

Waterford Institute of Technology

Institiúid Teicneolaíochta Phort Láirge

Improving the Reliability and Performance of

FlexRay Vehicle Network Applications Using

Simulation Techniques

Robert Shaw B.Sc. (Hons)

M.Sc.

Supervisor: Brendan Jackman B.Sc., M.Tech.

Submitted to the Waterford Institute of Technology

Awards Council, 27 May 2009.

ACKNOWLEDGEMENTS

 - ii -

Acknowledgements

I would like to thank the following people for all their support and help over the

past two years of this project. Without them this thesis would not be possible.

Firstly I would like to thank Mr. Brendan Jackman for all his encouragement, guidance

and enthusiasm throughout this project.

I would also like to thank my fellow group members during the time span of this project,

for all their help, guidance and advice:

• Frank Walsh, Group Supervisor, Department of Computing, Maths and Physics,

Waterford Institute of Technology

• David Power, Group Supervisor, Department of Computing, Maths and Physics,

Waterford Institute of Technology

• Gareth Leppla, Group Member, Department of Computing, Maths and Physics,

Waterford Institute of Technology

• Richard Murphy, Group Member, Department of Computing, Maths and

Physics, Waterford Institute of Technology

• John Walsh, Group Member, Department of Computing, Maths and Physics,

Waterford Institute of Technology

I would also like to thank my friends for all their support and patience while I undertook

this project.

Special thanks go to Gillian Chester who showed great patience, support and

encouragement throughout this project.

I would lastly and most importantly like to thank my parents who were more of a help

than they will ever know.

DECLARATION

 - iii -

Declaration

I, Robert Shaw, declare that this thesis is submitted by me in partial fulfilment of

the requirement for the degree M.Sc., is entirely my own work except where otherwise

accredited. It has not at any time either whole or in part been submitted for any other

educational award.

Signature: _____________________________

Robert Shaw,

27 May 2009.

ABSTRACT

 - iv -

Abstract

Modern vehicles are becoming more and more sophisticated, with more

functions being controlled by a microprocessor unit. As new functions are developed

there is not only more of a demand on the control unit, but there is also more demand

placed on the communication network(s) within a car. There is also a growing need for

fast and dependable networks for new safety features such as X-by-wire applications.

A trend in the automotive industry to make cars more eco-friendly has emerged.

As the amount of applications increases then the number of wires within a car increases

and this can potentially add a large amount of weight leading to increased fuel

consumption. This along with the need for higher performance networks led to the

development of the FlexRay protocol.

FlexRay is a newly developed network protocol that is intended to address the

current and future needs of the automotive industry. It is backed by many automotive

manufacturers and suppliers. As such, FlexRay looks increasingly likely to become the

network application of choice for many companies, especially where safety critical

systems are implemented.

The purpose of this research was to design, implement and test a simulation

model of a FlexRay network node. This simulation model could be a benefit to system

developers to ensure accurate communication is achieved by tracing the flow of

information through a FlexRay-based system and ensuring all timing constraints are met.

The model was built using MATLAB, Simulink and SimEvents. The basis of the model

was a node that incorporated a separate host microcontroller and communications

controller. The communications controller was based on The Bosch E-Ray IP. The

simulation model comprised of the application, software driver, communications and

physical bus layers of a FlexRay based system. The model was then calibrated against a

real world system over a number of different test cases and constraints.

The final part of the research involved running tests to determine if the model

that has been built, was built in a correct manner i.e. validation of the simulation model.

The model was then evaluated for its ability to carry out its intended role.

TABLE OF CONTENTS

 - v -

Table of Contents

Acknowledgements.. ii

Declaration..iii

Abstract.. iv

Table of Contents.. v

Table of Figures.. x

Table of Tables .. xvi

SECTION I: THESIS OVERVIEW .. 1

CHAPTER 1 . THESIS OVERVIEW ... 2

1.1 Problem Specification... 2

1.2 Research Questions .. 2

1.3 Document Layout.. 3

1.4 References... 5

SECTION II: LITERARY REVIEW.. 6

CHAPTER 2 . LITERARY REVIEW INTRODUCTION... 7

2.1 Scope... 7

2.2 Terminology.. 8

2.3 Criteria for Discussion ... 9

2.4 Limits of the Review.. 9

CHAPTER 3 . AUTOMOTIVE NETWORKS.. 10

3.1 Introduction .. 10

3.2 Automotive Networks .. 10

3.3 Networking Type Overview... 12

3.4 Automotive Network Protocols ... 14

3.5 Event-Triggered Protocols ... 16

3.6 Time-Triggered Protocols .. 23

3.7 Automotive Network Design ... 30

3.8 Conclusion.. 38

3.9 References... 38

TABLE OF CONTENTS

 - vi -

CHAPTER 4 . FLEXRAY ... 45

4.1 Introduction .. 45

4.2 Network Topology... 46

4.3 FlexRay Hardware.. 47

4.4 Global Time and Timing... 48

4.5 Media Access Control... 51

4.6 Frame Format... 53

4.7 Coding & Decoding.. 56

4.8 Wakeup ... 62

4.9 Conclusion.. 64

4.10 References... 64

CHAPTER 5 . PERFORMANCE ANALYSIS ... 66

5.1 Introduction .. 66

5.2 System Performance and Analysis .. 66

5.3 Software Metrics... 73

5.4 Previous Systems Analysis .. 80

5.5 Conclusion.. 103

5.6 References... 104

CHAPTER 6 . E-RAY ... 107

6.1 Introduction .. 107

6.2 Features .. 107

6.3 Components .. 108

6.4 Register Map... 110

6.5 Communication Controller States .. 112

6.6 Error Handling ... 116

6.7 Message Handling .. 120

6.8 Message RAM ... 124

6.9 Filtering and Masking .. 129

6.10 FIFO... 131

6.11 Packaging ... 133

6.12 Conclusion .. 134

6.13. References.. 134

CHAPTER 7 . DISCRETE EVENT SIMULATION .. 136

7.1 Introduction .. 136

7.2 Systems ... 137

7.3 Simulation Process ... 139

TABLE OF CONTENTS

 - vii -

7.4 Building Models.. 140

7.5 Validation & Verification ... 144

7.6 Tests and Analysis... 145

7.7 Simulation of Queues, Statistics and Random Numbers ... 146

7.8 Simulation Software.. 150

7.9 MATLAB, Simulink and SimEvents... 152

7.10 Simulation Software Selection .. 162

7.11 Conclusion .. 165

7.11. References.. 166

CHAPTER 8 . FLEXRAY SOFTWARE DRIVERS.. 170

8.1 Introduction .. 170

8.2 COMMSTACK .. 171

8.3 AUTOSAR... 174

8.4 Fujitsu FlexRay Driver ... 179

8.5 Conclusion.. 182

8.6 References... 182

CHAPTER 9 . LITERARY REVIEW CONCLUSION .. 185

9.1 Literary Review Summary... 185

9.2 Available Literature.. 186

9.3 Areas of Further Study.. 186

SECTION III: MODEL DEVELOPMENT.. 187

CHAPTER 10 . METHODOLOGY ... 188

10.1 Introduction .. 188

10.2 Simulation Process ... 188

10.3 Simulation Process in Relation to the Research ... 192

10.4 Conclusion .. 193

10.6 References... 194

CHAPTER 11 . SIMULATION MODEL DEVELOPMENT... 195

11.1 Introduction .. 195

11.2 Specification Development Process.. 197

11.3 Simulation Model Specifications .. 198

11.4 Model Metrics... 207

11.5 The Model ... 212

TABLE OF CONTENTS

 - viii -

11.6 Conclusion .. 238

11.7 References... 238

CHAPTER 12 . VERIFICATION.. 240

12.1 Introduction .. 240

12.2 Verification ... 241

12.3 Model Subsystem Debugging.. 243

12.4 Simulation Model Verification.. 247

12.5 Model Execution Time .. 257

12.6 Conclusion .. 259

12.7 References... 260

SECTION IV: MODEL CALIBRATION & VALIDATION ... 261

CHAPTER 13 . CALIBRATION .. 262

13.1 Introduction .. 262

13.2 Test Equipment ... 264

13.3 Calibration Procedure.. 275

13.4 Calibration Test Cases ... 285

13.5 Calibration Data & Results .. 287

13.6 Conclusion .. 320

13.7 References... 321

CHAPTER 14 . VALIDATION .. 323

14.1 Introduction .. 323

14.2 Validation Procedure.. 324

14.3 Validation Data Collection... 326

14.4 Validation Review... 328

14.5 Conclusion .. 343

14.6 References... 345

SECTION V: CONCLUSION.. 346

CHAPTER 15 . CONCLUSION ... 347

15.1 Introduction .. 347

15.2 Research Summary ... 347

15.3 Research Questions .. 348

TABLE OF CONTENTS

 - ix -

15.4 Research Conclusions... 350

15.5 Area of Further Study ... 353

15.6 References... 354

SECTION VI: BIBLIOGRAPHY.. 356

SECTION VII: APPENDICES ...I

APPENDIX A: MODEL COLOUR CODING ... II

APPENDIX B: MODEL VARIABLES & ATTRIBUTES .. V

APPENDIX C: THE MODEL ...XVI

Source Code...XVII

APPENDIX D: TECHNICAL PAPERS ..XVIII

2008 IEEE International Symposium on Industrial Electronics, 30 June - 2 July 2008, Cambridge,

United Kingdom ‘An Introduction to FlexRay as an Industrial Network’ Robert Shaw, Brendan

Jackman..XIX

TABLE OF FIGURES

 - x -

Table of Figures

FIGURE 3.1: COMPUTER COMPONENTS AND POSSIBLE CONNECTIONS ... 11

FIGURE 3.2: EVENT-TRIGGERED AND TIME-TRIGGERED NETWORK PATTERNS... 13

FIGURE 3.3: AUTOMOTIVE NETWORK APPLICATIONS .. 15

FIGURE 3.4: AUTOMOTIVE NETWORKS FUNCTIONALITY BREAKDOWN .. 15

FIGURE 3.5: CAN BUS .. 17

FIGURE 3.6: CAN BUS ARBITRATION .. 18

FIGURE 3.7: CAN STANDARD FRAME FORMAT.. 18

FIGURE 3.8: LIN BUS WITH SINGLE MASTER NODE AND ‘N’ SLAVE NODES .. 19

FIGURE 3.9: LIN COMMUNICATION ... 20

FIGURE 3.10: MOST25 FRAME ... 22

FIGURE 3.11: MOST25 FRAME ... 23

FIGURE 3.12: TTP BUS TOPOLOGY .. 24

FIGURE 3.13: TTP COMMUNICATION CYCLE ... 25

FIGURE 3.14: FLEXRAY FRAME... 26

FIGURE 3.15: FLEXRAY HYBRID TOPOLOGY.. 26

FIGURE 3.16: FLEXRAY BUS ACCESS... 27

FIGURE 3.17: CYCLE MULTIPLEXING... 28

FIGURE 3.18: RATE DIFFERENCES ... 29

FIGURE 3.19: OFFSET DIFFERENCES .. 30

FIGURE 3.20: RATE AND OFFSET CORRECTION APPLIED .. 30

FIGURE 3.21: DAVINCI FLEXRAY SCHEDULE DESIGN ... 32

FIGURE 3.22: EB TRESOS PRODUCT FAMILY.. 33

FIGURE 4.1: A PASSIVE BUS TOPOLOGY... 46

FIGURE 4.2: SINGLE CHANNEL HYBRID NETWORK... 46

FIGURE 4.3: LOGICAL INTERFACE ... 47

FIGURE 4.4: TIMING HIERARCHY... 48

FIGURE 4.5: THE RELATIONSHIP BETWEEN CLOCK SYNCHRONISATION AND THE MEDIA ACCESS TIME FRAME

.. 50

FIGURE 4.6: COMMUNICATION CYCLE... 51

FIGURE 4.7: FRAME FORMAT... 53

FIGURE 4.8: ENCODED BIT STREAM... 56

FIGURE 4.9: RECEIVED BIT STREAM .. 58

FIGURE 4.10: CAS AND MTS ENCODING .. 59

FIGURE 4.11: WAKEUP PATTERN USING TWO WAKEUP SYMBOLS .. 60

FIGURE 4.12: SAMPLING AND MAJORITY VOTING OF A RECEIVED BIT PATTERN AT THE INPUT 62

TABLE OF FIGURES

 - xi -

FIGURE 5.1: INTERRUPT-DRIVEN RESPONSE TIME.. 68

FIGURE 5.2: TIMING CHART EXAMPLE... 70

FIGURE 5.3: STANDARD MEMORY MAP ... 71

FIGURE 5.4: THE EFFECT OF BAD SOFTWARE ON A COMPANY.. 75

FIGURE 5.5: NUMBER OF FAULTS FOUND IN SOFTWARE .. 76

FIGURE 5.6: FLEXRAY CONCEPTUAL ARCHITECTURE.. 81

FIGURE 5.7: SCHEDULED TRANSMISSION DEFINITION.. 82

FIGURE 5.8: FLEXRAY MODEL SYSTEM BASE .. 84

FIGURE 5.9: SYSTEM DEVELOPMENT PROCESS. ... 85

FIGURE 5.10: THE SMART DESIGNER WORKFLOW... 86

FIGURE 5.11: THE SMART SIMULATOR ARCHITECTURE .. 87

FIGURE 5.12: SMARTOSEK ENGINE CONTROL SYSTEM... 88

FIGURE 5.13: EVENT STREAM WITH P=4 AND J=1... 89

FIGURE 5.14: SYMTAS DEVELOPED MODEL.. 90

FIGURE 5.15: SCHEDULING ALGORITHM ... 91

FIGURE 5.16: NETWORK GATEWAY SIMULINK/SIMEVENTS MODEL .. 93

FIGURE 5.17: AUTOMESH ARCHITECTURE... 94

FIGURE 5.18: ABSTRACT DISTRIBUTED SYSTEM .. 96

FIGURE 5.19: CO-SIMULATION MAPPED EXAMPLE... 96

FIGURE 5.20: SIMULATOR COMMUNICATION STRUCTURE ... 97

FIGURE 5.21: NS-2 MODEL SHOWING THE INTERFACE MODULE .. 98

FIGURE 5.22: ROUTER BLOCK MODEL ... 99

FIGURE 6.1: BLOCK DIAGRAM OF THE WORKINGS OF AN E-RAY CHIP ... 108

FIGURE 6.2: POSSIBLE COMMUNICATIONS CONTROLLER STATES .. 112

FIGURE 6.3: STATE DIAGRAM FOR NODE ENTERING STARTUP.. 114

FIGURE 6.4: RAM BLOCKS WITH LOCAL PARITY GENERATORS AND CHECKERS .. 119

FIGURE 6.5: HOST – MESSAGE RAM INTERFACE... 121

FIGURE 6.6: DOUBLE BUFFER STRUCTURE INPUT .. 122

FIGURE 6.7: SWAPPING INPUT BUFFER COMMAND MASK & INPUT BUFFER COMMAND REGISTER BITS....... 122

FIGURE 6.8: DOUBLE BUFFER STRUCTURE OUTPUT ... 123

FIGURE 6.9: SWAPPING OUTPUT BUFFER COMMAND MASK & OUTPUT BUFFER COMMAND REGISTER BITS 123

FIGURE 6.10: TRANSIENT BUFFER RAMS ... 124

FIGURE 6.11: MESSAGE RAM CONFIGURATION EXAMPLE .. 125

FIGURE 6.12: HEADER SEGMENT IN MESSAGE RAM ... 126

FIGURE 6.13: DATA PARTITION IN MESSAGE RAM EXAMPLE.. 128

FIGURE 6.14: EMPTY, NOT EMPTY AND OVERRUN STATES... 132

FIGURE 7.1: DISCRETE-SYSTEM STATE VARIABLE ... 138

FIGURE 7.2: CONTINUOUS-SYSTEM STATE VARIABLE ... 138

TABLE OF FIGURES

 - xii -

FIGURE 7.3: SIMULATION STUDY STEPS .. 140

FIGURE 7.4: SIMULATION MODELS .. 142

FIGURE 7.5: FLIGHT CONTROL HILS SYSTEM.. 143

FIGURE 7.6: MODEL BUILDING, VERIFICATION AND VALIDATION.. 145

FIGURE 7.7: OPEN QUEUING NETWORK ... 149

FIGURE 7.8: CLOSED QUEUING NETWORK ... 149

FIGURE 7.9: MATHWORKS PRODUCT OVERVIEW .. 153

FIGURE 7.10: FIRST MATLAB GRAPHICS ... 154

FIGURE 7.11: MODERN MATLAB GRAPH .. 154

FIGURE 7.12: MATLAB GRAPHICAL DEVELOPMENT .. 155

FIGURE 7.13: MATLAB ENVIRONMENT ... 155

FIGURE 7.14: AN M-FILE ... 156

FIGURE 7.15: SIMULINK ENVIRONMENT .. 157

FIGURE 7.16: SIMULINK LIBRARY ... 157

FIGURE 7.17: SIMEVENTS LIBRARY WINDOW .. 158

FIGURE 7.18: SIMEVENTS ENTITY GENERATOR OBJECTS ... 159

FIGURE 7.19: SIMEVENTS TUTORIAL BLOCKS ... 160

FIGURE 7.20: SINGLE SERVER PARAMETERS BOX .. 161

FIGURE 7.21: TUTORIAL BLOCKS CONNECTED .. 161

FIGURE 7.22: TUTORIAL RESULTS ... 162

FIGURE 8.1: FLEXRAY SOFTWARE DRIVER OPTIONS.. 171

FIGURE 8.2: COMMSTACK SYSTEM OVERVIEW ... 172

FIGURE 8.3: COMMSTACK SYSTEM ARCHITECTURE .. 173

FIGURE 8.4: COMMSTACK STATE DIAGRAM.. 174

FIGURE 8.5: VIRTUAL FUNCTIONAL BUS CONCEPT .. 176

FIGURE 8.6: SOFTWARE COMPONENT COMMUNICATION INTERFACE TYPES... 177

FIGURE 8.7: FLEXRAY STACK LAYOUT ... 178

FIGURE 8.8: FUJITSU FLEXRAY DRIVER LAYERS ... 180

FIGURE 8.9: FUJITSU FLEXRAY DRIVER ARCHITECTURE ... 180

FIGURE 8.10: FUJITSU FLEXRAY DRIVER SERVICES .. 181

FIGURE 10.1: SIMULATION STUDY STEPS .. 189

FIGURE 11.1: FLEXRAY DEVELOPMENT STEPS .. 196

FIGURE 11.2: FLEXRAY NODE ELEMENTS ... 197

FIGURE 11.3: APPLICATION INPUTS, OUTPUTS AND CONSIDERATIONS... 198

FIGURE 11.4: SOFTWARE DRIVER INPUTS, OUTPUTS AND CONSIDERATIONS .. 199

FIGURE 11.5: COMMUNICATIONS CONTROLLER INPUTS, OUTPUTS AND CONSIDERATIONS 199

FIGURE 11.6: PHYSICAL BUS INPUTS, OUTPUTS AND CONSIDERATIONS ... 200

TABLE OF FIGURES

 - xiii -

FIGURE 11.7: TOP LAYER OF SIMULATION MODEL... 201

FIGURE 11.8: FLEXRAY MODEL SUBSECTIONS .. 201

FIGURE 11.9: ENTITY PATHS ... 202

FIGURE 11.10: SLOT ENTITY PATHS... 204

FIGURE 11.11: REQUEST ENTITY PATHS .. 204

FIGURE 11.12: FRAME ENTITY PATHS.. 205

FIGURE 11.13: CYCLE ENTITY PATHS .. 205

FIGURE 11.14: MODEL AS A FLOW OF DATA .. 207

FIGURE 11.15: E-RAY DATA FLOW PATH... 208

FIGURE 11.16: E-RAY BLOCK DIAGRAM ... 213

FIGURE 11.17: COMMUNICATIONS CONTROLLER TASKS ... 213

FIGURE 11.18: MODEL OF THE COMMUNICATIONS CONTROLLER .. 214

FIGURE 11.19 TRANSIENT BUFFER RAM STRUCTURE ... 215

FIGURE 11.20: SYNCHRONISATION BLOCK .. 216

FIGURE 11.21: CYCLE ENTITY FLOW DIAGRAM ... 217

FIGURE 11.22: INITIALISATION BLOCK .. 218

FIGURE 11.23: INITIALISE STATIC SEGMENT BLOCK .. 218

FIGURE 11.24: STATIC SEGMENT BLOCK ... 220

FIGURE 11.25: GET START OF CYCLE .. 220

FIGURE 11.26: DYNAMIC SEGMENT BLOCK ... 221

FIGURE 11.27: DYNAMIC CHANNEL BLOCK... 221

FIGURE 11.28: DYNAMIC ENABLE BLOCK ... 221

FIGURE 11.29: NETWORK IDLE TIME AND SYMBOL WINDOW BLOCK ... 222

FIGURE 11.30: INCREMENT CYCLE COUNT BLOCK... 223

FIGURE 11.31: GLOBAL TIME UNIT... 224

FIGURE 11.32: CYCLE COUNT ATTRIBUTE ADDER ... 224

FIGURE 11.33: DYNAMIC SLOT GENERATOR.. 225

FIGURE 11.34: MESSAGE HANDLER .. 226

FIGURE 11.35: MESSAGE RAM MODEL OPERATION .. 227

FIGURE 11.36: MESSAGE RAM BUFFERS .. 227

FIGURE 11.37: MESSAGE HANDLER MODEL BLOCKS ... 228

FIGURE 11.38: OUTPUT BUFFER STRUCTURE... 229

FIGURE 11.39: PHYSICAL OPERATION DIAGRAM ... 230

FIGURE 11.40: PHYSICAL BUS MODEL ... 230

FIGURE 11.41: CHANNEL ‘X’ LAYER... 231

FIGURE 11.42: PROPAGATION DELAY CALCULATION BLOCKS ... 232

FIGURE 11.43: DELAY SLOTS BLOCKS ... 232

FIGURE 11.44: ADDITIONAL FRAMES LAYER ... 232

FIGURE 11.45: FRAME ROUTING BLOCK .. 233

FIGURE 11.46: APPLICATION LAYER OPERATION .. 234

TABLE OF FIGURES

 - xiv -

FIGURE 11.47: APPLICATION LAYER ... 234

FIGURE 11.48: DRIVER OPERATION ... 235

FIGURE 11.49: SOFTWARE DRIVER LAYER .. 235

FIGURE 11.50: SOFTWARE DRIVER DELAY .. 236

FIGURE 11.51: BUS MONITOR MODEL.. 237

FIGURE 11.52: BUS MONITOR MODEL.. 237

FIGURE 12.1: MODEL DEVELOPMENT FLOW CHART .. 240

FIGURE 12.2: MODEL SUBSYSTEM BLOCK DIAGRAM ... 244

FIGURE 12.3: SYNCHRONISATION TEST 1 ATTRIBUTE SCOPE GRAPH FOR CYCLE ENTITIES......................... 246

FIGURE 13.1: CALIBRATION ITERATIVE PROCESS .. 262

FIGURE 13.2: SIMULATION MODEL DEVELOPMENT PROCESS ... 263

FIGURE 13.3: TOP DOWN VIEW OF THE FUJITSU SK-91F467-FLEXRAY DEVELOPMENT BOARD 265

FIGURE 13.4: FLEXTINY MODULE ... 266

FIGURE 13.5: PASSIVE STAR.. 267

FIGURE 13.6: VECTOR VN3600 USB INTERFACE FOR FLEXRAY .. 267

FIGURE 13.7: DESIGNER PRO MAIN WINDOW .. 270

FIGURE 13.8: THE FIRST PAGE OF THE FLEXRAY CONFIGURATION WIZARD .. 271

FIGURE 13.9: THE SECOND PAGE OF THE FLEXRAY CONFIGURATION WIZARD .. 271

FIGURE 13.10: SOFTUNE WORKBENCH MAIN WINDOW ... 272

FIGURE 13.11: FLEXCONFIG MAIN WINDOW ... 273

FIGURE 13.12: CANALYZER.FLEXRAY TRACE WINDOW... 274

FIGURE 13.13: E-RAY STRUCTURE.. 277

FIGURE 13.14: E-RAY STATUS REGISTER INTERRUPTS .. 278

FIGURE 13.15: FREE-RUN TIMER SETTINGS ... 280

FIGURE 13.16: CALIBRATION HARDWARE SETUP .. 281

FIGURE 13.17: FLOW DIRECTIONS OF DATA IN A FLEXRAY SYSTEM ... 282

FIGURE 13.18: FLOW DIRECTIONS OF DATA IN A FLEXRAY SYSTEM ... 283

FIGURE 13.19: CALIBRATION HARDWARE SETUP – REVISED ... 288

FIGURE 13.20: FUJITSU FLEXRAY DRIVER TRANSMIT TIMINGS... 292

FIGURE 13.21: FUJITSU FLEXRAY DRIVER TRANSMIT TIMINGS WITH LINEAR TREND LINE........................ 292

FIGURE 13.22: FUJITSU FLEXRAY DRIVER TRANSMIT TIMINGS WITH POLYNOMIAL TREND LINE 293

FIGURE 13.23: FUJITSU FLEXRAY DRIVER RECEIVE TIMINGS ... 294

FIGURE 13.24: FUJITSU FLEXRAY DRIVER RECEIVE TIMINGS WITH LINEAR TREND LINE........................... 295

FIGURE 13.25: COMMSTACK TRANSMIT TIMINGS ... 295

FIGURE 13.26: COMMSTACK TRANSMIT TIMINGS WITH POLYNOMIAL TREND LINE 296

FIGURE 13.27: COMMSTACK TRANSMIT TIMINGS WITH LINEAR TREND LINE .. 296

FIGURE 13.28: COMMSTACK RECEIVE TIMINGS .. 297

FIGURE 13.29: COMMSTACK RECEIVE TIMINGS WITH LINEAR TREND LINE ... 298

TABLE OF FIGURES

 - xv -

FIGURE 13.30: TRANSMIT INTERRUPT TIMING WITH LINEAR TREND LINE .. 298

FIGURE 13.31: TRANSMIT TIMES ... 299

FIGURE 13.32: TRANSIENT BUFFER TRANSFER TIMES.. 300

FIGURE 13.33: RECEIVE INTERRUPT TIMINGS.. 301

FIGURE 13.34: BUFFER UPDATE TIMINGS .. 301

FIGURE 13.35: IBF INTERRUPT TIMINGS WITH SERIES TREND LINE.. 303

FIGURE 13.36: IBF TIMINGS WITH LINEAR TREND LINE ... 303

FIGURE 13.37: OBF INTERRUPT TIMINGS .. 304

FIGURE 13.38: FFRD AMENDED RECEIVE TIMINGS WITH LINEAR TREND LINE .. 305

FIGURE 13.39: COMMSTACK AMENDED TIMINGS WITH LINEAR TREND LINE... 306

FIGURE 14.1: MODEL BUILDING PROCESS ... 324

FIGURE 14.2: CALIBRATION ITERATIVE PROCESS .. 325

FIGURE 14.3: FINAL MODEL STEPS .. 345

TABLE OF TABLES

 - xvi -

Table of Tables

TABLE 3.1: SAE AUTOMOTIVE NETWORK CLASSIFICATIONS... 11

TABLE 3.2: EVENT-TRIGGERED VS. TIME-TRIGGERED SYSTEMS .. 14

TABLE 3.3: MOST25 FRAME BYTE SUMMARY .. 22

TABLE 3.4: MOST25 FRAME BYTE SUMMARY .. 23

TABLE 4.1: K AS A FUNCTION OF A LIST OF VALUES .. 51

TABLE 5.1: COMPONENTS OF SOFTWARE MEASUREMENT ... 78

TABLE 5.2: FOCUS TYPE DEFINITIONS FOR FLEXRAY.. 82

TABLE 5.3: SYSTEM ANALYSIS TECHNIQUE REQUIREMENTS SUMMARY .. 101

TABLE 6.1: MESSAGE BUFFER ASSIGNMENT.. 111

TABLE 6.2: ERROR MODES .. 117

TABLE 6.3: MESSAGE RAM SCAN... 120

TABLE 6.4: CYCLE SET DEFINITION ... 130

TABLE 6.5: EXAMPLES OF CYCLE SETS.. 130

TABLE 6.6: CHANNEL FILTERING BIT CONFIGURATIONS.. 131

TABLE 7.1: SIMULATION SOFTWARE SELECTION ANALYSIS... 164

TABLE 11.1: ENTITY ATTRIBUTES ... 206

TABLE 12.1: SYNCHRONISATION TEST 1 SIMULATION TIME RESULTS .. 245

TABLE 12.2: SYNCHRONISATION TEST 1 RESULTS SUMMARY.. 245

TABLE 12.3: VERIFICATION TEST CASE PARAMETERS ... 250

TABLE 12.4: VERIFICATION TEST CASE RANDOM NUMBER SEEDS ... 251

TABLE 12.5: VERIFICATION TEST CASE 1 RESULT SUMMARY .. 252

TABLE 12.6: VERIFICATION TEST CASE 2 RESULT SUMMARY .. 252

TABLE 12.7: VERIFICATION TEST CASE 3 RESULT SUMMARY .. 253

TABLE 12.8: VERIFICATION TEST CASE 4 RESULT SUMMARY .. 253

TABLE 12.9: VERIFICATION TEST CASE 5 RESULT SUMMARY .. 253

TABLE 12.10: VERIFICATION TEST CASE 6 RESULT SUMMARY .. 254

TABLE 12.11: VERIFICATION TEST CASE 7 RESULT SUMMARY .. 254

TABLE 12.12: VERIFICATION TEST CASE 8 RESULT SUMMARY .. 254

TABLE 12.13: VERIFICATION TEST CASE 9 RESULT SUMMARY .. 255

TABLE 12.14: VERIFICATION TEST CASE 10 RESULT SUMMARY .. 255

TABLE OF TABLES

 - xvii -

TABLE 12.15: VERIFICATION TEST CASE 11 RESULT SUMMARY .. 255

TABLE 12.16: VERIFICATION TEST CASE 12 RESULT SUMMARY .. 256

TABLE 12.17: VERIFICATION TEST CASE 13 RESULT SUMMARY .. 256

TABLE 12.18: VERIFICATION TEST CASE 14 RESULT SUMMARY .. 256

TABLE 12.19: SPEED TESTS ... 258

TABLE 13.1: SK-91F467-FLEXRAY DEVELOPMENT BOARD INTERRUPT CONNECTIONS 279

TABLE 13.2: CALIBRATION TEST CASE PARAMETERS .. 286

TABLE 13.3: CALIBRATION TEST CASE RANDOM NUMBER SEEDS .. 287

TABLE 13.4: FFRD_API_GET_TIME() TIME DIFFERENCES (µS) .. 290

TABLE 13.5: FREE RUN TIMER DIFFERENCES (NS).. 290

TABLE 13.6: INTERRUPT LATENCY TIMES (µS) .. 291

TABLE 13.7: TRANSMIT AVERAGES... 300

TABLE 13.8: RECEIVE AVERAGES.. 302

TABLE 13.9: IBF AVERAGES ... 304

TABLE 13.10: OBF AVERAGES.. 305

TABLE 13.11: SYSTEM TIMING CONSTRAINTS ... 307

TABLE 13.12: CALIBRATION TEST CASE 1 DATA ... 309

TABLE 13.13: CALIBRATION TEST CASE 2 DATA ... 309

TABLE 13.14: CALIBRATION TEST CASE 3 DATA ... 310

TABLE 13.15: CALIBRATION TEST CASE 4 DATA ... 310

TABLE 13.16: CALIBRATION TEST CASE 5 DATA ... 311

TABLE 13.17: CALIBRATION TEST CASE 1 ANALYSIS... 312

TABLE 13.18: CALIBRATION TEST CASE 2 ANALYSIS... 313

TABLE 13.19: CALIBRATION TEST CASE 3 ANALYSIS... 314

TABLE 13.20: CALIBRATION TEST CASE 4 ANALYSIS... 314

TABLE 13.21: CALIBRATION TEST CASE 5 ANALYSIS... 315

TABLE 13.22: CALIBRATION TEST RESULTS SUMMARY ... 316

TABLE 13.23: TRANSMIT PIPELINE TIMING.. 318

TABLE 13.24: RECEIVE PIPELINE TIMING .. 319

TABLE 14.1: VALIDATION TEST CASE PARAMETERS .. 327

TABLE 14.2: VALIDATION TEST CASE RANDOM NUMBER SEEDS .. 328

TABLE 14.3: VALIDATION TEST CASE 1 DATA ... 329

TABLE 14.4: VALIDATION TEST CASE 2 DATA ... 329

TABLE 14.5: VALIDATION TEST CASE 3 DATA ... 330

TABLE 14.6: VALIDATION TEST CASE 4 DATA ... 331

TABLE 14.7: VALIDATION TEST CASE 5 DATA ... 331

TABLE 14.8: VALIDATION TEST CASE 6 DATA ... 332

TABLE 14.9: CALIBRATION TEST CASE 7 DATA ... 333

TABLE OF TABLES

 - xviii -

TABLE 14.10: VALIDATION TEST CASE 8 DATA ... 333

TABLE 14.11: VALIDATION TEST RESULTS SUMMARY... 334

TABLE 14.12: TRANSMIT PIPELINE TIMING.. 336

TABLE 14.13: RECEIVE PIPELINE TIMING .. 337

TABLE 14.14: BUFFER UPDATE TIME... 339

TABLE 14.15: BUFFER READ TIME... 340

TABLE 14.16: TOTAL SOFTWARE DRIVER TIMES ... 342

FIGURE 14.3: FINAL MODEL STEPS .. 345

TABLE A.1: MODEL COLOUR CODING ... IV

TABLE B.1: PHYSICAL BUS INPUT WORKSPACE VARIABLES ..VI

TABLE B.2: NODE INPUT WORKSPACE VARIABLES ..VII

TABLE B.3: COMMUNICATIONS CONTROLLER INPUT WORKSPACE VARIABLES...VII

TABLE B.4: PROTOCOL OPERATIONS CONTROL INPUT WORKSPACE VARIABLES VIII

TABLE B.5: PHYSICAL BUS OUTPUT WORKSPACE VARIABLES ... IX

TABLE B.6: NODE OUTPUT WORKSPACE VARIABLES ... X

TABLE B.7: COMMUNICATIONS CONTROLLER OUTPUT WORKSPACE VARIABLESXII

TABLE B.8: PROTOCOL OPERATIONS CONTROL OUTPUT WORKSPACE VARIABLES.................................... XIV

TABLE B.9: ENTITY ATTRIBUTES .. XV

THESIS OVERVIEW

- 1 -

Section I:

Thesis Overview

THESIS OVERVIEW

- 2 -

Chapter 1 . Thesis Overview

1.1 Problem Specification
The main aim of this project is to research the workings of a FlexRay node and

to suggest a method to optimally configure that node within a network.

As FlexRay is a new network protocol there is a need to fully understand how

best to configure the network. This is so the maximum use of the network with a

minimum associated cost can be achieved. The optimisation should also be done as

there are several other networking schemes, such as CAN, LIN and MOST. No one

networking scheme is perfect for all applications, and more than one type of network

may be needed to efficiently implement all the systems found within a car.

Implementing any number of these at the same time could increase cost and ultimately

lead to problems if the systems do not work well together.

FlexRay looks likely to become the networking scheme of choice for safety

critical systems such as X-by-wire systems (Pop et. al. 2007, p51). It is therefore

important to identify any problems or areas for improvement early on. This will lead to

a wider range of applications being developed that could increase customer comfort and

safety.

The building of a model will allow the testing of a node with various

configurations in a faster and cheaper way then by experimentation on a real network. It

is therefore necessary to understand how a FlexRay network operates and how a node

interacts with the other nodes on a network in order to accurately obtain realistic data.

1.2 Research Questions

 The main goal of this research is to develop a method to optimise a FlexRay

node for efficient and reliable communication.

THESIS OVERVIEW

- 3 -

 This research leads to a number of key questions that are to be answered. These

questions are as follows:

• What aspects of the FlexRay controller configuration most affects the

performance and design of distributed vehicle applications?

• What guidelines should be used to configure the protocol stack for best

application performance?

• What techniques can be used to optimise local buffer usage for specific vehicle

applications using a fixed global network message schedule?

1.3 Document Layout

The layout of this document is as follows:

• Chapter 1 – Thesis Overview: This chapter covers the problem specification,

solution requirements and research questions in relation to this research.

• Chapter 2 – Literary Review Introduction: This chapter introduces the topics

and criteria for discussion covered in the literary review section of this thesis.

• Chapter 3 – Automotive Networks: This chapter covers the current state of

automotive networking technology.

• Chapter 4 – FlexRay: This chapter describes the FlexRay protocol.

• Chapter 5 – Performance Analysis: This chapter describes methods to carry

out performance analysis. Different methods that have been used in the past are

also introduced.

• Chapter 6 – E-Ray: This chapter covers the workings of the Bosch E-Ray

communication controller.

THESIS OVERVIEW

- 4 -

• Chapter 7 – Discrete Event Simulation: This chapter describes the discrete

event simulation method of modeling systems. Different simulation software

packages are introduced and evaluated. MATLAB, the simulation package that

was ultimately chosen is covered in detail. The selection process for the

simulation software is also discussed.

• Chapter 8 – FlexRay Software Drivers: This chapter focuses on the different

software drivers that are available to implement FlexRay systems.

• Chapter 9 - Literary Review Summary: This chapter summaries the literary

review and the available literature. It also discusses the need for further research

in the area of automotive networks.

• Chapter 10 - Methodology: This chapter covers the methodology used to carry

out the research.

• Chapter 11 - Simulation Model Development: This chapter documents the

specification and implementation of FlexRay node simulation model.

• Chapter 12 - Verification: This chapter discusses the steps used to verify the

model.

• Chapter 13 - Calibration: This chapter covers the calibration procedure for the

model. Test cases are outlined and the calibration process is reviewed. The

equipment that was used is outlined and test results are summarised.

• Chapter 14 - Validation: This chapter covers the steps used to validate the

simulation model. Test cases are outlined and the validation process is reviewed.

• Chapter 16 - Conclusion: This chapter summarises the work done during the

research, conclusions drawn from the results and suggestions for areas of further

study are put forward.

LITERARY REVIEW

- 5 -

1.4 References

Pop, T., Pop, P, Eles, P. and Peng, Z. (2007) Bus Access Optimisation for FlexRay-

Based Distributed Embedded Systems, Proceedings of the Conference on Design,

Automation and Test in Europe, Nice, France, April 16-20 2007, IEEE Computer

Society Washington, DC, 51 – 56.

LITERARY REVIEW

- 6 -

Section II:

Literary Review

LITERARY REVIEW

- 7 -

Chapter 2 . Literary Review

Introduction

2.1 Scope

The literary review introduces key concepts and topics that were looked at to

successfully complete the project. The information provided allows the reader to gain an

understanding of why the research is necessary. It also allows the reader to form

opinions on the methods that were chosen to complete the research. The background

information provided also allows the reader to understand the significance of the

research.

A number of topics are covered in this literary review. The main topics covered

can be summarised as:

• The main aspect of the project involves improving the performance of a FlexRay

node, therefore FlexRay and its alternatives are explored.

• The Bosch E-Ray chip is the FlexRay communications controller that was

available for study to this project. Its key features and implementation are

described.

• The method of adapting and running tests of a FlexRay node is simulation. The

reasons for this methodology to be chosen along with simulation theory are

covered.

• The current state of automotive networking and the need for research in this area

are introduced.

• Analysis techniques to quantify the performance of the model are discussed.

LITERARY REVIEW

- 8 -

2.2 Terminology

This section outlines terminology that will be used in the following chapters. It

is an alphabetical listing with brief definitions for each phrase. It should be noted that

the definitions may not cover all terms that the reader is unfamiliar with. An attempt by

the author has been made to give a brief explanation, within the scope of this thesis, of

all the technical terms used that the reader may not be familiar with. If an explanation of

a term is given elsewhere in this thesis it has been omitted from this section.

Actuator: A device that converts electrical signals into physical actions. An example of

this is a D.C. motor which converts an electrical signal into a turning motion.

Application: A piece of software that defines how information is handled or processed

by a computer system.

Bus: The physical wire or wires over which information is sent between two different

nodes on a network (see the definition of a node given below).

Channel: This is a path through which information ‘flows’. A FlexRay bus is an

example of a channel.

Communications Controller: A computer chip specifically designed to transmit and

receive data over a communications channel. For example, in the case of a FlexRay

communications channel, data is handled according to the FlexRay protocol

specifications.

Host: A microprocessor unit (MPU) that has a communications controller embedded or

attached. An application on the host may send and/or receive data to/from the FlexRay

bus. It may also process information in order to implement a task or function.

Multiplexing: This is a where one or more device share a common communication

channel. It splits either the time or frequency spectrum available to allow the devices

access to the channel.

Node: A piece of hardware that can consist of a communications controller and host

MPU. There may also be attached a sensor and/or actuator. The host is attached to the

communications channel via a communications controller. The application running on

the node defines its function.

Register: A dedicated area of an electronic chip that stores values used to determine the

working of the device or program.

LITERARY REVIEW

- 9 -

Sensor: A sensor reads in information from a physical device and converts it into an

electrical value. An example of this is a thermistor that converts temperature into an

analogue or digital signal that can be displayed on a dash board display.

X-by-wire: A method of replacing physical mechanical links with computer-assisted

actuators.

2.3 Criteria for Discussion

Each chapter was included under one of the following criteria:

1. It provides necessary information to understand the need of the project.

2. It provides necessary information to understand the methods used to

carry out the project.

3. It gives an understanding of the equipment and methodologies available

to successfully carry out the project.

2.4 Limits of the Review

The literary review covers many topics. However there are a number of areas

related to FlexRay that have not been covered. An attempt has been made to only

include the necessary information to allow the reader to understand the need for the

research.

LITERARY REVIEW

- 10 -

Chapter 3 . Automotive Networks

3.1 Introduction

 There are a number of different communication protocols that have been

developed for use by the automotive industry. Each networking scheme is intended for a

different purpose. This chapter introduces various networking protocols used in the

automotive industry. It also attempts to outline the challenges faced by automotive

networks and highlight any weaknesses in relation to the available networks.

3.2 Automotive Networks

Since the first electronic device was installed in an automotive vehicle the

number of components has increased dramatically. It is estimated that up to 90% of

innovations in the automotive industry are due to electric and electronic systems

(Fennel 2006). This is set to increase further with new applications such as x-by-wire

applications.

Figure 3.1 (TechInsights 2008) shows how the increase in the number computer

components leads to an exponential increase of the number of connections needed to

connect each device. Without employing a serial communications network to connect

each ECU the increased number of wires would become impractical. Each of the

communications networks described in this chapter uses serial transmission over a small

number of wires. This allows all the nodes on the network to be connected while

reducing the number of individual point-to-point connections.

LITERARY REVIEW

- 11 -

Figure 3.1: Computer components and possible connections

Navet et. al. (2005) describes how in 1994 the Society for Automotive Engineers

(SAE) defined a classification for automotive networks. Every automotive networking

protocol belongs to one of the SAE classes of automotive networks. Table 3.1 details

the classifications.

Class Functions Bit Rate Example Protocols

A Simple, low-cost, control applications. <10kb/s LIN, TTP/A

B Inter-ECU communication applications 10 – 125 kb/s J1850, low-speed CAN

C Powertrain/chassis applications 125 kb/s – 1 Mb/s High-speed CAN

D
*
 Multimedia applications, X-by-wire,

Fault tolerant applications

> 1 Mb/s MOST, TTP/C, FlexRay

Table 3.1: SAE automotive network classifications

Usually the higher the classification of a particular networking protocol, the

more complex it becomes. This complexity comes with advantages and drawbacks. For

instance FlexRay is more complex than LIN; however FlexRay provides a higher bit

rate and the ability to transmit data in both a time-triggered and event-triggered manner.

This will increase the cost in terms of setup time and the actual cost of components

while providing greater data throughput.

*
 Class D is not formally defined. However it is considered to be networks operating over 1Mb/s (Navet et.

al. 2005).

LITERARY REVIEW

- 12 -

3.3 Networking Type Overview

Each of the protocols described in this chapter can be classified as either an

event-triggered or time-triggered system. A time-triggered network sends messages at

fixed points in time. Event-triggered systems send messages in reaction to stimuli. For

instance if a person wishes to open a window in a car they might press a button. This

event will then generate a message to operate a motor to control the window. This

section highlights some problems and benefits of both types of system.

Event-triggered: Event-triggered messages have unpredictable transmission

patterns; this makes analysis of performance relatively difficult. However for sporadic

transmission behavior this is a good implementation and leads to a flexible system

(Kopetz 2000). A comparative study of time-triggered and event-triggered systems

found that, during heavy bus loading, event-triggered messages may fail to transmit due

to higher priority messages blocking lower priority messages. However when an

average delay is taken of the messages sent, the event-triggered protocols experienced a

shorter delay (Claesson et. al. 2003). This may be due to the fact that higher priority

messages may not occur as frequently as lower priority events. From the point of view

of resource utilisation this leads to event-triggered systems being superior but they do

not scale as easily as time-triggered systems, this is due to a lack of any ‘temporal

firewall’ (Kopetz 1991). A temporal firewall is a way to prevent unwanted

communications between the different nodes on a network by the multiplexing of time

slices to allow or deny communication.

Time-triggered: Time-triggered messages have predictable transmission

patterns; this makes for easier performance analysis. Interoperability of the different

nodes in the network is also an advantage achieved from employing this method as each

node is given a specific time slot to transmit. Time-triggered systems are also ideal for

real-time systems where deadlines must be met (Kopetz 2000). The design stage of a

time-triggered system can be more complicated compared to a similar system

implemented as an event-triggered system. This is because timing constraints must be

met to ensure information is sent out before a deadline. This leads to a more detailed

planning phase where timing constraints of all aspects of a system should be considered.

It is necessary that an application running on a particular node transmits any data to any

interested nodes within a given time. This design stage will however lead to a reduced

verification time of the time-triggered system (Kopetz 1991).

LITERARY REVIEW

- 13 -

Event-triggered vs. Time-triggered: Scheler and Schröder-Preikschat (2006)

compare event-triggered and time-triggered architecture. They looked at analysability,

predictability, testability, extensibility, fault-tolerance and resource utilisation. A

summary of this breakdown can be seen in Table 3.2. It can be concluded from their

findings that neither approach is sufficient for every system. If the data is sporadic then

event-triggered protocols will be a good approach under low bus loadings. However if

the system is a real-time system and must adhere to strict timing constraints, then time-

triggered protocols should be used. However the development process may be longer in

this case.

Figure 3.2 shows the traffic patterns for event-triggered and time-triggered

systems. In event-triggered system messages may attempt to gain access to the

communications bus at the same time. The message with the highest priority will gain

access to the bus. Other messages must then wait until the communications bus is free

before again attempting to gain access to the bus. In a time-triggered system a message

is assigned to a slot at the design time. In Figure 3.2 Message 1 has the highest priority

and message 3 the lowest Priority. The time-triggered messages are all represented by

different colours. The slots may make use of a multiplexing technique to allow different

messages to be transmitted during the same time slot but over different communications

cycles. It can be seen that the same message is transmitted during the same time slot

every communication cycle if multiplexing of the slots is not implemented.

Multiplexing of slots must be set at design time also.

Figure 3.2: Event-triggered and time-triggered network patterns

LITERARY REVIEW

- 14 -

 Time-Triggered Event-Triggered Conclusion

Analysability Statistically computed

schedules are used to

analyse the schedulability.

Response time analysis

technique is used need to

analyse the schedulability.

Neither method provides

a better solution as

detailed knowledge is

necessary to perform the

analysis.

Predictability Easily analysed for

predictability.

Dynamic response to

events makes the system

less predictable. A system

may still be deterministic.

Time-triggered systems

make analysis of

communication patterns

easier as this is set at

design time.

Testability Best to test for worst case

performance. Typical load

scenarios are not

sufficient to test properly.

Best to test for worst case

performance. Typical load

scenarios are not sufficient

to test properly.

