBOL WINDOW BLOCKcutveuiareieeeseeeeeeseeeeeesaesenesiesenessenens 222
FIGURE 11.30: INCREMENT CYCLE COUNT BLOCKc.ceiutruiiuriienrientetenieiinieeeensesieeeeenenenneeneenessessessnennes 223
FIGURE 11.31: GLOBAL TIME UNIT.....c..iiiiiiiiiiitieietenie ettt ettt sae s st ere e e s ennen 224
FIGURE 11.32: CYCLE COUNT ATTRIBUTE ADDERceoutiiiiitiiiniienteteieniinieeeesne e sieesenenseeseenessessesanennes 224
FIGURE 11.33: DYNAMIC SLOT GENERATOR.........cutveteutteuentteseneseseseesesessesessnsesesessesessssesesessssensssesensssesenes 225
FIGURE 11.34: MESSAGE HANDLERc.oitiuiiitettieteesteeetetesesieteseseesesestesesenseseseseesessssesesessesensssesensssesenes 226
FIGURE 11.35: MESSAGE RAM MODEL OPERATIONc..ecutiuiiientienteieientinieeeennesieeeeenenesneeneenesnessesanennes 227
FIGURE 11.36: MESSAGE RAM BUFFERScveuettteteuttetentstesesisesestsseseseesesessesesessesessssesesessesensssesensssesenes 227
FIGURE 11.37: MESSAGE HANDLER MODEL BLOCKSc..eeutiutitintieteteientinieeeente e eieesenesneeneenesnessesanennes 228
FIGURE 11.38: OUTPUT BUFFER STRUCTUREc.0trtettetenttereseeeseseesesensesesesessansesesansssesensssesesssesessssensnes 229
FIGURE 11.39: PHYSICAL OPERATION DIAGRAMcueutiiueuiietesiteiesteseseseesessnessessseesessssssessssesensssesensssesenes 230
FIGURE 11.40: PHYSICAL BUS MODELccuetttetetttetetesteeestesesesesesestssesessesesensesessssesessssssessssssensssesensesesenes 230
FIGURE 11.41: CHANNEL ‘X" LAYERecutttititiettetete e sieeit et ere et ettt esnesae s aenesneeneesnesnessesanennen 231
FIGURE 11.42: PROPAGATION DELAY CALCULATION BLOCKS ...c..teuteuteieiinieeieenienieeieenenenneeneenesieseesanennes 232
FIGURE 11.43: DELAY SLOTS BLOCKSc.teteuttetettteteeestetestssesesesesesessesessesessnsesesessesessssssesessssensssesensssesenes 232
FIGURE 11.44: ADDITIONAL FRAMES LAYERcccttitiiiiietintintteteientinieescenreseesueesnenessesneereeseessesnesseennesaens 232
FIGURE 11.45: FRAME ROUTING BLOCKueutuietiutteteetteteestesesesesessesasessesesessesensasesensesesensssesesesasensssensnns 233
FIGURE 11.46: APPLICATION LAYER OPERATIONcceiiriiiiiiiiniiiieientintenieeeensesiesieessenesneeneenesaessesanennes 234

TABLE OF FIGURES

FIGURE 11.47: APPLICATION LAYERcututeteuttetetetetensasesestssesesesesessesesessesessnsesessssesessssesesessssensssesensssesenes 234
FIGURE 11.48: DRIVER OPERATIONcoutiiiimtiiietietetesieniieiteete et et entetesaesseeneessesaesseessesneseensennessessesanennes 235
FIGURE 11.49: SOFTWARE DRIVER LAYERocutitiiieiinieniiniiitenteetetestestesieeneesnesiesieesenesseeneenesaessesanennes 235
FIGURE 11.50: SOFTWARE DRIVER DELAY ...c.ooutitiiiiiinieniiiititenteetetestestesseeseesne e seeessessesseeneesnessessesanennen 236
FIGURE 11.51: BUS MONITOR MODEL........cuciteuiutetesttetenteesasteseseneesesensesesessesasessesessesesessesesessesensssesensssesenes 237
FIGURE 11.52: BUS MONITOR MODEL........cceeitiititieieienieniieitetesreeneetentessesseeneessesaesseessensenseeseensessessessnennes 237
FIGURE 12.1: MODEL DEVELOPMENT FLOW CHARTcueoutiiiiiniiinteieietinieeeente e eeeenenenneeneenesnessesanennes 240
FIGURE 12.2: MODEL SUBSYSTEM BLOCK DIAGRAMecutiutiiiniiinteieietinieeeenresieseeesenenseeneenesnessesanennes 244
FIGURE 12.3: SYNCHRONISATION TEST 1 ATTRIBUTE SCOPE GRAPH FOR CYCLE ENTITIES..........coeeueenee. 246
FIGURE 13.1: CALIBRATION ITERATIVE PROCESSveutteteuttetesiteseseeseseatesessnessessssesessssesesessssensssesensssesenes 262
FIGURE 13.2: SIMULATION MODEL DEVELOPMENT PROCESSc.ceteiiieiiniieeenrenieeieerenenreeneenesnessesanennes 263
FIGURE 13.3: TOP DOWN VIEW OF THE FUJITSU SK-91F467-FLEXRAY DEVELOPMENT BOARD 265
FIGURE 13.4: FLEXTINY MODULEccutrtitiiittitteiete ettt eeteere et et stesaes e eneesne s saeesenesneeneesnesaessesanennen 266
FIGURE 13.5: PASSIVE STARcututtettuttetentsteseeetesttesesesesestesesesseseseesesesteseseseesesensesesessssesessssensssesensssesenes 267
FIGURE 13.6: VECTOR VN3600 USB INTERFACE FOR FLEXRAYccccoiriimiiiininenieiiienieeeceeniesiceieeee 267
FIGURE 13.7: DESIGNER PRO MAIN WINDOWcctirtiiiiriiniiniritenrientetentensenseeseessesiesseessesenseeseesnessessessnennes 270
FIGURE 13.8: THE FIRST PAGE OF THE FLEXRAY CONFIGURATION WIZARDcc.ccceeiemreriniieneenenieneenenennes 271
FIGURE 13.9: THE SECOND PAGE OF THE FLEXRAY CONFIGURATION WIZARDccceouivuenriereenennennennennen 271
FIGURE 13.10: SOFTUNE WORKBENCH MAIN WINDOWccutetetiuieterineetesenseseseesesessesesessesesessesensssesensesesenes 272
FIGURE 13.11: FLEXCONFIG MAIN WINDOWccutitiiiiieiintinneeteniensinieeseeseseesseesnensensesseeseessessessesseennensens 273
FIGURE 13.12: CANALYZER.FLEXRAY TRACE WINDOW.......ccoeuttrterintetesintesesensesensesesessesesessesensssesensesesenes 274
FIGURE 13.13: E-RAY STRUCTURE.....c..cotititiiietietetenieniieit et ettt sttt st et esaesaeseeenenesneeneesnesaessesanennen 277
FIGURE 13.14: E-RAY STATUS REGISTER INTERRUPTSc..cocttcuinriimieiieieniinieeeentesieeieenenenneeseenesnessesanennes 278
FIGURE 13.15: FREE-RUN TIMER SETTINGSccutetteieriiieniiniretenteeneetestessenseeseessesiesseessessensesseennessessessnennes 280
FIGURE 13.16: CALIBRATION HARDWARE SETUPcoeutiietiuieietiietesieteseseeteseseesesesessesessesesessssensssesensssesenes 281
FIGURE 13.17: FLOW DIRECTIONS OF DATA IN A FLEXRAY SYSTEMccooteuiiinieiiiietenieeeeeseeeeeseeseneenenens 282
FIGURE 13.18: FLOW DIRECTIONS OF DATA IN A FLEXRAY SYSTEMc..ootriiiiniinieniiieienieeieeeeniesieseennen 283
FIGURE 13.19: CALIBRATION HARDWARE SETUP — REVISEDc.ceeutetetetiniereiietnteneesesessesesessesensssesensesesenes 288
FIGURE 13.20: FUIITSU FLEXRAY DRIVER TRANSMIT TIMINGS........ccctertiruirieienrerienieenenenreeneenesiensesnennes 292
FIGURE 13.21: FUJITSU FLEXRAY DRIVER TRANSMIT TIMINGS WITH LINEAR TREND LINE...........ccecvrvnnen.. 292
FIGURE 13.22: FUJITSU FLEXRAY DRIVER TRANSMIT TIMINGS WITH POLYNOMIAL TREND LINE 293
FIGURE 13.23: FUJITSU FLEXRAY DRIVER RECEIVE TIMINGS ...c.cetetttetetietereseesnsetesesessesesessesensssesensssesenes 294
FIGURE 13.24: FunTSU FLEXRAY DRIVER RECEIVE TIMINGS WITH LINEAR TREND LINE......c..ccccoveruerunnnne. 295
FIGURE 13.25: COMMSTACK TRANSMIT TIMINGScueruiiurirenrienteteientinieeeesse e sieesesesseeseessessessessnennes 295
FIGURE 13.26: COMMSTACK TRANSMIT TIMINGS WITH POLYNOMIAL TREND LINEcccoeveuriereneeennnes 296
FIGURE 13.27: COMMSTACK TRANSMIT TIMINGS WITH LINEAR TREND LINEcccccecuinieierenenrennennen 296
FIGURE 13.28: COMMSTACK RECEIVE TIMINGSveutteteuteeesintetesiteseseeseseseesesessesesessesesessesessssesensesesenes 297
FIGURE 13.29: COMMSTACK RECEIVE TIMINGS WITH LINEAR TREND LINEc.ccecvevvivuinieerienenrennennennen 298

- X1V -

TABLE OF FIGURES

FIGURE 13.30: TRANSMIT INTERRUPT TIMING WITH LINEAR TREND LINE.........cecetsteveeiriereresurienessesenessenens 298
FIGURE 13.31: TRANSMIT TIMEScvtitiiutiiietiieettetetesiesteeereeresre et enessesesseeneessesaesseessensensesneennensessessnennes 299
FIGURE 13.32: TRANSIENT BUFFER TRANSFER TIMEScc.cecticiiitiiteieieniinieeeenresieseeesenenneeseenesnessesanennes 300
FIGURE 13.33: RECEIVE INTERRUPT TIMINGS.....ccuteteiirieniiririrenttentetenientesseeneessesiesneessessenseeseenessessessnennes 301
FIGURE 13.34: BUFFER UPDATE TIMINGScuttetettteteuttetestssesesesesesesesessesessnsesessssesessssesesessssensssesensesesenes 301
FIGURE 13.35: IBF INTERRUPT TIMINGS WITH SERIES TREND LINE......c.ccctrteieniirenreierenieereereniensennennes 303
FIGURE 13.36: IBF TIMINGS WITH LINEAR TREND LINEcueututteesitesestesesineeseseseesesessssesessesensssesensssesenes 303
FIGURE 13.37: OBF INTERRUPT TIMINGSuttoutetieietenieniiniretenreeeetentessesseeseessesaesseessessensesseensensessessnennes 304
FIGURE 13.38: FFRD AMENDED RECEIVE TIMINGS WITH LINEAR TREND LINEcccecviniininierenenennennen 305
FIGURE 13.39: COMMSTACK AMENDED TIMINGS WITH LINEAR TREND LINE..........ccoevevetrtrueeiereneraenenns 306
FIGURE 14.1: MODEL BUILDING PROCESSc.veuetttrtettsteteststesestsesestssesessesesensesessssssessssesesessssensssesensesesenes 324
FIGURE 14.2: CALIBRATION ITERATIVE PROCESSccueiuiriiririientienteietinienieeeessesieeeeesenesseeseenesuessessnennes 325
FIGURE 14.3: FINAL MODEL STEPSueututetettstetetttetesessesestssesesessesessesesansesessnsesessssesessssesessssesensssesensasesenes 345

XV

TABLE OF TABLES

Table of Tables

TABLE 3.1: SAE AUTOMOTIVE NETWORK CLASSIFICATIONSccuttettettentieniienieesiesteeiessteeseeenueeseeesseesueenne 11
TABLE 3.2: EVENT-TRIGGERED VS. TIME-TRIGGERED SYSTEMScertirtitniieniienieeieeeeenteeneeenieeseeesieesieenne 14
TABLE 3.3: MOST25 FRAME BYTE SUMMARYeeteieieetietteienseseeessessesasseessessessessesssessessessesseessensessessesses 22
TABLE 3.4: MOST25 FRAME BYTE SUMMARYveeteitiientietteienteseeessessesesseessessessessesssessessessesssessessessessesses 23
TABLE 4.1: K AS A FUNCTION OF A LIST OF VALUEStettiitittenttinttenitenttesitesitesiesteseessseesteesteeseeesseesaeenne 51
TABLE 5.1: COMPONENTS OF SOFTWARE MEASUREMENTcc.ceiitietietetinreeseesessesseessessensessesssessessensensesses 78
TABLE 5.2: FOCUS TYPE DEFINITIONS FOR FLEXRAYccucoiiiiniiiiieiieieieie ettt etevebe e sse e s eeeeeis 32
TABLE 5.3: SYSTEM ANALYSIS TECHNIQUE REQUIREMENTS SUMMARYcccecuertiiurerieienrenreeseessessenssessenes 101
TABLE 6.1: MESSAGE BUFFER ASSIGNMENTc..ceiittitttatttateeteeteeteentteteesstesstesiaessaesatessteseesanesnaeeseenaeas 111
TABLE 6.2: ERROR MODEScittiittistteittenttesite ettt este ettt etteeuteeuseesteesseenseesseensteseesatessaesatessteseesanesnseenseenseas 117
TABLE 6.3: MESSAGE RAM SCAN......cciiieietitietietestesteettessesseeseestestessesssessassassesssessessessessesssessessensssssassen 120
TABLE 6.4: CYCLE SET DEFINITIONccteietiettettetestesteestessesaeseessessessensssssessessesssessessessessessssssessessesssenses 130
TABLE 6.5: EXAMPLES OF CYCLE SETSceiuteiteittteteetttette ettt eiteeateenteesteebtesstesstessaeshaesatessteseesanessesseenseas 130
TABLE 6.6: CHANNEL FILTERING BIT CONFIGURATIONSeettettetietintienitentienitesteeseesiteseesneseeenseenaeas 131
TABLE 7.1: SIMULATION SOFTWARE SELECTION ANALYSIS.......c0eteteteietiiseeesesresseseeriseseessssessessesessesseses 164
TABLE 11.1: ENTITY ATTRIBUTESc.veuteuietitesieriosestesessisseseesesesseseesessessesssassessssessessssessessessssessessesessasseses 206
TABLE 12.1: SYNCHRONISATION TEST 1 SIMULATION TIME RESULTScuuttittiiieniieniieniiesteeeeereereeeeeenaea 245
TABLE 12.2: SYNCHRONISATION TEST 1 RESULTS SUMMARYcuttitiitieiieniieniiesiiesiiesieeteeneeenreeseeesaeeseees 245
TABLE 12.3: VERIFICATION TEST CASE PARAMETERSc.cetiitietieieiesiesieseesensesssessessessessesssessessessssssesses 250
TABLE 12.4: VERIFICATION TEST CASE RANDOM NUMBER SEEDSccoeiitiieriitiieesiereesesessssessesseseesessenns 251
TABLE 12.5: VERIFICATION TEST CASE 1 RESULT SUMMARYccuuttitiiiaiieniieniieniiesiie e steeneeenseeseeesneeseees 252
TABLE 12.6: VERIFICATION TEST CASE 2 RESULT SUMMARYccocutitieieieriiresesiireseesseseesesessssessessessesessens 252
TABLE 12.7: VERIFICATION TEST CASE 3 RESULT SUMMARYccuutitiinitaniieniieniieniiesiieeiesteeneeenreeseeesaeeseees 253
TABLE 12.8: VERIFICATION TEST CASE 4 RESULT SUMMARYccecteitiiiierieienieeseesiesesseeseeseessessessesssesessens 253
TABLE 12.9: VERIFICATION TEST CASE 5 RESULT SUMMARYccceiteitiiiierieienieeseestesesseeseeseessessessenssessessens 253
TABLE 12.10: VERIFICATION TEST CASE 6 RESULT SUMMARYcccveieiiertiriieienseeireseesessesseessessessesssessesses 254
TABLE 12.11: VERIFICATION TEST CASE 7 RESULT SUMMARYeeitiiiiriieiieniieniieniientesteseeseesneeenneenneas 254
TABLE 12.12: VERIFICATION TEST CASE 8 RESULT SUMMARYeetiiiiiiieniieniieniienieentesteseesnesneeenneeneeas 254
TABLE 12.13: VERIFICATION TEST CASE 9 RESULT SUMMARYcccveieiitiieieiensesiressesessesseessessessesssessesses 255
TABLE 12.14: VERIFICATION TEST CASE 10 RESULT SUMMARYccutiitiiianiieniieniieniiestesteseeseeeneeenneeneeas 255

- XVi -

TABLE OF TABLES

TABLE 12.15: VERIFICATION TEST CASE 11 RESULT SUMMARYocutetiteuiririeininsenieeseneesesessesensssesenessesenes 255
TABLE 12.16: VERIFICATION TEST CASE 12 RESULT SUMMARYcocuiniiiiniieiienrinienieenenenieeneeneniessesanennes 256
TABLE 12.17: VERIFICATION TEST CASE 13 RESULT SUMMARYcocuiiiiiiniieienienieneenenenreeneenesieseesenennes 256
TABLE 12.18: VERIFICATION TEST CASE 14 RESULT SUMMARYcocuiiiiniiniieienienieniereienreeneenesiessesenennes 256
TABLE 12.19: SPEED TESTSvteutteteuttetesesteseseetesesesesessesastesesensesesessasessasesessssesesesesessesesessesensssesensasesenes 258
TABLE 13.1: SK-91F467-FLEXRAY DEVELOPMENT BOARD INTERRUPT CONNECTIONSoververenieennnes 279
TABLE 13.2: CALIBRATION TEST CASE PARAMETERSccutiuiiiiniiiieieieiinieeeestesiesieesenesne s enesnessesanennes 286
TABLE 13.3: CALIBRATION TEST CASE RANDOM NUMBER SEEDScooeruirieieniirienieerinenreeneeneniensennnennes 287
TABLE 13.4: FFRD_API_GET_TIME() TIME DIFFERENCES (IS)vcttuteteutteteieeesesieeseseeseseseesesesessesessesesessenns 290
TABLE 13.5: FREE RUN TIMER DIFFERENCES (INS)......ceueutteteuteeesiteteseetesestetesesessesessesesessssesessssessssesensesesenes 290
TABLE 13.6: INTERRUPT LATENCY TIMES (HS) «uvveututeteuteesastesesenenseseeseseseeseseseesesessesesessesesessssensssesensesesenes 291
TABLE 13.7: TRANSMIT AVERAGES.....c..coutititiiietietete sttt ete ettt et ste st eseesaesaesaeesseanesneeseesnesnessesanennen 300
TABLE 13.8: RECEIVE AVERAGES.......cuttttiuiiteuentetesitetesteesesteseseneesesessesestesesaseesesensesesessesesessssensssesensasesenes 302
TABLE 13.9: IBF AVERAGESc.ueeiiiiiitiiieieiiie ettt sttt sttt et ettt sa e s st ne b e b sae s ennen 304
TABLE 13.10: OBEF AVERAGES.....coiutiitiiteeteiteete ettt ettt et ettt ettt saee e st st e saeesaeeseneeneeneenneen 305
TABLE 13.11: SYSTEM TIMING CONSTRAINTSecutteteuieeresteeesenteseseneeseseasesaseesesensssesessesesessssensssesensasesenes 307
TABLE 13.12: CALIBRATION TEST CASE 1 DATA ...couiiiiiiiiniiiiiieeit ettt s 309
TABLE 13.13: CALIBRATION TEST CASE 2 DATA ...coutiiiiriiniiiiriienteeitetentesttsieeseesne st sesnesneeneenesresuesanennes 309
TABLE 13.14: CALIBRATION TEST CASE 3 DATA ...eoteiiiriiniiiiiiientieneetetesttsreeneesne e seeenenesne s enesresaesanennes 310
TABLE 13.15: CALIBRATION TEST CASE 4 DATAcuveueuiieienieeetiteteseetesesesseseseesesessssesessssesessssessssesensssesenes 310
TABLE 13.16: CALIBRATION TEST CASE 5 DATA ...coutiiiiiiiniiiiiiientietetentesttsteeieesre st enesneeneene s saesanennen 311
TABLE 13.17: CALIBRATION TEST CASE 1 ANALYSIS....c.ctetiuieietiietesietetesteteseseeseseseesesessssesessesessssesensssesenes 312
TABLE 13.18: CALIBRATION TEST CASE 2 ANALYSIS....cutiuiiiiieniieteieientinieeeessesieeeeenenesseeneenesnessesanennes 313
TABLE 13.19: CALIBRATION TEST CASE 3 ANALYSIS....cutiuiiiiieniieteietentinieeeenre e eeeenesnesneeneenesaessesanennes 314
TABLE 13.20: CALIBRATION TEST CASE 4 ANALYSIS....cutitiiiientieietenientinieeeenresieeieenenesseeseesnesaessesanennes 314
TABLE 13.21: CALIBRATION TEST CASE 5 ANALYSIS......ctetiuieietiieiesinteiesteteseseeseseseesesessssesessssessssesensssesenes 315
TABLE 13.22: CALIBRATION TEST RESULTS SUMMARYucutrietiminierinieiestnteseseeseseneesesessesesessssensssesensssesenes 316
TABLE 13.23: TRANSMIT PIPELINE TIMINGecutetteientenieniieiretenreententeniensesseeseessesiesseessessensesseennessessessnennes 318
TABLE 13.24: RECEIVE PIPELINE TIMINGeututeteuttetesteesastesesenessesenseseseesesaseesesessesesessesesessssessssesensssesenes 319
TABLE 14.1: VALIDATION TEST CASE PARAMETERScveuiuieietiietesietetesesteseseesesestesesessesesessesensssesensssesenes 327
TABLE 14.2: VALIDATION TEST CASE RANDOM NUMBER SEEDSc.coveteuiritiiieinteieiesensesesessesessssesensssesenes 328
TABLE 14.3: VALIDATION TEST CASE 1 DATActiuiieteuiieienieeeieeieiesttetese et tese ettt seseseesesessesenessesensssesenes 329
TABLE 14.4: VALIDATION TEST CASE 2 DATA ...ceeutiieiiieniieiriteete et etestesttsseeneesaesae s sesesneeneenesnesaesanennen 329
TABLE 14.5: VALIDATION TEST CASE 3 DATA ...ceottiiiiinieniiiiriteste ettt eieesnesie st nenesneeneenesaesaesanennes 330
TABLE 14.6: VALIDATION TEST CASE 4 DATAcveutuieteuiietenieeeseteteseeeseseesesesessesessesesessssesessssensssesensssesenes 331
TABLE 14.7: VALIDATION TEST CASE 5 DATA ...ceoutiiiiinieniiiritente ettt eneesne et senesseeneenesaesuesanennes 331
TABLE 14.8: VALIDATION TEST CASE 6 DATAueutuieteuiieiesieeeseseesesenteseseetesesessesessesesessesesessssessssesensssesenes 332
TABLE 14.9: CALIBRATION TEST CASE 7 DATA ..cvteieiiriiniiiitiientteitetesiesttsseeeesse e senenneeneenesnesaesanennes 333

TABLE OF TABLES

TABLE 14.10: VALIDATION TEST CASE 8 DATAueeiiitiitietieetiieeteeeestestesseessessessesssessessessessesssessessessssssasses 333
TABLE 14.11: VALIDATION TEST RESULTS SUMMARY ...c..eteutteittatiateetienttenitenteesitesieesatesieeseesnesneeenneenneas 334
TABLE 14.12: TRANSMIT PIPELINE TIMINGceiittiteetttatteeuteenteenteenteeteettesstesseessaessaesatesseeseesanesneeeseenaeas 336
TABLE 14.13: RECEIVE PIPELINE TIMINGceiuteittiteateeiteeiteeiteesteenteeteeteesstesseessaessaesatessteseesanesnsesnsesnnens 337
TABLE 14.14: BUFFER UPDATE TIME0ecteetiettettestestesteestesseseeseessessessessssssessessesssessessessessessssssessessesssenses 339
TABLE 14.15: BUFFER READ TIMEc...ciiutititeiteaite et ettt ettt et et et et et et esbtesstesatesbae st esstesaeesaneseeeneenaeas 340
TABLE 14.16: TOTAL SOFTWARE DRIVER TIMESccueitietietieteereesesessesseessessessesssessessessessesssessessessssssesses 342
FIGURE 14.3: FINAL MODEL STEPSuttittettttiteiteeteettt ettt ettt euteesteenteesteeseesstesseesaaessaesatessteseesasesnsesnseenseas 345
TABLE A.1: MODEL COLOUR CODINGccevtteuietiesesterioriseeseesisesessesessessessssessessssessessssessessessssessessssessessesenns v
TABLE B.1: PHYSICAL BUS INPUT WORKSPACE VARIABLESc.ccuvetiiteuietiienietiiteseeseeressesseseesesessesessessesenns VI
TABLE B.2: NODE INPUT WORKSPACE VARIABLEScvetitiieterinsenteneesensensesessessessssessessesessessessesessensesens VII
TABLE B.3: COMMUNICATIONS CONTROLLER INPUT WORKSPACE VARIABLES.......cccecviiievierieieiensenenennans viI
TABLE B.4: PROTOCOL OPERATIONS CONTROL INPUT WORKSPACE VARIABLESc.covoveieeierenieniereerenns VIII
TABLE B.5: PHYSICAL BUS OUTPUT WORKSPACE VARIABLESccocteieiitietteiesiesseesaessesessesseessesensenseens X
TABLE B.6: NODE OUTPUT WORKSPACE VARTABLEScuciutetierteiieetieerestesseeseeseessessesseessessessessesssessessensessens X
TABLE B.7: COMMUNICATIONS CONTROLLER OUTPUT WORKSPACE VARIABLEScccvevievinieienierensenaenens X1
TABLE B.8: PROTOCOL OPERATIONS CONTROL OUTPUT WORKSPACE VARIABLES.........ceoveuteveereniereerennns X1V
TABLE B.9: ENTITY ATTRIBUTESeveuteieteteteristerteressesseseasessessesessessessesessessesessessessssensensessssensessesessenseses XV

- Xviii -

THESIS OVERVIEW

Section I:

Thesis Overview

THESIS OVERVIEW

Chapter 1 . Thesis Overview

1.1 Problem Specification

The main aim of this project is to research the workings of a FlexRay node and
to suggest a method to optimally configure that node within a network.

As FlexRay is a new network protocol there is a need to fully understand how
best to configure the network. This is so the maximum use of the network with a
minimum associated cost can be achieved. The optimisation should also be done as
there are several other networking schemes, such as CAN, LIN and MOST. No one
networking scheme is perfect for all applications, and more than one type of network
may be needed to efficiently implement all the systems found within a car.
Implementing any number of these at the same time could increase cost and ultimately
lead to problems if the systems do not work well together.

FlexRay looks likely to become the networking scheme of choice for safety
critical systems such as X-by-wire systems (Pop et. al. 2007, p51). It is therefore
important to identify any problems or areas for improvement early on. This will lead to
a wider range of applications being developed that could increase customer comfort and
safety.

The building of a model will allow the testing of a node with various
configurations in a faster and cheaper way then by experimentation on a real network. It
is therefore necessary to understand how a FlexRay network operates and how a node

interacts with the other nodes on a network in order to accurately obtain realistic data.

1.2 Research Questions

The main goal of this research is to develop a method to optimise a FlexRay

node for efficient and reliable communication.

THESIS OVERVIEW

This research leads to a number of key questions that are to be answered. These
questions are as follows:
e What aspects of the FlexRay controller configuration most affects the
performance and design of distributed vehicle applications?
e What guidelines should be used to configure the protocol stack for best
application performance?
e What techniques can be used to optimise local buffer usage for specific vehicle

applications using a fixed global network message schedule?

1.3 Document Layout

The layout of this document is as follows:

e Chapter 1 — Thesis Overview: This chapter covers the problem specification,

solution requirements and research questions in relation to this research.

e Chapter 2 - Literary Review Introduction: This chapter introduces the topics

and criteria for discussion covered in the literary review section of this thesis.

¢ Chapter 3 — Automotive Networks: This chapter covers the current state of

automotive networking technology.

e Chapter 4 - FlexRay: This chapter describes the FlexRay protocol.

¢ Chapter 5 — Performance Analysis: This chapter describes methods to carry
out performance analysis. Different methods that have been used in the past are

also introduced.

e Chapter 6 — E-Ray: This chapter covers the workings of the Bosch E-Ray

communication controller.

THESIS OVERVIEW

Chapter 7 — Discrete Event Simulation: This chapter describes the discrete
event simulation method of modeling systems. Different simulation software
packages are introduced and evaluated. MATLAB, the simulation package that
was ultimately chosen is covered in detail. The selection process for the

simulation software is also discussed.

Chapter 8 — FlexRay Software Drivers: This chapter focuses on the different

software drivers that are available to implement FlexRay systems.

Chapter 9 - Literary Review Summary: This chapter summaries the literary
review and the available literature. It also discusses the need for further research

in the area of automotive networks.

Chapter 10 - Methodology: This chapter covers the methodology used to carry

out the research.

Chapter 11 - Simulation Model Development: This chapter documents the

specification and implementation of FlexRay node simulation model.

Chapter 12 - Verification: This chapter discusses the steps used to verify the

model.

Chapter 13 - Calibration: This chapter covers the calibration procedure for the
model. Test cases are outlined and the calibration process is reviewed. The

equipment that was used is outlined and test results are summarised.

Chapter 14 - Validation: This chapter covers the steps used to validate the

simulation model. Test cases are outlined and the validation process is reviewed.

Chapter 16 - Conclusion: This chapter summarises the work done during the
research, conclusions drawn from the results and suggestions for areas of further

study are put forward.

LITERARY REVIEW

1.4 References

Pop, T., Pop, P, Eles, P. and Peng, Z. (2007) Bus Access Optimisation for FlexRay-
Based Distributed Embedded Systems, Proceedings of the Conference on Design,
Automation and Test in Europe, Nice, France, April 16-20 2007, IEEE Computer
Society Washington, DC, 51 — 56.

LITERARY REVIEW

Section II:

Literary Review

LITERARY REVIEW

Chapter 2 . Literary Review

Introduction

2.1 Scope

The literary review introduces key concepts and topics that were looked at to
successfully complete the project. The information provided allows the reader to gain an
understanding of why the research is necessary. It also allows the reader to form
opinions on the methods that were chosen to complete the research. The background
information provided also allows the reader to understand the significance of the
research.

A number of topics are covered in this literary review. The main topics covered
can be summarised as:

¢ The main aspect of the project involves improving the performance of a FlexRay
node, therefore FlexRay and its alternatives are explored.

e The Bosch E-Ray chip is the FlexRay communications controller that was
available for study to this project. Its key features and implementation are
described.

e The method of adapting and running tests of a FlexRay node is simulation. The
reasons for this methodology to be chosen along with simulation theory are
covered.

e The current state of automotive networking and the need for research in this area
are introduced.

e Analysis techniques to quantify the performance of the model are discussed.

LITERARY REVIEW

2.2 Terminology

This section outlines terminology that will be used in the following chapters. It
is an alphabetical listing with brief definitions for each phrase. It should be noted that
the definitions may not cover all terms that the reader is unfamiliar with. An attempt by
the author has been made to give a brief explanation, within the scope of this thesis, of
all the technical terms used that the reader may not be familiar with. If an explanation of

a term is given elsewhere in this thesis it has been omitted from this section.

Actuator: A device that converts electrical signals into physical actions. An example of
this is a D.C. motor which converts an electrical signal into a turning motion.
Application: A piece of software that defines how information is handled or processed
by a computer system.

Bus: The physical wire or wires over which information is sent between two different
nodes on a network (see the definition of a node given below).

Channel: This is a path through which information ‘flows’. A FlexRay bus is an
example of a channel.

Communications Controller: A computer chip specifically designed to transmit and
receive data over a communications channel. For example, in the case of a FlexRay
communications channel, data is handled according to the FlexRay protocol
specifications.

Host: A microprocessor unit (MPU) that has a communications controller embedded or
attached. An application on the host may send and/or receive data to/from the FlexRay
bus. It may also process information in order to implement a task or function.
Multiplexing: This is a where one or more device share a common communication
channel. It splits either the time or frequency spectrum available to allow the devices
access to the channel.

Node: A piece of hardware that can consist of a communications controller and host
MPU. There may also be attached a sensor and/or actuator. The host is attached to the
communications channel via a communications controller. The application running on
the node defines its function.

Register: A dedicated area of an electronic chip that stores values used to determine the

working of the device or program.

LITERARY REVIEW

Sensor: A sensor reads in information from a physical device and converts it into an
electrical value. An example of this is a thermistor that converts temperature into an
analogue or digital signal that can be displayed on a dash board display.

X-by-wire: A method of replacing physical mechanical links with computer-assisted

actuators.

2.3 Criteria for Discussion

Each chapter was included under one of the following criteria:
1. It provides necessary information to understand the need of the project.
2. It provides necessary information to understand the methods used to
carry out the project.
3. It gives an understanding of the equipment and methodologies available

to successfully carry out the project.

2.4 Limits of the Review

The literary review covers many topics. However there are a number of areas
related to FlexRay that have not been covered. An attempt has been made to only
include the necessary information to allow the reader to understand the need for the

research.

LITERARY REVIEW

Chapter 3 . Automotive Networks

3.1 Introduction

There are a number of different communication protocols that have been
developed for use by the automotive industry. Each networking scheme is intended for a
different purpose. This chapter introduces various networking protocols used in the
automotive industry. It also attempts to outline the challenges faced by automotive

networks and highlight any weaknesses in relation to the available networks.

3.2 Automotive Networks

Since the first electronic device was installed in an automotive vehicle the
number of components has increased dramatically. It is estimated that up to 90% of
innovations in the automotive industry are due to electric and electronic systems
(Fennel 2006). This is set to increase further with new applications such as x-by-wire
applications.

Figure 3.1 (TechlInsights 2008) shows how the increase in the number computer
components leads to an exponential increase of the number of connections needed to
connect each device. Without employing a serial communications network to connect
each ECU the increased number of wires would become impractical. Each of the
communications networks described in this chapter uses serial transmission over a small
number of wires. This allows all the nodes on the network to be connected while

reducing the number of individual point-to-point connections.

-10 -

LITERARY REVIEW

Number of Components

Number of Possible Connections
23

- .
// Il\\' <l Egn\

AT
¥ ‘dp

Figure 3.1: Computer components and possible connections

Navet et. al. (2005) describes how in 1994 the Society for Automotive Engineers
(SAE) defined a classification for automotive networks. Every automotive networking
protocol belongs to one of the SAE classes of automotive networks. Table 3.1 details

the classifications.

A Simple, low-cost, control applications. <10kb/s LIN, TTP/A

B Inter-ECU communication applications 10 — 125 kb/s J1850, low-speed CAN

C Powertrain/chassis applications 125 kb/s — 1 Mb/s High-speed CAN

D Multimedia applications, X-by-wire, > 1 Mb/s MOST, TTP/C, FlexRay
Fault tolerant applications

Table 3.1: SAE automotive network classifications

Usually the higher the classification of a particular networking protocol, the
more complex it becomes. This complexity comes with advantages and drawbacks. For
instance FlexRay is more complex than LIN; however FlexRay provides a higher bit
rate and the ability to transmit data in both a time-triggered and event-triggered manner.
This will increase the cost in terms of setup time and the actual cost of components

while providing greater data throughput.

" Class D is not formally defined. However it is considered to be networks operating over 1Mb/s (Navet et.
al. 2005).

-11 -

LITERARY REVIEW

3.3 Networking Type Overview

Each of the protocols described in this chapter can be classified as either an
event-triggered or time-triggered system. A time-triggered network sends messages at
fixed points in time. Event-triggered systems send messages in reaction to stimuli. For
instance if a person wishes to open a window in a car they might press a button. This
event will then generate a message to operate a motor to control the window. This
section highlights some problems and benefits of both types of system.

Event-triggered: Event-triggered messages have unpredictable transmission
patterns; this makes analysis of performance relatively difficult. However for sporadic
transmission behavior this is a good implementation and leads to a flexible system
(Kopetz 2000). A comparative study of time-triggered and event-triggered systems
found that, during heavy bus loading, event-triggered messages may fail to transmit due
to higher priority messages blocking lower priority messages. However when an
average delay is taken of the messages sent, the event-triggered protocols experienced a
shorter delay (Claesson et. al. 2003). This may be due to the fact that higher priority
messages may not occur as frequently as lower priority events. From the point of view
of resource utilisation this leads to event-triggered systems being superior but they do
not scale as easily as time-triggered systems, this is due to a lack of any ‘temporal
firewall’ (Kopetz 1991). A temporal firewall is a way to prevent unwanted
communications between the different nodes on a network by the multiplexing of time
slices to allow or deny communication.