Neither method is easier

to test.

Extensibility The need to recalculate

static schedules is

necessary if adding

functions.

The response time analysis

will need to be recomputed

if added functionality is

introduced to the system.

Neither method makes it

easier to extend the

functionality of the

system.

Fault-Tolerance Different nodes can make

the same decision at the

same time.

It is harder to achieve a

fault-tolerant system unless

a leader-follower system is

used.

In general time-triggered

systems provide more

fault-tolerance within a

system.

Resource

Utilisation

A node is seen as

redundant during any

communication cycle if it

has nothing to send. This

means there is wasted

resources.

A resource will only be

requested when needed.

Event-triggered systems

can maximise the

resource in more cases

than time-triggered

systems

Table 3.2: Event-triggered vs. time-triggered systems

3.4 Automotive Network Protocols

Figure 3.3 (Leen and Heffernan 2002, p89) shows a breakdown of the types of

systems implemented electronically in cars. Figure 3.4 (Denner et. al. 2004) shows the

functional area breakdown for each networking scheme.

LITERARY REVIEW

- 15 -

Figure 3.3: Automotive network applications

Figure 3.4: Automotive networks functionality breakdown

As can be seen from Figures 3.3 and 3.4, there is no one networking scheme that

is designed to carry out all necessary communications. It is can also be seen that with

LITERARY REVIEW

- 16 -

the present situation, automotive electronic and electrical systems need a proper

communications network to communicate. Without any multiplexed communications

systems there would be a huge amount of wiring dedicated to the transmission of

information between two specific nodes. The inclusion of an interconnected multiplexed

communication network also reduces the number of duplicate sensors in a vehicle. In a

multiplexed networking scheme sensor data can be shared to a number of different

nodes all at the same time. The reduction in the number of duplicate sensors has a cost

saving benefit for the manufacturer and customer. Without a multiplexed networking

system a vehicle would be seen as having a drastic weight increase and thus relatively

poor performance of the vehicle, in terms of both power and fuel economy, when

compared to a vehicle where a multiplexed networking system is implemented.

3.5 Event-Triggered Protocols

3.5.1 Controller Area Network (CAN)

The CAN networking scheme was first introduced in 1986. It was developed by

Bosch with help from Mercedes-Benz and Intel. The development of the protocol was

started as early as 1983 in a bid to increase functionality for the automotive industry.

The reduction in wiring within a vehicle was a consequence of the protocol. Since it

was introduced it has been used in a wide range of applications within cars as well as in

other areas. Most cars produced in Europe will contain at least one CAN. It has been

used in trains, ships and industrial control applications (CiA 2007). It has even been

implemented in the 2008 BMW RG 1200 GS Adventure motorcycle (BMW Motorrad

USA 2008).

In 1991 the CAN specification 2.0 was published by Bosch. In 1993 CAN was

standardised as ISO 11898 by the International Organisation of Standards with an

extended frame format being standardised with an amendment in 1995. A time triggered

communication protocol for CAN (TTCAN) was developed in 2000 (CiA 2007).

LITERARY REVIEW

- 17 -

3.5.1.1 CAN Protocol

 This section is a combination of information from Denner et. al. (2004), Carley

(2006), CiA (2006), Schofield (2006), Robert Bosch GmbH (1991) and Jurgen (1999).

 The CAN bus is made up of a number of ECUs that all have a priority rating. A

CAN bus can be seen in Figure 3.5 (Ecartec Ltd. 2008). Figure 3.5 depicts different

nodes connected onto the same CAN bus. Each node performs a different function.

Figure 3.5: CAN Bus

To determine which node may communicate at any one time an identifier field is

used in the message frame. The node with the highest priority will be allowed to

transmit its message. When several nodes attempt to transmit a message at the same

time the message with the highest priority will gain access without any delay. This is

due to the ‘wired-AND’ bus arbitration. As the arbitration is based on a logical ‘AND’

operation, the lowest the message identifier has the highest message priority. In this way

dynamic transmission is achieved. The diagram below, Figure 3.6 (Softing 2008),

shows how a logic ‘0’ ensures that a low message identifier ensures a higher priority.

LITERARY REVIEW

- 18 -

Figure 3.6: CAN bus arbitration

After a message is transmitted the nodes can again attempt to gain access to the bus.

The CAN protocol supports two frame formats, standard and extended. The

message format is similar for both protocols, differing only in the number of identifier

bits. Figure 3.7 (Schofield 2006), shows the standard frame format, which contains 11

identifier bits. For the extended frame format the main difference is that the identifier

contains 29 bits. This means that the frames vary in length between 130 to 150 bits

(maximum). The data segment however is limited to 0 to 64 bits (8 bytes).

Figure 3.7: CAN standard frame format

The segments of a CAN message are as follows:

• SOF: Start of Frame bit.

• Arbitration field that consists of the identifier and a remote frame indicator.

LITERARY REVIEW

- 19 -

• The control field indicates the number of data bytes in the message.

• The data field contains 0 – 8 bytes of data.

• The CRC field is a 15 bit cyclic redundancy check (CRC) used by the receiving

node to detect any errors in the received frame.

• The ACK field is to allow all receivers to acknowledge error free reception of

the message.

• The end of frame bits indicate the end of transmission of the frame.

• Int is the inter frame space where data is not to be transmitted to ensure frame

integrity.

3.5.2 Local Interconnect Network (LIN)

The local interconnect network (LIN) is a deterministic system for ECU

communication with sensors, actuators and controls. The LIN specification version 2.1

was released in 2006. In August of 2004 the Society of Automotive Engineers (SAE)

released J2606 which recommends a practice for implementing LIN (Vector Informatik

GmbH 2008, p1).

A LIN network always consists of one master node and a number of slave nodes.

It is designed so it can easily be interfaced, through a gateway, to other communication

busses such as CAN (Ahlmark 2000, p1). Figure 3.8 (Ahlmark 2000, p4) shows a LIN

bus configuration.

Figure 3.8: LIN bus with single master node and ‘n’ slave nodes

The LIN protocol operates as a Master/Slave configuration. Only the master is

able to initiate communication. A LIN frame consists of a header and response sections.

Communication with a slave involves the master sending the header part of a message.

If the master wants to send data to the slave it continues to send the response part. If the

LITERARY REVIEW

- 20 -

master requests data from the slave the slave sends the response part

(STMicroelectronics 2001, p4).

The header section of the frame consists of a break field, sync field and a frame

identifier. The frame identifier uniquely defines the frame. The break field is used to

identify the start of a transmission and the sync field is to allow receiving nodes to

synchronise with the transmitted bits (LIN Consortium 2006, p29). The slave task,

configured to provide the response associated with the frame identifier, will begin

transmission as depicted in Figure 3.9 (LIN Consortium 2006, p13). The response

consists of a data field and a checksum field. All slave nodes interested in the data

associated with the frame identifier receives the response, verifies the checksum and

uses the data received (LIN Consortium 2006, p13). This broadcast scheme operates at

speeds up to 20kbits/s (Ahlmark 2000, p4).

Figure 3.9: LIN communication

3.5.3 Media Oriented Systems Transport (MOST)

Media Orientated Systems Transport (MOST) is a protocol that has been

developed to handle high volume data transfer. This is usually in the form of

‘infotainment’ data for audio and visual devices. Currently MOST is implemented using

a plastic optical fiber (POF) communication bus. This provides a number of advantages

such as weight saving and protection from electromagnetic interference. However there

is also an electrical physical specification (TechInsights 2008).

MOST does not require a reconfiguration of the topology if new systems are

added. The extra components can simply be added into the network by adding a

connector to the physical bus. In this way MOST can be seen to have a plug and play

approach to system integration (TechInsights 2008).

MOST can operate at two different speeds. There are 25Mbit/s and 50Mbit/s

speed grades specified (MOST Cooperation 2006, p16). There are also a number of

LITERARY REVIEW

- 21 -

different communication channels over which data can be transmitted. These are as

follows (MOST Cooperation 2006, pp17-18):

• Control Channel: This channel is used for small data frames with ‘bursty’ like

transmission. The data rate for this channel is a relatively low 10kbits/s. The

data is transported to a specific address and is protected by a CRC just like the

packet data channel.

• Streaming Data Channel: This is used for continuous data such as data from an

audio or video device.

• Packet Data Channel: This channel is defined for large ‘bursty’ traffic. This

could be in the form of navigational map images.

• Management Streaming/Package Bandwidth: In a MOST system the

management streaming and packet data streaming can be allocated space on the

overall bandwidth.

A MOST system can have up to 64 nodes. Any of these nodes can be the

TimingMaster and all the other nodes are Slaves. The TimingMaster provides

generation and transportation of the system clock, the frames, and blocks. All Slave

devices derive their clock from the MOST bus (MOST Cooperation 2006, p106). In this

way MOST is a Master/Slave protocol.

One MOST25 (the 25Mbit/s variant) frame consists of 64 bytes. The first byte is

used for administrative purposes. The next 60 bytes are used for Stream and Packet

Data Transfer. A Boundary section of the header defines in 4 byte steps the number of

data bytes. The Boundary value can only have values between 6 and 15. This means at

least 24 bytes are available for Stream data transfer. All Stream data bytes are

transmitted before the Packet data bytes. The next two bytes of each frame are reserved

for Control data and the last byte is another administrative byte (MOST Cooperation

2006, p108). Figure 3.10 (MOST Cooperation 2006, p108) and Table 3.3 (MOST

Cooperation 2006, p108) show and describe the MOST25 data frame.

LITERARY REVIEW

- 22 -

Figure 3.10: MOST25 frame

Table 3.3: MOST25 frame byte summary

MOST50 is designed for high bandwidth, and one MOST50 frame consists of

128 bytes. The first 11 bytes are used for administrative purposes. Within this 4 bytes

are used for Control data. The Control Message length can vary depending on the actual

control message to be sent. Better utilisation of the bandwidth regarding Control

Messages is obtained in this way. The next 117 bytes are used for Packet and Stream

data transfer (MOST Cooperation 2006, p108). Figure 3.11 (MOST Cooperation 2006,

p109) and Table 3.4 (MOST Cooperation 2006, p109) show and describe the MOST50

data frame.

LITERARY REVIEW

- 23 -

Figure 3.11: MOST25 frame

Table 3.4: MOST25 frame byte summary

3.6 Time-Triggered Protocols

Car manufactures faced a problem when attempting to implement new safety-

critical applications in cars using event-triggered communication systems. For instance,

in a brake-by-wire system it is important to determine the greatest latency experienced

in the system. It is important to know that when a driver presses the brake pedal the

system will respond within a given time. The most widely used communication protocol

in the automotive industry (CAN) is an event-driven communication protocol. This

leads to an inability to determine the worst case scenario. Higher priority messages

could potentially always block a message. This led to the need for a new protocol

specification. By dividing up the available bandwidth into time slots a more

deterministic protocol could be achieved. Two time-triggered protocols will be

discussed in this section, namely TTP and FlexRay.

LITERARY REVIEW

- 24 -

3.6.1 Time-Triggered Protocol (TTP)

This section is based on the works of Böhm (2005), Elmenreich and Ipp (2003)

and Elemenrich and Krywult (2005).

TTP/A and TTP/C are two real-time protocols based on a TDMA scheme.

TDMA (Time Division Multiple Access) is a method of multiplexing a single

communication medium. To allow multiple nodes in a network to gain access to the

communications bus each node is allocated a time slice. During this time slice or slot

the node may transmit its message. If a node wants to transmit a message it must wait

for the assigned slot to come around. When a node is not transmitting a message it can

receive messages from other nodes. TTP/C is intended for connecting a number of

nodes to achieve a dependable real-time system. TTP/A is a lower cost version and has

reduced functionality. It is intended to use TTP/A as a bus to connect sensors and

actuators.

In TTP/C the frame size can vary between 2 and 240 bytes. Each frame can

carry a number of messages. In different communication rounds different messages can

be transmitted during a node’s allocated slot. The data is protected by a 24 bit CRC. To

ensure each node sends its frame during the correct time slot the use of a bus guardian is

employed. This is a separate component to the communication controller. The bus

topology can be seen in Figure 3.12 (Elemenreich and Ipp 2003,P2). A star topology

can also be employed. The star topology implements two stars that also act as central

guardians for the network. In Figure 3.12, the CNI layer is a connection between the

communications controller and the host computer. This encompasses all necessary

physical connections as well as any software driver used.

Figure 3.12: TTP bus topology

LITERARY REVIEW

- 25 -

To ensure that each node transmits at the allocated time the bus guardian must

have a global view of the time. The current view of the global time is obtained using a

clock synchronisation algorithm. This algorithm determines the current time based on

the arrival of frames from other nodes and the expected time of arrival of the frames.

Figure 3.13 below shows the TTP communication cycle (Elemenreich and Ipp 2003,

P4).

Figure 3.13: TTP communication cycle

From the TTA Group website (TTA-Group 2008), it can be seen that TTP is still

found in various applications. The main area that TTP is used for appears to be in

aerospace applications.

3.6.2 FlexRay

The FlexRay protocol was developed after BMW and DaimlerChrysler worked

together to develop a networking scheme for future developments such as drive-by wire

applications. The partnership soon led to a protocol specification which is the basis for

FlexRay systems (FlexRay Consortium 2007). Due to the fact that BMW was heavily

involved in the development and its similar characteristics, FlexRay can be seen as a

legacy protocol of ‘byteflight’. Byteflight was also developed by BMW and uses both

time-triggered and event-triggered access to the communication bus (BMW 2000).

Like TTP, FlexRay is based on a TDMA approach. If a node wishes to transmit

a message it must wait until its communication slot comes around. It may then transmit

a single message that can consist of a data section of between 0 and 254 bytes. The

header of a message is protected by an 11 bit CRC while the frame as a whole is

protected by a 24 bit CRC. The frame format can be seen in Figure 3.14 (FlexRay

Consortium 2005, p.90). The communication cycle is divided into 4 segments. These

LITERARY REVIEW

- 26 -

segments allow the nodes to transmit in a time-triggered way as well as an event-

triggered fashion.

Figure 3.14: FlexRay frame

A FlexRay network supports bus and star topologies just as TTP does. However

it also supports hybrid topologies. This can be seen in Figure 3.15 (FlexRay Consortium

2005, p.24).

Figure 3.15: FlexRay hybrid topology

3.6.2.1 FlexRay Characteristics

The FlexRay protocol differs from TTP in its communications cycle structure.

The characteristics of FlexRay will help to distinguish itself from other networking

LITERARY REVIEW

- 27 -

schemes and these are briefly introduced in this section. The FlexRay protocol is

discussed in more detail in chapter 4.

 Figure 3.16 shows an example of a bus access scheme for FlexRay (Vector

Informatik GmbH 2006). The first thing that should be noted is the use of two channels.

A node may be allowed to transmit a frame of data on one or both of these channels.

FlexRay also allows for a node to transmit a frame on a particular channel while a

different node transmits data during the same slot but on the other channel. This must be

agreed before implementation during the design stage. This configurability creates an

efficient use of the available bandwidth. As a node may transmit the same data on both

channels during its allocated slot FlexRay also provides the ability to be configured with

redundancy as standard.

Figure 3.16: FlexRay bus access

The second piece of information that can be drawn from Figure 3.16 is that the

communications cycle is split into a number of sections. In the diagram these are named

as the static segment, the dynamic segment and symbol. There is a fourth segment not

named in the diagram. This segment is the network idle time.

The static segment consists of slots that are of fixed length. The dynamic

segment allows a frame to be transmitted with a variable length. To allow this a

mechanism was developed. The dynamic segment uses minislots to form a type of

flexible TDMA scheme (FTDMA) (Heller et. al. 2008, p206). Minislots are smaller in

size than static slots. A dynamic frame can however transmit over a number of

LITERARY REVIEW

- 28 -

minislots. The slot counter will not increment until the frame has finished transmitting

its data. A node that wishes to transmit a frame must still wait for its slot to transmit in

the dynamic segment. If a node has no frame to transmit during its assigned dynamic

slot then a single minislot time will expire before the slot counter is incremented. A

node must also ensure that there is sufficient time to transmit its frame before the end of

the dynamic segment. If there is insufficient time to do so, the node must wait until the

next communication cycle before attempting to do so again.

Another aspect of the FlexRay communication protocol is the ability to assign

different frames to the same slot. This is done by using the same slot but during a

different communication cycle. There are 64 cycles and they are numbered and range

between 0 and 63. When the 64
th

 cycle completes the cycle count is reset to 0 and the

whole process starts again. This can be seen in Figure 3.17.

Figure 3.17: Cycle multiplexing

In FlexRay there is a need to know the current communication time. This is

necessary to avoid any potential conflicts when nodes attempt to transmit their frames.

Unlike other networking schemes where the current time is transmitted by a single node,

LITERARY REVIEW

- 29 -

every FlexRay node keeps track of the current time. Figures 3.18-3.20 (inclusive)

(Vector Informatik GmbH 2006), convey the mechanism that is used to synchronise all

nodes in a cluster. A number of nodes are setup to transmit ‘sync’ frames. These are

then used by all nodes in a cluster to obtain the timing information.

Figure 3.18: Rate differences

The sync algorithm checks the rate at which the nodes local clock is advancing.

The arrival times of the sync frames are then compared to this. If the nodes clock is

running faster or more slowly than it should be, measures are taken to correct this.

Figure 3.18 illustrates how three nodes’ global time advance rate could be different.

This is known as rate correction in FlexRay.

The offset to the node’s view of arriving frames to the global time is also

checked. If it is found that the node views slots as beginning before or after the arrival

of the sync frames, then again a corrective action can be taken. Figure 3.19 shows the

offset differences of three nodes. The method of correcting this is known as offset

correction in FlexRay.

LITERARY REVIEW

- 30 -

Figure 3.19: Offset differences

Figure 3.20 shows that when both rate and offset corrections are applied, then all

nodes should share a common view of the global time. These checks must be conducted

while any communication is taking place. If this does not happen then differences in

local oscillator components will cause a divergence in the view of the global time.

Figure 3.20: Rate and offset correction applied

3.7 Automotive Network Design

There are a number of different networking protocols and as such a network

designer must choose the most appropriate protocol(s) to meet their needs. This is the

LITERARY REVIEW

- 31 -

first step to creating a reliable and efficient networking system. However once the

networking scheme has been chosen there is still a need to define the systems

configuration and constraints. This involves for example assigning messages to frame

IDs. In the standard CAN frame format there are an 11-bit identifier field. This allows

2,048 different messages to be assigned to the various nodes implemented in a vehicle.

The extended version specifies a 29-bit identifier which produces 536,870,912 possible

messages. FlexRay also uses an 11-bit identifier field for frames. If all of these

identifier IDs are used there will be a large number of messages to assign to different

nodes and systems. All communications protocols require careful configuration to

achieve a suitable and efficient networking system. If the configuration is not done

correctly then errors may be observed in the system.

A number of tools and methodologies to configure or monitor CAN systems

already exist. This is due to the age and knowledge of the protocol. FlexRay is a newer

communications protocol with a limited number of implementations. To assist

developers to optimise a FlexRay based system there have been a number of tools

developed to ease the network design process. There have also been a number of studies

into the implementation of FlexRay. Sections 3.7.1 – 3.7.3 will review the tools and

research conducted into the area of FlexRay and the configuration of FlexRay based

systems.

3.7.1 Configuration and Monitoring Tools

This section covers a number of tools to configure FlexRay nodes. There are

also a number of special tools used to monitor traffic on a FlexRay physical bus. These

will be briefly coved in this section.

3.7.1 .1 Vector Informatik Tools

Chapter 13 discusses the Vector CANalyzer software and the VN3600 FlexRay

interface hardware module in more detail. CANalyzer uses a hardware interface such as

the VN3600 module to monitor traffic on a communication network. The CANalyzer

software can display the information in a number of different ways, i.e. graphically or

textually. Network data can also be generated for transmission over the network that is

under observation. CANalyzer supports a number of different networking protocols

LITERARY REVIEW

- 32 -

such as CAN, MOST and FlexRay. This can help ease the troubleshooting of a system

implemented using a number of different networking protocols (Vector Informatik

GmbH 2007, p1).

Vector supply a number of different hardware modules to suit different needs

and budgets. These include the FlexCard, VN3300 and VN7600 network interfaces as

well as the VN3600 hardward interface module. CANoe.FlexRay is a tool for

development, simulation and test of ECUs and distributed networks for FlexRay and

provides a variant for CAN. As well as these monitor tools Vector supply a number of

FlexRay software modules to aid the development of applications (Vector Informatik

GmbH 2009a).

Vector offer a FlexRay network development tool called DaVinci Network

Designer FlexRay (DaVinci) (Vector Informatik GmbH 2009b). Clusters and

controllers can have necessary network constraint parameters assigned and checked

against version 2.1 of the FlexRay specification. DaVinci supports the FIBEX file

exchange format and provides an interactive method of designing the FlexRay schedule.

Figure 3.21 shows the design of a FlexRay schedule using DaVinci (Vector Informatik

GmbH 2009b, p1).

Figure 3.21: DaVinci FlexRay schedule design

LITERARY REVIEW

- 33 -

3.7.1 .2 Elektrobit Corporation Tools

Elektrobit Corporation (here after referred to as EB) provides a number of tools that

support the development of automotive applications. The EB tresos product family is a

brand under which all the tools and hardware necessary to develop automotive systems

are sold by EB. Figure 3.22 (Elektrobit Corporation 2009a) shows a breakdown of the

tresos product family.

Figure 3.22: EB tresos product family

The EB61x0 and EB5100 are hardware interfaces for both FlexRay and CAN.

The EB61x0 is designed to be usable in an automotive application or in an office

environment and is designed for a variety of purposes such as the monitoring of a

FlexRay bus when used with the tresos Busmirror software. The EB5100 is based on the

PMC cards standard with a high performance controller. It is designed to be used with

various carrier boards such as PCI, PXI, VME or PHS bus-based systems and to be able

to perform calculations to meet real-time system constraints.

EB tresos Designer is a system design tool similar to that of the Vector DaVinci

software. Constraints applied to the system in Designer are checked against the FlexRay

specification and a FlexRay schedule is designed in an interactive manner. The EB

tresos Inspector with the EB61x0 allow for measurement and analysis of FlexRay or

CAN networks while EB tresos Busmirror with either the EB61x0 and EB5100 provide

FlexRay cluster emulation solutions.

LITERARY REVIEW

- 34 -

3.7.1.3 dSPACE GmbH Tools

dSpace also provide a number of tools to help support and develop FlexRay

systems (dSpace GmbH 2009). The dSPACE FlexRay Configuration Package allows

for rapid prototyping and hardware-in-the-loop (HIL) applications. The FlexRay

configuration package is used to integrate dSPACE hardware as simulation and/or

monitoring nodes in a FlexRay networks. The nodes are configured using the dSPACE

FlexRay Configuration Tool using a communication matrix containing schedule

information for signals and frames transmitted over a FlexRay bus. This information

can also be linked to a MATLAB/Simulink model using the RTI FlexRay Configuration

Blockset which results in a FlexRay application that can be executed on a dSPACE

based system (dSpace GmbH 2009).

dSapce ControlDesk is a single experiment software package for the

development of a controller. The same tools can be used for environment, virtual

instrumentation, automation, and parameter set handling. Real-Time data can be

recorded and parameters can be tuned using ControlDesk. ControlDesk also provides

detailed timing analysis of FlexRay data and can be used with a number of different

FlexRay platforms (dSpace GmbH 2009).

3.7.2 FlexRay Design Research

FlexRay is a relatively new communications protocol. There is a lot of interest

in using the FlexRay protocol for time critical systems due to the deterministic nature of

the TDMA network arbitration scheme. It also provides a dynamic arbitration segment

within a communication cycle which provides flexibility and helps reduce redundancy

in the networking system. These factors make FlexRay a highly desirable protocol to

implement. As was stated at the start of section 3.7, there have been a number of areas

where research has been conducted in the area of FlexRay. The research into FlexRay

has been done for, amongst other reasons, easing the transition for other protocols such

as CAN to this newer communication protocol. This should help reduce redundancy and

development time of FlexRay based systems. This section will highlight some of the

areas where research has been focused to achieve this.

LITERARY REVIEW

- 35 -

3.7.2.1 FlexRay PDU Configuration

FlexRay frame length is fixed at the design time of a FlexRay cluster. This will

mean that all static frames will transmit a fixed length payload while dynamic frames

will adhere to a maximum payload length. It is important then that a frame is configured

to transmit the maximum number of data bytes during a communication cycle. To

achieve maximum payload usage frames can be split into a number of protocol data

units (PDUs). The frame may then contain a number of different messages within the

same frame. Any node that is interested in any information contained in one or more of

the PDUs must then store the entire frame and extract the desired data.

The paper by Stöger (2008) describes the use of assigning a number of different

messages to a single FlexRay frame. Problems associated with this multiplexing of

payload data is with the application layer overheads. If a frame is received and the there

are a number of different PDUs contained within the frame that are desired by the

receiving node, then processing time is spent extracting the information and passing the

relevant information to the associated tasks. Message PDUs may also be cycle

multiplexed within a single frame. For instance a frame may contain ‘PDU 1’ during

every communication cycle but ‘PDU 2’ is transmitted during every even

communication. During all odd cycles ‘PDU 3’ takes the place of PDU 2 within the

transmission frame. This could mean there is the need for this frame to have more than

one buffer assigned on a receiving node so that correct PDU extraction can be carried

out efficiently. For instance two buffers could be assigned to receive on the frame ID.

The first buffer would accept all frames received during even communication cycles and

a second buffer would receive during odd communication cycles. This can lead to a

more complex view of the communication system but can lead to a more efficient use of

buffers and frame transmission.

The paper by Brandstätter and Böke (2008) highlights how PDU-based

communication can lead to better FlexRay based applications but also aid in the

migration process for older communications schemes such as CAN. They also highlight

how development of tools that use the FIBEX file format have aided in networking

tools by vendors such as Vector to easily adapt to PDU frame formats. This allows for

PDU layer analysis of FlexRay communication and will aid in the transition to this

frame assignment procedure.

LITERARY REVIEW

- 36 -

3.7.2.2 FlexRay Scheduling

 Another area that has been researched is the scheduling of frames necessary for

time-triggered networks such as FlexRay. The work of Pop et. al. (2003), Pop et. al.

(2006), Pop et. al. (2006) and Pop (2007) address this area. In the paper by Pop et. al.

(2006) a method to analyse the ‘schedulability’ of the communication protocol is put

forward. This is based on the timing properties of the static messages and a worst-case

response time for dynamic messages. The timing analysis then determines timing

properties for all tasks and messages in a system.

The work of Balogh et. al. (2007) also looks at the scheduling of time-triggered

systems such as FlexRay or TTP. This focuses on the allocation of tasks to nodes as

well as the scheduling of tasks and the communication parameters. This method should

then produce a schedule that incorporates sufficient time to run all tasks and transmit all

messages. The configuration of a distributed system can then be optimised to meet a

variety of different constrains such as a cost or extensibility constraints.

3.7.2.3 Time Triggered vs. Event Triggered Architectures

A number of studies have been carried out into the suitability of event-triggered

and time-triggered protocols. This mainly compares the different protocol types for their

suitability to perform different tasks. This can be seen in the paper by Scheler and

Schröder-Preikschat (2006) as discussed in section 3.3.

 The study and implementation of the different communication protocol variants

has also led to the study of the migration process. Event-triggered protocols act in a

different manner than time-triggered protocols and this can cause problems when

converting from one protocol type to another. Older protocols such as CAN are also in

many cases simpler than newer protocols such as FlexRay. The complexity of some of

the new protocols, along with the knowledge of the system designers of older protocols,

means that the migration from older to newer protocols can be a slow process. The cost

to migrate from one protocol to another may also increase when migrating from an older

to a newer protocol and this consideration needs to be considered. The increase in cost

is associated with training personnel and an increase in costs during development of a

new system. Higher cost of new equipment and devices for any new protocol could also

be an issue as these tend to be pricier than similar equipment/devices for a more

LITERARY REVIEW

- 37 -

established protocol. The higher costs can be a contributing factor for a slow or low

adoption of a new protocol. This has led to migration frameworks being developed to

ease the transition. This can be seen in the work of Cummings (2008).

3.7.3 FlexRay System Development Summary

As can be seen from the tools developed for FlexRay systems and the research

that has already been conducted into the area of FlexRay, a lot of effort has been put

into the scheduling of the overall system. There has also been a lot of effort put into the

analysis of task allocation and ‘schedulability’ across distributed time-triggered

systems. This is to optimise a number of constraints such as the number of nodes

necessary to fully implement the required system. This analysis can also lead to an

optimisation of constraints such as a slot time and number of static slots needed. By

using PDUs within a frame maximum utilization of frames can be achieved and a better

overall system performance can be configured.

The research outlined in this thesis aims to address a number of questions

including what aspect of a node most affects the performance of an automotive

distributed system. Proper analysis of the flow of data will allow a designer to identify

the bottlenecks with a given system. Configurations of various aspects of the system can

then be adjusted to ensure all internal and external node deadlines are met. This will

ensure timely and reliable transmission of data. This is an area where little research has

previously been conducted. This could be a big advantage where a system designer

must improve the performance of a system that incorporates software modules designed

by an outside company. Little confidence can be placed in the modification of such

software models to streamline the execution as the design may not be known. The

system designer must therefore focus efforts, to improve the system, on other aspects of

the system.

In the paper by Stöger (2008) as described in section 3.7.2.1, the uses of a

number of different message buffers for a single message frame were discussed. This

allows PDUs within a FlexRay frame to be multiplexed across a number of different

communication cycles. The assignment of more than one message buffers to a single

frame will increase have an impact on the resources needed by the node. By analysing

the flow of data through a node the message buffer accesses by the host controller may

LITERARY REVIEW

- 38 -

also be improved. This could lead to an optional assignment of frames to dedicated

message buffers and to a FIFO message buffer structure.

3.8 Conclusion

Ageing communication protocols such as CAN with small data package sizes

and poor determinism meant that the automotive industry was facing a problem.

Master/Slave systems that are available either have small packet sizes or are designed

specifically for infotainment systems. The lack of a suitable networking scheme that

could handle the requirements for newer, more sophisticated safety systems and x-by-

wire technology has led to the development of a new protocol. FlexRay was developed

to meet the current and future needs of automotive manufacturers. By using a TDMA

scheme a more deterministic system can be achieved. This leads to the possibility of

newer and more sophisticated applications being implemented in cars.

With the backing of a number of automotive manufacturers and parts suppliers

FlexRay seems set to become a widely used network scheme. It is a new protocol and

there is a large amount of research ongoing in various aspects of the protocol. This

includes optimisation of the communication cycle. However there are other difficulties

that are associated with FlexRay. For Example, the RAM and ROM requirements need

to be studied. The implementation costs of communication controllers could be

drastically reduced if it was understood what the exact resource requirements are. The

overall systems performance of a node could also be improved by fully understanding

the flow and timings of data flow through a communication controller.

3.9 References

Ademaj, A., Sivencrona, H., Bauer, G. and Torin, J. (2003) Evaluation of Fault

Handling of the Time-Triggered Architecture with Bus and Star Topology, Proceedings

of the 2003 International Conference on Dependable Systems and Networks, San

Francisco, California, June 22 - 25, 2003, IEEE Computer Society Washington, DC,

USA, 123-132.

LITERARY REVIEW

- 39 -

Ahlmark, M. (2000) Local Interconnect Network (LIN) – Packaging and Scheduling,

unpublished thesis (M.Eng.), Mälardalen University.

Balogh, A., Pataricza, A. and Rácz, J. (2007) Scheduling of embedded time-triggered

systems, Proceedings of the 2007 Workshop on Engineering Fault Tolerant Systems,

Dubrovnik, Croatia, ACM, New York, NY, USA.

BMW (2000) byteflight – What is byteflight [online], available:

http://www.byteflight.com/whitepaper/index.html [accessed 18 November 2008].

BMW Motorrad USA (2008) R1200GS Adventure 2008 Specs [online], available:

http://www.bmwmotorcycles.com/bikes/bike.jsp?b=2008r1200gsa&p=specs&bikeSecti

on=null [accessed 16 June 2008].

Böhm, P. (2005) Introduction to FlexRay and TTA, Universitas Saraviensis Saarland,

Germany.

Brandstätter, W. and Böke, C. (2008) AUTOSAR PDUs Conquer FlexRay, Automotive

Special Edition FlexRay, Hanser, 24-26.

CiA (2007) Controller Area Network (CAN) [online], available: http://www.can-

cia.org/ [accessed 30 Oct 2007].

Cummings, R. (2008) Easing the Transition of System Designs from CAN to FlexRay,

April 14-17 2008, Detroit Michigan, USA, SAE International, Warrendale,

Pennsylvania, USA.

Denner, V., Maier,J. Kraft, D. and Spreitz, G. (2004) Data Processing and

Communication Networks in Motor Vechicles, Bosch Automotive Handbook,

Plochingen,: Robert Bosch GmbH, 1064-1076.

LITERARY REVIEW

- 40 -

Dependable Computer Systems (2007) DESIGNER PRO 4.3.0 - DESIGNER PRO,

DESIGNER PRO <LIGHT> and DESIGNER PRO <SYSTEM> Document Version 2.2,

Vienna, Austria.

dSpace GmbH (2009) dSPACE Products for FlexRay Applications [online], available

at:http://www.dspace.com/ww/en/pub/home/products/our_solutions_for/flexray_develo

pment_with_ds/dspace_products_flexray_applic.cfm?nv=n2 [accessed 15 May 2009].

Ecartec Ltd. (2008) CAN Bus Explained [online], available:

http://ecartec.com/can_bus_explained.html [accessed 27 June 2008].

Elektrobit Corporation (2009a) EB tresos
®

: The Product Family

for the Development of ECU Software [online], available:

http://www.elektrobit.com/index.php?888[accessed 13 May 2009].

Elektrobit Corporation (2009b) EB 61x0: Powerful FlexRay and CAN Bus Interface

Hardware [online], available:

http://www.elektrobit.com/what_we_deliver/automotive_software/products/eb_tresos_-

_ecu_software_development/eb_61x0 [accessed 13 May 2009].

Elektrobit Corporation (2009c) EB 5100: Active FlexRay and CAN Interface Hardware

for PCI or PXI [online], available:

http://www.elektrobit.com/what_we_deliver/automotive_software/products/eb_tresos_-

_ecu_software_development/eb_5100 [accessed 13 May 2009].

Elmenreich, W. and Ipp, R. (2003) Introduction to TTP/C and TTP/A, Workshop on

Time-Triggered and Real-Time Communication Systems, 12 February, Manno,

Switzerland.

Elemenrich, W. and Krywult, S. (2005) A Comparison of Fieldbus Protocols: Lin 1.3,

Lin 2.0 and TTP/A, Proceedings of the 10th IEEE International Conference on

Emerging Technologies and Factory Automation, Catania, Italy, 19 -22 September,

IEEE Computer Society Washington, DC, USA, 747 – 753.

LITERARY REVIEW

- 41 -

FlexRay Consortium (2005) FlexRay Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay Consortium GbR.

FlexRay Consortium (2007) about FlexRay [online], available:

http://www.flexray.com/index.php?sid=254188fe2bd59eb7108227f0adea90f5&pid=80

&lang=de [accessed 19 Oct 2007].

Fujitsu (2008) Applications – Body and Comfort Electronics [online], available:

http://www.fujitsu.com/emea/services/industries/automotive/microelectronics/applicatio

ns.html [accessed 12 June 2008].

Heller, C., Schalk, J., Schneele, S. and Reichel, R. (2008) Approaching the Limits of

FlexRay, The 7th IEEE International Symposium on Network Computing and

Applications, Cambridge, Massachusetts, USA, July 10 - 12, IEEE Computer

Society Washington, DC, USA, 205 -210.

Jurgen, R. K. (1999) Automotive Elecronics Handbook, 2
nd

 edition, USA, McGraw-Hill.

Kopetz, H. (1991) Event-Triggered Versus Time-Triggered Real-Time Systems,

Lecture Notes In Computer Science; Vol. 563, Proceedings of the International

Workshop on Operating Systems of the 90s and Beyond, Dagstuhl Castle, Germany,

July 8-12 , Springer-Verlag London, UK, 87 – 101.

Kopetz, H. (2000) Time-Triggered Architecture, International Federation for

Information Processing WG 10.4 on Dependable Computing And Fault Tolerance,

January 22-23.

Kopetz, H. and Grunsteidl, G. (1993) TTP - A Time-Triggered Protocol for Fault-

Tolerant Real-Time Systems, Digest of Papers of The Twenty-Third International

Symposium on Fault-Tolerant Computing, Toulouse, France, June 22-24, IEEE

Computer Society Washington, DC, USA, 524 – 533.

LITERARY REVIEW

- 42 -

Leen, G. and Heffernan, D. (2002) Expanding Automotive Electronic Systems,

Computer, 35(1), 88-93

LIN Consortium (2006) LIN Specification Package Revision 2.1, Stuttgart: LIN

Consortium.

MOST Cooperation (2006) MOST Specification, Revision 2.5, Karlsruhe: MOST

Cooperation.

Navet, N., Song, Y., Simonot-Lion, F. and Wilwert, C. (2005) Trends in Automotive

Communication Systems, Proceedings of the IEEE, vol. 93, No. 6, IEEE Computer

Society Washington, DC, USA, 1204 – 1223.

Pop T. (2007) Analysis and Optimisation of Distributed Embedded Systems with

Heterogeneous Scheduling Policies, unpublished thesis (PhD.), Linköpings Universitet.

Pop, P., Eles, P. and Peng, Z. (2003) Schedulability Analysis and Optimisation for the

Synthesis of Multi-Cluster Distributed Embedded Systems, IEE Proceedings -

Computers & Digital Techniques, Vol. 150, Issue 5, Sept. 2003, pp. 303-312.

Pop, T., Pop, P, Eles, P. and Peng, Z. (2007) Bus Access Optimisation for FlexRay-

Based Distributed Embedded Systems, Proceedings of the Conference on Design,

Automation and Test in Europe, Nice, France, April 16-20 2007, IEEE Computer

Society Washington, DC, 51 – 56.

Pop, T., Pop, P., Eles, P., Peng, Z. and Andrei, A. (2006) Timing Analysis of the

FlexRay Communication Protocol, in Proceedings of the 18th Euromicro Conference on

Real-Time Systems, Dresden, Germany, July 5-7, 2006, IEEE Computer

Society Washington, DC, USA, 203-216.

Robert Bosch GmbH (1991) CAN Specification, Version 2.0. Reutlingen: Robert Bosch

GmbH.

LITERARY REVIEW

- 43 -

Scheler, F., and Schröder-Preikschat, W. (2006) Time-Triggered vs. Event-Triggered: A

matter of configuration?, Proceedings of GI/ITG Workshop on Non-Functional

Properties of Embedded Systems, Nuremberg 27-29 March, VDE Verlag, Berlin, 107 -

112.

Schofield, M. (2006) Controller Area Network [online], available:

http://www.mjschofield.com/index.htm [accessed 30 Oct 2007].

Softing (2008) CAN Bus Arbitration Method [online], available:

http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-

bus/communication/bus-arbitration-method.php [accessed 17 June 2008].

STMicroelectronics (2001) AN1278 Application Note - Lin (Local Interconnect

Network) Solutions, Geneva: STMicroelectronics.

Stöger G. (2008) Creating FlexRay COM Stack Configurations for ECUs in Complex

Networks, Automotive Special Edition FlexRay, Hanser, 20-23.

TechInsights (2008) Consumer and automotive electronics converge: Part 2 - A MOST

implementation [online], available:

http://www.automotivedesignline.com/howto/198001031 [accessed 16 June 2008].

TTA-Group (2004) TTP – Easy to Read, Vienna, Austria: TTA-Group.

TTA-Group (2008) TTA-Group – News [online], available:

http://www.ttagroup.org/news/pressreleases.htm [accessed 17 November 2008].

Vector Informatik GmbH (2006) FlexRay Protocol Reference Chart, Stuttgart, Vector

Informatik GmbH.

Vector Informatik GmbH (2007) CANalyzer 7.0 Datasheet, Stuttgart, Germany.

LITERARY REVIEW

- 44 -

Vector Informatik GmbH (2008) Solutions for LIN, version 3.4, Stuttgart, Vector

Informatik GmbH.

Vector Informatik GmbH (2009a) Solutions for FlexRay Networking [online], available

at: http://www.vector.com/vi_flexray_solutions_en.html [accessed 15 May 2009].

Vector Informatik GmbH (2009b) DaVinci Network Designer FlexRay v2.2, Stuttgart,

Vector Informatik GmbH.

Vienna University of Technology – Real-Time Systems Group (1997) The TTP

Protocols [online], available: http://www.vmars.tuwien.ac.at/projects/ttp/ttpmain.html

[accessed 17 June 2008].

LITERARY REVIEW

- 45 -

Chapter 4 . FlexRay

4.1 Introduction

The FlexRay protocol was developed when BMW and DaimlerChrysler decided

to cooperate. Together they had realised that automotive network solutions at the time

were inadequate for future developments such as drive-by wire. They were soon joined

by Motorola and Philips to form the FlexRay consortium. Other leading automotive and

electronic companies such as Bosch and VW soon joined (FlexRay Consortium 2007).

The partnership soon led to a protocol specification which is the basis for FlexRay

systems. This protocol has also been the basis of FlexRay IP-modules such as the Bosch

E-Ray communications controller (Robert Bosch GmbH 2007).

The core of the FlexRay protocol is a time-triggered communication system.

This is in contrast to some earlier event-triggered automotive applications such as CAN.

The use of a time-triggered protocol ensures a fixed delay in the transmission of data.

This is in contrast to an undeterminable time that data must wait before it is transmitted

using an event-triggered protocol, due to there being potentially higher priority

messages blocking access to the bus. The FlexRay approach is more suitable for safety

applications such as brake-by-wire when it is important that a message is not blocked

from accessing the network.

The protocol also provides flexibility and determinism by providing a dynamic

segment in a communication cycle. In this way it provides both synchronous and

asynchronous communication modes as standard. The physical layer also includes a

bus guardian to support error containment and provides for a data rate of up to

10Mbit/sec on each of two channels giving an equivalent overall data rate of up to

20Mbit/sec. FlexRay can therefore be seen as being designed for present and future

needs of automotive applications (FlexRay Consortium 2007).

 If not otherwise stated, the information in this chapter was referenced from the

FlexRay Consortium (2005).

LITERARY REVIEW

- 46 -

4.2 Network Topology

 The FlexRay protocol allows for various bus topologies. These can be a point to

point connection, a passive star, linear passive bus, active star network, cascaded active

stars, hybrid topologies and dual channel topologies (FlexRay Consortium 2005, p.21;

FlexRay Consortium 2006, pp26-31).

Figure 4.1: A passive bus topology

Figure 4.1 and Figure 4.2 show the basic layout of a passive bus topology and a

single channel hybrid network respectively. Note that in a network a node need not be

attached to both channels of the network, also a node attached to a single channel need

not be attached to channel A but to either channel A or channel B. The FlexRay

protocol will support hybrid topologies as long as the limits of each topology which

makes up the hybrid topology (i.e. the star and bus topologies) are not exceeded.

Figure 4.2: Single channel hybrid network

It should also be noted that each channel can be implemented as a different bus

topology. For instance channel A can be a bus topology while channel B is implemented

as a star topology. This makes FlexRay a very flexible and adaptive communications

system for a wide range of applications.

Node 1 Node 2

Star

 1

Star

 2

Node 3 Node 4 Node 5

Node 1 Node 2

Channel B

Channel A

LITERARY REVIEW

- 47 -

4.3 FlexRay Hardware

Each FlexRay node has a communication controller, a host, a power supply unit

and two bus drivers, one for each channel. Figure 4.3 (FlexRay Consortium 2005, p26)

shows the logical connections of each element.

The host handles the applications of the system while the FlexRay protocol is

handled by the communications controller. The bus driver is used to read and write data

to the physical medium over which the data is transmitted. In sleep mode it also has the

ability to start a wakeup procedure if it detects a wakeup signal. The communications

controller will mainly handle the framing of data and the checking of received data.

This is to ensure no data was corrupted before passing it to the host.

Figure 4.3: Logical interface

 The host passes information such as control information and payload data to the

communications controller. The communication controller relays status information and

data received. The host interface to the bus driver allows it to change the operation of

the bus driver as well as read status and error flags.

 The connections between the communications controller and the bus driver

allow data to be transferred from the communications controller to the bus driver and

vice versa. There is also a ‘transmit enable not’ line which indicates that the bus driver

can transmit data on its corresponding channel.

LITERARY REVIEW

- 48 -

4.4 Global Time and Timing

 Figure 4.4 (FlexRay Consortium 2005, p170) shows the timing hierarchy used in

FlexRay. It consists of a communication cycle, macrotick and microtick levels. These

will be discussed from the bottom up.

Figure 4.4: Timing hierarchy

4.4.1 Microtick

 In a FlexRay system the most basic unit of time is a microtick. This is derived

from a node’s local oscillator. In this way the length of a microtick will vary from

controller to controller. This leads to controllers drifting away from each other with

respect to the beginning of segments of the communication cycle. This can lead to

errors and as such there needs to be a way to synchronise time.

4.4.2 Macrotick

 The macrotick in a FlexRay system is made up of fixed number of microticks.

The number of microticks which make up a macrotick may vary between nodes in a

system due to different operating frequencies. This will ensure that all macroticks will

have the same duration across the network within a given tolerance. This means that all

LITERARY REVIEW

- 49 -

nodes on a network will have the same number of macroticks per communication cycle.

The communication cycle will be covered in section 4.5.

4.4.3 Global Time

 In a FlexRay network it has been established that there are different levels of

time representation to help the network stay synchronised. However this will still lead

to a drift of the local time of the nodes if there is no correction applied to the nodes.

This is because there is no global reference point for the time. Instead there is a local

time for each node. This is the controller’s idea of the global time based on aspects such

as its idea of what macrotick was last transitioned and when it should transition for the

next macrotick. Every node uses a synchronisation algorithm to keep its view of the

global time as accurate as possible.

4.4.4 Synchronisation Algorithm

 This is a distributed clock synchronisation algorithm, where all the nodes in a

cluster synchronise themselves to the other nodes in the cluster by monitoring the

transmissions of sync frames sent from other nodes. A node will then try to adjust its

view of the global time to that of the other nodes. After this process has been carried out

all nodes should share the same view of the global time to within a given tolerance. This

tolerance is known as the precision of the network.

The clock synchronisation is performed using two processes. These are the

microtick generation process and the clock synchronisation process.

4.4.4.1 Clock Synchronisation Process

 This process measures both rate and offset differences of the expected times of

arriving messages and the actual arrival times. Rate correction is done during the whole

communications cycle while offset correction is done during the network idle time. The

correction values are in terms of microticks which are needed to be added to the

communications cycle and this value may be negative as well as positive.

The calculation of the offset correction is done every cycle but the corrections

are only applied during the idle time of odd communication cycles. The calculation

LITERARY REVIEW

- 50 -

must be completed before the offset correction phase begins but any calculated values

must not be applied until the idle time.

 The rate correction values are calculated once every two cycles after the static

section of the odd cycle. The values are based on the values observed during the two

cycles before the calculation. Again the calculation must be complete before the offset

correction phase begins but any calculated values must not be applied until the idle time.

Figure 4.5 (FlexRay Consortium 2005, p172) shows the relationship between clock

synchronisation and the media access timeframe.

Figure 4.5: The relationship between clock synchronisation and the media access time frame

4.4.4.2 Macrotick Generation Process

 This process produces macroticks which are ‘corrected’ based on the rate and

offset correction values.

4.4.5 Correction Term Calculation

 In order to calculate the correction value a fault-tolerant midpoint algorithm is

used. This defines a parameter ‘k’ based on the number of terms in a sorted list of time

deviations. These deviations are between the reference points for expected timestamps

and actual timestamps. Table 4.1 (FlexRay Consortium 2005, p184) displays the

relationship between the number of values in the sorted list and ‘k’.

LITERARY REVIEW

- 51 -

Number of values k

1-2 0

3-7 1

>7 2

Table 4.1: k as a function of a list of values

The value of k is obtained from this table and it is then used to figure out how

many of the largest and smallest values should be removed, i.e. if k is calculated to be 2

then the two largest and smallest values are taken out of the list. The next largest and

smallest are then averaged and the result is the node’s deviation from the global time for

the purposes of the correction.

 The calculated values will then be checked against predefined limits. If each of

the values lies within its limits then the node is said to be synchronised. Otherwise an

error condition is detected and appropriate flags are set or a procedure can be put in

place to change the correction term to its limit or another predefined value.

4.5 Media Access Control

 Figure 4.6 (FlexRay Consortium 2005, p100) shows the breakdown of the

communication cycle into the various segments. The segments as shown in Figure 4.6

will be discussed from left to right.

Figure 4.6: Communication cycle

LITERARY REVIEW

- 52 -

4.5.1 Static Segment

 The static segment transmits data using a Time-Division Multiple Access

(TDMA) technique to allow different nodes to transmit and receive data over the

network at predefined times.

 The static segment is broken down into smaller time slots known as static slots.

These slot are assigned to a message ID so that only that message may be sent during

that slot time every communication cycle. There is a possibility to use a cycle

multiplexing system however.

 During the transmissions of frames in the static segment frames may be sent

over one or both of the channels at a time. Only one node however can transmit on a

given channel with a given frame ID during a given slot.

As has been stated the entire network shares a ‘global view’ of the time on a

given network. This ensures that nodes on the network agree on when a slot starts and

ends. This helps to avoid different messages being sent out at the same time.

4.5.2 Dynamic Segment

 To make FlexRay more usable there can be a dynamic segment included if

desired by the network designer. This is where a node can transmit data at arbitrary

times. If two nodes want to transmit data at the same time then the message with the

lower message ID is transmitted first and the other messages have to wait until that

message is transmitted before commencing transmission. This is similar to CAN, but

transmission can only begin if there is time to transmit the entire message before the end

of the dynamic segment. If there is insufficient time left to transmit the message then

the message will be kept for the dynamic segment of the following communication

cycle.

 The dynamic segment is broken up into smaller sections known as minislots.

These are defined in terms of macroticks where the start of a minislot defines an action

point where transmission may begin.

 During the Dynamic segment the slot counters may be incremented at different

action points and thus two different message IDs may be transmitted on the bus at the

same time over the two channels. The dynamic messages’ slot IDs are number

sequentially from the last static message ID.

LITERARY REVIEW

- 53 -

4.5.3 Symbol Window

 A symbol is used to signal a need to wakeup a cluster amongst other things. The

meaning of a symbol depends on the symbol sent and the status of the controller at the

time. Within the symbol window a single symbol may be sent. If there is more than one

symbol to be sent then a higher level protocol must determine which symbol gets

priority as the FlexRay protocol provides no arbitration for the symbol window.

4.5.4 Network Idle Time

 The network idle time is used to calculate clock adjustments and correct the

nodes’ view of the global time. It also performs communication specific tasks and uses

the remaining time of the communication cycle.

4.6 Frame Format

 Figure 4.7 (FlexRay Consortium 2005, p90) shows the frame format of a

FlexRay message. It is broken down into three sections: the header, payload and trailer

sections.

Figure 4.7: Frame format

The frame bits are transmitted from left to right as you look at Figure 4.7, i.e. the

reserved bit is sent first followed by the payload preamble indicator bit etc.

LITERARY REVIEW

- 54 -

4.6.1 Header Section

The header section is broken down into smaller sections. It is five bytes in length

which is broken down into a reserved bit, payload preamble indicator bit, null frame

indicator bit, sync frame indicator bit, startup frame indicator bit, a frame ID (11 bits),

the payload length (7 bits), a header CRC (11 bits) and a cycle count (6 bits). The CRC

is not computed by the communications controller which is transmitting the frame.

Instead the CRC is passed to the communications controller by the host as it does not

generally change during the static segment. The CRC is recalculated by a receiving

communications controller. This is to ensure that a received frame was received with no

errors. This CRC code is calculated for all channels and uses the following polynomial:

1278911
+++++ xxxxx . The initialised value for the register that is used to calculate

the CRC is the same for both channels and is 0x1A.

For further information on how the CRC is generated and the other sections of

the header see the FlexRay Consortium protocol specification (2005, pp97-99).

4.6.2 Payload Section

 The payload section is used to send data and contains 0 to 254 bytes of data.

Each byte of data is generally referred to by its position in the payload, i.e. the first bye

is called “data 0”, the second “data 1” and so on.

 In some cases the payload may also be used to transmit more frame information

as an option. This data would be a message ID field in the dynamic segment and a

network management vector in the static segment.

4.6.2.1 Network Management Vector

 This can take up 0 to 12 bytes of the payload section and would be placed at the

start of this section i.e. “nm0” would be used instead of “data 0” and “nm1” instead of

“data 1” etc.

 In order to allow a node to determine if a message contains a network

management vector the network preamble indicator bit is set in the header section and it

must only be transmitted during the static segment of the communications cycle. All

nodes in a cluster must be configured with the same network management vector length.

LITERARY REVIEW

- 55 -

 The network management vector is used to coordinate startup and shutdown

decisions based on factors such as the application state. It is part of a network

management service.

4.6.2.2 Message ID Field

 During the dynamic segment of the communications cycle a message ID field

may be placed as the first two bytes in the payload section. This allows the receiving

frame to determine how the data should be used or filtered. The message ID is 16 bits

long and can only be transmitted during the dynamic segment of the communication

cycle. To determine whether a message contains a message ID a receiver checks the

payload preamble indicator bit in the header. If this is set the payload contains a

message ID field.

4.6.3 Trailer Section

 The trailer section is made up of a 24 bit CRC code for the frame (FlexRay

Consortium 2005, p96). It is calculated over the header and payload sections of the

frame and the polynomial used for all channels is:

13678101113141619202224
++++++++++++++ xxxxxxxxxxxxxx

This will give a Hamming distance of six for a payload of up to 248 bytes, otherwise for

payloads of 248 bytes and over the Hamming distance is four.

The initial value of the register used to calculate the CRC is different depending

on which channel is being used. For channel A the value is 0xFEDCBA and for channel

B the value is 0xABCDEF. The CRC for the frame is calculated, unlike the header CRC,

by the communications controller. This means that the frame CRC is calculated by the

communications controller during transmission and reception of a frame.

On reception of a frame, the transmitted CRC is checked against a CRC which is

calculated based on the received header and payload sections. If these two values differ

then an error has been detected, otherwise the frame was received error free. The result

of this should be signalled to the host by using an indicator such as a flag. The host can

then follow an error procedure. This could involve signalling to the network that a

frame was received with an error or the host could attempt to recover the data

depending on the configuration of the system.

LITERARY REVIEW

- 56 -

4.7 Coding & Decoding

 As there are two channels there is a need to perform coding and decoding

independently, however it is carried out in the same manner. In order to implement the

coding and decoding FlexRay implements three processes, the coding/decoding process

(CODEC), the bit strobing process and the wakeup pattern process.

4.7.1 Bit Stream Assembly

 To transmit a frame the following steps need to be taken:

1. The frame data is broken up into individual bytes.

2. A transmit start sequence followed by the frame start sequence is transmitted.

3. An expanded byte sequence for each data byte is created by prefixing the byte

start sequence before the bits of the bytes.

4. This is then assembled, in order, into a single bit stream for transmission.

5. The CRC is then calculated for the frame, and expanded byte sequences are

created for this data before being appended to the bit stream.

6. The frame end sequence at the end of the bit stream is added.

7. If the frame is in the dynamic segment the dynamic trailing sequence is

appended.

Figure 4.8 (FlexRay Consortium 2005, p57) shows a bit stream with all encoding

having been done in the static segment. For a dynamic segment diagram see the

FlexRay Consortium (2005, p58).

Figure 4.8: Encoded bit stream

LITERARY REVIEW

- 57 -

4.7.2 Frame Encoding

 In order to transmit data a node must represent the communication elements as a

bit stream before it can be transmitted over the physical medium. This section deals

with how a frame is encoded for transmission.

4.7.2.1 Transmission Start Sequence (TSS)

 This is used to ensure proper setup of the network. An active star will use this to

properly configure input and output connections. This type of setup will cause an active

star to truncate a number of bits at the start of a frame or symbol. This will therefore

ensure that the frame or symbol contents are not corrupted or truncated.

4.7.2.2 Frame Start Sequence (FSS)

 The FSS is used to compensate for possible quantisation errors after the TSS. It

is defined as a high bit.

4.7.2.3 Byte Start Sequence (BSS)

 This sequence is used for timing information of the streaming bits. It consists of

a high bit followed by a low bit. Each frame data byte will be sent onto the channel as

an expanded byte sequence, where eight data bits are prefixed with a single byte start

sequence.

4.7.2.4 Frame End Sequence (FES)

 This end sequence is used to mark the last byte of a frame. It is a low bit

followed by a high bit. It is appended to the last expanded byte sequence of the frame.

These are the last two bits sent if the frame is transmitted in the static segment. If this is

the case the transmit enable line will be set to high to prevent further transmission. For a

frame sent in the dynamic segment there is an additional sequence added.

LITERARY REVIEW

- 58 -

4.7.2.5 Dynamic Trailing Sequence (DTS)

 The DTS is used for frames sent in the dynamic segment only. It is so that the

exact minislot action point can be determined and to prevent false detection of a channel

idle state by receiving nodes. This is transmitted directly after the frame end sequence.

 It consists of a low level transmission of at least one bit length, but the length is

not fixed for longer periods. This is followed by a high output for one bit length. Once

the output has been high for one bit time the transmit enable line is set high. This will

mean that the duration of the dynamic trailing sequence is variable and can range in

length between two bits and the length of a minislot plus two bit times.

4.7.3 Frame Decoding

This section deals with the decoding process of received frames on a channel.

This is again performed on each channel in the same manner but separately. The

decoding of a frame or a symbol is carried out one at a time i.e. if a frame is being

decoded another frame or symbol can not be decoded at the same time on the channel.

The successful decoding of a frame/symbol will happen as long as at least the channel

idle delimiter time is observed between the last bit of the previous frame/symbol and the

current frame/symbol. A successfully decoded frame or symbol will not guarantee that

the received data is correct or valid. Figure 4.9 (FlexRay Consortium 2005, p66) shows

the frame decoding process.

Figure 4.9: Received bit stream

At each of the points in the diagram (a-e) the following is happening:

a. The end of the channel idle point is detected.

b. A potential frame start sequence is detected.

c. The header is received.

LITERARY REVIEW

- 59 -

d. All frame data is received at this stage and the frame ending sequence is

expected followed by a dynamic trailing sequence if the frame was sent during

the dynamic segment.

e. The channel idle delimiter time is reached and another frame or symbol can be

received.

4.7.4 Symbol Encoding

 There are three defined symbols used in the FlexRay protocol. These are:

1. The collision avoidance symbol (CAS).

2. The media access test symbol (MTS).

3. The wakeup symbol (WUS).

The symbols for the CAS and MTS use the same bit pattern and are distinguished

by the receiving node based on the status of the node. The encoding process does not

distinguish between them.

4.7.4.1 CAS and MTS

The CAS symbol is used by coldstart nodes to begin startup of a cluster while the

MTS is used for testing the media access control operation. The bit pattern for the

CAS and MTS is as follows:

1. A transmission start sequence is first transmitted.

2. A low level is transmitted for a defined symbol period.

The symbols are transmitted with the transmit enable being synchronous with the

transmit data signal. This is shown in figure 4.10 (FlexRay Consortium 2005, p59).

Figure 4.10: CAS and MTS encoding

LITERARY REVIEW

- 60 -

4.7.4.2 WUS

 The WUS symbol is used to signal to other nodes on the cluster a desire to

wakeup the network and to begin transmission of frames. The node shall transmit a

low logic level for a given ‘wakeup low’ period. This is followed by an idle state

which has a defined time. This will then be repeated for a globally defined number of

times. Figure 4.11 (FlexRay Consortium 2005, p59), shows a wakeup pattern made up

of two wakeup symbols.

Figure 4.11: Wakeup pattern using two wakeup symbols

A node should be able to detect any transmissions on a channel during

transmission of a wakeup pattern in case there is another wakeup pattern from another

node or activity already on the bus. This sort of collision can then be handled to

ensure that there is no error or protocol violation performed on the channel.

4.7.5 Symbol Decoding

4.7.5.1 CAS and MTS

 The received symbol will be decoded by the node in the same way for both

symbols.

 As the transmission start sequence is a low level for a given time and this is

immediately followed by the CAS or MTS symbol, which is also represented by a low

level of a given time, there is no way for the receiver to distinguish between the

symbol and the start sequence. Therefore a successful detection of a symbol is

determined if a low level is detected for a given time within the CAS/MTS min and

max limits defined in the protocol of the nodes of the network.

LITERARY REVIEW

- 61 -

4.7.5.2 WUS

 The detection of a wakeup pattern is to be considered as being successful

under the following conditions:

1. A low level that is as long as the WUS low period is detected.

2. This is followed by a high level that has duration of the WUS idle time.

3. Steps 1 and 2 are repeated until the number of wakeup symbols which make

up a wakeup pattern are received

4. The duration of the wakeup pattern does not exceed its constraint limit.

4.7.6 Sampling and Voting

 When data is sent on a channel, nodes which receive the data must determine

what was sent on the channel. In order to do this a sampling and majority voting

scheme is used. This is done independently on each channel.

 The sampling is done at the received input and each sample is stored. The

sampling period and number of stored samples depends on the application and

hardware used. The node shall then perform a majority voting operation on the stored

data.

 This majority voting operation is used to filter any glitches detected on the

channel. In this case a glitch is an event which temporarily changes the logic value of

the received data to that of a value other than that which was transmitted. The

receiving node shall continually check the stored samples and if the majority of the

samples are a logic one then the output from this process shall be a logic one.

Otherwise a logic zero is detected. This voted value is the value which is then used by

further decoding processes or stored as the received message.

 It should be noted that this process will cause a delay to appear in the received

bit pattern or the voted value which is relative to the clock period of the sample clock.

Figure 4.12 (FlexRay Consortium 2005, p61) shows a received bit pattern along with

a glitch and the delay caused by this process.

LITERARY REVIEW

- 62 -

Figure 4.12: Sampling and majority voting of a received bit pattern at the input

The example shown in Figure 4.12 shows a sample length of 5 and sampling is done

on the rising edge of the clock.

4.8 Wakeup

 This section covers the basics of getting a FlexRay cluster to full operation

from the sleep mode.

4.8.1 Cluster Wakeup

 The cluster wakeup is performed by a macro and follows the procedure

outlined below. It is necessary that the bus drivers are supplied with power. If the bus

driver is supplied with power it has the ability to wake up the other nodes’ systems.

There must also be a wakeup source supplied to at least one node.

 The host can transmit the wakeup pattern on each of its channels individually

but it should not be transmitted on both channels at the same time to avoid faulty

nodes interrupting communication on both channels. The host will configure which

channel is to be woken up and ensure communication on the channel is not disturbed.

The protocol also allows for nodes connected to a single channel to wakeup the

network on both channels. This is done through a node connected to both channels

being used to wakeup the other channel. To avoid certain failures it is recommended

that both channels should be woken by different controllers.

 If the wakeup pattern is successfully received by a node which is asleep, this

node shall wakeup. The bus driver will handle the detection of the wakeup pattern,

with the communications controller only needing to recognise the wakeup pattern

LITERARY REVIEW

- 63 -

during the wakeup and startup phases to avoid collisions. It is also impossible for the

communications controller to determine if all nodes connected to a network received

the wakeup pattern and are awake at the startup phase.

 It should be noted that any number of nodes trying to wakeup the network will

be resolved by the wakeup procedure so that only one node will wakeup the network.

However if there is a fault which causes two nodes to transmit the pattern at the same

time, then the resulting signal can still wakeup the network.

 The Bosch E-Ray chip fully supports the FlexRay protocol and an application

note has been produced on the wake up procedure (Robert Bosch GmbH 2006) that is

a good reference on the requirements to wakeup a node.

4.8.2 Startup and Reintegration

 To communicate across a TDMA system there has to be synchronisation of all

of the nodes. A startup procedure is therefore put in place to initially synchronise all

the nodes.

 To start up a network all the nodes must first be awake. When all the nodes are

ready then a startup process or ‘coldstart’ can begin. This is done by a few coldstart

nodes. There is a limited amount of coldstart nodes in a network. In a network of less

than three nodes, all nodes are configured to be coldstart nodes. For networks with

three or more nodes, there must be at least three nodes configured as coldstart nodes.

 To begin the startup procedure, a coldstart node transmits a CAS. It can then

transmit frames. After the first four cycles following the CAS it is joined by the other

nodes, starting with the coldstart nodes then the remaining nodes in the network. All

frames sent during startup are sync frames and so all coldstart nodes should be

configured as sync nodes.

 After collecting startup fames, if there are no clock correction errors detected

then a node will enter normal operation. This process varies depending on the

configuration of the node. For further detail see the FlexRay Consortium protocol

(2005, p157).

LITERARY REVIEW

- 64 -

4.9 Conclusion

 The protocol outlined by the FlexRay consortium has been discussed in this

document. It has briefly covered basics of why the protocol is needed and how it is

implemented.

 As can be seen it was developed with current and future needs in mind.

However FlexRay is still a new technology. As such there are areas where

improvement may be gained or needed. This will become clearer as more and more

vehicles have FlexRay systems implemented on them. The first car to do so was the

2006 X5 (Berwanger et al. 2004; BMW Manufacturing Co. 2006) with more vehicles

expected in 2009. As the technology matures the use of FlexRay is set to increase in

areas such as drive-by-wire and safety systems. This makes FlexRay a very good

research and development area.

4.10 References

Berwanger, J., Schedl, A. and Peller, M (2004) BMW- First Series Cars with FlexRay

in 2006, Automotive electronics + systems, Development Solutions 19 for FlexRay

ECUs, 6-8.

BMW Manufacturing Co. (2006) THE NEW BMW X5

Perfect Blend of Driving Dynamics, Functionality and Exclusivity [press release], 8

August, available:

http://www.bmwusfactory.com/media_center/releases/release.asp?intReleaseNum=20

9&strYear=2006 [accessed 2 October 2007].

FlexRay Consortium (2005) FlexRay Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay Consortium GbR.

FlexRay Consortium (2006) FlexRay Communications System Electrical Physical

Layer Specification, Version 2.1 Revision B, Stuttgart: FlexRay Consortium GbR.

LITERARY REVIEW

- 65 -

FlexRay Consortium (2007) about FlexRay [online], available:

http://www.flexray.com/index.php?sid=254188fe2bd59eb7108227f0adea90f5&pid=8

0&lang=de [accessed 19 Oct 2007].

Robert Bosch GmbH (2006) E-Ray Application Note AN001 Wakeup, Revision 1.0,

Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2007) Automotive Semiconductors and Sensors [online],

available: http://www.semiconductors.bosch.de/en/20/flexray/flexray.asp [accessed 2

October 2007].

LITERARY REVIEW

- 66 -

Chapter 5 . Performance Analysis

5.1 Introduction

Analysis of software can improve the quality of a system leading to greater

satisfaction from the user and ultimately to increased profit for the developers. By

analysing a system throughout the software development stage programming errors

can be found. This helps to identify errors at an early stage and reduces development

time and costs.

Likewise hardware systems need to be analysed. By performing various tests

on a system it is possible to identify bottlenecks or shortcomings of a system. An

example could be a real-time system that needs to transmit a message over a network

before a given time. If the software transmits the message before the given time, the

message may still be held up by the driver of the communication device. Likewise the

communication hardware may be slow and the message transmission deadline may be

missed. The analysis of systems should identify any type of shortcomings in a system.

Possible solutions to the problems can then be made based on these observations.

There have been a number of experiments carried out that involve the

simulation of networking systems. This chapter will introduce system analysis

methods and metrics that have already been implemented. It will also outline some

research and techniques that have carried out the simulation of these communication

networks.

5.2 System Performance and Analysis

Analysing the performance of real-time systems is an important task. In a real-

time system it is essential that deadlines are not missed. By applying performance

analysis it is possible to optimise the system. This can reduce or eliminate the chance

of a missed deadline.

LITERARY REVIEW

- 67 -

System performance can be classed as response time, Worst-Case-Execution-

Time (WCET) and memory-loading. Response time is the time taken between the

initialisation of a task and its completion. WCET is the longest time that a computer

takes to processes information. Memory-loading is the percentage of available

memory to the amount being used (Laplante 1992, p199).

For a FlexRay based system these can be seen as the hardware and software

delays. The amount of time it takes a message to pass from a task through the

communications controller and onto the communication bus could seriously affect the

performance of the system. Other aspects are the processing time for the tasks and the

communications schedule. The resource utilisation, such as the amount of memory

used, could also affect the performance of the system. Too much memory makes the

system costs unnecessary high. Too little allocated memory and messages could be

lost or miss deadlines.

The performance and analysis of a system will depend on the nature of the

system. If the system is event-triggered there will be a set of measurements and

techniques to analyse the system. If a similar system is implemented as a time-

triggered system the techniques and measurements could differ. The different

performance analysis techniques are outside the scope of this research.

5.2.1 Response Time

The response time of a system will depend on the implementation of the

system. Different implementations will lead to different sources of response time

delay. The different sources of delay will determine what actions can be applied to

reduce the delay (Laplante 1992, p199). The following are examples of possible

response time delays.

For polled loop systems there are three different sources of delay: the

hardware delay in setting the event, the time to test the event and the time needed to

process associated events. The time it takes to process the event and to enter the

handler routine can be significant, while the time it takes to process the handler

routine will depend on the implementation. This can be made worse by events piling

up on each other (Laplante 1992, pp199-200). If there are ‘n’ overlapping event the

response time can be calculated as follows (Laplante 1992, p200):

nfP

LITERARY REVIEW

- 68 -

where, f is the time needed to check the event and P is the time to process the event.

 For an interrupt system there are a number of factors that must be taken into

account. Figure 5.1 (Laplante 1992, p201) shows the response time of an interrupt-

driven system.

Figure 5.1: Interrupt-driven response time

Interrupt system response time is affected by factors such as the time it takes a

system to detect an interrupt and context switch time. The context switching time is

the time it takes to transition from the normal program flow to the interrupt handler.

The context switch time can be treated as standard executable code when calculating

this time. In general the response time for task ‘i’ (Ri) is given as (Laplante 1992,

p200):

Ri= Li+ CS+ Si+Ai

where, L is the interrupt latency, Cs is the context save time, S is the scheduling time

and A is the execution time.

 For a CPU with an interrupt controller and multiple interrupts the schedule

time is negligible. When a single interrupt is used with an interrupt controller the

schedule time can be calculated by using instruction counting (Laplante 1992, p201).

Calculation of the latency can prove difficult however if a lower priority routine tries

to interrupt a higher priority routine. The best response time is the time it takes the

higher priority task to complete its routine. The worst case cannot be determined as

the lower priority may be interrupted itself.

When a higher priority task interrupts a lower priority task the worst case

response time is calculated as follows; The propagation delay to signal an interrupt

and the CPU detecting this signal (Lp) and the maximum of either the completion time

of the longest instruction (Li) or the maximum time a lower priority task may disable

LITERARY REVIEW

- 69 -

tasks (LD) (Laplante 1992, p202). This can be expressed as the following formula

(Laplante 1992, p202):

Li= Lp + max{Li,LD}

5.2.2 Worst Case Execution Time (WCET)

The ability to know execution times of modules before the system

implementation is important. This can help the system to meet its goals and can even

help in the selection of hardware. During the testing it will then be possible to identify

the problem modules (Laplante 1992, pp204-5).

To predict or measure the WCET several methods have been developed. These

include (Laplante 1992, pp205-210):

Logic Analysers: This is one of the best ways to analyse execution time of a

module. It will usually take into account CPU utilisation and hardware

latencies. However the software usually needs to be complete.

Instruction Counting: If the software is not complete or a logic analyser is

not available this can be employed. It involves tracing the longest path through

the code and adding the (maximum) execution times of each instruction.

Pictorial Representations: By employing a bar chart with different shading

or colouring a pictorial representation for periodic systems can be achieved.

The width of the boxes represents the execution times while the height

corresponds to different priority levels. Figure 5.2 (Laplante 1992, p209)

shows an example of a timing chart. To construct this chart an interrupt must

happen at the appropriate point. If a higher priority task interrupts a lower

priority task it can be placed on the graph at that time. The lower priority task

will then complete after the higher priority task execution time. If a lower

priority task interrupts a higher priority task it is placed after the higher

priority task end time. If this is done then an accurate representation is

achieved. If the chart cannot be completed then the system is time-over loaded.

LITERARY REVIEW

- 70 -

Figure 5.2: Timing chart example

Calculations of the instruction times can require additional information other

than that provided by manufacturers. This is due to accesses to I/O devices or

memory. To achieve a more accurate time-execution analysis a simulation of the

system can be run. This can be configured with various parameters and tests run.

However some simulations become very difficult due to complexities in the systems.

This is especially true when pipelined systems or RISC architectures are modelled.

5.2.3 Memory-Loading

With memory becoming cheaper and denser the analysis of memory-loading is

seen as less of a concern. However where multiple ECUs are present, like in a car

where there is a large distributed system, efficient memory use could lead to a large

saving (Laplante 1992, p224). For instance in a FlexRay based system there is

memory associated with the application and with the communications controller.

Therefore efficient use of memory in a FlexRay based system could have a huge

impact. Figure 5.3 (Laplante 1992, p225) shows an example of a typical memory map.

LITERARY REVIEW

- 71 -

Figure 5.3: Standard memory map

The memory loadings in a system are usually a sum of all the areas in

memory. This can be summed up in the following formula (Laplante 1992, p224):

MT=MP.PP+MR.PR+MS.PS

where MT is the total memory-loading, MP,MR and MS are the memory loading for the

program, RAM and stack areas respectively. The PP, PR and PS are the percentages of

total memory allocated to the different areas.

 As the program area is usually stored in ROM it may be treated like RAM for

calculations. This is because the RAM size is usually fixed at design time. Therefore

to calculate the memory-loading (M) for either area the following formula can be

used:

T

U
M =

LITERARY REVIEW

- 72 -

where U is the number of used locations in memory and T is the total memory area

for either the RAM or ROM.

For the stack area the same basic formula can be used. However U is

calculated in a different manner. For any task, s, the amount of locations that it

requires to store the register, program counter and variables will be defined as CS. The

maximum number of tasks that can be stored in the stack at any stage will be defined

as tmax. This leads to a formula of U as follows:

Us= CS. tmax

5.2.4 Improving Performance Measures

This section is based on sections 9.4 and 9.6 of Laplante (1992, pp210-224;

pp227-230). These sections (of Laplante) focus mostly on optimising code to

influence the performance of the system. This is due to the fact that the hardware will

in many cases be fixed at an early stage. However hardware optimisation could lead

to increased performance metrics. As was stated in section 5.2.1.2 simulation is an

important tool in analysis of systems. This is one of the best ways to identify any

shortcomings of a hardware system and could ultimately lead to improved hardware

components.

The basic approach behind reducing response time and time-loading is the

identification of wasteful code. This can be due to compilers generating useless code

or by poor programming. For instance, floating point numbers take longer to perform

calculations on than integer values. If a programmer chooses a floating point variable

when an integer variable can be used, then this will increase the execution time

unnecessarily. Also there can be waste generated by certain events. An example of

this from Laplante is that of a system that employs a temperature sensor. The

temperature takes time to measure as the value must pass through an analogue-to-

digital converter (ADC). When this is being carried out the application may have to

wait for a flag from the ADC to indicate it has finished the conversion. The system

will then need to process this information and take any necessary action. However

temperature cannot change drastically in most scenarios. Therefore it may be wasteful

to measure temperature for example every 10ms. To ensure response times are kept to

a minimum, all factors such as a map look-ups or a 32bit divides should be accounted

for and steps taken if necessary to reduce the response time where necessary.

LITERARY REVIEW

- 73 -

Some problems are not due to either poor compile time code generation or

poor programming. It is therefore necessary to optimise the code. The methods

outlined in this section are orientated toward real-time systems. As was stated floating

point arithmetic is slower than integer arithmetic. By using a method called ‘scaled

arithmetic’ a reduction in processing time may be achieved. It involves representing

numbers as a two’s complement number with the least significant bit (LSB) acting as

a scale factor and the most significant bit (MSB) acting as a sign indicator. Operations

on the number can then be performed and converted to a floating point number at the

last step. An alternative method to calculating values at run time is to contain some

operations values in a look-up table. This involves pre-calculating values of an

operation such as the value of Cos(x). If the range of values that x can be is known

before run time then a look up table can be created. A drawback is, as more points are

included more memory is taken up. Also the precision of the values may suffer when

using a lookup table.

To help reduce memory-loading there are a number of defined techniques.

These include the selection of variables. If a variable is created it will take up space in

one area of memory. If this variable holds an intermediate result the variable may not

be necessary. By removing this intermediate result and implementing the calculation

in a later stage a memory register may be saved. Another form of memory loading is

where unreachable code is generated. For example debugging code is never used at

run time. It is therefore necessary to determine any code that will never be executed

during run time and ensure it is not included at compile time. Other effects could be

memory fragmentation. While not an actual form of memory loading, it can produce

effects similar to memory-loading. Therefore if possible this should be avoided.

Finally the use of bitfields for Boolean variables instead of a byte (or even a word) is

also a technique for saving memory.

5.3 Software Metrics

Measures of performance of a system are also known as ‘metrics’. Metrics

relate to a system designer how well a system performs then intended tasks. This will

also lead to more accurate conclusions being drawn from the systems output. By

LITERARY REVIEW

- 74 -

developing a set of software metrics, an improvement in productivity, development

time and product quality can be observed (Möller and Paulish 1993, p8).

5.3.1 The Need for Metrics

Since the 1970’s the development of computer hardware has increased at a

rate greater than that of software. Processors can now be found with a number of

processing cores. This value ranges from 1 to 8 microprocessor cores such as the

processor found in the Sony Playstation 3 (one is disabled however). This has resulted

in most bottlenecks being traced back to the software (Shepperd and Ince 1993, p8).

This increase in hardware performance causes an increase in the time needed

to develop programs as well as affecting reliability. More powerful computers can

potentially run more complex and bigger programs in less time than on slower

computers. This increase in the size of computer programs as well as their complexity

makes them more difficult to troubleshoot. The complexity therefore affects reliability

and this trend leads to a need to identify and eliminate any problems if possible at an

early stage. Such problems can be bottlenecks of data being passed through a system

or where deadlocks/livelocks may occur. Figure 5.4 (Möller and Paulish 1993, p3)

shows how a number of factors, related to a badly written piece of software, could

affect a company.

Metrics can also be used as a measure of not only software performance, but

also of system performance. This could be in the form of the number of messages that

pass through a communications controller. Equally the number of messages (of a

given size) per microsecond, that a software driver maybe able to pass between a

microprocessor and a communications controller could be measured. In this case a

bottle neck could be revealed by creating metrics for a given system.

Figure 5.4 could be changed to reflect the poor performance as an indication

of, for example, a loss of transmission in a communication system. The inaccurate

estimation side of the diagram would reflect a poor system setup, for instance an

unnecessarily long communication cycle in a FlexRay based system. This would lead

to an overall poor system and reduced system confidence.

LITERARY REVIEW

- 75 -

Figure 5.4: The effect of bad software on a company

By employing metrics the following activities can developed to ensure a

reduction in cost and increased efficiency in software engineering (Fenton 1991, p9):

• Cost and effort estimation models and measures

• Productivity measures and models

• Quality control and assurance

• Data Collection

• Quality models and measures

• Reliability models

• Performance evaluation and models

• Algorithmic/computational complexity

• Structural and complexity metrics

Figure 5.5 (Möller and Paulish 1993, p71) shows how the use of software

metrics can help to find software errors. It is hoped that most errors are found before a

system goes to the customer. This helps to highlight how a detailed evaluation of a

system can benefit any system. In Figure 5.5, KLOC stands for ‘thousand lines of

code’.

LITERARY REVIEW

- 76 -

Figure 5.5: Number of faults found in software

By employing metrics a performance measurement will be defined. This will

allow stake holders to gain a proper understanding of the different performance

aspects. If the metrics have been properly defined they should also eliminate

confusion as to what measurements are being defined by the set of performance

measures.

5.3.2 System Measurement Framework

This section is based on the framework as described in chapter 3 of ‘Software

Metrics’ (Fenton 1991). It is adapted to be relevant to the research outlined in this

thesis.

The various states of any system that are important to identify are any

attributes or entities that are of interest to the study. In any system these fall into the

following categories:

• Processes

• Products

LITERARY REVIEW

- 77 -

• Resources

Anything that will be of interest in a computer application will usually be related to

the above categories. The measurement will be an attribute or entity of one of those

categories.

 Attributes can be further segmented into internal or external attributes. Internal

attributes are processes, products or resources that are related to the system. External

attributes on the other hand are how processes, products or resources are related to the

system and its environment. These can be seen as reliability or performance attributes.

These phrases can be very vague and have many meanings. This makes them more

difficult to define and quantify. Table 5.1 (Fenton 1991, p44), shows a selection of

possible entities along with examples of both external and internal attributes for each

entity example. External and internal attributes may or not affect each other. For

example age should not affect the productivity of any member of a workforce, while

time to construct a product could possibly impact the cost or quality of the product

being developed. The examples shown in Table 5.1 are specific to a software system.

However this can be adapted to any generic system.

LITERARY REVIEW

- 78 -

Table 5.1: Components of software measurement

5.3.2.1 Processes

Processes are system related activities that are normally defined by time. They

can be seen as time slices. This may be the time to develop a software function. It

could also be the time taken as the software processes a specific task. A metric based

on processes can be seen as:

run task totime

processed messages ofnumber

 This measure could increase or decrease depending on other messages that are

to be processed. It may also be affected by the size of each message.

LITERARY REVIEW

- 79 -

5.3.2.2 Products

These are taken as deliverables or objects based on the system. This could be

in the form of an output a host controller produces based on information it has

received from other nodes on a network. The node may then need to send its output

over the network. An external attribute that can be applied to this could be the

reliability of the system. The time to execute a function, functionality and redundancy

are all internal attributes related to this type of product. The internal attributes can be

a big factor in relating how good the external attributes are.

5.3.2.3 Resources

Resources are the inputs for the system. These can be number of nodes, type

of software driver, available RAM, type of host used. As can be seen these can be

individual system components. If there are insufficient resources for a system to

perform correctly the level of performance will be affected.

5.3.3 Performance Evaluation and Models

Once the various attributes, entities, resources etc. have been identified it is

important to create predictions or assessments based on these measurements. Of the

activities listed in section 5.3.1 the ‘performance evaluation and models’ activity is

the most relevant to this research. Again this is taken from Fenton (1991,p13, pp57-

58).

The performance evaluation and models activity is generally concerned with

the measuring of efficiency. This can be a wide range of metrics, including speed of

computation and memory requirements for given inputs. It also covers a wide range of

performance metrics corresponding to aspects such as response times and completion

rates.

The efficiency attributes are mainly the focus for developers. These attributes

are usually concerned with external attributes. For example the type of software driver

used in a system could be an attribute. Internal attributes can also be measured even

when the machine the application will run on, is not known. This is done by looking

at the complexity and type of the system being used. Reasonable analysis can be made

by analysing of some internal attributes.

LITERARY REVIEW

- 80 -

5.4 Previous Systems Analysis

This section will focus on techniques that have already been used to analyse

systems. The focus will be on FlexRay performance analysis carried out to date. This

section describes the focus of the investigation as well the techniques used to carry

out the analysis. It also explores other networking performance analysis techniques

including topics such as internet traffic modelling. This should allow the reader to

gain an insight into some of the problems faced when analysing a networking system.

Included will be sections that look at modelling application software. This presents a

significant problem when modelling any system. Without a particular software

package to base an application model on, the model may not represent a real world

system. If this is the case this could present a significant downfall for any simulation.

5.4.1 FOCUS Modelling of FlexRay

Zhang (2008) introduces the FOCUS modelling language and how it was used

to simulate the FlexRay protocol. The FOCUS modelling language is a formal

framework for the development of distributed systems. It consists of a range of

techniques to formalise specifications with well-defined semantics (Zhang 2008,

p334).

The concept model as defined in ‘Modelling and Analyzing of a Time-

Triggered Protocol for Automotive Systems’ (Zhang 2008, pp336-339) is as follows:

• Processors are defined as communication controllers or bus guardians. A set is

created for each type and these are connected to synchronised clocks. The

connections to and from processors are unidirectional. Each processor has a

configuration that defines its workings.

• Messages are defined as a set that contain information such as slot, cycle and

data.

• An assumption of perfect synchronicity is made. The base time is a slot and it

is assumed that the transmission and reception of messages takes no

significant amount of time.

• Faults can and do occur. Faults can only occur at processors. If there is a fault

then the processor will not produce any result. A component may however

produce a subsequent result after a fault. This is because a fault could be the

LITERARY REVIEW

- 81 -

failure of a component to transmit a message during its slot. It may however

send a message during another cycle.

Figure 5.6 shows the architectural concept that was used to model the FlexRay system

(Zhang 2008, p337).

Figure 5.6: FlexRay conceptual architecture

Based on this and the concept model, a formal specification was defined. This

methodology and the formalisation allows for the model to be seen as components

and their interactions using messages (Zhang 2008, p340).

The FOCUS modelling concept as outlined by Zhang centres on the features

used to achieve the model. Zhang (2008) outlines the features of FOCUS as follows:

‘The FOCUS notation uses operators such as union, element of and intersection as

the syntax. Functions are also important in FOCUS and operations on streams are

mostly defined by functions. The central concept of FOCUS is the idea of streams.

Streams are a finite or infinite sequence of elements (also known as messages). The

streams can also be defined as timed or untimed streams. The difference between

timed streams and untimed streams is that timed streams contain timing information

and untimed streams do not contain any timing information. The time is modelled in a

discrete manner and assumes a global time divided into intervals known as ticks.’

There is also an emphasis put on modular development. This means that

FOCUS sees a component as being made up of a number of related services. To

determine the interaction of components a logical expression is used to relate inputs

and outputs. The specification for the various components can also be described by

LITERARY REVIEW

- 82 -

using an assumption and guaranteed style, thus splitting the formula into two styles,

assumption and guarantee respectively. The assumption are properties that are

assumed to be true while guaranteed properties defines the behaviours that always

hold if the assumption holds.

The table below, Table 5.2 (Zhang 2008, p337), shows a summary of the type

definitions used by Zhang to define the FlexRay protocol.

Table 5.2: FOCUS type definitions for FlexRay

Figure 5.7 (Zhang 2008, p339) shows the specification definition for

scheduled transmission. This only allows the communication controller for a given

slot to transmit. This is just one property needed to have the communication controller

operate correctly.

Figure 5.7: Scheduled transmission definition

It can be seen from Table 5.2 and Figure 5.7 the use of functions and the syntax used

in FOCUS.

LITERARY REVIEW

- 83 -

5.4.1.1 FOCUS Based Modelling, Pros and Cons

The FOCUS modelling approach as was stated is based on a modular

development approach. This is a very good approach to development. This can be

seen as function development in ‘C’. This is a standard practise as it allows for easier

testing and debugging of small sections of code. The FOCUS approach also uses

mathematical terms to define the operation of modules. These terms such as ‘subset

of’ are standard mathematical terms and many developers would be familiar with it.

This would ease the familiarisation stage of learning a new development process.

The mathematical terms could also be seen as a drawback too. The definitions

developed using these terms could be difficult to debug/troubleshoot. This could lead

to a longer development phase than necessary. The work carried out by Zhang also is

small. Larger models may take a lot of specification and computation time. Again if

there is a problem with any definition it may be difficult to correct.

5.4.2 FlexRay Based Performance Analysis

Haigescu et. al. (2007) outline a framework for modelling FlexRay based

systems. The framework they propose encompasses modelling schedulers and the

protocol. They argue that most analysis of FlexRay based systems concentrate on the

bus and the scheduling based on this. They also argue that the analysis of the dynamic

segment has been overlooked. The dynamic segment is an important section of the

FlexRay protocol. It is argued that the dynamic segment if utilised correctly will allow

the full advantages of the protocol to be realised.

To test their framework a model of an adaptive cruise control system was

developed in Java with a MATLAB front end. The model was based on the diagram

as shown in Figure 5.8 with all messages mapped to the dynamic segment (Haigescu

et. al. 2007, p289).

LITERARY REVIEW

- 84 -

Figure 5.8: FlexRay model system base

The paper also looks at problems and difficulties associated with modelling

FlexRay. The focus of the difficulties is on the dynamic segment. This is due to how

the dynamic segment works and how it restricts access. For instance the dynamic

segment can also be blocked from a node if a higher priority message consumes most

or all the dynamic segment. These problems had to be taken into account when

developing the framework for their model. Their framework was based on a

mathematical framework for analysing the timing properties of multiprocessor

embedded systems.

The mathematical models that were used were defined by a number of

properties such as task activation rate boundaries and number of activation times.

Mathematical models will be looked at in more detail in section 5.4.5. For more

information on the specific mathematical models used in the approach outlined above

see Haigescu et. al. (2007).

5.4.2.1 Mathematical Modelling, Pros and Cons

Mathematical models attempt to define the system being modelled using

mathematical expressions. These expressions can then be analysed to determine the

performance of a system. In many cases the mathematical expressions can be easily

converted into an executable computer programme using a wide range of software

applications. This allows the developer to use the programming language they are

most comfortable with or knowledgeable in using. Mathematical models can be found

in a wide variety of applications. They are also used in a number of disciplines such

as electronics, the sciences and financial areas. Mathematical models and expressions

have also been used for a long time.

LITERARY REVIEW

- 85 -

However it can be difficult to accurately define systems using mathematical

expressions. The mathematical statement defining the characteristics of a system

could affect its precision. As more precision is required the mathematical statement

could become very complex. As was stated in section 5.4.1.1 larger models may take

a lot of computation time. If there is a problem with any definition it may be difficult

to correct. The use of functions can help with this stage. In this case a complex

mathematical expression can be broken up into smaller sections and calculated

separately before the final result is achieved.

5.4.3 UML Based FlexRay Model

In the paper by Yang et. al. (2005) they propose the use of Unified Modelling

Language (UML) when designing system models. The paper presents a development

platform that is based on OSEK/VDX. This includes a model design and verification

process. This platform can be seen in Figure 5.9 taken from the paper by Yang et. al.

(2005, p241).

Figure 5.9: System development process.

The approach was achieved by developing SmartOSEK. This is an integrated

development environment (IDE). It is split into two modules, one for the OSEK

LITERARY REVIEW

- 86 -

operating system and another to handle the OSEK communication. It provides a

graphical design and verification user interaction service.

The system model is split between a framework model and an algorithm

model. The framework model describes the complete architecture of the system. The

algorithm model describes the implementation of the system algorithms. The

algorithm model development can be supported by vendor tools such as Ptolemy and

Simulink. However the systems model is described in UML as Smart Designer

supports UML.

The UML system model is converted into an OSEK/VDX Model using Smart

Designer. Figure 5.10, shows the workflow of the Smart designer (Yang et. al. 2005,

p242). The workflow begins with the model editor which allows developers to design

the UML model. This model is saved into an .XML file format and the model

convertor analyses this file. The model converter then converts the UML model into

an OSEK/VDX model by consulting the Model Database. The model database holds

information such as objects, relationships and constraints to achieve this. The results

converter then passes the processing results onto the Model editor. This is so that the

UML model can be modified based on these results. The OSEK/VDX model can then

be passed to the smart generator that creates the implementation code for the

application.

Figure 5.10: The Smart Designer workflow

LITERARY REVIEW

- 87 -

When the OSEK/VDX model is complete it can be verified using the Smart

Simulator. The results of this verification process can then be used to modify the

system model. To do this the Smart Simulator provides a SmartOSEK COM and

SmartOSEK OS simulator to accurately simulate the communication and OSEK

scheduling that is compliant with the OSEK/VDX specifications. Figure 5.11 below

shows the Smart Simulator system components (Yang et. al. 2005, p241). Note that

there is a CAN and J1939 simulator to simulate in-vehicle network communication

systems. There is also an interrupt simulator and actuator simulator.

Figure 5.11: The Smart Simulator architecture

Smart Simulator uses Smart Analyzer to provide timing analysis of the model.

Built into the Smart Simulator it can deal with mixed pre-emptive and group-based

pre-emptive scheduling models.

 An example of a model transformed in SmartOSEK can be seen below in

Figure 5.12 (Yang et. al. 2005, p244). Using the results of the smart simulator

developers can modify the two model types (UML and OSEK/VDX) to refine the

system.

LITERARY REVIEW

- 88 -

Figure 5.12: SmartOSEK engine control system

5.4.3.1 Smart Designer, Pros and Cons

The workflow again is broken down into separate segments in this method. It

also uses a common programming language (UML) to define the models. These

models are converted into an OSEK/VDX model that can be analysed to highlight

improvements. The program can also produce a set of C code files that can be used in

a real world system. This can be a big benefit as a verified application layer can

quickly be developed. The designer is restricted to OSEK/VDX models and this

means that a limited number of systems can be analysed. There are also a small

number of communications protocols that it can simulate. For protocols such as LIN,

FlexRay or MOST another simulator would be needed. This may be overcome by

modifying the simulator. The Smart Generator stage, while it produces a C file, may

not always find the best solution. This code may then require a programmer to

optimise the code. This may not always be the quickest solution.

5.4.4 SymTA/S

The papers by Heina et. al. (2005), Richter and Ernst (2006) and Racu et. al.

(2007) present a timing analysis technique for automotive and other inter-ECU

communications. To accomplish this they propose the use of SymTA/S, a system-

level performance and analysis tool developed by Symtavision. The timing analysis

LITERARY REVIEW

- 89 -

approach is based on formal scheduling analysis techniques and symbolic simulation

(Heina et. al. 2005).

 The approach taken by SymTA/S is to view components of a system as

entities that interact/communicate through the use of event streams. This leads to a

well structured model with respect to architecture. It also means that the output stream

of one entity is the input stream of another entity. The analysis can then be viewed as

a flow of event streams.

Local scheduling analysis algorithms are coupled using event streams. These

are described as event models with parameters. Heina et.al (2005) describes an event

model with periodic parameter ‘P’ and jitter, ‘J’. They give an example of an event

occurring with periodicity of 4 and a jitter of 1. Figure 5.13 (Heina et. al. 2005) shows

an ‘event stream’ that stems from this definition.

Figure 5.13: Event stream with P=4 and J=1

The gray boxes represent the time where an event may occur.

Events can be used to activate tasks. The activating event can be generated in

a number of ways such as time based and external or internal signalling. Each task has

an input FIFO and can write to the input FIFO of dependant tasks. In order for the

task to execute it needs to be mapped to a communication resource. A scheduler is

used to resolve any conflicts with a shared communication resource. Using this worst-

case or best-case time analysis can be performed (Heina et. al. 2005). In Figure 5.14

(Heina et. al. 2005) there is a system modelled using SymTAS. In Figure 5.14 the

system is a set top box. It receives video signal from rf_video and then sends it to a

T.V. by means of a decoder (decryption). Internet traffic (rf_IP) can also be received

and sent to a hard drive (hd).

LITERARY REVIEW

- 90 -

Figure 5.14: SymTAS developed model

Using these models information can be extracted from the models of a given

schedule and automatic adaption of the event streams can be done to meet specific

demands.

5.4.4.1 SymTAS, Pros and Cons

The benefits of the SymTAS program are very similar to those of discrete

event analysis. These benefits are covered in more detail in section 5.4.6.

5.4.5 Mathematical Models

The work outlined in Pop et.al. (2003), Pop et.al. (2006) Pop et.al. (2007) and

Pop (2007) concerns the analysis and optimisation of distributed embedded systems

such as FlexRay. To achieve this, mathematical models that represent the systems

under study were created. Tests were then run and conclusions were drawn from the

results.