Time-triggered: Time-triggered messages have predictable transmission
patterns; this makes for easier performance analysis. Interoperability of the different
nodes in the network is also an advantage achieved from employing this method as each
node is given a specific time slot to transmit. Time-triggered systems are also ideal for
real-time systems where deadlines must be met (Kopetz 2000). The design stage of a
time-triggered system can be more complicated compared to a similar system
implemented as an event-triggered system. This is because timing constraints must be
met to ensure information is sent out before a deadline. This leads to a more detailed
planning phase where timing constraints of all aspects of a system should be considered.
It is necessary that an application running on a particular node transmits any data to any
interested nodes within a given time. This design stage will however lead to a reduced

verification time of the time-triggered system (Kopetz 1991).

-12 -

LITERARY REVIEW

Event-triggered vs. Time-triggered: Scheler and Schroder-Preikschat (2006)
compare event-triggered and time-triggered architecture. They looked at analysability,
predictability, testability, extensibility, fault-tolerance and resource utilisation. A
summary of this breakdown can be seen in Table 3.2. It can be concluded from their
findings that neither approach is sufficient for every system. If the data is sporadic then
event-triggered protocols will be a good approach under low bus loadings. However if
the system is a real-time system and must adhere to strict timing constraints, then time-
triggered protocols should be used. However the development process may be longer in
this case.

Figure 3.2 shows the traffic patterns for event-triggered and time-triggered
systems. In event-triggered system messages may attempt to gain access to the
communications bus at the same time. The message with the highest priority will gain
access to the bus. Other messages must then wait until the communications bus is free
before again attempting to gain access to the bus. In a time-triggered system a message
is assigned to a slot at the design time. In Figure 3.2 Message 1 has the highest priority
and message 3 the lowest Priority. The time-triggered messages are all represented by
different colours. The slots may make use of a multiplexing technique to allow different
messages to be transmitted during the same time slot but over different communications
cycles. It can be seen that the same message is transmitted during the same time slot
every communication cycle if multiplexing of the slots is not implemented.

Multiplexing of slots must be set at design time also.

EVENT-TRIGGERED TIME-TRIGGERED
Slot m n 0 p q

Message 1: E C'Vde 0
Message 2 - - C_V(‘le 1

Message 3| | I | I | I I
Cycle 2
pe [[0 (] I (O oo 3
Cycle 4

Figure 3.2: Event-triggered and time-triggered network patterns

- 13 -

LITERARY REVIEW

Analysability Statistically computed | Response time analysis | Neither method provides
schedules are wused to | technique is used need to | a better solution as
analyse the schedulability. | analyse the schedulability. | detailed knowledge is

necessary to perform the
analysis.

Predictability Easily analysed for | Dynamic response to | Time-triggered systems
predictability. events makes the system | make analysis of

less predictable. A system | communication patterns
may still be deterministic. easier as this is set at
design time.

Testability Best to test for worst case | Best to test for worst case | Neither method is easier
performance. Typical load | performance. Typical load | to test.
scenarios are not | scenarios are not sufficient
sufficient to test properly. | to test properly.

Extensibility The need to recalculate | The response time analysis | Neither method makes it

static schedules is

necessary if adding

functions.

will need to be recomputed
if added functionality is

introduced to the system.

easier to extend the
functionality =~ of the

system.

Fault-Tolerance

Different nodes can make

the same decision at the

It is harder to achieve a
fault-tolerant system unless
a leader-follower system is

used.

In general time-triggered

systems provide more

fault-tolerance within a

Resource

Utilisation

same time.
A node is seen as
redundant during any

communication cycle if it
has nothing to send. This
wasted

means there is

resources.

A resource will only be

requested when needed.

system.
Event-triggered systems
can maximise the

resource in more cases
than time-triggered

systems

3.4 Automotive Network Protocols

Table 3.2: Event-triggered vs. time-triggered systems

Figure 3.3 (Leen and Heffernan 2002, p89) shows a breakdown of the types of

systems implemented electronically in cars. Figure 3.4 (Denner et. al. 2004) shows the

functional area breakdown for each networking scheme.

- 14 -

LITERARY REVIEW

ol ac [Foe

findow lift
Universal light

Instruments

systems
Drive train

Steering wheel
panel :
Universal motor

Universal panel

CAN Controller area network

GPS Global Positioning System

GSM Global System for Mobile Commun ications

LN Local interconnect network

MOST Media-oriented systems transport PEI Technologies

Figure 3.3: Automotive network applications

Network architecture

MOST !nfo;a_inme_nt Navigation %ﬁlgﬁgr e
(multimedia) l L] ‘
Gateway/ ' ~ :
CAN firewall = : .
Light Air con- Door Lock |,
BSILIN| Body modules | | ditioning || modules s
> - -M‘rro
BST » | | | ”
Gateway -
o HF AMM | Engine Transmission-
rivetrain management] | shift control
TTCAN l |
Gateway
TTCAN l l
Vehicle dynamics Brake-by- | | Steer-by-
FlexRay wire wire

Figure 3.4: Automotive networks functionality breakdown

As can be seen from Figures 3.3 and 3.4, there is no one networking scheme that

is designed to carry out all necessary communications. It is can also be seen that with

-15 -

LITERARY REVIEW

the present situation, automotive electronic and electrical systems need a proper
communications network to communicate. Without any multiplexed communications
systems there would be a huge amount of wiring dedicated to the transmission of
information between two specific nodes. The inclusion of an interconnected multiplexed
communication network also reduces the number of duplicate sensors in a vehicle. In a
multiplexed networking scheme sensor data can be shared to a number of different
nodes all at the same time. The reduction in the number of duplicate sensors has a cost
saving benefit for the manufacturer and customer. Without a multiplexed networking
system a vehicle would be seen as having a drastic weight increase and thus relatively
poor performance of the vehicle, in terms of both power and fuel economy, when

compared to a vehicle where a multiplexed networking system is implemented.

3.5 Event-Triggered Protocols

3.5.1 Controller Area Network (CAN)

The CAN networking scheme was first introduced in 1986. It was developed by
Bosch with help from Mercedes-Benz and Intel. The development of the protocol was
started as early as 1983 in a bid to increase functionality for the automotive industry.
The reduction in wiring within a vehicle was a consequence of the protocol. Since it
was introduced it has been used in a wide range of applications within cars as well as in
other areas. Most cars produced in Europe will contain at least one CAN. It has been
used in trains, ships and industrial control applications (CiA 2007). It has even been
implemented in the 2008 BMW RG 1200 GS Adventure motorcycle (BMW Motorrad
USA 2008).

In 1991 the CAN specification 2.0 was published by Bosch. In 1993 CAN was
standardised as ISO 11898 by the International Organisation of Standards with an
extended frame format being standardised with an amendment in 1995. A time triggered

communication protocol for CAN (TTCAN) was developed in 2000 (CiA 2007).

-16 -

LITERARY REVIEW

3.5.1.1 CAN Protocol
This section is a combination of information from Denner et. al. (2004), Carley
(2006), CiA (2006), Schofield (2006), Robert Bosch GmbH (1991) and Jurgen (1999).
The CAN bus is made up of a number of ECUs that all have a priority rating. A
CAN bus can be seen in Figure 3.5 (Ecartec Ltd. 2008). Figure 3.5 depicts different

nodes connected onto the same CAN bus. Each node performs a different function.

CANBUS

Figure 3.5: CAN Bus

To determine which node may communicate at any one time an identifier field is
used in the message frame. The node with the highest priority will be allowed to
transmit its message. When several nodes attempt to transmit a message at the same
time the message with the highest priority will gain access without any delay. This is
due to the ‘wired-AND’ bus arbitration. As the arbitration is based on a logical ‘AND’
operation, the lowest the message identifier has the highest message priority. In this way
dynamic transmission is achieved. The diagram below, Figure 3.6 (Softing 2008),

shows how a logic ‘0’ ensures that a low message identifier ensures a higher priority.

-17 -

LITERARY REVIEW

S R
Ot— |dentifier T|Control Data
FITDO 98 76 54 32 1 0R| Field Field
node 1
node 2
node 3
CESSIVE
bus-level dominant

MNode 3 wins arbitration and transmits his data.

Figure 3.6: CAN bus arbitration

After a message is transmitted the nodes can again attempt to gain access to the bus.

The CAN protocol supports two frame formats, standard and extended. The
message format is similar for both protocols, differing only in the number of identifier
bits. Figure 3.7 (Schofield 2006), shows the standard frame format, which contains 11
identifier bits. For the extended frame format the main difference is that the identifier
contains 29 bits. This means that the frames vary in length between 130 to 150 bits

(maximum). The data segment however is limited to 0 to 64 bits (8 bytes).

; My i ;
sty | st coms | oo crcrg’ on | gor s o
| o]] | [oo [ee] | [T 1]

w ml L s | Lo

rl
Figure 3.7: CAN standard frame format
The segments of a CAN message are as follows:

e SOF: Start of Frame bit.

e Arbitration field that consists of the identifier and a remote frame indicator.

- 18 -

LITERARY REVIEW

e The control field indicates the number of data bytes in the message.

e The data field contains 0 — 8 bytes of data.

e The CRC field is a 15 bit cyclic redundancy check (CRC) used by the receiving
node to detect any errors in the received frame.

e The ACK field is to allow all receivers to acknowledge error free reception of
the message.

¢ The end of frame bits indicate the end of transmission of the frame.

e Int is the inter frame space where data is not to be transmitted to ensure frame

integrity.

3.5.2 Local Interconnect Network (LIN)

The local interconnect network (LIN) is a deterministic system for ECU
communication with sensors, actuators and controls. The LIN specification version 2.1
was released in 2006. In August of 2004 the Society of Automotive Engineers (SAE)
released J2606 which recommends a practice for implementing LIN (Vector Informatik
GmbH 2008, p1).

A LIN network always consists of one master node and a number of slave nodes.
It is designed so it can easily be interfaced, through a gateway, to other communication
busses such as CAN (Ahlmark 2000, p1). Figure 3.8 (Ahlmark 2000, p4) shows a LIN

bus configuration.

CAN-bus

hia<ter S 1 Slawe 1 Slam3

LIMNbuss

Figure 3.8: LIN bus with single master node and ‘n’ slave nodes

The LIN protocol operates as a Master/Slave configuration. Only the master is
able to initiate communication. A LIN frame consists of a header and response sections.
Communication with a slave involves the master sending the header part of a message.

If the master wants to send data to the slave it continues to send the response part. If the

-19 -

LITERARY REVIEW

master requests data from the slave the slave sends the response part
(STMicroelectronics 2001, p4).

The header section of the frame consists of a break field, sync field and a frame
identifier. The frame identifier uniquely defines the frame. The break field is used to
identify the start of a transmission and the sync field is to allow receiving nodes to
synchronise with the transmitted bits (LIN Consortium 2006, p29). The slave task,
configured to provide the response associated with the frame identifier, will begin
transmission as depicted in Figure 3.9 (LIN Consortium 2006, p13). The response
consists of a data field and a checksum field. All slave nodes interested in the data
associated with the frame identifier receives the response, verifies the checksum and
uses the data received (LIN Consortium 2006, p13). This broadcast scheme operates at

speeds up to 20kbits/s (Ahlmark 2000, p4).

W aster task -| Header)—: ————————— Headsar I-\ ————————

| .
Slavetask! - ———— Regponse — — — —— e —————

e
Slavetask?2 @ -~-——-—————— - - - — — — — — Responsse |~ -

Figure 3.9: LIN communication

3.5.3 Media Oriented Systems Transport (MOST)

Media Orientated Systems Transport (MOST) is a protocol that has been
developed to handle high volume data transfer. This is usually in the form of
‘infotainment’ data for audio and visual devices. Currently MOST is implemented using
a plastic optical fiber (POF) communication bus. This provides a number of advantages
such as weight saving and protection from electromagnetic interference. However there
is also an electrical physical specification (TechInsights 2008).

MOST does not require a reconfiguration of the topology if new systems are
added. The extra components can simply be added into the network by adding a
connector to the physical bus. In this way MOST can be seen to have a plug and play
approach to system integration (TechlInsights 2008).

MOST can operate at two different speeds. There are 25Mbit/s and SOMbit/s
speed grades specified (MOST Cooperation 2006, p16). There are also a number of

-20 -

LITERARY REVIEW

different communication channels over which data can be transmitted. These are as
follows (MOST Cooperation 2006, pp17-18):

e Control Channel: This channel is used for small data frames with ‘bursty’ like
transmission. The data rate for this channel is a relatively low 10kbits/s. The
data is transported to a specific address and is protected by a CRC just like the
packet data channel.

e Streaming Data Channel: This is used for continuous data such as data from an
audio or video device.

e Packet Data Channel: This channel is defined for large ‘bursty’ traffic. This
could be in the form of navigational map images.

e Management Streaming/Package Bandwidth: In a MOST system the
management streaming and packet data streaming can be allocated space on the
overall bandwidth.

A MOST system can have up to 64 nodes. Any of these nodes can be the
TimingMaster and all the other nodes are Slaves. The TimingMaster provides
generation and transportation of the system clock, the frames, and blocks. All Slave
devices derive their clock from the MOST bus (MOST Cooperation 2006, p106). In this
way MOST is a Master/Slave protocol.

One MOST25 (the 25Mbit/s variant) frame consists of 64 bytes. The first byte is
used for administrative purposes. The next 60 bytes are used for Stream and Packet
Data Transfer. A Boundary section of the header defines in 4 byte steps the number of
data bytes. The Boundary value can only have values between 6 and 15. This means at
least 24 bytes are available for Stream data transfer. All Stream data bytes are
transmitted before the Packet data bytes. The next two bytes of each frame are reserved
for Control data and the last byte is another administrative byte (MOST Cooperation
2006, p108). Figure 3.10 (MOST Cooperation 2006, p108) and Table 3.3 (MOST
Cooperation 2006, p108) show and describe the MOST25 data frame.

-21 -

LITERARY REVIEW

administrative

Figure 3.10: MOST2S5 frame

administrative |

B yte Humber

Task

0

Administrative
* Preamble (hits 0-3)
* 4 bits Boundary Descriptor (hits 4-7)

1 - B0

E0 data bytes

E1 - 62

2 data bytes for Control Messages

63

Administrative
* Frame control and status bits
* Parity bit (lagt hit)

MOSTS50 is designed for high bandwidth, and one MOST50 frame consists of
128 bytes. The first 11 bytes are used for administrative purposes. Within this 4 bytes
are used for Control data. The Control Message length can vary depending on the actual
control message to be sent. Better utilisation of the bandwidth regarding Control
Messages is obtained in this way. The next 117 bytes are used for Packet and Stream
data transfer (MOST Cooperation 2006, p108). Figure 3.11 (MOST Cooperation 2006,
p109) and Table 3.4 (MOST Cooperation 2006, p109) show and describe the MOSTS50

data frame.

Table 3.3: MOST2S frame byte summary

-22 -

Boundary
#-=cmcccccfccccccccaccsassssssssssssssssssssanas "

| i
s LY

II FI

stream data packet data | Contral

(Mumber of bytes de pends (Mumber of bytes depends i Data ;I

an Boundary setings) an Boundary settings) | 7 Biytes |

I i

[il

- MOET Frame -
B4 Bytes i

LITERARY REVIEW

dynamic Boundary

___ '

packet and stream data
(Mumber of bytes depands on wvirual bounda ry setting=)

-+ MOST Frame
125 Bytes

k4

administrative and 4 bytes Control Data

Figure 3.11: MOST2S5 frame

Byte Humber | Task

0-10 Administrative, includes 4 Control data byvtes, additionally
* Sysem Lock flag

Boundary Descriptor

11 -127 117 data bytes

“

Table 3.4: MOST25 frame byte summary

3.6 Time-Triggered Protocols

Car manufactures faced a problem when attempting to implement new safety-
critical applications in cars using event-triggered communication systems. For instance,
in a brake-by-wire system it is important to determine the greatest latency experienced
in the system. It is important to know that when a driver presses the brake pedal the
system will respond within a given time. The most widely used communication protocol
in the automotive industry (CAN) is an event-driven communication protocol. This
leads to an inability to determine the worst case scenario. Higher priority messages
could potentially always block a message. This led to the need for a new protocol
specification. By dividing up the available bandwidth into time slots a more
deterministic protocol could be achieved. Two time-triggered protocols will be

discussed in this section, namely TTP and FlexRay.

-23 -

LITERARY REVIEW

3.6.1 Time-Triggered Protocol (TTP)

This section is based on the works of Bohm (2005), Elmenreich and Ipp (2003)
and Elemenrich and Krywult (2005).

TTP/A and TTP/C are two real-time protocols based on a TDMA scheme.
TDMA (Time Division Multiple Access) is a method of multiplexing a single
communication medium. To allow multiple nodes in a network to gain access to the
communications bus each node is allocated a time slice. During this time slice or slot
the node may transmit its message. If a node wants to transmit a message it must wait
for the assigned slot to come around. When a node is not transmitting a message it can
receive messages from other nodes. TTP/C is intended for connecting a number of
nodes to achieve a dependable real-time system. TTP/A is a lower cost version and has
reduced functionality. It is intended to use TTP/A as a bus to connect sensors and
actuators.

In TTP/C the frame size can vary between 2 and 240 bytes. Each frame can
carry a number of messages. In different communication rounds different messages can
be transmitted during a node’s allocated slot. The data is protected by a 24 bit CRC. To
ensure each node sends its frame during the correct time slot the use of a bus guardian is
employed. This is a separate component to the communication controller. The bus
topology can be seen in Figure 3.12 (Elemenreich and Ipp 2003,P2). A star topology
can also be employed. The star topology implements two stars that also act as central
guardians for the network. In Figure 3.12, the CNI layer is a connection between the
communications controller and the host computer. This encompasses all necessary

physical connections as well as any software driver used.

|
Fieldtns with
Transdnecers

-

Host Computer Host Computer Hast Computer Host Computer
ML CMNL ML NI
Cararounication Carraunieation Cornrenication Cornremnication
Contraller Cantraller Cantrallar Cantraller
Bus Guardian Bus Guardian Bus Guardian Bug Guardian
replicated Bug

Figure 3.12: TTP bus topology

-4 -

LITERARY REVIEW

To ensure that each node transmits at the allocated time the bus guardian must
have a global view of the time. The current view of the global time is obtained using a
clock synchronisation algorithm. This algorithm determines the current time based on
the arrival of frames from other nodes and the expected time of arrival of the frames.
Figure 3.13 below shows the TTP communication cycle (Elemenreich and Ipp 2003,
P4).

Node A cther slots Hode A other slots Node & other slots Mode & other slots

Channel & [md,md,m32 mimE,m& miml mimsmé
[T 1 - T 1 [T 1
Channel B oy mama mi,me,mé ml,mz,m+ mi.ms,mé _
N I I T [T
TOMA Raound Timee
N Clustar Cyche "

Figure 3.13: TTP communication cycle

From the TTA Group website (TTA-Group 2008), it can be seen that TTP is still
found in various applications. The main area that TTP is used for appears to be in

aerospace applications.

3.6.2 FlexRay
The FlexRay protocol was developed after BMW and DaimlerChrysler worked

together to develop a networking scheme for future developments such as drive-by wire
applications. The partnership soon led to a protocol specification which is the basis for
FlexRay systems (FlexRay Consortium 2007). Due to the fact that BMW was heavily
involved in the development and its similar characteristics, FlexRay can be seen as a
legacy protocol of ‘byteflight’. Byteflight was also developed by BMW and uses both
time-triggered and event-triggered access to the communication bus (BMW 2000).

Like TTP, FlexRay is based on a TDMA approach. If a node wishes to transmit
a message it must wait until its communication slot comes around. It may then transmit
a single message that can consist of a data section of between 0 and 254 bytes. The
header of a message is protected by an 11 bit CRC while the frame as a whole is
protected by a 24 bit CRC. The frame format can be seen in Figure 3.14 (FlexRay

Consortium 2005, p.90). The communication cycle is divided into 4 segments. These

-25 -

LITERARY REVIEW

segments allow the nodes to transmit in a time-triggered way as well as an event-

triggered fashion.

Payload preamble mdicator
Statup frame indicator

MNull frame indicator
Synec frame indicator

Reserved bit

Header CRC
Covered Area

Hezder |5v<= | Data 0 | Data 1 | Data 2 patan| cRc | crc | cre
11 hits 7 bits 11 bits |6 bits 0 ... 254 bytes 24 hits
—* * A A e
11111 Header Segment Payload Segment Trailer Segment
FlexRay Frame 5 + (0 ... 254) + 3 bytes

Figure 3.14: FlexRay frame

A FlexRay network supports bus and star topologies just as TTP does. However
it also supports hybrid topologies. This can be seen in Figure 3.15 (FlexRay Consortium

2005, p.24).

Hode B Hode C
star /star
Hode & | A | { 54 | HodeD
N N
Hode E Hode F Hode G

Figure 3.15: FlexRay hybrid topology

3.6.2.1 FlexRay Characteristics

The FlexRay protocol differs from TTP in its communications cycle structure.

The characteristics of FlexRay will help to distinguish itself from other networking
-6 -

LITERARY REVIEW

schemes and these are briefly introduced in this section. The FlexRay protocol is
discussed in more detail in chapter 4.

Figure 3.16 shows an example of a bus access scheme for FlexRay (Vector
Informatik GmbH 2006). The first thing that should be noted is the use of two channels.
A node may be allowed to transmit a frame of data on one or both of these channels.
FlexRay also allows for a node to transmit a frame on a particular channel while a
different node transmits data during the same slot but on the other channel. This must be
agreed before implementation during the design stage. This configurability creates an
efficient use of the available bandwidth. As a node may transmit the same data on both
channels during its allocated slot FlexRay also provides the ability to be configured with

redundancy as standard.

Snapshot of One Cycle

I Cycle [n] |
& 4
HH static segment dynamic segment symbol “
i
.l . i pLatesth-—\‘I g(il;/linislc‘)t_
1 ! 1 I 1 1
Slott 1 i 2 3 4 5 16171819110 0 |0
! ! i P
CHA Node: K | {|Node: M |i [Node: L | ||N:L|!| Node:N i i| Node:M |Node: L‘
Frame: b| ! | Frame: c|! |Frame: a| | |Fr: ni| Frame:r | | || Frametp, | MTS |
| i | Prio | Prio 1PrioiPriol PrioiPriolPrio|
o 1 2 3415106 7
‘ ! | o L
i
Siott 1 3 g 4 5 6 78/ 0 o
| i i |
CHB Node: K | | i | Node: L Node: O i i Node: K E E ‘Node: L‘
Frame: b i i Frame: d| | [Frame: m E : Frame:o | ! ;' 'MTS \
| i A | e
E 3 | Minislots: |MS 1| MS|MS | MS|MS | MS! MS1MS | MSTMS | MS! M
| | Yovag L ol Al e b g 1 QUISAD T o
TTTTCTITTr T e e e e rererrerrrrrebrrrtrretreeb et et rerbeeebreebeeebeeebeeeteerer e et
0 " Moo et N Himo (MT]
AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP

Figure 3.16: FlexRay bus access

The second piece of information that can be drawn from Figure 3.16 is that the
communications cycle is split into a number of sections. In the diagram these are named
as the static segment, the dynamic segment and symbol. There is a fourth segment not
named in the diagram. This segment is the network idle time.

The static segment consists of slots that are of fixed length. The dynamic
segment allows a frame to be transmitted with a variable length. To allow this a
mechanism was developed. The dynamic segment uses minislots to form a type of
flexible TDMA scheme (FTDMA) (Heller et. al. 2008, p206). Minislots are smaller in

size than static slots. A dynamic frame can however transmit over a number of

-27 -

LITERARY REVIEW

minislots. The slot counter will not increment until the frame has finished transmitting
its data. A node that wishes to transmit a frame must still wait for its slot to transmit in
the dynamic segment. If a node has no frame to transmit during its assigned dynamic
slot then a single minislot time will expire before the slot counter is incremented. A
node must also ensure that there is sufficient time to transmit its frame before the end of
the dynamic segment. If there is insufficient time to do so, the node must wait until the
next communication cycle before attempting to do so again.

Another aspect of the FlexRay communication protocol is the ability to assign
different frames to the same slot. This is done by using the same slot but during a
different communication cycle. There are 64 cycles and they are numbered and range
between 0 and 63. When the 64" cycle completes the cycle count is reset to 0 and the
whole process starts again. This can be seen in Figure 3.17.

Communication Cycle
ldentifier

1| Static Segment IDynamic Degment |Symbol Window Hetwotk Idle Time
Static Segment Dynamic Segment Symhol Window Wetwotk Idle Time

L b

&3
&4
L | Static Segment Dynamic Segment Symbol Window Network Idle Time
Static Segment Drynamic Segment Bymbol Window Hetwork Idle Time

R A T X

63
64
1 | Static Segment Dynamic Segment Symbol Window NetworkIdle Time
Static Segment Dynamic Segment Symbol Window Network Idle Time

e M L) b

63
1 64

Figure 3.17: Cycle multiplexing

In FlexRay there is a need to know the current communication time. This is
necessary to avoid any potential conflicts when nodes attempt to transmit their frames.
Unlike other networking schemes where the current time is transmitted by a single node,

-28 -

LITERARY REVIEW

every FlexRay node keeps track of the current time. Figures 3.18-3.20 (inclusive)
(Vector Informatik GmbH 2006), convey the mechanism that is used to synchronise all
nodes in a cluster. A number of nodes are setup to transmit ‘sync’ frames. These are

then used by all nodes in a cluster to obtain the timing information.

local time

Figure 3.18: Rate differences

The sync algorithm checks the rate at which the nodes local clock is advancing.
The arrival times of the sync frames are then compared to this. If the nodes clock is
running faster or more slowly than it should be, measures are taken to correct this.
Figure 3.18 illustrates how three nodes’ global time advance rate could be different.
This is known as rate correction in FlexRay.

The offset to the node’s view of arriving frames to the global time is also
checked. If it is found that the node views slots as beginning before or after the arrival
of the sync frames, then again a corrective action can be taken. Figure 3.19 shows the
offset differences of three nodes. The method of correcting this is known as offset

correction in FlexRay.

-20 -

LITERARY REVIEW

~ physical time

Figure 3.19: Offset differences

Figure 3.20 shows that when both rate and offset corrections are applied, then all
nodes should share a common view of the global time. These checks must be conducted
while any communication is taking place. If this does not happen then differences in

local oscillator components will cause a divergence in the view of the global time.

local time

. '“physical time

Figure 3.20: Rate and offset correction applied

3.7 Automotive Network Design

There are a number of different networking protocols and as such a network

designer must choose the most appropriate protocol(s) to meet their needs. This is the

-30 -

LITERARY REVIEW

first step to creating a reliable and efficient networking system. However once the
networking scheme has been chosen there is still a need to define the systems
configuration and constraints. This involves for example assigning messages to frame
IDs. In the standard CAN frame format there are an 11-bit identifier field. This allows
2,048 different messages to be assigned to the various nodes implemented in a vehicle.
The extended version specifies a 29-bit identifier which produces 536,870,912 possible
messages. FlexRay also uses an 11-bit identifier field for frames. If all of these
identifier IDs are used there will be a large number of messages to assign to different
nodes and systems. All communications protocols require careful configuration to
achieve a suitable and efficient networking system. If the configuration is not done
correctly then errors may be observed in the system.

A number of tools and methodologies to configure or monitor CAN systems
already exist. This is due to the age and knowledge of the protocol. FlexRay is a newer
communications protocol with a limited number of implementations. To assist
developers to optimise a FlexRay based system there have been a number of tools
developed to ease the network design process. There have also been a number of studies
into the implementation of FlexRay. Sections 3.7.1 — 3.7.3 will review the tools and
research conducted into the area of FlexRay and the configuration of FlexRay based

systems.

3.7.1 Configuration and Monitoring Tools

This section covers a number of tools to configure FlexRay nodes. There are
also a number of special tools used to monitor traffic on a FlexRay physical bus. These

will be briefly coved in this section.

3.7.1 .1 Vector Informatik Tools
Chapter 13 discusses the Vector CANalyzer software and the VN3600 FlexRay

interface hardware module in more detail. CANalyzer uses a hardware interface such as
the VN3600 module to monitor traffic on a communication network. The CANalyzer
software can display the information in a number of different ways, i.e. graphically or
textually. Network data can also be generated for transmission over the network that is
under observation. CANalyzer supports a number of different networking protocols

-31 -

LITERARY REVIEW

such as CAN, MOST and FlexRay. This can help ease the troubleshooting of a system
implemented using a number of different networking protocols (Vector Informatik
GmbH 2007, p1).

Vector supply a number of different hardware modules to suit different needs
and budgets. These include the FlexCard, VN3300 and VN7600 network interfaces as
well as the VN3600 hardward interface module. CANoe.FlexRay is a tool for
development, simulation and test of ECUs and distributed networks for FlexRay and
provides a variant for CAN. As well as these monitor tools Vector supply a number of
FlexRay software modules to aid the development of applications (Vector Informatik
GmbH 2009a).

Vector offer a FlexRay network development tool called DaVinci Network
Designer FlexRay (DaVinci) (Vector Informatik GmbH 2009b). Clusters and
controllers can have necessary network constraint parameters assigned and checked
against version 2.1 of the FlexRay specification. DaVinci supports the FIBEX file
exchange format and provides an interactive method of designing the FlexRay schedule.
Figure 3.21 shows the design of a FlexRay schedule using DaVinci (Vector Informatik
GmbH 2009b, p1).

(EE Davinci Network Designer - D p\DaVinci_Network_Designer ibus. dvw - [FlexRay Cluster <Chassis_FlexRay [1.2]> - Network Explorer] 9 [=1<]
(e Edit view Options Window Help .= ﬂ
0= Bz BB 0
Project | [EYH Chassis_Flexray [1.2] Signal [Frame [Startbit [Tranemiteer [Receiverts) [Length |
EJ- & Vehicle Projects 2| =B Frames ¥ Brockintervention FL ESPErealontral [EsP vheslControl FL 5

= Vo Vestarbulbbusvehice [1.3] = = Dynanic Frames ey . . oty

@ W Body_CAN[L1] - B0 ConfigureESP (95) Y Breakintervention FR__ ESPErealCentral [Esp WheelCantrol FR_ 8
=38 Chassis_FlexRay [1.2] (ch

B B ESPchi &) FlexRay Sche dule Designer

B Gateway (chi &)

- B WheelControl_FL (ch: @) || StateSeament | Dynaric Segment |

B wheelcomsol rr (chia) ||

- B WheelCortrol AL (chi A) i Channel_a £ hot used " Both

% .8 WheelCortral R (ch: &) =5 SRS Communication Cycles (063}

-2 Versions =1 % Charnel A
#1488 DriverDoor _LIN[L.3] = @ s g [o \13 = [2 o \3€ - I
% 4&! PassengerDoor_LIN[1.2] =8 Engne e celSenso,_ c FLin 2 LFLI L i
S e o132 Charrela =| |28 Wheelsensor_ CFR O PR PP PRI
=B ECUs B @ Sns B WheelSensar_ L[_BL{r: L BL (in&y BL (i

. B_porvlark Driver = B wheslsensor BL 8 Wheeliensor CBR (1<) O B [1&) B

= =13 Chamnel £
e & s al|7
i & WheslSensor_BL| o

5 @ tms o

Chject User [Damper_BL 118 Engne GHEngieD ata (Gycle 0 Engineliala (eycle it ErgineData (cyole 1 EEngneData [Cyol e
& Ay signal Groups 5B wheetsensor BR 12,
w0 By signal Types 5 %% Chamnel A 12
= A Signals = @ sms i

A Breakintervention_FL... ¥ wheelsensor_BR 16 8. WheelSensor G0 amper BF (cjclet CDamper_BR (oo |
A Breskintervention F. 5O tms 178 Wheefsensor B0 anper FL oyl 1= ©Damper FL [cyele g
A Breskintervention_RL. @ Damper_BR 188 WhesfSensor B0 anper FF [cycle . “£5Damper FF Ioycle
e E il L 158 WheeBersor Ebanpe BL ek 1 SDamper L [cycke
A DiagnstizsBuffer [1.1] = % chemel o
~_ DriverDoor Lockitequ. 5 @ sms 2

4l | & Wheeisensor.FL| B
Mo Tvewn | - @ ons o
BreakIntervention_FL 11 & Damper_FL J %

S oy = B Wheelsensar_FR 2 >
Wokspace Repository =1 3% Channel & 25 8 CAN2FlesFia, BMapn=dCANSignal (£ M sppedCANSignsl (£5M sppedCAN Sianal (&5 apped AN Signal |

5.6 Sme L 23 =~

27 4 2007 16:09:10 e C k - . Fl

un 109:10 - - 7
T CiFames AETS H Frame informationwheefSensor_FRY, scheded (8ot 2/Base Cyck0/InCycle

M DT\ ecure frames EC) Fiep:2) i sent each 22323 1ms on channel 'Channel A' by ECU "WheelSensar_FR!

s e Close. Hilfe e

Ready

Figure 3.21: DaVinci FlexRay schedule design

-32 -

LITERARY REVIEW

3.7.1 .2 Elektrobit Corporation Tools

Elektrobit Corporation (here after referred to as EB) provides a number of tools that
support the development of automotive applications. The EB tresos product family is a
brand under which all the tools and hardware necessary to develop automotive systems
are sold by EB. Figure 3.22 (Elektrobit Corporation 2009a) shows a breakdown of the

tresos product family.

Figure 3.22: EB tresos product family

The EB61x0 and EB5100 are hardware interfaces for both FlexRay and CAN.
The EB61x0 is designed to be usable in an automotive application or in an office
environment and is designed for a variety of purposes such as the monitoring of a
FlexRay bus when used with the tresos Busmirror software. The EB5100 is based on the
PMC cards standard with a high performance controller. It is designed to be used with
various carrier boards such as PCI, PXI, VME or PHS bus-based systems and to be able
to perform calculations to meet real-time system constraints.

EB tresos Designer is a system design tool similar to that of the Vector DaVinci
software. Constraints applied to the system in Designer are checked against the FlexRay
specification and a FlexRay schedule is designed in an interactive manner. The EB
tresos Inspector with the EB61x0 allow for measurement and analysis of FlexRay or
CAN networks while EB tresos Busmirror with either the EB61x0 and EB5100 provide

FlexRay cluster emulation solutions.

-33 -

LITERARY REVIEW

3.7.1.3 dSPACE GmbH Tools

dSpace also provide a number of tools to help support and develop FlexRay
systems (dSpace GmbH 2009). The dSPACE FlexRay Configuration Package allows
for rapid prototyping and hardware-in-the-loop (HIL) applications. The FlexRay
configuration package is used to integrate dSPACE hardware as simulation and/or
monitoring nodes in a FlexRay networks. The nodes are configured using the dSPACE
FlexRay Configuration Tool using a communication matrix containing schedule
information for signals and frames transmitted over a FlexRay bus. This information
can also be linked to a MATLAB/Simulink model using the RTI FlexRay Configuration
Blockset which results in a FlexRay application that can be executed on a dSPACE
based system (dSpace GmbH 2009).

dSapce ControlDesk is a single experiment software package for the
development of a controller. The same tools can be used for environment, virtual
instrumentation, automation, and parameter set handling. Real-Time data can be
recorded and parameters can be tuned using ControlDesk. ControlDesk also provides
detailed timing analysis of FlexRay data and can be used with a number of different

FlexRay platforms (dSpace GmbH 2009).

3.7.2 FlexRay Design Research

FlexRay is a relatively new communications protocol. There is a lot of interest
in using the FlexRay protocol for time critical systems due to the deterministic nature of
the TDMA network arbitration scheme. It also provides a dynamic arbitration segment
within a communication cycle which provides flexibility and helps reduce redundancy
in the networking system. These factors make FlexRay a highly desirable protocol to
implement. As was stated at the start of section 3.7, there have been a number of areas
where research has been conducted in the area of FlexRay. The research into FlexRay
has been done for, amongst other reasons, easing the transition for other protocols such
as CAN to this newer communication protocol. This should help reduce redundancy and
development time of FlexRay based systems. This section will highlight some of the

areas where research has been focused to achieve this.

-34 -

LITERARY REVIEW

3.7.2.1 FlexRay PDU Configuration

FlexRay frame length is fixed at the design time of a FlexRay cluster. This will
mean that all static frames will transmit a fixed length payload while dynamic frames
will adhere to a maximum payload length. It is important then that a frame is configured
to transmit the maximum number of data bytes during a communication cycle. To
achieve maximum payload usage frames can be split into a number of protocol data
units (PDUs). The frame may then contain a number of different messages within the
same frame. Any node that is interested in any information contained in one or more of
the PDUs must then store the entire frame and extract the desired data.

The paper by Stoger (2008) describes the use of assigning a number of different
messages to a single FlexRay frame. Problems associated with this multiplexing of
payload data is with the application layer overheads. If a frame is received and the there
are a number of different PDUs contained within the frame that are desired by the
receiving node, then processing time is spent extracting the information and passing the
relevant information to the associated tasks. Message PDUs may also be cycle
multiplexed within a single frame. For instance a frame may contain ‘PDU 1’ during
every communication cycle but ‘PDU 2’ is transmitted during every even
communication. During all odd cycles ‘PDU 3’ takes the place of PDU 2 within the
transmission frame. This could mean there is the need for this frame to have more than
one buffer assigned on a receiving node so that correct PDU extraction can be carried
out efficiently. For instance two buffers could be assigned to receive on the frame ID.
The first buffer would accept all frames received during even communication cycles and
a second buffer would receive during odd communication cycles. This can lead to a
more complex view of the communication system but can lead to a more efficient use of
buffers and frame transmission.