The paper presented by Pop et. al. (2006) looks at timing analysis of the FlexRay

communication protocol. This paper focuses on the analysis of the schedule of a

LITERARY REVIEW

- 91 -

FlexRay node. To do this they developed an application model. The following

definitions are some of those as presented in Pop et. al. (2006) and define the

application model:

• ‘A’ is a set of acyclic, directed and polar graphs – Gi(Vi,Ei) ∈ A

• A node τij ∈ Vi is the j-th task/message in Gi

• eijk∈Ei is an edge from τij to τik and indicates τij is an output that is also the

input of τik

• A task is ready when all its inputs have arrived and will issue its output after it

terminates

• A message is ready after its sender task finishes and is available after its

transmission has ended

• Messages passed over a bus are modelled as communication tasks that are

inserted on the arc connecting the sender and receiver

• The policy of the scheduling of the tasks is known and the type of

transmission is also know (static or dynamic)

• A task τij∈ Vi is assigned to execute on Node τij

• Task τij has a worst case execution time C τij

• Communication time of a message ‘m’ is given by Cm =

Frame_size(m)/bus_Speed

The tasks and messages must then be scheduled. This is different for different

types of messages and tasks. For instance static messages can be defined in schedule

tables while for dynamic messages the worst case execution times must be know first.

Once the interactions between the various elements of a system are known, a

computer program can be implemented to carry out the analysis of a system. Figure

5.15 below shows a scheduling algorithm (Pop et. al. 2006).

Figure 5.15: Scheduling Algorithm

LITERARY REVIEW

- 92 -

There are many elements that define the FlexRay protocol. These are covered

in some detail in Pop et. al. (2006). Other papers that can fall into this area are the

papers by Kandasamy and Aloul (2005) and Bril et. al. (2006). These papers look at

allocating and scheduling messages on a TDMA network and CAN networks

respectively. To do this mathematical constraints and relationships are defined for the

system under investigation. The system can then be analysed and scheduling of the

system can be achieved. The pros and cons of mathematical modelling are covered in

section 5.4.2.1.

5.4.6 Discrete Event Simulation

Zhu (2007) and Zhu and Jackman (2007) present a discrete event simulation

implementation of an automotive system. Discrete event simulation focuses on the

flow of entities around a system. These entities are routed based on attributes and

operated on at servers. In this way the flow of information through a system may be

modelled. This takes into account the delays in the system and can help find

bottlenecks in a system. Chapter 7 of this thesis covers theory related to discrete event

simulation in more detail.

The simulation model presented by Zhu and Jackman (2007) was based on a

gateway between a CAN network and a FlexRay network. The simulation was

designed to accurately model a gateway that met the AUTOSAR specification. To

build the model Simulink and SimEvents were used. Figure 5.16, shows the

implementation of the upper layer, multicast non TP-PDU transmit model.

LITERARY REVIEW

- 93 -

Figure 5.16: Network gateway Simulink/SimEvents model

The use of Simulink/SimEvents allows for modular model building with

distinct subsystems and sections of the system. It also allows for a clear flow of

entities through a model. This can be seen from Figure 5.16 with the transmission and

confirm functions being split into different sections of the model. The different types

of simulation software are covered in section 7.8 of this thesis with section 7.9

focusing on MATLAB and Simulink/SimEvents.

5.4.6.1 Discrete Event Simulation, Pros and Cons

Discrete event simulation, as its name suggests, focuses on modelling a system

at discrete events in time. It is not concerned with continuous systems. This makes the

use of discrete event simulation very suitable for modelling a protocol such as

FlexRay or TTP. In these systems all communication happens at discrete points in

time. This even happens during the ‘dynamic’ segment of the FlexRay

communication cycle. There are also a large number of books or other reference

material that covers the theory.

There are drawbacks to discrete event simulation however. One such

drawback is that most systems to be modelled are not wholly discrete systems. Many

systems have continuous and discrete attributes. This means that the developer must

take this into account and make a combined discrete-continuous system. An

alternative is to model any continuous elements as discrete elements.

LITERARY REVIEW

- 94 -

5.4.7 Automesh

Automesh was presented in a paper by Vutturu et.al. (2006). Automesh is a

combination of several software model simulators. The paper, by Vutturu et.al.

(2006), focuses on the features of Automesh that allow it to be used to carryout

performance evaluation of vehicular communications. In particular it looks at a

broadcast network scheme that transmits information between vehicles in order to

share data such as traffic information. The system under investigation took into

account a number of factors such as driver behaviour and geographical topography

along with the communication network protocol.

The Automesh architecture therefore takes the form shown in Figure 5.17

(Vutturu et.al. 2006). The five main modules of the Automesh system are:

• The Driving Simulator

• Network Simulator

• Propigation Simulator

• Geographic Database

• Graphical User Interface module

Figure 5.17: Automesh architecture

The driving simulator defines the location of vehicles in the system. The

location of the vehicles changes based on a number of factors including information

LITERARY REVIEW

- 95 -

obtained from other vehicles. It also takes into account environmental and vehicle

dynamics. These include speed limits and traffic light locations as well as the

acceleration characteristics of the vehicles.

The network simulator allows the prebuilt models of communication protocols

to be used. The propagation simulator takes into account various factors that could

effect the transmission of information between vehicles. This can be affected by

factors such as vehicle positioning within a group of buildings among other things.

This can be quite complex and as such there is an option to use simple or complex

propagation models. As the propagation of signals can be affected by geographical

factors there is a need to have a geographical database. This will hold information

such as road layout and building information. This can mean a realistic system can be

achieved.

The final part of the system is the Graphical User Interface (GUI). This allows

for easy configuration of the simulation scenarios as well as providing an animation

(in real-time or offline) of the simulation events.

5.4.7.1 Automesh, Pros and Cons

The focus of Automesh is on the communication of information between cars

in a given area. This information is intended to communicate information such as

traffic jams for example. This will allow drivers follow a different less congested

route to their destination. The Automesh simulator therefore takes into account

geographical considerations into account. This will help analyse the effectiveness of

any wireless communications protocol. This can be useful to a designer of these

applications. However for the research as presented in this thesis it would be an

unsuitable tool.

There are a number of ideas that may be useful for FlexRay based research.

For instance, the propagation simulator could be relevant concept that could be used

in a FlexRay model. Ideas from the different analysis techniques may be taken and

adapted to produce a more suitable FlexRay analysis tool.

LITERARY REVIEW

- 96 -

5.4.8 Combined Simulator System

The paper presented by Hatnik and Altmann (2004) discuss the use of

simulator coupling. This is to allow the combination of different models that are

found in different tool boxes of different software packages. This allows for the best

models to be combined, producing a better overall simulation model. The focus of the

paper is on modelling a distributed system where data is sent from one or more

sources over an Ethernet LAN. Figures 5.18 (Hatnik and Altmann 2004) and 5.19

(Hatnik and Altmann 2004) show an abstract view of a distributed system and how it

could be mapped onto the co-simulation environment.

Figure 5.18: Abstract distributed system

Figure 5.19: Co-simulation mapped example

The data streams are generated and sent to C-applications connected to the

Ethernet model. The Ethernet model is constructed in NS-2. The data processor is

modelled in Simulink and the router is modelled in ModelSim. Each of these models

LITERARY REVIEW

- 97 -

must have some way to be connected. As such the communication structure for the

whole system is as shown below in Figure 5.20 (Hatnik and Altmann 2004).

Figure 5.20: Simulator communication structure

As can be seen from Figure 5.20, the models communicate over TCP/IP and

use sockets to do so. This allows for the different models to be run on a single

computer or on a number of different systems. These systems could be running

different operating systems such as Linux, Solaris or Windows. This however means

that a coupling component of each model must be implemented and the

synchronisation of the simulation has to be done using call backs or blocking

read/write socket routines.

NS-2 is a tool to simulate communication network protocols. It also allows for

traffic generators to be included to carry out performance and throughput analysis.

Abstract client and server models inside the model produce basic loads. These can

create or consume packages. The models are described by a set of parameters such as

packet size and distribution.

The network model usually consists of a number of node models that contain

the necessary node information such as the network stack information. To achieve a

LITERARY REVIEW

- 98 -

co-simulator however some nodes needed to be modified. The idea of Hatnik and

Altmann (2004) was to create interface nodes (i-nodes) to connect to simulator

interface. They were designed to allow NS-2 to act as the master simulator. Figure

5.21 below (Hatnik and Altmann 2004) shows their NS-2 model.

Figure 5.21: NS-2 model showing the interface module

The ModelSim implementation of the router block uses VHDL. It is also

possible to use Verilog. VHDL and Verilog are briefly introduced in section 6.11 of

this thesis.

A VHDL model will usually consist of an interface and dedicated

architectures to describe the operation of the system. The architectures are generally

described as behavioural and/or structural implementations. Figure 5.22 (Hatnik and

Altmann 2004) shows the behavioural description in VHDL. In this description the

model of the router takes header information from the data received. Based on

information such as source and destination addresses, the model decides what to do

with the data packet.

LITERARY REVIEW

- 99 -

Figure 5.22: Router block model

Simulink was used to implement the server model. As was already stated,

section 7.9 of this thesis will cover MATLAB and Simulink in detail. The user mode

Linux block shown in Figure 5.20 was implemented as real-world applications to send

and receive ‘real data packages’.

5.4.8.1 Combined Simulator Approach, Pros and Cons

The combined simulator approach has many benefits for model developers.

The main advantage is the ability to choose the best simulation tool for individual

sections of the model. This will help to optimise each model subsection. It also breaks

down the model at an early stage. This can help to create a clear concept of the goals

to be achieved. The model could also then be run on different machines. This could

reduce the run time of the application by spreading the computation over many

different processors. This approach also can use an actual network to transmit data.

This shows real-world systems can be used instead of a model representation. This

reduces the development time due to the communication medium not being modelled.

This can also reduce errors in the model.

LITERARY REVIEW

- 100 -

However the use of more than one computer could be costly if you do not

have easy access to multiple computers. It may also restrict the time when computers

can be utilised to run the tests. For instance this could mean that the computers can

only be used at night when they are normally idle. The development of the model may

also be affected by this approach. This method of model development requires the

developer or developers to be able to use a wide range of software and modelling

techniques. If a number of developers are required to build the model it is clear that

the cost to do this could be quite high.

From a development perspective problems could occur when running the

model if the simulation clock is not correctly synchronised. Other problems could be

found also when developing code to get the different applications to communicate

correctly. Finally as different simulation methods use different methods to solve/run

the simulation model, difficulty could be found when implementing them together.

5.4.9 Previous Analysis Conclusion

A number of different system analysis techniques have been discussed. Each

different technique has its own unique set of pros and cons. To ensure the research

outlined in this thesis is carried out correctly it is important to first choose the correct

system performance analysis technique. By choosing the most suitable technique to

perform the FlexRay system analysis more time could be spent developing the

necessary analysis tool and less time developing the necessary methods and tasks to

perform the analysis. This will result in an overall better and efficient analysis system

and ultimately a more accurate set of results.

Each of the different analysis techniques were compared to each other and to

the objectives of the research. These objectives included looking at the movement of

data around a node and buffer usage. As data moves around the node various

constraints must be met. The analysis tool should allow a system designer to analyse

the necessary data to optimise a node.

LITERARY REVIEW

- 101 -

 Timing

Analysis

Data Flow

Analysis

Flexibility Reference

Material

Dedicated

Commercial

Software

Notes

DES Yes Yes Yes Yes Yes A similar study has already been conducted using DES. A wide

variety of software packages can be used and there is a wide

variety of reference material available.

Combined

Simulator

Yes Yes Yes Yes – separate for

each simulator

element

Yes A developer would need to a good standard of a number of

different software tools. Problems could be encountered when

interfacing the different simulator types as well as the different

simulators.

SymTas Yes Yes Yes No Yes Similar to DES but with only one company offering the software.

There is also no specific reference material not offered from the

development company.

Mathematical

Modelling

Yes Yes Yes Yes No All mathematical expressions must relate to a variable such as

time. The accuracy of the model may be affected by poor or

incorrect mathematical relationships.

Automesh Yes Yes yes No No A number of elements of the Automesh such as the propagation

simulator may be useful to the study.

UML Not as

standard

Yes Yes Yes No UML models must be converted into other software languages

before execution. This could increase development time.

Focus

Modelling

Yes Yes Yes No No This has been used to model a FlexRay node already.

Table 5.3: System analysis technique requirements summary

LITERARY REVIEW

- 102 -

Table 5.3 shows a summary of the system analysis technique review. The

previous system analysis techniques that have been looked at all scored highly in this

review. This is not surprising as they have all been used in the past to successfully

perform their intended purposes. To choose the most suitable analysis technique it was

necessary to focus the comparison of the techniques on the tools and support available

to achieve a successful outcome to the research. This immediately highlighted the

combined simulator and discrete event simulation techniques. The other options were

discarded for the most-part based on the limited knowledge and support of the

techniques and methods used. For example mathematical models were discarded even

though a generic programming language may have been used to achieve the ultimate

goal but the accuracy may have been affected by poor mathematical expressions. All

required methods and tools to simulate a FlexRay node would also need to be defined

formally and this would increase the development time.

Discrete event simulation has a large amount of reference material to help

develop a model. The software available has, in some cases, been available for a

number of years and is widely understood. This means that a large amount of work can

be saved by using the methods and techniques already developed for any specific

software that may be chosen. The time spent developing the model can then be

dedicated to creating the model rather than learning how to use the modelling software.

There are also a large number of online support forums for a number of the different

modelling software programs. This is an advantage as this means expert knowledge on

the software programs can easily be consulted.

The combined simulator approach allows the best simulation model to be

developed. By breaking down a system into various subsystems a clear picture of the

operation can be achieved. The most suitable modelling technique and software can

then be chosen to model any aspect of the system. This has drawbacks however as it

requires a developer to be knowledgeable in a number of different modelling techniques

and software packages. The different subsystems must ultimately be combined into an

overall system simulation model. This could lead to problems as different simulation

techniques will represent different aspects of the system, time for example, in different

ways. It could then prove difficult to combine all the different modelling subsystems

and could slow the execution of the model down as one subsystem may have to wait for

a following subsystem to complete a task.

LITERARY REVIEW

- 103 -

 Due to the issues of the combined simulator approach it was decided that

discrete event simulation should be used.

5.5 Conclusion

System performance analysis is an important step in product development. It

forces the developer to focus on the system under development from an early stage, i.e.

the initial development stage, through to the release of the system. However to achieve

this, a proper set of metrics must be developed. This will allow the accurate

interpretation of the analysis results. By defining a good set of metrics early on in the

design stage of a system a better product can be delivered. The metrics can be used to

help investigate the performance of the actual system under investigation. They can also

be applied to the project as a whole. When the project is complete, system analysis

helps to quantify how well the system performs. This includes the execution time and

memory requirements. It can also help to judge if the application is suitable for its

intended purpose.

As can be seen from section 5.4 a large number of different ways of simulating

and analysing systems has been explored. New methodologies have also been suggested

based on these methodologies and these have been explored. Each simulation method

was then analysed for its suitability to conduct the research presented in this thesis.

However there has not emerged a single method that is better than any other method.

The method chosen should be suitable to the properties of the system under

investigation.

In section 5.4.6 discrete event simulation was introduced. This focuses on the

amount of time it takes for an entity to be serviced before moving onto another part of

the system. Where the entity goes could depend on attributes associated with the entity.

This approach lends itself to performance analysis of data flow through a system. This

is a big advantage for the research described in this thesis. For this reason it was chosen

as the most suitable analytical approach.

Other factors that were not covered however would be cost, support and

availability, etc. of the software to be used. These were all also considered before

LITERARY REVIEW

- 104 -

discrete event simulation was decided upon. The factors that were considered when

choosing the most suitable software are covered in chapter 7.

5.6 References

Bril, R.J., Lukkien, J.J., Davis, R.I. and Burns, A. (2006) Message Response Time

Analysis for Ideal Controller Area Network (CAN) Refuted, University of Eindhoven,

Computer Science Report, May 2006.

Fenton, N.E. (1991) Software Metrics – a Rigorous Approach, London: Chapman &

Hall.

Hagiescu, A., Bordoloi, U.B., Chakraborty, S., Sampath, P., Vignesh, P., Ganesan, V.

and S. Ramesh, S. (2007) Performance analysis of FlexRay-based ECU networks

Annual Proceedings of the 44th annual ACM IEEE Design Automation Conference,

San Diego, California, 284 - 289 .

Hatnik, U. and Altmann, S. (2004) Using ModelSim, Matlab/Simulink and NS for

Dimulation of Distributed Systems, Proceedings of the International Conference on

Parallel Computing in Electrical Engineering, Dresden, Germany, September 7-10

2004, IEEE Computer Society Washington, DC, USA, 114 – 119.

Henia, R., Hamann, A. and Jersak, M. (2005) System Level Performance Analysis- the

SymTA/S Approach, IEE Proceedings Computers and Digital Techniques, 152(2), 148-

166.

Kandasamy, N. and Aloul, F. (2006) The Synthesis of Dependable Communication

Networks for Automotive Systems, SAE 2006 Transactions Journal of Passenger Cars:

Electronic and Electrical Systems, SAE International, Warrendale, Pennsylvania, USA.

Laplante, P.A. (1992) Real-Time System Design and Analysis an Engineer’s Handbook,

New Jersey: IEEE Press.

LITERARY REVIEW

- 105 -

Möller, K.H. and Paulish, D.J. (1993) Software Metrics – a Practitioner’s Guide to

Improved Product Development, London: Chapman & Hall.

Pop T. (2007) Analysis and Optimisation of Distributed Embedded Systems with

Heterogeneous Scheduling Policies, unpublished thesis (PhD.), Linköpings Universitet.

Pop, P., Eles, P. and Peng, Z. (2003) Schedulability Analysis and Optimisation for the

Synthesis of Multi-Cluster Distributed Embedded Systems, IEE Proceedings -

Computers & Digital Techniques, Vol. 150, Issue 5, Sept. 2003, pp. 303-312.

Pop, T., Pop, P, Eles, P. and Peng, Z. (2007) Bus Access Optimisation for FlexRay-

Based Distributed Embedded Systems, Proceedings of the Conference on Design,

Automation and Test in Europe, Nice, France, April 16-20 2007, IEEE Computer

Society Washington, DC, 51 – 56.

Pop, T., Pop, P., Eles, P., Peng, Z. and Andrei, A. (2006) Timing Analysis of the

FlexRay Communication Protocol, in Proceedings of the 18th Euromicro Conference on

Real-Time Systems, Dresden, Germany, July 5-7, 2006, IEEE Computer

Society Washington, DC, USA, 203-216.

Racu, R., Ernst, R., Richter, K. and Jersak, M. (2007) A Virtual Platform for

Architecture Integration and Optimization in Automotive Communication Networks,

Proceedings of SAE World Congress, Detroit, Michigan, USA, April 16-19, 2007.

Richter, K. and Ernst, R. (2006) Real-Time Analysis as a Quality Feature: Automotive

Use-Cases and Applications, Proceedings of Embedded World Conference, Nürnberg,

Germany, February 14-16, 2006.

Shepperd, M. and Ince, D. (1993) Derivation and Validation of Software Metrics,

Oxford: Oxford University Press.

Vuyyuru, R., Oguchi, K., Collier, C. and Koch, E. (2006) Automesh: Flexible

Framework for Vehicular Communication ,Proceedings of 2006 Third Annual

LITERARY REVIEW

- 106 -

International Conference on Mobile and Ubiquitous Systems: Networking & Services,

San Jose, California, USA, July 17-21 2006, IEEE Computer Society Washington, DC,

USA, 1-6.

Yang, G., Zhao, M., Wang, L. and Zhaohui Wu, Z. (2005) Model-based Design and

Verification of Automotive Electronics Compliant with OSEK/VDX, Proceedings of

the Second International Conference on Embedded Software and Systems (ICESS'05),

Xi'an, China, December 16-18 2005, IEEE Computer Society Washington, DC, USA,

237 – 245.

Zhang, B. (2008) Modelling and Analyzing of a Time-Triggered Protocol for

Automotive Systems, Proceedings of Third International Conference on Systems,

Cancun, Mexico, April 13-18, 2008, IEEE Computer Society Washington, DC, USA,

334-340.

Zhu W. (2007) Performance Analysis of AUTOSAR Vehicle Network Gateways,

unpublished thesis (M.Sc.), Waterford Institute of Technology.

Zhu W. and Jackman, B. (2007) Using Simulation for Designing In-Vehicle Network

Gateways, SAE 2007 Transactions Journal of Engines, SAE International, Warrendale,

Pennsylvania, USA.

LITERARY REVIEW

- 107 -

Chapter 6 . E-Ray

6.1 Introduction

The Bosch E-Ray communications controller was developed to fully conform to

the FlexRay protocol and has been conformance tested successfully (Robert Bosch

Gmbh 2006a; FlexRay Consortium 2006). It is a full FlexRay IP-Module with message

handling, has driver support from reputable companies and is one of the most widely

used FlexRay modules (Robert Bosch Gmbh 2006a). It is available as an FPGA netlist

or as VHDL source code. The message RAM holds up to 128 message buffers and each

message buffer can hold up to 254 data bytes (FlexRay Consortium 2006), depending

on the configuration of the chip for a given application.

All the messaging functions such as message acceptance or rejection and the

schedule for messages are handled by a message handler. The registers of the module

can also be accessed by an external CPU via a host interface. This can then be used to

control or change various aspects of the module. This could include the protocol

controllers, interrupt control or access to the message RAM as well as other aspects of

the module’s features (FlexRay Consortium 2006).

6.2 Features

 Some of the features of the E-Ray module are (Robert Bosch Gmbh 2006b;

FlexRay Consortium 2006):

1. 100% conformance with the FlexRay protocol specification v2.1.

2. Dual channel with up to 10MBits/s data rate on each as defined in the FlexRay

Consortium protocol (2005).

3. Configurable message RAM.

4. Host access to message buffers.

5. Filtering for frame, channel ID and cycle counter values.

LITERARY REVIEW

- 108 -

6. Support for network management.

7. Maskable module interrupt.

8. 8/16/32-bit generic interface for connection to customer-specific host CPUs.

6.3 Components

 Figure 6.1 shows a block diagram of all the components of an E-Ray module. It

is based on the block diagram found in the Bosch product information (2006a).

Figure 6.1: Block diagram of the workings of an E-Ray chip

The red lines in Figure 6.1 represent data flowing from left to right; the blue lines are

data flowing from right to left. The black connecting lines represent data flow in both

directions.

LITERARY REVIEW

- 109 -

6.3.1 Module Functions

6.3.1.1 Generic Interface

 This allows a customer-specific CPU to be connected to the E-Ray IP-module

through an 8, 16 or 32-bit generic interface (Robert Bosch Gmbh 2006a; Robert Bosch

Gmbh 2006b).

6.3.1.2 Input and Output Buffers

 These allow storage of two complete messages each. This is for transfer between

the host and the message RAM. The input/output buffer RAM is 8448 bits in size and is

broken down into 4*64*32 bits (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh

2006b).

6.3.1.3 Message Handler

 This controls the data transfer between the input/output buffers and the message

RAM. It also controls the transfer between the protocol units transient buffers and the

message RAMs (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b).

6.3.1.4 Message RAM

 The message RAM is a single-ported RAM which stores the configuration and

FlexRay messages. The message RAM is 4,352 bits in size (Robert Bosch Gmbh 2006a;

Robert Bosch Gmbh 2006b).

6.3.1.5 Global Time Unit

 This is a common base for both channels and provides the microtick and

macrotick, clock synchronisation, cycle counter and the timing control for the static and

dynamic segments of the communications cycle (Robert Bosch Gmbh 2006a; Robert

Bosch Gmbh 2006b).

LITERARY REVIEW

- 110 -

6.3.1.6 Network Management

 This handles the network management algorithm (Robert Bosch Gmbh 2006a;

Robert Bosch Gmbh 2006b).

6.3.1.7 System Universal Control

 This controls wakeup, startup and integration of the node into a cluster (Robert

Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b).

6.3.1.8 Interrupt Control

 This controls generation of module interrupts. The interrupt flags and timers can

be found here (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b).

6.3.1.9 Frame/Symbol Processing

 This is where the timings of frames and symbols are enforced. It also tests the

received messages for errors such as corrupted data and syntax and sets the slot status

flags (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b).

6.3.1.10 Protocol Unit

 This is the connection to the physical medium of the network. It consists of a

shift register and protocol finite state machine (FSM). The transient buffer RAM is

connected to these for temporary storage. The transient buffer RAM is 8448 bits in size

which is broken down as 2*128*33 bits (Robert Bosch Gmbh 2006a; Robert Bosch

Gmbh 2006b).

6.4 Register Map

The E-Ray module has an address space of 2K bytes. This gives an address

range of 0x0000 to 0x07FF. The address space of the E-Ray in the range 0x0000 to

0x000F are reserved for customer specific CPUs. The function of these changes from

LITERARY REVIEW

- 111 -

CPU to CPU. The registers are organised into 32-bit wide registers but have the ability

to be accessed as 8 or 16 bit registers (Robert Bosch Gmbh 2006b, p18).

 The message buffers are assigned according to the following table, Table 6.1

(Robert Bosch Gmbh 2006b, p 18).

Table 6.1: Message buffer assignment

The message buffers can be assigned in various ways. To configure the message

buffers the Message RAM configuration register should be set as desired. The

maximum number of message buffers that can be assigned is 128 and the maximum

length of the payload is 254 bytes. The number of buffers however depends on the

configured maximum length of the system’s payload (Robert Bosch Gmbh 2006b, p18).

As can be seen in Figure 6.2, there are three sections that the memory has been divided

into:

1. The static buffers

2. The static or dynamic buffers

3. The FIFO

The first section is used for the static section only. The first message buffer,

buffer 0, is used to hold the startup/sync frame or the single slot frame if the node can

transmit one. If these are different for both channels then buffer 1 is used to store the

other channel’s sync or single slot frame (Robert Bosch Gmbh 2006b, p18).

The second group is used for buffers assigned to either the static or dynamic

segments. They can be reconfigured during runtime to suit the given situation (Robert

Bosch Gmbh 2006b, p18).

The buffers belonging to the third and final group can be assigned to a receive

FIFO.

LITERARY REVIEW

- 112 -

6.5 Communication Controller States

 This section will describe the different states the controller can be in and what

they do. Figure 6.2, shows all possible states and the possible transitions in and out of

each state. This diagram is based on two diagrams in the E-Ray’s user manual (Robert

Bosch Gmbh 2006b, p105; Robert Bosch Gmbh 2006b, p110).

Figure 6.2: Possible communications controller states

Each state and some details on each are given in sections 6.5.1-6.5.9.

6.5.1 DEFAULT_CONFIG

 In the DEFAULT_CONFIG state the communications controller is stopped and

all registers are accessible. The physical pins connecting the device to the physical layer

are also set to an inactive state. As can be seen from the diagram, when leaving this

state the controller can only transition to the CONFIG state and to enter this state the

controller must be powered on/ reset or transition from the HALT state (Robert Bosch

Gmbh 2006b, p107).

LITERARY REVIEW

- 113 -

6.5.2 CONFIG

 The controller will enter and remain in this state with the physical pins still

inactive. This state is used to configure the controller and if this state has been arrived at

through the HALT-DEFAULT_CONFIG route additional information will be available

to the host to ensure that the setup is fault free. To exit from this state an unlock

sequence is used using the lock register (Robert Bosch Gmbh 2006b, p107).

6.5.2.1 Unlock Sequence

 The unlock sequence is a three write process. The first write to the lock register

is with the value 0xCE. This is followed by a second write with the value 0x31 followed

by the third write with the command you wish i.e. READY, MONITOR_MODE, ATM

or LOOP_BACK, to the SUC configuration register 1.

 If the write sequence is interrupted by other write accesses between the second

and third write then the controller stays in the CONFIG state and the process must be

repeated (Robert Bosch Gmbh 2006b, p23).

6.5.3 MONITOR MODE

 This mode is used to receive frames and detect wakeup patterns. This state can

be used to debug the system. An example of this is if a startup of a FlexRay network

fails. In this mode it may only be possible to receive messages on only one channel

(Robert Bosch Gmbh 2006b, p108).

6.5.4 READY

 This state is used to either transition to the WAKEUP state or STARTUP state.

This is so that the node will be able to wakeup a cluster or integrate into a running

cluster (Robert Bosch Gmbh 2006b, p108).

6.5.5 STARTUP

 Any node entering startup will follow the steps as shown in Figure 6.3 (Robert

Bosch Gmbh 2006b, p114).

LITERARY REVIEW

- 114 -

Figure 6.3: State diagram for node entering startup

Figure 6.3 shows the standard integration method of a node. For further details

on the startup procedure see the Bosch application note on the startup (Robert Bosch

Gmbh 2006d), the FlexRay protocol (FlexRay Consortium 2005) and the E-Ray’s user

manual (Robert Bosch Gmbh 2006b, pp113-7).

6.5.6 NORMAL ACTIVE

 A node entering the NORMAL_ACTIVE mode will start to communicate across

a cluster in the way defined by the FlexRay protocol (FlexRay Consortium 2005). This

means that the node sends and receives FlexRay frames and performs synchronisation.

The host interface is also operational (Robert Bosch Gmbh 2006b, p118).

LITERARY REVIEW

- 115 -

6.5.7 NORMAL PASSIVE

 The NORMAL_PASSIVE state is entered when the error state changes from

active to passive. In this mode frames are received over the physical medium but no

transmissions occur from the node. The host interface will also be operational and clock

synchronisation will still occur (Robert Bosch Gmbh 2006b, p118).

6.5.8 HALT

This state is entered when a freeze command is received in any state; a halt state

is entered when the controller is in either the NORMAL_ACTIVE or

NORMAL_PASSIVE states or when exiting from either the NORMAL_ACTIVE or

NORMAL_PASSIVE state because the counter for the clock correction failed limit was

reached. The state that the controller was in prior to entering the HALT state is held in

the CC Status Vector register (Robert Bosch Gmbh 2006b, p108).

6.5.9 WAKEUP

 This section describes the operation of the controller’s states for wakeup. For a

full description of the wakeup procedure of a FlexRay node see the FlexRay protocol

(FlexRay Consortium 2005) and the Bosch wakeup application note (Robert Bosch

Gmbh 2006c).

6.5.9.1 WAKEUP STANDBY

 This state allows transition from various other states to the WAKEUP_LISTEN

or READY states.

6.5.9.2 WAKEUP LISTEN

 In this state the controller listens for wakeup patterns (WUP) sent from other

nodes in the cluster. The state is controlled by two timers. One will allow the wakeup of

a cluster faster in a non-noisy environment while the other is used where noise-

interference is an issue (Robert Bosch Gmbh 2006b, p111).

LITERARY REVIEW

- 116 -

6.5.9.3 WAKEUP SEND

 This state transmits a wakeup pattern while checking for collisions on a given

channel. After successful wakeup of a cluster the node must enter the startup mode

(Robert Bosch Gmbh 2006b, p111).

6.5.9.4 WAKEUP DETECT

 This state attempts to indentify the reason a wakeup collision was detected. If it

cannot determine another wakeup attempt by another node or ongoing communication

on the channel as the reason for a collision within a given time, the node leaves this

state and the reason for the collision is set as unknown (Robert Bosch Gmbh 2006b,

p111).

6.6 Error Handling

 The implemented error handling procedure is intended to allow all non-affected

communicating nodes to continue operating as normal if a single node experiences a

lower layer error (Robert Bosch Gmbh 2006b, p103). Table 6.2 (Robert Bosch Gmbh

2006b, p103), shows the error modes along with how the controller behaves during this

time.

LITERARY REVIEW

- 117 -

Table 6.2: Error modes

Below is a detailed description of how the controller deals with various events.

6.6.1 Freeze Command

 If a severe error is detected by the host then it can transition the controller to the

HALT state from any other state by using the FREEZE command. The protocol

operations control state from which the HALT state was entered can be read from the

CC status vector register (Robert Bosch Gmbh 2006b, p104).

6.6.2 Halt Command

 The host may from time to time wish to stop the controller by using the HALT

command. This will stop communication on the node and if the controller is in

NORMAL_ACTIVE or NORMAL_PASSIVE mode this will happen at the end of the

current communication cycle. If this command is used in any other state the command

will not be accepted. In order to shut down the entire FlexRay network a higher level

protocol should be used (Robert Bosch Gmbh 2006b, p104).

6.6.3 Clock Correction Failed

 When the counter for the clock correction failed reaches first the ‘maximum

without clock correction passive’ value the controller will transition from the

NORMAL_ACTIVE to the NORMAL_PASSIVE state. If the ‘maximum without clock

correction fatal’ limit is reached then the controller will transmit from either

NORMAL_ACTIVE or NORMAL_PASSIVE to the HALT state.

LITERARY REVIEW

- 118 -

 The counter allows the host to monitor the inability of a node to perform clock

correction. It is incremented at the end of the odd communication cycles if either the

rate or offset correction term is missing. If they are both detected then the counter is set

to zero. It is also reset to zero if the controller enters the READY or

NORMAL_ACTIVE state and will stop incrementing once the ‘maximum without

clock correction fatal’ limit is reached (Robert Bosch Gmbh 2006b, p103).

6.6.4 Passive to Active Counter

 This counter defines the number of cycle pairs that must have valid clock

correction terms before the controller is allowed to transition from

NORMAL_PASSIVE to NORMAL_ACTIVE. If this is set to zero then no transition is

allowed (Robert Bosch Gmbh 2006b, p104).

6.6.5 Parity Checking

 An even parity check is used to ensure integrity of data stored in the RAM

blocks. The RAM blocks have a parity generator and checker attached as shown in

Figure 6.4 (Robert Bosch Gmbh 2007, p7) which locally generates the parity bit and

stores it with the data (Robert Bosch Gmbh 2007, p6). This is checked each time data is

read from the RAM blocks but the parity checker is not able to detect which bit is

incorrect and cannot repair errors. If an error is detected an associated flag is set (Robert

Bosch Gmbh 2007, pp9-10).

LITERARY REVIEW

- 119 -

Figure 6.4: RAM blocks with local parity generators and checkers

It should be noted that the generators and checkers are not part of the RAM but

lie between the core and RAM (Robert Bosch Gmbh 2007, p6).

 Errors can be caused by a faulty RAM cell. This may just be a temporary fault

and not a permanently damaged logic cell. However as a cell will be updated at a

regular interval then the problem may be self-curing or may lead to the application

using an error correction routine on the detected block. If a parity error is detected the

transmission of the frame will be blocked (Robert Bosch Gmbh 2007, p12).

 For a FIFO buffer when a parity error is detected then all data to be stored in the

message buffer is lost. If the error is detected in the header section however, the FIFO

needs to be reconfigured (Robert Bosch Gmbh 2007, p14).

 To correct the problem, if one exists, then through a word-wise read the word

which is affected can be found. The error can then be bypassed through reconfiguration

of the data pointer to the message buffer in question or through reconfiguration of the

message buffer if the error is detected in the header section of the message RAM

(Robert Bosch Gmbh 2007, pp14-5).

LITERARY REVIEW

- 120 -

6.7 Message Handling

 A message handler controls data transfers between the input/output buffers and

the message RAM as well as the message RAM and the transient RAMs. All the access

to the RAMs is done as 33 bit accesses. This is because there are 32-bits of data and an

additional parity bit. The use of the message handler is to avoid any possible conflict

between the host and the channel protocol controllers attempting to access the message

RAM (Robert Bosch Gmbh 2006b, p130).

 The message RAM is scanned according to the following table, Table 6.3

(Robert Bosch Gmbh 2006b, p130).

Table 6.3: Message RAM scan

The scan is terminated at the start of the network idle time section of the

communications cycle even if the scan is not completed. The scan starts during slot 1 of

the actual cycle starting with message RAM slot 2 with the scan of the first message slot

done in the previous cycle. This check on the first slot is done in parallel with the scan

of the message RAM to determine if there is a message buffer configured for slot 1 of

the next cycle (Robert Bosch Gmbh 2006b, p130).

 If the application needs to operate with more than 128 different messages then

the static and dynamic buffers can be reconfigured during the operation of the node. To

do this the header section of the respective message buffers is updated using the write

header section 1 register.

 If the reconfiguration of the message buffer is done before the transmission or if

the buffer is updated the message is lost (Robert Bosch Gmbh 2006b, p130).

LITERARY REVIEW

- 121 -

6.7.1 Host Access to the Message RAM

 The host access to the message RAM occurs through the input and output

buffers. It is done by the host writing the number of the target/source message buffer to

the input buffer command request or output buffer command request registers (Robert

Bosch Gmbh 2006b, p132).

 The buffers are built as a double buffer structure so that the host can access one

half of the buffer while the other half (the shadow) is accessed by the message handler

to allow transfer between the message RAM and input/output buffers (Robert Bosch

Gmbh 2006b, p132). Figure 6.5 (Robert Bosch Gmbh 2006b, p132), shows the

connections between the message RAM, the message handler and the Host.

Figure 6.5: Host – message RAM interface

6.7.2 Input Buffer to Message RAM transfer

 When the host writes to the target message buffer in the message RAM by using

the command register, the input buffer host and shadow are swapped as in Figure 6.6

(Robert Bosch Gmbh 2006b, p133).

LITERARY REVIEW

- 122 -

Figure 6.6: Double buffer structure input

This is in addition to the input buffer command mask and input buffer command

register bits being swapped as in Figure 6.7 (Robert Bosch Gmbh 2006b, p133).

Figure 6.7: Swapping input buffer command mask & input buffer command register bits

The message RAM can now be filled with the data from the input buffer shadow

while the host is still free to write to the input buffer host. When the write operations

have finished and been indicated the process can start again (Robert Bosch Gmbh 2006b,

p133).

6.7.3 Output Buffer to Message RAM Transfer

 The message RAM is read by the host writing to the output buffer command

register to start transfer as defined by the output buffer command mask register. The

output buffer is a double buffer, as can be seen in Figure 6.8 (Robert Bosch Gmbh

2006b, p135). This is structured like the input buffer to facilitate faster data transfer.

LITERARY REVIEW

- 123 -

Figure 6.8: Double buffer structure output

 The host and shadow buffers are swapped when a transfer request is made by the

host. Some output buffer command mask and output buffer command register bits are

also swapped as in Figure 6.9 (Robert Bosch Gmbh 2006b, p135).

Figure 6.9: Swapping output buffer command mask & output buffer command register bits

The bits from the output buffer command mask and output buffer command register use

internal storage to swap the bits as can be seen in Figure 6.9.

6.7.2 Protocol Controller Access to Message RAM

 The transient buffer RAMs are used to buffer data before transfer between the

two FlexRay protocol controllers and Message RAM takes place. They consist of a

double buffer each so that one can be assigned to the protocol controller and the other

one is accessible to the message handler. This allows for greater throughput as a

message being received can be stored while the message handler writes a message to

‘Transient Buffer Tx’ buffer at the same time (Robert Bosch Gmbh 2006b, p138).

Figure 6.10 (Robert Bosch Gmbh 2006b, p138), shows the layout of the transient buffer

RAMs along with connections in and out of it.

LITERARY REVIEW

- 124 -

Figure 6.10: Transient buffer RAMs

6.8 Message RAM

 As has been stated earlier access to the message RAM is handled by a message

handler to avoid conflicts. It can store up to 128 messages depending on configuration

and payload lengths.

 The message RAM is organised as 2048 x 33 (= 67,548) bits as each data word

is 32 bits wide with an added parity bit for protection. To achieve the flexibility that

FlexRay demands the RAM is broken up into a header partition and data partition

(Robert Bosch Gmbh 2006b, p139). This is shown in Figure 6.11 (Robert Bosch Gmbh

2006b, p139).

LITERARY REVIEW

- 125 -

Figure 6.11: Message RAM configuration example

 The header partition is used to store the header section of each message, is made

up of 4 x 32+1 bit words and contains amongst other things a pointer to the data section

(Robert Bosch Gmbh 2006b, p139).

 The data section has a maximum of 30 message buffers of 254 data bytes in

length each. This can be changed depending on configurations i.e. if the data section

was 128 bytes then the maximum number of message buffers would be 56 or 128 with a

data section of 48 bytes (Robert Bosch Gmbh 2006b, p139).

 The header section is broken down as shown in Figure 6.12 (Robert Bosch

Gmbh 2006b, p140).

LITERARY REVIEW

- 126 -

Figure 6.12: Header segment in message RAM

 Each header word is broken down as follows (Robert Bosch Gmbh 2006b,

pp141-2):

Header 1:

• Frame ID

• Cycle Code

• Channel filter configuration (CHA, CHB)

• Transmit/receive configuration (CFG)

• A payload preamble transmit bit (PPIT)

• A transmit mode configuration (TXM)

• Message buffer interrupt enable (MBI)

Header 2:

• Header CRC

• Payload length configured in terms of 2-byte words

• Payload length received in terms of 2-byte words

LITERARY REVIEW

- 127 -

Header 3:

• The data pointer

• Receive cycle count

• A received on channel indicator (RCI)

• A startup frame indicator (SFI)

• A sync frame indicator (SYN)

• A null frame indicator (NFI)

• A payload preamble indicator (PPI)

• Reserved bit (RES)

Message Buffer Status

 This is the final header section and is made up of:

• A valid frame received on channel A (VFRA) bit

• A valid frame received on channel B (VFRB) bit

• A syntax error observed on channel A (SEOA) bit

• A syntax error observed on channel B (SEOB) bit

• A content error observed on channel A (CEOA) bit

• A content error observed on channel B (CEOB) bit

• A slot boundary violation observed on channel A (SVOA) bit

• A slot boundary violation observed on channel B (SVOB) bit

• A transmission conflict indication on channel A (TCIA) bit

• A transmission conflict indication on channel B (TCIB) bit

• An empty slot on channel A (ESA) bit

• An empty slot on channel B (ESB) bit

• A message lost (MLST) bit

• Cycle count status

• A received on channel indicator status (RCIS)

• A startup frame indicator status (SYNS)

• A null frame indicator status (NFIS)

• A payload preamble indicator status (PPIS)

• A reserved bit status (RESS)

LITERARY REVIEW

- 128 -

The data partition starts after the last word of the header section and the data

sections are stored as in Figure 6.13 (Robert Bosch Gmbh 2006b, p143). This example

shows a data section with an odd number of 2-byte words and thus the last 16-bits in the

32-bit word are unused (Robert Bosch Gmbh 2006b, p143).

Figure 6.13: Data partition in message RAM example

 The beginning and end of the data section are determined by the data pointer and

payload configuration length configured in the header section. This makes it a flexible

system and suitable for FlexRay (Robert Bosch Gmbh 2006b, p143).

6.8.1 Message RAM Configuration

 To define how many buffers are assigned to the static and dynamic segments as

well as the FIFO, the message RAM configuration register should be configured by the

application programmer (Robert Bosch Gmbh 2006e, p6).

 Some of the bits to be configured in this register are the first dynamic buffer,

first buffer of the FIFO and the last configured buffer (Robert Bosch Gmbh 2006e, p6).

These are also known as FDB, FFB and LCB respectively and referred to as such in

Table 6.1 a the start of this chapter.

 To define the size of the FIFO the FFB bits and LCB bits are used and if a

dynamic buffer or buffers are configured then the value stored in the FFB bits should be

greater than that of the value in the FDB. To disable the dynamic buffers the FDB value

should be greater than 128 and to disable the FIFO the FFB value should also be greater

than 128. LCB must also be greater than FBD and FFB as it is not possible to put the

LITERARY REVIEW

- 129 -

FIFO header section or dynamic header section before the static section. It should be

noted that there is no checking in place that the configuration is valid and as such it is

up to the programmer to ensure the setup meets the specifications (Robert Bosch Gmbh

2006e, p8).

 The first buffer, buffer 0, can be used to store a startup frame, sync frame, a

single slot frame or a normal frame. This is defined by various registers. If the value of

the startup, sync or single slot frame is different for channels A and B then the second

buffer can be assigned to channel B and the first buffer is used for channel A (Robert

Bosch Gmbh 2006e, pp8-9).

6.9 Filtering and Masking

 Filtering is done by comparing the configuration of message buffers against slot,

cycle and channel ID values. A message buffer will only be updated or transmitted if

matching occurs (Robert Bosch Gmbh 2006b, p121). The combinations for filtering that

are permitted are (Robert Bosch Gmbh 2006b, p121):

• Slot counter & channel ID

• Slot counter , cycle counter & channel ID

6.9.1 Slot Counter Filtering

 The header section of the transmit buffer and the receive buffer holds a frame ID.

The frame ID from the message buffer is compared to the slot counter values in order to

assign transmit and receive buffers to the slot. If two message buffers have the same

frame ID then the lowest message buffer will be used if the cycle counter filter is the

same (Robert Bosch Gmbh 2006b, p121).

6.9.2 Cycle Counter Filtering

 Again each message buffer will hold a cycle set field in the header section. If a

match is observed this is due to one of the elements of the cycle set being matched. The

set of cycle numbers belonging to the cycle set is determined as shown in Table 6.4

LITERARY REVIEW

- 130 -

(Robert Bosch Gmbh 2006b, p122) with an example shown in Table 6.5 (Robert Bosch

Gmbh 2006b, p122).

Table 6.4: Cycle set definition

Table 6.5: Examples of cycle sets

 Received messages are only stored if the cycle counter value during which the

message is received matches an element of the cycle set and the other filtering criteria

are met (Robert Bosch Gmbh 2006b, p122).

 Transmit frames are transmitted on the desired channel or channels when an

element in the cycle set matches the cycle counter value and other filtering criteria are

met. It should be noted that sharing of a static time slot, across a number of different

nodes, by using cycle counter filtering is not allowed (Robert Bosch Gmbh 2006b,

p122).

6.9.3 Channel ID Filtering

 Each message buffer has a filtering field for the channel in the header section

that uses 2-bits. For receive buffers it acts as a filter while transmit buffers use it as a

LITERARY REVIEW

- 131 -

control field (Robert Bosch Gmbh 2006b, p123). This can be seen in Table 6.6 (Robert

Bosch Gmbh 2006b, p123).

Table 6.6: Channel filtering bit configurations

 The frames to be transmitted will be sent out according to this configuration if

other filtering criteria are met. Received frames will be stored if they are received on the

correct channel as specified by the table and other filtering criteria are met. Only frames

transmitted or received during the static segment of the communication cycle are

allowed to be configured for both channels. When dynamic segment frames that are set

up so both bits of the channel ID filter are set as a logic one then this will be treated as

though the bits were both set as a logic zero, i.e. ‘no transmission’ (Robert Bosch Gmbh

2006b, p123).

6.9.4 FIFO Filtering

 The filtering for the FIFO is different to the message RAM filtering. This uses a

rejection filter and filter mask. The filter consists of a channel, frame and cycle counter

filter. The cycle counter filter determines the cycle set to which the other filtering is

applied and all other frames in other cycles are rejected. A valid received frame is stored

in the FIFO if the rejection filter and rejection filter mask do not correspond to the

frame and there is no matching receive buffer (Robert Bosch Gmbh 2006b, p123).

6.10 FIFO

 The FIFO is a First-In-First-Out cyclical buffer. The buffers belonging to it are

found one after another in the register map. The message RAM configuration register

defines the first and last register of the FIFO using the values in the FFB bits and LCB

LITERARY REVIEW

- 132 -

bits with a maximum of 128 buffers for the FIFO (Robert Bosch Gmbh 2006b, p128;

Robert Bosch Gmbh 2006f, p6).

 The FIFO is used to store incoming frames that do not have a dedicated receive

buffer. It also treats null frames that are not filtered out as data frames and stores them

(Robert Bosch Gmbh 2006b, p128; Robert Bosch Gmbh 2006f, p6).

 There are two index registers associated with the FIFO, and these are the put

next index (PIDX) register and the get next index (GIDX) register. When a new

message is to be stored in the FIFO it is stored in the buffer pointed to by the PIDX

register and this is then incremented. The GIDX register is used to point to the next

buffer which is to be read and it increments when a buffer is read (Robert Bosch Gmbh

2006b, p128; Robert Bosch Gmbh 2006f, p7).

 If the PIDX register reaches the value of the GIDX then the FIFO is filled. If a

new message is written before the oldest message is read this will cause an overrun flag

to be set (Robert Bosch Gmbh 2006b, p128; Robert Bosch Gmbh 2006f, p7). Three of

the possible states the FIFO can be in are shown in Figure 6.14 (Robert Bosch Gmbh

2006b, p129) below.

Figure 6.14: Empty, not empty and overrun states

When the PIDX and GIDX registers differ a FIFO not empty status is detected

(Robert Bosch Gmbh 2006f, p7).

 To access the FIFO outside the CONFIG and DEFAULT_CONFIG states

involves the host triggering a transfer from the message RAM to the output buffer by

writing the first message buffer of the FIFO to the output buffer command request

LITERARY REVIEW

- 133 -

register. The message handler then will transfer the message pointed to by the GIDX

register to the output buffer and the GIDX register is incremented (Robert Bosch Gmbh

2006b, p129).

6.11 Packaging

 As the E-Ray IP-module is described in VHDL there is no specific packaging

designed. It is left to the company who buys the license for the E-Ray module to

package it and sell it on. This means that some features found in a certain E-Ray chip

may not be available in another by a different manufacturer or indeed the same

manufacturer.

For instance the Fujitsu MB88121 is a 64 pin low profile quad flat pack chip and

amongst other things also contains a DMA support unit and a Serial Peripheral Interface

(SPI) interface possibility (Fujitsu Microelectronics Europe GmbH 2007). Both of

these additions were implemented by the manufacturer as the E-Ray module does not

have specifications for either.

6.11.1 VHDL

VHDL is a hardware description language. It stands for Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language (HDL). It was developed

in the 1970s and 1980s as part of the U.S. Department of Defence VHSIC program. It

was initially intended to be used to describe complex circuits. This was to help make the

designs of hardware modules easier to understand by different contractors. It was also

designed to allow simulation of the circuit designs. In 1996 IEEE 1076.3 became a

VHDL synthesis standard based on the IEEE 1164 and IEEE 1076 standards. Verilog is

another type of HDL used whose programming syntax is considered less verbose but

lacks features when compared to VHDL (Shakill 1996).

LITERARY REVIEW

- 134 -

6.12 Conclusion

 The E-Ray IP-module developed by Bosch is a very useful and flexible device.

It is fully compliant with the FlexRay protocol v2.1 and allows customer specific CPUs

to connect to it. This makes it one of the most common FlexRay protocol IP modules

available.

 It can be seen that there are a number of aspects that must be defined in order for

the E-Ray chip to function as intended. These setup parameters could have an enormous

effect on the performance of the node. A number of errors could be present in a system

if the node is not setup correctly. These include missed deadlines or loss of data due to

data being stored incorrectly or not accessed in time. It is therefore useful to be able to

test the configuration. The research outlined in this thesis makes this process easier.

6.13. References

Berwanger, J., Schedl, A. and Peller, M (2004) BMW – First Series Cars with FlexRay

in 2006, Automotive electronics + systems Special Edition, Development Solutions 19

for FlexRay ECUs, 6-8

BMW Manufacturing Co. (2006) THE NEW BMW X5

Perfect Blend of Driving Dynamics, Functionality and Exclusivity [press release], 8

August, available:

http://www.bmwusfactory.com/media_center/releases/release.asp?intReleaseNum=209

&strYear=2006 [accessed 2 October 2007].

FlexRay Consortium (2005) FlexRay Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay Consortium GbR.

FlexRay Consortium (2006) news – FlexRay Newsletter 03/2006 [online], available:

http://www.flexray.com/news/FlexRay_Newsletter2006_03.pdf [accessed 22 October

2007].

LITERARY REVIEW

- 135 -

Fujitsu Microelectronics Europe GmbH (2005) Automotive Solutions CMOS FlexRay

ASSP MB88121/MB88121A/MB88121B/MB88121C preliminary datasheet, Revision

1.0, Langen: Fujitsu Microelectronics Europe GmbH

Robert Bosch GmbH (2006a) Product Information E-Ray – The FlexRay

Communication Controller – IP-Module, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006b) E-Ray FlexRay IP-Module User’s Manual, Revision 1.2.3,

Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006c) E-Ray FlexRay IP-Module Application Notes AN001

Wakeup, for IP Revision 1.0, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006d) E-Ray FlexRay IP-Module Application Notes AN002

Startup, for IP Revision 1.0, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006e) E-Ray FlexRay IP-Module Application Notes AN003

Message RAM Configuration, for IP Revision 1.0, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2006f) E-Ray FlexRay IP-Module Application Notes AN004

FIFO Function, for IP Revision 1.0, Reutlingen: Robert Bosch GmbH.

Robert Bosch GmbH (2007) E-Ray FlexRay IP-Module Application Notes AN005

Handling of Parity Errors, for IP Revision 1.0.1, Reutlingen: Robert Bosch GmbH.

Skahill, K. (1996) VHDL for Programmable Logic, California: Addison-Wesley

Publishing Company, Inc.

LITERARY REVIEW

- 136 -

Chapter 7 . Discrete Event

Simulation

7.1 Introduction

Testing of systems can be costly in both time and money. If a new product is

being developed and a prototype is run for the first time it may not work as expected.

This can lead to the design team spending time just diagnosing problems, especially if

the system is large and complicated. Simulating a system before a real world system is

developed has become popular due to the nature of simulation; it can be repeated may

times and the data obtained from it easily collected. If a problem arises a computer

model can be changed quickly and cheaply when compared to a prototype. Banks et al.

(2001, p3) sum up simulation as the imitation of a real-world process or system over

time. This can be done by hand or on a computer, with an artificial history of the system

being logged. From this history observations on how the system works and how it

behaves can be observed.

Woolfson and Pert (1999, pv) wrote that experiments controlled by computer,

with the data logged and analysed by a computer are allowing an increase in the range

and the accuracy of what can be done.

However simulation is not only restricted to new products but can also be

applied to existing products; this is because technically simulation is used to produce

results from a model without experimenting with a real-world system (Ripley 1987, p1).

It can be used by an engineer or scientist to get a better understanding of the behaviour

of a system and to pinpoint any areas for improvement. It should also be stated that

simulation is not necessarily restricted to engineering and scientific applications.

Simulation has contributed to problem solving in the areas of economics, management,

as well as in social and behavioural sciences (Neelamkavil 1987, pxv.). This chapter is

written in terms of discrete event simulation (DES) specifically.

LITERARY REVIEW

- 137 -

7.2 Systems

 It is important when introducing the topic of system simulation to first

understand what is meant by the term ‘system’. A system is the key concept of

simulation in terms of understanding what is to be achieved. It is defined as a collection

of entities (elements of a real world system, such as parts of a cars engine) that interact

with each other in a manner to accomplish some goal (Law and Kelton 1982, p2).

The definition above is a very good general definition of what a system is. In a

simulation setting a system is defined by the particular area of study. A system

describing a communication protocol in an automotive application will be defined by

what particular protocol is used and what applications it ise designed to run. It is not

necessary to incorporate the type of car or who will be driving the car in the system. It is

important however to include any application using the system and the communication

method as they work together to form the communication system.

 In the study of a system a few terms must be defined. These will help us clarify

the idea of a system. The terms are as follows (Banks et al. 2001, p10):

• Entities : These are objects of interest in the system i.e. customers in a bank.

• Attributes: These are defined as properties of entities i.e. bank balance.

• Activities: These are time periods of specific length i.e. checking a bank balance.

It is the case that the collection of entities that might encompass a system used in one

study might just be a subset of the system used in another study (Law and Kelton 1982,

p2).

 Entities will also have a particular set of ‘states’ associated with them. For

instance in a communications application the number of frames a node must send, the

time it takes to send a single frame or the number of frames that can be sent by a

particular node at any given time. Therefore states can be seen as variables describing

the system at any stage of the study (Banks et al. 2001, p10).

Events can occur within a system or come from the environment outside the

system and change the state of the system. In the communications applications example

an event could be the completion of transmission of a frame from a node or an error

check which returns no errors, and so the number of frames to be transmitted will

decrease. The generation of new data to be transmitted from a sensor could also be an

event.

LITERARY REVIEW

- 138 -

7.2.1 Continuous and Discrete Systems

 Systems are also broken down into discrete and continuous system types. Figure

7.1 shows a discrete system variable and Figure 7.2 shows a continuous system variable

(Banks et al. 2001, p12).

0

1

3

2

tTime

N
u
m

b
er

 o
f

m
es

sa
g

es
 w

ai
ti

n
g

in
 l

in
e

o
r

b
ei

n
g

 s
er

v
ee

d

Figure 7.1: Discrete-system state variable

Figure 7.2: Continuous-system state variable

 Discrete system simulation involves modelling a system as it changes over a

period of time. The state variables will change at defined points in time (Law and

Kelton 1982). To describe this Law and Kelton (1982, p4) described a barber shop or

information desk at an airport. In this example customers arriving have to wait their turn

in a queue and this happens at discrete points. After each customer is serviced the next

customer can be serviced and so the number of customers in the queue will decrease but

again at discrete points in time.

 A continuous system is one where the variables change in an analogue fashion.

This means that the variables change continually with respect to time. An example of

this (Banks et al. 2001, p10) would be the level of water behind a dam. The water level

LITERARY REVIEW

- 139 -

behind the dam will be continually changing as it is subject to weather i.e. precipitation

and evaporation, which will cause the level of the water to rise and fall. The water level

will also be subject to the operation of the dam and how much water is allowed to pass

in the production of electricity.

 In practical applications it is not always convenient to model a system as either

discrete or continuous since real world systems rarely have attributes that are wholly

discrete or continuous. Usually a system is a combination of both but one definition will

encapsulate the majority of the operation of the system enough to classify it as either

discrete or continuous (Banks et al. 2001, p10). However it is sometimes necessary to

construct a system with aspects of both, and these simulations are called ‘combined

discrete-continuous’ simulations (Law and Kelton 1982, p47).

7.3 Simulation Process

 The steps in a simulation study are shown in Figure 7.3 (Banks et al.2001, p16).

The main steps can be summarised as follows:

1. Problem identification/formulation

2. Building of a model

3. Model verification

4. Model validation

5. Experimental tests

6. Results Analysis

These steps are discussed in Chapter 10. The problem identification/formulation

stage will identify the need for a simulation model to be constructed and define the

problem statements. This is an important stage of simulation but outside the scope of

this chapter as it is the job of the person conducting a study to identify the need to

simulate a system.

LITERARY REVIEW

- 140 -

Figure 7.3: Simulation study steps

7.4 Building Models

 To simulate a system requires the building of a model of the system. This is due

to the fact that it is not always possible to easily change a system and monitor the

changes. The system under investigation could be an existing real-world application that

will be modified or a new design for a product in development. In both cases it could be

costly to build a prototype of the new system just for a major design flaw to be present.

 The model of a system should be comprehensive enough to allow conclusions

to be drawn from the simulation output data. The idea of a model is that it is a

simplified version of the system under investigation (Banks et al.2001, p13). As such a

model is described as having entities, attributes and activities just as a system. The

LITERARY REVIEW

- 141 -

difference between a real-world system and a model is that a model only contains

components that are of interest to the study (Banks et al. 2001, p13).

Models can be as detailed as the designer wants them to be. Woolfson and Pert

(1999, p1) give an example of a child’s toy car. In this example they describe how a

simple model may be made out of clay, with disks for wheels and lines etched in the

side to represent doors of the car. This will do as a child’s toy car but it does not have

all the features a real car does. No matter how many extra features are added to make it

more like a car, the only truly accurate representation of a car is a real car. Therefore the

designer must include only those attributes that are relevant to the area of study.

 Models fall under different classifications. Models may be mathematical or

physical, with mathematical models being broken down into further subcategories. A

simulation model is a type of mathematical model that can be Monte Carlo simulation

(static), dynamic, deterministic or stochastic (random), discrete or continuous (Banks et

al. 2001, p13). Static models deal with simulations at a specific point in time while a

dynamic model is used for simulating systems as they change over time. A system that

has behaviour in terms of fixed inputs and that will produce a single set of outputs is

described as deterministic. A random model is used where the inputs are random and as

such will produce a random set of outputs. Discrete models have inputs that change at

given points in time while a continuous model has an ever changing input (Banks et al.

2001, p12). Figure 7.4 shows one possible breakdown of the different types of

simulation models.

LITERARY REVIEW

- 142 -

Figure 7.4: Simulation models

7.4.1 Hardware in the Loop Simulation

A consideration when building a simulation model is that of using ‘Hardware in

The Loop Simulation’ (HILS). In many systems an output is not directly related by a

simple mathematical formula. For instance a simple system circuit is that of a

potentiometer connected to an Analogue to Digital Converter (ADC) and an LCD

digital display. As the position of the potentiometer changes so too does the ADC

output value which is then displayed on the LCD screen. This is easily tested by simply

turning the potentiometer and checking the display. Real world systems may contain

this simple circuit as part of an overall more complicated system.

The success of complicated systems can be dependant on adequate testing.

Testing becomes more and more complicated for real-word systems where multiple

embedded systems are involved. The output of a testing procedure may be formed by a

microcontroller that receives information form a number of different sources. To

adequately test such a system would mean stopping the test at a number of points in

time and observing if the correct output was produced. This can become difficult and

time consuming as each output must be verified based on every possible input that is

LITERARY REVIEW

- 143 -

received from the different system elements. It is made even more difficult if each

subsystem is not easily stopped to allow the inputs and outputs to be checked. This will

mean testing must be carried out in real time (Gomez 2001).

HILS is a technique that allows a system to be ‘fooled’ into thinking it is

operating in the real world. An example of such a system is a vehicle, missile or

aeroplane as all of these examples will receive multiple inputs and an onboard

microcomputer should produce a desirable output. A HILS system will therefore fool an

aeroplane into thinking its flying or a vehicle into thinking that the engine is running

and that the vehicle is in motion. A HILS simulator will then need to provide all inputs

for the system to allow all the subsystems of the overall system under test to function

correctly (Gomez 2001). This can allow a developer to by-pass the model building

stage if done correctly.

Gomez (2001) highlights the difference between a HILS approach and that of

simulating a control algorithm using MATLAB. A test of the control algorithm using

MATLAB will be run using a PC with ‘faked’ inputs to the system and observe the

output using the same PC. The output obtained will be represented as a graph or set of

numbers but it cannot produce a real-world hardware signal. The control algorithm will

also be run in an environment that does not represent real-world time. Instead the

control algorithm will be simulated based on a simulation clock that may have

correlation to real-world time. A HILS test has the advantage of allowing the real

hardware to be tested while running the real-world software and in real time. Figure 7.5

(Xun et. al. 2008) shows an example of a flight control HILS system. In this system the

simulation computer controlling the mathematical models provides the external

environment for a flight control system.

Figure 7.5: Flight control HILS system

LITERARY REVIEW

- 144 -

The advantages of using HILS relates to a number of factors such as high

precision. For systems where safety could be an issue (such as passenger safety in a

vehicle or aircraft), testing the different systems requires a high precision and

confidence in the different component outputs. HILS provides a cheaper alternative to

testing a complete aircraft or vehicle system (Xun et. al. 2008). HILS will then also

allow any prototype of a system to be built at a later stage in the development cycle

(Zhu et. al. 2009). Hwang et. al. (2006) highlight how a vehicle or aircraft may be tested

in a safer manner by using HILS. When a vehicle is being tested using HILS, it may be

tested for an output during dangerous manoeuvres that could be dangerous for a test

driver or pilot to perform before it is tested in the real world. This could lead to a

decrease in accidents where a person’s life may be put at risk. Safety is listed as an

advantage by Applied Dynamics International (2007) along with cost and time benefits.

Using HILS they emphasise how a reduction in cost and time can be achieved. This is

as parallel tests of different subsystems can be carried out in a timely fashion.

HILS does not suit every test however and the type of testing will indicate if

HILS is suitable. One major factor when considering if HILS is suitable is that little

information may be extracted from a device if the system does not behave as expected.

HILS does not let you analyse the internal behaviour of a system at run time only the

outputs of the system under test (Gomez 2001).

7.5 Validation & Verification

It is important to first distinguish between the verification and validation of a

model. Verification of a model is determining if the model of the system works as

intended. The validation of the model is a process to determine if the simulation model

is an accurate representation of the system under investigation.

Verification of the model will usually consist of debugging a computer program

if the simulation is computer based. It focuses on “building the model right” (Banks et

al. 2001, p367). Validation is more concerned with “building the right model” (Banks et

al. 2001, p367).

Once the model of a system has been constructed it cannot be used immediately

for measuring data. It is important to first calibrate the model. A simulation model

LITERARY REVIEW

- 145 -

might be acting in a very similar manner to the real system; however its exact behaviour

may not truly reflect the system aspects that the model is intended to simulate. The

model may fail to produce accurate information if it has not been calibrated and

validated (Mitrani 1982, p41).

Figure 7.6 (Banks et al. 2001, p369), shows the ongoing model-building process

with the use of validation and verification.

Figure 7.6: Model building, verification and validation

 To carry out the validation it can be seen from Figure 7.6 that calibration is used.

Essentially this means that the model is compared to a real world system and

adjustments made to the model to more accurately reflect the real world. This process is

then repeated until an acceptable level of accuracy is achieved (Banks et al. 2001, p369).

One possible way in which a model may be validated incorrectly is if only one data set

is used. In this case the model may be able to accurately represent the system for this set

only. It is therefore important to validate the model using a number of different data sets

(Banks et al. 2001, p375).

7.6 Tests and Analysis

 Once a model has been constructed and validated then the next step of

simulation is to run the experiment and collect the data for analysis. The data collected

should be relevant to the experiment under study and the method of collection should

LITERARY REVIEW

- 146 -

lead to easy analysis. This may seem trivial with the ability of modern computers to

handle vast amounts of data along with the ease of creating charts from the data.

However time should be spent when designing the system to determine if the data being

collected is relevant. Also time should be given over to consider if there is any data not

collected that could lead to better understanding of the system and what is happening. It

should be noted that extra readings might be needed when validating the model to

ensure all sections perform as intended, but these readings may not be of any use to the

actual experiment under consideration.

 Analysis of the data is also important. Once data is collected it should be

presented to anyone who wishes access to the data to easily draw their own conclusions.

For this reason the use of charts can be useful. It is rarely possible to be able to draw

conclusions from a long list of numbers. This means that data should not only be

represented this way but also in a visual way in the form of charts and graphs.

 At the analysis stage it might be discovered that not enough information was

collected and more runs of the simulation with different variables may be needed to gain

a clearer view of the systems behaviour and/or performance (Banks et al. 2001, p18).

7.7 Simulation of Queues, Statistics and Random Numbers

 The modelling of events is an important part of simulation. This can be in the

form of a queue of people waiting to be served in a bank or shop, instructions waiting to

be processed on a processor or aeroplanes waiting to take off from an airport. If the

server or servers, i.e. bank tellers, CPU’s or runways for the same of examples given

above, are currently busy then a queue is formed.

A queuing method is then generally needed to handle the arriving customers (a

customer is any entity that is seen to be seeking service from a system (Banks et al.

2001, p205)). For instance in an airport aeroplanes arriving and departing will have a

fixed schedule and so how the queue forms and acts may be easily understood. In a

supermarket customers arriving at a checkout may seem to choose a random queue to

enter based on their perceptions of what would be the quickest line to join; the arrival of

customers in the shop may also be of a random nature.

LITERARY REVIEW

- 147 -

 For these reasons simulation may require the modeller to be knowledgeable in

the area of statistics and random numbers. It should also be noted that a stochastic

model may even be used to analyse a deterministic system (Ripley 1987, p1). Stochastic

systems can be quite difficult to analyse and even more so as the system under

investigation becomes larger. For these reasons methods to evaluate these problems

have been developed. Included in these are the Monte Carlo method and the Markov

process.

7.7.1 The Monte Carlo Method

 The Monte Carlo method was developed during the Second World War

by Stanisław Ulam and John von Neuman. It was designed to quickly solve problems

they were coming across while developing the atomic bomb. The name was derived due

to the fact that random numbers were used to determine variables. This can be

compared to many gambling scenarios such as roulette tables or throwing dice

(Woolfson and Pert 1999, p22). This makes the simulation of large systems easier than

would otherwise be possible. The use of Monte Carlo methods also allows different

configurations of the system to be run more quickly. As such a whole system and not a

subsection of the system may therefore be described where other methods may prove

too costly or difficult to use (Woller 1996).

 In summary Monte Carlo techniques are any techniques where random numbers

and probability are used to solve a scenario. It is used in many different applications

such as nuclear physics or traffic control problems. Within different disciplines there

can be many different techniques and subsets of Monte Carlo simulation (Woller 1996).

7.7.2 The Markov Process

 Didkovsky (1996) defines the Markov process as a way of determining the

likelihood of a random dependant event occurring. The likelihood of some random

events can be influenced by previous events. Didkovsky (1996) explains that a coin toss

cannot be modelled as a Markov process as the coin has no memory of what occurred

before. However a communicating node in an automotive network may respond to a

message it has received and can be modelled as a Markov model. Weisstein (2007a)

defines the Markov process in the following way:

LITERARY REVIEW

- 148 -

 “A random process whose future probabilities are determined by its most recent

values. A stochastic process is called Markov if for every and , we

have

This is equivalent to

”

7.7.2.1 Markov Chains

 A Markov chain is a series of random states that is dependant on probabilities of

transitioning from one state to another state (Carter 1996). Markov Chains can give a

good representation of a system over a small sample, however on large systems they

may make little sense (Didkovsky 1996).

To calculate a Markov chain a matrix is often used. In this form the elements of

the matrix represent the possibility of transitioning from one state to another. This can

be seen below where P1,2 represents a transition from state one to state two, P2,1

represents a transition from state two to state one etc.









=

2,21,2

2,11,1

PP

PP
X

In “An Introduction to Computer Simulation” Woolfson and Pert (1999, p138) give

three conditions to be satisfied to generate variables to settle down to the required

distribution:

1. The sum of the elements in a row should equal 1.

2. () () ijijii PxPPxP ,, = , where ()ixP is the required probability for the variable ix .

3. The elements allow all the variables to be accessed.

If the process is useful then successive operations will generate all possible values

of the variable and the probability distributions should eventually settle down to the

required distributions and remain there (Woolfson and Pert 1999, p137).

7.7.3 Queuing Theory

 Queuing Theory falls into two types of categories (Slater 2000):

LITERARY REVIEW

- 149 -

1. Open Queuing Network.

2. Closed Queuing Network.

The first type (open queuing network) is where an external system generates

customers to be processed by the network and then arrives at an external source. The

closed queuing network has a fixed population and this population cannot leave the

system. Figure 7.7 (Slater 2000) shows an open queuing system and Figure 7.8 (Slater

2000) shows a closed queuing system. The yellow circle represents a customer source

and the purple inverted trapezoid is a sink. The blue boxes connected to the red dots are

service centres. Each of the black lines indicate a possible path an entity may trave

down.

Figure 7.7: Open queuing network

Figure 7.8: Closed queuing network

When performing queuing analysis there are a few factors to be addressed, such as

how the customers are arriving and how long it takes to process a customer. From this a

LITERARY REVIEW

- 150 -

standard notation for queuing theory has been developed. To characterise a queuing

system the Kendell notation is often used (Willing 1999, p5). The Kendell notation is of

the form:

A/B/m/N – S

Where A is the distribution of the arrival of customers, B is the distribution of the the

service times, m is the number of servers and N is taken as ∞ if not given but represents

the maximum size of the waiting line. S is optional but represents the service discipline.

This is taken as First-In-First-Out (FIFO) if not given. A and B can represent a Markov

(M), deterministic (D), Erlang-k (Ek), Hyper-k (Hk) or General (G) distribution. S can

be a FIFO, Last-In-First-Out (LIFO), random, Round Robin or priority service

discipline. An example of the above would be an M/M/1 queuing system. This is a

Markov distributed system, with one server and a FIFO service discipline.

There is also notation for various aspects of the system such as the number of

customers in a closed network (K), customer number (Cn) and the arrival rate to node i

(Ai) amongst others as these are important aspects of the queue. Also the type of queue

(FIFO, LIFO etc.) is an important aspect of system as it will define how entities are

routed through a network, and as such needs to be carefully considered and represented.

A queuing theory model will allow a systems analyst to obtain a number of

performance metrics. Some metrics that could be obtained are: average queue length,

average queue wait time and server throughput rates. Analysis of these metrics may

allow a system analyst to identify problems in a system such as bottlenecks. Steps may

then be implemented to improve the performance of the system.

7.8 Simulation Software

 Software used to create models and run simulations have varied from general

purpose programming languages, such as C++, to general purpose simulation software

(GPSS) that is solely designed to carry out simulation. Some of these GPSS systems

incorporate a graphical user interface (GUI) to create the model and run the system.

LITERARY REVIEW

- 151 -

7.8.1 General Purpose Programming Languages

 The use of general purpose programming languages (GPPL) has diminished due

to the ease of simulation specific languages or software packages to create, run and

extract data from a simulation. The use of a language such as C or C++ could still

however suit a particular system to be simulated. The decision to use a GPPL could be

affected by the ability of a given programmer and constraints in time, where for

example there is inadequate time to learn how a new language or software package

operates. Another consideration could be that the level of detail required for a

simulation may not be available from any software package currently available.

 The programmer must, when using a programming language such as C++, create

everything to do with the simulation such as each subroutine that defines how each

component of the model acts, to events and entities and how they affect other

components. A clock that defines that system at various states and a way to present the

gathered data must also be provided (Banks et al. 2001, p104). The availability of

simulation libraries such as CSIM however does help programmers. CSIM is a package

of commonly used classes and procedures for use with C or C++ (Mesquite Software

2006). Chapter 4 of Discrete-Event System Simulation (Banks et al. 2001) covers the

use of C++ and CSIM in detail and provides examples.

7.8.2 General Purpose Simulation Software (GPSS)

 Simulation specific software has been around since IBM first released GPSS in

the 1960’s (Banks et al. 2001, p115). Due to its ease of use and as it was the first

program of its type it became a popular simulation package. It was improved by other

companies as well as IBM to make it more user friendly (Dictionary of Computer

Languages 1998).

 The GPSS/H software was introduced by the Wolverine Software Corporation.

It is based on the IBM GPSS software with added features to increase its ease of use and

has been continually updated to keep it a powerful tool. It is a simulation language that

is programmed like most programming languages in the form of text entry; this is unlike

some newer simulation tools that use a graphical user interface where placed objects

have properties and behaviours associated with them (Crain 1997). The use of a non

LITERARY REVIEW

- 152 -

graphical user interface is so that GPSS/H can remain versatile enough for a wide range

of different implementations (Crain 1997).

 Despite the ease of use of newer graphical simulation systems GPSS based

software is still in use today. This means that it has been in operation for over 40 years.

It was designed by Geoffrey Gordon so that it could be used by “non-programmers” and

is still advertised as such (Wolverine Software Corporation 2007).

7.8.3 Graphical Simulation Software

 The trend of newer simulation software is in the use of a graphical user interface

(GUI). This is where objects such as entity generators are placed onto a screen and can

have their properties changed. In this way they act as desired by the programmer to

model the system under investigation. Examples of such software are Simulink by the

MathWorks Inc. and SIMUL8 from the SIMUL8 Corporation (The MathWorks Inc.

1997; SIMUL8 2007).

 Advantages of using such a system are the ease of use to construct systems,

allowing even novices to build a simple model easily. It also forces the programmer to

follow the basic model building process. However it is not always possible for this type

of software to be flexible enough to simulate complicated systems accurately. The

model may also become quite large visually and may need to be broken down into

smaller and smaller subsystems (Crain 1997). Breaking down a system into smaller

subsystems can also be seen as an advantage. The programmer can more easily see if

any part of the model is not performing as intended when debugging the model.

 These types of simulation program usually provide easy and quick methods for

displaying results without any previous programming experience or without transferring

the data into another program such as Microsoft Excel.

7.9 MATLAB, Simulink and SimEvents

 MATLAB is a highly flexible development environment. It allows easy data

analysis and visualisation through a high-level technical computing language. It

provides an interactive environment for algorithm development and numeric

computation (The MathWorks, Inc. 2007a). Add-ons such as Simulink extend the

LITERARY REVIEW

- 153 -

functionality of MATLAB. In this case Simulink provides a new graphical way to

implement simulation models. To make implementing various applications easier,

additions called ‘Toolboxes’ are supplied. There are a number of toolboxes available for

MATLAB such as the fuzzy logic toolbox, neural network toolbox and image

processing toolbox to name a few (The MathWorks, Inc. 2007a). Figure 7.9 (The

MathWorks, Inc. 2007b) shows the relationship between MATLAB, Simulink and the

applications that can be developed using them.

Figure 7.9: MathWorks product overview

7.9.1 MATLAB

Cleve Moler was a math professor at the university of New Mexico where he

wanted his students to be able to use computers to solve problems using EISPACK and

LINPACK. This required writing Fortran programs however and he didn’t want his

students to have to learn how to write Fortran programs. In the late 1970s after reading a

book by Niklaus Wirth he used Fortran and portions of LINPACK and EISPACK to

develop the first version of MATLAB. There was only a matrix data type with 80

functions and to add a function, you had to modify the source code and recompile the

program (Mohler 2004). Figure 7.10 (Moler 2004) shows the basic graphical

representations from the first MATLAB. Figure 7.11 shows the same result run on a

LITERARY REVIEW

- 154 -

modern version of MATLAB. This shows how the program has developed over the

years.

Figure 7.10: First MATLAB graphics

0 1 2 3 4 5 6 7
-6

-4

-2

0

2

4

6

Figure 7.11: Modern MATLAB graph

 In 1981 Jack Little, the CEO of The MathWorks realised the importance of the

newly released PC from IBM. He and a college of his, Steve Bangert, reprogrammed

MATLAB in C, adding in extra features and graphical power, and in 1984 The

MathWorks Inc. was founded. The founding members were Jack Little, Steve Bangert

and Cleve Moler (Moler 2004). Since then The MathWorks Inc. has grown and in 1993

registered one of the first commercial websites and a version of MATLAB to run on the

Windows operating system. A Linux version was later released in 1995 (Moler 2006).

Figure 7.12 (Moler 2006) again shows the growth of the power and graphical abilities of

the software. Figure 7.12 is of an L-shaped membrane which is the company logo.

LITERARY REVIEW

- 155 -

Figure 7.12: MATLAB graphical development

 As of the 1
st
 of September 2007 the current version of MATLAB is R2007b. It

comes with MATLAB 7.5 as well as Simulink 7 (The MathWorks, Inc. 2007a).

7.9.1.1 MATLAB Development Environment

 The main MATLAB window is shown in Figure 7.13; this is the window that

opens when MATLAB is initially started. There are three main windows: the current

directory you are working from, a command history window and the main command

window where code or commands can be entered. These commands can change how a

piece of code runs or to run code held in “m-files”.

Figure 7.13: MATLAB environment

LITERARY REVIEW

- 156 -

 An m-file is a file where code can be entered and stored for retrieval later. It can

then be run again and again without having to write the code again and is like a ‘.c’ file

for c-code. Figure 7.14 shows an m-file with code to generate the graphs shown in

Figures 5.5 & 5.6. This code was taken from Moler (2004).

Figure 7.14: An m-file

7.9.2 Simulink

 Simulink has become widely used by both industry and academic modellers for

simulation of dynamic systems since its release in 1990 (The MathWorks, Inc 1999;

Moler 2006). As it is embedded in MATLAB it comes with all the analysing ability of

MATLAB so that results can be easily displayed, analyzed and interpreted all in the

same environment as they were obtained (The MathWorks, Inc 1999). MATLAB can

also export its data and graphs easily to other software such as Microsoft Word or Excel.

 Where MATLAB stores commands in an m-file and runs commands which look

similar to lines of code or mathematic expressions, Simulink is a model building tool

where models are built using a GUI. To place an object that forms the model into the

model window shown in Figure 7.15 is a simple case of ‘dragging and dropping’ a

virtual object. Figure 7.15 also shows a simple model that was built using Simulink.

Figure 7.16 is the Simulink library where the objects are selected. There is also the

ability to make your own blocks.

LITERARY REVIEW

- 157 -

Figure 7.15: Simulink environment

Figure 7.16: Simulink library

The models that can be built can be ‘hierarchical’ so that they are easier to

visualise. Each level can then be entered into to view the level below. The models can

however be built from the top down or the bottom up. This allows a developer to

approach the model building in a way that helps them understand the function of the

system (The MathWorks 1999).

Once the model is built it can be run and data easily obtained. The parameters of

the system can then be changed quickly and the test run again to see how these changes

LITERARY REVIEW

- 158 -

affect the performance of the system and these results easily compared to the previous

results (The MathWorks 1999).

7.9.3 SimEvents

 SimEvents is an add-on to Simulink. It allows for discrete-event simulation to be

achieved through the additional components that come as part of the package. Activity-

based models are created by the modeller to evaluate system parameters. Entities are

configured with attributes which can then be used to model applications such as packet-

based networks, real-time operating systems and computer architectures (The

MathWorks, Inc. 2007a).

As was stated SimEvents has its own components associated with it. These can

be found in the Simulink library under the heading SimEvents. The SimEvents library

can also be opened in its own window as shown below in Figure 7.17.

Figure 7.17: SimEvents library window

When one of the boxes shown in Figure 7.17 is opened it will produce another

set of options; these could be options that refine the selection you made, i.e. when

selecting the generators block you get another set of options. In this case it would be

event, entity or signal generators. When there are no more variations to pick from then a

selection of objects to choose from will be displayed. These can then be dragged and

dropped onto the model screen. Figure 7.18 shows the two different types of entity

generator that can be selected.

LITERARY REVIEW

- 159 -

Figure 7.18: SimEvents entity generator objects

SimEvents contains all basic blocks as standard to create a model for a discrete-

event simulation. With MATLAB and Simulink it is a flexible program that can be used

to model many systems.

7.9.4 SimEvents Model Building Tutorial

This section is based on the ‘Building a Simple Discrete-Event Model’ section

of the SimEvents – Getting Started Guide (The MathWorks, Inc. 2007c). All diagrams

are also taken from the SimEvents – Getting started Guide.

The system is a simple queuing system in which entities arrive in a deterministic

way, to a queue, and proceed to a server that operates at a fixed rate. The type of system

is a D/D/1 queuing system which implies a deterministic arrival rate, a deterministic

service rate, and a single server.

As was previously stated, SimEvents provides a library of simulation blocks.

These include all necessary blocks to perform discrete event simulation such as a server

block and an entity generator block. Other blocks include blocks to both set and read

attributes as well as versions of Simulink blocks to be used with SimEvents. One such

block is the SimEvents Signal block. It is important to use any special SimEvents blocks

where possible. Results obtained may represent false information if Simulink blocks are

used.

To build the simple D/D/1 queuing system for this example the following types

of blocks should be chosen:

LITERARY REVIEW

- 160 -

• An entity generator is needed. The time based entity generator will be

used for this example.

• A queue is needed and the FIFO queue was used in this example.

• A server is also needed. As it is a single server structure, the single

server option was chosen.

• An entity sink was also needed. This was to accept any entity after it

passes through the server.

• Finally a SimEvents signal scope is needed to display data.

It is important to choose the correct block to accurately reflect the system being

modelled. In most cases there is a choice of what block is needed to model the system.

If the queuing system is a LIFO then choosing the FIFO queue would cause the model

to act in an incorrect way. The correct blocks used in this example are shown in Figure

7.19.

Figure 7.19: SimEvents tutorial blocks

Once the correct blocks are chosen, they must be configured. For example the

time-based entity generator needs to know how often to generate an entity. In this

example the entity generator was setup to produce an entity every second. The generator

was also set to generate an entity at the start of the simulation. The service time of the

server was also set as 1. These settings are all done through the parameters dialog box

of the appropriate blocks.

However to obtain any data the scope must be able to obtain some information

from the system. The single server’s parameters block is shown in Figure 7.20. Figure

7.19 shows that the ‘number of entities departed’ option was set to ‘on’ for the single

server.

LITERARY REVIEW

- 161 -

Figure 7.20: Single server parameters box

When a statistics option is enabled, a new output port is added to the block. This

can then be connected to the input of the signal scope. A path for entities must also be

made between the different blocks. The correct path configuration is shown in Figure

7.21. Note the new output on the signal server marked as ‘#d’. The different connection

types do not allow a signal port to be connected to an entity path port and vice versa.

Also an output port cannot be connected to another output port, while inputs ports

cannot be connected to other inputs ports.

Figure 7.21: Tutorial blocks connected

LITERARY REVIEW

- 162 -

When the model is built the simulation can then be run. Figure 7.22 shows the results

displayed on the signal scope after the model was run for 10 seconds. Other results

would be obtained if different statistics were monitored, or if different parameters were

used for the service time or arrival rates.

Figure 7.22: Tutorial results

Large systems can be constructed by following the same steps as described

above. Small subsections can be created and tested one by one and added to an overall

system model. Each subsystem needs only to reflect the behaviour of the basic

operation of that subsystem. The systems parameters such as service time can then be

configured and simulations run.

7.10 Simulation Software Selection

 Shannon (1975, pp107-109) and Banks et. al. (2001, pp100-103) both propose

steps for choosing simulation software. The steps and questions proposed can be

combined as follows:

Part1: Investigation of Possibilities and Initial Screening

1. An important factor in choosing the software is hardware availablility. If a

new computer is to be purchased it can be configured to suit the needs of the

modeller. In most cases this is not possible. It is therefore important to know

the limits of the hardware.

LITERARY REVIEW

- 163 -

2. Is there sufficient documentation or vendor support available? If this is not

the case then problems encountered may not be easily dealt with.

Alternatives could however be internet forums where help can be obtained

from regular users of the software.

3. Are the advertising claims accurate? If there is a checklist with ‘yes’ and

‘no’ entries does the variation or licence you are interested in purchasing

provide all the required features. Do the implementation and capabilities of

the features match what you are looking for?

4. Is the package able to generate a model that is cross platform compliant? A

cross platform compliant model has wider use than if it is only executable on

a single operating system.

5. The speed of the simulation should be considered. Debugging of the model

may take a long time if the model is slow to execute.

6. The costs of software packages can be very high. What is the range of

software packages available for your budget?

7. The ease of which the simulation package can be learnt. A graphical package

may remove to need to learn syntax but it will not remove the need to use

procedural logic.

Part 2: Overall Choice Based on Problems to be Solved

1. The type of simulation to be run is evaluated. Based on this an appropriate

software package can be chosen. Questions to ask should include: Is the

model an event-, process- or activity-oriented system? Is there a reliance on

random numbers? If so what is the capability of the software to generate the

random numbers?

2. Data needs to be obtained for analysis therefore the ease of obtaining and

storing data, i.e. format, needs to be investigated

3. The software should be flexible enough to meet your needs. Can functions

written in a general purpose software language be included if needed? If so

what programming languages does it support?

As can be seen, based on the considerations proposed above a suitable software

package can be chosen. The selection process is broken down into two parts. The first

LITERARY REVIEW

- 164 -

part is intended to discard software that may be more difficult to use, adapt or costly.

The second part tries to identify, from the remaining choices, the most suitable software

package for the problems at hand. In many cases a software package may be quickly

marked as unsuitable.

With little or no modification these steps can be applied to any other necessary

hardware or software choices that need to be made.

7.10.1 Simulation Software Selection

Table 7.1 shows the options that were considered for the software used to carry

out the research as outlined in this thesis. The features and benefits are compared for

each possible software package also. Each of the considerations were given a score

based on factors such as budgetary considerations and prior knowledge of the package.

Each score was rated between 0 and 10, where 10 is the highest score possible for any

category and 50 the highest over all score possible.

 Simulation Methods provided Suitability† Ease of Use Support Cost‡ Total

C++ 0 3 8 6 6 24

GPSS 8 9 7 8 5 36

SimEvents 9 9 8 9 10 45

Table 7.1: Simulation software selection analysis

The most suitable software package based on the comparisons shown in Table

7.1 was deemed to be the SimEvents software add-on package for MATLAB. The

MATLAB aspect of the software package made it an attractive option. MATLAB

provides an environment where computations on outputs obtained from a model can be

analysed. This can then be easily converted into graphical representations (i.e. charts

and graphs) if desired. Other benefits also included the fact that the system had been

†
 The suitability metric was calculated based on the information as covered in section 7.8 and the

requirements to carryout the research correctly.
‡
 This was based on the price for a student version, with MATLAB with SimEvents priced around €115.

The Wolverine GPSS/H cheapest price was €273 and a copy of MicroSoft Visual Studion 2008 standard

edition was price at €234. All prices are approximate values.

LITERARY REVIEW

- 165 -

designed to perform discrete event simulation. SimEvents therefore provides a number

of features, such as a simulation clock, as standard. While generic programming

languages could have been used, features such as the simulation clock also need to be

created. However a generic simulation package could be have been chosen. This would

have had the benefit of not requiring the developer to learn a new programming

language. The graphical method of creating a model in SimEvents was deemed easy to

learn. Therefore minimum time would be spent learning a new software package. A big

factor was also the cost of any software package used. The MATLAB and SimEvents

price was the cheapest software package. The price also included MATLAB which can

be used to analyse data.

The support provided for SimEvents is the best of all three packages looked at.

The help files are not only extensive, but the online help and user forms have a large

number of people who participate in them. SimEvents therefore also proved to be the

best value for money. This allowed the best value combination of hardware and

software to be obtained to conduct the research.

It should be noted that no one option is necessarily better for the purpose of

conducting a similar research topic. Other studies may prefer to use a GPPL as it would

provide an easier way to streamline the model in terms of execution speed and memory

demands. For the constraints on the research conducted in this thesis SimEvents was the

most suitable. The scores obtained were biased based on factors such as budget and the

developer’s exposure to different software packages and this is acknowledged.

7.11 Conclusion

 Model building has a wide range of uses. These vary from a simple child’s toy

to a sophisticated model used in simulation of a system for analysis. This simulation

again has a wide range of uses, be it the simulation of computer architectures or that of a

queue of people waiting in line. These simulations can be run to give the modeller a

better understanding of how a system works. They can also be modified to see how a

change to a system affects the performance of the system. They can be important as an

evaluation tool for a developer of a system to determine how effective his real system is.

This is important as it may not always possible to change the real world system in

LITERARY REVIEW

- 166 -

various ways to get feedback. It is also important to consider different simulation

possibilities, such as HILS testing, before deciding on using a simulation model.

Different approaches to evaluation of system will have different benefits and drawbacks.

 For an in-vehicle network such as FlexRay, simulation allows the

designer/analyst to see how the system works, and through their greater understanding

of the system they can draw conclusions on how to improve the system. This could be

in terms of looking at message flow and suggesting for example new levels of RAM,

which could have an important impact on the cost of the network as memory is an

expensive resource. The scheduling of the network could also be analysed in an easier

fashion than taking readings of a real network and improvements could also be drawn

from this type of simulation. This makes simulation an important tool in developing

technologies as it has a wide range of applications.

The best software and hardware tools can also be chosen using the steps outlined

in this chapter. This can have a big impact on the performance and functionality of the

model. This means that sufficient thought and time should be put to this process. The

software tools available were evaluated against each other and the most suitable

software was found to be SimEvents.

7.11. References

Applied Dynamics International (2007) Why use Hardware-in-the-Loop Simulation?

[online], available: http://www.adi.com/products_sim_qhilWhy.htm [accessed 2

September 2009].

Banks, J., Carson, J. S., Nelson, B. L. and Nicol, D. M. (2001) Discrete-Event System

Simulation, New Jersey: Prentice Hall.

Carter, S. (1996) Markov Chains [online], available at:

http://www.taygeta.com/rwalks/node7.html [accessed 12 December 2007].

LITERARY REVIEW

- 167 -

Crain, R. C. (1997) Simulation Using GPSS/H, in Andradóttir, S., Healy, K. J., Withers,

D. H. and Nelson, B.L. eds., Winter Simulation conference, Atlanta, Georgia, 7-10 Dec,

IEEE, 567- 573.

Dictionary of Programming Languages (1998) GPSS [online], available at:

http://cgibin.erols.com/ziring/cgi-bin/cep/cep.pl?_key=GPSS [accessed 3 December

2007].

Didkovsky, N. (1996) What’s a Markov Process? [online], available at:

http://www.doctornerve.org/nerve/pages/interact/markhelp.htm [accessed 5 December

2007].

Gomez, M. (2001) Hardware–in-the-Loop Simulation [online], available:

http://www.embedded.com/15201692 [accessed 2 September 2009].

Hwang, T., Roh, J., Park, K., Hwang, J. Lee, K.H., Lee, K., Lee, S. and Kim, Y. (2006)

Development of HILS Systems for Active Brake Control Systems, Proceedings of

SICE-ICASE International Joint Conference, Bexco, Busan, Korea, October 18-21,

IEEE Computer Society Washington, DC, USA, 4404-4408.

Law, A. M. and Kelton, W. D. (1982) Simulation Modeling and Analysis, New York:

McGraw-Hill.

Mitrani, I. (1982) Simulation Techniques for Discrete Event Systems, Cambridge:

Cambridge University Press.

Mohler, C. (2004) MATLAB News & Notes – December 2004, Cleve's Corner – The

Origins of MATLAB [online], available at:

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec04.html

[accessed 4 December 2004].

Mohler, C. (2006) MATLAB News & Notes – January 2006, Cleve's Corner – The

Growth of MATLAB and The MathWorks Over Two Decades [online], available at:

LITERARY REVIEW

- 168 -

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf

[accessed 4 December 2004].

Neelamkavil, F. (1987) Computer Simulation and Modelling, New York: Wiley.

Ripley, B.D. (1987) Stochastic Simulation, New York: Wiley.

Shannon, R.E. (1975) Systems Simulation – the Art and Science, New Jersey: Prentice

Hall.

SIMUL8 Corporation (2007) [online], available at:

http://www.simul8.com/products/standard/index.htm [accessed 3 December 2007].

Slater, T. (2000) Queuing Networks – Network 2 [online], available at:

http://www.dcs.ed.ac.uk/home/jeh/Simjava/queueing/Networks/networks.html

[accessed 12 December 2007].

The MathWorks, Inc. (1999) Using Simulink version 3, Massachusetts: The MathWorks,

Inc.

The MathWorks, Inc. (2007a) The MathWorks - MATLAB and Simulink for Technical

Computing [online], available at http://www.mathworks.com/index.html?ref=pt

[accessed 3 December 2007].

The MathWorks, Inc. (2007b) MathWorks Product Overview [online image], available

at http://www.mathworks.com/products/pfo/ [accessed 4 December 2007].

The MathWorks, Inc. (2007c) Getting Started with SimEvents 2, Massachusetts: The

MathWorks, Inc.

The MathWorks, Inc. (2007d) SimEvents 2 User’s Guide, Massachusetts: The

MathWorks, Inc.

LITERARY REVIEW

- 169 -

Weisstein, E. W. (2007a) Markov Process [online], avalibale at:

http://mathworld.wolfram.com/MarkovProcess.html [accessed 5 December 2007].

Weisstein, E. W. (2007b) Monte Carlo Method [online], avalibale at:

http://mathworld.wolfram.com/MonteCarloMethod.html [accessed 7 December 2007].

Willig, A. (1999) A Short Introduction to Queuing Theory [online], available at:

http://www.tkn.tu-berlin.de/curricula/ws0203/ue-kn/qt.pdf [accessed 12 December

2007].

Woller, J. (1996) An introduction to Monte Carlo Simulations [online], available at:

http://www.chem.unl.edu/zeng/joy/mclab/mcintro.html [accessed 7 December 2007].

Wolverine Software Corporation (2007) GPSS/H - Serving the simulation community

since 1977 [online], available at: http://www.wolverinesoftware.com/ [accessed 3 Dec

2007].

Woolfson. M. M. and Pert, G.J. (1999) An Introduction to Computer Simulation,

Oxford: Oxford University Press.

Xun, W., Shu-xing, Y. and Lei Z. (2008) Dynamic Test and Evaluating System for

Flight Control System, Proceedings of the 2008 International Colloquium on

Computing, Communication, Control, and Management, Guangzhou City, China,

August 3-4, IEEE Computer Society Washington, DC, USA, 189-192.