The paper by Brandstitter and Boke (2008) highlights how PDU-based
communication can lead to better FlexRay based applications but also aid in the
migration process for older communications schemes such as CAN. They also highlight
how development of tools that use the FIBEX file format have aided in networking
tools by vendors such as Vector to easily adapt to PDU frame formats. This allows for
PDU layer analysis of FlexRay communication and will aid in the transition to this

frame assignment procedure.

-35 -

LITERARY REVIEW

3.7.2.2 FlexRay Scheduling

Another area that has been researched is the scheduling of frames necessary for
time-triggered networks such as FlexRay. The work of Pop et. al. (2003), Pop et. al.
(2006), Pop et. al. (2006) and Pop (2007) address this area. In the paper by Pop et. al.
(2006) a method to analyse the ‘schedulability’ of the communication protocol is put
forward. This is based on the timing properties of the static messages and a worst-case
response time for dynamic messages. The timing analysis then determines timing
properties for all tasks and messages in a system.

The work of Balogh et. al. (2007) also looks at the scheduling of time-triggered
systems such as FlexRay or TTP. This focuses on the allocation of tasks to nodes as
well as the scheduling of tasks and the communication parameters. This method should
then produce a schedule that incorporates sufficient time to run all tasks and transmit all
messages. The configuration of a distributed system can then be optimised to meet a

variety of different constrains such as a cost or extensibility constraints.

3.7.2.3 Time Triggered vs. Event Triggered Architectures

A number of studies have been carried out into the suitability of event-triggered
and time-triggered protocols. This mainly compares the different protocol types for their
suitability to perform different tasks. This can be seen in the paper by Scheler and
Schroder-Preikschat (2006) as discussed in section 3.3.

The study and implementation of the different communication protocol variants
has also led to the study of the migration process. Event-triggered protocols act in a
different manner than time-triggered protocols and this can cause problems when
converting from one protocol type to another. Older protocols such as CAN are also in
many cases simpler than newer protocols such as FlexRay. The complexity of some of
the new protocols, along with the knowledge of the system designers of older protocols,
means that the migration from older to newer protocols can be a slow process. The cost
to migrate from one protocol to another may also increase when migrating from an older
to a newer protocol and this consideration needs to be considered. The increase in cost
is associated with training personnel and an increase in costs during development of a
new system. Higher cost of new equipment and devices for any new protocol could also

be an issue as these tend to be pricier than similar equipment/devices for a more

-36 -

LITERARY REVIEW

established protocol. The higher costs can be a contributing factor for a slow or low
adoption of a new protocol. This has led to migration frameworks being developed to

ease the transition. This can be seen in the work of Cummings (2008).

3.7.3 FlexRay System Development Summary

As can be seen from the tools developed for FlexRay systems and the research
that has already been conducted into the area of FlexRay, a lot of effort has been put
into the scheduling of the overall system. There has also been a lot of effort put into the
analysis of task allocation and ‘schedulability’ across distributed time-triggered
systems. This is to optimise a number of constraints such as the number of nodes
necessary to fully implement the required system. This analysis can also lead to an
optimisation of constraints such as a slot time and number of static slots needed. By
using PDUs within a frame maximum utilization of frames can be achieved and a better
overall system performance can be configured.

The research outlined in this thesis aims to address a number of questions
including what aspect of a node most affects the performance of an automotive
distributed system. Proper analysis of the flow of data will allow a designer to identify
the bottlenecks with a given system. Configurations of various aspects of the system can
then be adjusted to ensure all internal and external node deadlines are met. This will
ensure timely and reliable transmission of data. This is an area where little research has
previously been conducted. This could be a big advantage where a system designer
must improve the performance of a system that incorporates software modules designed
by an outside company. Little confidence can be placed in the modification of such
software models to streamline the execution as the design may not be known. The
system designer must therefore focus efforts, to improve the system, on other aspects of
the system.

In the paper by Stoger (2008) as described in section 3.7.2.1, the uses of a
number of different message buffers for a single message frame were discussed. This
allows PDUs within a FlexRay frame to be multiplexed across a number of different
communication cycles. The assignment of more than one message buffers to a single
frame will increase have an impact on the resources needed by the node. By analysing

the flow of data through a node the message buffer accesses by the host controller may

-37 -

LITERARY REVIEW

also be improved. This could lead to an optional assignment of frames to dedicated

message buffers and to a FIFO message buffer structure.

3.8 Conclusion

Ageing communication protocols such as CAN with small data package sizes
and poor determinism meant that the automotive industry was facing a problem.
Master/Slave systems that are available either have small packet sizes or are designed
specifically for infotainment systems. The lack of a suitable networking scheme that
could handle the requirements for newer, more sophisticated safety systems and x-by-
wire technology has led to the development of a new protocol. FlexRay was developed
to meet the current and future needs of automotive manufacturers. By using a TDMA
scheme a more deterministic system can be achieved. This leads to the possibility of
newer and more sophisticated applications being implemented in cars.

With the backing of a number of automotive manufacturers and parts suppliers
FlexRay seems set to become a widely used network scheme. It is a new protocol and
there is a large amount of research ongoing in various aspects of the protocol. This
includes optimisation of the communication cycle. However there are other difficulties
that are associated with FlexRay. For Example, the RAM and ROM requirements need
to be studied. The implementation costs of communication controllers could be
drastically reduced if it was understood what the exact resource requirements are. The
overall systems performance of a node could also be improved by fully understanding

the flow and timings of data flow through a communication controller.

3.9 References

Ademaj, A., Sivencrona, H., Bauer, G. and Torin, J. (2003) Evaluation of Fault
Handling of the Time-Triggered Architecture with Bus and Star Topology, Proceedings
of the 2003 International Conference on Dependable Systems and Networks, San
Francisco, California, June 22 - 25, 2003, IEEE Computer Society Washington, DC,
USA, 123-132.

- 38 -

LITERARY REVIEW

Ahlmark, M. (2000) Local Interconnect Network (LIN) — Packaging and Scheduling,
unpublished thesis (M.Eng.), Milardalen University.

Balogh, A., Pataricza, A. and Récz, J. (2007) Scheduling of embedded time-triggered
systems, Proceedings of the 2007 Workshop on Engineering Fault Tolerant Systems,
Dubrovnik, Croatia, ACM, New York, NY, USA.

BMW (2000) byteflight — What is byteflight [online], available:
http://www.byteflight.com/whitepaper/index.html [accessed 18 November 2008].

BMW Motorrad USA (2008) R1200GS Adventure 2008 Specs [online], available:
http://www.bmwmotorcycles.com/bikes/bike.jsp?b=2008r1200gsa&p=specs&bikeSecti

on=null [accessed 16 June 2008].

Bohm, P. (2005) Introduction to FlexRay and TTA, Universitas Saraviensis Saarland,

Germany.

Brandstitter, W. and Boke, C. (2008) AUTOSAR PDUs Conquer FlexRay, Automotive
Special Edition FlexRay, Hanser, 24-26.

CiA (2007) Controller Area Network (CAN) [online], available: http://www.can-

cia.org/ [accessed 30 Oct 2007].

Cummings, R. (2008) Easing the Transition of System Designs from CAN to FlexRay,
April 14-17 2008, Detroit Michigan, USA, SAE International, Warrendale,
Pennsylvania, USA.

Denner, V., Maier,J. Kraft, D. and Spreitz, G. (2004) Data Processing and

Communication Networks in Motor Vechicles, Bosch Automotive Handbook,

Plochingen,: Robert Bosch GmbH, 1064-1076.

-30 -

LITERARY REVIEW

Dependable Computer Systems (2007) DESIGNER PRO 4.3.0 - DESIGNER PRO,
DESIGNER PRO <LIGHT> and DESIGNER PRO <SYSTEM> Document Version 2.2,

Vienna, Austria.

dSpace GmbH (2009) dSPACE Products for FlexRay Applications [online], available

at:http://www.dspace.com/ww/en/pub/home/products/our_solutions for/flexray develo

pment_with_ds/dspace_products_flexray_applic.cfm?nv=n2 [accessed 15 May 2009].

Ecartec Ltd. (2008) CAN Bus Explained [online], available:

http://ecartec.com/can_bus_explained.html [accessed 27 June 2008].

Elektrobit Corporation (2009a) EB tresos®: The Product Family
for the Development of ECU Software [online], available:

http://www.elektrobit.com/index.php?888[accessed 13 May 2009].

Elektrobit Corporation (2009b) EB 61x0: Powerful FlexRay and CAN Bus Interface
Hardware [online], available:

http://www.elektrobit.com/what we_deliver/automotive software/products/eb _tresos_-

ecu_software development/eb_61x0 [accessed 13 May 2009].

Elektrobit Corporation (2009¢) EB 5100: Active FlexRay and CAN Interface Hardware
for PCI or PXI [online], available:

http://www.elektrobit.com/what we _deliver/automotive software/products/eb tresos -

ecu_software development/eb 5100 [accessed 13 May 2009].

Elmenreich, W. and Ipp, R. (2003) Introduction to TTP/C and TTP/A, Workshop on
Time-Triggered and Real-Time Communication Systems, 12 February, Manno,

Switzerland.

Elemenrich, W. and Krywult, S. (2005) A Comparison of Fieldbus Protocols: Lin 1.3,
Lin 2.0 and TTP/A, Proceedings of the 10th IEEE International Conference on
Emerging Technologies and Factory Automation, Catania, Italy, 19 -22 September,
IEEE Computer Society Washington, DC, USA, 747 —753.

- 40 -

LITERARY REVIEW

FlexRay Consortium (2005) FlexRay Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay Consortium GbR.

FlexRay Consortium (2007) about FlexRay [online], available:
http://www.flexray.com/index.php?sid=254188fe2bd59eb7108227f0adea90f5 & pid=80

&lang=de [accessed 19 Oct 2007].

Fujitsu (2008) Applications — Body and Comfort Electronics [online], available:
http://www.fujitsu.com/emea/services/industries/automotive/microelectronics/applicatio

ns.html [accessed 12 June 2008].

Heller, C., Schalk, J., Schneele, S. and Reichel, R. (2008) Approaching the Limits of
FlexRay, The 7th IEEE International Symposium on Network Computing and
Applications, Cambridge, Massachusetts, USA, July 10 - 12, IEEE Computer
Society Washington, DC, USA, 205 -210.

Jurgen, R. K. (1999) Automotive Elecronics Handbook, pnd edition, USA, McGraw-Hill.

Kopetz, H. (1991) Event-Triggered Versus Time-Triggered Real-Time Systems,
Lecture Notes In Computer Science; Vol. 563, Proceedings of the International
Workshop on Operating Systems of the 90s and Beyond, Dagstuhl Castle, Germany,
July 8-12, Springer-Verlag London, UK, 87 — 101.

Kopetz, H. (2000) Time-Triggered Architecture, International Federation for
Information Processing WG 10.4 on Dependable Computing And Fault Tolerance,
January 22-23.

Kopetz, H. and Grunsteidl, G. (1993) TTP - A Time-Triggered Protocol for Fault-
Tolerant Real-Time Systems, Digest of Papers of The Twenty-Third International

Symposium on Fault-Tolerant Computing, Toulouse, France, June 22-24, IEEE
Computer Society Washington, DC, USA, 524 — 533.

-41 -

LITERARY REVIEW

Leen, G. and Heffernan, D. (2002) Expanding Automotive Electronic Systems,
Computer, 35(1), 88-93

LIN Consortium (2006) LIN Specification Package Revision 2.1, Stuttgart: LIN

Consortium.

MOST Cooperation (2006) MOST Specification, Revision 2.5, Karlsruhe: MOST

Cooperation.

Navet, N., Song, Y., Simonot-Lion, F. and Wilwert, C. (2005) Trends in Automotive
Communication Systems, Proceedings of the IEEE, vol. 93, No. 6, IEEE Computer
Society Washington, DC, USA, 1204 — 1223.

Pop T. (2007) Analysis and Optimisation of Distributed Embedded Systems with

Heterogeneous Scheduling Policies, unpublished thesis (PhD.), Linkopings Universitet.

Pop, P., Eles, P. and Peng, Z. (2003) Schedulability Analysis and Optimisation for the
Synthesis of Multi-Cluster Distributed Embedded Systems, IEE Proceedings -
Computers & Digital Techniques, Vol. 150, Issue 5, Sept. 2003, pp. 303-312.

Pop, T., Pop, P, Eles, P. and Peng, Z. (2007) Bus Access Optimisation for FlexRay-
Based Distributed Embedded Systems, Proceedings of the Conference on Design,
Automation and Test in Europe, Nice, France, April 16-20 2007, IEEE Computer
Society Washington, DC, 51 — 56.

Pop, T., Pop, P., Eles, P., Peng, Z. and Andrei, A. (2006) Timing Analysis of the
FlexRay Communication Protocol, in Proceedings of the 18th Euromicro Conference on
Real-Time Systems, Dresden, Germany, July 5-7, 2006, IEEE Computer

Society Washington, DC, USA, 203-216.

Robert Bosch GmbH (1991) CAN Specification, Version 2.0. Reutlingen: Robert Bosch
GmbH.

-4 -

LITERARY REVIEW

Scheler, F., and Schroder-Preikschat, W. (2006) Time-Triggered vs. Event-Triggered: A
matter of configuration?, Proceedings of GI/ITG Workshop on Non-Functional
Properties of Embedded Systems, Nuremberg 27-29 March, VDE Verlag, Berlin, 107 -
112.

Schofield, M. (2006) Controller Area Network [online], available:
http://www.mjschofield.com/index.htm [accessed 30 Oct 2007].

Softing (2008) CAN Bus Arbitration Method [online], available:

http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-

bus/communication/bus-arbitration-method.php [accessed 17 June 2008].

STMicroelectronics (2001) AN1278 Application Note - Lin (Local Interconnect

Network) Solutions, Geneva: STMicroelectronics.

Stoger G. (2008) Creating FlexRay COM Stack Configurations for ECUs in Complex
Networks, Automotive Special Edition FlexRay, Hanser, 20-23.

TechlInsights (2008) Consumer and automotive electronics converge: Part 2 - A MOST
implementation [online], available:

http://www.automotivedesignline.com/howto/198001031 [accessed 16 June 2008].

TTA-Group (2004) TTP — Easy to Read, Vienna, Austria: TTA-Group.

TTA-Group (2008) TTA-Group — News [online], available:

http://www.ttagroup.org/news/pressreleases.htm [accessed 17 November 2008].

Vector Informatik GmbH (2006) FlexRay Protocol Reference Chart, Stuttgart, Vector
Informatik GmbH.

Vector Informatik GmbH (2007) CANalyzer 7.0 Datasheet, Stuttgart, Germany.

-43 -

LITERARY REVIEW

Vector Informatik GmbH (2008) Solutions for LIN, version 3.4, Stuttgart, Vector
Informatik GmbH.

Vector Informatik GmbH (2009a) Solutions for FlexRay Networking [online], available

at: http://www.vector.com/vi_flexray_solutions_en.html [accessed 15 May 2009].

Vector Informatik GmbH (2009b) DaVinci Network Designer FlexRay v2.2, Stuttgart,
Vector Informatik GmbH.

Vienna University of Technology — Real-Time Systems Group (1997) The TTP
Protocols [online], available: http://www.vmars.tuwien.ac.at/projects/ttp/ttpmain.html

[accessed 17 June 2008].

-44 -

LITERARY REVIEW

Chapter 4 . FlexRay

4.1 Introduction

The FlexRay protocol was developed when BMW and DaimlerChrysler decided
to cooperate. Together they had realised that automotive network solutions at the time
were inadequate for future developments such as drive-by wire. They were soon joined
by Motorola and Philips to form the FlexRay consortium. Other leading automotive and
electronic companies such as Bosch and VW soon joined (FlexRay Consortium 2007).
The partnership soon led to a protocol specification which is the basis for FlexRay
systems. This protocol has also been the basis of FlexRay [P-modules such as the Bosch
E-Ray communications controller (Robert Bosch GmbH 2007).

The core of the FlexRay protocol is a time-triggered communication system.
This is in contrast to some earlier event-triggered automotive applications such as CAN.
The use of a time-triggered protocol ensures a fixed delay in the transmission of data.
This is in contrast to an undeterminable time that data must wait before it is transmitted
using an event-triggered protocol, due to there being potentially higher priority
messages blocking access to the bus. The FlexRay approach is more suitable for safety
applications such as brake-by-wire when it is important that a message is not blocked
from accessing the network.

The protocol also provides flexibility and determinism by providing a dynamic
segment in a communication cycle. In this way it provides both synchronous and
asynchronous communication modes as standard. The physical layer also includes a
bus guardian to support error containment and provides for a data rate of up to
10Mbit/sec on each of two channels giving an equivalent overall data rate of up to
20Mbit/sec. FlexRay can therefore be seen as being designed for present and future
needs of automotive applications (FlexRay Consortium 2007).

If not otherwise stated, the information in this chapter was referenced from the

FlexRay Consortium (2005).

- 45 -

LITERARY REVIEW

4.2 Network Topology

The FlexRay protocol allows for various bus topologies. These can be a point to
point connection, a passive star, linear passive bus, active star network, cascaded active
stars, hybrid topologies and dual channel topologies (FlexRay Consortium 2005, p.21;
FlexRay Consortium 2006, pp26-31).

Node 1 Node 2
—1—41— Channel A
¢ Channel B

Figure 4.1: A passive bus topology

Figure 4.1 and Figure 4.2 show the basic layout of a passive bus topology and a
single channel hybrid network respectively. Note that in a network a node need not be
attached to both channels of the network, also a node attached to a single channel need
not be attached to channel A but to either channel A or channel B. The FlexRay
protocol will support hybrid topologies as long as the limits of each topology which

makes up the hybrid topology (i.e. the star and bus topologies) are not exceeded.

| Node 1 | | Node 2 |

| Node 3 || Node 4 || Node 5 |

Figure 4.2: Single channel hybrid network

It should also be noted that each channel can be implemented as a different bus
topology. For instance channel A can be a bus topology while channel B is implemented
as a star topology. This makes FlexRay a very flexible and adaptive communications

system for a wide range of applications.

- 46 -

LITERARY REVIEW

4.3 FlexRay Hardware

Each FlexRay node has a communication controller, a host, a power supply unit
and two bus drivers, one for each channel. Figure 4.3 (FlexRay Consortium 2005, p26)
shows the logical connections of each element.

The host handles the applications of the system while the FlexRay protocol is
handled by the communications controller. The bus driver is used to read and write data
to the physical medium over which the data is transmitted. In sleep mode it also has the
ability to start a wakeup procedure if it detects a wakeup signal. The communications
controller will mainly handle the framing of data and the checking of received data.

This is to ensure no data was corrupted before passing it to the host.

Communication Data

Host < > Communication Controller
Configuration Data &
_ Status Information _
E“ A
©
I 5
=) 8 T a
s| & =] -
= c (]
z > re) 5]
5] £ = c
(@] £ g =]
5 £
o © £
Y 8
B N Bus Driver ¥ ¥
Control Data &
Status Information T
= ':l
Power Supply Control Signals (optional)

Figure 4.3: Logical interface

The host passes information such as control information and payload data to the
communications controller. The communication controller relays status information and
data received. The host interface to the bus driver allows it to change the operation of
the bus driver as well as read status and error flags.

The connections between the communications controller and the bus driver
allow data to be transferred from the communications controller to the bus driver and
vice versa. There is also a ‘transmit enable not’ line which indicates that the bus driver

can transmit data on its corresponding channel.

-47 -

LITERARY REVIEW

4.4 Global Time and Timing

Figure 4.4 (FlexRay Consortium 2005, p170) shows the timing hierarchy used in
FlexRay. It consists of a communication cycle, macrotick and microtick levels. These

will be discussed from the bottom up.

{—
communication
cycle level | L | . |C€\)|3 | 4 |] | m
vCycleCounter cCycleCountMar

gdCycle

~

macrotick level o [1 [Cad] 3 [4] 5 | == [[CaD

N,

—

wiMacrofick gMacroPerCycle - 1

gdMacrotick

microtick level 0 [1 €3] 3 4 5 T]

@

viMicrotick pdMicrotick

Figure 4.4: Timing hierarchy

4.4.1 Microtick

In a FlexRay system the most basic unit of time is a microtick. This is derived
from a node’s local oscillator. In this way the length of a microtick will vary from
controller to controller. This leads to controllers drifting away from each other with
respect to the beginning of segments of the communication cycle. This can lead to

errors and as such there needs to be a way to synchronise time.

4.4.2 Macrotick

The macrotick in a FlexRay system is made up of fixed number of microticks.
The number of microticks which make up a macrotick may vary between nodes in a
system due to different operating frequencies. This will ensure that all macroticks will

have the same duration across the network within a given tolerance. This means that all

-48 -

LITERARY REVIEW

nodes on a network will have the same number of macroticks per communication cycle.

The communication cycle will be covered in section 4.5.

4.4.3 Global Time

In a FlexRay network it has been established that there are different levels of
time representation to help the network stay synchronised. However this will still lead
to a drift of the local time of the nodes if there is no correction applied to the nodes.
This is because there is no global reference point for the time. Instead there is a local
time for each node. This is the controller’s idea of the global time based on aspects such
as its idea of what macrotick was last transitioned and when it should transition for the
next macrotick. Every node uses a synchronisation algorithm to keep its view of the

global time as accurate as possible.

4.4.4 Synchronisation Algorithm

This is a distributed clock synchronisation algorithm, where all the nodes in a
cluster synchronise themselves to the other nodes in the cluster by monitoring the
transmissions of sync frames sent from other nodes. A node will then try to adjust its
view of the global time to that of the other nodes. After this process has been carried out
all nodes should share the same view of the global time to within a given tolerance. This
tolerance is known as the precision of the network.

The clock synchronisation is performed using two processes. These are the

microtick generation process and the clock synchronisation process.

4.4.4.1 Clock Synchronisation Process

This process measures both rate and offset differences of the expected times of
arriving messages and the actual arrival times. Rate correction is done during the whole
communications cycle while offset correction is done during the network idle time. The
correction values are in terms of microticks which are needed to be added to the
communications cycle and this value may be negative as well as positive.

The calculation of the offset correction is done every cycle but the corrections

are only applied during the idle time of odd communication cycles. The calculation

-49 -

LITERARY REVIEW

must be completed before the offset correction phase begins but any calculated values
must not be applied until the idle time.

The rate correction values are calculated once every two cycles after the static
section of the odd cycle. The values are based on the values observed during the two
cycles before the calculation. Again the calculation must be complete before the offset
correction phase begins but any calculated values must not be applied until the idle time.
Figure 4.5 (FlexRay Consortium 2005, p172) shows the relationship between clock

synchronisation and the media access timeframe.

media access schedule (MAC)

cycle 2n cycle 2n+1 cycle 2n+2 cycle 2n+3

static |dyn,‘sym| NIT static dyn,‘sym,| NIT static dyn,‘sym,‘ NIT static dyn,‘sym,| NIT

clock sync correction schedule (MTG)
|

L ! offset offset
rate correction rate correction Y rate correction rate correction Y
‘ | ‘ correction values /
_———'—-—’
clock sync calculation schedule (CSP) |

I ml R

measurement
values
measurement rate correction
phase value calculation

v

offset correction
value calculation

Figure 4.5: The relationship between clock synchronisation and the media access time frame

4.4.4.2 Macrotick Generation Process

This process produces macroticks which are ‘corrected’ based on the rate and

offset correction values.

4.4.5 Correction Term Calculation

In order to calculate the correction value a fault-tolerant midpoint algorithm is
used. This defines a parameter ‘k’ based on the number of terms in a sorted list of time
deviations. These deviations are between the reference points for expected timestamps
and actual timestamps. Table 4.1 (FlexRay Consortium 2005, p184) displays the

relationship between the number of values in the sorted list and ‘k’.

-50 -

LITERARY REVIEW

Number of values k
1-2 0
3-7 1
>7 2

Table 4.1: k as a function of a list of values

The value of k is obtained from this table and it is then used to figure out how
many of the largest and smallest values should be removed, i.e. if k is calculated to be 2
then the two largest and smallest values are taken out of the list. The next largest and
smallest are then averaged and the result is the node’s deviation from the global time for
the purposes of the correction.

The calculated values will then be checked against predefined limits. If each of
the values lies within its limits then the node is said to be synchronised. Otherwise an
error condition is detected and appropriate flags are set or a procedure can be put in

place to change the correction term to its limit or another predefined value.

4.5 Media Access Control
Figure 4.6 (FlexRay Consortium 2005, p100) shows the breakdown of the

communication cycle into the various segments. The segments as shown in Figure 4.6

will be discussed from left to right.

communication

cycle leve 7
static segme’d dynamic EEQ'TPF' symbol lmndcw. network
ﬁL | E die time
arbitration | | | 7[E/
grid level !
stafic slot sta'hc slot mlnlsl" r“l"uslu-

|—--_,-.-

- é '—- a"t on paint '— a"‘hor‘ point - ac’lm point
macrofic
lever L™ -~
rnac:n:ﬂld-c
microfick -
level 7
microtick

Figure 4.6: Communication cycle

-51-

LITERARY REVIEW

4.5.1 Static Segment

The static segment transmits data using a Time-Division Multiple Access
(TDMA) technique to allow different nodes to transmit and receive data over the
network at predefined times.

The static segment is broken down into smaller time slots known as static slots.
These slot are assigned to a message ID so that only that message may be sent during
that slot time every communication cycle. There is a possibility to use a cycle
multiplexing system however.

During the transmissions of frames in the static segment frames may be sent
over one or both of the channels at a time. Only one node however can transmit on a
given channel with a given frame ID during a given slot.

As has been stated the entire network shares a ‘global view’ of the time on a
given network. This ensures that nodes on the network agree on when a slot starts and

ends. This helps to avoid different messages being sent out at the same time.

4.5.2 Dynamic Segment

To make FlexRay more usable there can be a dynamic segment included if
desired by the network designer. This is where a node can transmit data at arbitrary
times. If two nodes want to transmit data at the same time then the message with the
lower message ID is transmitted first and the other messages have to wait until that
message is transmitted before commencing transmission. This is similar to CAN, but
transmission can only begin if there is time to transmit the entire message before the end
of the dynamic segment. If there is insufficient time left to transmit the message then
the message will be kept for the dynamic segment of the following communication
cycle.

The dynamic segment is broken up into smaller sections known as minislots.
These are defined in terms of macroticks where the start of a minislot defines an action
point where transmission may begin.

During the Dynamic segment the slot counters may be incremented at different
action points and thus two different message IDs may be transmitted on the bus at the
same time over the two channels. The dynamic messages’ slot IDs are number

sequentially from the last static message ID.

-52-

LITERARY REVIEW

4.5.3 Symbol Window

A symbol is used to signal a need to wakeup a cluster amongst other things. The
meaning of a symbol depends on the symbol sent and the status of the controller at the
time. Within the symbol window a single symbol may be sent. If there is more than one
symbol to be sent then a higher level protocol must determine which symbol gets

priority as the FlexRay protocol provides no arbitration for the symbol window.

4.5.4 Network Idle Time

The network idle time is used to calculate clock adjustments and correct the
nodes’ view of the global time. It also performs communication specific tasks and uses

the remaining time of the communication cycle.

4.6 Frame Format
Figure 4.7 (FlexRay Consortium 2005, p90) shows the frame format of a
FlexRay message. It is broken down into three sections: the header, payload and trailer

sections.

Payload preamble ndicator
Stadup frame indicator

Mull frame indicator
Syne frame ndicator

Reserved bit

Header CRC
Covered Area

Header |5¥== | pata o | pata 1 | Data2 patan| crc | crc | cre
11 hits 7 bits 11bits |6 bits 0 ... 254 bytes 24 hits
—* * il il ™
11111 Header Segment Payload Segment Trailer Segment
FlexRay Frame 5 + (0 ... 254) + 3 bytes

Figure 4.7: Frame format

The frame bits are transmitted from left to right as you look at Figure 4.7, i.e. the

reserved bit is sent first followed by the payload preamble indicator bit etc.
-53-

LITERARY REVIEW

4.6.1 Header Section

The header section is broken down into smaller sections. It is five bytes in length
which is broken down into a reserved bit, payload preamble indicator bit, null frame
indicator bit, sync frame indicator bit, startup frame indicator bit, a frame ID (11 bits),
the payload length (7 bits), a header CRC (11 bits) and a cycle count (6 bits). The CRC
is not computed by the communications controller which is transmitting the frame.
Instead the CRC is passed to the communications controller by the host as it does not
generally change during the static segment. The CRC is recalculated by a receiving
communications controller. This is to ensure that a received frame was received with no

errors. This CRC code is calculated for all channels and uses the following polynomial:

x'"+x” +x* + x” + x* +1. The initialised value for the register that is used to calculate
the CRC is the same for both channels and is Ox1A.
For further information on how the CRC is generated and the other sections of

the header see the FlexRay Consortium protocol specification (2005, pp97-99).

4.6.2 Payload Section

The payload section is used to send data and contains 0 to 254 bytes of data.
Each byte of data is generally referred to by its position in the payload, i.e. the first bye
1s called “data 0”, the second “data 1”” and so on.

In some cases the payload may also be used to transmit more frame information
as an option. This data would be a message ID field in the dynamic segment and a

network management vector in the static segment.

4.6.2.1 Network Management Vector

This can take up O to 12 bytes of the payload section and would be placed at the
start of this section i.e. “nm0” would be used instead of “data 0" and “nm1” instead of
“data 1” etc.

In order to allow a node to determine if a message contains a network
management vector the network preamble indicator bit is set in the header section and it
must only be transmitted during the static segment of the communications cycle. All

nodes in a cluster must be configured with the same network management vector length.

-54 -

LITERARY REVIEW

The network management vector is used to coordinate startup and shutdown
decisions based on factors such as the application state. It is part of a network

management service.

4.6.2.2 Message ID Field

During the dynamic segment of the communications cycle a message ID field
may be placed as the first two bytes in the payload section. This allows the receiving
frame to determine how the data should be used or filtered. The message ID is 16 bits
long and can only be transmitted during the dynamic segment of the communication
cycle. To determine whether a message contains a message ID a receiver checks the
payload preamble indicator bit in the header. If this is set the payload contains a

message 1D field.

4.6.3 Trailer Section

The trailer section is made up of a 24 bit CRC code for the frame (FlexRay
Consortium 2005, p96). It is calculated over the header and payload sections of the

frame and the polynomial used for all channels is:

x® o+ x® o+ x® + x

This will give a Hamming distance of six for a payload of up to 248 bytes, otherwise for

19 16 14 13 11 10 8 7 6 3

+ X + X + X + X + X + x° + X + X

payloads of 248 bytes and over the Hamming distance is four.

The initial value of the register used to calculate the CRC is different depending
on which channel is being used. For channel A the value is OXFEDCBA and for channel
B the value is 0OXABCDEF. The CRC for the frame is calculated, unlike the header CRC,
by the communications controller. This means that the frame CRC is calculated by the
communications controller during transmission and reception of a frame.

On reception of a frame, the transmitted CRC is checked against a CRC which is
calculated based on the received header and payload sections. If these two values differ
then an error has been detected, otherwise the frame was received error free. The result
of this should be signalled to the host by using an indicator such as a flag. The host can
then follow an error procedure. This could involve signalling to the network that a
frame was received with an error or the host could attempt to recover the data

depending on the configuration of the system.

-55-

+ x7 + x + 1

LITERARY REVIEW

4.7 Coding & Decoding

As there are two channels there is a need to perform coding and decoding
independently, however it is carried out in the same manner. In order to implement the
coding and decoding FlexRay implements three processes, the coding/decoding process

(CODEQ), the bit strobing process and the wakeup pattern process.

4.7.1 Bit Stream Assembly

To transmit a frame the following steps need to be taken:

1. The frame data is broken up into individual bytes.

2. A transmit start sequence followed by the frame start sequence is transmitted.

3. An expanded byte sequence for each data byte is created by prefixing the byte
start sequence before the bits of the bytes.

4. This is then assembled, in order, into a single bit stream for transmission.
The CRC is then calculated for the frame, and expanded byte sequences are
created for this data before being appended to the bit stream.

6. The frame end sequence at the end of the bit stream is added.

7. If the frame is in the dynamic segment the dynamic trailing sequence is
appended.

Figure 4.8 (FlexRay Consortium 2005, p57) shows a bit stream with all encoding

having been done in the static segment. For a dynamic segment diagram see the

FlexRay Consortium (2005, p58).

FSS EI 5 EI “'~ FEB

High -— ==
|||||I||||ﬂ ﬂIIIIIIIII
Low IR S w I N U N A T N N O I A

15t byte sequence last byte seguence
High 1 * gdBit
TxEMN MEB LS8
Lz

Figure 4.8: Encoded bit stream

-56 -

LITERARY REVIEW

4.7.2 Frame Encoding

In order to transmit data a node must represent the communication elements as a
bit stream before it can be transmitted over the physical medium. This section deals

with how a frame is encoded for transmission.

4.7.2.1 Transmission Start Sequence (TSS)

This is used to ensure proper setup of the network. An active star will use this to
properly configure input and output connections. This type of setup will cause an active
star to truncate a number of bits at the start of a frame or symbol. This will therefore

ensure that the frame or symbol contents are not corrupted or truncated.

4.7.2.2 Frame Start Sequence (FSS)

The FSS is used to compensate for possible quantisation errors after the TSS. It

is defined as a high bit.

4.7.2.3 Byte Start Sequence (BSS)

This sequence is used for timing information of the streaming bits. It consists of
a high bit followed by a low bit. Each frame data byte will be sent onto the channel as
an expanded byte sequence, where eight data bits are prefixed with a single byte start

sequence.

4.7.2.4 Frame End Sequence (FES)

This end sequence is used to mark the last byte of a frame. It is a low bit
followed by a high bit. It is appended to the last expanded byte sequence of the frame.
These are the last two bits sent if the frame is transmitted in the static segment. If this is
the case the transmit enable line will be set to high to prevent further transmission. For a

frame sent in the dynamic segment there is an additional sequence added.

-57 -

LITERARY REVIEW

4.7.2.5 Dynamic Trailing Sequence (DTS)

The DTS is used for frames sent in the dynamic segment only. It is so that the
exact minislot action point can be determined and to prevent false detection of a channel
idle state by receiving nodes. This is transmitted directly after the frame end sequence.

It consists of a low level transmission of at least one bit length, but the length is
not fixed for longer periods. This is followed by a high output for one bit length. Once
the output has been high for one bit time the transmit enable line is set high. This will
mean that the duration of the dynamic trailing sequence is variable and can range in

length between two bits and the length of a minislot plus two bit times.

4.7.3 Frame Decoding

This section deals with the decoding process of received frames on a channel.
This is again performed on each channel in the same manner but separately. The
decoding of a frame or a symbol is carried out one at a time i.e. if a frame is being
decoded another frame or symbol can not be decoded at the same time on the channel.
The successful decoding of a frame/symbol will happen as long as at least the channel
idle delimiter time is observed between the last bit of the previous frame/symbol and the
current frame/symbol. A successfully decoded frame or symbol will not guarantee that
the received data is correct or valid. Figure 4.9 (FlexRay Consortium 2005, p66) shows

the frame decoding process.

CODEC a b c d =
BITSTRE

straging | | | | |—| [||| [|—— =l Lrrrrrerrertrerr e

ng-l "_'|_I_I_I_—| |_V—‘ | T T T T | ‘ | T T T T ‘ |_| | : T
Z'.-u'cted‘u_fal 1 L L 1 1 L 1 1 1 1 1 1 11 1 i
-

i..."..|.-_|..; cChannelldieDelimiter

Low

BSS FES DTS !
———— k._______ _______./;
== zChannelldieDelimiter channel idle delimiter nfzrred from
start CHIRP

Figure 4.9: Received bit stream

At each of the points in the diagram (a-e) the following is happening:
a. The end of the channel idle point is detected.
b. A potential frame start sequence is detected.

c. The header is received.

-58 -

LITERARY REVIEW

d. All frame data is received at this stage and the frame ending sequence is
expected followed by a dynamic trailing sequence if the frame was sent during
the dynamic segment.

e. The channel idle delimiter time is reached and another frame or symbol can be

received.

4.7.4 Symbol Encoding
There are three defined symbols used in the FlexRay protocol. These are:
1. The collision avoidance symbol (CAS).
2. The media access test symbol (MTS).
3. The wakeup symbol (WUS).
The symbols for the CAS and MTS use the same bit pattern and are distinguished
by the receiving node based on the status of the node. The encoding process does not

distinguish between them.

4.7.4.1 CAS and MTS

The CAS symbol is used by coldstart nodes to begin startup of a cluster while the
MTS is used for testing the media access control operation. The bit pattern for the
CAS and MTS is as follows:

1. A transmission start sequence is first transmitted.

2. Alow level is transmitted for a defined symbol period.

The symbols are transmitted with the transmit enable being synchronous with the

transmit data signal. This is shown in figure 4.10 (FlexRay Consortium 2005, p59).

T=D
Low

A
vl

55 cdCAS

High
TxE\J_|

Low

Figure 4.10: CAS and MTS encoding

-59 -

LITERARY REVIEW

4.7.4.2 WUS

The WUS symbol is used to signal to other nodes on the cluster a desire to
wakeup the network and to begin transmission of frames. The node shall transmit a
low logic level for a given ‘wakeup low’ period. This is followed by an idle state
which has a defined time. This will then be repeated for a globally defined number of
times. Figure 4.11 (FlexRay Consortium 2005, p59), shows a wakeup pattern made up

of two wakeup symbols.

L WUE A - Wus 2 e
High ™ — i I"'l" . i IPI"'
Low
—_— | | | |
Low 1 1
. g == |
gdWakeupSymbolTxLow gdWakeupSymbolTxldle

Figure 4.11: Wakeup pattern using two wakeup symbols

A node should be able to detect any transmissions on a channel during
transmission of a wakeup pattern in case there is another wakeup pattern from another
node or activity already on the bus. This sort of collision can then be handled to

ensure that there is no error or protocol violation performed on the channel.

4.7.5 Symbol Decoding

4.7.5.1 CAS and MTS

The received symbol will be decoded by the node in the same way for both
symbols.

As the transmission start sequence is a low level for a given time and this is
immediately followed by the CAS or MTS symbol, which is also represented by a low
level of a given time, there is no way for the receiver to distinguish between the
symbol and the start sequence. Therefore a successful detection of a symbol is
determined if a low level is detected for a given time within the CAS/MTS min and

max limits defined in the protocol of the nodes of the network.

-60 -

LITERARY REVIEW

4.7.5.2 WUS

The detection of a wakeup pattern is to be considered as being successful
under the following conditions:
1. Alow level that is as long as the WUS low period is detected.
2. This is followed by a high level that has duration of the WUS idle time.
3. Steps 1 and 2 are repeated until the number of wakeup symbols which make
up a wakeup pattern are received

4. The duration of the wakeup pattern does not exceed its constraint limit.

4.7.6 Sampling and Voting

When data is sent on a channel, nodes which receive the data must determine
what was sent on the channel. In order to do this a sampling and majority voting
scheme is used. This is done independently on each channel.

The sampling is done at the received input and each sample is stored. The
sampling period and number of stored samples depends on the application and
hardware used. The node shall then perform a majority voting operation on the stored
data.

This majority voting operation is used to filter any glitches detected on the
channel. In this case a glitch is an event which temporarily changes the logic value of
the received data to that of a value other than that which was transmitted. The
receiving node shall continually check the stored samples and if the majority of the
samples are a logic one then the output from this process shall be a logic one.
Otherwise a logic zero is detected. This voted value is the value which is then used by
further decoding processes or stored as the received message.

It should be noted that this process will cause a delay to appear in the received
bit pattern or the voted value which is relative to the clock period of the sample clock.
Figure 4.12 (FlexRay Consortium 2005, p61) shows a received bit pattern along with
a glitch and the delay caused by this process.

-61 -

LITERARY REVIEW

_ cvotingUielay

-

uuuuuyy gyt

e e U UL L L

glitch ‘

_|—|1r

RxD

|

s . r ¥ 1
voting window 11111117111 1910111004 110041001 100111 "111‘11‘['11‘E'1‘III'1EI:IZI'D]:DU:EEU%D]:E&IIIZIJGEIJ:EZEIZI:'Z[EI"3[11'01‘1111

H

ZVotedVa

Figure 4.12: Sampling and majority voting of a received bit pattern at the input

The example shown in Figure 4.12 shows a sample length of 5 and sampling is done

on the rising edge of the clock.

4.8 Wakeup

This section covers the basics of getting a FlexRay cluster to full operation

from the sleep mode.

4.8.1 Cluster Wakeup

The cluster wakeup is performed by a macro and follows the procedure
outlined below. It is necessary that the bus drivers are supplied with power. If the bus
driver is supplied with power it has the ability to wake up the other nodes’ systems.
There must also be a wakeup source supplied to at least one node.

The host can transmit the wakeup pattern on each of its channels individually
but it should not be transmitted on both channels at the same time to avoid faulty
nodes interrupting communication on both channels. The host will configure which
channel is to be woken up and ensure communication on the channel is not disturbed.
The protocol also allows for nodes connected to a single channel to wakeup the
network on both channels. This is done through a node connected to both channels
being used to wakeup the other channel. To avoid certain failures it is recommended
that both channels should be woken by different controllers.

If the wakeup pattern is successfully received by a node which is asleep, this
node shall wakeup. The bus driver will handle the detection of the wakeup pattern,

with the communications controller only needing to recognise the wakeup pattern

-62 -

LITERARY REVIEW

during the wakeup and startup phases to avoid collisions. It is also impossible for the
communications controller to determine if all nodes connected to a network received
the wakeup pattern and are awake at the startup phase.

It should be noted that any number of nodes trying to wakeup the network will
be resolved by the wakeup procedure so that only one node will wakeup the network.
However if there is a fault which causes two nodes to transmit the pattern at the same
time, then the resulting signal can still wakeup the network.

The Bosch E-Ray chip fully supports the FlexRay protocol and an application
note has been produced on the wake up procedure (Robert Bosch GmbH 2006) that is

a good reference on the requirements to wakeup a node.

4.8.2 Startup and Reintegration

To communicate across a TDMA system there has to be synchronisation of all
of the nodes. A startup procedure is therefore put in place to initially synchronise all
the nodes.

To start up a network all the nodes must first be awake. When all the nodes are
ready then a startup process or ‘coldstart’ can begin. This is done by a few coldstart
nodes. There is a limited amount of coldstart nodes in a network. In a network of less
than three nodes, all nodes are configured to be coldstart nodes. For networks with
three or more nodes, there must be at least three nodes configured as coldstart nodes.

To begin the startup procedure, a coldstart node transmits a CAS. It can then
transmit frames. After the first four cycles following the CAS it is joined by the other
nodes, starting with the coldstart nodes then the remaining nodes in the network. All
frames sent during startup are sync frames and so all coldstart nodes should be
configured as sync nodes.

After collecting startup fames, if there are no clock correction errors detected
then a node will enter normal operation. This process varies depending on the
configuration of the node. For further detail see the FlexRay Consortium protocol

(2005, p157).

-63 -

LITERARY REVIEW

4.9 Conclusion

The protocol outlined by the FlexRay consortium has been discussed in this
document. It has briefly covered basics of why the protocol is needed and how it is
implemented.

As can be seen it was developed with current and future needs in mind.
However FlexRay is still a new technology. As such there are areas where
improvement may be gained or needed. This will become clearer as more and more
vehicles have FlexRay systems implemented on them. The first car to do so was the
2006 X5 (Berwanger et al. 2004; BMW Manufacturing Co. 2006) with more vehicles
expected in 2009. As the technology matures the use of FlexRay is set to increase in
areas such as drive-by-wire and safety systems. This makes FlexRay a very good

research and development area.

4.10 References
Berwanger, J., Schedl, A. and Peller, M (2004) BMW- First Series Cars with FlexRay

in 2006, Automotive electronics + systems, Development Solutions 19 for FlexRay

ECUs, 6-8.

BMW Manufacturing Co. (2006) THE NEW BMW X35

Perfect Blend of Driving Dynamics, Functionality and Exclusivity [press release], 8
August, available:
http://www.bmwusfactory.com/media_center/releases/release.asp?intReleaseNum=20

9&strYear=2006 [accessed 2 October 2007].

FlexRay Consortium (2005) FlexRay Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay Consortium GbR.

FlexRay Consortium (2006) FlexRay Communications System Electrical Physical

Layer Specification, Version 2.1 Revision B, Stuttgart: FlexRay Consortium GbR.

- 64 -

LITERARY REVIEW

FlexRay Consortium (2007) about FlexRay [online], available:
http://www flexray.com/index.php?sid=254188fe2bd59eb7108227f0adea90f5&pid=8

O&lang=de [accessed 19 Oct 2007].

Robert Bosch GmbH (2006) E-Ray Application Note ANOO1 Wakeup, Revision 1.0,
Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2007) Automotive Semiconductors and Sensors [online],

available: http://www.semiconductors.bosch.de/en/20/flexray/flexray.asp [accessed 2
October 2007].

-65 -

LITERARY REVIEW

Chapter 5 . Performance Analysis

5.1 Introduction

Analysis of software can improve the quality of a system leading to greater
satisfaction from the user and ultimately to increased profit for the developers. By
analysing a system throughout the software development stage programming errors
can be found. This helps to identify errors at an early stage and reduces development
time and costs.

Likewise hardware systems need to be analysed. By performing various tests
on a system it is possible to identify bottlenecks or shortcomings of a system. An
example could be a real-time system that needs to transmit a message over a network
before a given time. If the software transmits the message before the given time, the
message may still be held up by the driver of the communication device. Likewise the
communication hardware may be slow and the message transmission deadline may be
missed. The analysis of systems should identify any type of shortcomings in a system.
Possible solutions to the problems can then be made based on these observations.

There have been a number of experiments carried out that involve the
simulation of networking systems. This chapter will introduce system analysis
methods and metrics that have already been implemented. It will also outline some
research and techniques that have carried out the simulation of these communication

networks.

5.2 System Performance and Analysis

Analysing the performance of real-time systems is an important task. In a real-
time system it is essential that deadlines are not missed. By applying performance
analysis it is possible to optimise the system. This can reduce or eliminate the chance

of a missed deadline.

- 66 -

LITERARY REVIEW

System performance can be classed as response time, Worst-Case-Execution-
Time (WCET) and memory-loading. Response time is the time taken between the
initialisation of a task and its completion. WCET is the longest time that a computer
takes to processes information. Memory-loading is the percentage of available
memory to the amount being used (Laplante 1992, p199).

For a FlexRay based system these can be seen as the hardware and software
delays. The amount of time it takes a message to pass from a task through the
communications controller and onto the communication bus could seriously affect the
performance of the system. Other aspects are the processing time for the tasks and the
communications schedule. The resource utilisation, such as the amount of memory
used, could also affect the performance of the system. Too much memory makes the
system costs unnecessary high. Too little allocated memory and messages could be
lost or miss deadlines.

The performance and analysis of a system will depend on the nature of the
system. If the system is event-triggered there will be a set of measurements and
techniques to analyse the system. If a similar system is implemented as a time-
triggered system the techniques and measurements could differ. The different

performance analysis techniques are outside the scope of this research.

5.2.1 Response Time

The response time of a system will depend on the implementation of the
system. Different implementations will lead to different sources of response time
delay. The different sources of delay will determine what actions can be applied to
reduce the delay (Laplante 1992, p199). The following are examples of possible
response time delays.

For polled loop systems there are three different sources of delay: the
hardware delay in setting the event, the time to test the event and the time needed to
process associated events. The time it takes to process the event and to enter the
handler routine can be significant, while the time it takes to process the handler
routine will depend on the implementation. This can be made worse by events piling
up on each other (Laplante 1992, pp199-200). If there are ‘n’ overlapping event the
response time can be calculated as follows (Laplante 1992, p200):

nfP

-67 -

LITERARY REVIEW

where, f is the time needed to check the event and P is the time to process the event.
For an interrupt system there are a number of factors that must be taken into
account. Figure 5.1 (Laplante 1992, p201) shows the response time of an interrupt-

driven system.

Save
Interrupt current Process
latency context Schedule interrupt

} L 1] { LA B | —
(nanoseconds) (microseconds) (microseconds) (milliseconds)

=i} .
Response time

Figure 5.1: Interrupt-driven response time

Interrupt system response time is affected by factors such as the time it takes a
system to detect an interrupt and context switch time. The context switching time is
the time it takes to transition from the normal program flow to the interrupt handler.
The context switch time can be treated as standard executable code when calculating
this time. In general the response time for task ‘i’ (R;) is given as (Laplante 1992,
p200):

Ri= L+ Cs+ Si+A;
where, L is the interrupt latency, C; is the context save time, S is the scheduling time
and A is the execution time.

For a CPU with an interrupt controller and multiple interrupts the schedule
time is negligible. When a single interrupt is used with an interrupt controller the
schedule time can be calculated by using instruction counting (Laplante 1992, p201).
Calculation of the latency can prove difficult however if a lower priority routine tries
to interrupt a higher priority routine. The best response time is the time it takes the
higher priority task to complete its routine. The worst case cannot be determined as
the lower priority may be interrupted itself.

When a higher priority task interrupts a lower priority task the worst case
response time is calculated as follows; The propagation delay to signal an interrupt
and the CPU detecting this signal (L) and the maximum of either the completion time

of the longest instruction (L;) or the maximum time a lower priority task may disable

- 68 -

LITERARY REVIEW

tasks (Lp) (Laplante 1992, p202). This can be expressed as the following formula
(Laplante 1992, p202):
Li= Lp + max{L,-,LD}

5.2.2 Worst Case Execution Time (WCET)

The ability to know execution times of modules before the system
implementation is important. This can help the system to meet its goals and can even
help in the selection of hardware. During the testing it will then be possible to identify
the problem modules (Laplante 1992, pp204-5).

To predict or measure the WCET several methods have been developed. These
include (Laplante 1992, pp205-210):

Logic Analysers: This is one of the best ways to analyse execution time of a

module. It will usually take into account CPU utilisation and hardware

latencies. However the software usually needs to be complete.

Instruction Counting: If the software is not complete or a logic analyser is

not available this can be employed. It involves tracing the longest path through

the code and adding the (maximum) execution times of each instruction.

Pictorial Representations: By employing a bar chart with different shading

or colouring a pictorial representation for periodic systems can be achieved.

The width of the boxes represents the execution times while the height

corresponds to different priority levels. Figure 5.2 (Laplante 1992, p209)

shows an example of a timing chart. To construct this chart an interrupt must
happen at the appropriate point. If a higher priority task interrupts a lower
priority task it can be placed on the graph at that time. The lower priority task
will then complete after the higher priority task execution time. If a lower
priority task interrupts a higher priority task it is placed after the higher
priority task end time. If this is done then an accurate representation is

achieved. If the chart cannot be completed then the system is time-over loaded.

- 69 -

LITERARY REVIEW

High L
&
3
a.
o
g
6]
7 7
Low
15 20 25 30 35
5ms [] Time in miliseconds
10ms 77
40 ms Ea, e

Figure 5.2: Timing chart example

Calculations of the instruction times can require additional information other
than that provided by manufacturers. This is due to accesses to I/O devices or
memory. To achieve a more accurate time-execution analysis a simulation of the
system can be run. This can be configured with various parameters and tests run.
However some simulations become very difficult due to complexities in the systems.

This is especially true when pipelined systems or RISC architectures are modelled.

5.2.3 Memory-Loading

With memory becoming cheaper and denser the analysis of memory-loading is
seen as less of a concern. However where multiple ECUs are present, like in a car
where there is a large distributed system, efficient memory use could lead to a large
saving (Laplante 1992, p224). For instance in a FlexRay based system there is
memory associated with the application and with the communications controller.
Therefore efficient use of memory in a FlexRay based system could have a huge

impact. Figure 5.3 (Laplante 1992, p225) shows an example of a typical memory map.

-70 -

LITERARY REVIEW

Location (HEX)

0000
Memory-mapped /O

and DMA

0100
Program area

B0OO0O

RAM area
C000

Stack area
FFEE

Figure 5.3: Standard memory map

The memory loadings in a system are usually a sum of all the areas in

memory. This can be summed up in the following formula (Laplante 1992, p224):
M=Mp.Pp+Mpz. Pp+Ms.Ps

where Mr is the total memory-loading, Mp,Mgr and Ms are the memory loading for the

program, RAM and stack areas respectively. The Pp, Pr and Ps are the percentages of

total memory allocated to the different areas.

As the program area is usually stored in ROM it may be treated like RAM for
calculations. This is because the RAM size is usually fixed at design time. Therefore
to calculate the memory-loading (M) for either area the following formula can be
used:

m=Y
T

-71 -

LITERARY REVIEW

where U is the number of used locations in memory and T is the total memory area
for either the RAM or ROM.

For the stack area the same basic formula can be used. However U is
calculated in a different manner. For any task, s, the amount of locations that it
requires to store the register, program counter and variables will be defined as Cs. The
maximum number of tasks that can be stored in the stack at any stage will be defined
as tmax. This leads to a formula of U as follows:

Us= Cs. tnax

5.2.4 Improving Performance Measures

This section is based on sections 9.4 and 9.6 of Laplante (1992, pp210-224;
pp227-230). These sections (of Laplante) focus mostly on optimising code to
influence the performance of the system. This is due to the fact that the hardware will
in many cases be fixed at an early stage. However hardware optimisation could lead
to increased performance metrics. As was stated in section 5.2.1.2 simulation is an
important tool in analysis of systems. This is one of the best ways to identify any
shortcomings of a hardware system and could ultimately lead to improved hardware
components.

The basic approach behind reducing response time and time-loading is the
identification of wasteful code. This can be due to compilers generating useless code
or by poor programming. For instance, floating point numbers take longer to perform
calculations on than integer values. If a programmer chooses a floating point variable
when an integer variable can be used, then this will increase the execution time
unnecessarily. Also there can be waste generated by certain events. An example of
this from Laplante is that of a system that employs a temperature sensor. The
temperature takes time to measure as the value must pass through an analogue-to-
digital converter (ADC). When this is being carried out the application may have to
wait for a flag from the ADC to indicate it has finished the conversion. The system
will then need to process this information and take any necessary action. However
temperature cannot change drastically in most scenarios. Therefore it may be wasteful
to measure temperature for example every 10ms. To ensure response times are kept to
a minimum, all factors such as a map look-ups or a 32bit divides should be accounted

for and steps taken if necessary to reduce the response time where necessary.

-72 -

LITERARY REVIEW

Some problems are not due to either poor compile time code generation or
poor programming. It is therefore necessary to optimise the code. The methods
outlined in this section are orientated toward real-time systems. As was stated floating
point arithmetic is slower than integer arithmetic. By using a method called ‘scaled
arithmetic’ a reduction in processing time may be achieved. It involves representing
numbers as a two’s complement number with the least significant bit (LSB) acting as
a scale factor and the most significant bit (MSB) acting as a sign indicator. Operations
on the number can then be performed and converted to a floating point number at the
last step. An alternative method to calculating values at run time is to contain some
operations values in a look-up table. This involves pre-calculating values of an
operation such as the value of Cos(x). If the range of values that x can be is known
before run time then a look up table can be created. A drawback is, as more points are
included more memory is taken up. Also the precision of the values may suffer when
using a lookup table.

To help reduce memory-loading there are a number of defined techniques.
These include the selection of variables. If a variable is created it will take up space in
one area of memory. If this variable holds an intermediate result the variable may not
be necessary. By removing this intermediate result and implementing the calculation
in a later stage a memory register may be saved. Another form of memory loading is
where unreachable code is generated. For example debugging code is never used at
run time. It is therefore necessary to determine any code that will never be executed
during run time and ensure it is not included at compile time. Other effects could be
memory fragmentation. While not an actual form of memory loading, it can produce
effects similar to memory-loading. Therefore if possible this should be avoided.
Finally the use of bitfields for Boolean variables instead of a byte (or even a word) is

also a technique for saving memory.

5.3 Software Metrics

Measures of performance of a system are also known as ‘metrics’. Metrics
relate to a system designer how well a system performs then intended tasks. This will

also lead to more accurate conclusions being drawn from the systems output. By

-73 -

LITERARY REVIEW

developing a set of software metrics, an improvement in productivity, development

time and product quality can be observed (Moller and Paulish 1993, p8).

5.3.1 The Need for Metrics

Since the 1970’s the development of computer hardware has increased at a
rate greater than that of software. Processors can now be found with a number of
processing cores. This value ranges from 1 to 8 microprocessor cores such as the
processor found in the Sony Playstation 3 (one is disabled however). This has resulted
in most bottlenecks being traced back to the software (Shepperd and Ince 1993, p8).

This increase in hardware performance causes an increase in the time needed
to develop programs as well as affecting reliability. More powerful computers can
potentially run more complex and bigger programs in less time than on slower
computers. This increase in the size of computer programs as well as their complexity
makes them more difficult to troubleshoot. The complexity therefore affects reliability
and this trend leads to a need to identify and eliminate any problems if possible at an
early stage. Such problems can be bottlenecks of data being passed through a system
or where deadlocks/livelocks may occur. Figure 5.4 (Moller and Paulish 1993, p3)
shows how a number of factors, related to a badly written piece of software, could
affect a company.

Metrics can also be used as a measure of not only software performance, but
also of system performance. This could be in the form of the number of messages that
pass through a communications controller. Equally the number of messages (of a
given size) per microsecond, that a software driver maybe able to pass between a
microprocessor and a communications controller could be measured. In this case a
bottle neck could be revealed by creating metrics for a given system.

Figure 5.4 could be changed to reflect the poor performance as an indication
of, for example, a loss of transmission in a communication system. The inaccurate
estimation side of the diagram would reflect a poor system setup, for instance an
unnecessarily long communication cycle in a FlexRay based system. This would lead

to an overall poor system and reduced system confidence.

-74 -

LITERARY REVIEW

Low Productivity Bugs
Inaccurate Estimation Poor Performance

|

!

Cost Overruns Customer Dissatisfaction
ﬁ\\ /

Lost Business

£ s« ®

Reduced Profitahility

Poor Product Quality

—

Figure 5.4: The effect of bad software on a company

By employing metrics the following activities can developed to ensure a
reduction in cost and increased efficiency in software engineering (Fenton 1991, p9):
¢ Cost and effort estimation models and measures
® Productivity measures and models
e Quality control and assurance
e Data Collection
¢ (Quality models and measures
e Reliability models
e Performance evaluation and models
e Algorithmic/computational complexity
e Structural and complexity metrics
Figure 5.5 (Moller and Paulish 1993, p71) shows how the use of software
metrics can help to find software errors. It is hoped that most errors are found before a
system goes to the customer. This helps to highlight how a detailed evaluation of a
system can benefit any system. In Figure 5.5, KLOC stands for ‘thousand lines of

code’.

-75 -

LITERARY REVIEW

No. Faults Found
A

System Test Faults
Na. Faults/KLOC

| Customer Change Requests
No. Change Requests/KLOGC

BV
| / l

Engr. System Beta Customer

Iy

F 3

1 Year

B

Time

Testing Testing Testing Use

Figure 5.5: Number of faults found in software

By employing metrics a performance measurement will be defined. This will
allow stake holders to gain a proper understanding of the different performance
aspects. If the metrics have been properly defined they should also eliminate
confusion as to what measurements are being defined by the set of performance

measures.

5.3.2 System Measurement Framework

This section is based on the framework as described in chapter 3 of ‘Software
Metrics’ (Fenton 1991). It is adapted to be relevant to the research outlined in this
thesis.

The various states of any system that are important to identify are any
attributes or entities that are of interest to the study. In any system these fall into the
following categories:

® Processes

e Products

-76 -

LITERARY REVIEW

® Resources
Anything that will be of interest in a computer application will usually be related to
the above categories. The measurement will be an attribute or entity of one of those
categories.

Attributes can be further segmented into internal or external attributes. Internal
attributes are processes, products or resources that are related to the system. External
attributes on the other hand are how processes, products or resources are related to the
system and its environment. These can be seen as reliability or performance attributes.
These phrases can be very vague and have many meanings. This makes them more
difficult to define and quantify. Table 5.1 (Fenton 1991, p44), shows a selection of
possible entities along with examples of both external and internal attributes for each
entity example. External and internal attributes may or not affect each other. For
example age should not affect the productivity of any member of a workforce, while
time to construct a product could possibly impact the cost or quality of the product
being developed. The examples shown in Table 5.1 are specific to a software system.

However this can be adapted to any generic system.

=77 -

LITERARY REVIEW

ENTITIES ATTRIBUTES
Products Internal External

Specifications | size, reuse, modularity, redundancy comprehensability
functionality, syntactic correctness maintainability

Designs size, reuse, modularity, coupling quality, complexity
cohesiveness, functionality maintainability

Code size, reuse, modularity, coupling reliability, usability
functionality, algorithmic complexity = maintainability
control-flow structuredness....

Test Data size, coverage level, ... quality

Processes

Constructing time, effort, number of quality, cost

specification requirements changes stability

Detailed time, effort, number of cost-effectiveness

design specification faults found cost

Testing time, effort, number of cost-effectiveness
bugs found stability, cost

Resources

Personnel age, price, productivity,
experience, intelligence

Teams size, communication level, productivity,
structuredness,.... quality

Software price, size,.... usability,
reliability

Hardware price, speed, memory size reliability,

Offices size, temperature, light comfort, quality

Table 5.1: Components of software measurement

5.3.2.1 Processes

Processes are system related activities that are normally defined by time. They
can be seen as time slices. This may be the time to develop a software function. It
could also be the time taken as the software processes a specific task. A metric based
on processes can be seen as:

number of messages processed

time to run task
This measure could increase or decrease depending on other messages that are

to be processed. It may also be affected by the size of each message.

-78 -

LITERARY REVIEW

5.3.2.2 Products

These are taken as deliverables or objects based on the system. This could be
in the form of an output a host controller produces based on information it has
received from other nodes on a network. The node may then need to send its output
over the network. An external attribute that can be applied to this could be the
reliability of the system. The time to execute a function, functionality and redundancy
are all internal attributes related to this type of product. The internal attributes can be

a big factor in relating how good the external attributes are.

5.3.2.3 Resources

Resources are the inputs for the system. These can be number of nodes, type
of software driver, available RAM, type of host used. As can be seen these can be
individual system components. If there are insufficient resources for a system to

perform correctly the level of performance will be affected.

5.3.3 Performance Evaluation and Models

Once the various attributes, entities, resources etc. have been identified it is
important to create predictions or assessments based on these measurements. Of the
activities listed in section 5.3.1 the ‘performance evaluation and models’ activity is
the most relevant to this research. Again this is taken from Fenton (1991,p13, pp57-
58).

The performance evaluation and models activity is generally concerned with
the measuring of efficiency. This can be a wide range of metrics, including speed of
computation and memory requirements for given inputs. It also covers a wide range of
performance metrics corresponding to aspects such as response times and completion
rates.

The efficiency attributes are mainly the focus for developers. These attributes
are usually concerned with external attributes. For example the type of software driver
used in a system could be an attribute. Internal attributes can also be measured even
when the machine the application will run on, is not known. This is done by looking
at the complexity and type of the system being used. Reasonable analysis can be made

by analysing of some internal attributes.

-79 -

LITERARY REVIEW

5.4 Previous Systems Analysis

This section will focus on techniques that have already been used to analyse
systems. The focus will be on FlexRay performance analysis carried out to date. This
section describes the focus of the investigation as well the techniques used to carry
out the analysis. It also explores other networking performance analysis techniques
including topics such as internet traffic modelling. This should allow the reader to
gain an insight into some of the problems faced when analysing a networking system.
Included will be sections that look at modelling application software. This presents a
significant problem when modelling any system. Without a particular software
package to base an application model on, the model may not represent a real world

system. If this is the case this could present a significant downfall for any simulation.

5.4.1 FOCUS Modelling of FlexRay

Zhang (2008) introduces the FOCUS modelling language and how it was used
to simulate the FlexRay protocol. The FOCUS modelling language is a formal
framework for the development of distributed systems. It consists of a range of
techniques to formalise specifications with well-defined semantics (Zhang 2008,
p334).

The concept model as defined in ‘Modelling and Analyzing of a Time-
Triggered Protocol for Automotive Systems’ (Zhang 2008, pp336-339) is as follows:

® Processors are defined as communication controllers or bus guardians. A set is
created for each type and these are connected to synchronised clocks. The

connections to and from processors are unidirectional. Each processor has a

configuration that defines its workings.

e Messages are defined as a set that contain information such as slot, cycle and
data.

® An assumption of perfect synchronicity is made. The base time is a slot and it
is assumed that the transmission and reception of messages takes no
significant amount of time.

¢ Faults can and do occur. Faults can only occur at processors. If there is a fault
then the processor will not produce any result. A component may however

produce a subsequent result after a fault. This is because a fault could be the

-80 -

LITERARY REVIEW

failure of a component to transmit a message during its slot. It may however
send a message during another cycle.
Figure 5.6 shows the architectural concept that was used to model the FlexRay system

(Zhang 2008, p337).

| Tatle

Figure 5.6: FlexRay conceptual architecture

Based on this and the concept model, a formal specification was defined. This
methodology and the formalisation allows for the model to be seen as components
and their interactions using messages (Zhang 2008, p340).

The FOCUS modelling concept as outlined by Zhang centres on the features
used to achieve the model. Zhang (2008) outlines the features of FOCUS as follows:

‘The FOCUS notation uses operators such as union, element of and intersection as
the syntax. Functions are also important in FOCUS and operations on streams are
mostly defined by functions. The central concept of FOCUS is the idea of streams.
Streams are a finite or infinite sequence of elements (also known as messages). The
streams can also be defined as timed or untimed streams. The difference between
timed streams and untimed streams is that timed streams contain timing information
and untimed streams do not contain any timing information. The time is modelled in a

discrete manner and assumes a global time divided into intervals known as ticks.’

There is also an emphasis put on modular development. This means that
FOCUS sees a component as being made up of a number of related services. To
determine the interaction of components a logical expression is used to relate inputs

and outputs. The specification for the various components can also be described by

-81 -

LITERARY REVIEW

using an assumption and guaranteed style, thus splitting the formula into two styles,
assumption and guarantee respectively. The assumption are properties that are
assumed to be true while guaranteed properties defines the behaviours that always
hold if the assumption holds.

The table below, Table 5.2 (Zhang 2008, p337), shows a summary of the type
definitions used by Zhang to define the FlexRay protocol.

Type Definltizn

My The alphabet of messages,

Adsg Streams over sy

[Adzg *9* Timed streams over Adsg

o The z&t of commmication contioller identifiers,
B The zet of bus gnardian identifises,

o The zet of slot identifiers,

Cwcle The zet of eyele identifiers,

Congs The zet of nods confi gurations,

Ack Ack 2 1 ok faill,

Table 5.2: FOCUS type definitions for FlexRay

Figure 5.7 (Zhang 2008, p339) shows the specification definition for
scheduled transmission. This only allows the communication controller for a given
slot to transmit. This is just one property needed to have the communication controller

operate correctly.

— Seheduled Transmission
sendy, ., send, € (Mag®)¥) vecvy, ey, £ (Mag®)
schedy, . sohedy 2 ({0, 11 %)%

Wie Slot,p €00
it st (achedy, ©) = {1}
then dm < Mg @ ith(send,,) = {md
else dth{send,, 1) = {}

Figure 5.7: Scheduled transmission definition

It can be seen from Table 5.2 and Figure 5.7 the use of functions and the syntax used

in FOCUS.

-82-

LITERARY REVIEW

5.4.1.1 FOCUS Based Modelling, Pros and Cons

The FOCUS modelling approach as was stated is based on a modular
development approach. This is a very good approach to development. This can be
seen as function development in ‘C’. This is a standard practise as it allows for easier
testing and debugging of small sections of code. The FOCUS approach also uses
mathematical terms to define the operation of modules. These terms such as ‘subset
of’ are standard mathematical terms and many developers would be familiar with it.
This would ease the familiarisation stage of learning a new development process.

The mathematical terms could also be seen as a drawback too. The definitions
developed using these terms could be difficult to debug/troubleshoot. This could lead
to a longer development phase than necessary. The work carried out by Zhang also is
small. Larger models may take a lot of specification and computation time. Again if

there is a problem with any definition it may be difficult to correct.

5.4.2 FlexRay Based Performance Analysis

Haigescu et. al. (2007) outline a framework for modelling FlexRay based
systems. The framework they propose encompasses modelling schedulers and the
protocol. They argue that most analysis of FlexRay based systems concentrate on the
bus and the scheduling based on this. They also argue that the analysis of the dynamic
segment has been overlooked. The dynamic segment is an important section of the
FlexRay protocol. It is argued that the dynamic segment if utilised correctly will allow
the full advantages of the protocol to be realised.

To test their framework a model of an adaptive cruise control system was
developed in Java with a MATLAB front end. The model was based on the diagram
as shown in Figure 5.8 with all messages mapped to the dynamic segment (Haigescu

et. al. 2007, p289).

-83 -

LITERARY REVIEW

ECUZ {FP)
E ECU3 (FP)

ECUT (TOMA)

Object Object
Detection | Detection

5|8 | HH

BOoEENY B8

uofjepes 12900

FlexRay Bus

Figure 5.8: FlexRay model system base

The paper also looks at problems and difficulties associated with modelling
FlexRay. The focus of the difficulties is on the dynamic segment. This is due to how
the dynamic segment works and how it restricts access. For instance the dynamic
segment can also be blocked from a node if a higher priority message consumes most
or all the dynamic segment. These problems had to be taken into account when
developing the framework for their model. Their framework was based on a
mathematical framework for analysing the timing properties of multiprocessor
embedded systems.

The mathematical models that were used were defined by a number of
properties such as task activation rate boundaries and number of activation times.
Mathematical models will be looked at in more detail in section 5.4.5. For more
information on the specific mathematical models used in the approach outlined above

see Haigescu et. al. (2007).

5.4.2.1 Mathematical Modelling, Pros and Cons

Mathematical models attempt to define the system being modelled using
mathematical expressions. These expressions can then be analysed to determine the
performance of a system. In many cases the mathematical expressions can be easily
converted into an executable computer programme using a wide range of software
applications. This allows the developer to use the programming language they are
most comfortable with or knowledgeable in using. Mathematical models can be found
in a wide variety of applications. They are also used in a number of disciplines such
as electronics, the sciences and financial areas. Mathematical models and expressions

have also been used for a long time.

-84 -

LITERARY REVIEW

However it can be difficult to accurately define systems using mathematical
expressions. The mathematical statement defining the characteristics of a system
could affect its precision. As more precision is required the mathematical statement
could become very complex. As was stated in section 5.4.1.1 larger models may take
a lot of computation time. If there is a problem with any definition it may be difficult
to correct. The use of functions can help with this stage. In this case a complex
mathematical expression can be broken up into smaller sections and calculated

separately before the final result is achieved.

5.4.3 UML Based FlexRay Model

In the paper by Yang et. al. (2005) they propose the use of Unified Modelling
Language (UML) when designing system models. The paper presents a development
platform that is based on OSEK/VDX. This includes a model design and verification
process. This platform can be seen in Figure 5.9 taken from the paper by Yang et. al.

(2005, p241).

Smart Designer
| SysML Model |
| QSEK/VDX Model |
Fesult AIF XML St Smart
Reprot | 511 OIL Generato Tracer
Fis
Smart Diccument C Code

Simml ater

Figure 5.9: System development process.

The approach was achieved by developing SmartOSEK. This is an integrated

development environment (IDE). It is split into two modules, one for the OSEK

-85 -

LITERARY REVIEW

operating system and another to handle the OSEK communication. It provides a
graphical design and verification user interaction service.

The system model is split between a framework model and an algorithm
model. The framework model describes the complete architecture of the system. The
algorithm model describes the implementation of the system algorithms. The
algorithm model development can be supported by vendor tools such as Ptolemy and
Simulink. However the systems model is described in UML as Smart Designer
supports UML.

The UML system model is converted into an OSEK/VDX Model using Smart
Designer. Figure 5.10, shows the workflow of the Smart designer (Yang et. al. 2005,
p242). The workflow begins with the model editor which allows developers to design
the UML model. This model is saved into an .XML file format and the model
convertor analyses this file. The model converter then converts the UML model into
an OSEK/VDX model by consulting the Model Database. The model database holds
information such as objects, relationships and constraints to achieve this. The results
converter then passes the processing results onto the Model editor. This is so that the
UML model can be modified based on these results. The OSEK/VDX model can then
be passed to the smart generator that creates the implementation code for the

application.

SmartDesigner
UL Model (a0 SERV | Smat
dodel L‘/ Ceonvertor Model v 1/ Generator
| \
Iodel , = I
Editor -— el Srnart
Sirnulater
M’___ ,f’ﬂ-
If Results Fesults Process
\L_TI\-iL Modg_l/ Convertor Results

Figure 5.10: The Smart Designer workflow

- 86 -

LITERARY REVIEW

When the OSEK/VDX model is complete it can be verified using the Smart
Simulator. The results of this verification process can then be used to modify the
system model. To do this the Smart Simulator provides a SmartOSEK COM and
SmartOSEK OS simulator to accurately simulate the communication and OSEK
scheduling that is compliant with the OSEK/VDX specifications. Figure 5.11 below
shows the Smart Simulator system components (Yang et. al. 2005, p241). Note that
there is a CAN and J1939 simulator to simulate in-vehicle network communication

systems. There is also an interrupt simulator and actuator simulator.

Smart Simnlator
| ECU ECT
I
5 | /] < N QFE%
5.. | Task & :‘ask ,_IET-_I/ Tasli Task g
3] CIS—— SmanosEKmhi [2
J.E- Siralatar E
2N 5
= 11434 Siveola tor =
B[] CAN Sirulatar =3
= =
StmartOSEE OF Simulator
Smart Analyzer

Figure 5.11: The Smart Simulator architecture

Smart Simulator uses Smart Analyzer to provide timing analysis of the model.
Built into the Smart Simulator it can deal with mixed pre-emptive and group-based

pre-emptive scheduling models.

An example of a model transformed in SmartOSEK can be seen below in
Figure 5.12 (Yang et. al. 2005, p244). Using the results of the smart simulator
developers can modify the two model types (UML and OSEK/VDX) to refine the

system.