Zhu, Y., Hu, H., Xu, G. and Zhao, Z. (2009) Hardware-in-the-Loop Simulation of Pure

Electric Vehicle Control System, International Asian Conference on Informatics in

Control, Automation and Robotics, Bangkok, THAILAND, February 1-2, IEEE

Computer Society Washington, DC, USA, 254-258.

LITERARY REVIEW

- 170 -

Chapter 8 . FlexRay Software

Drivers

8.1 Introduction

The research described in this thesis concerns improving the flow of data

through a FlexRay node. An important area that should be looked at is the software

driver linking the communication controller and the host. How data is handled at this

stage could have an enormous effect on the performance of the node. Data is passed

from the host to the communications controller for transmission. If the data is not

passed in adequate time, it may not transmit during its allocated slot time. It will then

have to wait until the next communication cycle before the data is transmitted. It is

therefore necessary to know how the driver performs to fully optimise the node.

Software drivers are intended to provide an abstract interface between hardware

and user defined pieces of software (Dependable Computer Systems 2006). This chapter

will outline the DECOMSYS::COMMSTACK FlexRay software driver. It will

introduce AUTOSAR and the method it uses to transfer data between software

components. The Fujitsu FlexRay driver will also be covered. Figure 8.1 shows the

various software driver options available to a FlexRay based system. A system designer

must choose one of the software options for the implementation on the host

microcontroller. In Figure 8.1 the options are (a) AUTOSAR FlexRay stack, (b) the

DECOMSYS::COMMSTACK FlexRay software driver and (c) the Fujitsu FlexRay

driver.

LITERARY REVIEW

- 171 -

Figure 8.1: FlexRay software driver options

8.2 COMMSTACK

The DECOMSYS::COMMSTACK<FlexRay> is a software driver (here after

referred to as ‘driver’) designed to provide a FlexRay interface to specific hardware

implementations. It was designed with flexibility in mind. As such it is not dependant

on other external components for operation (Dependable Computer Systems 2006).

DECOMSYS::COMMSTACK<FlexRay> allows higher layer software to be

developed with little sense of the behaviour and properties of a FlexRay node. This

allows the designer to be unaware of the actual communication controller

implementation (Dependable Computer Systems 2006). Figure 8.2 (Dependable

Computer Systems 2006, p4), shows a system implementing the (here after referred to

as ‘COMMSTACK’).

LITERARY REVIEW

- 172 -

Figure 8.2: COMMSTACK system overview

DECOMSYS::COMMSTACK<CONFIGURATOR> is a plug-in for

DECOMSYS Designer. It outputs the following files (Dependable Computer Systems

2004, p5):

• A ‘.h’ file containing basic configuration options

• A ‘.c’ file containing frame identifier and queue configurations

• A ‘.c’ file implementing the host specific communication controller

initialisation functions.

8.2.1 System Design

The COMMSTACK internal structure can be seen in Figure 8.3 (Dependable

Computer Systems 2006, p6). It is broken down as follows (Dependable Computer

Systems 2006, p7):

• FlexRay Hardware: One of several communications controllers will be

used for an application.

• Hardware Configuration: This contains hardware mapping information.

• Application Configuration: A post-build configuration holds all

application specific configurations.

• COMMSTACK: This is ported to the dedicated host-CPU for a specific

development environment.

LITERARY REVIEW

- 173 -

Figure 8.3: COMMSTACK system architecture

8.2.1 System Design

The behaviour of COMMSTACK is defined by a state machine. This can be

seen in Figure 8.4 (Dependable Computer Systems 2006, p7). For further information

on each state see Dependable Computer Systems (2006, pp8-10).

LITERARY REVIEW

- 174 -

Figure 8.4: COMMSTACK state diagram

8.3 AUTOSAR

AUTOSAR was developed from 2003 when the core partners of the AUTOSAR

partnership signed a contract. Since then the AUTOSAR partnership has developed a

number of specifications (Fennel et. al. 2006). These companies worked together to

produce the AUTOSAR standard to support automotive electronic/electrical

developments to meet current and future needs of the automotive industry (AUTOSAR

GbR 2008).

A major focus of the AUTOSAR partnership is the re-use of software

components. Traditionally software components were developed with a hardware focus.

This approach leads to difficulty when replacing or upgrading hardware components.

By developing a run time environment to support re-use of software components a

reduction in costs and complexity can be achieved.

LITERARY REVIEW

- 175 -

8.3.1 AUTOSAR Goals

As was stated one of the main focuses of the AUTOSAR partnership is the

development of the necessary tools and specifications to achieve re-use of software

components. To realise this the main goals initially were to establish a standard for use

in future vehicle applications (AUTOSAR GbR 2008a). In the first phase of AUTOSAR

the focus was on powertrain, chassis, active and passive safety, body and comfort.

Applied to these the main objectives were a consideration of the following desirable

elements (AUTOSAR GbR 2008a):

• Consideration of safety requirements.

• Scalability for different platforms and vehicles.

• Standardisation of basic system functions.

• The ability to move functions to different nodes on the network.

• Integration of modules from different suppliers.

• Maintainability.

• Increased use of ‘off the shelf’ hardware.

• Software updates/upgrades for vehicles.

8.3.2 Virtual Functional Bus

To achieve their goals and objectives the Virtual Functional Bus (VFB) concept

was developed by the AUTOSAR partnership. Using a VFB AUTOSAR is able to

separate the functionality of a node into the software components (applications) and the

basic software (communications methods for example) of the hardware module. The

communication is handled by the basic software on a node. The applications

functionality is obtained from combinations of software components. The application

layer is then executed using a Run Time Environment (RTE). Figure 8.5 (AUTOSAR

GbR 2008b, p10) shows how the decoupling of the software is achieved.

LITERARY REVIEW

- 176 -

Figure 8.5: Virtual functional bus concept

Data to be sent from one software component to another is conceptually sent

through the VFB during the development process. At compile time the software

components are then mapped to specific hardware modules.

The programmer will conceptually send and receive information from other

software components through the VFB. At compile time however the VFB is replaced

by an application programming interface (API). This means that if one software

component needs to pass data to another software component or request a service

supplied by another software component, it does so through the use of API calls. So at

compile time only the functionality necessary to achieve this is set up in the basic

software portion of the node. This eliminates unnecessary code generation for the

module. Another advantage is that the software component no longer needs to know

LITERARY REVIEW

- 177 -

where the other software component is located. It only needs to know what services or

information it can accept or provide.

8.3.3 AUTOSAR Components and Interfaces

There are three types of components defined by AUTOSAR (Buttle 2005):

1. Atomic software components

2. Sensor/actuator software components

3. Composite components

A software component is assigned to one of these categories based on its functionality.

Each software component can have as many interface ports as needed.

 The interface types are broken down into:

1. Provided interfaces

2. Required interfaces

The communication is then defined as either a sender-receiver or a client-server type.

Sender-receiver is like a publish-subscribe type interface where information is sent out

and anybody can take that information. Client-Server can be seen as a function calling

interface (Jackman 2008).

 Figure 8.6, shows the different type of component interface. Figure 8.5 is based

on a diagram by Buttle (2005).

Figure 8.6: Software component communication interface types

LITERARY REVIEW

- 178 -

8.3.4 AUTOSAR FlexRay Stack

Figure 8.7 (TTTech Automotive GmbH 2007) shows where the FlexRay stack

components mapped onto the basic software of a hardware module using AUTOSAR.

Figure 8.7: FlexRay stack layout

The AUTOSAR FlexRay stack consists of a number of components and layers.

These components and layers include a FlexRay driver. It is designed to allow a

software developer to know little or no information about the underlying FlexRay

system. The programmer merely passes information from the application and the

FlexRay stack is designed to handle the information. In this way the programmer need

only know how to use a hardware independent API call.

The FlexRay stack is made up of: FlexRay-specific modules, drivers, the

interface layer, the protocol data unit (PDU) router, the FlexRay transport protocol (TP)

layer and the protocol-independent communication (COM) layer. In some cases a

communication-specific layers like the network management (NM) layer also defined.

The FlexRay driver is part of a microcontroller abstraction layer that provides access to

the FlexRay controller through a hardware-independent API (Weka Fachmedien GmbH

2008).

LITERARY REVIEW

- 179 -

The following definitions of the different FlexRay stack components are from Galla

et. al. (2007):

• The transport protocol module is used to segment and reassemble large PDUs.

A PDU is simply a message or frame of a particular networking scheme. The

PDUs are transmitted from and to the Diagnostic Communication Manager.

• The PDU router is used to either send messages to higher protocol layers or to

perform a gateway service. This could mean gating the message between two

FlexRay networks or between FlexRay and another networking scheme such as

CAN.

• The COM module provides signal-based communication to the run-time

environment. This can be in the form of inter-ECU or intra-ECU communication.

• The Diagnostic Communication Manager provides a way to allow tester devices

to control diagnostic functions in an ECU using the communication network.

• The network management module provides a coordinating mechanism for the

ECUs on the network. It is split between a generic network management and a

protocol specific network management scheme.

• The FlexRay interface module facilitates the transmission and reception of the

PDUs. It allows multiple PDUs to be packed into a single frame at the

transmission ECU and to be successfully extracted again at the receiving ECU.

This is affected by the timing constraints of the FlexRay protocol. The packed

PDUs are sent to and received from the FlexRay driver.

• The FlexRay driver provides the basis for the FlexRay interface module by

facilitating the transmission and reception of frames to and from a

communication controller. It too is affected by the timing constraints of the

FlexRay protocol.

8.4 Fujitsu FlexRay Driver

The Fujitsu FlexRay driver is intended to ease the familiarisation phase of using

FlexRay for developers (Fujitsu Microelectronics Europe 2007, p8). It supports the 32-

bit MB91460 family processors, MB88121 series communication controllers, 16-bit

MB96340 family processors and the MB91F465X series processors with integrated

LITERARY REVIEW

- 180 -

communication controllers. It is designed to be compatible with

DEYCOMSYS::DESIGNER (Fujitsu Microelectronics Europe 2007, pp9-10).

8.4.1 Driver Concept

The driver is designed to be viewed as several layers. The minimal number of

layers and their function can be seen in Figure 8.8 (Fujitsu Microelectronics Europe

2007, p11).

Figure 8.8: Fujitsu FlexRay driver layers

The Architecture of the driver is shown in Figure 8.9 (Fujitsu Microelectronics Europe

2007, p11).

Figure 8.9: Fujitsu FlexRay driver architecture

LITERARY REVIEW

- 181 -

The ffrd_api_functioni() evaluates one of 90 API calls available for the FlexRay driver.

It then calls a relevant routine from ffrd_ccal_function(). This layer contains all the

routines to handle the API calls. Following this the macro from ffrd_fhal_function() is

called to add the offset address for the E-Ray chip. Using ffrd_hal_function() the

macros for different MCU-FlexRay controller access is located. It should be noted that

the files, macros and functions are only included at compile time if needed (Fujitsu

Microelectronics Europe 2007, p12).

8.4.2 Program Flow

The services of the FlexRay driver is shown in Figure 8.10 (Fujitsu

Microelectronics Europe 2007, p15). As can be seen, the initialisation service and some

of the control services and status services are available after a reset. When the

initialisation service is completed all other services are available (Fujitsu

Microelectronics Europe 2007, p15).

Figure 8.10: Fujitsu FlexRay driver services

LITERARY REVIEW

- 182 -

8.5 Conclusion

It is important to know how the data is transferred from the host to the

communications controller. If data is not transferred in a timely fashion it may miss the

transmission slot it is assigned to. If this is the case the data will not be sent out during

the current communication cycle. This may lead to problems as the data will used for

decision making or in calculations. The FlexRay drivers outlined above are designed to

be used for a wide range of systems.

AUTOSAR looks set to be adopted by a large section of the automotive industry.

The driver could therefore have a huge effect on the performance of networks.

COMMSTACK is a well defined library of necessary FlexRay interface functions. This

makes it a very useful driver for non-AUTOSAR applications. The Fujitsu FlexRay

driver is a useful tool to allow early development and familiarisation. It can also be used

for lower level functions which could be useful for some applications, i.e. timing

analysis.

Both the COMMSTACK and FFRD software drivers will be used in this

research. COMMSTACK is the software driver that shall be modelled. The features and

timing of this will be implemented into the simulation model. The FFRD driver will be

used in the calibration and validation stages of the model building process. This is used

to obtain timing information from the real world system implementations. Zhu (2007)

already developed a simulation of an AUTOSAR based system and so will not be used

in this research.

8.6 References

AUTOSAR GbR (2008a) AUTOSAR [online] available at: www.autosar.org [accessed

15 May 2008].

AUTOSAR GbR (2008b) Specification of the Virtual Functional Bus version 1.0.1,

Munich, Germany.

Buttle, D. (2005) What is an RTE?- Introduction to AUTOSAR for RTE users, Stuttgart,

Germany.

LITERARY REVIEW

- 183 -

Dependable Computer Systems (2004) DECOMSYS::COMMSTACK

<CONFIGURATOR> User Manual, Wein, Austria.

Dependable Computer Systems (2005) COMMSTACK <FlexRay> 1.6 User’s Manual,

Vienna, Austria.

Dependable Computer Systems (2006) COMMSTACK <FlexRay> 1.8 User’s Manual,

Vienna, Austria.

Fennel, H., Bunzel, S., Heinecke, H., Bielefeld, J., Fürst, S., Schnelle, K.-P., Grote, W.,

Maldener, N., Weber, T., Wohlgemuth, F., Ruh, J., Lundh, L., Sandén, T., Heitkämper,

P., Rimkus, R., Leflour, J., Gilberg, A., Virnich, U., Voget, S., Nishikawa, K., Kajio, K.,

Lange, K., Scharnhorst, T. and Kundel, B. (2006) Achievements and Exploitation of the

AUTOSAR Development Partnership, Convergence 2006, October 2006, Detroit

Michigan, USA, SAE International, Warrendale, Pennsylvania, USA.

Fujitsu Microelectronics Europe (2007) Fujitsu FlexRay Driver Manual v1.3, Langen,

Germany.

Galla, T.M., Schreiner, D., Forster, W., Kutschera, C., Göschka, K.M. and Horauer, M.

(2007) Refactoring an Automotive Embedded Software Stack using the Component-

Based Paradigm, Proceedings of the International Symposium on Industrial Embedded

Systems, 2007. Lisbon, Portugal, July 4-6, IEEE Computer Society Washington, DC,

200-208.

Jackman, B. (2008) Class Notes on AUTOSAR, Waterford Institute of Technology.

TTTech Automotive GmbH (2007) AUTOSAR FlexRay Stack for Series Production,

Vienna, Austria.

Weka Fachmedien GmbH (2008) FlexRay and AUTOSAR get it right [online] available

at: http://www.elektroniknet.de/home/automotive/autosar/english/flexray-and-autosar-

get-it-right/ [accessed 15 May 2008].

LITERARY REVIEW

- 184 -

Zhu W. (2007) Performance Analysis of AUTOSAR Vehicle Network Gateways,

unpublished thesis (M.Sc.), Waterford Institute of Technology.

LITERARY REVIEW

- 185 -

Chapter 9 . Literary Review

Conclusion

9.1 Literary Review Summary

 The chapters contained in the literary review should encompass all relevant

information necessary to see the importance of this research. The reader should also be

able to determine the strengths of the methodologies chosen. The review has not

covered all possible methods available but has outlined popular approaches. This is due

to the amount of possible areas to cover in these topics. To cover all possible areas

would be unwieldy and add little to the review.

From the material covered it can be seen that the research previously conducted

in the area of FlexRay has had a strong focus on the optimisation of the communication

schedule. This can be seen from the research highlighted in Chapter 5. The hardware

that is available also must pass conformance testing. The Bosch E-Ray is used in a

number of devices and is supported by a number of different third party software

products. The research that is outlined in this thesis focuses on the flow of data around a

FlexRay node. This could help a developer to ensure a FlexRay node is optimised with

respect to the timing of the system. This is an area which has little or no research

conducted to date.

Different system analysis techniques were researched and a suitable option was

chosen based on this. This is seen in chapter 5, and chapter 7 describes the chosen

method in greater detail. From this a suitable software packages to carry out the

intended research was also discussed and a decision made as the most suitable package

commercially available. Finally all aspects of a FlexRay node were researched to ensure

all relevant aspects of any node were included for the analysis that was conducted.

LITERARY REVIEW

- 186 -

9.2 Available Literature

For the most part the information available for this research is good, accurate

and accessible. There may however be a limit to the range of material available. For

instance the FlexRay protocol is well defined and as such there are not many

alternatives to the specifications laid out by the FlexRay consortium. The E-Ray chip is

designed to be implemented in an FPGA and has been well documented by the

designers. Manufacturer’s datasheets on the specific implementations can therefore add

little to the information outlined in the E-Ray user’s manual. For simulation there are a

number of well written books and other resources. These cover a multitude of different

simulation methods and techniques. Performance analysis of software is also a big area

of interest to companies. This is due to the ever present need to reduce cost. Also

software development can be expensive and time consuming. Therefore there is a huge

amount of material in the area of analysis.

For the most part the available literature is plentiful and well written. There are

very few topics that can’t be found in some document or book. There are also a number

of papers or theses written on FlexRay scheduling and scheduling optimisation. These

can be useful during the initial phase of learning.

9.3 Areas of Further Study

The necessary elements to complete this research have been covered in the

literary review. It is necessary to be familiar with syntax of the programming language

and methodology to write software programs. This is outside the scope of the thesis and

therefore is left to the reader to gain knowledge and experience in this area if necessary.

The automotive industry looks set to become more and more dependant on electric and

electronic innovations. This means the area is rapidly changing and new products

emerging. This leads to greater research possibilities and a wider area of study.

MODEL DEVELOPMENT

- 187 -

Section III:

Model Development

MODEL DEVELOPMENT

- 188 -

Chapter 10 . Methodology

10.1 Introduction

The unpredictability of circuits and systems increases with the size and

complexity of the system. It is not possible to predict accurately how a system reacts to

even a small change. The research presented here aims to develop a simulation model of

a FlexRay node for analysis. The performance of the node, which includes buffer

utilisation and throughput latency of data, will then be analysed. Recommendations for

improvement can then be suggested based on observations made. This section will

introduce the steps taken for successful simulation of a real world FlexRay node.

10.2 Simulation Process

In section 7.3 a simulation process was laid out. This process was followed for

this research and the steps taken are outlined below (Banks et. al. 2001, p15-20). The

process steps, as outlined by Banks et. al. (2001), are clear, concise and easily followed.

They were also developed with a discrete event simulation model, (the modelling

technique chosen for this research), and as such were followed as an appropriate

methodology. Figure 10.1, is again the flow diagram for the simulation process (Banks

et. al.2001, p16). Each step is discussed in turn.

MODEL DEVELOPMENT

- 189 -

Figure 10.1: Simulation study steps

Problem Formulation: This is the first step of the simulation process. It is important

that the analyst has a clear understanding of the problems that are to be addressed. This

may involve discussions with any policy makers or stakeholders about the problems that

may be faced for the system under investigation. The problem formulation may take

time and problems may need to be re-examined may times before this step is complete.

Setting of Objectives and Overall Project Plan: At this stage it is decided if

simulation is the correct procedure to address the problems. If simulation is found to be

the correct action to take a project plan is devised. Alternatives to the different systems

are devised and a method for analysing the suitability of these alternatives is defined.

MODEL DEVELOPMENT

- 190 -

Other considerations are constraints on time, people and the overall cost involved in

undertaking the project.

Model Conceptualisation: During this step the fundamentals of the system under

investigation are defined. The model should be kept as simple as possible with

complexity added only as needed. This will reduce the costs of building the model. If

possible the user of the model should be consulted during this process. This will create a

better quality and more user-friendly model.

Data Collection: The earlier this stage is started the better the model will be. This is

due to the time it takes to collect the data. The problem under investigation will

determine the data to be collected. The data collected will include data from a real-

world system. Data from the model may be collected at the calibration stage to analyse

the accuracy of the model. The real-world data is used to calibrate and validate the

model.

Model Translation: This step is where the model is converted from a conceptual object

into a computer program. The type of simulation software is chosen based on a number

of criteria. Some of the considerations when choosing the simulation software were

discussed in chapter 7.

Verification: This stage of the simulation study involves debugging the model. The

functionality of the model can be tested by passing in a set of inputs and checking the

set of outputs obtained against a set of expected outputs. The model can be verified by

testing various subsystems as they are constructed.

Validation: This step may need to be repeated many times. This step determines if an

accurate representation of the system under investigation has been achieved. If the

model cannot be deemed to be an accurate representation it may be necessary to go back

to the data collection stage or model conceptualisation stage. Once the model accurately

depicts the real world system over a number of scenarios it can be said to be validated.

Experimental Design: At this stage the experiments to be simulated are determined.

This can be based on runs that have already be performed and analysed. The

MODEL DEVELOPMENT

- 191 -

considerations of this stage are, time taken to run or initialise the model and the number

of repetitions of each run.

Production Runs and Analysis: The simulations measure of performance is

determined during this stage.

The Need for More Runs: The focus of this stage is to determine if more runs of the

model are necessary. Based on the analysis done at this stage the nature of any

additional experiments are determined.

Documentation: The documentation of the simulation process is an important step. The

documentation should be split between regular progress reports to any stakeholders and

an overall model program report. The progress reports can be used to help any potential

users to understand how the program works and clarify any misunderstandings. It also

has the advantage of forcing the model builder to look at current progress and identify

problems that arise. This can help the designer to meet deadlines. The overall program

report will allow users to understand how the model operates and ultimately helps them

to draw correct conclusions for the data obtained. It also allows modification of the

model to suit other needs, if necessary, by other modellers.

Implementation: The success of this step is dependant on how well each of the

previous steps were carried out. If the workings of the model are fully understood by the

user and the model has been built with the problems under investigation in mind, the

model should be a success. Likewise if the implementation has been impaired by a lack

of understanding on the overall required outputs then the model may be deemed a

failure.

MODEL DEVELOPMENT

- 192 -

10.3 Simulation Process in Relation to the Research

Problem Formulation: The problems faced by the adoption of FlexRay on a large

scale were discussed in section 1.1 of this thesis. The problems covered were the main

motivation behind the research outlined in this thesis.

Setting of Objectives and Overall Project Plan: The flow of data through a FlexRay

node will depend on a number of factors such as the communication schedule or the

buffering implementation. This would make running a wide range of scenarios on real

world systems costly. The simulation of a node was chosen as a better alternative. A

simulation model designed to analyse aspects of a FlexRay node will there fore be

constructed and tested for suitability. The simulation model development flow process

as defined in Banks et al. (2001, p16) will be used.

Model Conceptualisation: The features of the system relevant to the study were

selected and defined. This includes the message RAM and handling of the

communication schedule. Rejected aspects of the FlexRay node include the wakeup and

startup phases. This is due to these phases having no impact on the flow of data through

the node during communication.

Data Collection: The data to be collected was determined. All data from a real world

system and the model were collected and analysed. The data that was collected included

timing information for the software drivers to complete different tasks. Other data

collected were timing constraints associated with the E-Ray communications controller

implementation.

Model Translation: The model was built using SimEvents. This software was decided

upon as it has all the required elements necessary to build a discrete-event model. It is

also flexible as it allows the use of user defined elements or functions written in ‘C’ to

be included. The steps involved in choosing the simulation program are outlined in

section 7.10.

MODEL DEVELOPMENT

- 193 -

Verification: The model was verified in stages by testing the different subsections.

When the model is completed it is verified as a whole. This stage was performed using

SimEvents.

Validation: The model was validated against a small real world network. This included

a number of different set of constraints to judge the performance of the model over a

number of different scenarios. This was repeated until the model could be said to be

validated. It was also evaluated to judge its ability to carryout its intended function.

Documentation: This was done at regular intervals. This is backed up by regular

meetings with stakeholders in the research.

The following steps relate to the completed model as a tool. These are done to

test real world scenarios where improvement in system performance is desired.

Experimental Design: The experiments are done as needed

Production Runs and Analysis: The experiments are run and the performance metrics

obtained.

The Need for More Runs: This is done as needed.

Implementation: The real world system can be modified and improved based on the

output of the simulation experiments.

10.4 Conclusion

 The FlexRay protocol is new and emerging. This leads to a wide range of

research opportunities to improve FlexRay products and systems. The complexity of

setting up a FlexRay node makes it difficult to analyse over a wide range of constraints.

The cost to set up an adequate real world FlexRay network to test a hypothesis can also

become prohibitive. As it is not always possible to observe real world systems a

simulation of a FlexRay system is a more effective and viable solution. Using the

methodology outlined in this chapter an effective model should be achieved.

MODEL DEVELOPMENT

- 194 -

10.6 References

Banks, J., Carson, J. S., Nelson, B. L. and Nicol, D. M. (2001) Discrete-Event System

Simulation, New Jersey: Prentice Hall.

MODEL DEVELOPMENT

- 195 -

Chapter 11 . Simulation Model

Development

11.1 Introduction

The simulation model was designed to accurately represent a real world FlexRay

node. To achieve this, the model was based on the Bosch E-Ray communications

controller. This chapter will outline the specification of the FlexRay node that defined

the structure and performance of the simulation. The model will be broken down into its

various subsystems. The functionality of these subsystems will be explained.

This model used MATLAB, Simulink and SimEvents to build, verify and

validate the model. The various operation and performance characteristics of the

components used will be described as necessary throughout this chapter. Due to the size

of the model developed, only a small number of the main subsystems will be described.

Figure 11.1 (Banks et. al. 2001, p16) highlights the stage at which the model

development occurs in the model development cycle. At this stage research into the

operation of the system has been done and the simulation model is built.

MODEL DEVELOPMENT

- 196 -

Figure 11.1: FlexRay development steps

MODEL DEVELOPMENT

- 197 -

11.2 Specification Development Process

When the specification for the model was developed, it was based on the

specifications of the separate components making up a FlexRay system. The structure of

a node based system can be seen in Figure 11.2.

Figure 11.2: FlexRay node elements

The elements of the node are the application, the software driver and E-Ray

communications controller. The FlexRay network represents the physical bus over

which data is transmitted. It was necessary to understand how each of these layers work

and interact to accurately reflect the workings of a FlexRay node.

By viewing a FlexRay based system in the divisions shown in Figure 11.2, the

build process was more easily modularised. This meant that each element of the system

could be built and tested separately. The final model then consists of these individual

subsystems. This method allows each section to be built to the specifications applicable

to it. It does mean however that there may be some work needed when connecting the

elements of the overall system together. Problems can arise in the form of syntax issues,

MODEL DEVELOPMENT

- 198 -

i.e. attribute names vary slightly, or in the form of a system receiving an entity it cannot

handle.

11.3 Simulation Model Specifications

Each of the nodes’ elements was considered in relation to their inputs/outputs

and functionality. Figure 11.3 shows the inputs, outputs and considerations that were

necessary to be investigated for the application layer.

Figure 11.3: Application inputs, outputs and considerations

As can be seen the considerations that were examined were elements that affect

the speed and flow of data. For each section a number of considerations were

investigated. The remaining sections of the FlexRay node considerations can be seen in

Figures 11.4, 11.5 and 11.6.

MODEL DEVELOPMENT

- 199 -

Figure 11.4: Software driver inputs, outputs and considerations

Figure 11.5: Communications controller inputs, outputs and considerations

MODEL DEVELOPMENT

- 200 -

Figure 11.6: Physical bus inputs, outputs and considerations

After this process it was decided that the startup and wakeup processes would

have no effect on the flow of data through a communicating node. Therefore it was felt

that these two processes would have no bearing on the outcome of the research. All the

other considerations as outlined in Figures 11.3 to 11.6 could have a big impact on the

flow and timing of data. For this reason it was necessary to accurately depict them in the

model.

The next step was to investigate the workings and makeup of those elements

outlined above and to implement them in the simulation model.

11.3.1 The Model Design Philosophy

Each of the four basic elements that make up a FlexRay node (application,

software driver, communications controller as well as the physical bus layers) may be

made up of a number of subsystems. The simulation model was therefore designed to

accurately reflect these divisions. This section will outline how each of the sections is

divided up and their subsequent implementation in SimEvents.

The two diagrams Figures 11.7 and 11.8 show the top layer of the simulation

model and the main elements of the FlexRay node model. The design of the top layer is

used to give a more realistic breakdown of the model. However it provides no

functionality to the model.

MODEL DEVELOPMENT

- 201 -

Figure 11.7: Top layer of simulation model

Figure 11.8: FlexRay model subsections

When designing the blocks and subsystems of the model the guidelines as

defined by MAAB (Mathworks Automotive Advisory Board [MAAB] 2007) were used.

These guidelines are for use when modeling with MATLAB, Simulink and Stateflow.

Therefore not all the guidelines were useable without minor alterations. The basic

workings of each section of the model are discussed briefly later in section 11.5. For a

more complete explanation of the workings of FlexRay, E-Ray and the FlexRay

software drivers see chapters 4, 6 and 8 of this thesis.

MODEL DEVELOPMENT

- 202 -

To make an adaptable model a number of entities types were designed. Each entity

had a number attributes associated with them. These entities were used to represent the

main signals of concern to the study. The entities that were developed were:

• Requests: These entities represent the signals and data sent between the

communications controller and the host of the node. The host is a combination

of the application layer and the software driver.

• Slots: These are in the form of static, dynamic and minislots. They define when

slots begin.

• Cycle: This is used to represent when a new communication cycle begins. This

is used by various other subsystems to identify the current time also.

• Frames: These entities represent the data to be transmitted over the physical bus.

The various paths that the different entitles could take though the model are shown in

Figure 11.9. In Figure 11.9 R= request entity, S= slot entity, F= frame entity and C =

communication cycle entity. The E-Ray module abbreviations shown are the Controller

Host Interface (CHI), Input Buffer (IBF), Output Buffer (OBF), Protocol Register (PRT)

and Transient buffer (TBF). Message is abbreviated as MSG.

Figure 11.9: Entity Paths

As can be seen there are a limited number of paths that any one type of entity may take.

This will be discussed in section 11.3.2

It was also decided that colour coding the model would make debugging the

model easier and quicker. To do this a colour coding convention was developed. This

colour coding chart can be seen in Appendix A.

MODEL DEVELOPMENT

- 203 -

11.3.2 Entity Types

As was stated in section 11.3.1 there are four basic entity types that were

developed to model a FlexRay system. These represent the signals that are of interest to

this research. These signals are in the form of timing (slot and communication cycle

entities) as well as data signals (request and frame entities). Figure 11.9 also showed

that there are two basic directions that these entities can take i.e. transmit and receive.

Figures 11.10 -11.13 show a flow of the slot, request, frame and cycle entities

throughout the model.

Figure 11.10 shows that the generation of slots is based on synchronisation

entities that are produced by the synchronisation block. The generation of slots is done

in the global time unit subsection of the model. The current slot entity is then passed to

a number of blocks. This allows the message RAM to check for any frame that would

be sent during the next slot. The media access control block also uses a slot entity to

ensure that the current frame in the transfer buffer is the next valid frame before

allowing the controller to commence communication. Finally the physical bus uses the

current slot entity to check if slot is assigned to the simulated node. If the slot is

assigned as a receive slot for the node then there is no possibility that the physical bus

will generate a frame during that slot. If the slot is not assigned to that node, the

physical bus has a possibility to generate a frame.

Any slot that is received from the physical bus is used by the global time unit to

create a dynamic slot if the static segment is complete. The generation of the dynamic

slot occurs at the generation time of a minislot if a slot has been received from the

physical bus. This means that while transmission is occurring, during the dynamic

segment, the current slot entity must be blocked from entering the communications

controller model.

MODEL DEVELOPMENT

- 204 -

Figure 11.10: Slot entity paths

In Figure 11.11 the request entity paths can be seen. These entities are generated

from the application layer. These requests could be in the form of asking for a stored

frame in the message RAM of the communications controller. It could also be a request

to update a buffer assigned to a transmission frame. These requests must pass from the

application layer into the driver. The requests will then pass through the appropriate

layers of the communications controller.

As can be seen from Figure 11.11 the requests can travel down from the

application to the communications controller. Requested data will then travel back

through the communications controller and software driver if necessary.

Figure 11.11: Request entity paths

Frame entities represent any frame that is to be transmitted on or successfully

received from the physical bus layer. They pass through a number of different blocks.

MODEL DEVELOPMENT

- 205 -

This is shown in Figure 11.12. They are stored in the message RAM and passed onto

the bus at the appropriate time using the media access control subsystem. If a frame is

generated by the physical bus layer and it matches the filtering criteria, the frame is

stored in the message RAM. Another entity could have been created to represent the

buffer entities. These would contain the same information as the frame entities. This

means that there is another type of entity used in the model but was never formally

defined.

Figure 11.12: Frame entity paths

The final entity type is the cycle entity. This defines the start of a new

communication cycle. It is passed up the application layer as an ‘interrupt’ to give the

application layer a time reference. The global time unit subsystem receives this entity at

the start of the symbol window/network idle time. This is then used to indicate that

dynamic slot generation should cease. The paths the cycle entity will take are shown in

Figure 11.13.

Figure 11.13: Cycle entity paths

MODEL DEVELOPMENT

- 206 -

Table 11.1 describes all the entity attributes. It includes the static slot and

minislot entities that are used to define the start of slot entities. The static slot, minislot

and cycle entities encompass all of the entities necessary to perform the synchronisation

of the model. This is further described in section 11.5.1.1.

Type Attribute

Attribute

Number Notes

Slot

 Slot_No 1 Used to identify a particular slot

 Remaining_Mini 2

Used to calculate the remaining transmission time in

the physical bus.

 Cycle_Count 3 This represents the current communications cycle

Requests

 Request_Type 1

1 = get frame for transmission. 2 = get frame for the

host. 3 = update frame attributes. 4 = read from the

FIFO

 Frame_ID 2

The frame to be updated, transmitted or sent to the

host.

 Data 3 The update data if any.

 Channel_Config 4

The channel the message is to be transmitted on if

necessary.

 TX_Type 5

1 = The frame should be transmitted. This is used

when updating a message buffer for transmission. 2 =

the frame was received and should not be transmitted

Frames

 Frame_ID 1 Used to identify a particular frame

 Cycle_Code 2 Used for filtering if desired.

 Channel_Config 3

1 = transmit/receive on A. 2 = transmit/receive on B. 3

= transmit/receive on A & B. This is the same for

Request Entities.

 Data 4 The data length of the frame

 TX_Type 5 1 = The frame should be transmitted..

Static

Slots Describes the actual static slot

 Slot_Number 1 Used to identify a particular slot

 Remaining_Mini 2

This is set to ensure that the physical bus isn’t blocked

for generating frames during the static segment

Mini Slots Describes the current minislot

Mini_Slot_Num

ber 1

Used to identify the number of minislots that have

expired during the current dynamic segment

Cycle

Count

Cycle_Count_Nu

mber 1 Holds the current cycle count, values range from 0-63

Table 11.1: Entity attributes

MODEL DEVELOPMENT

- 207 -

11.4 Model Metrics

Before metrics can be developed from the output of the model an analyst must

be able to obtain measurements from output. The following sections will describe the

measurements that can be obtained from the model.

11.4.1 Data Flow Measurements

It has been stated that the model views the FlexRay system as a flow of data

through the system. An example of this is illustrated in Figure 11.14. In Figure 11.14

the small squares within the separate model components represent the various delays

associated with the system. The messages must pass through each of these to reach their

destination. As can be seen there are two paths that the data may take. The data may

originate on the communications bus. This represents data sent by the various nodes of

the system. It will take time to propagate over the bus and into a node. The data will

then work its way up through the communications controller and the software driver to

the application layer. The data can then be processed.

Figure 11.14: Model as a flow of data

Figure 11.14 shows how there can be one or more delays associated with any

one layer of the model. The implementation of these layers will have an effect on the

performance and operation of the system. For instance the manner in which the

application handles data from the communications controller will effect how quickly

incoming data can be processed. The implementation may be seen only as one delay or

as many delays and this will depend on the setup and characteristics of the layer in

question. By analysing the paths better conclusions can be made.

MODEL DEVELOPMENT

- 208 -

Figure 11.15: E-Ray data flow path

Figure 11.15 shows one path that data may take through the E-Ray chip. The diagram is

numbered as follows:

1. Data moves off the bus and is placed in the protocol controllers.

2. The message then moves into the transient buffer.

3. From here the message is passed to the message handler to be placed in a

Message Buffer.

4. The message remains in the Message Buffer until requested by the host.

5. The message is passed into the output buffer by the message handler.

6. The message is passed from the output buffer to the software driver.

7. Finally the message passes to the application layer for processing.

The path will experience extra delays as the data moving in one direction could

affect the movement of the data in the opposite direction. The messages stored in the

message RAM will also spend a potentially indeterminate amount of time in a buffer

before being read or transmitted. By recording data entering various stages and the time

when it is passed onto the next stage a clear view of the data flow can be achieved. This

will help to identify why, if any, deadlines are missed, or why a message is overwritten

before it is processed or transmitted. Any ‘bottlenecks’ in the system can then be

analysed and a solution proposed.

In Figure 11.2 the overall conceptual view of a FlexRay node was shown. The

data flow through such a system is also shown in Figure 11.14. Various aspects of a

FlexRay system could be of interest to any particular systems analysis. For the model to

be a useful as a performance analysis tool it must return suitable measurement values.

Once these metrics were determined the model could then be modified to return these

values.

The first consideration taken into account was the time base of FlexRay. This

was taken as a real world value directly from the simulation clock. This would be easy

to achieve and all measurements could then be easily time-stamped and saved as

MATLAB workspace variables. The time stamps could then be compared to the

1 2 3 4 5 6 7

MODEL DEVELOPMENT

- 209 -

expected start times of slots or communications cycle start events. This would give an

accurate view of when any simulation event occured.

Another consideration taken into account was the type of analysis that was

required for the model. The function of the model would have a big effect on the type of

metrics that should be obtainable from the model. For instance the focus of this model

was on the flow of data through a FlexRay node. This means that the power

consumption of the node could not be measured and any metrics based on this could be

ignored in this study.

The final consideration was to attempt to record as many possible measurements

that may be required by a user of the model. This would then make the model as useable

for as many tests and testing situations as possible.

When these were all taken into account the metrics could be developed and

analysed for suitability. The model could then be constructed to accommodate any

measurements necessary to achieve the required flexibility. For more information on

performance analysis and metrics see chapter 5 of this thesis.

11.4.2 Application Measurements

Figure 11.3 shows the considerations for the application layer of the model. The

application layer takes in data from and passes data to the software driver. This data can

be seen as data from the communications controller. The role and operation of the driver

will be introduced in section 11.4.3. The information passed to the driver is either

configuration data during startup or data for transmission after the startup phase to/from

the communications controller. As the model is not concerned with the startup phase

data to and from the model application layer is only concerned with communication

data. The main concern with the application would therefore be the number of frames
§
 it

can process within a given communication cycle.

The number of frames that the application processes within a given

communication cycle could give an insight into the suitability of the setup. For instance

§ A frame is not completely passed on by the host. For any given static slot the host merely updates the

data section in memory RAM allocated to a particular frame and the header section remains unchanged.

For more information see chapters 4 and 6 of this thesis.

MODEL DEVELOPMENT

- 210 -

a node could be set up to read a sensor and output data as well as calculate a value based

on received data and output this calculated value. If the application is not able to

transmit the data to the communications controller within a given time the data may not

be transmitted during the current communication cycle. This could indicate that the

application coding takes too long to execute or that the communication schedule is not

appropriate. Likewise if the application executes very rapidly the node’s host controller

may be idle for long periods. This could mean that an extra application may be added to

that node (hardware limitations such as memory requirements permitting).

Due to these considerations it was decided that to measure:

• The number of frames sent to the communications driver.

• The number of incoming frames serviced.

• The overall execution time of the application.

11.4.3 Software Driver Measurements

Like the application, the software driver is concerned with data for transmission

and data received to/from the application and communications controller. This can be

seen in Figure 11.4. However unlike the application the driver cannot generate data. It

merely accepts data and passes it between the communications controller and the

application. In this way the most significant effect that the driver will have will be to

slow down the data as it waits for the communications controller or application to

respond to commands.

The measurements that can be drawn from this layer are:

• The wait time of a frame to be passed from the host to the communications

controller.

• The wait time of a frame to be passed from the communications controller to the

host.

11.4.4 Communication Controller Measurements

The communications controller considerations are shown in Figure 11.5. This is

an important aspect of the model. This layer is where the research conducted in the

thesis is focused. The communications controller is responsible for ensuring that frames

are only transmitted during their allocated slots. It must also accept frames sent over the

physical bus if those frames match the acceptance filter criteria. Both transmit and

MODEL DEVELOPMENT

- 211 -

receive frames must be stored in the communications controller until ready to be

transmitted or requested by the application.

To be able to measure the performance of this layer it is necessary to know:

• What data is coming into and out of the controller.

• The channel(s) a frame is transmitted/received on.

• The frames that are passed and rejected by the filtering for the FIFO and normal

filtering.

• The number of frames stored in the FIFO.

• The average wait time for a message stored in the message RAM should also be

recorded.

• The number of requests from the application layer that are serviced by the

controller.

• The values for the various slots and communication segments.

11.4.5 Physical Bus Measurements

 The physical bus transmits frames received from any communications controller.

The communications controller must ensure that it only transmits data during its

allocated slots. In this way the model of the physical bus must be able to generate

frames to simulate traffic from other nodes. The physical bus must not block the frames

from the communications controller model unless it is the dynamic segment. In the

dynamic segment frames can occupy as many minislots as necessary. Figure 11.6 again

shows some considerations that should be taken into account.

The physical bus is completely dependant on the communication cycle. As such

all the measurements should be considered in terms of the communication cycle. If

possible however the different segment times should be taken into consideration. In this

way the bus loading for the static and dynamic segment can be viewed separately.

The measurements therefore that could be taken are:

• The frames received from the communication controller.

• The frames generated and transmitted as other nodes on the bus.

• The average wait time that the frame occupied the bus.

• Each measurement should be split up to represent each of the two

communication channels.

MODEL DEVELOPMENT

- 212 -

11.4.6 Model Metrics Summary

To make a useful and adaptable model a number of items were investigated. In

this section the metrics that may be desired were discussed. There are a number of

possible metrics that an analyst may want. The model was therefore designed to provide

as many of these as possible. A number of measurement blocks were added to the

model. This will be seen in section 11.5. A list of all the recordable values and variables

for the model can be seen in Appendix B of this thesis.

11.5 The Model

11.5.1 Communications Controller Model

The communications controller will be modelled on a Bosch E-Ray

communications controller chip. This meets the specifications laid out in the FlexRay

specifications. The divisions and functional blocks of a communications controller can

be seen in Figure 11.16 (Robert Bosch GmbH 2006a, p14). Figure 11.16 is the block

diagram of an E-Ray chip. The simulation model of the communication controller was

designed to reflect the layout of these diagrams.

The various sections of Figure 11.16 are as follows:

• IF: interface.

• IBF: the input buffers.

• OBF: the output buffers.

• TBF: transient buffer RAM.

• PRT: FlexRay channel protocol controller.

• GTU: global time unit.

• SUC: system universal control.

• FSP: frame and symbol management.

• NM: the network management.

• INT: interrupt handler.

MODEL DEVELOPMENT

- 213 -

Figure 11.16: E-Ray block diagram

Figure 11.17 shows the functionality that was required for the communications

controller layer of the model. This was based on the specifications of the E-Ray

controller and the FlexRay specifications. The outer circle show the areas of interest to

this research.

Figure 11.17: Communications controller tasks

The model representation of the E-Ray chip can be seen in Figure 11.18. The

naming of the sections is based on that of Figure 11.16. This was to achieve a higher

level abstraction more consistent with that of the FlexRay protocol. For instance the

input buffers and output buffers form part of the controller host interface. By naming

the model subsystem input buffer and output buffer it may not be clear to all users of the

model immediately that the buffers were used for transfer between the host and the

MODEL DEVELOPMENT

- 214 -

communications controller and not onto the physical bus from the communications

controller. Instead the use of ‘Media_Access_Control’ and

‘Frame_And_Symbol_Processing’ was used.

Figure 11.18: Model of the communications controller

This naming convention was used for the following reasons. The paths that a

message may take through a E-Ray communications controller is show in Figure 11.16.

The subsystemss coloured yellow, in Figure 11.16 help to maintain the accurate running

of the node. They have little bearing on the flow data through the node with the

exception of the frame and symbol processing and the global time unit subsystem. The

frame and symbol processing subsystem accepts or rejects the frames arriving and

allows the node to transmit the frame only during its current slot. The global time unit

merely tells the communications controller the current global time.

The role of the transient buffer RAMs (there is one for each channel) is to store

any messages to be sent out on the bus as well as the most recent message received on

the bus. Figure 11.19 shows the structure of the single transient buffer RAMs (Robert

Bosch Gmbh 2006, p138).

MODEL DEVELOPMENT

- 215 -

Figure 11.19 Transient buffer RAM structure

As there are separate dedicated receive and transmit buffers it is possible to split

these components up into two separate functional blocks. Therefore the transmit buffers

become the media access control and only allow the correct message to be sent out. The

receive buffers then becomes the frame and symbol processing subsystem as they only

send the data to the message handler if the received frame matches filter criteria.

11.5.1.1 Synchronisation Model

The synchronisation block, Figure 11.20, acts as part of the global time unit of

the E-Ray chip. It carries out the same function as the macrotick generation and clock

synchronisation processing blocks as defined by the FlexRay specification (2005). It

forms along with the ‘Global_Time_Unit’ subsystem in the

‘Protocol_Operations_Control’ subsystem the whole clock synchronisation and time

handler. The function of the synchronisation subsystem is to give a reference for when

slots begin.

MODEL DEVELOPMENT

- 216 -

Figure 11.20: Synchronisation block

The synchronisation subsystem as can be seen in Figure 11.20, is divided into

four main sections. These sections are the ‘Initialise_All_Segments’, ‘Static_Segment’,

‘Dynamic_Segment’ and the ‘Symbol_Window_And_NIT’ blocks. The function and

operation of these blocks will be discussed below.

The synchronisation susbsystem is controlled by a cycle entity that is passed

between each lower level subsystem in turn. When a susbsytem has the cycle entity it is

allowed to perform its function. For example, if the static segment subsystem is in

possession of the cycle entity it is allowed to generate static slots. After a predefined

time the cycle entity is passed to the next subsystem and this subsystem then performs

its function. The flow of the cycle entity can be seen below in Figure 11.21. Also at the

start of each cycle the cycle entity is passed up to higher layers of the model.

MODEL DEVELOPMENT

- 217 -

Figure 11.21: Cycle entity flow diagram

11.5.1.1.1 Synchronisation Initialisation Block

This block sets up the static and dynamic segment subsystems. It also generates

the cycle entity that is used to control the operation of the different subsystems. Each

initialisation segment is confined to a different subsection. This is again to aid

readability and to avoid confusion. Figure 11.22 shows the subsystems used in the

initialisation subsystems.

MODEL DEVELOPMENT

- 218 -

Figure 11.22: Initialisation block

The static initialisation generates static slot entities that will be used to

determine the current static slot in the static segment subsystem. This is shown in Figure

11.23. Each entity is generated using the SimEvents time-based generation block. This

means that at fixed, evenly spaced points in time a new entity is created.

Figure 11.23: Initialise static segment block

MODEL DEVELOPMENT

- 219 -

Each generated static slot has an attribute assigned to it. This attribute is the

‘Slot_Number’ attribute. Its value is obtained from the memory block that adds one

every time an entity passes through the ‘Assign_Slot_Numbers’ block. Once the

number of static slots has been obtained the

‘Required_Number_Of_Static_Slots_Initialised’ block is asserted. This will cause the

generation process to be blocked. This model block is based on time but is set using

workspace variables.

The dynamic initialisation subsystem generates minislots that will be used to

determine the current dynamic slot during the dynamic segment. This subsystem

operates in the same way as the static slot initialisation subsystem. When the required

numbers of minislots are obtained a signal is asserted and this causes this subsystem to

be blocked from generating more entities.