-87-

LITERARY REVIEW

s ot 105 g 0 — BBRAVER v sp k) ~lmim
TAL RSN PRERG MWD SROVATE SRE BTN
FW o TV

[S| = b=
| i 1 spaTus

X

[nall £

i T - BT TP T PO | LLYPO | P e L0 | - Y L LR

Figure 5.12: SmartOSEK engine control system

5.4.3.1 Smart Designer, Pros and Cons

The workflow again is broken down into separate segments in this method. It
also uses a common programming language (UML) to define the models. These
models are converted into an OSEK/VDX model that can be analysed to highlight
improvements. The program can also produce a set of C code files that can be used in
a real world system. This can be a big benefit as a verified application layer can
quickly be developed. The designer is restricted to OSEK/VDX models and this
means that a limited number of systems can be analysed. There are also a small
number of communications protocols that it can simulate. For protocols such as LIN,
FlexRay or MOST another simulator would be needed. This may be overcome by
modifying the simulator. The Smart Generator stage, while it produces a C file, may
not always find the best solution. This code may then require a programmer to

optimise the code. This may not always be the quickest solution.

5.4.4 SymTA/S
The papers by Heina et. al. (2005), Richter and Ernst (2006) and Racu et. al.

(2007) present a timing analysis technique for automotive and other inter-ECU
communications. To accomplish this they propose the use of SymTA/S, a system-

level performance and analysis tool developed by Symtavision. The timing analysis

- 88 -

LITERARY REVIEW

approach is based on formal scheduling analysis techniques and symbolic simulation
(Heina et. al. 2005).

The approach taken by SymTA/S is to view components of a system as
entities that interact/communicate through the use of event streams. This leads to a
well structured model with respect to architecture. It also means that the output stream
of one entity is the input stream of another entity. The analysis can then be viewed as
a flow of event streams.

Local scheduling analysis algorithms are coupled using event streams. These
are described as event models with parameters. Heina et.al (2005) describes an event
model with periodic parameter ‘P’ and jitter, ‘J’. They give an example of an event
occurring with periodicity of 4 and a jitter of 1. Figure 5.13 (Heina et. al. 2005) shows

an ‘event stream’ that stems from this definition.

o
]
i
r
F 3
e
]
-

%

T 1T T TT II|III|III|II--.t
t trd tgE be1E b6

u

Figure 5.13: Event stream with P=4 and J=1

The gray boxes represent the time where an event may occur.

Events can be used to activate tasks. The activating event can be generated in
a number of ways such as time based and external or internal signalling. Each task has
an input FIFO and can write to the input FIFO of dependant tasks. In order for the
task to execute it needs to be mapped to a communication resource. A scheduler is
used to resolve any conflicts with a shared communication resource. Using this worst-
case or best-case time analysis can be performed (Heina et. al. 2005). In Figure 5.14
(Heina et. al. 2005) there is a system modelled using SymTAS. In Figure 5.14 the
system is a set top box. It receives video signal from rf_video and then sends it to a
T.V. by means of a decoder (decryption). Internet traffic (rf_IP) can also be received

and sent to a hard drive (hd).

-89 -

LITERARY REVIEW

[|

DECHEYF THH

|_.

l|._-.r CLI-T B

g
v

s SO N R

i IF iy kd

e]

Figure 5.14: SymTAS developed model

Using these models information can be extracted from the models of a given
schedule and automatic adaption of the event streams can be done to meet specific

demands.

5.4.4.1 SymTAS, Pros and Cons

The benefits of the SymTAS program are very similar to those of discrete

event analysis. These benefits are covered in more detail in section 5.4.6.

5.4.5 Mathematical Models
The work outlined in Pop et.al. (2003), Pop et.al. (2006) Pop et.al. (2007) and

Pop (2007) concerns the analysis and optimisation of distributed embedded systems
such as FlexRay. To achieve this, mathematical models that represent the systems
under study were created. Tests were then run and conclusions were drawn from the
results.

The paper presented by Pop et. al. (2006) looks at timing analysis of the FlexRay

communication protocol. This paper focuses on the analysis of the schedule of a

-90 -

LITERARY REVIEW

FlexRay node. To do this they developed an application model. The following

definitions are some of those as presented in Pop et. al. (2006) and define the

application model:

‘A’ is a set of acyclic, directed and polar graphs — Gi(V;,Ei) € A

A node 15 € Vjis the j-th task/message in G;

eijik€ E; is an edge from T to Ty and indicates T;; is an output that is also the
input of Tjx

A task is ready when all its inputs have arrived and will issue its output after it
terminates

A message is ready after its sender task finishes and is available after its
transmission has ended

Messages passed over a bus are modelled as communication tasks that are
inserted on the arc connecting the sender and receiver

The policy of the scheduling of the tasks is known and the type of
transmission is also know (static or dynamic)

A task tije Vi is assigned to execute on Node

Task t;; has a worst case execution time C ;

Communication time of a message ‘m’ is given by C, =

Frame_size(m)/bus_Speed

The tasks and messages must then be scheduled. This is different for different

types of messages and tasks. For instance static messages can be defined in schedule

tables while for dynamic messages the worst case execution times must be know first.

Once the interactions between the various elements of a system are known, a

computer program can be implemented to carry out the analysis of a system. Figure

5.15 below shows a scheduling algorithm (Pop et. al. 2006).

GlobalSchedulingAlgorithm() schedule_TT_task(z;, NOdec,f
1 while TT_ready_listis not emply 10 find first available time t moment after ASAF, on Node,
2 select 1yfrom T _ready list 8 schedule 1after fon Mode, . sothat holistic 4nalysis préduces
2 if 1;iz & SCS tazk then minimal worst-case responsg times for FRS tasks and DYMN messages
4 schedule TT_taskty, Mode) 12 update ASAPfor all 1;successors
5 else / Tyis @ ST message end schedule TT task
& sched u\e_ST_msg('t,}-‘ NodeT.IJ -
7 and if i schedule_ST_msg(cy, Node,)
[E) update TT_ready_fist 13 findfirst ST zlot(Mode, f available after ASAL,
9 end while 14 schedule 1yin that ST #lat 4
end StaticScheduIing 15 update AS,ﬁPfor all Ty BUGCESSONS

end schedule_ST_msg
Figure 5.15: Scheduling Algorithm

-91 -

LITERARY REVIEW

There are many elements that define the FlexRay protocol. These are covered
in some detail in Pop et. al. (2006). Other papers that can fall into this area are the
papers by Kandasamy and Aloul (2005) and Bril et. al. (2006). These papers look at
allocating and scheduling messages on a TDMA network and CAN networks
respectively. To do this mathematical constraints and relationships are defined for the
system under investigation. The system can then be analysed and scheduling of the
system can be achieved. The pros and cons of mathematical modelling are covered in

section 5.4.2.1.

5.4.6 Discrete Event Simulation

Zhu (2007) and Zhu and Jackman (2007) present a discrete event simulation
implementation of an automotive system. Discrete event simulation focuses on the
flow of entities around a system. These entities are routed based on attributes and
operated on at servers. In this way the flow of information through a system may be
modelled. This takes into account the delays in the system and can help find
bottlenecks in a system. Chapter 7 of this thesis covers theory related to discrete event
simulation in more detail.

The simulation model presented by Zhu and Jackman (2007) was based on a
gateway between a CAN network and a FlexRay network. The simulation was
designed to accurately model a gateway that met the AUTOSAR specification. To
build the model Simulink and SimEvents were used. Figure 5.16, shows the

implementation of the upper layer, multicast non TP-PDU transmit model.

-92 -

LITERARY REVIEW

Enat] Tegptetet TE Db sddion

TX Transmission - .

Ta Tigirid iy Deintivation . g
r— T i 1 (I
i M T ._I Erasieg (ras '
5 — J FED Cuem bn
HA I3 DT 2 T Fraggennc fen PSR T
L i Raplcane B
Mg Cartal i o Mg Aty ['|;"|-'11
:'.1'Ir'|"'.5r.|- wd
d i T
h_:_J"-.:i—' '|=F\.'|l.—ﬁ."'. :'".l
Tihwgan e e
[!
TX Confirmation el " b M4l g0 O
T e
Erdsy T2 FIFQ) G o

Figure 5.16: Network gateway Simulink/SimEvents model

The use of Simulink/SimEvents allows for modular model building with
distinct subsystems and sections of the system. It also allows for a clear flow of
entities through a model. This can be seen from Figure 5.16 with the transmission and
confirm functions being split into different sections of the model. The different types
of simulation software are covered in section 7.8 of this thesis with section 7.9

focusing on MATLAB and Simulink/SimEvents.

5.4.6.1 Discrete Event Simulation, Pros and Cons

Discrete event simulation, as its name suggests, focuses on modelling a system
at discrete events in time. It is not concerned with continuous systems. This makes the
use of discrete event simulation very suitable for modelling a protocol such as
FlexRay or TTP. In these systems all communication happens at discrete points in
time. This even happens during the ‘dynamic’ segment of the FlexRay
communication cycle. There are also a large number of books or other reference
material that covers the theory.

There are drawbacks to discrete event simulation however. One such
drawback is that most systems to be modelled are not wholly discrete systems. Many
systems have continuous and discrete attributes. This means that the developer must
take this into account and make a combined discrete-continuous system. An

alternative is to model any continuous elements as discrete elements.

-93 .

LITERARY REVIEW

5.4.7 Automesh

Automesh was presented in a paper by Vutturu et.al. (2006). Automesh is a
combination of several software model simulators. The paper, by Vutturu et.al.
(2006), focuses on the features of Automesh that allow it to be used to carryout
performance evaluation of vehicular communications. In particular it looks at a
broadcast network scheme that transmits information between vehicles in order to
share data such as traffic information. The system under investigation took into
account a number of factors such as driver behaviour and geographical topography
along with the communication network protocol.

The Automesh architecture therefore takes the form shown in Figure 5.17
(Vutturu et.al. 2006). The five main modules of the Automesh system are:

e The Driving Simulator
e Network Simulator

® Propigation Simulator
e Geographic Database

e Graphical User Interface module

‘ Geographic Database Server
} * GU| Client
Driving Data I_,. b Driving Simulation
| i Satup
I | Propagatior . !
| . . Hetwork Simulation
il I Simulation J R i
Criving Simulator Fi 'FI'OPEQ ~ Propagation
{ Lﬂahor Simulation Setiings
| Plug-ins
: -
([Wehicle Cnmru\:l t =B Live Animation
4 | Network Simulation

-t

Far final

{ y
e | l([camrrmmor\] Offiine
\ G S > Animation
Evaluafior

Figure 5.17: Automesh architecture

The driving simulator defines the location of vehicles in the system. The

location of the vehicles changes based on a number of factors including information

-94 -

LITERARY REVIEW

obtained from other vehicles. It also takes into account environmental and vehicle
dynamics. These include speed limits and traffic light locations as well as the
acceleration characteristics of the vehicles.

The network simulator allows the prebuilt models of communication protocols
to be used. The propagation simulator takes into account various factors that could
effect the transmission of information between vehicles. This can be affected by
factors such as vehicle positioning within a group of buildings among other things.
This can be quite complex and as such there is an option to use simple or complex
propagation models. As the propagation of signals can be affected by geographical
factors there is a need to have a geographical database. This will hold information
such as road layout and building information. This can mean a realistic system can be
achieved.

The final part of the system is the Graphical User Interface (GUI). This allows
for easy configuration of the simulation scenarios as well as providing an animation

(in real-time or offline) of the simulation events.

5.4.7.1 Automesh, Pros and Cons

The focus of Automesh is on the communication of information between cars
in a given area. This information is intended to communicate information such as
traffic jams for example. This will allow drivers follow a different less congested
route to their destination. The Automesh simulator therefore takes into account
geographical considerations into account. This will help analyse the effectiveness of
any wireless communications protocol. This can be useful to a designer of these
applications. However for the research as presented in this thesis it would be an
unsuitable tool.

There are a number of ideas that may be useful for FlexRay based research.
For instance, the propagation simulator could be relevant concept that could be used
in a FlexRay model. Ideas from the different analysis techniques may be taken and

adapted to produce a more suitable FlexRay analysis tool.

-95-

LITERARY REVIEW

5.4.8 Combined Simulator System

The paper presented by Hatnik and Altmann (2004) discuss the use of
simulator coupling. This is to allow the combination of different models that are
found in different tool boxes of different software packages. This allows for the best
models to be combined, producing a better overall simulation model. The focus of the
paper is on modelling a distributed system where data is sent from one or more
sources over an Ethernet LAN. Figures 5.18 (Hatnik and Altmann 2004) and 5.19
(Hatnik and Altmann 2004) show an abstract view of a distributed system and how it

could be mapped onto the co-simulation environment.

Server

Data processor
Router

Data source 1 hd Data sink 1

Ethemet LAN

Data source 2

L]
i

Figure 5.18: Abstract distributed system

Matlab/Simulink

Data processor
r

[v [
System-Software Mod el Sim System-Software

Data source H Router Data sink
F F F

L |

¥ h 4 ¥
Metwork Simulator N3-2
Ethernet LaM

Figure 5.19: Co-simulation mapped example

The data streams are generated and sent to C-applications connected to the
Ethernet model. The Ethernet model is constructed in NS-2. The data processor is

modelled in Simulink and the router is modelled in ModelSim. Each of these models

-96 -

LITERARY REVIEW

must have some way to be connected. As such the communication structure for the

whole system is as shown below in Figure 5.20 (Hatnik and Altmann 2004).

ModelSim Matlab/Simulink

. P
T il

Interface Interface

3 3
¥ 3

TCFRAP ‘
User Mode Linux ‘ NS-2
v
Interface 7
A Nodes |i-Nodes l
| LAN
Applications Network model

Figure 5.20: Simulator communication structure

As can be seen from Figure 5.20, the models communicate over TCP/IP and
use sockets to do so. This allows for the different models to be run on a single
computer or on a number of different systems. These systems could be running
different operating systems such as Linux, Solaris or Windows. This however means
that a coupling component of each model must be implemented and the
synchronisation of the simulation has to be done using call backs or blocking
read/write socket routines.

NS-2 is a tool to simulate communication network protocols. It also allows for
traffic generators to be included to carry out performance and throughput analysis.
Abstract client and server models inside the model produce basic loads. These can
create or consume packages. The models are described by a set of parameters such as
packet size and distribution.

The network model usually consists of a number of node models that contain

the necessary node information such as the network stack information. To achieve a

-97 -

LITERARY REVIEW

co-simulator however some nodes needed to be modified. The idea of Hatnik and
Altmann (2004) was to create interface nodes (i-nodes) to connect to simulator
interface. They were designed to allow NS-2 to act as the master simulator. Figure

5.21 below (Hatnik and Altmann 2004) shows their NS-2 model.

Extern Components

*

¥
NS 2 Interface
F
Application
Nodes wi-Nodesy

Link

W AC LAN
[Wetwork Network Model
Layers

Figure 5.21: NS-2 model showing the interface module

The ModelSim implementation of the router block uses VHDL. It is also
possible to use Verilog. VHDL and Verilog are briefly introduced in section 6.11 of
this thesis.

A VHDL model will usually consist of an interface and dedicated
architectures to describe the operation of the system. The architectures are generally
described as behavioural and/or structural implementations. Figure 5.22 (Hatnik and
Altmann 2004) shows the behavioural description in VHDL. In this description the
model of the router takes header information from the data received. Based on
information such as source and destination addresses, the model decides what to do

with the data packet.

-08 -

LITERARY REVIEW

dataln * * dataCut

EMTITY router 15
PORT f dataut: OUT data_typs;
dataln : [N data_typs;
niet - INOUT stream_type 3

END router;
ARCHITECTURE behavioural OF router 15
BEGIM
PROCESS recsive ™
PROCESS send wariable stream: stream_type;
wariable stream : stream_type; BEGIN
BEGIN WAIT ON net' EVENT;
WAIT ON dataln'EVENT,; streamn = net;

IF strearn.destackdr = rmyAddr THEMN
data Out <= extract Datalstream)
END IF;
EMD PROCESS;

T

MNetwork Model / \

[CITIIT] daastesms [[TTTTTT]

stream = prepaneData (datalnd;
ret <= streann
END PROCESS;

END behavioural;

Figure 5.22: Router block model

Simulink was used to implement the server model. As was already stated,
section 7.9 of this thesis will cover MATLAB and Simulink in detail. The user mode
Linux block shown in Figure 5.20 was implemented as real-world applications to send

and receive ‘real data packages’.

5.4.8.1 Combined Simulator Approach, Pros and Cons

The combined simulator approach has many benefits for model developers.
The main advantage is the ability to choose the best simulation tool for individual
sections of the model. This will help to optimise each model subsection. It also breaks
down the model at an early stage. This can help to create a clear concept of the goals
to be achieved. The model could also then be run on different machines. This could
reduce the run time of the application by spreading the computation over many
different processors. This approach also can use an actual network to transmit data.
This shows real-world systems can be used instead of a model representation. This
reduces the development time due to the communication medium not being modelled.

This can also reduce errors in the model.

-99 -

LITERARY REVIEW

However the use of more than one computer could be costly if you do not
have easy access to multiple computers. It may also restrict the time when computers
can be utilised to run the tests. For instance this could mean that the computers can
only be used at night when they are normally idle. The development of the model may
also be affected by this approach. This method of model development requires the
developer or developers to be able to use a wide range of software and modelling
techniques. If a number of developers are required to build the model it is clear that
the cost to do this could be quite high.

From a development perspective problems could occur when running the
model if the simulation clock is not correctly synchronised. Other problems could be
found also when developing code to get the different applications to communicate
correctly. Finally as different simulation methods use different methods to solve/run

the simulation model, difficulty could be found when implementing them together.

5.4.9 Previous Analysis Conclusion

A number of different system analysis techniques have been discussed. Each
different technique has its own unique set of pros and cons. To ensure the research
outlined in this thesis is carried out correctly it is important to first choose the correct
system performance analysis technique. By choosing the most suitable technique to
perform the FlexRay system analysis more time could be spent developing the
necessary analysis tool and less time developing the necessary methods and tasks to
perform the analysis. This will result in an overall better and efficient analysis system
and ultimately a more accurate set of results.

Each of the different analysis techniques were compared to each other and to
the objectives of the research. These objectives included looking at the movement of
data around a node and buffer usage. As data moves around the node various
constraints must be met. The analysis tool should allow a system designer to analyse

the necessary data to optimise a node.

- 100 -

LITERARY REVIEW

A similar study has already been conducted using DES. A wide
variety of software packages can be used and there is a wide

variety of reference material available.

Combined Yes Yes Yes Yes —separate for | Yes A developer would need to a good standard of a number of
Simulator each simulator different software tools. Problems could be encountered when
element interfacing the different simulator types as well as the different
simulators.
SymTas Yes Yes Yes No Yes Similar to DES but with only one company offering the software.

There is also no specific reference material not offered from the

development company.

Mathematical Yes Yes Yes Yes No All mathematical expressions must relate to a variable such as
Modelling time. The accuracy of the model may be affected by poor or

incorrect mathematical relationships.

Automesh Yes Yes yes No No A number of elements of the Automesh such as the propagation

simulator may be useful to the study.

UML Not as Yes Yes Yes No UML models must be converted into other software languages

standard before execution. This could increase development time.
Focus Yes Yes Yes No No This has been used to model a FlexRay node already.
Modelling

Table 5.3: System analysis technique requirements summary

- 101 -

LITERARY REVIEW

Table 5.3 shows a summary of the system analysis technique review. The
previous system analysis techniques that have been looked at all scored highly in this
review. This is not surprising as they have all been used in the past to successfully
perform their intended purposes. To choose the most suitable analysis technique it was
necessary to focus the comparison of the techniques on the tools and support available
to achieve a successful outcome to the research. This immediately highlighted the
combined simulator and discrete event simulation techniques. The other options were
discarded for the most-part based on the limited knowledge and support of the
techniques and methods used. For example mathematical models were discarded even
though a generic programming language may have been used to achieve the ultimate
goal but the accuracy may have been affected by poor mathematical expressions. All
required methods and tools to simulate a FlexRay node would also need to be defined
formally and this would increase the development time.

Discrete event simulation has a large amount of reference material to help
develop a model. The software available has, in some cases, been available for a
number of years and is widely understood. This means that a large amount of work can
be saved by using the methods and techniques already developed for any specific
software that may be chosen. The time spent developing the model can then be
dedicated to creating the model rather than learning how to use the modelling software.
There are also a large number of online support forums for a number of the different
modelling software programs. This is an advantage as this means expert knowledge on
the software programs can easily be consulted.

The combined simulator approach allows the best simulation model to be
developed. By breaking down a system into various subsystems a clear picture of the
operation can be achieved. The most suitable modelling technique and software can
then be chosen to model any aspect of the system. This has drawbacks however as it
requires a developer to be knowledgeable in a number of different modelling techniques
and software packages. The different subsystems must ultimately be combined into an
overall system simulation model. This could lead to problems as different simulation
techniques will represent different aspects of the system, time for example, in different
ways. It could then prove difficult to combine all the different modelling subsystems
and could slow the execution of the model down as one subsystem may have to wait for

a following subsystem to complete a task.

-102 -

LITERARY REVIEW

Due to the issues of the combined simulator approach it was decided that

discrete event simulation should be used.

5.5 Conclusion

System performance analysis is an important step in product development. It
forces the developer to focus on the system under development from an early stage, i.e.
the initial development stage, through to the release of the system. However to achieve
this, a proper set of metrics must be developed. This will allow the accurate
interpretation of the analysis results. By defining a good set of metrics early on in the
design stage of a system a better product can be delivered. The metrics can be used to
help investigate the performance of the actual system under investigation. They can also
be applied to the project as a whole. When the project is complete, system analysis
helps to quantify how well the system performs. This includes the execution time and
memory requirements. It can also help to judge if the application is suitable for its
intended purpose.

As can be seen from section 5.4 a large number of different ways of simulating
and analysing systems has been explored. New methodologies have also been suggested
based on these methodologies and these have been explored. Each simulation method
was then analysed for its suitability to conduct the research presented in this thesis.
However there has not emerged a single method that is better than any other method.
The method chosen should be suitable to the properties of the system under
investigation.

In section 5.4.6 discrete event simulation was introduced. This focuses on the
amount of time it takes for an entity to be serviced before moving onto another part of
the system. Where the entity goes could depend on attributes associated with the entity.
This approach lends itself to performance analysis of data flow through a system. This
is a big advantage for the research described in this thesis. For this reason it was chosen
as the most suitable analytical approach.

Other factors that were not covered however would be cost, support and

availability, etc. of the software to be used. These were all also considered before

-103 -

LITERARY REVIEW

discrete event simulation was decided upon. The factors that were considered when

choosing the most suitable software are covered in chapter 7.

5.6 References
Bril, R.J., Lukkien, J.J., Davis, R.I. and Burns, A. (2006) Message Response Time

Analysis for Ideal Controller Area Network (CAN) Refuted, University of Eindhoven,
Computer Science Report, May 2006.

Fenton, N.E. (1991) Software Metrics — a Rigorous Approach, London: Chapman &
Hall.

Hagiescu, A., Bordoloi, U.B., Chakraborty, S., Sampath, P., Vignesh, P., Ganesan, V.
and S. Ramesh, S. (2007) Performance analysis of FlexRay-based ECU networks
Annual Proceedings of the 44th annual ACM IEEE Design Automation Conference,
San Diego, California, 284 - 289 .

Hatnik, U. and Altmann, S. (2004) Using ModelSim, Matlab/Simulink and NS for
Dimulation of Distributed Systems, Proceedings of the International Conference on

Parallel Computing in Electrical Engineering, Dresden, Germany, September 7-10

2004, IEEE Computer Society Washington, DC, USA, 114 - 119.

Henia, R., Hamann, A. and Jersak, M. (2005) System Level Performance Analysis- the
SymTA/S Approach, IEE Proceedings Computers and Digital Techniques, 152(2), 148-
166.

Kandasamy, N. and Aloul, F. (2006) The Synthesis of Dependable Communication
Networks for Automotive Systems, SAE 2006 Transactions Journal of Passenger Cars:

Electronic and Electrical Systems, SAE International, Warrendale, Pennsylvania, USA.

Laplante, P.A. (1992) Real-Time System Design and Analysis an Engineer’s Handbook,
New Jersey: IEEE Press.

- 104 -

LITERARY REVIEW

Moller, K.H. and Paulish, D.J. (1993) Software Metrics — a Practitioner’s Guide to
Improved Product Development, London: Chapman & Hall.

Pop T. (2007) Analysis and Optimisation of Distributed Embedded Systems with

Heterogeneous Scheduling Policies, unpublished thesis (PhD.), Linkopings Universitet.

Pop, P., Eles, P. and Peng, Z. (2003) Schedulability Analysis and Optimisation for the
Synthesis of Multi-Cluster Distributed Embedded Systems, IEE Proceedings -
Computers & Digital Techniques, Vol. 150, Issue 5, Sept. 2003, pp. 303-312.

Pop, T., Pop, P, Eles, P. and Peng, Z. (2007) Bus Access Optimisation for FlexRay-
Based Distributed Embedded Systems, Proceedings of the Conference on Design,
Automation and Test in Europe, Nice, France, April 16-20 2007, IEEE Computer
Society Washington, DC, 51 — 56.

Pop, T., Pop, P., Eles, P., Peng, Z. and Andrei, A. (2006) Timing Analysis of the
FlexRay Communication Protocol, in Proceedings of the 18th Euromicro Conference on
Real-Time Systems, Dresden, Germany, July 5-7, 2006, IEEE Computer

Society Washington, DC, USA, 203-216.

Racu, R., Ernst, R., Richter, K. and Jersak, M. (2007) A Virtual Platform for
Architecture Integration and Optimization in Automotive Communication Networks,

Proceedings of SAE World Congress, Detroit, Michigan, USA, April 16-19, 2007.

Richter, K. and Ernst, R. (2006) Real-Time Analysis as a Quality Feature: Automotive
Use-Cases and Applications, Proceedings of Embedded World Conference, Niirnberg,
Germany, February 14-16, 2006.

Shepperd, M. and Ince, D. (1993) Derivation and Validation of Software Metrics,
Oxford: Oxford University Press.

Vuyyuru, R., Oguchi, K., Collier, C. and Koch, E. (2006) Automesh: Flexible

Framework for Vehicular Communication ,Proceedings of 2006 Third Annual

- 105 -

LITERARY REVIEW

International Conference on Mobile and Ubiquitous Systems: Networking & Services,
San Jose, California, USA, July 17-21 2006, IEEE Computer Society Washington, DC,
USA, 1-6.

Yang, G., Zhao, M., Wang, L. and Zhaohui Wu, Z. (2005) Model-based Design and
Verification of Automotive Electronics Compliant with OSEK/VDX, Proceedings of
the Second International Conference on Embedded Software and Systems (ICESS'05),
Xi'an, China, December 16-18 2005, IEEE Computer Society Washington, DC, USA,
237 —245.

Zhang, B. (2008) Modelling and Analyzing of a Time-Triggered Protocol for
Automotive Systems, Proceedings of Third International Conference on Systems,
Cancun, Mexico, April 13-18, 2008, IEEE Computer Society Washington, DC, USA,
334-340.

Zhu W. (2007) Performance Analysis of AUTOSAR Vehicle Network Gateways,
unpublished thesis (M.Sc.), Waterford Institute of Technology.

Zhu W. and Jackman, B. (2007) Using Simulation for Designing In-Vehicle Network

Gateways, SAE 2007 Transactions Journal of Engines, SAE International, Warrendale,

Pennsylvania, USA.

- 106 -

LITERARY REVIEW

Chapter 6 . E-Ray

6.1 Introduction

The Bosch E-Ray communications controller was developed to fully conform to
the FlexRay protocol and has been conformance tested successfully (Robert Bosch
Gmbh 2006a; FlexRay Consortium 2006). It is a full FlexRay IP-Module with message
handling, has driver support from reputable companies and is one of the most widely
used FlexRay modules (Robert Bosch Gmbh 2006a). It is available as an FPGA netlist
or as VHDL source code. The message RAM holds up to 128 message buffers and each
message buffer can hold up to 254 data bytes (FlexRay Consortium 2006), depending
on the configuration of the chip for a given application.

All the messaging functions such as message acceptance or rejection and the
schedule for messages are handled by a message handler. The registers of the module
can also be accessed by an external CPU via a host interface. This can then be used to
control or change various aspects of the module. This could include the protocol
controllers, interrupt control or access to the message RAM as well as other aspects of

the module’s features (FlexRay Consortium 2006).

6.2 Features

Some of the features of the E-Ray module are (Robert Bosch Gmbh 2006b;
FlexRay Consortium 2006):
1. 100% conformance with the FlexRay protocol specification v2.1.
2. Dual channel with up to 10MBits/s data rate on each as defined in the FlexRay
Consortium protocol (2005).
3. Configurable message RAM.
4. Host access to message buffers.

5. Filtering for frame, channel ID and cycle counter values.

- 107 -

LITERARY REVIEW

6. Support for network management.
7. Maskable module interrupt.

8. 8/16/32-bit generic interface for connection to customer-specific host CPUs.

6.3 Components

Figure 6.1 shows a block diagram of all the components of an E-Ray module. It

is based on the block diagram found in the Bosch product information (2006a).

Glabal Time Unit
|. MHelwark Management ‘.!"
. System Universal Central S
i Interrupt Control -
3 Frame/Symbel Precessing 3 b
O j— 2
s B £ =
.E = o
i Message
,E Handler
9 - -
Address E G pr— T
o — D § =]
ata [ot
Contral — -] H o
3 o
S [
Input/Output Transient
Buffer RAM Message RAM B r RAM

Figure 6.1: Block diagram of the workings of an E-Ray chip

The red lines in Figure 6.1 represent data flowing from left to right; the blue lines are
data flowing from right to left. The black connecting lines represent data flow in both

directions.

- 108 -

LITERARY REVIEW

6.3.1 Module Functions

6.3.1.1 Generic Interface

This allows a customer-specific CPU to be connected to the E-Ray IP-module
through an 8, 16 or 32-bit generic interface (Robert Bosch Gmbh 2006a; Robert Bosch
Gmbh 2006b).

6.3.1.2 Input and Output Buffers

These allow storage of two complete messages each. This is for transfer between
the host and the message RAM. The input/output buffer RAM is 8448 bits in size and is
broken down into 4*64*32 bits (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh
2006b).

6.3.1.3 Message Handler

This controls the data transfer between the input/output buffers and the message
RAM. It also controls the transfer between the protocol units transient buffers and the

message RAMs (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b).

6.3.1.4 Message RAM

The message RAM is a single-ported RAM which stores the configuration and
FlexRay messages. The message RAM is 4,352 bits in size (Robert Bosch Gmbh 2006a;
Robert Bosch Gmbh 2006b).

6.3.1.5 Global Time Unit

This is a common base for both channels and provides the microtick and
macrotick, clock synchronisation, cycle counter and the timing control for the static and
dynamic segments of the communications cycle (Robert Bosch Gmbh 2006a; Robert

Bosch Gmbh 2006b).

- 109 -

LITERARY REVIEW

6.3.1.6 Network Management

This handles the network management algorithm (Robert Bosch Gmbh 2006a;
Robert Bosch Gmbh 2006b).

6.3.1.7 System Universal Control

This controls wakeup, startup and integration of the node into a cluster (Robert

Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b).

6.3.1.8 Interrupt Control

This controls generation of module interrupts. The interrupt flags and timers can

be found here (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b).

6.3.1.9 Frame/Symbol Processing

This is where the timings of frames and symbols are enforced. It also tests the
received messages for errors such as corrupted data and syntax and sets the slot status

flags (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b).

6.3.1.10 Protocol Unit

This is the connection to the physical medium of the network. It consists of a
shift register and protocol finite state machine (FSM). The transient buffer RAM is
connected to these for temporary storage. The transient buffer RAM is 8448 bits in size
which is broken down as 2*128%*33 bits (Robert Bosch Gmbh 2006a; Robert Bosch
Gmbh 2006b).

6.4 Register Map

The E-Ray module has an address space of 2K bytes. This gives an address
range of 0x0000 to OxO7FF. The address space of the E-Ray in the range 0x0000 to

0x000F are reserved for customer specific CPUs. The function of these changes from

-110-

LITERARY REVIEW

CPU to CPU. The registers are organised into 32-bit wide registers but have the ability
to be accessed as 8 or 16 bit registers (Robert Bosch Gmbh 2006b, p18).
The message buffers are assigned according to the following table, Table 6.1

(Robert Bosch Gmbh 2006b, p 18).

Message Buffer 0 I Static Buffers
Message Buffer 1

Il Static + Dynamic | <= FDB
Buffers

LFIF = FFB

Message Buffer M-1
Meszage Buffer i = LCB

Table 6.1: Message buffer assignment

The message buffers can be assigned in various ways. To configure the message
buffers the Message RAM configuration register should be set as desired. The
maximum number of message buffers that can be assigned is 128 and the maximum
length of the payload is 254 bytes. The number of buffers however depends on the
configured maximum length of the system’s payload (Robert Bosch Gmbh 2006b, p18).
As can be seen in Figure 6.2, there are three sections that the memory has been divided
into:

1. The static buffers

2. The static or dynamic buffers

3. The FIFO

The first section is used for the static section only. The first message buffer,
buffer 0, is used to hold the startup/sync frame or the single slot frame if the node can
transmit one. If these are different for both channels then buffer 1 is used to store the
other channel’s sync or single slot frame (Robert Bosch Gmbh 2006b, p18).

The second group is used for buffers assigned to either the static or dynamic
segments. They can be reconfigured during runtime to suit the given situation (Robert
Bosch Gmbh 2006b, p18).

The buffers belonging to the third and final group can be assigned to a receive

FIFO.

-111-

LITERARY REVIEW

6.5 Communication Controller States

This section will describe the different states the controller can be in and what
they do. Figure 6.2, shows all possible states and the possible transitions in and out of
each state. This diagram is based on two diagrams in the E-Ray’s user manual (Robert

Bosch Gmbh 2006b, p105; Robert Bosch Gmbh 2006b, p110).

Hardware
Power On/
Reset

Freeze
Command

WAKEUP

:(READY

NORMAL
PASSIVE

NORMAL

AGTIVE -

Figure 6.2: Possible communications controller states

Each state and some details on each are given in sections 6.5.1-6.5.9.

6.5.1 DEFAULT_CONFIG

In the DEFAULT_CONFIG state the communications controller is stopped and
all registers are accessible. The physical pins connecting the device to the physical layer
are also set to an inactive state. As can be seen from the diagram, when leaving this
state the controller can only transition to the CONFIG state and to enter this state the
controller must be powered on/ reset or transition from the HALT state (Robert Bosch

Gmbh 2006b, p107).

-112 -

LITERARY REVIEW

6.5.2 CONFIG

The controller will enter and remain in this state with the physical pins still
inactive. This state is used to configure the controller and if this state has been arrived at
through the HALT-DEFAULT_CONFIG route additional information will be available
to the host to ensure that the setup is fault free. To exit from this state an unlock

sequence is used using the lock register (Robert Bosch Gmbh 2006b, p107).

6.5.2.1 Unlock Sequence

The unlock sequence is a three write process. The first write to the lock register
is with the value OxCE. This is followed by a second write with the value 0x31 followed
by the third write with the command you wish i.e. READY, MONITOR_MODE, ATM
or LOOP_BACK, to the SUC configuration register 1.

If the write sequence is interrupted by other write accesses between the second
and third write then the controller stays in the CONFIG state and the process must be
repeated (Robert Bosch Gmbh 2006b, p23).

6.5.3 MONITOR MODE

This mode is used to receive frames and detect wakeup patterns. This state can
be used to debug the system. An example of this is if a startup of a FlexRay network
fails. In this mode it may only be possible to receive messages on only one channel

(Robert Bosch Gmbh 2006b, p108).

6.5.4 READY

This state is used to either transition to the WAKEUP state or STARTUP state.
This is so that the node will be able to wakeup a cluster or integrate into a running

cluster (Robert Bosch Gmbh 2006b, p108).

6.5.5 STARTUP

Any node entering startup will follow the steps as shown in Figure 6.3 (Robert

Bosch Gmbh 2006b, p114).

-113 -

LITERARY REVIEW

—> Leading coldstart node
=g [ollowing coldstart node
Mon-coldstart node integrating
) ABORT
STARTUP
STARTUR
PREPARE
N S
COLDSTAR MTEGRATION
LISTEN LISTEN
NTEGRATION, ABORT
CNEISTENC
STARTUP CHECK [/ STARTUP

STARTUR _/

MTE GR ATION
COLDSTART
CHECK

ACTIVE

Figure 6.3: State diagram for node entering startup

Figure 6.3 shows the standard integration method of a node. For further details
on the startup procedure see the Bosch application note on the startup (Robert Bosch
Gmbh 2006d), the FlexRay protocol (FlexRay Consortium 2005) and the E-Ray’s user
manual (Robert Bosch Gmbh 2006b, pp113-7).

6.5.6 NORMAL ACTIVE

A node entering the NORMAL_ACTIVE mode will start to communicate across
a cluster in the way defined by the FlexRay protocol (FlexRay Consortium 2005). This
means that the node sends and receives FlexRay frames and performs synchronisation.

The host interface is also operational (Robert Bosch Gmbh 2006b, p118).

114 -

LITERARY REVIEW

6.5.7 NORMAL PASSIVE
The NORMAL_PASSIVE state is entered when the error state changes from

active to passive. In this mode frames are received over the physical medium but no
transmissions occur from the node. The host interface will also be operational and clock

synchronisation will still occur (Robert Bosch Gmbh 2006b, p118).

6.5.8 HALT

This state is entered when a freeze command is received in any state; a halt state
is entered when the controller is in either the NORMAL_ACTIVE or
NORMAL_PASSIVE states or when exiting from either the NORMAL_ACTIVE or
NORMAL_PASSIVE state because the counter for the clock correction failed limit was
reached. The state that the controller was in prior to entering the HALT state is held in

the CC Status Vector register (Robert Bosch Gmbh 2006b, p108).

6.5.9 WAKEUP

This section describes the operation of the controller’s states for wakeup. For a
full description of the wakeup procedure of a FlexRay node see the FlexRay protocol
(FlexRay Consortium 2005) and the Bosch wakeup application note (Robert Bosch
Gmbh 2006c¢).

6.5.9.1 WAKEUP STANDBY

This state allows transition from various other states to the WAKEUP_LISTEN
or READY states.

6.5.9.2 WAKEUP LISTEN

In this state the controller listens for wakeup patterns (WUP) sent from other
nodes in the cluster. The state is controlled by two timers. One will allow the wakeup of
a cluster faster in a non-noisy environment while the other is used where noise-

interference is an issue (Robert Bosch Gmbh 2006b, p111).

-115-

LITERARY REVIEW

6.5.9.3 WAKEUP SEND

This state transmits a wakeup pattern while checking for collisions on a given
channel. After successful wakeup of a cluster the node must enter the startup mode

(Robert Bosch Gmbh 2006b, p111).

6.5.9.4 WAKEUP DETECT

This state attempts to indentify the reason a wakeup collision was detected. If it
cannot determine another wakeup attempt by another node or ongoing communication
on the channel as the reason for a collision within a given time, the node leaves this
state and the reason for the collision is set as unknown (Robert Bosch Gmbh 2006b,

pl11).

6.6 Error Handling

The implemented error handling procedure is intended to allow all non-affected
communicating nodes to continue operating as normal if a single node experiences a
lower layer error (Robert Bosch Gmbh 2006b, p103). Table 6.2 (Robert Bosch Gmbh
2006b, p103), shows the error modes along with how the controller behaves during this

time.

- 116 -

LITERARY REVIEW

Error Mode Activity
ACTIVE Full eperation, State: NORMAL_ACTIVE
(green) The CCis fully synchronized and supports the cluster wide clock synchronization. The

hostis informed of any error condition(s) or status change by interrupt (if enabled) or by
reading the error and status interrupt flags from registers EIR and SIR.

PASSIVE Reduced operation, State: NORMAL_PASSIVE, CC self rescue allowed

(yellow) The CC stops transmitting frames and symboals, but received frames are still processed.
Clock synchronization mechanisms are continued based an received frames. No active
contribution to the cluster wide clock synchronization. The host is informed of any error
condition(s) or status change by interrupt {if enabled) or by reading the error and status
interrupt flags from registers EIR and SIR

COMM_HALT | Operation halted, State: HALT, CC self rescue not allowed

(red) The CC stops frame and symbol grocessing, clock synchronization processing, and the
macrotick generation. The host has still access to error and status information by read-
ing the errar and status interrupt flags from registers EIR and SIR. The bus drivers are

dizabled.

Table 6.2: Error modes

Below is a detailed description of how the controller deals with various events.

6.6.1 Freeze Command

If a severe error is detected by the host then it can transition the controller to the
HALT state from any other state by using the FREEZE command. The protocol
operations control state from which the HALT state was entered can be read from the

CC status vector register (Robert Bosch Gmbh 2006b, p104).

6.6.2 Halt Command

The host may from time to time wish to stop the controller by using the HALT
command. This will stop communication on the node and if the controller is in
NORMAL_ACTIVE or NORMAL_PASSIVE mode this will happen at the end of the
current communication cycle. If this command is used in any other state the command
will not be accepted. In order to shut down the entire FlexRay network a higher level

protocol should be used (Robert Bosch Gmbh 2006b, p104).

6.6.3 Clock Correction Failed

When the counter for the clock correction failed reaches first the ‘maximum
without clock correction passive’ value the controller will transition from the
NORMAL_ACTIVE to the NORMAL_PASSIVE state. If the ‘maximum without clock
correction fatal’ limit is reached then the controller will transmit from either

NORMAL_ACTIVE or NORMAL_PASSIVE to the HALT state.

- 117 -

LITERARY REVIEW

The counter allows the host to monitor the inability of a node to perform clock
correction. It is incremented at the end of the odd communication cycles if either the
rate or offset correction term is missing. If they are both detected then the counter is set
to zero. It is also reset to zero if the controller enters the READY or
NORMAL_ACTIVE state and will stop incrementing once the ‘maximum without
clock correction fatal’ limit is reached (Robert Bosch Gmbh 2006b, p103).

6.6.4 Passive to Active Counter

This counter defines the number of cycle pairs that must have valid clock
correction terms before the controller is allowed to transition from
NORMAL_PASSIVE to NORMAL_ACTIVE. If this is set to zero then no transition is
allowed (Robert Bosch Gmbh 2006b, p104).

6.6.5 Parity Checking

An even parity check is used to ensure integrity of data stored in the RAM
blocks. The RAM blocks have a parity generator and checker attached as shown in
Figure 6.4 (Robert Bosch Gmbh 2007, p7) which locally generates the parity bit and
stores it with the data (Robert Bosch Gmbh 2007, p6). This is checked each time data is
read from the RAM blocks but the parity checker is not able to detect which bit is
incorrect and cannot repair errors. If an error is detected an associated flag is set (Robert

Bosch Gmbh 2007, pp9-10).

- 118 -

LITERARY REVIEW

$ 1]
B

Fhedow
Hoet

Pr:| Pt
3

[I

ik

PurihrCrazarstos Purihy [Jac Jur

Figure 6.4: RAM blocks with local parity generators and checkers

It should be noted that the generators and checkers are not part of the RAM but
lie between the core and RAM (Robert Bosch Gmbh 2007, p6).

Errors can be caused by a faulty RAM cell. This may just be a temporary fault
and not a permanently damaged logic cell. However as a cell will be updated at a
regular interval then the problem may be self-curing or may lead to the application
using an error correction routine on the detected block. If a parity error is detected the
transmission of the frame will be blocked (Robert Bosch Gmbh 2007, p12).

For a FIFO buffer when a parity error is detected then all data to be stored in the
message buffer is lost. If the error is detected in the header section however, the FIFO
needs to be reconfigured (Robert Bosch Gmbh 2007, p14).

To correct the problem, if one exists, then through a word-wise read the word
which is affected can be found. The error can then be bypassed through reconfiguration
of the data pointer to the message buffer in question or through reconfiguration of the
message buffer if the error is detected in the header section of the message RAM

(Robert Bosch Gmbh 2007, pp14-5).

-119 -

LITERARY REVIEW

6.7 Message Handling

A message handler controls data transfers between the input/output buffers and
the message RAM as well as the message RAM and the transient RAMs. All the access
to the RAMs is done as 33 bit accesses. This is because there are 32-bits of data and an
additional parity bit. The use of the message handler is to avoid any possible conflict
between the host and the channel protocol controllers attempting to access the message
RAM (Robert Bosch Gmbh 2006b, p130).

The message RAM is scanned according to the following table, Table 6.3
(Robert Bosch Gmbh 2006b, p130).

Start of Scan Scan for Slots
in Slot
1 218, 1 [next cycle)
a 16...23, 1 [next cycle)
16 24,31, 1 [next cycle)
24 32,39, 1 (next cycle)

Table 6.3: Message RAM scan

The scan is terminated at the start of the network idle time section of the
communications cycle even if the scan is not completed. The scan starts during slot 1 of
the actual cycle starting with message RAM slot 2 with the scan of the first message slot
done in the previous cycle. This check on the first slot is done in parallel with the scan
of the message RAM to determine if there is a message buffer configured for slot 1 of
the next cycle (Robert Bosch Gmbh 2006b, p130).

If the application needs to operate with more than 128 different messages then
the static and dynamic buffers can be reconfigured during the operation of the node. To
do this the header section of the respective message buffers is updated using the write
header section 1 register.

If the reconfiguration of the message buffer is done before the transmission or if

the buffer is updated the message is lost (Robert Bosch Gmbh 2006b, p130).

- 120 -

LITERARY REVIEW

6.7.1 Host Access to the Message RAM

The host access to the message RAM occurs through the input and output
buffers. It is done by the host writing the number of the target/source message buffer to
the input buffer command request or output buffer command request registers (Robert
Bosch Gmbh 2006b, p132).

The buffers are built as a double buffer structure so that the host can access one
half of the buffer while the other half (the shadow) is accessed by the message handler
to allow transfer between the message RAM and input/output buffers (Robert Bosch
Gmbh 2006b, p132). Figure 6.5 (Robert Bosch Gmbh 2006b, p132), shows the

connections between the message RAM, the message handler and the Host.

Host

S g

& s

o =

B S

Input Buffer Address- Output Buffer
Decoder
[Shadow] & Control [Shadow]

|

Control
Data31:01]

[Data] 31 [I]|
Address

il

Message Handler

[4

Header Partition

Data[31:0]
dress

Data Partitien

Message RAM

Figure 6.5: Host — message RAM interface

6.7.2 Input Buffer to Message RAM transfer

When the host writes to the target message buffer in the message RAM by using
the command register, the input buffer host and shadow are swapped as in Figure 6.6

(Robert Bosch Gmbh 2006b, p133).

-121-

LITERARY REVIEW

E-Ray
IBF |~ IBF Message
Host |==—) Host [y~ ggvz‘a’ —)
IBF = Input Buffer

Figure 6.6: Double buffer structure input

This is in addition to the input buffer command mask and input buffer command

register bits being swapped as in Figure 6.7 (Robert Bosch Gmbh 2006b, p133).

IBCM IBCR

18|1716 \ swap K1 22|121120(19118/1716 :] swap

Figure 6.7: Swapping input buffer command mask & input buffer command register bits

The message RAM can now be filled with the data from the input buffer shadow
while the host is still free to write to the input buffer host. When the write operations
have finished and been indicated the process can start again (Robert Bosch Gmbh 2006b,
pl33).

6.7.3 Output Buffer to Message RAM Transfer

The message RAM is read by the host writing to the output buffer command
register to start transfer as defined by the output buffer command mask register. The
output buffer is a double buffer, as can be seen in Figure 6.8 (Robert Bosch Gmbh
2006b, p135). This is structured like the input buffer to facilitate faster data transfer.

-122 -

LITERARY REVIEW

E-Ray

dow

oBF |- OBF Message
Host |[{——=1| |, ~ Sha | (<= gam

GBF = Qutput Buffer

Figure 6.8: Double buffer structure output

The host and shadow buffers are swapped when a transfer request is made by the
host. Some output buffer command mask and output buffer command register bits are

also swapped as in Figure 6.9 (Robert Bosch Gmbh 2006b, p135).

OBCM
~—__internal storage
1716 \"PE"‘?\
L
1lo|___~
request
OBCE

internal storage

-
p22120/19/18/17|16 \iﬂﬁ\

6|5/4|3[2[1|0

15 olg| |6/s|al3|2|1|0| "
request

Figure 6.9: Swapping output buffer command mask & output buffer command register bits

The bits from the output buffer command mask and output buffer command register use

internal storage to swap the bits as can be seen in Figure 6.9.

6.7.2 Protocol Controller Access to Message RAM

The transient buffer RAMs are used to buffer data before transfer between the
two FlexRay protocol controllers and Message RAM takes place. They consist of a
double buffer each so that one can be assigned to the protocol controller and the other
one is accessible to the message handler. This allows for greater throughput as a
message being received can be stored while the message handler writes a message to
‘Transient Buffer Tx’ buffer at the same time (Robert Bosch Gmbh 2006b, p138).
Figure 6.10 (Robert Bosch Gmbh 2006b, p138), shows the layout of the transient buffer

RAMs along with connections in and out of it.

-123 -

LITERARY REVIEW

eray_rxdi eray tidl eray_rxd2 eray_tuc2

| p | !

LFlex Ray PRT AJ LFlex Ray PRT EIJ
Shift Register Shift Register

b= Control Control 3
I)
® ®
f=1 [T
g g
§ Transient Buffer Rx Transient Buffer Rx §
TBF A |3 2| TBF B
@ o
% Transient Buffer Tx Transient Buffer Tz %
< <<
o ‘5_' E o
g)) g
E 5 5 E
< o ' ' =1 <L

Message Handler

Figure 6.10: Transient buffer RAMs

6.8 Message RAM

As has been stated earlier access to the message RAM is handled by a message
handler to avoid conflicts. It can store up to 128 messages depending on configuration
and payload lengths.

The message RAM is organised as 2048 x 33 (= 67,548) bits as each data word
is 32 bits wide with an added parity bit for protection. To achieve the flexibility that
FlexRay demands the RAM is broken up into a header partition and data partition
(Robert Bosch Gmbh 2006b, p139). This is shown in Figure 6.11 (Robert Bosch Gmbh

2006b, p139).

- 124 -

LITERARY REVIEW

Message RAM

A Header MED
Header MB1

Header Partition

Header MB n

unused

2045 Data MBn
weords

Data Partition

Data MB1

-' Data MBO

- _ -
33 bit

Figure 6.11: Message RAM configuration example

The header partition is used to store the header section of each message, is made
up of 4 x 32+1 bit words and contains amongst other things a pointer to the data section
(Robert Bosch Gmbh 2006b, p139).

The data section has a maximum of 30 message buffers of 254 data bytes in
length each. This can be changed depending on configurations i.e. if the data section
was 128 bytes then the maximum number of message buffers would be 56 or 128 with a
data section of 48 bytes (Robert Bosch Gmbh 2006b, p139).

The header section is broken down as shown in Figure 6.12 (Robert Bosch

Gmbh 2006b, p140).

- 125 -

LITERARY REVIEW

Bit (3231|3029 (22|27 |26 (26|24 |23 | 22|21 (201918 (17|16 |15 14|43 [1z2|11|0f(a | & | F| &[5 |4 |3 (21| 0
Mard
M(T|P|C|C|LC
B|l|X|P|F|H|H
u} F Ul Bla Cwle Code Frame [
T
1 3 Fayload Length Fayload Length T Buffer: Header CRC Configured
Recejved Configured R Buffer: Header CRC Receed
RIP|H|S|E|R R X
z |P E|F|F|v|F|cC Cuele Count [ata Pointer
s ufif v
R|P|H[S|5|R F|F MIE|E|T|T|S|[S|C|C[5|5]W|[W
E|F[F|v|F|C T|T Lls|s|c|e|w|v|E|E|E|E|F|F
= |F s fn|if Cyele Count Status | g | slelali|1|o|a|o|o|lo|a|r]|r
S|5|5|5|&8|5 T BlA|B|A|B|A|B|A|B|A
P
P

Frame Configurstion

Filter C onfiguration

Mezzage Bufier Control

Message R AWM Configuration
Updated from received D ata Frame
Mez=zage Bufker Status MBS

Parity Bit

UL e

Figure 6.12: Header segment in message RAM

Each header word is broken down as follows (Robert Bosch Gmbh 2006b,
ppl41-2):

Header 1:

e Frame ID

e (Cycle Code

e Channel filter configuration (CHA, CHB)
e Transmit/receive configuration (CFG)

¢ A payload preamble transmit bit (PPIT)

e A transmit mode configuration (TXM)

Message buffer interrupt enable (MBI)

Header 2:
e Header CRC

e Payload length configured in terms of 2-byte words

¢ Payload length received in terms of 2-byte words

- 126 -

LITERARY REVIEW

Header 3:

e The data pointer

® Receive cycle count

e A received on channel indicator (RCI)
e A startup frame indicator (SFI)

e A sync frame indicator (SYN)

e A null frame indicator (NFI)

® A payload preamble indicator (PPI)

e Reserved bit (RES)

Message Buffer Status

This is the final header section and is made up of:
¢ A valid frame received on channel A (VFRA) bit
e A valid frame received on channel B (VFRB) bit
e A gyntax error observed on channel A (SEOA) bit
e A gyntax error observed on channel B (SEOB) bit
e A content error observed on channel A (CEOA) bit
e A content error observed on channel B (CEOB) bit
¢ A slot boundary violation observed on channel A (SVOA) bit
e A slot boundary violation observed on channel B (SVOB) bit
e A transmission conflict indication on channel A (TCIA) bit
® A transmission conflict indication on channel B (TCIB) bit
® An empty slot on channel A (ESA) bit
® An empty slot on channel B (ESB) bit
* A message lost (MLST) bit
¢ (Cycle count status
e A received on channel indicator status (RCIS)
e A startup frame indicator status (SYNS)
¢ A null frame indicator status (NFIS)
¢ A payload preamble indicator status (PPIS)
® A reserved bit status (RESS)

- 127 -

LITERARY REVIEW

The data partition starts after the last word of the header section and the data
sections are stored as in Figure 6.13 (Robert Bosch Gmbh 2006b, p143). This example
shows a data section with an odd number of 2-byte words and thus the last 16-bits in the

32-bit word are unused (Robert Bosch Gmbh 2006b, p143).

Bit |32)31|30 |29 28|27 |26 |25 (24|23 (22 (21|20 19|18 17 |16 15| g 131z (11108 (8| 7|6 (S|4 |3 | 2|1 |0
Word
= unused unused uns ed unis ed
= unused unused uns ed unis ed
F MEn [ata3 MEn [ataz MEn Datat MEn Datad
P
[MER D ataim) MER Drataime 1) MER Datam-2) MER [atam-3)
P
P
F ME1 Dataz ME1 Data? ME1 Datal ME1 Datad
F MEA Datalk) ME A D atark- 1 MEA D atagk- 2 ME A D atagk- 3
2045 (P MMED Dataz MEQ Data? MEQ Datal MED [ratal
2047 | P unused unused MBO [atas MMED [atad

Figure 6.13: Data partition in message RAM example

The beginning and end of the data section are determined by the data pointer and
payload configuration length configured in the header section. This makes it a flexible

system and suitable for FlexRay (Robert Bosch Gmbh 2006b, p143).

6.8.1 Message RAM Configuration

To define how many buffers are assigned to the static and dynamic segments as
well as the FIFO, the message RAM configuration register should be configured by the
application programmer (Robert Bosch Gmbh 2006e, p6).

Some of the bits to be configured in this register are the first dynamic buffer,
first buffer of the FIFO and the last configured buffer (Robert Bosch Gmbh 2006e, p6).
These are also known as FDB, FFB and LCB respectively and referred to as such in
Table 6.1 a the start of this chapter.

To define the size of the FIFO the FFB bits and LCB bits are used and if a
dynamic buffer or buffers are configured then the value stored in the FFB bits should be
greater than that of the value in the FDB. To disable the dynamic buffers the FDB value
should be greater than 128 and to disable the FIFO the FFB value should also be greater
than 128. LCB must also be greater than FBD and FFB as it is not possible to put the

- 128 -

LITERARY REVIEW

FIFO header section or dynamic header section before the static section. It should be
noted that there is no checking in place that the configuration is valid and as such it is
up to the programmer to ensure the setup meets the specifications (Robert Bosch Gmbh
2006e, p8).

The first buffer, buffer 0, can be used to store a startup frame, sync frame, a
single slot frame or a normal frame. This is defined by various registers. If the value of
the startup, sync or single slot frame is different for channels A and B then the second
buffer can be assigned to channel B and the first buffer is used for channel A (Robert

Bosch Gmbh 2006e, pp8-9).

6.9 Filtering and Masking

Filtering is done by comparing the configuration of message buffers against slot,
cycle and channel ID values. A message buffer will only be updated or transmitted if
matching occurs (Robert Bosch Gmbh 2006b, p121). The combinations for filtering that
are permitted are (Robert Bosch Gmbh 2006b, p121):

e Slot counter & channel ID

¢ Slot counter , cycle counter & channel ID

6.9.1 Slot Counter Filtering

The header section of the transmit buffer and the receive buffer holds a frame ID.
The frame ID from the message buffer is compared to the slot counter values in order to
assign transmit and receive buffers to the slot. If two message buffers have the same
frame ID then the lowest message buffer will be used if the cycle counter filter is the

same (Robert Bosch Gmbh 2006b, p121).

6.9.2 Cycle Counter Filtering

Again each message buffer will hold a cycle set field in the header section. If a
match is observed this is due to one of the elements of the cycle set being matched. The

set of cycle numbers belonging to the cycle set is determined as shown in Table 6.4

-129 -

LITERARY REVIEW

(Robert Bosch Gmbh 2006b, p122) with an example shown in Table 6.5 (Robert Bosch
Gmbh 2006b, p122).

Cycle Code Matching Cycle Counter Values

ObO00O000: all Cycles

Ohooonoic every secand Cycle at (Cycle Countimod 2 =C
Ob0o0oice every fourth Cycle at (Cycle Countimod4 =co
0b0001coe every eighth Cycle at (Cycle Countimod8 = ooo
0b001coce every sixteenth Cycle at (Cycle Countimod 16 = CCEC
Ob01cecee every thirty-second Cycle at (Cycle Count)mod3d2 = CCCCC
Obleccccee every sixty-fourth Cycle at (Cycle CountimodBd = CCooco

Table 6.4: Cycle set definition

Cycle Code Matching Cycle Counter Yalues
Ob000oo011 1-3-5-7- ... -B3 4

Ob0000100 0-4-8-12- ... -B0

Ob00O01110 B-14-22-30- ... -62 J

ObO011000 8-24-40-56]
Ob010007 1 3-35 4
Ob 1001007 5.

Table 6.5: Examples of cycle sets

Received messages are only stored if the cycle counter value during which the
message is received matches an element of the cycle set and the other filtering criteria
are met (Robert Bosch Gmbh 2006b, p122).

Transmit frames are transmitted on the desired channel or channels when an
element in the cycle set matches the cycle counter value and other filtering criteria are
met. It should be noted that sharing of a static time slot, across a number of different
nodes, by using cycle counter filtering is not allowed (Robert Bosch Gmbh 2006b,
pl122).

6.9.3 Channel ID Filtering

Each message buffer has a filtering field for the channel in the header section

that uses 2-bits. For receive buffers it acts as a filter while transmit buffers use it as a

- 130 -

LITERARY REVIEW

control field (Robert Bosch Gmbh 2006b, p123). This can be seen in Table 6.6 (Robert
Bosch Gmbh 2006b, p123).

CHA | CHB Transml.t Buffer Rec.ewe Bl:lffer
transmit frame store valid receive frame
1 1 on both channels received on channel A or B
(static segment anly) (store first semantically valid frame,
static segment only)
1 i] on channel A received on channel A
1 an channel B received on channel B
a no transmission ignare frame

Table 6.6: Channel filtering bit configurations

The frames to be transmitted will be sent out according to this configuration if
other filtering criteria are met. Received frames will be stored if they are received on the
correct channel as specified by the table and other filtering criteria are met. Only frames
transmitted or received during the static segment of the communication cycle are
allowed to be configured for both channels. When dynamic segment frames that are set
up so both bits of the channel ID filter are set as a logic one then this will be treated as
though the bits were both set as a logic zero, i.e. ‘no transmission’ (Robert Bosch Gmbh

2006b, p123).

6.9.4 FIFO Filtering
The filtering for the FIFO is different to the message RAM filtering. This uses a

rejection filter and filter mask. The filter consists of a channel, frame and cycle counter
filter. The cycle counter filter determines the cycle set to which the other filtering is
applied and all other frames in other cycles are rejected. A valid received frame is stored
in the FIFO if the rejection filter and rejection filter mask do not correspond to the

frame and there is no matching receive buffer (Robert Bosch Gmbh 2006b, p123).

6.10 FIFO
The FIFO is a First-In-First-Out cyclical buffer. The buffers belonging to it are

found one after another in the register map. The message RAM configuration register

defines the first and last register of the FIFO using the values in the FFB bits and LCB
- 131 -

LITERARY REVIEW

bits with a maximum of 128 buffers for the FIFO (Robert Bosch Gmbh 2006b, p128;
Robert Bosch Gmbh 2006f, p6).

The FIFO is used to store incoming frames that do not have a dedicated receive
buffer. It also treats null frames that are not filtered out as data frames and stores them
(Robert Bosch Gmbh 2006b, p128; Robert Bosch Gmbh 2006f, p6).

There are two index registers associated with the FIFO, and these are the put
next index (PIDX) register and the get next index (GIDX) register. When a new
message is to be stored in the FIFO it is stored in the buffer pointed to by the PIDX
register and this is then incremented. The GIDX register is used to point to the next
buffer which is to be read and it increments when a buffer is read (Robert Bosch Gmbh
2006b, p128; Robert Bosch Gmbh 2006f, p7).

If the PIDX register reaches the value of the GIDX then the FIFO is filled. If a
new message is written before the oldest message is read this will cause an overrun flag
to be set (Robert Bosch Gmbh 2006b, p128; Robert Bosch Gmbh 2006f, p7). Three of
the possible states the FIFO can be in are shown in Figure 6.14 (Robert Bosch Gmbh
2006b, p129) below.

FIFO empty FIFO not empty FIFO overrun
PID Pl FID
(store nest) [stare next) [store next)

Buffers [1] 2] 3] Buffers [1] 2] 3] Buffers

Messages - - - Messages A - - tlessages A B C
D
GIDE GI0X GIOX
(read oldesf) (read oldest) (read oldesf)

= PID X incremented last

= Mext received message
wdll ke stored into bufier 1

= [fhuffer 1 has not heen read
hefore message A is ot

Figure 6.14: Empty, not empty and overrun states

When the PIDX and GIDX registers differ a FIFO not empty status is detected
(Robert Bosch Gmbh 2006f, p7).

To access the FIFO outside the CONFIG and DEFAULT_CONFIG states
involves the host triggering a transfer from the message RAM to the output buffer by

writing the first message buffer of the FIFO to the output buffer command request
-132-

LITERARY REVIEW

register. The message handler then will transfer the message pointed to by the GIDX
register to the output buffer and the GIDX register is incremented (Robert Bosch Gmbh
2006b, p129).

6.11 Packaging

As the E-Ray IP-module is described in VHDL there is no specific packaging
designed. It is left to the company who buys the license for the E-Ray module to
package it and sell it on. This means that some features found in a certain E-Ray chip
may not be available in another by a different manufacturer or indeed the same
manufacturer.

For instance the Fujitsu MB88121 is a 64 pin low profile quad flat pack chip and
amongst other things also contains a DMA support unit and a Serial Peripheral Interface
(SPI) interface possibility (Fujitsu Microelectronics Europe GmbH 2007). Both of
these additions were implemented by the manufacturer as the E-Ray module does not

have specifications for either.

6.11.1 VHDL

VHDL is a hardware description language. It stands for Very High Speed
Integrated Circuit (VHSIC) Hardware Description Language (HDL). It was developed
in the 1970s and 1980s as part of the U.S. Department of Defence VHSIC program. It
was initially intended to be used to describe complex circuits. This was to help make the
designs of hardware modules easier to understand by different contractors. It was also
designed to allow simulation of the circuit designs. In 1996 IEEE 1076.3 became a
VHDL synthesis standard based on the IEEE 1164 and IEEE 1076 standards. Verilog is
another type of HDL used whose programming syntax is considered less verbose but

lacks features when compared to VHDL (Shakill 1996).

- 133 -

LITERARY REVIEW

6.12 Conclusion

The E-Ray IP-module developed by Bosch is a very useful and flexible device.
It is fully compliant with the FlexRay protocol v2.1 and allows customer specific CPUs
to connect to it. This makes it one of the most common FlexRay protocol IP modules
available.

It can be seen that there are a number of aspects that must be defined in order for
the E-Ray chip to function as intended. These setup parameters could have an enormous
effect on the performance of the node. A number of errors could be present in a system
if the node is not setup correctly. These include missed deadlines or loss of data due to
data being stored incorrectly or not accessed in time. It is therefore useful to be able to

test the configuration. The research outlined in this thesis makes this process easier.

6.13. References

Berwanger, J., Schedl, A. and Peller, M (2004) BMW - First Series Cars with FlexRay
in 2006, Automotive electronics + systems Special Edition, Development Solutions 19

for FlexRay ECUs, 6-8

BMW Manufacturing Co. (2006) THE NEW BMW X5
Perfect Blend of Driving Dynamics, Functionality and Exclusivity [press release], 8
August, available:

http://www.bmwusfactory.com/media_center/releases/release.asp?intReleaseNum=209

&strYear=2006 [accessed 2 October 2007].

FlexRay Consortium (2005) FlexRay Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay Consortium GbR.

FlexRay Consortium (2006) news — FlexRay Newsletter 03/2006 [online], available:
http://www.flexray.com/news/FlexRay Newsletter2006_03.pdf [accessed 22 October
2007].

- 134 -

LITERARY REVIEW

Fujitsu Microelectronics Europe GmbH (2005) Automotive Solutions CMOS FlexRay
ASSP MB88121/MB88121A/MB88121B/MB88121C preliminary datasheet, Revision

1.0, Langen: Fujitsu Microelectronics Europe GmbH

Robert Bosch GmbH (2006a) Product Information E-Ray — The FlexRay

Communication Controller — IP-Module, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006b) E-Ray FlexRay IP-Module User’s Manual, Revision 1.2.3,
Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006c) E-Ray FlexRay IP-Module Application Notes AN0O1
Wakeup, for IP Revision 1.0, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006d) E-Ray FlexRay IP-Module Application Notes AN002
Startup, for IP Revision 1.0, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006e) E-Ray FlexRay IP-Module Application Notes AN00O3
Message RAM Configuration, for IP Revision 1.0, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006f) E-Ray FlexRay IP-Module Application Notes AN004
FIFO Function, for IP Revision 1.0, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2007) E-Ray FlexRay IP-Module Application Notes AN0OS
Handling of Parity Errors, for IP Revision 1.0.1, Reutlingen: Robert Bosch GmbH.

Skabhill, K. (1996) VHDL for Programmable Logic, California: Addison-Wesley
Publishing Company, Inc.

- 135 -

LITERARY REVIEW

Chapter 7 . Discrete Event

Simulation

7.1 Introduction

Testing of systems can be costly in both time and money. If a new product is
being developed and a prototype is run for the first time it may not work as expected.
This can lead to the design team spending time just diagnosing problems, especially if
the system is large and complicated. Simulating a system before a real world system is
developed has become popular due to the nature of simulation; it can be repeated may
times and the data obtained from it easily collected. If a problem arises a computer
model can be changed quickly and cheaply when compared to a prototype. Banks et al.
(2001, p3) sum up simulation as the imitation of a real-world process or system over
time. This can be done by hand or on a computer, with an artificial history of the system
being logged. From this history observations on how the system works and how it
behaves can be observed.

Woolfson and Pert (1999, pv) wrote that experiments controlled by computer,
with the data logged and analysed by a computer are allowing an increase in the range
and the accuracy of what can be done.

However simulation is not only restricted to new products but can also be
applied to existing products; this is because technically simulation is used to produce
results from a model without experimenting with a real-world system (Ripley 1987, p1).
It can be used by an engineer or scientist to get a better understanding of the behaviour
of a system and to pinpoint any areas for improvement. It should also be stated that
simulation is not necessarily restricted to engineering and scientific applications.
Simulation has contributed to problem solving in the areas of economics, management,
as well as in social and behavioural sciences (Neelamkavil 1987, pxv.). This chapter is

written in terms of discrete event simulation (DES) specifically.

- 136 -

LITERARY REVIEW

7.2 Systems

It is important when introducing the topic of system simulation to first
understand what is meant by the term ‘system’. A system is the key concept of
simulation in terms of understanding what is to be achieved. It is defined as a collection
of entities (elements of a real world system, such as parts of a cars engine) that interact
with each other in a manner to accomplish some goal (Law and Kelton 1982, p2).

The definition above is a very good general definition of what a system is. In a
simulation setting a system is defined by the particular area of study. A system
describing a communication protocol in an automotive application will be defined by
what particular protocol is used and what applications it ise designed to run. It is not
necessary to incorporate the type of car or who will be driving the car in the system. It is
important however to include any application using the system and the communication
method as they work together to form the communication system.

In the study of a system a few terms must be defined. These will help us clarify
the idea of a system. The terms are as follows (Banks et al. 2001, p10):

e Entities : These are objects of interest in the system i.e. customers in a bank.

e Attributes: These are defined as properties of entities i.e. bank balance.

e Activities: These are time periods of specific length i.e. checking a bank balance.
It is the case that the collection of entities that might encompass a system used in one
study might just be a subset of the system used in another study (Law and Kelton 1982,
p2).

Entities will also have a particular set of ‘states’ associated with them. For
instance in a communications application the number of frames a node must send, the
time it takes to send a single frame or the number of frames that can be sent by a
particular node at any given time. Therefore states can be seen as variables describing
the system at any stage of the study (Banks et al. 2001, p10).

Events can occur within a system or come from the environment outside the
system and change the state of the system. In the communications applications example
an event could be the completion of transmission of a frame from a node or an error
check which returns no errors, and so the number of frames to be transmitted will
decrease. The generation of new data to be transmitted from a sensor could also be an

event.

- 137 -

LITERARY REVIEW

7.2.1 Continuous and Discrete Systems

Systems are also broken down into discrete and continuous system types. Figure

7.1 shows a discrete system variable and Figure 7.2 shows a continuous system variable
(Banks et al. 2001, p12).

Number of messages waiting
in line or being serveed

Time t

Figure 7.1: Discrete-system state variable

Head of water behind the dam

Time

Figure 7.2: Continuous-system state variable

Discrete system simulation involves modelling a system as it changes over a
period of time. The state variables will change at defined points in time (Law and
Kelton 1982). To describe this Law and Kelton (1982, p4) described a barber shop or
information desk at an airport. In this example customers arriving have to wait their turn
in a queue and this happens at discrete points. After each customer is serviced the next
customer can be serviced and so the number of customers in the queue will decrease but
again at discrete points in time.

A continuous system is one where the variables change in an analogue fashion.
This means that the variables change continually with respect to time. An example of

this (Banks et al. 2001, p10) would be the level of water behind a dam. The water level
- 138 -

LITERARY REVIEW

behind the dam will be continually changing as it is subject to weather i.e. precipitation
and evaporation, which will cause the level of the water to rise and fall. The water level
will also be subject to the operation of the dam and how much water is allowed to pass
in the production of electricity.

In practical applications it is not always convenient to model a system as either
discrete or continuous since real world systems rarely have attributes that are wholly
discrete or continuous. Usually a system is a combination of both but one definition will
encapsulate the majority of the operation of the system enough to classify it as either
discrete or continuous (Banks et al. 2001, p10). However it is sometimes necessary to
construct a system with aspects of both, and these simulations are called ‘combined

discrete-continuous’ simulations (Law and Kelton 1982, p47).

7.3 Simulation Process

The steps in a simulation study are shown in Figure 7.3 (Banks et al.2001, p16).
The main steps can be summarised as follows:
Problem identification/formulation
Building of a model
Model verification
Model validation

Experimental tests

A e

Results Analysis

These steps are discussed in Chapter 10. The problem identification/formulation
stage will identify the need for a simulation model to be constructed and define the
problem statements. This is an important stage of simulation but outside the scope of
this chapter as it is the job of the person conducting a study to identify the need to

simulate a system.

- 139 -

LITERARY REVIEW

Problem
formulation
2 Setting of
objectives
and overall
project plan
3 v 4
> Model Data
conceptualization collection

Model
translation

No

Validated?

Yes

Experimental -
design

Production runs
and analysis

Figure 7.3: Simulation study steps

7.4 Building Models

To simulate a system requires the building of a model of the system. This is due
to the fact that it is not always possible to easily change a system and monitor the
changes. The system under investigation could be an existing real-world application that
will be modified or a new design for a product in development. In both cases it could be
costly to build a prototype of the new system just for a major design flaw to be present.

The model of a system should be comprehensive enough to allow conclusions
to be drawn from the simulation output data. The idea of a model is that it is a
simplified version of the system under investigation (Banks et al.2001, p13). As such a

model is described as having entities, attributes and activities just as a system. The
- 140 -

LITERARY REVIEW

difference between a real-world system and a model is that a model only contains
components that are of interest to the study (Banks et al. 2001, p13).

Models can be as detailed as the designer wants them to be. Woolfson and Pert
(1999, pl) give an example of a child’s toy car. In this example they describe how a
simple model may be made out of clay, with disks for wheels and lines etched in the
side to represent doors of the car. This will do as a child’s toy car but it does not have
all the features a real car does. No matter how many extra features are added to make it
more like a car, the only truly accurate representation of a car is a real car. Therefore the
designer must include only those attributes that are relevant to the area of study.

Models fall under different classifications. Models may be mathematical or
physical, with mathematical models being broken down into further subcategories. A
simulation model is a type of mathematical model that can be Monte Carlo simulation
(static), dynamic, deterministic or stochastic (random), discrete or continuous (Banks et
al. 2001, p13). Static models deal with simulations at a specific point in time while a
dynamic model is used for simulating systems as they change over time. A system that
has behaviour in terms of fixed inputs and that will produce a single set of outputs is
described as deterministic. A random model is used where the inputs are random and as
such will produce a random set of outputs. Discrete models have inputs that change at
given points in time while a continuous model has an ever changing input (Banks et al.
2001, pl12). Figure 7.4 shows one possible breakdown of the different types of

simulation models.