The subsystem that initialises the cycle entity works in a similar way to the static

and dynamic initialisation subsystems. This subsystem differs from the static and

dynamic initialisation subsystems as it only generates one entity. As such the set

attribute block does not need an external signal to indicate what the attribute value

should be. This is instead ‘hard-coded’ using a dialog box in the parameters of the set

attribute block.

11.5.1.1.2 Static Segment Subsystem

In this subsystem, shown in Figure 11.24, the static slots from the initialisation

subsystem are stored in a FIFO. When the cycle entity arrives it enables slots to move

from the FIFO into a server. Before they are moved into the server however they are

replicated and sent to higher levels of the model. The server holds the static slots each

for the desired length of a static slot. The cycle entity should therefore only allow

enough time for the required number of static slots to be replicated and sent out.

After the slot entity has left the server it is sent back to the FIFO so that during

the next cycle the process can begin again. This eliminates the need to continually

generating slot entities.

MODEL DEVELOPMENT

- 220 -

Figure 11.24: Static segment block

Figure 11.25 shows the cycle entity detection subsystem elements. This

subsystem accepts the initial cycle entity. It then replicates the entity and sends it to

higher subsystems that it may require the entity to function correctly. The cycle entity

will then enter the server. This server holds the cycle entity and creates a signal that

allows the enable gate in the static segment block to pass slot entities.

It is necessary to have a second server to avoid timing issues. After the last slot

has passed from the FIFO the cycle entity passed to the second server. This server holds

the entity for the remaining time of the static segment. It was found that an extra static

slot entity could pass from the FIFO arbitrarily if this second server was not employed.

If an extra slot entity passes from the FIFO then errors occur based on the slot numbers.

Figure 11.25: Get start of cycle

11.5.1.1.3 Dynamic Segment Subsystem

The dynamic segment operates in a similar way to the static segment. Entities

are allowed to be generated when an enable signal is asserted. This signal is asserted

when the cycle entity enters the ‘Cycle_Entity_Detection’ subsystem. It can be seen in

Figure 11.26 that there is a replicate block within this subsystem. This block takes the

generated minislot and passes it to two ‘out ports’. This allows for the system to keep

MODEL DEVELOPMENT

- 221 -

track of the current dynamic slot on each channel separately. This necessary due to the

workings of the ‘Global_Time_Unit’ subsystem and will be discussed later.

Figure 11.26: Dynamic segment block

The minislot generation takes place as shown below in Figure 11.27. As can be

seen it operates in the same way as the static slot generation.

Figure 11.27: Dynamic channel block

The enable block for the dynamic segment is less complicated than for the static

segment. This is because it has no routing blocks for the initialisation stage or a

replication block section for the cycle entity. It does however utilise the two server

approach to eliminate any erroneous minislot generation errors. Therefore the only

required elements are those only shown in Figure 11.28.

Figure 11.28: Dynamic enable block

MODEL DEVELOPMENT

- 222 -

11.5.1.1.4 Symbol Window and NIT Subsystem

The symbol window and network idle time (NIT) subsystem holds the cycle

entity for the remainder of the communication cycle. It also increments the cycle count

attribute. Figure 11.29 shows the blocks used to achieve this. The cycle count attribute

is obtained from the entity when it enters the block. When it leaves the block an updated

cycle count replaces the old value. On entering this subsystem, the cycle count entity is

replicated and sent to the global time unit subsystem. This will then stops dynamic slot

generation.

Figure 11.29: Network idle time and symbol window block

The ‘Increment_Cycle_Count’ subsystem was constructed as shown in Figure 11.30. It

essentially carries out the following logic, written as ‘C’ code:

Cycle_count = Cycle_count +1;

If (Cycle_count > Cycle_count_max)

 Cycle_count = 0;

End if

MODEL DEVELOPMENT

- 223 -

Figure 11.30: Increment cycle count block

It is important to include the non-SimEvents blocks in a ‘Discrete Event

Subsystem Block’. This block helps to maintain the timing accuracy of the model. If

these blocks weren’t used then false values could be taken for any calculated values.

These include the amount of time an entity stays in a server for instance. This is

highlighted in the help file of the SimEvents program under the heading ‘Role of

Discrete Event Subsystems in SimEvents Models’ (The MathWorks, Inc. 2007):

‘The purpose of a discrete event subsystem is to call the blocks in the subsystem at the

exact time of each qualifying event and not at times suggested by the time-based

simulation clock. This is an important change in the semantics of the model, not merely

an optimization.’

Discrete event subsystems however cannot hold SimEvents blocks. If a set of blocks

makes up a subsystem of the modelled system a standard Simulink subsystem can be

used to create a clear separation of components.

11.5.1.2 Global Time Unit Model

 Within the model there is a ‘Synchronisation’ subsystem and a

‘Global_Time_Unit’ subsystem. These subsystems work together to define the start of

both static slots and dynamic slots. The synchronisation subsystem as discussed in

11.5.1.1, simply produces entities that define the start of static slots and minislots.

However dynamic slots can overlap a number of minislots. It is therefore necessary to

MODEL DEVELOPMENT

- 224 -

have a separate global time unit subsystem. This is seen in Figure 11.31 and is

consistent with operation of FlexRay as outlined in the protocol.

Figure 11.31: Global Time Unit

To accurately reflect the beginning of a static slot, the static slots are sent

directly through the ‘Global_Time_Unit’ block. When this happens the cycle count is

added as an attribute and the slot passes through to both the physical layer and to other

blocks of the communications controller. This means that no delay should be

experienced by a static slot. The cycle count attribute is added for uses by other layers

that may be using the entity. The subsystem to add the cycle count is shown in Figure

11.32. This subsystem simple takes the cycle count from the current cycle count entity

and adds it to the slots using a ‘set attribute’ block.

Figure 11.32: Cycle count attribute adder

MODEL DEVELOPMENT

- 225 -

 In order to accurately reflect the beginning of a dynamic slot however is more

complicated. In order to do this a slot must be taken back from the physical bus model.

When a static slot arrives back from the bus its slot number is checked. If it is any slot

besides the last static slot it is discarded. If it is the last static slot, the slot number is

incremented and it is sent out. It will only be sent out however when a minislot arrives.

This relies on the physical bus subsystem being able to hold the slot while a message is

on the bus. If this does not happen, a new dynamic slot will be generated every time a

minislot arrives. Figure 11.33 shows the basic components of the dynamic slot

generator subsection of the ‘Global_Time_Unit’ subsystem.

Figure 11.33: Dynamic slot generator

This subsystem also uses a copy of the cycle entity from the

‘Symbol_Window_And_NIT’ from the synchronisation subsystem to indicate that no

more dynamic slots should be produced. Any pending entity can then be discarded.

11.5.1.3 Message Handler and Message RAM

Figure 11.11 shows the breakdown of an E-Ray communications controller. It

shows the various components necessary to achieve a FlexRay compliant

communications controller. In Figure 11.34 below a small section of the diagram is

shown. It describes all the connections to the Message Handler and the Message RAM.

As can be seen only the Message Handler has access to the Message RAM. Other

systems can only access the Message RAM through the Message Handler. This should

prevent any access conflicts to the RAM. Not all systems connected to the Message

Handler are shown. For instance the current slot is shared by the global time unit so that

any pending message can be transmitted at the appropriate time.

MODEL DEVELOPMENT

- 226 -

Figure 11.34: Message Handler

The basic operation of the Message Handler and Message RAM can be seen in

Figure 11.35. The basic operation is as follows:

Any request for data, current slot or received data entities can be accepted by the

message handler which passes them to the message RAM. The message RAM buffers

are all modelled as frame entities. When any input is received the buffer entities are

searched for a matching buffer to the input. If a matching buffer entity is located the

buffer is updated or the value is read out to be transferred to the application layer or

passed to the physical bus as appropriate. If there is no dedicated buffer then no read or

update will be experienced.

While the message buffers are being read or updated no other entity is allowed

to pass through the message handler. This prevents any interference from other blocks.

This also follows the operation of a real-world E-Ray communications controller. If a

frame is transmitted the buffer entity associated with the transmitted frame is returned to

the message buffer queue. This along with the fact that received messages are stored in

the same queue meant that there was a possibility that a frame could be transmitted

when not appropriate. For instance the system may be set up to only transmit a

particular message once. To overcome this problem a ‘TX_Type’ attribute was added to

these entities. This attribute is only used within the message RAM subsystem. It is used

to indicate whether the data associated with that message buffer should be transmitted

or not. Initially all buffers are set to ‘no transmission’. If a buffer is updated then this

attribute must be changed. If a frame is transmitted it must still meet filtering criteria.

Also this indicator is not always set to ‘no transmission’. The model can be set to either

‘Single Shot’ mode or ‘Continuous’ mode. In single shot mode this indicator is reset to

‘no transmission after a message has been sent out by the message RAM. In continuous

mode the attribute is not reset and the data is transmitted every valid slot.

MODEL DEVELOPMENT

- 227 -

Figure 11.35: Message RAM model operation

As there is no way to directly measure the time it takes to search the message

RAM and update/read a buffer (using the techniques described in Chapter 13) , there is

no time associated with the search or update of the message buffers within the model.

Instead the time to handle these requests is all associated with the message handler.

The message buffers are all stored within a priority queue block until a request

accesses them. There can be a FIFO set up within the message buffers according to the

E-Ray chip specifications. To achieve this, a separate FIFO queue block was added to

the message RAM section. This does not need to be searched and as such is read and

written to differently. Figures 11.36 and 11.37 show the division of the message RAM

buffers and the connections to the message handler. Note how the input and output sides

of the message handler are separate. This means that a busy or enable signal must be

used to indicate that no more entities can enter the message handler.

Figure 11.36: Message RAM buffers

MODEL DEVELOPMENT

- 228 -

Figure 11.37: Message handler model blocks

If a request entity is received by the message handler and it is allowed to pass to

the message RAM, then the requested buffer will be sent to the

‘Controller_Host_Interface’ after a calculated time based on the size of the data to be

transferred. If data is to be sent out over the communication bus however it must first

match given criteria. This includes cycle filter and only slots matching the appropiate

slot will be sent out. When the frame is sent to the ‘Media_Access_Control’ block for

transmission, it will be routed to either a the channel A or channel B access block, or

both, depending on the value of the entities’ ‘Channel’ attribute.

11.5.1.4 Remaining Communications Controller Elements

The remaining communication controller elements include the

‘Media_Access_Control’, ‘Frame_And_Symbol_Processing’ and

‘Controller_Host_Interface’ subsystems. For these blocks the arriving entities will have

a ‘Data’ attribute associated with them. This attribute indicates the length of data to be

transferred through the subsystem and based on this value the entity will be delayed for

a calculated time.

MODEL DEVELOPMENT

- 229 -

The ‘Media_Access_Control’ and ‘Controller_Host_Interface’ subsystems

merely delay the entities; however the ‘Frame_And_Symbol_Processing’ subsystem has

more functionality. This block checks arriving frames and filters them. It will reject the

arriving frame entities based on the value of the ‘Frame_ID’ and what channel it arrives

on. It also can be configured to filter the frames based on the current cycle. Figure 11.38

shows how the output buffer is constructed to reflect the real world implementation. As

an entity enters the buffer its data length is checked and the delay it would experience

due to this is calculated.

Figure 11.38: Output buffer structure

11.5.2 Physical Bus Model

The FlexRay physical bus is the medium over which data is transmitted. It

consists of one or two channels, Channel A and Channel B, over which data can be

transmitted. Each node is connected to one or both of the channels. There are various

connection possibilities available such as active or passive star and linear bus. However

a node does not know how it is connected to a FlexRay network. It only sends data over

the network during its allocated slot(s). Transmission of these frames also occurs over

predetermined channels. In this way any particular node is able transmit and receive

data.

Figure 11.39 shows the basic operation of the physical bus. This layer must

accept the slot entities generated by the simulated node. If there is a frame generated by

the node the physical bus must also accept this. If there is no frame assigned to the node

for a given slot, the physical bus has the potential to generate a frame entity. The

physical bus may produce a frame for either both channels or just one of the channels.

MODEL DEVELOPMENT

- 230 -

Figure 11.39: Physical operation diagram

The model of the physical bus must simulate the real world behaviour. To do

this it must accept frames from the node model and generate frames to be passed to the

node model. The node model will then have to determine if the frames are to be

accepted or rejected. Another consideration of the physical bus is the propagation delay

of the data. The bus can operate at different communication speeds. This means a

10Mbit/s data rate equates to a bit time of 0.1µs, while other data rates will have other

bit times. The propagation delay will be based on the data rate and length of the data to

be sent. This was considered when the model was built. The main sections of the

physical bus model can be seen in Figure 11.40 below.

Figure 11.40: Physical bus model

MODEL DEVELOPMENT

- 231 -

As can be seen from Figure 11.40 the physical bus has been split up into two

channels, Channel A and Channel B. There is a third subsection to the model which

produces the additional frames from other nodes. These additional frames are not

generated during the slot time of slots allocated for transmission from the main model

node. In any other slot other than the slots allocated to the ‘main’ node a frame

generation can occur. For the dynamic slots the message should only be allowed to be

sent over the bus if there is sufficient time to transmit the data completely.

Figure 11.41 below shows the Channel A model. It consists of an enable gate,

slot filter, a propagation delay subsystem, routing system and a record subsystem. This

is the same configuration as used for Channel B.

Figure 11.41: Channel ‘X’ layer

The enable gate is used to allow flexibility in test of different scenarios.

Independent enabling of the channels is done using two work space variables. This

allows for simulation of different node configurations such as a node connected to both

or only one channel. This is consistent with real world system configuration possibilities.

The frame filter block is the same subsystem as used in the ‘frame and symbol

processing’ subsystem in the communications controller model block. The slot entities

that are filtered in this block are sent to the alternate frames subsystem of the physical

bus model as well as sent back up to the communications controller. The frames

however are sent to the propagation delay block.

The elements of the propagations delay block can be seen in Figure 11.42.

Figure 11.43 shows the slot routing subsystem. To calculate the propagation delay for

the frames it was first necessary to obtain the data length of the transmitting frame.

When this is done the server ‘Channel_’X’_Transmission_Delay’ is set to delay the

frame by a calculated amount. In the slot delay block a slot will be delayed until an

action point. If no frame is present on the bus after this the slot may advance from this

subsystem.

MODEL DEVELOPMENT

- 232 -

Figure 11.42: Propagation delay calculation blocks

Figure 11.43: Delay slots blocks

When the frame is released from the propagation delay block it is passed with

the slot entity and sent to the communications controller. In Figure 11.42 a delay slot

indicator can be seen. This allows the bus to delay the reception of the slot entities by

the node and this is used to define the dynamic slots. Figure 11.50 will show the same

configuration as used in the delay calculation in the propagation delay calculation block.

The alternative frames block is the third main block in the physical bus model. It is used

to generate the additional frames that are present in a real world system. This can be

seen in Figure 11.44.

Figure 11.44: Additional frames layer

As frames can sent over both channels at the same time in static segment,

Channel A sends the static slots for both channels in this case. This will help to reduce

model configuration. This also means that a ‘Transmit_Frame’ and a ‘Transmit?’ block

MODEL DEVELOPMENT

- 233 -

for each channel are needed. These two blocks will also need to act in a different way as

the transmission pattern for each channel can be different. This should not cause any

problems when simulating a node connected to Channel B only. This is due to how the

channel is determined using attributes. Any node connected to one channel only should

have their frame attributes modified accordingly. It should also be possible to set up the

system to allow different frames to be sent out on the bus during the static segment to

simulate slot multiplexing.

The routing subsystem elements can be seen below in Figure 11.45. In this

system the incoming frames from the previous stages are checked for the channel

attribute. If this is set to just one channel the message is routed to that channel. However

Channel A can generate frames that are transmitted on both channels. Therefore the

frame in that case must be replicated and transmitted to both channels. This is a similar

data routing subsystem as used in the message RAM block. It should be noted that

channel B could alternatively be setup to transmit on both channels.

Figure 11.45: Frame routing block

11.5.3 Application Model

The application layer of the model is based on the operation of the sample

programs provided for the Fujitsu SK-91F467-FlexRay evaluation boards. The

particular software was the 91460_dynamic1_91467d-v16 project developed by Fujitsu

Microelectronics Europe (2008). This software attempts to remain synchronised with

the communication cycle. It then proceeds to run a task at the start of the

communication cycle. This task sends new data, if any, to the communications

controller to be transmitted over the communication network. It also requests data that

may have been received and successfully stored in the message RAM. Figure 11.46

shows the flow of the application layer’s basic operation. Figure 11.47 shows the

application subsystem components to model this behaviour.

MODEL DEVELOPMENT

- 234 -

Figure 11.46: Application layer operation

Figure 11.47: Application layer

The application model operates in the following way. At the start of the

communication cycle an interrupt is received from the communications controller. The

application then proceeds to produce new ‘request entities’. These requests can be

requests to update a message buffer for transmission or to request data stored in the

message RAM. Each of these requests will take a set amount of time to ‘process’ the

data.

There is an additional functional subsystem included with the application model.

This allows received frames to be ‘responded’ to. This means that for instance if a

message is received during slot 6 the application may process this data and transmit new

data during say slot 10 for example. This can be easily configured to produce any

response required.

MODEL DEVELOPMENT

- 235 -

11.5.4 Software Driver Model

The software driver model is based on the DECOMSYS

COMMSTACK<FLEXRAY> version 1.8. Based on a conversation with an employee

of Elektrobit Corporation (DECOMSYS was bought by Elektrobit) who had worked on

developing the software driver, it was discovered that there was no buffering used in the

implementation of the software (Elektrobit Corporation 2008). This meant that the

software driver would simply delay the data being passed to the communications

controller from the host or vice versa. This delay would be based on the size of the data

to be transferred in either direction. Figure 11.48 shows how the software driver has two

tasks to perform. The first task is to transfer data from the host to the communications

controller. The second task is to transfer data from the communications controller. The

software driver can stay in one state indefinitely but can never process data flowing in

opposite directions at the same time. Figure 11.49 shows the software driver subsystem.

Figure 11.48: Driver operation

Figure 11.49: Software driver layer

It can be seen that there is only one route that entities can pass through. This

allows data to flow in both directions. This implementation mirrors that of a software

MODEL DEVELOPMENT

- 236 -

driver. A software driver is a bit of code that can usually only handle one task at a time.

To ensure the entities are routed correctly an attribute (Routing) is set as they enter the

subsystem. This attribute is then read by the routing block which passes the data in the

right direction.

Figure 11.50 shows the setup to calculate the delay of the software driver. The

discrete event subsystem is used to calculate the delay. Based on the SimEvents help

there is a single server block placed between the get attribute block and the server that

carries out the delay. The ‘buffer’ server is set to a delay of zero. This ‘double server’

setup is used where ever calculations are done using a discrete event subsystem.

Figure 11.50: Software driver delay

11.5.5 Data Recorder Subsections

All the ‘baby blue’ coloured blocks in the model are used to save data to the

MATLAB workspace. A list of all variables that can be saved can be found in Appendix

B. Figure 11.51 below shows a recorder taken from the physical bus. This recorder

sends the transmission frames attribute values to the workspace. This is for later

analysis if desired and can be enabled or disabled using a workspace variable to route

the frames into an entity sink. Figure 11.52 shows how an entity passes into the record

block. As an entity passes through the top layer of a recorder block it is copied and sent

to the record block. The other copy of the entity is sent on to the next part of the model.

As this does not contain any server block it will not affect the timing of the entity

passing through the model.

MODEL DEVELOPMENT

- 237 -

Figure 11.51: Bus monitor model

Figure 11.52: Bus monitor model

There are essentially three types of entity that may be of interest to an analyst.

These are Slots, Frames and Requests. Other variations on this are the static slot,

minislot, NIT and cycle start indicator or buffer entities. All these entity types are all

slight variations on the slot entity and have similar recorders.

As was stated all these recorder elements can be enabled or disabled. This allows

an analyst to only record data specific to the areas of interest to them. This helps reduce

the amount of data stored in memory. This can also help to reduce the execution time of

the model.

MODEL DEVELOPMENT

- 238 -

11.6 Conclusion

By following the specifications of the different components an accurate model

was created. However not all aspects of the real world components had to be modelled.

This was due to the nature and interests of the investigation being undertaken. This

means that a faster executing model can be built and that the development time of the

model can be kept to a minimum.

The model was viewed as a flow of data or messages from the physical bus up

through the E-Ray chip and into the application through the COMMSTACK software

driver. This flow of data also happens in the opposite direction, where the application

sends out data through the software driver and communications controller onto the

communications bus. This view of the model eased the development process and

allowed the model to be broken down into functional blocks. The function of these

blocks was then defined by the real-world component functionality.

Breaking down the model into different subsections also makes it more

adaptable. For instance the application layer responds to an interrupt indicating the start

of the communication cycle. If a user is testing a system configuration that behaves in a

different way, then this model layer can simply be changed without developing a whole

new overall FlexRay model. The use of workspace variables also allows users to set up

the constraints of the system in a MATLAB environment without having to go through

all the model’s layers. This makes for a more user friendly model overall.

11.7 References

Elektrobit Corporation (2008) FlexRay training, 29 – 30 October 2008, Vienna, Austria.

FlexRay Consortium (2005) FlexRay Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay Consortium GbR.

Fujitsu Microelectronics Europe (2008) Development Tools: SK-91F467-FLEXRAY :

Fujitsu EMEA [online], available at: http://mcu.emea.fujitsu.com/mcu_tool/detail/SK-

91F467-FLEXRAY.htm#SOFTWARE [accessed 19 November 2008].

Mathworks Automotive Advisory Board (MAAB) (2007) Control Algorithm Modeling

Guidelines Using MATLAB, Simulink, and Stateflow Version 2.0.

MODEL DEVELOPMENT

- 239 -

The MathWorks, Inc. (2007) SimEvents Help, Massachusetts: The MathWorks, Inc.

MODEL DEVELOPMENT

- 240 -

Chapter 12 . Verification

12.1 Introduction

Figure 12.1 shows where the verification stages fits into the model building

section. The verification stage is highlighted in Figure 12.1.The need for verification of

a model was discussed in section 7.5 of this thesis. Section 7.5 also discussed the basic

methodology behind the verification process. This chapter will discuss the different

tests that were carried out to achieve the verification of the FlexRay simulation model.

Figure 12.1: Model development flow chart

The verification process is broken down into two different sections. The first

section describes the verification process used for each major model subsystem. The

second section describes the method to verify the FlexRay model’s operation as a whole.

MODEL DEVELOPMENT

- 241 -

The relevant test parameters are highlighted and the data obtained from the tests

documented.

12.2 Verification

E.W. Dijkstra is summarised in Francez (1992, p1) as saying “testing can reveal

the presence of errors, not their absence”. From this quote it can be seen that the testing

of a system can potentially be a long and complicated one. There must be enough

testing performed on a system to allow the developer to certify their program is working

as intended. An infinite number of test runs are impossible and impractical for a tester

to perform. A small, finite number of tests may merely ‘debug’ the program as stated by

Francez (1992, p1). This would mean that the system performs accurately for a given set

of inputs and that every line of code executes without any errors.

Using a limited number of tests does not convey whether a program performs as

intended. For example a simple function written in ‘C’ may accept a variable and scale

this value by multiplying the value by a given number, say 250. If the function is not

passed the expected type of variable, for instance, the function will not execute and the

program needs to be debugged. During this process the programmer should fix the error

and ensure either 1) the function is passed the correct type of variable or, 2) the function

can handle different variable types.

Verification of a system is however distinct from the debugging phase of the

system. In the verification process the system is passed a set of known parameters. The

system is then executed and the output checked against the expected output of the

system. In the example above it can be seen that the function described can only be

verified if the output is a correctly scaled version of the input. All the functions of a

system may be verified individually from the system as a whole. When all functions are

integrated into an entire system, verification of the whole system may also be done.

Banks et. al. (2001, pp369- 370) describe steps that should be followed, if

possible, to accurately verify a simulation model. The following steps are described as

‘common sense suggestions’ and ‘are basically the same ones any software engineer

should follow’. The steps are as follows:

1. Have the model checked by someone other than the developer. They will be able

to verify the model logic if the development has been properly documented.

MODEL DEVELOPMENT

- 242 -

2. A flow diagram of the possible actions a system can take when event occurs

should be developed. All these possibilities can then be checked for correct

performance.

3. Check the output of the model for ‘reasonableness’ for a wide range of inputs.

4. Make sure that the input parameters are correct. This should be done at the start

and end of the tests. This ensures that the values obtained are a match for the

inputs the developer wished to check.

5. Document the operation of each major section of the model. Also document the

use and definition of every variable used in the system.

6. If a visual output from the model can be obtained, ensure that this output also

accurately represents the expected output. This should also be used during the

testing phase if possible even if the final implementation of the model does not

produce any visual output.

7. Make use of any debugging functionality available to monitor the program. It

may be necessary to concentrate on the subsystems one at a time, but this will

make the overall model more robust.

A number of these steps were followed as closely as possible during the verification

process of the FlexRay simulation model. This process is described in section 12.2.1.

Some tests may produce a large amount of data that may be ‘extremely

cumbersome’ to check for correctness (Banks et. al. 2001, p374). However it is

necessary to check that all possible events occur and the correct action is followed.

Also a short simulation will produce a set of outputs that is easier to check. In this

way artificial data could be used to produce the occurrence of all events, no matter

how rare they may be (Banks et. al. 2001, p374). As this stage precedes the

calibration stage the model does not have to accurately represent the timing of the

actual system. In this way the system must only respond in the correct manner based

on the inputs applied to the system.

12.2.1 Model Verification Procedure

The model verification was split into different two types of verification. The first

was a ‘debugging’ procedure that was aimed at ensuring the individual model

subsystems worked as intended. The tests at this stage were designed to discover any

flaws in the basic operation of the models subsystems. Using the MathWorks support

and the help files solutions to problems were quickly implemented (The MathWorks,

MODEL DEVELOPMENT

- 243 -

Inc. 2008). The tests were then run again until the models subsystem performed as

desired.

The second stage of the verification process was to integrate the blocks and test

them. This was important as problems can occur when integrating the different blocks.

These problems could be simple syntax errors where different blocks expect different

attribute names or a misspelling has occurred. The model at this stage was also analysed

for correctness of behaviour. An example would be to check that the model would only

transmit during the assigned slots.

The following sections, section 12.3 and 12.4 will outline the debugging and

verification processes separately.

12.3 Model Subsystem Debugging

Each of the model subsystems is intended to perform a different task. In order to

test the model each subsystem must be fully compatible with the other model

subsystems. Tests were developed to test the functionality of each subsystem. When all

the debug tests were run with no error the subsystem could be considered as being

debugged. Section 12.3.1 will outline the methods and functions available to debug and

verify the model blocks. These methods and functions are standard MATLAB or

SimEvents features. These were also used throughout the integration verification,

calibration and validation stages of the model building process.

 Figure 12.2 shows a block diagram of each of FlexRay simulation model

subsystems. These represent each of the blocks that were constructed and tested as

described in this chapter. In Figure 12.2 OBF stands for output buffer, IBF is the input

buffer, FSP is the frame and symbol processing subsystem and MAC is the media

access control subsystem. The GTU subsystem is the global time unit subsystem. This

subsystem does not pass information. Instead it controls the view of the current

communication slot.

The FlexRay simulation model groups the OBF and IBF blocks together into a

controller host interface (CHI) subsystem. The verification of these E-Ray subsystems

will therefore be discussed as one FlexRay simulation model subsystem.

MODEL DEVELOPMENT

- 244 -

Figure 12.2: Model subsystem block diagram

To debug and verify the different subsystems a number of tests were run. These

tests checked for correct execution of the subsystem. During the debugging process it

was noticed that execution of a subsystem could quickly be performed. In a number of

the debugging tests the problems observed involved the subsystem expecting a slight

attribute name difference. This could be a simple case of mistyping the attribute during

the model development stage. However the execution of the model subsystem may still

be incorrect. For each model subsystem a number of tests were developed and run. An

example of these tests was for the synchronisation block where a number of tests were

run to observe the correct generation of the static and minislots. In a number of cases

during some cycles an extra slot would pass through the enable gate of either the static

section or the dynamic section. The model was changed to produce the correct output

from this block. The subsystem was then considered as working as intended after all the

tests produced the correct output.

The output from the model synchronisation subsystem test was obtained and is

shown in Table 12.1. This was done by storing the arrival times of static slot and

minislot entities at the output stage of the synchronisation model block subsystem for

example. All the recorded values were stored in the MATLAB workspace for later

analysis. This method was used in all tests where the behaviour of the model was

MODEL DEVELOPMENT

- 245 -

observed. This is a useful feature of MATLAB and SimEvents as the data can then be

analysed without exporting the data to another software package such as MS Excel.

Cycle
Times

Static
Slots

Mini Slot
A

Mini Slot
B

0.000000 0.000000 0.002100 0.002100

0.005000 0.000035 0.002110 0.002110

0.010000 0.000070 0.002120 0.002120

0.015000 0.000105 0.002130 0.002130

0.020000 0.000140 0.002140 0.002140

0.025000 0.000175 0.002150 0.002150

0.030000 0.000210 0.002160 0.002160

0.035000 0.000245 0.002170 0.002170

0.040000 0.000280 0.002180 0.002180

0.045000 0.000315 0.002190 0.002190

0.050000 0.000350 0.002200 0.002200

Table 12.1: Synchronisation test 1 simulation time results

The data shown in Table 12.1 is a small portion of the data recorded during the run of

test case 1. The time for each cycle, static slot and mini slot was then analysed for

correctness. This is shown in Table 12.2.

Time between cycle
starts

Static slot
length Mini slot length A Mini slot length B

0.005000 0.000035 0.000010 0.000010

Table 12.2: Synchronisation test 1 results summary

Graphs were also obtained of the arrival entities at a given point of the model.

These graphs were used to check that any entity did not arrive out of sync. They could

also be used to display entity attributes as desired. This can be seen below in the

synchronisation test 1 cycle entity attribute scope, Figure 12.3. Note that there should be

2 rounds of 64 cycles = 128 cycle entities. However there are 129 entities in the diagram

below. This is because the entity is detected just at the end of the simulation time. The

behaviour is the desired output from the model.

MODEL DEVELOPMENT

- 246 -

Figure 12.3: Synchronisation test 1 attribute scope graph for cycle entities

As can be seen from the sample data and test summary tables given above, the

model produces data and this can be easily analysed in the MATLAB environment.

These data capture and analysis techniques for observing the models behaviour have

proven to be sufficient to carryout the testing procedures. These techniques were

therefore used to observe all models behaviour including the calibration and validation

tests as described in chapters 13 and 14.

During a number of the integration debugging tests the model did not work as

intended. In many cases the model would end up in an infinite loop. This would mean

that the simulation time would not advance and the simulation run would need to be

forcibly stopped. The problem was traced back to the message handler model subsystem.

When this block was being tested it was necessary to increase the total number of debug

tests for this subsystem. A wider variety of tests were necessary to ensure that every

aspect of the message RAM worked. The tests in some cases would replicate a given

condition more than once. For example there were four tests carried out to check if the

message handler would retrieve a message stored in the RAM and pass the information

to the host.

During the frame and symbol processing subsystem testing a number of

problems were dealt with. An example of this is that an initial frame that entered the

block would be accepted for storage in the message RAM. This was even the case when

the subsystem was set up to reject the entity. The filtering for the remaining frames

would also be one frame off. For example frame 5 would be accepted instead of frame 4.

During the testing of the software driver subsystem a number of problems were

observed. These included the blocking of information passing through the software

MODEL DEVELOPMENT

- 247 -

driver in one direction. The software driver model was adjusted until the desired

performance was obtained. The software driver was then considered verified.

When the application layer tests were run a number of errors were detected.

These included the incorrect setting of attributes. The model was then modified to fix

any problems. Each of the tests was run until the desired output was achieved. Each test

of the verification process eventually produced the correct results. This meant that the

model was performing as desired; therefore the verification of the application layer was

deemed a success.

12.3.1 Model Systems Debugging Results

Each of the main model subsystems were broken down and tested as they were

built. As problems were discovered the model subsystem was changed until the correct

performance was observed. The debugging tests allowed the system to be tested for

bugs as well as correct performance. This should ensure correct execution of the model

in all situations. The model can then be verified as a whole and the correct performance

of the subsystems should be observed. The methods to obtain and analyse data from the

model have also been tested as sufficient to carry out the verification procedure.

 As the verification stage happens before the calibration stage, there is no way to

test the delay calculation blocks completely. These blocks must be developed after the

calibration data is collected. Only when the calibration data is collected is the

relationship between the length of time a block takes to execute and a given variable, for

instance payload size, known.

12.4 Simulation Model Verification

The following test case parameters, as listed in Table 12.3, were developed to

verify the FlexRay simulation model. The configuration constraints listed in Appendix

B of the FlexRay specification were consulted for relevant parameters when developing

the Test Cases (FlexRay Consortium 2005, pp.214-220). Only parameters that were

relevant to the study were considered.

Other constraints that needed to be considered were the limitations of the tools

available to configure the FlexRay settings. These tools are discussed in chapter 13. The

tools limit the number of buffers that can be assigned for instance. This impacts the

MODEL DEVELOPMENT

- 248 -

calibration and validation constraints and limits the number of messages that can be

assigned. As the tools impact the real-world system setting it will impact the simulation

model settings.

Table 12.2
**

 illustrates the parameters used in the verification stage of model

development process. The test case parameters were designed to test the functionality of

the system. These tests are still useful to test to see if the messages are transmitted or

received correctly.

**
 The BMW example timing is taken from an article by Berwanger et. al. (2004, pp. 6-8). This article

highlights how BMW intend to have a fixed communications schedule with a static segment with a length

of 3ms and a dynamic segment of 2ms approximately. This has been followed as closely as possible. In

the table, any letter in brackets following a frame ID refers to the communication channel a frame is

transmitted/received on. If there is only one channel or the frame is transmitted on both communication

channels then the frame ID is not indicated.

MODEL DEVELOPMENT

- 249 -

ID Cycle

Length

Number

of Static

Slots

Number

of Mini

Slots

Static

Slot

Length

Mini

Slot

Length

Static

Frame

Payload

Dynamic

Frame

Payload

(max)

Channels NIT &

Symbol

Length

Node Tx

Frames

Node

Rx

Frames

Latest

Tx

Note

1 16000

µs

630 0 25 µs NA 1 word NA A&B 250 µs 3 and 44 6 and 18 0 Max cycle length, no

mini slots

2 16000

µs

2 1548 43 µs 10 µs 10 words 20 words A&B 431 µs 2 and

444 (A)

1 and

181 (B)

1543 Max cycle length,

Min static slots

3 5000 µs 20 209 123 µs 10 µs 50 words 80 words A&B 447 µs 3 and 65

(A)

6 and 66

(B)

192 Medium cycle

length/number of

static slots/ number

of mini slots

4 5000 µs 17 34 278 µs 6 µs 127

words

5 words A&B 67 µs 3 and 28

(A)

6 and 29

(B)

29 Large static slot size,

small number mini

slots

5 114 µs 2 0 27 µs NA 2 words NA A&B 60 µs 2 1 0 Min cycle length

6 5000 µs 60 239 36 µs 10 µs 6 words 20 words A&B 447 µs 3 and 65 8 – 15

(all A)

234 received frames

stored in FIFO

7 5000 µs 60 276 35 µs 10 µs 1 word 16 words A&B 137 3 and 65

(A)

6 and 66

(B)

271 Based on the

CANalyzer example

8 5000 µs 79 148 31 µs 10 µs 8 words 16 words A&B 436

3, 10, 52

and 159

(A)

6 and

155 (B)

143 Based on the BMW

example

MODEL DEVELOPMENT

- 250 -

Table 12.3: Verification test case parameters

9 5000 µs 60 245 35 µs 10 µs 4 words 20 words A 447 µs 3 and 65 6 and 66 240 Channel A only

10 9908 µs 120 490

35 µs 10 µs 4 words 20 words B 805

 µs

3 and 65 6 and 66 485 Channel B only,

max NIT

11 300 µs 6 12 31 µs 6 µs 2 words 20 words A&B 63 µs 3 and 7

(A)

6 and 8

(B)

2 Small static slot and

mini slot

12 4354 µs 60 195 39 µs 10 µs 8 words 16 words A&B 61 µs 3 and 65

(A)

6 and 66

(B)

190 Min NIT/Symbol

window.

13 15982

µs

2 2640 39 µs 6 µs 8 words 60 words A&B 61 µs 2 and

100 (A)

1 and

770 (B)

2617 Max number of mini

slots and min static

slots /NIT and

Symbol window

14 5408µs 8 0 659 µs NA 127

words

NA A&B 136 µs 3 6 0 Max static slot

length and payload

MODEL DEVELOPMENT

- 251 -

Once the testing parameters were defined, it was necessary to define the desired

output of the system. Each of the test cases were analysed and the desired performance

of the model was determined. In each case it was determined that for each test case

there should be at least one request generated from the application layer and passed

through the software driver to the communications controller. These requests could be

to indicate a desire to transmit data, or a request for received data. Therefore it would

also be necessary to see what messages were stored in the message RAM as well as

what data was transmitted from the node. If the model performed in the desired way

then the model was deemed as being verified as performing correctly.

12.4.1 Simulation Random Numbers

The simulation model makes use of random number generators to vary the

generated frames by the physical bus layer model. By using seeds the results obtained

from a single simulation run are repeatable. To obtain a different set of random

numbers, different seeds must be used. A seed value must be a number between 0 and

4,294,967,295 (The MathWorks, Inc. 2008). Table 12.4 shows the random numbers that

were used for each of the 14 test cases.

Test

Case

Application

Generation

Application

Response

Physical Bus

A-1

Physical Bus

A-2

Physical

Bus B-1

Physical

Bus B-2

1 901 1763 272 777 15973 12

2 231 405706 19881 3103 568 86418

3 6068 93 1527392702 790176266 708 6382325

4 860 916904 4000676564 72711 411327 284444

5 891 270206 432287947 159790 93808 1001

6 7621 8 1578461665 9797 173 63272

7 456511 578 1675424 9414884 7 2214

8 185 68132217 7506 56238 200926 205738

9 821433 303758 21417824 216 95413 445253

10 4447 660924 24963 6602275 25548 353118

11 6154 1388908 57650387 39245 72912 5971

12 79 21856 67 384193844 1829106 465256

13 9218 7426 505 60735 377 8074

14 732 938 864818 516961 632116 87399

Table 12.4: Verification test case random number seeds

MODEL DEVELOPMENT

- 252 -

This method of using seeds helps create repeatable simulation runs and therefore

repeatable results.

12.4.2 Verification Test Cases and Results

The verification test cases were based on the verification test case parameters.

The following table, Table 12.3, describe the expected behaviour of the model during

these tests. For each layer an expected behaviour is given. If the simulation model

performed as desired the result was a pass. If the model did not produce the correct

response the result was a fail. Tables 12.5-12.18 summarises the verification test cases

and verification result.

Test Case Application Driver Communications

Controller

Physical Bus

1 Send an update for

frames 3 and 44.

Request data

received from

frames 6 and 18

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 44 correctly

Generate a set of

frame entities

Result: Pass

Table 12.5: Verification test case 1 result summary

Test Case Application Driver Communications

Controller

Physical Bus

2 Send an update for

frames 3 and 181.

Request data

received from

frames 6 and 444

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 181 correctly

Generate a set of

frame entities

Result: Pass

Table 12.6: Verification test case 2 result summary

MODEL DEVELOPMENT

- 253 -

Test Case Application Driver Communications

Controller

Physical Bus

3 Send an update for

frame 3. Request

data received from

frames 6 and 66.

Then generate an

update for frame 65

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 65 correctly

Generate a set of

frame entities

Result: Pass

Table 12.7: Verification test case 3 result summary

Test Case Application Driver Communications

Controller

Physical Bus

4 Send an update for

frames 3 and 28.

Request data

received from

frames 6 and 29

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 28 correctly

Generate a set of

frame entities

Result: Pass

Table 12.8: Verification test case 4 result summary

Test Case Application Driver Communications

Controller

Physical Bus

5 Send an update for

frame 2. Request

data received from

frame 1

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frame 2 correctly

Generate a set of

frame entities

Result: Pass

Table 12.9: Verification test case 5 result summary

MODEL DEVELOPMENT

- 254 -

Test Case Application Driver Communications

Controller

Physical Bus

6 Send an update for

frames 3 and 65.

Request three

frames stored in the

FIFO

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 65 correctly

Generate a set of

frame entities

Result: Pass

Table 12.10: Verification test case 6 result summary

Test Case Application Driver Communications

Controller

Physical Bus

7 Send an update for

frames 3 and 65.

Request data

received from

frames 6 and 66

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 65 correctly

Generate a set of

frame entities

Result: Pass

Table 12.11: Verification test case 7 result summary

Test Case Application Driver Communications

Controller

Physical Bus

8 Send an update for

frames 3, 10, 52

and 159. Request

data received from

frames 6 and 155

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3, 10, 52 and 159

correctly

Generate a set of

frame entities

Result: Pass

Table 12.12: Verification test case 8 result summary

MODEL DEVELOPMENT

- 255 -

Test Case Application Driver Communications

Controller

Physical Bus

9 Send an update for

frames 3 and 65.

Request data

received from

frames 6 and 66

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 65 correctly

Generate a set of

frame entities

Result: Pass

Table 12.13: Verification test case 9 result summary

Test Case Application Driver Communications

Controller

Physical Bus

10 Send an update for

frames 3 and 125.

Request data

received from

frames 6 and 126

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 125 correctly

Generate a set of

frame entities

Result: Pass

Table 12.14: Verification test case 10 result summary

Test Case Application Driver Communications

Controller

Physical Bus

11 Send an update for

frames 3 and 7.

Request data

received from

frames 6 and 8

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 7 correctly

Generate a set of

frame entities

Result: Pass

Table 12.15: Verification test case 11 result summary

MODEL DEVELOPMENT

- 256 -

Test Case Application Driver Communications

Controller

Physical Bus

12 Send an update for

frames 3 and 65.

Request data

received from

frames 6 and 66

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frame 3 and 65 correctly

Generate a set of

frame entities

Result: Pass

Table 12.16: Verification test case 12 result summary

Test Case Application Driver Communications

Controller

Physical Bus

13 Send an update for

frames 3 and 100.

Request data

received from

frames 6 and 770

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frames 3 and 100 correctly

Generate a set of

frame entities

Result: Pass

Table 12.17: Verification test case 13 result summary

Test Case Application Driver Communications

Controller

Physical Bus

14 Send an update for

frame 3. Request

data received from

frame 6

Handle

requests in

an

appropriate

manner

Update relevant buffers based

on data received from either

the physical bus layer or

application layer. Transmit

frame 3.

Generate a set of

frame entities

Result: Pass

Table 12.18: Verification test case 14 result summary

For each of the verification test cases the model acted as desired. The models

output was checked at various stages and verified as the correct response. As the model

acted as desired for each of the given test cases the model can be deemed to be verified.

MODEL DEVELOPMENT

- 257 -

12.5 Model Execution Time

During the initial stages of the integration testing of the model it was noted that

the model was extremely slow to execute. This time was generally 3+ hours for a single

communications cycle. This time is clearly not a practical time for the system to execute

to be a useable tool. A number of methods were used to attempt to speed up the

simulation model. These included removing as many floating point calculations as

possible and reducing the number of blocks that execute. To achieve this, the profiler

tool in Simulink was used to highlight any blocks that were rarely executed. From this it

was noticed that the model recorder blocks, even when switch ‘off’ were producing an

output of all 0’s. This meant that the model was outputting a lot of data to RAM despite

having nothing to output.

To ensure that all the proposed solutions were producing results, a number of

tests were run. These tests were conducted on two sets of testing parameters as well as

combinations of system parameters.

The first test run was based on a communications cycle of 5000µs. This was

broken into a static segment consisting of 60 static slots with duration of 35µs. The

network idle time and symbol window had duration of 450µs and the dynamic segment

was broken down into 245 mini slots with duration of 10µs each. This test essentially

used the parameters as described for verification test case 7.

The second test run was based on a communications cycle of 5000µs. This was

broken into a static segment consisting of 82 static slots with duration of 60µs. The

network idle time and symbol window had duration of 50us and the dynamic segment

was broken down into 5 mini slots with duration of 6µs each. This test essentially used

the parameters as described for verification test case 8.

The tests were then run with different configurations of system parameters set.

The time (to the nearest minute) was recorded for both the start and end times of the

simulation runs. The results and system parameters are summarised below in Table

12.19. It should be noted that each of the tests were run under the accelerator mode in

SimEvents and that as many variables from the workspace were defined as static in the

optimisation pane of the simulation setup. Originally the tests were performed on a Dell

Optiplex GX270 with a Pentium 4 processor running at 2.8GHz and with 512MB of

RAM. The version of MATLAB was R2006a. They were then transferred to a Dell

Optiplex 745 with a Pentium D running at 3GHz and with 1GB of RAM. The version of

MODEL DEVELOPMENT

- 258 -

MATLAB on this machine was R2008a. All values listed in Table 12.19 were obtained

from the second computer.

Test Floats

used

Profiler

status

Recorder

modules

Testing

Parameters

Start

Time

End

Time

Time Taken

(approx)

1 Yes Yes Yes 1 9.35 13.25 3 hours 50

minutes

2 No No Yes 1 15.08 15.30 22 minutes

3 Yes No No 1 14.13 14.53 40 minutes

4 No No No 1 15.05 15.08 5 minutes

5 No Yes No 1 9.47 10.10 23 minutes

6 Yes Yes No 1 10.10 13.53 3 hours 43

minutes

7 No No No 2 10.13 10.17 4 minutes

8 Yes Yes No 2 10.18 10.41 23 minutes

9 No No Yes 2 12.17 13.11 54 minutes

10 Yes Yes Yes 2 9.27 14.55 5 hours 28

minutes

Table 12.19: Speed tests

In Table 12.19 all the times in the ‘Time Taken (approx)’ column is colour

coded. If the time taken to execute the model was deemed in the preferable time range

(<10 minutes) is marked in green. Any time deemed as acceptable (10-30 minutes) is

marked as orange and any other time is marked in red.

It can be seen that eliminating the analysing software reduces the execution time

of the model. There is also a noticeable difference when comparing the execution time

of two different FlexRay parameter configurations. Finally the elimination of any

floating point calculations also helped reduce the execution time of the model. To

eliminate floating point calculations all timing values were presented as nanoseconds.

The analysis the output of the model must therefore take this into account. Lookup

tables were also used where pre-run-time calculations could be performed.

MODEL DEVELOPMENT

- 259 -

12.6 Conclusion

 During this phase of the model development, the model was purely tested for

functionality. The tests were designed to reproduce as many errors as possible in a

controlled environment. Each of the model sections was tested for functionality using a

basic prototype. This was tested for soundness of concept before being fully

implemented. This implementation was then tested and verified on its own. When this

was done all the subsystems were integrated into the final model. The integrated model

was then verified as a single FlexRay simulation model system.

During the integration testing, a number of errors were found. These ranged

from basic errors such as mistyped attribute names and routing errors (i.e. an ‘out-port’

of a subsystem was not connected to the correct ‘in-port’ of a following subsystem), to

more complicated problems. Such problems included a problem where two request

entities attempted to access the message handler at the same time. The problems were

dealt with one at a time and appropriate solutions found. The model was again tested for

correct functionality. Only when no errors were observed and the functionality of a

system observed as correct, was the FlexRay model and its subsystems deemed to be

verified.

As can be seen (from the timing analysis section of the testing) a number of

techniques were used to speed up the execution time of the model. The profiler tool was

used as an example to demonstrate the use of a different type of analysis tool besides

the recorder modules. Each of the techniques mentioned helped reduce the execution

time of the model.

It can be seen that any model that uses any form of analysis tools will be slowed

down. However eliminating all analysis tools produces a model that is useless as no data

can be obtained from it. This means that any model should only contain the necessary

recorder modules needed to carry out a study on a system. In this way it was discovered

that the general-purpose model design could not be practically implemented using the

available equipment. This also focuses the model from a general into a specific analysis

tool. An alternative approach to a general-purpose model is to allow the user of the

model to create recording modules for each separate test they wish to conduct. However

this will make the model less user friendly.