- 141 -

LITERARY REVIEW

Simulation models

A J y

Static Dynamic
\
v v ¥ v
Deterministic Stochastic Deterministic Stochastic
[v |
. Discrete- .
Discrete 1s¢ et Continuous
Continuous
\] Y v
. Discrete- .
Discrete . Continuous
Continuous

Figure 7.4: Simulation models

7.4.1 Hardware in the Loop Simulation

A consideration when building a simulation model is that of using ‘Hardware in
The Loop Simulation’ (HILS). In many systems an output is not directly related by a
simple mathematical formula. For instance a simple system circuit is that of a
potentiometer connected to an Analogue to Digital Converter (ADC) and an LCD
digital display. As the position of the potentiometer changes so too does the ADC
output value which is then displayed on the LCD screen. This is easily tested by simply
turning the potentiometer and checking the display. Real world systems may contain
this simple circuit as part of an overall more complicated system.

The success of complicated systems can be dependant on adequate testing.
Testing becomes more and more complicated for real-word systems where multiple
embedded systems are involved. The output of a testing procedure may be formed by a
microcontroller that receives information form a number of different sources. To
adequately test such a system would mean stopping the test at a number of points in
time and observing if the correct output was produced. This can become difficult and

time consuming as each output must be verified based on every possible input that is

- 142 -

LITERARY REVIEW

received from the different system elements. It is made even more difficult if each
subsystem is not easily stopped to allow the inputs and outputs to be checked. This will
mean testing must be carried out in real time (Gomez 2001).

HILS is a technique that allows a system to be ‘fooled’ into thinking it is
operating in the real world. An example of such a system is a vehicle, missile or
aeroplane as all of these examples will receive multiple inputs and an onboard
microcomputer should produce a desirable output. A HILS system will therefore fool an
aeroplane into thinking its flying or a vehicle into thinking that the engine is running
and that the vehicle is in motion. A HILS simulator will then need to provide all inputs
for the system to allow all the subsystems of the overall system under test to function
correctly (Gomez 2001). This can allow a developer to by-pass the model building
stage if done correctly.

Gomez (2001) highlights the difference between a HILS approach and that of
simulating a control algorithm using MATLAB. A test of the control algorithm using
MATLAB will be run using a PC with ‘faked’ inputs to the system and observe the
output using the same PC. The output obtained will be represented as a graph or set of
numbers but it cannot produce a real-world hardware signal. The control algorithm will
also be run in an environment that does not represent real-world time. Instead the
control algorithm will be simulated based on a simulation clock that may have
correlation to real-world time. A HILS test has the advantage of allowing the real
hardware to be tested while running the real-world software and in real time. Figure 7.5
(Xun et. al. 2008) shows an example of a flight control HILS system. In this system the
simulation computer controlling the mathematical models provides the external

environment for a flight control system.

A eieieieinteteieinieinleih e i

L] 1

flight control :UO__ actuator | kinematicsand E
system ' system dynamics !

L] i

4 ' '

] 1
Fem===q~TTT"""" 1
I'o i
inertial navipation E

1

i

1

i
i system
I
:
1

real-time simulation computer(mathematical models)

Figure 7.5: Flight control HILS system

- 143 -

LITERARY REVIEW

The advantages of using HILS relates to a number of factors such as high
precision. For systems where safety could be an issue (such as passenger safety in a
vehicle or aircraft), testing the different systems requires a high precision and
confidence in the different component outputs. HILS provides a cheaper alternative to
testing a complete aircraft or vehicle system (Xun et. al. 2008). HILS will then also
allow any prototype of a system to be built at a later stage in the development cycle
(Zhu et. al. 2009). Hwang et. al. (2006) highlight how a vehicle or aircraft may be tested
in a safer manner by using HILS. When a vehicle is being tested using HILS, it may be
tested for an output during dangerous manoeuvres that could be dangerous for a test
driver or pilot to perform before it is tested in the real world. This could lead to a
decrease in accidents where a person’s life may be put at risk. Safety is listed as an
advantage by Applied Dynamics International (2007) along with cost and time benefits.
Using HILS they emphasise how a reduction in cost and time can be achieved. This is
as parallel tests of different subsystems can be carried out in a timely fashion.

HILS does not suit every test however and the type of testing will indicate if
HILS is suitable. One major factor when considering if HILS is suitable is that little
information may be extracted from a device if the system does not behave as expected.
HILS does not let you analyse the internal behaviour of a system at run time only the

outputs of the system under test (Gomez 2001).

7.5 Validation & Verification

It is important to first distinguish between the verification and validation of a
model. Verification of a model is determining if the model of the system works as
intended. The validation of the model is a process to determine if the simulation model
is an accurate representation of the system under investigation.

Verification of the model will usually consist of debugging a computer program
if the simulation is computer based. It focuses on “building the model right” (Banks et
al. 2001, p367). Validation is more concerned with “building the right model” (Banks et
al. 2001, p367).

Once the model of a system has been constructed it cannot be used immediately

for measuring data. It is important to first calibrate the model. A simulation model

- 144 -

LITERARY REVIEW

might be acting in a very similar manner to the real system; however its exact behaviour
may not truly reflect the system aspects that the model is intended to simulate. The
model may fail to produce accurate information if it has not been calibrated and
validated (Mitrani 1982, p41).

Figure 7.6 (Banks et al. 2001, p369), shows the ongoing model-building process

with the use of validation and verification.

Calibration
and Conceptual
validation validation

Conceptual model

I. Assumptions on sysiem components

2. Structural assumptions, which define
the interactions between system
components

3. Input parameters and data assumptions

Model
verification
¥ erca

Operational model
k“"'—"'—"—" (Computerized

representation)

Figure 7.6: Model building, verification and validation

To carry out the validation it can be seen from Figure 7.6 that calibration is used.
Essentially this means that the model is compared to a real world system and
adjustments made to the model to more accurately reflect the real world. This process is
then repeated until an acceptable level of accuracy is achieved (Banks et al. 2001, p369).
One possible way in which a model may be validated incorrectly is if only one data set
is used. In this case the model may be able to accurately represent the system for this set
only. It is therefore important to validate the model using a number of different data sets

(Banks et al. 2001, p375).

7.6 Tests and Analysis

Once a model has been constructed and validated then the next step of
simulation is to run the experiment and collect the data for analysis. The data collected
should be relevant to the experiment under study and the method of collection should

- 145 -

LITERARY REVIEW

lead to easy analysis. This may seem trivial with the ability of modern computers to
handle vast amounts of data along with the ease of creating charts from the data.
However time should be spent when designing the system to determine if the data being
collected is relevant. Also time should be given over to consider if there is any data not
collected that could lead to better understanding of the system and what is happening. It
should be noted that extra readings might be needed when validating the model to
ensure all sections perform as intended, but these readings may not be of any use to the
actual experiment under consideration.

Analysis of the data is also important. Once data is collected it should be
presented to anyone who wishes access to the data to easily draw their own conclusions.
For this reason the use of charts can be useful. It is rarely possible to be able to draw
conclusions from a long list of numbers. This means that data should not only be
represented this way but also in a visual way in the form of charts and graphs.

At the analysis stage it might be discovered that not enough information was
collected and more runs of the simulation with different variables may be needed to gain

a clearer view of the systems behaviour and/or performance (Banks et al. 2001, p18).

7.7 Simulation of Queues, Statistics and Random Numbers

The modelling of events is an important part of simulation. This can be in the
form of a queue of people waiting to be served in a bank or shop, instructions waiting to
be processed on a processor or aeroplanes waiting to take off from an airport. If the
server or servers, i.e. bank tellers, CPU’s or runways for the same of examples given
above, are currently busy then a queue is formed.

A queuing method is then generally needed to handle the arriving customers (a
customer is any entity that is seen to be seeking service from a system (Banks et al.
2001, p205)). For instance in an airport aeroplanes arriving and departing will have a
fixed schedule and so how the queue forms and acts may be easily understood. In a
supermarket customers arriving at a checkout may seem to choose a random queue to
enter based on their perceptions of what would be the quickest line to join; the arrival of

customers in the shop may also be of a random nature.

- 146 -

LITERARY REVIEW

For these reasons simulation may require the modeller to be knowledgeable in
the area of statistics and random numbers. It should also be noted that a stochastic
model may even be used to analyse a deterministic system (Ripley 1987, p1). Stochastic
systems can be quite difficult to analyse and even more so as the system under
investigation becomes larger. For these reasons methods to evaluate these problems
have been developed. Included in these are the Monte Carlo method and the Markov

process.

7.7.1 The Monte Carlo Method

The Monte Carlo method was developed during the Second World War
by Stanistaw Ulam and John von Neuman. It was designed to quickly solve problems
they were coming across while developing the atomic bomb. The name was derived due
to the fact that random numbers were used to determine variables. This can be
compared to many gambling scenarios such as roulette tables or throwing dice
(Woolfson and Pert 1999, p22). This makes the simulation of large systems easier than
would otherwise be possible. The use of Monte Carlo methods also allows different
configurations of the system to be run more quickly. As such a whole system and not a
subsection of the system may therefore be described where other methods may prove
too costly or difficult to use (Woller 1996).

In summary Monte Carlo techniques are any techniques where random numbers
and probability are used to solve a scenario. It is used in many different applications
such as nuclear physics or traffic control problems. Within different disciplines there

can be many different techniques and subsets of Monte Carlo simulation (Woller 1996).

7.7.2 The Markov Process

Didkovsky (1996) defines the Markov process as a way of determining the
likelihood of a random dependant event occurring. The likelihood of some random
events can be influenced by previous events. Didkovsky (1996) explains that a coin toss
cannot be modelled as a Markov process as the coin has no memory of what occurred
before. However a communicating node in an automotive network may respond to a
message it has received and can be modelled as a Markov model. Weisstein (2007a)
defines the Markov process in the following way:

- 147 -

LITERARY REVIEW

“A random process whose future probabilities are determined by its most recent

values. A stochastic process * Fis called Markov if for every #and 1 <2 ... <4, we

have
Flalf) =2 |2 Ea), =20 =F =) =35, | x Eo1))
This is equivalent to
FlaPdsx | forall & =81) =F R [E) = % [X Faa)) >
7.7.2.1 Markov Chains

A Markov chain is a series of random states that is dependant on probabilities of
transitioning from one state to another state (Carter 1996). Markov Chains can give a
good representation of a system over a small sample, however on large systems they
may make little sense (Didkovsky 1996).

To calculate a Markov chain a matrix is often used. In this form the elements of
the matrix represent the possibility of transitioning from one state to another. This can
be seen below where P;, represents a transition from state one to state two, P

represents a transition from state two to state one etc.

P, P
x =| M 1,2
P, P,

In “An Introduction to Computer Simulation” Woolfson and Pert (1999, p138) give
three conditions to be satisfied to generate variables to settle down to the required
distribution:

1. The sum of the elements in a row should equal 1.

2. P(xi)Pi,j =P(xi)P

i » Where P(xl.) is the required probability for the variable x;.
3. The elements allow all the variables to be accessed.
If the process is useful then successive operations will generate all possible values
of the variable and the probability distributions should eventually settle down to the

required distributions and remain there (Woolfson and Pert 1999, p137).

7.7.3 Queuing Theory

Queuing Theory falls into two types of categories (Slater 2000):
- 148 -

LITERARY REVIEW

1. Open Queuing Network.

2. Closed Queuing Network.

The first type (open queuing network) is where an external system generates
customers to be processed by the network and then arrives at an external source. The
closed queuing network has a fixed population and this population cannot leave the
system. Figure 7.7 (Slater 2000) shows an open queuing system and Figure 7.8 (Slater
2000) shows a closed queuing system. The yellow circle represents a customer source
and the purple inverted trapezoid is a sink. The blue boxes connected to the red dots are
service centres. Each of the black lines indicate a possible path an entity may trave

down.

Figure 7.7: Open queuing network

Figure 7.8: Closed queuing network

When performing queuing analysis there are a few factors to be addressed, such as

how the customers are arriving and how long it takes to process a customer. From this a
- 149 -

LITERARY REVIEW

standard notation for queuing theory has been developed. To characterise a queuing
system the Kendell notation is often used (Willing 1999, p5). The Kendell notation is of
the form:
A/B/m/N — S

Where A is the distribution of the arrival of customers, B is the distribution of the the
service times, m is the number of servers and N is taken as oo if not given but represents
the maximum size of the waiting line. S is optional but represents the service discipline.
This is taken as First-In-First-Out (FIFO) if not given. A and B can represent a Markov
(M), deterministic (D), Erlang-k (Ex), Hyper-k (Hyx) or General (G) distribution. S can
be a FIFO, Last-In-First-Out (LIFO), random, Round Robin or priority service
discipline. An example of the above would be an M/M/1 queuing system. This is a
Markov distributed system, with one server and a FIFO service discipline.

There is also notation for various aspects of the system such as the number of
customers in a closed network (K), customer number (C,) and the arrival rate to node i
(Aj) amongst others as these are important aspects of the queue. Also the type of queue
(FIFO, LIFO etc.) is an important aspect of system as it will define how entities are
routed through a network, and as such needs to be carefully considered and represented.

A queuing theory model will allow a systems analyst to obtain a number of
performance metrics. Some metrics that could be obtained are: average queue length,
average queue wait time and server throughput rates. Analysis of these metrics may
allow a system analyst to identify problems in a system such as bottlenecks. Steps may

then be implemented to improve the performance of the system.

7.8 Simulation Software

Software used to create models and run simulations have varied from general
purpose programming languages, such as C++, to general purpose simulation software
(GPSS) that is solely designed to carry out simulation. Some of these GPSS systems

incorporate a graphical user interface (GUI) to create the model and run the system.

- 150 -

LITERARY REVIEW

7.8.1 General Purpose Programming Languages

The use of general purpose programming languages (GPPL) has diminished due
to the ease of simulation specific languages or software packages to create, run and
extract data from a simulation. The use of a language such as C or C++ could still
however suit a particular system to be simulated. The decision to use a GPPL could be
affected by the ability of a given programmer and constraints in time, where for
example there is inadequate time to learn how a new language or software package
operates. Another consideration could be that the level of detail required for a
simulation may not be available from any software package currently available.

The programmer must, when using a programming language such as C++, create
everything to do with the simulation such as each subroutine that defines how each
component of the model acts, to events and entities and how they affect other
components. A clock that defines that system at various states and a way to present the
gathered data must also be provided (Banks et al. 2001, p104). The availability of
simulation libraries such as CSIM however does help programmers. CSIM is a package
of commonly used classes and procedures for use with C or C++ (Mesquite Software
2006). Chapter 4 of Discrete-Event System Simulation (Banks et al. 2001) covers the

use of C++ and CSIM in detail and provides examples.

7.8.2 General Purpose Simulation Software (GPSS)

Simulation specific software has been around since IBM first released GPSS in
the 1960’s (Banks et al. 2001, p115). Due to its ease of use and as it was the first
program of its type it became a popular simulation package. It was improved by other
companies as well as IBM to make it more user friendly (Dictionary of Computer
Languages 1998).

The GPSS/H software was introduced by the Wolverine Software Corporation.
It is based on the IBM GPSS software with added features to increase its ease of use and
has been continually updated to keep it a powerful tool. It is a simulation language that
is programmed like most programming languages in the form of text entry; this is unlike
some newer simulation tools that use a graphical user interface where placed objects

have properties and behaviours associated with them (Crain 1997). The use of a non

- 151 -

LITERARY REVIEW

graphical user interface is so that GPSS/H can remain versatile enough for a wide range
of different implementations (Crain 1997).

Despite the ease of use of newer graphical simulation systems GPSS based
software is still in use today. This means that it has been in operation for over 40 years.
It was designed by Geoffrey Gordon so that it could be used by “non-programmers” and

is still advertised as such (Wolverine Software Corporation 2007).

7.8.3 Graphical Simulation Software

The trend of newer simulation software is in the use of a graphical user interface
(GUD. This is where objects such as entity generators are placed onto a screen and can
have their properties changed. In this way they act as desired by the programmer to
model the system under investigation. Examples of such software are Simulink by the
MathWorks Inc. and SIMULS from the SIMULS Corporation (The MathWorks Inc.
1997; SIMULS 2007).

Advantages of using such a system are the ease of use to construct systems,
allowing even novices to build a simple model easily. It also forces the programmer to
follow the basic model building process. However it is not always possible for this type
of software to be flexible enough to simulate complicated systems accurately. The
model may also become quite large visually and may need to be broken down into
smaller and smaller subsystems (Crain 1997). Breaking down a system into smaller
subsystems can also be seen as an advantage. The programmer can more easily see if
any part of the model is not performing as intended when debugging the model.

These types of simulation program usually provide easy and quick methods for
displaying results without any previous programming experience or without transferring

the data into another program such as Microsoft Excel.

7.9 MATLAB, Simulink and SimEvents

MATLAB is a highly flexible development environment. It allows easy data
analysis and visualisation through a high-level technical computing language. It
provides an interactive environment for algorithm development and numeric

computation (The MathWorks, Inc. 2007a). Add-ons such as Simulink extend the
-152 -

LITERARY REVIEW

functionality of MATLAB. In this case Simulink provides a new graphical way to
implement simulation models. To make implementing various applications easier,
additions called ‘Toolboxes’ are supplied. There are a number of toolboxes available for
MATLAB such as the fuzzy logic toolbox, neural network toolbox and image
processing toolbox to name a few (The MathWorks, Inc. 2007a). Figure 7.9 (The
MathWorks, Inc. 2007b) shows the relationship between MATLAB, Simulink and the

applications that can be developed using them.

Simulink Product Family Application-5pecific Products
Code Rapld Control Protatyping Embedded Verification, Validation Control System

Generation and HIL SW/HW Targets and Testing Design and Analysis

Signal Processing

Physical Modeling and Communications

SIMULINK

- Image and
SIMULATION AND MODEL-BASED DESIGN Video .

Fixed-Point Modeling

Event-Based Madeling
Test and Measurement

Simulation Graphics

Computational Biology

Financial Modeling
and Analysis

Data Analysis
e

- and Reporting

MATLAB Product Family

Figure 7.9: MathWorks product overview

7.9.1 MATLAB

Cleve Moler was a math professor at the university of New Mexico where he
wanted his students to be able to use computers to solve problems using EISPACK and
LINPACK. This required writing Fortran programs however and he didn’t want his
students to have to learn how to write Fortran programs. In the late 1970s after reading a
book by Niklaus Wirth he used Fortran and portions of LINPACK and EISPACK to
develop the first version of MATLAB. There was only a matrix data type with 80
functions and to add a function, you had to modify the source code and recompile the
program (Mohler 2004). Figure 7.10 (Moler 2004) shows the basic graphical

representations from the first MATLAB. Figure 7.11 shows the same result run on a

- 153 -

LITERARY REVIEW

modern version of MATLAB. This shows how the program has developed over the

years.

Figure 7.10: First MATLAB graphics

Figure 7.11: Modern MATLAB graph

In 1981 Jack Little, the CEO of The MathWorks realised the importance of the
newly released PC from IBM. He and a college of his, Steve Bangert, reprogrammed
MATLAB in C, adding in extra features and graphical power, and in 1984 The
MathWorks Inc. was founded. The founding members were Jack Little, Steve Bangert
and Cleve Moler (Moler 2004). Since then The MathWorks Inc. has grown and in 1993
registered one of the first commercial websites and a version of MATLAB to run on the
Windows operating system. A Linux version was later released in 1995 (Moler 2006).
Figure 7.12 (Moler 2006) again shows the growth of the power and graphical abilities of

the software. Figure 7.12 is of an L-shaped membrane which is the company logo.

- 154 -

LITERARY REVIEW

Before MATLAE MATLABZS MATLAE 4

MATLAB42 MATLAB S

Figure 7.12: MATLAB graphical development

As of the 1** of September 2007 the current version of MATLAB is R2007b. It
comes with MATLAB 7.5 as well as Simulink 7 (The MathWorks, Inc. 2007a).

7.9.1.1 MATLAB Development Environment

The main MATLAB window is shown in Figure 7.13; this is the window that
opens when MATLAB is initially started. There are three main windows: the current
directory you are working from, a command history window and the main command
window where code or commands can be entered. These commands can change how a

piece of code runs or to run code held in “m-files”.

) MATLAB [BEE
fe Edt Debug Destop Window el
D & W@ o o~ W B|? | ooy cpogan resmat Y@
Shortouts (2] How ta Add 2] Whal's New
ERER] Command Window 2 x
o @
3 e = Losthioi || To @et started, select MATLAR Help or Demes from the Help menu.
i Folder 2-Nov2L &
] Buffer_Require.c C Source file 8 KB 27-Sep-2 L4
[@Bufler_Require.tic Target Langu 2KB 27-Sep2l
] Buffer_Require_wra... C Source fle 2KB 27-Sep2
%) Buffer_Requirerent.c C Source file 8KB 27-Sep2
9] Buffer_Requirement... MEXfle 17 KB 27-Sep-2
[Bufier_Requirernent... Target Langu. 2KB 27-Sep2l
¢ Source file 2KB 27-Sept
C Source file 7 KB 23-Jan20
MEXfile 17 KB Z3-JanC
Target Langu 2KB Ban
¢ Source file 2KB BJani
s Aum
tory [Werkaracs
" x
A
ones(n, 1) ;i)
~E = ones(n,n);
b ELFUI-TAES 2 2
“format long
s = svaa
Splat =
Splon 5
‘help plot
pl = 4*atan(l):
¥ 0:pi/40:z*pi;
X.T8in(3®x)
“plat fx, 70 E]
et - 04/12/07 14:40 —-% v
< I >

b0t | Gk an arag o move Command o

Figure 7.13: MATLAB environment
- 155 -

LITERARY REVIEW

An m-file is a file where code can be entered and stored for retrieval later. It can
then be run again and again without having to write the code again and is like a ‘.c’ file
for c-code. Figure 7.14 shows an m-file with code to generate the graphs shown in

Figures 5.5 & 5.6. This code was taken from Moler (2004).

‘B Editor - C:\Documents and Settings\rob\Desklop\MASTERS\Simulation)Rob.m
File Edt Text Go Cell Tools Debug Deskiop Window Help A x

D l|i2aR-o~ S Aedrf 88 BAREEE B~
G (BB 8| -0 [+] =10 [x|«H | O

1 - pi= 4%atan(l): =
2 - x = D:pif40:2%pi;

3 - 7= x.*s3in(3*x);

4 - plot(x,v)

5

script Ln 5 Col 1

Figure 7.14: An m-file

7.9.2 Simulink

Simulink has become widely used by both industry and academic modellers for
simulation of dynamic systems since its release in 1990 (The MathWorks, Inc 1999;
Moler 2006). As it is embedded in MATLAB it comes with all the analysing ability of
MATLAB so that results can be easily displayed, analyzed and interpreted all in the
same environment as they were obtained (The MathWorks, Inc 1999). MATLAB can
also export its data and graphs easily to other software such as Microsoft Word or Excel.

Where MATLAB stores commands in an m-file and runs commands which look
similar to lines of code or mathematic expressions, Simulink is a model building tool
where models are built using a GUL To place an object that forms the model into the
model window shown in Figure 7.15 is a simple case of ‘dragging and dropping’ a
virtual object. Figure 7.15 also shows a simple model that was built using Simulink.
Figure 7.16 is the Simulink library where the objects are selected. There is also the

ability to make your own blocks.

- 156 -

LITERARY REVIEW

=1 untitled *

File Edit Yiew Simulation Format Tools Help

hEEE) » 10.0 Momal v

Scopet
Constant [@
Scope
Add Constant1
Ready 100% odedS

Figure 7.15: Simulink environment

[simulink Library Browser
File Edit ‘iew Help

0= a dh |

Commonly Used Blocks: simuiink/Commonly
Used Blocks

= W] simulink ~

2| Commonly Used Blocks
25| Continuous

23| Discontinuities

2| Discrete

] Logic and Eit Operatians ﬁ Discontinuities
23] Lookup Tables e

Continuous

2] Math Operations

Discrete

25| Model Verification

2| Modelwide Utilities =

- 88 5=| Losic and Bit Operations

2] Parts & Subsystems ns

25| Signal Attributes

%] signal Rauting . v=ita)| Lookup Tables

2| Sinks T_

2] Sources 2 Math Operations

23] User-Defined Functions Oyl

- 22 Additional Math & Discrete o) Model Verification

+- Wl Aerospace Blocksat ®
= W Coma Reference Blockset Miss | Modskwids Utities
+ | Communications Blocksst =

W Control System Toolbox
/. W Embedded Target for Infineon CLE6(

W Embedded Targst for Motorola® HCI 2
+- T Embedded Target for Motorola® MP¢ Signal Attributes

Porls & Subsystems

+/. W] Embedded Target for OSEKDNE

| Embedded Target for T1 C2000D5P Signal Routing

+- W Embedded Target for TICE000DSP

< | > 1 . 5
Ready

Figure 7.16: Simulink library

The models that can be built can be ‘hierarchical’ so that they are easier to
visualise. Each level can then be entered into to view the level below. The models can
however be built from the top down or the bottom up. This allows a developer to
approach the model building in a way that helps them understand the function of the
system (The MathWorks 1999).

Once the model is built it can be run and data easily obtained. The parameters of

the system can then be changed quickly and the test run again to see how these changes

- 157 -

LITERARY REVIEW

affect the performance of the system and these results easily compared to the previous

results (The MathWorks 1999).

7.9.3 SimEvents

SimEvents is an add-on to Simulink. It allows for discrete-event simulation to be
achieved through the additional components that come as part of the package. Activity-
based models are created by the modeller to evaluate system parameters. Entities are
configured with attributes which can then be used to model applications such as packet-
based networks, real-time operating systems and computer architectures (The
MathWorks, Inc. 2007a).

As was stated SimEvents has its own components associated with it. These can
be found in the Simulink library under the heading SimEvents. The SimEvents library

can also be opened in its own window as shown below in Figure 7.17.

El Library: simeventsv1 EIE‘E'
File Edit View Help
% ¥
Jedll el | L BT
ENEESHEIE

Generatars SimEvents Attributes Queues
Sinks

0| |- =

Servers Routing Gates SimEvents
Ports and Subsystems

@ A hame/ %

El—+r~

i
=

Tirning Probes Event Demaos
Translation

SimEwvents Library 1.1

Copyright 2005-2006 The MathWorks, Inc.

Figure 7.17: SimEvents library window

When one of the boxes shown in Figure 7.17 is opened it will produce another
set of options; these could be options that refine the selection you made, i.e. when
selecting the generators block you get another set of options. In this case it would be
event, entity or signal generators. When there are no more variations to pick from then a
selection of objects to choose from will be displayed. These can then be dragged and
dropped onto the model screen. Figure 7.18 shows the two different types of entity

generator that can be selected.

- 158 -

LITERARY REVIEW

! Library: simeventsgenerators1/Enti... g@g|

File Edit “Yiew Help

Entity Generators Library

- =
v :[j&DUT] Gy ouT
Event-Based Time-Based
Entity Generator Entity Generator
Ready 100%: Locked

Figure 7.18: SimEvents entity generator objects

SimEvents contains all basic blocks as standard to create a model for a discrete-
event simulation. With MATLAB and Simulink it is a flexible program that can be used

to model many systems.

7.9.4 SimEvents Model Building Tutorial

This section is based on the ‘Building a Simple Discrete-Event Model’ section
of the SimEvents — Getting Started Guide (The MathWorks, Inc. 2007c). All diagrams
are also taken from the SimEvents — Getting started Guide.

The system is a simple queuing system in which entities arrive in a deterministic
way, to a queue, and proceed to a server that operates at a fixed rate. The type of system
is a D/D/1 queuing system which implies a deterministic arrival rate, a deterministic
service rate, and a single server.

As was previously stated, SimEvents provides a library of simulation blocks.
These include all necessary blocks to perform discrete event simulation such as a server
block and an entity generator block. Other blocks include blocks to both set and read
attributes as well as versions of Simulink blocks to be used with SimEvents. One such
block is the SimEvents Signal block. It is important to use any special SimEvents blocks
where possible. Results obtained may represent false information if Simulink blocks are
used.

To build the simple D/D/1 queuing system for this example the following types
of blocks should be chosen:

- 159 -

LITERARY REVIEW

® An entity generator is needed. The time based entity generator will be
used for this example.

® A queue is needed and the FIFO queue was used in this example.

e A server is also needed. As it is a single server structure, the single
server option was chosen.

® An entity sink was also needed. This was to accept any entity after it
passes through the server.

¢ Finally a SimEvents signal scope is needed to display data.

It is important to choose the correct block to accurately reflect the system being
modelled. In most cases there is a choice of what block is needed to model the system.
If the queuing system is a LIFO then choosing the FIFO queue would cause the model
to act in an incorrect way. The correct blocks used in this example are shown in Figure

7.19.

L
in o
Signal Scope
o 1 X
&y ouTp BN SUTE B(IN ouThr Bin @
Time-Based FIFO Queus Single Server Entity Sink

Entity Generator

Figure 7.19: SimEvents tutorial blocks

Once the correct blocks are chosen, they must be configured. For example the
time-based entity generator needs to know how often to generate an entity. In this
example the entity generator was setup to produce an entity every second. The generator
was also set to generate an entity at the start of the simulation. The service time of the
server was also set as 1. These settings are all done through the parameters dialog box
of the appropriate blocks.

However to obtain any data the scope must be able to obtain some information
from the system. The single server’s parameters block is shown in Figure 7.20. Figure
7.19 shows that the ‘number of entities departed’ option was set to ‘on’ for the single

Server.

- 160 -

LITERARY REVIEW

E Block Parameters: Single Server x|

—Single Server [maszk] (link]

Serve one entity for a period of time and then attempt to output the entity through the
OUT port. [Fthe OUT port iz blocked then the entity stays in this block. until the pork
becomes unblocked. vou can specify the zervice time, which iz the duration of
zervice, via a parameter, attribute, or signal.

YWhen the black permitz preemphion, an entity in the server can depart early via the P
port. Preemphion occurs only if attributes af the current entity and the entity attempting
to arrive zatigfy specified criteria.

YWhen the block doesz not permit preemption, the 1M port iz unavailable whenewer thiz
block stores an entity.

MHumber of entities departed, th:l:l On

MHumber of entities in block, #n:l (It

Mumber of entities preempted, ﬂp:l uli}

Statuz of pending entity departure, |:ue:| [t

Ayerage wait, w:l s

Utiization, utit | OFf

Lol Ll L] L] L e L

Mumber of entities timed out, Hto: | OFFf

(] LCancel Help | Apply |

Figure 7.20: Single server parameters box

When a statistics option is enabled, a new output port is added to the block. This
can then be connected to the input of the signal scope. A path for entities must also be
made between the different blocks. The correct path configuration is shown in Figure
7.21. Note the new output on the signal server marked as ‘#d’. The different connection
types do not allow a signal port to be connected to an entity path port and vice versa.
Also an output port cannot be connected to another output port, while inputs ports

cannot be connected to other inputs ports.

L
in ﬁ
Signal Scope
4 - = . f
QyouT L Jour It o b T2 v
Time-Bas=d FIFO Queue Single Server Entity Sink

Entity Generator

Figure 7.21: Tutorial blocks connected

- 161 -

LITERARY REVIEW

When the model is built the simulation can then be run. Figure 7.22 shows the results
displayed on the signal scope after the model was run for 10 seconds. Other results
would be obtained if different statistics were monitored, or if different parameters were

used for the service time or arrival rates.

Entities Departed from Server

10

Total Number of Entities

0 5 10
Time

Figure 7.22: Tutorial results

Large systems can be constructed by following the same steps as described
above. Small subsections can be created and tested one by one and added to an overall
system model. Each subsystem needs only to reflect the behaviour of the basic
operation of that subsystem. The systems parameters such as service time can then be

configured and simulations run.

7.10 Simulation Software Selection

Shannon (1975, pp107-109) and Banks et. al. (2001, pp100-103) both propose
steps for choosing simulation software. The steps and questions proposed can be

combined as follows:

Part1: Investigation of Possibilities and Initial Screening
1. An important factor in choosing the software is hardware availablility. If a
new computer is to be purchased it can be configured to suit the needs of the
modeller. In most cases this is not possible. It is therefore important to know

the limits of the hardware.

- 162 -

LITERARY REVIEW

2. Is there sufficient documentation or vendor support available? If this is not
the case then problems encountered may not be easily dealt with.
Alternatives could however be internet forums where help can be obtained
from regular users of the software.

3. Are the advertising claims accurate? If there is a checklist with ‘yes’ and
‘no’ entries does the variation or licence you are interested in purchasing
provide all the required features. Do the implementation and capabilities of
the features match what you are looking for?

4. Is the package able to generate a model that is cross platform compliant? A
cross platform compliant model has wider use than if it is only executable on
a single operating system.

5. The speed of the simulation should be considered. Debugging of the model
may take a long time if the model is slow to execute.

6. The costs of software packages can be very high. What is the range of
software packages available for your budget?

7. The ease of which the simulation package can be learnt. A graphical package
may remove to need to learn syntax but it will not remove the need to use

procedural logic.

Part 2: Overall Choice Based on Problems to be Solved

1. The type of simulation to be run is evaluated. Based on this an appropriate
software package can be chosen. Questions to ask should include: Is the
model an event-, process- or activity-oriented system? Is there a reliance on
random numbers? If so what is the capability of the software to generate the
random numbers?

2. Data needs to be obtained for analysis therefore the ease of obtaining and
storing data, i.e. format, needs to be investigated

3. The software should be flexible enough to meet your needs. Can functions
written in a general purpose software language be included if needed? If so

what programming languages does it support?

As can be seen, based on the considerations proposed above a suitable software

package can be chosen. The selection process is broken down into two parts. The first

- 163 -

LITERARY REVIEW

part is intended to discard software that may be more difficult to use, adapt or costly.
The second part tries to identify, from the remaining choices, the most suitable software
package for the problems at hand. In many cases a software package may be quickly
marked as unsuitable.

With little or no modification these steps can be applied to any other necessary

hardware or software choices that need to be made.

7.10.1 Simulation Software Selection

Table 7.1 shows the options that were considered for the software used to carry
out the research as outlined in this thesis. The features and benefits are compared for
each possible software package also. Each of the considerations were given a score
based on factors such as budgetary considerations and prior knowledge of the package.
Each score was rated between 0 and 10, where 10 is the highest score possible for any

category and 50 the highest over all score possible.

Simulation Methods provided | Suitability’ | Ease of Use | Support | Cost™ | Total

C++ 0 3 8 6 6 24
GPSS 8 9 7 8 5 36
SimEvents 9 9 8 9 10 45

Table 7.1: Simulation software selection analysis

The most suitable software package based on the comparisons shown in Table
7.1 was deemed to be the SimEvents software add-on package for MATLAB. The
MATLAB aspect of the software package made it an attractive option. MATLAB
provides an environment where computations on outputs obtained from a model can be
analysed. This can then be easily converted into graphical representations (i.e. charts

and graphs) if desired. Other benefits also included the fact that the system had been

" The suitability metric was calculated based on the information as covered in section 7.8 and the
requirements to carryout the research correctly.

* This was based on the price for a student version, with MATLAB with SimEvents priced around €115.
The Wolverine GPSS/H cheapest price was €273 and a copy of MicroSoft Visual Studion 2008 standard
edition was price at €234. All prices are approximate values.

- 164 -

LITERARY REVIEW

designed to perform discrete event simulation. SimEvents therefore provides a number
of features, such as a simulation clock, as standard. While generic programming
languages could have been used, features such as the simulation clock also need to be
created. However a generic simulation package could be have been chosen. This would
have had the benefit of not requiring the developer to learn a new programming
language. The graphical method of creating a model in SimEvents was deemed easy to
learn. Therefore minimum time would be spent learning a new software package. A big
factor was also the cost of any software package used. The MATLAB and SimEvents
price was the cheapest software package. The price also included MATLAB which can
be used to analyse data.

The support provided for SimEvents is the best of all three packages looked at.
The help files are not only extensive, but the online help and user forms have a large
number of people who participate in them. SimEvents therefore also proved to be the
best value for money. This allowed the best value combination of hardware and
software to be obtained to conduct the research.

It should be noted that no one option is necessarily better for the purpose of
conducting a similar research topic. Other studies may prefer to use a GPPL as it would
provide an easier way to streamline the model in terms of execution speed and memory
demands. For the constraints on the research conducted in this thesis SimEvents was the
most suitable. The scores obtained were biased based on factors such as budget and the

developer’s exposure to different software packages and this is acknowledged.

7.11 Conclusion

Model building has a wide range of uses. These vary from a simple child’s toy
to a sophisticated model used in simulation of a system for analysis. This simulation
again has a wide range of uses, be it the simulation of computer architectures or that of a
queue of people waiting in line. These simulations can be run to give the modeller a
better understanding of how a system works. They can also be modified to see how a
change to a system affects the performance of the system. They can be important as an
evaluation tool for a developer of a system to determine how effective his real system is.

This is important as it may not always possible to change the real world system in

- 165 -

LITERARY REVIEW

various ways to get feedback. It is also important to consider different simulation
possibilities, such as HILS testing, before deciding on using a simulation model.
Different approaches to evaluation of system will have different benefits and drawbacks.

For an in-vehicle network such as FlexRay, simulation allows the
designer/analyst to see how the system works, and through their greater understanding
of the system they can draw conclusions on how to improve the system. This could be
in terms of looking at message flow and suggesting for example new levels of RAM,
which could have an important impact on the cost of the network as memory is an
expensive resource. The scheduling of the network could also be analysed in an easier
fashion than taking readings of a real network and improvements could also be drawn
from this type of simulation. This makes simulation an important tool in developing
technologies as it has a wide range of applications.

The best software and hardware tools can also be chosen using the steps outlined
in this chapter. This can have a big impact on the performance and functionality of the
model. This means that sufficient thought and time should be put to this process. The
software tools available were evaluated against each other and the most suitable

software was found to be SimEvents.

7.11. References

Applied Dynamics International (2007) Why use Hardware-in-the-Loop Simulation?
[online], available: http://www.adi.com/products_sim_ghilWhy.htm [accessed 2

September 2009].

Banks, J., Carson, J. S., Nelson, B. L. and Nicol, D. M. (2001) Discrete-Event System

Simulation, New Jersey: Prentice Hall.

Carter, S. (1996) Markov Chains [online], available at:

http://www.taygeta.com/rwalks/node7.html [accessed 12 December 2007].

- 166 -

LITERARY REVIEW

Crain, R. C. (1997) Simulation Using GPSS/H, in Andradéttir, S., Healy, K. J., Withers,
D. H. and Nelson, B.L. eds., Winter Simulation conference, Atlanta, Georgia, 7-10 Dec,

IEEE, 567- 573.

Dictionary of Programming Languages (1998) GPSS [online], available at:
http://cgibin.erols.com/ziring/cgi-bin/cep/cep.pl?_key=GPSS [accessed 3 December
2007].

Didkovsky, N. (1996) What’s a Markov Process? [online], available at:
http://www.doctornerve.org/nerve/pages/interact/markhelp.htm [accessed 5 December

2007].

Gomez, M. (2001) Hardware—in-the-Loop Simulation [online], available:

http://www.embedded.com/15201692 [accessed 2 September 2009].

Hwang, T., Roh, J., Park, K., Hwang, J. Lee, K.H., Lee, K., Lee, S. and Kim, Y. (2006)
Development of HILS Systems for Active Brake Control Systems, Proceedings of
SICE-ICASE International Joint Conference, Bexco, Busan, Korea, October 18-21,
IEEE Computer Society Washington, DC, USA, 4404-4408.

Law, A. M. and Kelton, W. D. (1982) Simulation Modeling and Analysis, New York:
McGraw-Hill.

Mitrani, I. (1982) Simulation Techniques for Discrete Event Systems, Cambridge:

Cambridge University Press.

Mohler, C. (2004) MATLAB News & Notes — December 2004, Cleve's Corner — The
Origins of MATLAB [online], available at:
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec04.html

[accessed 4 December 2004].

Mohler, C. (2006) MATLAB News & Notes — January 2006, Cleve's Corner — The
Growth of MATLAB and The MathWorks Over Two Decades [online], available at:

- 167 -

LITERARY REVIEW

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf

[accessed 4 December 2004].

Neelamkavil, F. (1987) Computer Simulation and Modelling, New York: Wiley.

Ripley, B.D. (1987) Stochastic Simulation, New York: Wiley.

Shannon, R.E. (1975) Systems Simulation — the Art and Science, New Jersey: Prentice
Hall.

SIMULS Corporation (2007) [online], available at:

http://www.simul8.com/products/standard/index.htm [accessed 3 December 2007].

Slater, T. (2000) Queuing Networks — Network 2 [online], available at:
http://www.dcs.ed.ac.uk/home/jeh/Simjava/queueing/Networks/networks.html

[accessed 12 December 2007].

The MathWorks, Inc. (1999) Using Simulink version 3, Massachusetts: The MathWorks,

Inc.

The MathWorks, Inc. (2007a) The MathWorks - MATLAB and Simulink for Technical
Computing [online], available at http://www.mathworks.com/index.html?ref=pt

[accessed 3 December 2007].

The MathWorks, Inc. (2007b) MathWorks Product Overview [online image], available

at http://www.mathworks.com/products/pfo/ [accessed 4 December 2007].

The MathWorks, Inc. (2007c) Getting Started with SimEvents 2, Massachusetts: The
MathWorks, Inc.

The MathWorks, Inc. (2007d) SimEvents 2 User’s Guide, Massachusetts: The
MathWorks, Inc.

- 168 -

LITERARY REVIEW

Weisstein, E. W. (2007a) Markov Process [online], avalibale at:

http://mathworld.wolfram.com/MarkovProcess.html [accessed 5 December 2007].

Weisstein, E. W. (2007b) Monte Carlo Method [online], avalibale at:
http://mathworld.wolfram.com/MonteCarloMethod.html [accessed 7 December 2007].

Willig, A. (1999) A Short Introduction to Queuing Theory [online], available at:
http://www.tkn.tu-berlin.de/curricula/ws0203/ue-kn/qt.pdf [accessed 12 December
2007].

Woller, J. (1996) An introduction to Monte Carlo Simulations [online], available at:

http://www.chem.unl.edu/zeng/joy/mclab/mcintro.html [accessed 7 December 2007].

Wolverine Software Corporation (2007) GPSS/H - Serving the simulation community
since 1977 [online], available at: http://www.wolverinesoftware.com/ [accessed 3 Dec

2007].

Woolfson. M. M. and Pert, G.J. (1999) An Introduction to Computer Simulation,
Oxford: Oxford University Press.

Xun, W., Shu-xing, Y. and Lei Z. (2008) Dynamic Test and Evaluating System for
Flight Control System, Proceedings of the 2008 International Colloquium on
Computing, Communication, Control, and Management, Guangzhou City, China,

August 3-4, IEEE Computer Society Washington, DC, USA, 189-192.

Zhu, Y., Hu, H., Xu, G. and Zhao, Z. (2009) Hardware-in-the-Loop Simulation of Pure
Electric Vehicle Control System, International Asian Conference on Informatics in
Control, Automation and Robotics, Bangkok, THAILAND, February 1-2, IEEE
Computer Society Washington, DC, USA, 254-258.

- 169 -

LITERARY REVIEW

Chapter 8 . FlexRay Software

Drivers

8.1 Introduction

The research described in this thesis concerns improving the flow of data
through a FlexRay node. An important area that should be looked at is the software
driver linking the communication controller and the host. How data is handled at this
stage could have an enormous effect on the performance of the node. Data is passed
from the host to the communications controller for transmission. If the data is not
passed in adequate time, it may not transmit during its allocated slot time. It will then
have to wait until the next communication cycle before the data is transmitted. It is
therefore necessary to know how the driver performs to fully optimise the node.

Software drivers are intended to provide an abstract interface between hardware
and user defined pieces of software (Dependable Computer Systems 2006). This chapter
will outline the DECOMSYS::COMMSTACK FlexRay software driver. It will
introduce AUTOSAR and the method it uses to transfer data between software
components. The Fujitsu FlexRay driver will also be covered. Figure 8.1 shows the
various software driver options available to a FlexRay based system. A system designer
must choose one of the software options for the implementation on the host
microcontroller. In Figure 8.1 the options are (a) AUTOSAR FlexRay stack, (b) the
DECOMSYS::COMMSTACK FlexRay software driver and (c) the Fujitsu FlexRay

driver.

- 170 -

LITERARY REVIEW

Application
RTE
AUTOSAR
FFRD

BASIC FR COMMSTACK

5w

(@)) (e)
E-Ray
Figure 8.1: FlexRay software driver options
8.2 COMMSTACK

The DECOMSYS::COMMSTACK<FIexRay> is a software driver (here after
referred to as ‘driver’) designed to provide a FlexRay interface to specific hardware
implementations. It was designed with flexibility in mind. As such it is not dependant
on other external components for operation (Dependable Computer Systems 2006).

DECOMSYS::COMMSTACK<FlexRay> allows higher layer software to be
developed with little sense of the behaviour and properties of a FlexRay node. This
allows the designer to be unaware of the actual communication controller
implementation (Dependable Computer Systems 2006). Figure 8.2 (Dependable
Computer Systems 2006, p4), shows a system implementing the (here after referred to

as ‘COMMSTACK").

-171 -

LITERARY REVIEW

Application
TF I Flex SOk
DECOMSYS COMMS TACK Software
FlexRay CC Hardware

Figure 8.2: COMMSTACK system overview

DECOMSYS::COMMSTACK<CONFIGURATOR> is a plug-in for
DECOMSYS Designer. It outputs the following files (Dependable Computer Systems
2004, p5):

e A ‘I’ file containing basic configuration options
e A ‘c’ file containing frame identifier and queue configurations
e A ‘¢’ file implementing the host specific communication controller

initialisation functions.

8.2.1 System Design
The COMMSTACK internal structure can be seen in Figure 8.3 (Dependable
Computer Systems 2006, p6). It is broken down as follows (Dependable Computer
Systems 2006, p7):
¢ FlexRay Hardware: One of several communications controllers will be
used for an application.
e Hardware Configuration: This contains hardware mapping information.
e Application Configuration: A post-build configuration holds all
application specific configurations.
e COMMSTACK: This is ported to the dedicated host-CPU for a specific

development environment.

-172 -

LITERARY REVIEW

APl-precompile time L
driver abstraction
=
e
o=
— . = O
= APl-runtime =
o W . . m =
oo driver abstraction O %
b o
o EC S |
[=] A —
= [= =
Fi I =) o
= 0 o4 o
= L = = .
= s i S =
[L L 'ﬁ O =
2 = = S Ec
T E=11]
= = o2
5 5| 2m
] o S
= 5 0 E!
= CE
=]
= o —
o —
(]

FlexFay Hardware

ERAY10=0=
ERAY10=1=
ERAY10=2>
MFR4200<=0>
MFR4200<1=>
MFR4200<2=
CCXY=0>

hardware develaper

system developer

application developer

Figure 8.3: COMMSTACK system architecture

8.2.1 System Design

The behaviour of COMMSTACK is defined by a state machine. This can be
seen in Figure 8.4 (Dependable Computer Systems 2006, p7). For further information
on each state see Dependable Computer Systems (2006, pp8-10).

-173 -

LITERARY REVIEW

I

/ Reset >

T Halt, Abort, 1

S T \LMJ i ® VN N

Config | Startup ‘I_ { On }— Onine —={ Cnline
=9 _//LLE \eConﬁg - / Stznup—v\\ : \.__ﬂ____ //‘—Dfﬁne A\
Ry _,__? e

- —i::-_x\ I-'I
SendWiakeup Aort, 1 I@'ij‘i’i@) Illu‘l
1\ |
<‘---Wakeup«{ III."II
T Init
/\)) State
(:—) Inttial State
Figure 8.4: COMMSTACK state diagram
8.3 AUTOSAR

AUTOSAR was developed from 2003 when the core partners of the AUTOSAR
partnership signed a contract. Since then the AUTOSAR partnership has developed a
number of specifications (Fennel et. al. 2006). These companies worked together to
produce the AUTOSAR standard to support automotive electronic/electrical
developments to meet current and future needs of the automotive industry (AUTOSAR
GDbR 2008).

A major focus of the AUTOSAR partnership is the re-use of software
components. Traditionally software components were developed with a hardware focus.
This approach leads to difficulty when replacing or upgrading hardware components.
By developing a run time environment to support re-use of software components a

reduction in costs and complexity can be achieved.

174 -

LITERARY REVIEW

8.3.1 AUTOSAR Goals
As was stated one of the main focuses of the AUTOSAR partnership is the

development of the necessary tools and specifications to achieve re-use of software
components. To realise this the main goals initially were to establish a standard for use
in future vehicle applications (AUTOSAR GbR 2008a). In the first phase of AUTOSAR
the focus was on powertrain, chassis, active and passive safety, body and comfort.
Applied to these the main objectives were a consideration of the following desirable
elements (AUTOSAR GbR 2008a):

¢ Consideration of safety requirements.

e Scalability for different platforms and vehicles.

¢ Standardisation of basic system functions.

¢ The ability to move functions to different nodes on the network.

¢ Integration of modules from different suppliers.

e Maintainability.

e Increased use of ‘off the shelf” hardware.

Software updates/upgrades for vehicles.

8.3.2 Virtual Functional Bus

To achieve their goals and objectives the Virtual Functional Bus (VFB) concept
was developed by the AUTOSAR partnership. Using a VFB AUTOSAR is able to
separate the functionality of a node into the software components (applications) and the
basic software (communications methods for example) of the hardware module. The
communication is handled by the basic software on a node. The applications
functionality is obtained from combinations of software components. The application
layer is then executed using a Run Time Environment (RTE). Figure 8.5 (AUTOSAR
GbR 2008b, p10) shows how the decoupling of the software is achieved.

- 175 -

LITERARY REVIEW

VFB view
SW-C SW-C SW-C SW-C

Description Descriptipn Déscriptipn Déscription
g g

w = w

- = =
58 o °58
= =

Virtual Functional Bus

: 1

ECU - < T001 supp-omng deployment _’> —SD gﬁcﬁo raint
Die cnptl I nfSW components

/ N\

Mapping
ECUI ECUN ECU m
z z z g
w w w w
-nig uig nig 3 ig
S hi °% i

‘ Basic Software ‘ ‘ Basic Software

Basic Software

Gateway

Figure 8.5: Virtual functional bus concept

Data to be sent from one software component to another is conceptually sent
through the VFB during the development process. At compile time the software
components are then mapped to specific hardware modules.

The programmer will conceptually send and receive information from other
software components through the VFB. At compile time however the VFB is replaced
by an application programming interface (API). This means that if one software
component needs to pass data to another software component or request a service
supplied by another software component, it does so through the use of API calls. So at
compile time only the functionality necessary to achieve this is set up in the basic
software portion of the node. This eliminates unnecessary code generation for the

module. Another advantage is that the software component no longer needs to know

- 176 -

LITERARY REVIEW

where the other software component is located. It only needs to know what services or

information it can accept or provide.

8.3.3 AUTOSAR Components and Interfaces
There are three types of components defined by AUTOSAR (Buttle 2005):

1. Atomic software components
2. Sensor/actuator software components
3. Composite components
A software component is assigned to one of these categories based on its functionality.
Each software component can have as many interface ports as needed.
The interface types are broken down into:
1. Provided interfaces
2. Required interfaces
The communication is then defined as either a sender-receiver or a client-server type.
Sender-receiver is like a publish-subscribe type interface where information is sent out
and anybody can take that information. Client-Server can be seen as a function calling
interface (Jackman 2008).
Figure 8.6, shows the different type of component interface. Figure 8.5 is based

on a diagram by Buttle (2005).

Required Interface for Provided Interface for
sender-recelver type. sem.ie.r-receiver type.
This 15 the receiver This is the sender

Component

)— —O

Fequired Interface for Provided Interface for
client-server type. client-server type.
This is the client This 15 the server

Figure 8.6: Software component communication interface types

- 177 -

LITERARY REVIEW

8.3.4 AUTOSAR FlexRay Stack
Figure 8.7 (TTTech Automotive GmbH 2007) shows where the FlexRay stack

components mapped onto the basic software of a hardware module using AUTOSAR.

Dcm
Signal AITOSAR Diagnostic G eneric
GW COM Com HM
Manager

=Bus specific>

XCP Transport Protocol

Apblicati L PDU Router B
Ication Laye Ry
PP Y — epecific:>
<Bus specificr HM
Transport
Protocol

"™ Runtime Enviionment (K1E)

Communication
Services

Communication
Hardware Abstraction
FlexRay Interface
. !

Communication

Drivers Driver for external
FlexRay Controller

FlexRay Driver

Microcontroller

Figure 8.7: FlexRay stack layout

The AUTOSAR FlexRay stack consists of a number of components and layers.
These components and layers include a FlexRay driver. It is designed to allow a
software developer to know little or no information about the underlying FlexRay
system. The programmer merely passes information from the application and the
FlexRay stack is designed to handle the information. In this way the programmer need
only know how to use a hardware independent API call.

The FlexRay stack is made up of: FlexRay-specific modules, drivers, the
interface layer, the protocol data unit (PDU) router, the FlexRay transport protocol (TP)
layer and the protocol-independent communication (COM) layer. In some cases a
communication-specific layers like the network management (NM) layer also defined.
The FlexRay driver is part of a microcontroller abstraction layer that provides access to
the FlexRay controller through a hardware-independent API (Weka Fachmedien GmbH
2008).

- 178 -

LITERARY REVIEW

The following definitions of the different FlexRay stack components are from Galla

et. al. (2007):

The transport protocol module is used to segment and reassemble large PDUs.
A PDU is simply a message or frame of a particular networking scheme. The
PDUs are transmitted from and to the Diagnostic Communication Manager.

The PDU router is used to either send messages to higher protocol layers or to
perform a gateway service. This could mean gating the message between two
FlexRay networks or between FlexRay and another networking scheme such as
CAN.

The COM module provides signal-based communication to the run-time
environment. This can be in the form of inter-ECU or intra-ECU communication.
The Diagnostic Communication Manager provides a way to allow tester devices
to control diagnostic functions in an ECU using the communication network.
The network management module provides a coordinating mechanism for the
ECUs on the network. It is split between a generic network management and a
protocol specific network management scheme.

The FlexRay interface module facilitates the transmission and reception of the
PDUs. It allows multiple PDUs to be packed into a single frame at the
transmission ECU and to be successfully extracted again at the receiving ECU.
This is affected by the timing constraints of the FlexRay protocol. The packed
PDUs are sent to and received from the FlexRay driver.

The FlexRay driver provides the basis for the FlexRay interface module by
facilitating the transmission and reception of frames to and from a
communication controller. It too is affected by the timing constraints of the

FlexRay protocol.

8.4 Fujitsu FlexRay Driver

The Fujitsu FlexRay driver is intended to ease the familiarisation phase of using

FlexRay for developers (Fujitsu Microelectronics Europe 2007, p8). It supports the 32-

bit MB91460 family processors, MB88121 series communication controllers, 16-bit

MB96340 family processors and the MB91F465X series processors with integrated

-179 -

LITERARY REVIEW

communication controllers. It is designed to be compatible with

DEYCOMSYS::DESIGNER (Fujitsu Microelectronics Europe 2007, pp9-10).

8.4.1 Driver Concept

The driver is designed to be viewed as several layers. The minimal number of
layers and their function can be seen in Figure 8.8 (Fujitsu Microelectronics Europe

2007, p11).

Lpplication Programming Interface Uzerinterface of Fujitsu FlexRay diver
[APT]
Communication Cortroller Abstraction Layer | The routines for the driver
[CCAL]
FlestR ay Hardware Abstraction Layer FlexFay hardware description
[FHAL] [E-Ray)eg addthe address offzet
Hardwmre Abstraction Laver Controller hardware
[HAL] {eg MBRIF4GT .0
read and write operations

Figure 8.8: Fujitsu FlexRay driver layers

The Architecture of the driver is shown in Figure 8.9 (Fujitsu Microelectronics Europe

2007, p11).

fird api function ()

v
fird_ccal function a () fird_ccal function b ()

fird_hal macro () fird_spi_function ()

Figure 8.9: Fujitsu FlexRay driver architecture

- 180 -

LITERARY REVIEW

The ffrd_api_function;() evaluates one of 90 API calls available for the FlexRay driver.
It then calls a relevant routine from ffrd_ccal_function(). This layer contains all the
routines to handle the API calls. Following this the macro from ffrd_fhal_function() is
called to add the offset address for the E-Ray chip. Using ffrd_hal_function() the
macros for different MCU-FlexRay controller access is located. It should be noted that
the files, macros and functions are only included at compile time if needed (Fujitsu

Microelectronics Europe 2007, p12).

8.4.2 Program Flow

The services of the FlexRay driver is shown in Figure 8.10 (Fujitsu
Microelectronics Europe 2007, p15). As can be seen, the initialisation service and some
of the control services and status services are available after a reset. When the
initialisation service is completed all other services are available (Fujitsu

Microelectronics Europe 2007, p15).

B Setrvice Tz Service Cotitrol Setwice

Interrupt Setvice Siatis Service

Time Jervice Timer Service

Figure 8.10: Fujitsu FlexRay driver services

- 181 -

LITERARY REVIEW

8.5 Conclusion

It is important to know how the data is transferred from the host to the
communications controller. If data is not transferred in a timely fashion it may miss the
transmission slot it is assigned to. If this is the case the data will not be sent out during
the current communication cycle. This may lead to problems as the data will used for
decision making or in calculations. The FlexRay drivers outlined above are designed to
be used for a wide range of systems.

AUTOSAR looks set to be adopted by a large section of the automotive industry.
The driver could therefore have a huge effect on the performance of networks.
COMMSTACK is a well defined library of necessary FlexRay interface functions. This
makes it a very useful driver for non-AUTOSAR applications. The Fujitsu FlexRay
driver is a useful tool to allow early development and familiarisation. It can also be used
for lower level functions which could be useful for some applications, i.e. timing
analysis.

Both the COMMSTACK and FFRD software drivers will be used in this
research. COMMSTACK is the software driver that shall be modelled. The features and
timing of this will be implemented into the simulation model. The FFRD driver will be
used in the calibration and validation stages of the model building process. This is used
to obtain timing information from the real world system implementations. Zhu (2007)
already developed a simulation of an AUTOSAR based system and so will not be used

in this research.

8.6 References

AUTOSAR GbR (2008a) AUTOSAR [online] available at: www.autosar.org [accessed
15 May 2008].

AUTOSAR GbR (2008b) Specification of the Virtual Functional Bus version 1.0.1,

Munich, Germany.

Buttle, D. (2005) What is an RTE?- Introduction to AUTOSAR for RTE users, Stuttgart,

Germany.

- 182 -

LITERARY REVIEW

Dependable Computer Systems (2004) DECOMSYS::COMMSTACK
<CONFIGURATOR> User Manual, Wein, Austria.

Dependable Computer Systems (2005) COMMSTACK <FlexRay> 1.6 User’s Manual,

Vienna, Austria.

Dependable Computer Systems (2006) COMMSTACK <FlexRay> 1.8 User’s Manual,

Vienna, Austria.

Fennel, H., Bunzel, S., Heinecke, H., Bielefeld, J., Fiirst, S., Schnelle, K.-P., Grote, W.,
Maldener, N., Weber, T., Wohlgemuth, F., Ruh, J., Lundh, L., Sandén, T., Heitkdmper,
P., Rimkus, R., Leflour, J., Gilberg, A., Virnich, U., Voget, S., Nishikawa, K., Kajio, K.,
Lange, K., Scharnhorst, T. and Kundel, B. (2006) Achievements and Exploitation of the
AUTOSAR Development Partnership, Convergence 2006, October 2006, Detroit
Michigan, USA, SAE International, Warrendale, Pennsylvania, USA.

Fujitsu Microelectronics Europe (2007) Fujitsu FlexRay Driver Manual v1.3, Langen,

Germany.

Galla, T.M., Schreiner, D., Forster, W., Kutschera, C., Goschka, K.M. and Horauer, M.
(2007) Refactoring an Automotive Embedded Software Stack using the Component-
Based Paradigm, Proceedings of the International Symposium on Industrial Embedded
Systems, 2007. Lisbon, Portugal, July 4-6, IEEE Computer Society Washington, DC,
200-208.

Jackman, B. (2008) Class Notes on AUTOSAR, Waterford Institute of Technology.

TTTech Automotive GmbH (2007) AUTOSAR FlexRay Stack for Series Production,

Vienna, Austria.

Weka Fachmedien GmbH (2008) FlexRay and AUTOSAR get it right [online] available

at: http://www.elektroniknet.de/home/automotive/autosar/english/flexray-and-autosar-

get-it-right/ [accessed 15 May 2008].

- 183 -

LITERARY REVIEW

Zhu W. (2007) Performance Analysis of AUTOSAR Vehicle Network Gateways,
unpublished thesis (M.Sc.), Waterford Institute of Technology.

- 184 -

LITERARY REVIEW

Chapter 9 . Literary Review

Conclusion

9.1 Literary Review Summary

The chapters contained in the literary review should encompass all relevant
information necessary to see the importance of this research. The reader should also be
able to determine the strengths of the methodologies chosen. The review has not
covered all possible methods available but has outlined popular approaches. This is due
to the amount of possible areas to cover in these topics. To cover all possible areas
would be unwieldy and add little to the review.

From the material covered it can be seen that the research previously conducted
in the area of FlexRay has had a strong focus on the optimisation of the communication
schedule. This can be seen from the research highlighted in Chapter 5. The hardware
that is available also must pass conformance testing. The Bosch E-Ray is used in a
number of devices and is supported by a number of different third party software
products. The research that is outlined in this thesis focuses on the flow of data around a
FlexRay node. This could help a developer to ensure a FlexRay node is optimised with
respect to the timing of the system. This is an area which has little or no research
conducted to date.

Different system analysis techniques were researched and a suitable option was
chosen based on this. This is seen in chapter 5, and chapter 7 describes the chosen
method in greater detail. From this a suitable software packages to carry out the
intended research was also discussed and a decision made as the most suitable package
commercially available. Finally all aspects of a FlexRay node were researched to ensure

all relevant aspects of any node were included for the analysis that was conducted.

- 185 -

LITERARY REVIEW

9.2 Available Literature

For the most part the information available for this research is good, accurate
and accessible. There may however be a limit to the range of material available. For
instance the FlexRay protocol is well defined and as such there are not many
alternatives to the specifications laid out by the FlexRay consortium. The E-Ray chip is
designed to be implemented in an FPGA and has been well documented by the
designers. Manufacturer’s datasheets on the specific implementations can therefore add
little to the information outlined in the E-Ray user’s manual. For simulation there are a
number of well written books and other resources. These cover a multitude of different
simulation methods and techniques. Performance analysis of software is also a big area
of interest to companies. This is due to the ever present need to reduce cost. Also
software development can be expensive and time consuming. Therefore there is a huge
amount of material in the area of analysis.

For the most part the available literature is plentiful and well written. There are
very few topics that can’t be found in some document or book. There are also a number
of papers or theses written on FlexRay scheduling and scheduling optimisation. These

can be useful during the initial phase of learning.

9.3 Areas of Further Study

The necessary elements to complete this research have been covered in the
literary review. It is necessary to be familiar with syntax of the programming language
and methodology to write software programs. This is outside the scope of the thesis and
therefore is left to the reader to gain knowledge and experience in this area if necessary.
The automotive industry looks set to become more and more dependant on electric and
electronic innovations. This means the area is rapidly changing and new products

emerging. This leads to greater research possibilities and a wider area of study.

- 186 -

MODEL DEVELOPMENT

Section 111

Model Development

- 187 -

MODEL DEVELOPMENT

Chapter 10 . Methodology

10.1 Introduction

The unpredictability of circuits and systems increases with the size and
complexity of the system. It is not possible to predict accurately how a system reacts to
even a small change. The research presented here aims to develop a simulation model of
a FlexRay node for analysis. The performance of the node, which includes buffer
utilisation and throughput latency of data, will then be analysed. Recommendations for
improvement can then be suggested based on observations made. This section will

introduce the steps taken for successful simulation of a real world FlexRay node.

10.2 Simulation Process

In section 7.3 a simulation process was laid out. This process was followed for
this research and the steps taken are outlined below (Banks et. al. 2001, p15-20). The
process steps, as outlined by Banks et. al. (2001), are clear, concise and easily followed.
They were also developed with a discrete event simulation model, (the modelling
technique chosen for this research), and as such were followed as an appropriate
methodology. Figure 10.1, is again the flow diagram for the simulation process (Banks

et. al.2001, p16). Each step is discussed in turn.

- 188 -

MODEL DEVELOPMENT

Problem
formulation
2 Setting of
objectives
and overall
project plan
3 v 4
> Model Data
conceptualization collection

Model
translation

No

Validated?

Yes

Experimental -
design

Production runs
and analysis

Figure 10.1: Simulation study steps

Problem Formulation: This is the first step of the simulation process. It is important
that the analyst has a clear understanding of the problems that are to be addressed. This
may involve discussions with any policy makers or stakeholders about the problems that
may be faced for the system under investigation. The problem formulation may take

time and problems may need to be re-examined may times before this step is complete.

Setting of Objectives and Overall Project Plan: At this stage it is decided if
simulation is the correct procedure to address the problems. If simulation is found to be
the correct action to take a project plan is devised. Alternatives to the different systems

are devised and a method for analysing the suitability of these alternatives is defined.

- 189 -

MODEL DEVELOPMENT

Other considerations are constraints on time, people and the overall cost involved in

undertaking the project.

Model Conceptualisation: During this step the fundamentals of the system under
investigation are defined. The model should be kept as simple as possible with
complexity added only as needed. This will reduce the costs of building the model. If
possible the user of the model should be consulted during this process. This will create a

better quality and more user-friendly model.

Data Collection: The earlier this stage is started the better the model will be. This is
due to the time it takes to collect the data. The problem under investigation will
determine the data to be collected. The data collected will include data from a real-
world system. Data from the model may be collected at the calibration stage to analyse
the accuracy of the model. The real-world data is used to calibrate and validate the

model.

Model Translation: This step is where the model is converted from a conceptual object
into a computer program. The type of simulation software is chosen based on a number
of criteria. Some of the considerations when choosing the simulation software were

discussed in chapter 7.

Verification: This stage of the simulation study involves debugging the model. The
functionality of the model can be tested by passing in a set of inputs and checking the
set of outputs obtained against a set of expected outputs. The model can be verified by

testing various subsystems as they are constructed.

Validation: This step may need to be repeated many times. This step determines if an
accurate representation of the system under investigation has been achieved. If the
model cannot be deemed to be an accurate representation it may be necessary to go back
to the data collection stage or model conceptualisation stage. Once the model accurately

depicts the real world system over a number of scenarios it can be said to be validated.

Experimental Design: At this stage the experiments to be simulated are determined.

This can be based on runs that have already be performed and analysed. The

- 190 -

MODEL DEVELOPMENT

considerations of this stage are, time taken to run or initialise the model and the number

of repetitions of each run.

Production Runs and Analysis: The simulations measure of performance is

determined during this stage.

The Need for More Runs: The focus of this stage is to determine if more runs of the
model are necessary. Based on the analysis done at this stage the nature of any

additional experiments are determined.

Documentation: The documentation of the simulation process is an important step. The
documentation should be split between regular progress reports to any stakeholders and
an overall model program report. The progress reports can be used to help any potential
users to understand how the program works and clarify any misunderstandings. It also
has the advantage of forcing the model builder to look at current progress and identify
problems that arise. This can help the designer to meet deadlines. The overall program
report will allow users to understand how the model operates and ultimately helps them
to draw correct conclusions for the data obtained. It also allows modification of the

model to suit other needs, if necessary, by other modellers.

Implementation: The success of this step is dependant on how well each of the
previous steps were carried out. If the workings of the model are fully understood by the
user and the model has been built with the problems under investigation in mind, the
model should be a success. Likewise if the implementation has been impaired by a lack
of understanding on the overall required outputs then the model may be deemed a

failure.

- 191 -

MODEL DEVELOPMENT

10.3 Simulation Process in Relation to the Research

Problem Formulation: The problems faced by the adoption of FlexRay on a large
scale were discussed in section 1.1 of this thesis. The problems covered were the main

motivation behind the research outlined in this thesis.

Setting of Objectives and Overall Project Plan: The flow of data through a FlexRay
node will depend on a number of factors such as the communication schedule or the
buffering implementation. This would make running a wide range of scenarios on real
world systems costly. The simulation of a node was chosen as a better alternative. A
simulation model designed to analyse aspects of a FlexRay node will there fore be
constructed and tested for suitability. The simulation model development flow process

as defined in Banks et al. (2001, p16) will be used.

Model Conceptualisation: The features of the system relevant to the study were
selected and defined. This includes the message RAM and handling of the
communication schedule. Rejected aspects of the FlexRay node include the wakeup and
startup phases. This is due to these phases having no impact on the flow of data through

the node during communication.

Data Collection: The data to be collected was determined. All data from a real world
system and the model were collected and analysed. The data that was collected included
timing information for the software drivers to complete different tasks. Other data
collected were timing constraints associated with the E-Ray communications controller

implementation.

Model Translation: The model was built using SimEvents. This software was decided
upon as it has all the required elements necessary to build a discrete-event model. It is
also flexible as it allows the use of user defined elements or functions written in ‘C’ to
be included. The steps involved in choosing the simulation program are outlined in

section 7.10.

-192 -

MODEL DEVELOPMENT

Verification: The model was verified in stages by testing the different subsections.
When the model is completed it is verified as a whole. This stage was performed using

SimEvents.

Validation: The model was validated against a small real world network. This included
a number of different set of constraints to judge the performance of the model over a
number of different scenarios. This was repeated until the model could be said to be

validated. It was also evaluated to judge its ability to carryout its intended function.

Documentation: This was done at regular intervals. This is backed up by regular

meetings with stakeholders in the research.

The following steps relate to the completed model as a tool. These are done to

test real world scenarios where improvement in system performance is desired.

Experimental Design: The experiments are done as needed

Production Runs and Analysis: The experiments are run and the performance metrics

obtained.

The Need for More Runs: This is done as needed.

Implementation: The real world system can be modified and improved based on the

output of the simulation experiments.

10.4 Conclusion

The FlexRay protocol is new and emerging. This leads to a wide range of
research opportunities to improve FlexRay products and systems. The complexity of
setting up a FlexRay node makes it difficult to analyse over a wide range of constraints.
The cost to set up an adequate real world FlexRay network to test a hypothesis can also
become prohibitive. As it is not always possible to observe real world systems a
simulation of a FlexRay system is a more effective and viable solution. Using the

methodology outlined in this chapter an effective model should be achieved.

- 193 -

MODEL DEVELOPMENT

10.6 References

Banks, J., Carson, J. S., Nelson, B. L. and Nicol, D. M. (2001) Discrete-Event System

Simulation, New Jersey: Prentice Hall.

194 -

MODEL DEVELOPMENT

Chapter 11 . Simulation Model

Development

11.1 Introduction

The simulation model was designed to accurately represent a real world FlexRay
node. To achieve this, the model was based on the Bosch E-Ray communications
controller. This chapter will outline the specification of the FlexRay node that defined
the structure and performance of the simulation. The model will be broken down into its
various subsystems. The functionality of these subsystems will be explained.

This model used MATLAB, Simulink and SimEvents to build, verify and
validate the model. The various operation and performance characteristics of the
components used will be described as necessary throughout this chapter. Due to the size
of the model developed, only a small number of the main subsystems will be described.
Figure 11.1 (Banks et. al. 2001, p16) highlights the stage at which the model
development occurs in the model development cycle. At this stage research into the

operation of the system has been done and the simulation model is built.

- 195 -

MODEL DEVELOPMENT

Problem
formulation

¥

Setting of

objectives

and overall
project plan

Y
f {

3
» Model Data
| conceptualization collection
I _— I
5
g Model
- translation

No No

7
Validated?
\;{

Experimental
design

!

[N

Production runs
and analysis

Y o

Documentation
and reporting

Figure 11.1: FlexRay development steps

- 196 -

MODEL DEVELOPMENT

11.2 Specification Development Process

When the specification for the model was developed, it was based on the
specifications of the separate components making up a FlexRay system. The structure of

a node based system can be seen in Figure 11.2.

Application

Commstackffutosar Flexray Driver

Drata
Flowr

E-Ray Clup

FlexRay Metwork

Figure 11.2: FlexRay node elements

The elements of the node are the application, the software driver and E-Ray
communications controller. The FlexRay network represents the physical bus over
which data is transmitted. It was necessary to understand how each of these layers work
and interact to accurately reflect the workings of a FlexRay node.

By viewing a FlexRay based system in the divisions shown in Figure 11.2, the
build process was more easily modularised. This meant that each element of the system
could be built and tested separately. The final model then consists of these individual
subsystems. This method allows each section to be built to the specifications applicable
to it. It does mean however that there may be some work needed when connecting the
elements of the overall system together. Problems can arise in the form of syntax issues,

- 197 -

MODEL DEVELOPMENT

i.e. attribute names vary slightly, or in the form of a system receiving an entity it cannot

handle.

11.3 Simulation Model Specifications

Each of the nodes’ elements was considered in relation to their inputs/outputs
and functionality. Figure 11.3 shows the inputs, outputs and considerations that were

necessary to be investigated for the application layer.

Ingnats:
- Received Data
- Received Bymhbols
- Status Information
Considerations:
- Distribution of Frame Data Generation
- Configuration
- Clock Speed
- Titnings
- Error Handling Application
- dymbol Determitism
- Configuration
- Startup W akeup
- Response to Recetved Data

Chatpts:
- Frame Data
- Symbol Comenands
- Configuration Data

Figure 11.3: Application inputs, outputs and considerations

As can be seen the considerations that were examined were elements that affect
the speed and flow of data. For each section a number of considerations were
investigated. The remaining sections of the FlexRay node considerations can be seen in

Figures 11.4, 11.5 and 11.6.

- 198 -

MODEL DEVELOPMENT

Inputs:
- Fame Data
- Configuration Data
- Bymbol Conunands

Considerations:
- COLMBTACESAUTOZAR
- Titming Comtumstackidutosar Flexray Diriver
- Speed
- Petindicity

Catpats:
- Frame Data
- Atatus Information
- SBymbol Conunands

Figure 11.4: Software driver inputs, outputs and considerations

Inputs:
- Application Data
- Bymbol Commatds
- Configuration Data
Considerations: - Transmitted Frames from other Nodes
- Cottetanication Cyele - Symbols sent from other Hodes
- Static Segment
- Dypnatndc Segtrent
- Syrmbol Windosr
-NIT. E-Ray Chip
- Clock Speed
- Allocation of Memory
- Received Data
- FIFO
- Ilemoty 3lot
- Transmission Data
- Timings
- Hurber of Channels in Tse
- Cyele Multiplexing Cutputs:
- Bta