MODEL DEVELOPMENT

- 260 -

12.7 References

Banks, J., Carson, J. S., Nelson, B. L. and Nicol, D. M. (2001) Discrete-Event System

Simulation, New Jersey: Prentice Hall.

Berwanger, J., Schedl, A. and Peller, M (2004) BMW – First Series Cars with FlexRay

in 2006, Automotive electronics + systems Special Edition, Development Solutions 19

for FlexRay ECUs, 6-8.

Clune, M. (2008) RE: Denying access to entities until

a task is finished in SimEvents, email to Robert Shaw (rshaw@wit.ie), 8

December [accessed 15 Dec 2008].

FlexRay Consortium (2005) FlexRay Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay Consortium GbR.

Francez, N. (1992) Program Verification, Wokingham, Englean: Addison-Wesley

Publishing Company.

The MathWorks, Inc. (2008) Online Support [online], available:

http://www.mathworks.com/support/ [accessed 8 December 2008].

Vector Informatik GmbH (2007) CANalyzer 7.0, Stuttgart, Germany.

MODEL CALIBRATION & VALIDATION

- 261 -

Section IV:

Model Calibration &

Validation

MODEL CALIBRATION & VALIDATION

- 262 -

Chapter 13 . Calibration

13.1 Introduction

The calibration process outlined in this chapter focuses on adjusting the model

to accurately reflect a real FlexRay node. The chapter describes the process of obtaining

timing data from a real world FlexRay node.

All calibration is an iterative process to finely adjust the system. This can be

seen in Figure 13.1 (Banks et. al. 2001, p375).

Figure 13.1: Calibration iterative process

The data obtained using the techniques discussed below was used in the

validation stage also. Figure 13.2 (Banks et. al. 2001, p16) highlights the stage at which

calibration is done in the model development flowchart. In Figure 13.2 the validation

stage is highlighted. This is due to calibration being the first stage of the overall

validation process. However the process is discussed as a separate step for the purpose

of this research.

MODEL CALIBRATION & VALIDATION

- 263 -

This chapter will first describe the equipment that was used to carry out the

calibration. Next, the process of obtaining the timing data will be described. The test

cases will then be described and the results will be presented. Finally the procedure used

will be reviewed.

Figure 13.2: Simulation model development process

MODEL CALIBRATION & VALIDATION

- 264 -

13.2 Test Equipment

13.2.1 Hardware

 This section describes the hardware components to calibrate the simulation

model.

13.2.1.1 Fujitsu SK-91F467-FLEXRAY

The Fujitsu SK-91F467-FLEXRAY is a development board. It is designed for

development of both the MB88121 FlexRay communication controller and the

MB91F467DA 32-BIT Flash microcontroller, both by Fujitsu (Fujitsu Microelectronics

Europe 2007b, p7).

 The features of the board include (Fujitsu Microelectronics Europe 2007b, p8):

• 5V, 3.3V, 2.5V and 1.8V on-board switching regulators using a 9-12V

unregulated DC power supply

• 23Mbit SRAM on-board memory

• In-Circuit serial flash programming

• Three LIN/RS-232 UART interfaces

• Three high-speed CAN interfaces

• Two FlexRay Channel interfaces (Channel A & B)

• Possibility of using FlexRay physical layer driver modules from TZ

Mikroelektronik (TZM)

• Status indicators (LEDs) with the option of connecting an alpha-numeric LCD.

The operating speeds of the MCU are up to 100MHz using an external 4MHz

crystal oscillator and a PLL built into the MCU. The FlexRay communication controller

operates at 10MHz using a crystal mounted in a socket (Fujitsu Microelectronics

Europe 2007b, p10). The FlexRay physical connectors, CAN connectors and

LIN/RS232 connectors are all 9-Pin D-sub connectors. If the TZM driver modules are

not used then the FlexRay communications use RS485 transceivers. Figure 13.3 shows

a top down view of the development board (Fujitsu Microelectronics Europe 2007b,

p13).

MODEL CALIBRATION & VALIDATION

- 265 -

Figure 13.3: Top down view of the Fujitsu SK-91F467-FLEXRAY development board

Figure 13.3 shows edge connectors that are connected to the MCU pins marked

with an ‘A’, the MCU is marked with a ‘B’ , the communications controller is marked

with a ‘C’ and external bus interfaces are marked with a ‘D’. The external bus interfaces

(D) allow expansions such as Fujitsu graphic device sub boards or user application

devices to be connected to the bus of the board (Fujitsu Microelectronics Europe 2007b,

p10). The expansion slots for the TZM physical bus driver modules can be seen just

above the two bottom right 9-pin D-sub connectors in Figure 13.2. The board also

comes supplied with an AC-DC power adaptor with various plug adaptors to suit many

type of plug connectors.

13.2.1.2 TZM FlexTiny

 The TZM FlexTiny family is a group of interface modules of physical layer

drivers for different bus systems (TZ Mikroelektronik 2007b, p7). Some of the different

A

A

A

A B

C
D

D

MODEL CALIBRATION & VALIDATION

- 266 -

bus systems that are supported by the FlexTiny family are (TZ Mikroelektronik 2007,

p1):

• FlexRay

• CAN

• LIN

They offer different bus termination and/or shielding options. Figure 13.4 (TZ

Mikroelektronik 2007b, p1) shows a picture of one of the modules.

Figure 13.4: FlexTiny module

When these are placed in the development board it is essential that jumpers on

the board are reconfigured to ensure that the RS485 transceiver is isolated from the

FlexTiny module.

13.2.1.3 TZM Passive Star

 To create a FlexRay network two passive star adaptors are available to connect

each node of each channel together. Each star has six 9-pin D-sub connectors. The use

of a passive star saves money as an active star is not necessary for the tests carried out

for this project. A passive star simply takes data sent out on from one node and repeats

it on all other lines connected to it. An active star will regenerate the signal to keep the

signal strong and is unnecessary for small networks. A picture of the TZM passive star

is shown in Figure 13.5 (TZ Mikroelektronik 2004b).

MODEL CALIBRATION & VALIDATION

- 267 -

Figure 13.5: Passive star

13.2.1.4 Vector Hardware Interfaces for FlexRay and CAN

The Vector CANalyzer software that is discussed in section 13.2.2, monitors

data on a FlexRay network using a hardware interface. This is an interface to the

FlexRay physical bus and this is achieved through a Vector VN3600 FlexRay interface

module. This connects a computer to a FlexRay network through a USB 2.0 connection.

It contains an Intel PXA270 microcontroller operating at 312MHz with 8MBytes of

RAM. There are two communication controllers. For startup there is a Fujitsu

MB88121B and for analysis a Bosch E-Ray implemented on an Altera Cyclone II

EP2C70 (Vector Informatik GmbH 2007d, p5). Figure 13.6 (Vector Informatik GmbH

2007d, p5) shows a VN3600 interface.

Figure 13.6: Vector VN3600 USB interface for FlexRay

MODEL CALIBRATION & VALIDATION

- 268 -

13.2.2 Software

 This section describes the software used in the project. The software is used to

create a simulation as well as to support the hardware.

13.2.2.1 DECOMSYS Designer Pro
††

 Designer Pro is a design tool that supports the configuration of various FlexRay

communication layers. These include (Dependable Computer Systems 2007, p1):

• The frame-based communication layer DECOMSYS::COMMSTACK

• The signal-based communication layer DECOMSYS::FLEXCOM

• The operating system Application Execution System (AES)

There is also the ability to upgrade designs generated using DECOMSYS::DESIGNER

using an XCEDF importer.

 Designer Pro separates the workflow of the network into the system workflow

and the supplier workflow, helping to design the system step by step. There are also

controller support modules that allow the design tool to get all information needed for

supported controllers. SIMTOOLS is integrated into Designer Pro and adds Simulink

blocks for FlexRay design. This helps create a model-based design flow. (Dependable

Computer Systems 2007, p1).

13.2.2.1.1 System Workflow

 The system workflow allows the system designer to (Dependable Computer

Systems 2007, p2):

• Define an architecture specification.

• Define a system specification.

• Define a communication schedule

• Export network design data in FIBEX or .bor data exchange formats.

†† In June 2007 Elektrobit Corporation bought Decomsys Beteiligungs GmbH. Since then they have been

selling products under the EB Tresos brand. The EB Tresos Designer offers the same interface and

abilities as the Decomsys Designer tool.

MODEL CALIBRATION & VALIDATION

- 269 -

This system workflow allows all relevant communications cycle parameters to be set.

This is then used to set up any node configuration. The system workflow therefore steps

the user through the relevant steps to configure the networks parameters. This data can

then be exchanged between a number of different system developers.

13.2.2.1.2 ECU Workflow

The ECU workflow allows the system designer to (Dependable Computer Systems 2007,

p2):

• Import network data.

• Define a hardware specification.

• Define an application/task assignment to ECU’s and application/task definition.

• Configure the driver.

The ECU workflow allows a developer to access information about aspects of the

communication cycle such as the assigned slots for a given node. The developer can

then configure the node and produce node specific driver configuration files.

13.2.2.1.3 User Interface

 The user interface is shown below in Figure 13.7 (Dependable Computer

Systems 2007, p3) and consists of three windows:

• An operations window

• A display window

• A log window

MODEL CALIBRATION & VALIDATION

- 270 -

Figure 13.7: Designer Pro main window

The operations window allows selection of either system workflow (shown in

red) or ECU workflow (shown in blue) (Dependable Computer Systems 2007, p3).

 When setting up various aspects of the FlexRay network there are various

constraints that must be met. There is no point in trying to set up a network that has too

many or few static slots or in defining a long cycle time unnecessarily. Designer Pro

helps the designer to avoid mistakes during design time. This can be seen from Figure

13.8 (Dependable Computer Systems 2007, p13) and Figure 13.9 (Dependable

Computer Systems 2007, p12). Figure 13.8 shows the first page of the FlexRay

configuration wizard and Figure 13.9 is the second page of the FlexRay configuration

wizard. As can be seen in the right-hand column of both screens there is a constraints

column. These warn of violations in the configuration of the network. In Figure 13.8

there are a number of constraints flagged (in red) in the right hand column as incorrect.

The nodes and frames are also assigned and set up in a similar user-friendly way.

MODEL CALIBRATION & VALIDATION

- 271 -

Figure 13.8: The first page of the FlexRay configuration wizard

Figure 13.9: The second page of the FlexRay configuration wizard

MODEL CALIBRATION & VALIDATION

- 272 -

13.2.2.2 Fujitsu Softune – FR Family Softune Workbench

 The Fujitsu Softune Workbench is a tool for developing programs for Fujitsu

family microprocessors or microcontrollers. It includes a development manager,

simulator debugger, emulator debugger, monitor debugger and an integrated

development environment (Fujitsu Limited 2004a, pi). The main window is shown in

Figure 12.8. The project visible in Figure 13.10 is an example program from the SK-

91F467-FLEXRAY Fujitsu website (Fujitsu Microelectronics Europe 2007c) and is the

91460_static2_91467d-v13 example.

Figure 13.10: Softune Workbench main window

 As can be seen from Figure 13.10 the application is broken into three main

windows:

• A window to select files to edit (top left)

• An editor window (top right)

• An error reporter below

The file selection window allows you to see what files are currently contained in

your project and select a file to edit. The editor window allows editing of the code.

MODEL CALIBRATION & VALIDATION

- 273 -

Finally the error report window displays any errors that are detected during a make or

build of a project.

13.2.2.3 TZM FlexConfig

 The FlexConfig tool is used to configure FlexRay communication controllers.

The parameters are set and checked against limits or constraints to eliminate possible

configuration errors (Fujitsu Microelectronics Europe 2007a, p58). FlexConfig allows

users to generate all the configuration files for each node in a cluster including node

specific buffer settings (TZ Mikroelektronik 2007a, p1). There are also different types

of communication controller supported, such as the Bosch E-Ray and the Freescale

FPGA 9.1. Figure 13.11 shows the FlexConfig main window.

Figure 13.11: FlexConfig main window

13.2.2.4 Vector CANalyzer.FlexRay

 CANalyzer is an analysis tool for networks or distributed systems. It supports

CAN, LIN, MOST and FlexRay systems, allowing the user to configure the system to

MODEL CALIBRATION & VALIDATION

- 274 -

observe and analyse traffic patterns for specific network implementations and

constraints (Vector Informatik GmbH 2007b, p1).

 The basic functions provided by CANalyzer include (Vector Informatik GmbH

2007b, p1):

• Listing of bus traffic.

• Graphical and textual representation of network traffic values.

• Sending predefined messages.

• Sending logged messages.

• Statistics on messages.

• Bus Load and disturbance statistics.

• Generation of bus disturbances.

The data observed can also be logged in files allowing for retrieval of

experiment data for offline analysis. The logged information can also be confined to

specific time windows or given event triggers (Vector Informatik GmbH 2007b, p3).

CANalyzer.FlexRay needs to be configured to access a FlexRay node. To do

this CANalyzer.FlexRay allows several methods for importing configuration data such

as manual input of the network data or importing .chi files. It is also compatible with

several PCI interfaces as well as the VN3600 USB interface. This allows easy

integration into a FlexRay network under study (Vector Informatik GmbH 2007a, p2).

Figure 13.12 (Vector Informatik GmbH 2007b, p1) shows the CANalyzer.FlexRay trace

window.

Figure 13.12: CANalyzer.FlexRay trace window

MODEL CALIBRATION & VALIDATION

- 275 -

13.2.2.5 MATLAB, Simulink and SimEvents

 The simulation model will be built and run using MATLAB, Simulink and

SimEvents. MATLAB, Simulink and SimEvents are covered in detail in section 7.9 of

this thesis.

13.3 Calibration Procedure

The first step in any calibration procedure is to obtain the timing information to

calibrate the model. When the timing data is obtained the model can be tested to see if

it can react in the same way as the real world system. Modifications to the model can

then be made to more accurately reflect the real world system.

13.3.1 Gathering Timing Information

To obtain the timing parameters of an E-Ray chip the following techniques were

used. These technique were applied to the remainder of the components as outlined in

sections 13.3.2 to 13.3.7 (inclusive). The technique was necessary as CANalyzer is

unable to give timing information for the operation of the E-Ray chip. To gain timing

data for these operations it was necessary to time them with the use of a free run timer

and interrupts. A sample program from Fujitsu was obtained and modified for each

calibration test case. The sample programs used were called ‘91460_dynamic1_91467d-

v16’ (Fujitsu Microelectronics Europe GmbH 2007e) and

‘91460_dynamic_int1_91467d-v15’ (Fujitsu Microelectronics Europe GmbH 2007f).

These programs are set up to both use the FlexRay Driver (FFRD) and the

‘91460_dynamic1_91467d-v16’ program was set up for use with the

DECOMSYS::COMMSTACK<FlexRay> v1.8 software driver also.

The samples both use a reload timer to synchronise a time-triggered task to the

FlexRay cycle. The value of the reload timer is checked against the current

communication cycle time at regular intervals. This is to ensure there is no drift between

the two values as they do not share a common clock. When a push button is pressed a

counter value is updated and this data is transmitted over the static segment of the

communication cycle. Another button is connected to the analogue to digital converter

(ADC). The data obtained from the ADC is transmitted across the physical bus during

the dynamic segment.

MODEL CALIBRATION & VALIDATION

- 276 -

For the messages assigned to receive buffers the communications controller

automatically stores the information. The host must then check this data. The

‘91460_dynamic1_91467d-v16’ program does this automatically every communication

cycle. The ‘91460_dynamic_int1_91467d-v15’ program reacts to an interrupt generated

when the assigned dynamic message is received. The program will then check the

received message buffer.

Both programs were needed to calibrate the software model. The

‘91460_dynamic_int1_91467d-v15’ was used as it was designed to work with the

FFRD and was initialised already for use with interrupts. The

‘91460_dynamic1_91467d-v16’ was also used as it could be used with the

COMMSTACK software driver. The two could then be compared and reasonable

timing data could be obtained for both the software driver and the E-Ray

communications controller. The ‘91460_dynamic1_91467d-v16’ could also be used

with the FFRD and interrupts were enabled for this purpose. However the

‘91460_dynamic_int1_91467d-v15’ had already been setup at this stage and so was

used to separate the two sets of tests. The use of separate programs also helps to reduce

confusion when switching between the different tests for the different software drivers.

13.3.1.1 E-Ray Interrupts

The structure of the E-Ray communications controller is shown in Figure 13.13

(Robert Bosch GmbH 2006, p14). The information needed to calibrate the model

concerned the time it took information to be generated by the application and sent,

through the software driver and communications controller, to the physical bus. As the

information passes between the communication controller and host controller, and the

communications controller and the physical bus, it is handled by a number of buffers.

As FlexRay uses a TDMA scheme any message must be stored before its allocated time

slot comes around. To do this there is a message RAM as well as a variety of input and

output buffers.

MODEL CALIBRATION & VALIDATION

- 277 -

Figure 13.13: E-Ray structure

The time it takes a message to pass through each stage will vary. This time will

be affected by the size of data to move as well as the implementation of a particular

transfer stage. To be able to determine the time it takes for each stage it was necessary

to time each stage. To do this interrupts were used.

The E-Ray is designed to provide information in the form of interrupts. These

interrupts can be used by a developer to create a dynamic program that reacts to

different circumstances. They can also be used to analyse the performance of the

system. An interrupt can be set to generate when one of the following happens (Robert

Bosch GmbH 2006, p 147):

• An error occurs.

• A status change is detected.

• A timer is asserted.

• A stop watch event occurs.

The interrupts that can be used to check the timing performance are the status

interrupts. There are 20 status interrupts but not all the interrupts usable for the timing

tests. Figure 13.14 shows the E-Ray status interrupt register (SIR) (Robert Bosch GmbH

2006, p 27).

MODEL CALIBRATION & VALIDATION

- 278 -

Figure 13.14: E-Ray status register interrupts

The SIR register is covered in chapter 6. The interrupts of interest in the SIR

will be briefly covered here. The interrupts of interest are (Robert Bosch GmbH 2006,

pp. 27-8):

• Transmit Interrupt (TXI): This interrupt occurs when a successful transmission

of a frame occurs.

• Receive Interrupt (RXI): This interrupt occurs when a New Data flag is set for a

receive buffer.

• Transfer Input Buffer Completed (TIBC): This interrupt occurs whenever a

transfer between the Input buffer and Message RAM is completed.

• Transfer Output Buffer Completed (TOBC): This interrupt occurs whenever a

transfer between the Message RAM and Output buffer is completed.

To ensure that multiple interrupts do not occur unexpectedly for interrupts TXI and

RXI it is also necessary to set the message buffer interrupt flag (MBI) bit in a message

buffers header. This ensures that only a message buffer with MBI set will generate an

interrupt. This makes analysis easier to conduct and ensures that an interrupt for a

particular message can be tracked.

13.3.1.2 Interrupt Information

The Fujitsu SK-91F467-FLEXRAY has a number of external interrupt lines

connecting the MB91F467D host controller to the MB88121 communications controller

(the E-Ray chip). According to the ‘readme’ file (Fujitsu Microelectronics Europe

GmbH 2007f), supplied with the 91460_dynamic_int1_91467d-v15 program, the

interrupt line connections between the host and communication controller chips are as

shown in Table 13.1.

MODEL CALIBRATION & VALIDATION

- 279 -

Host (MB91F467DA) E-Ray (MB88121A)

ext. Int4 Int0

ext. Int5 Int1

ext. Int6 Int2

Table 13.1: SK-91F467-FlexRay development board interrupt connections

The readme file also states that interrupt signal of the MB88121A is active high.

It should also be noted that the status interrupts are usually assigned to interrupt line 1

while error interrupts are assigned to line 0 (Fujitsu Microcontroller Info Team 2008).

When all this information is gathered it is then possible to setup the

MB91F467D host controller to accommodate this. As status interrupts are being used,

the MB91F467DA external interrupt 5 should be initialised using rising-edge detection,

the port assigned to an external interrupt input and external interrupt 5 enabled. The

interrupt vector table external interrupt 4 and 5 priority should be assigned to a value

between 16 and 30 (inclusive) to enable the interrupt (Fujitsu Limited 2004b, p313).

When the interrupt is detected the ffrd_api_interrupt_line1() function should be

assigned to handle the interrupt. This is a function provided by the FFRD and clears the

interrupt line flags. It also checks which interrupt was asserted and calls the appropriate

handler (Fujitsu Microelectronics Europe (2007d).

The FFRD is used instead of the COMMSTACK interrupts for these levels of

interrupts. This is because the FFRD provides interrupt services to handle the desired

interrupts. The COMMSTACK only provides interrupts associated with the absolute

timer, relative time and cycle start interrupts (Dependable Computer Systems 2006,

p15).

13.3.1.3 Timers Used

In order for calibration data to be extracted from the programs a way to measure

the time was needed. The FFRD provides a ‘get_time()’ function. This function returns

the approximate global time in microseconds. This time stamp can be used when a

message is sent or received. This time would then reflect the time it takes for a message

to pass into/from the physical bus to the chip. The offset from the expected start time of

the time slot would then be used to calculate the exact value. This function will take a

fixed time to calculate the current global time. To calculate the time for messages to

MODEL CALIBRATION & VALIDATION

- 280 -

pass into the host MCU would require two time stamps to achieve similar calculations.

To overcome this problem another method was proposed.

The Fujitsu MB91460 Series microcontrollers have a number of features such as

an analogue to digital converter (ADC), a digital to Analogue converter (DAC) and

reload timers. It also provides a number of 16-bit free-run timers. These free-run timers

can be setup in various ways and controlled by software. A free-run timer was therefore

set up to count up and the value was then read after an operation was completed. These

were operations such as transferring data between the host and the communications

controller which could then be accurately timed. Figure 13.15 shows the various

registers and possible settings for the free-run timer (Fujitsu Limited 2004b, p736).

Figure 13.15: Free-run timer settings

Before the free-run value could be used it was necessary to know what each

count tick represented. It was known that the host clock was operating at 16Mhz. The

free-run timer was set to count every 4 clock ticks. At 16Mhz the clock period is 62.5ns.

This gives a time of 250ns for every count of the free-run timer.

13.3.1.4 Hardware Configuration

The hardware that was used was a single SK-91F467-FlexRay development

board, two passive stars and a Vector VN3600 FlexRay interface connected to both the

passive stars and a laptop. The laptop was used to run the CANalyzer.FlexRay software

MODEL CALIBRATION & VALIDATION

- 281 -

that controls the VN3600 interface. The SK-91F467-FlexRay development board was

fitted with two FlexRay versions of the FlexTiny physical layer drivers (one for each

FlexRay channel). A second computer was also used to load the application software

onto the development board. This was used to load the board with the test programs and

to monitor the system. The hardware that was used was set up as in Figure 13.16.

Figure 13.16: Calibration hardware setup

The passive stars were used to allow for additional nodes to be connected if

desired. It is not necessary to use them when only connecting two nodes together.

13.3.1.5 MONDEBUG

MONDEBUG is the monitor debugger mode of Softune Workbench. To

perform the monitor debugger debugging, the target monitor program must be placed

into the target system. The monitor debugger software then communicates with the host

computer using a COM port of the computer. A monitor program must be ported to the

target hardware (Fujitsu Limited 2004a, p120). When a valid monitor program is loaded

the status LEDs will be as shown in Figure 13.17 (Fujitsu Limited 2004b, p58).

VN3600 Interface

Passive Star B Passive Star A

USB Connection

RS232 Connection

FlexRay

Development Board

MODEL CALIBRATION & VALIDATION

- 282 -

Figure 13.17: Flow directions of data in a FlexRay system

This mode of operation allows the user to use breakpoints and watch windows to

monitor the status of various system of the developed program. This allows the

developer to avoid using UARTs and COM ports to transfer data which may affect the

timing of the system. Variables used to monitor the timing of a system can simply be

checked after a breakpoint has been reached.

13.3.1.6 Timing Procedure

A procedure to measure the time taken to transfer data in the chip was developed

in the following way. Data transferred to the chip was split into two directions. The first

direction was called ‘up’ and the second was called ‘down’. The up direction referred to

the data that is obtained from the physical bus and passed to the host via the

communications controller. The down direction was the flow of data from the host

computer to the communications controller and finally to the physical bus. This is

illustrated in Figure 13.18. Host A is receiving data from the physical bus so data is

flowing in the up direction. Host B is transmitting data to the physical bus and so the

flow of data is in the down direction.

MODEL CALIBRATION & VALIDATION

- 283 -

Figure 13.18: Flow directions of data in a FlexRay system

When this distinction was made a clearer work flow was developed. It was also

clear from the setup procedure of the interrupts that this distinction would be an

advantage. As the MBI bit of a message buffer must be set then a single message could

be tracked. This meant that different payloads could easily be tested by switching this

bit on for different messages with different payloads.

13.3.1.5.1 Data Flow Timing Tests (Up Direction)

This concerns the receive side of the communication process. Therefore one

message buffer should have its MBI bit set to logic 1. When the interrupt occurs

indicating that a new message has been received, a time stamp of the current

communication global time can be taken. As the node will have transmitted during a

given slot, the start of the slot time will be known. The time to receive a frame can be

calculated. Also if the payload size is known then a metric can be derived based on this

value i.e. the time per byte.

Host A Host B

 CC A CC B

 Physical Bus

CC = Communications Controller

Down Direction Up Direction

= Flow of Data

MODEL CALIBRATION & VALIDATION

- 284 -

The next stage would be to get the node to request the data stored in the message

buffer. Just before this is done the free-run timer should be started. When the Output

buffer has received data from the message handler a time stamp can be recorded from

the interrupt using the free-run timer. Next when the software driver has signalled it has

successfully received the data, another time stamp could be obtained.

This can be repeated for a number of different payload sizes along with different

FlexRay communication configurations. This ensures that accurate measurements can

be made. The different FlexRay communication configurations will allow the testing of

any possible effect that a different configuration may produce.

The time it takes the COMMSTACK driver to return from a read buffer

command should also be made. This can be compared to the FFRD timings and a

reasonable execution time can then be obtained for the COMMSTACK.

13.3.1.5.2 Data Flow Timing Tests (Down Direction)

The transmit aspect is handled by the node by passing information flowing down

through the node. Again one message buffer should have its MBI bit set to ‘1’. The first

stage would be to get the host to update a transmit message buffer. Firstly though, the

free-run timer should be started just before the host attempts to update the buffer. When

the Input buffer of the communications controller interrupts the program the free-run

timer can be checked and timing data can be obtained for this operation.

When the buffer indicates that an update of its contents has occurred then

another time stamp can be obtained from the free-run timer. When the software driver

indicates a successful transfer of data to the communications controller, then a final time

stamp should be obtained from the free-run timer.

Finally the transmit interrupt should be setup. When this interrupt occurs then

the current global communication time should be recorded. This can then be compared

to the start time at which the slot should begin.

This can be repeated for a number of different payload sizes along with different

FlexRay communication configurations. This ensures that accurate measurements can

be made. The different FlexRay communication configurations will allow the testing of

any possible effect that a different configuration may produce.

The time of it takes the COMMSTACK driver to return from an update buffer

command should also be made. This can be compared to the FFRD timings and a

reasonable execution time can then be obtained for the COMMSTACK.

MODEL CALIBRATION & VALIDATION

- 285 -

13.4 Calibration Test Cases

In order to be useful the different test case configuration parameters needed to

be converted into setup files for the hardware. In the case of CANalyzer and the FFRD a

‘.chi’ file was needed. The COMMSTACK software driver uses DECOMSYS Designer

files to set up the communications controller. To create these Designer and FlexConfig

were used. However these two programs configure the settings in different ways.

Tests were run with both configurations and it was discovered that the

FlexConfig-generated configurations wouldn’t always allow synchronisation with the

hardware devices. The Designer configurations worked as expected however. New chi

files were then constructed with the buffer assignments from the FlexConfig software

and the other constraints from the Designer files. These were tested and worked as

desired. The buffering was tested separately also to ensure the right configuration had

been achieved.

At this stage the configuration of the Test Case 6 was incompatible with real

world configurations. The FIFO rejection filter could not be configured as desired. Test

case 6 could therefore not produce the required timing information. Table 13.2 shows

the test case parameters for each calibration test. This includes the updated Test 6 FIFO

parameters.

MODEL CALIBRATION & VALIDATION

- 286 -

Table 13.2: Calibration test case parameters

ID Cycle

Length

(µs)

Number

of Static

Slots

Number

of Mini

Slots

Static

Slot

Length

(µs)

Mini

Slot

Length

(µs)

Static

Frame

Payload

(words)

Dynamic

Frame

Payload

(words max)

Channels NIT &

Symbol

Length

(µs)

Node Tx

Frames

Node Rx

Frames

Latest

Tx

Note

1 16000 630 0 25 NA 1 NA A&B 250 3 and 44 6 and 18 0 Maximum cycle

length with no mini

slots

2 16000 2 1548 43 10 10 20 A&B 431 2 and

444 (A)

1 and

181 (B)

1543 Maximum cycle

length, Minimum

static slots

3 5000 20 209 123 10 50 80 A&B 447 3 and 65

(A)

6 and 66

(B)

192 Medium cycle

length, medium

number of static

slots, medium

number of mini slots

4 5000 17 34 278 6 127 5 A&B 67 3 and 28

(A)

6 and 29

(B)

29 Large static slot

size, small number

mini slots of mini

slots

5 114 2 0 27 NA 2 NA A&B 60 2 1 0 Minimum cycle

length

6 5000 60 239 36 10 6 20 A&B 447 3 and 65 61 (B) 234 All received

messages stored in

FIFO

MODEL CALIBRATION & VALIDATION

- 287 -

Again for the model tests it was necessary to run the model with repeatable

results. The seeds that were used can be seen in Table 13.3.

Test

Case

Application

Generation

Application

Response

Physical Bus

A-1

Physical Bus

A-2

Physical

Bus B-1

Physical

Bus B-2

1 901 1763 272 777 15973 12

2 231 405706 19881 3103 568 86418

3 6068 93 1527392702 790176266 708 6382325

4 860 916904 4000676564 72711 411327 284444

5 891 270206 432287947 159790 93808 1001

6 7621 8 1578461665 9797 173 63272

Table 13.3: Calibration test case random number seeds

13.5 Calibration Data & Results

13.5.1 Calibration Data

When the collection of data was carried out, it was noted that a single

development board would not easily synchronise with the VN3600 correctly. Test Case

2 was the only configuration that worked sufficiently. Vector (the CANalyzer

developers) were contacted for help and feedback obtained to try to resolve the issue. A

possible reason for this problem was the exact implementation of the two hardware

devices (the VN3600 interface and SK-91F467-FLEXRAY development board) were

not quite compatible. Another possible answer is that the CANalyzer equipment was not

properly configured. It was felt that it would be more beneficial to have at least two

development boards running the same configuration and application software. Another

SK-91F467-FlexRay development board was obtained and the issue was no longer

present in the setup. The revised hardware configuration can be seen in Figure 13.19.

MODEL CALIBRATION & VALIDATION

- 288 -

Figure 13.19: Calibration hardware setup – revised

A single serial RS232 connection was used to program the development boards

with appropriate application software. This allowed for greater control of when

information was sent or received from the boards. The data obtained is outlined below.

For each measurement and payload length ten timings were taken.

The timing data that was desired to be obtained for the model was as follows:

• The software driver transmission time

• The software driver receive time

• The time for the IBF to pass data to the Message RAM

• The time for the OBF to receive data from the Message RAM

• The time to transfer data to a transient buffer from the Message RAM

• The time to transfer data to the Message RAM from a transient buffer

• The Message RAM buffer update time

• The Message RAM read time

13.5.1.1 Interrupt latency and Time Function Timings

The timing data gathered for the calibration tests was taken from real world

observed times. These were obtained from a SK-91F467-FLEXRAY development

board. The time for the communications controller to signal a specific condition (i.e. an

VN3600 Interface

Passive Star A Passive Star B

USB Connection

RS232 Connection

FlexRay

Development

Boards

MODEL CALIBRATION & VALIDATION

- 289 -

interrupt) will take a given time. Any program that is currently being executing on the

host controller will also need to be halted before the interrupt handler can be executed.

To ensure that the program can continue correct execution after the interrupt is serviced

a context for the program running must be saved. This all takes time and is known as

the interrupt latency. It is important to know how long this takes to ensure accurate

timing information can be obtained. To get accurate timing information it is also

necessary to know how long a function takes to get a time stamp. This can then be

accounted for when analysing the timing information obtained from the development

board.

Two timing functions (the ffrd_api_get_time() function and free run timer

functions) were used to obtain timing information from the board as was stated in

13.3.1.3. To obtain accurate execution times for the timers, ten timestamps were taken

one after another during the program flow. Each time value was stored to a different

element of an array. To ensure that an accurate time was obtained, each function was

written explicitly. This ensured that no delay would occur due to the implementation of

a ‘for’ loop, for example. An example of this is as shown as follows:

Time[0] = ffrd_api_get_time();

Time[1] = ffrd_api_get_time();

...................

...................

Time[9] = ffrd_api_get_time();

The times were then compared to each other and the difference in time

calculated. The difference in time between two consecutive time stamps is the time

taken to execute the function. This was done for both timers for each of the test cases.

This ensured that a large enough number of runs were done to allow for any false

readings. These could be from an interrupt happening between two of the functions

being executed. This would cause a larger time than usual. Tables 13.4 and 13.5 show

the execution times of the FFRD ffrd_api_get_time() function and the free-run timer

functions.

MODEL CALIBRATION & VALIDATION

- 290 -

Test Case 1 2 3 4 5

 67 66 66 66 66

 66 67 65 66 67

 66 66 66 66 66

 67 66 66 65 63

 66 66 66 66 69

 66 67 66 66 67

 66 66 66 66 66

 67 66 66 66 66

 66 67 66 66 67

Table 13.4: ffrd_api_get_time() time differences (µs)

Test Case 1 2 3 4 5

 1500 1500 1500 1750 1500

 1750 1750 1750 1500 1750

 1500 1500 1500 1750 1500

 1750 1750 1750 1500 1750

 1500 1500 1500 1750 1500

 1750 1750 1750 1500 1750

 1500 1500 1500 1750 1500

 1750 1750 1750 1500 1750

 1500 1500 1500 1750 1500

Table 13.5: Free run timer differences (ns)

Based on these obtained times it was concluded that the ffrd_api_get_time()

function takes roughly 66 µs to obtain a time. The free run timer can also obtain a time

stamp about every 1500 ns based on the setup of the system. These values are taken

from analysing the mean, median and mode of the differences observed.

The time for an interrupt to be detected and the interrupt handler to be run was

also tested. To do this the ‘Timer 0’ absolute timer of the E-Ray was used. This timer

can be configured to interrupt at a specific macrotick time during all or specific

communication cycles. At the specific macrotick that the timer interrupts the host and

as the execution time of the ffrd_api_get_time() function was known, an accurate

interrupt latency could be calculated. When these times were obtained the latency times

were calculated by subtracting the interrupt Timer 0 configured macrotick value and the

ffrd_api_get_time() execution time. The observed interrupt latency times are shown in

Table 13.6.

MODEL CALIBRATION & VALIDATION

- 291 -

Test Case 1 2 3 4

 64 64 64 64

 63 64 64 64

 64 64 64 64

 63 64 63 64

 64 64 63 64

 63 64 63 64

 63 64 63 64

 63 64 64 64

 63 64 63 64

 64 64 63 64

 Table 13.6: Interrupt latency times (µs)

The value of 64 µs was taken as the interrupt latency based on the values observed. This

value was taken into account for all relevant calibration timing data recorded.

13.5.1.2 Fujitsu FlexRay Driver Transmit Times

The time to correctly transfer data between the host and communications

controller was measured. This is the time it takes the software driver to pass the

information to the communications controller. The diagram below shows a strong

relationship between the size of the data to be transferred and the time taken to transfer

the data. As the size of data increases the time to pass on the information increases also.

Figure 13.20 is a graph of times observed versus the number of data bytes passed from

the application layer to the communications controller.

MODEL CALIBRATION & VALIDATION

- 292 -

FFRD Send Data Times

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 50 100 150 200 250 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Figure 13.20: Fujitsu FlexRay Driver transmit timings

The trend line function of Microsoft Excel was used to place a trend line on the

graph. It also calculates an R
2
 value. This value is a relationship between how much the

x values, i.e the data size, changes compared to how much the y values changes, i.e. the

deviation in the time taken,. An R
2
 value of ‘1’ means that there is a direct relationship

between the two values and one value effects the other. On the other hand an R
2
 value

of 0 means that there is not a relationship between sets of values, therefore as one set of

values changes the other set remains the same (Freud 1979, p394). A graph of software

drivers transmit times including a trend line is shown in Figure 13.21.

FFRD Send Data Times y = 5163.2x + 27830

R2 = 0.9986

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Linear (Series1)

Figure 13.21: Fujitsu FlexRay Driver transmit timings with linear trend line

MODEL CALIBRATION & VALIDATION

- 293 -

With the R
2
 value being close to 1, this indicates that there is a strong

relationship between the payload size and the transfer time. A number of trend line

types were tested and the highest value of R
2
 was taken as the correct relationship trend.

Figure 13.22 shows a polynomial trend line as the second trend line type that had the

same R
2
 value.

FFRD Send Data Times

y = -0.4513x2 + 5268.9x + 26002

R2 = 0.9986

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Poly. (Series1)

Figure 13.22: Fujitsu FlexRay Driver transmit timings with polynomial trend line

There is no significant difference between the two formule for the trend. Both

maintain an offset and a time factor based on the size of data to transfer. The

polynomial formula is more computationally intense however and so the linear trend

line formula was taken as the correct relationship formula. This formula was therefore

used in the simulation model to calculate the delay for the FFRD software driver based

on the amount of data bytes to be transmferred.

13.5.1.3 Fujitsu FlexRay Driver Receive Times

The graphs of the FFRD receive times show a strong relationship between the

size of the data to be transferred and the time taken to transfer the data. In Figure 13.23

the relationship between the time taken to obtain the data from the communications

controller and the data size is shown.

MODEL CALIBRATION & VALIDATION

- 294 -

FFRD Get Data Time

0

200000

400000

600000

800000

1000000

1200000

1400000

0 50 100 150 200 250 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Figure 13.23: Fujitsu FlexRay Driver receive timings

There was an outlier contained within the data however. The data was therefore

‘cleaned’. To do this each set of timing figures were looked at. If a timing value was not

consistent with the other values in its range then this value was removed. Interrupt

latency could explain the outliers that were much larger than similar times. This is due

to possible implementations of the E-Ray chip itself. The implementation may delay the

signalling of an interrupt for an unknown time. The detection by the host of an interrupt

can also not be accurately determined.

 In terms of results that were obtained that were smaller than similar results,

these times may be due to the communications controller losing synchronisation. For

example when data is passed to the communications controller from the host, the data

will not be passed if the controller is not synchronised to the bus. This will stop the

driver function from completing a task and a small time for the execution will be

recorded. It may also be due to the speed of the host detecting an interrupt event. This

goes some way to explaining the outliers observed in the collected data.

Figure 13.24 shows a ‘cleaned’ data set where the outliers were taken out. This

gives a better correlation between the payload size and the transfer time.

MODEL CALIBRATION & VALIDATION

- 295 -

Cleaned FFRD Get Data Time
y = 4610.5x + 67654

R2 = 0.9992

0

200000

400000

600000

800000

1000000

1200000

1400000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Time

Linear (Time)

Figure 13.24: Fujitsu FlexRay Driver receive timings with linear trend line

As the linear trend line had the best correlation between the two sets of data, the

trend line formula was taken as the relationship between the two sets of data.

13.5.1.4 COMMSTACK Transmit Times

The COMMSTACK software driver was tested next. It was again discovered

that there is a strong relationship between the size of the data to be transferred and the

time taken to transfer the data as can be seen in Figure 13.25 where one value varies

with the other.

COMM Send Data Times

0

200000

400000

600000

800000

1000000

1200000

1400000

0 50 100 150 200 250 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Figure 13.25: COMMSTACK transmit timings

MODEL CALIBRATION & VALIDATION

- 296 -

The correlation is similar to the Fujitsu FlexRay software driver but the

polynomial trend line was a better fit. The two diagrams below, Figures 13.26 and 13.27,

show the R
2
 value for both a polynomial trend line and a linear trend line. This was

done using a cleaned set of data.

COMM Send Data Times

y = -7.6137x2 + 6208.2x + 89319

R2 = 0.9719

0

200000

400000

600000

800000

1000000

1200000

1400000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Poly. (Series1)

Figure 13.26: COMMSTACK transmit timings with polynomial trend line

COMM Send Data Times
y = 4424.3x + 120168

R2 = 0.9591

0

200000

400000

600000

800000

1000000

1200000

1400000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Linear (Series1)

Figure 13.27: COMMSTACK transmit timings with linear trend line

Despite the Fujitsu FlexRay driver (FFRD) having a linear relationship it was

decided to use the polynomial formula for the COMMSTACK data set. This is as the

two software drivers may perform the sending of data to the communications controller

MODEL CALIBRATION & VALIDATION

- 297 -

in different ways. As the polynomial trend line was a better fit in this case the formula

was used to calculate the simulation models delays.

13.5.1.5 COMMSTACK Receive Times

In Figure 13.28 a strong relationship between the size of the data to be

transferred and the time taken to transfer the data can be seen.

COMM Get Data Times

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Figure 13.28: COMMSTACK receive timings

When the data was cleaned up the following trend line (as shown in the Figure

13.29) was discovered to have roughly the same fit as the polynomial trend line. The

polynomial had an R
2
 value of 0.9972 while the linear trend line formula had an R

2

value of 0.997. This was seen as a very minor difference. The COMMSTACK software

driver will also to have be presented data from the communications controller in the

same way the FFRD software driver is presented data. Therefore there would be minor

differences in the handling of the data. It was therefore decided that the linear

relationship would be used.

MODEL CALIBRATION & VALIDATION

- 298 -

COMM Get Data Times

y = 5084.9x + 74451

R2 = 0.997

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Linear (Series1)

Figure 13.29: COMMSTACK receive timings with linear trend line

13.5.1.6 Transmit Timings

The transmit timings were obtained using a time stamp when the transmit frame

interrupt was received by the host. This time stamp was compared to the expected slot

start time and the expected transmission time length. The remaining time was then taken

as the time it took to transfer the data between a transient buffer and the protocol

controller block. Figure 13.30 shows the R
2
 value and data points for the interrupt times

collected.

Transmit Time y = 990.88x + 7582.6

R2 = 0.9998

0

50000

100000

150000

200000

250000

300000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Linear (Series1)

Figure 13.30: Transmit interrupt timing with linear trend line

MODEL CALIBRATION & VALIDATION

- 299 -

The data range was analysed by removing the calculated transmit times for the

different payload lengths. This left a set of points as shown in Figure 13.31. The values

of the transmit times are less than the frame transmission times. This indicates that the

transmit interrupt occurs when a message has been successfully passed to the protocol

transceiver from a transient buffer. This is justified as the interrupt is only generated

when a frame is successfully transmitted. The interrupts can therefore not occur before

this point. After a message is transferred to the transceiver the message can be

transmitted. This must happen within a given time for message to be accepted as valid.

The FlexRay protocol allows for this as well as allowing for time at the end of a slot.

Almost all the times observed were all within this threshold. This is also the only time

that can be deduced for this stage.

Transmit Time

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

0 50 100 150 200 250 300

Data (Bytes)

T
im

e
 (

n
s

)

Series1

Figure 13.31: Transmit times

The transfer times obtained between the transient buffer and protocol transceiver

are shown Figure 13.32 below. There are number of different points on the graph but

there is no straight line on which all the points lie that can be determined from the

information. Therefore the data was analysed for the averages of the information.

MODEL CALIBRATION & VALIDATION

- 300 -

Transient Buffer Transfer Time

-1000

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Data (Bytes)

T
im

e
 (

n
s

)

Series1

Figure 13.32: Transient buffer transfer times

Table 13.7 shows the mean, median and mode for the data set. All the values are

a similar value (i.e. 1900 ns). The calculated mean is also greater than 1900 ns by less

than 5%. For this reason the time for this stage is taken as 1900 ns. As there was no way

to determine the time it takes to transfer a message from the protocol transceiver to the

transient buffer, the value of 1900 ns was assumed for this time also.

 Time (ns)

mean 1987.5

median 1900

mode 1900

Table 13.7: Transmit averages

13.5.1.7 Receive Timings

The receive timings refer to the time taken for a frame assigned buffer to signal

that a message is received. The time the buffer was updated was taken from an interrupt.

This time was compared to the expected start time the relevant transmission slot and the

time to transmit a frame. The time to transfer the message to the protocol transceiver

and vice versa was also taken into account. This meant the time for the slot to be

received and the buffer updated was then known. Figure 13.33 shows a graph of the

receive interrupt times measured.

MODEL CALIBRATION & VALIDATION

- 301 -

Receive Times
y = 992.04x + 18010

R2 = 0.9998

0

50000

100000

150000

200000

250000

300000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Linear (Series1)

Figure 13.33: Receive interrupt timings

In Figure 13.34 the calculated buffer update times are shown. As with the

transfer timings between a transient buffer and the protocol transceiver, the data is not

very correlated. However as with the transient buffer and the protocol transceiver

transfer times that was discussed in 13.5.1.6, the averages of this data set can be

analysed.

Buffer Update Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Figure 13.34: Buffer update timings

In Table 13.8 the calculated mean, median and mode for the data set can be seen.

The median and mode were calculated as 4300 ns with the mean roughly 10% more at

MODEL CALIBRATION & VALIDATION

- 302 -

4725 ns. As the mean was only 10% greater than the median or mode the buffer update

time was taken as 4300 ns. The time to read a Buffer was also taken as this time as there

was no way to determine this time accurately.

 Full Data Range Time (ns)

mean 4725

median 4300

mode 4300

Table 13.8: Receive averages

The time of 4300 ns must also be taken as the buffer update time as the message

handler simply selects which E-Ray block has access to the message RAM at any

particular time. The time obtained is therefore a measure of the time to access a

particular message buffer.

13.5.1.8 Input Buffer Transfer Timings

The interrupt time occurs at seemingly correlated times as the timer was started

just before the FFRD driver sent the information to the communications controller.

However the interrupt time does not represent the time it takes to transfer the data

between the input buffer of the E-Ray chip and the message RAM. When the software

drivers transfer time is taken into account the real input buffer transfer time can be

calculated. It is also necessary to take into account the buffer access time calculated in

section 13.5.1.7. Figure 13.35 shows the input buffer interrupt times minus the interrupt

handler time and buffer update time.

MODEL CALIBRATION & VALIDATION

- 303 -

Interrupt time y = 5111.2x + 73317

R2 = 1

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Linear (Series1)

Figure 13.35: IBF interrupt timings with series trend line

When the software driver’s times are accounted for, there is very low correlation

between the transfer times. This is shown in Figure 13.36. The R
2
 value obtained

indicates there is a small correlation between the payload size and the transfer time.

IBF Data Transfer Times
y = -48.872x + 44991

R
2
 = 0.0596

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 50 100 150 200 250 300

Data(Bytes)

T
im

e
 (

n
s

)

Series1

Linear (Series1)

Figure 13.36: IBF timings with linear trend line

The mean, medium and mode for the data were therefore calculated for the data

set. The calculated values are shown in Table 13.9. These averages are a measure of the

time it takes a message to be passed from the input buffer and a message buffer in the

message RAM. The median and mode values are both equal to 30250 ns. The mean of

MODEL CALIBRATION & VALIDATION

- 304 -

the collected data is larger at 41732.11 ns. However there are a number of outliers in the

collected data. This could be due to the input buffer waiting to gain access to the

message RAM. The time of 30250 ns was therefore chosen as the average input buffer

time.

A buffer update time of 4300 ns was also already determined from the Receive

timing data set. This would indicate that the average time spent in the input buffer is

30250 ns -4300 ns = 25950 ns.

 Full Data Range Time (ns)

Mean 41735.119

Median 30250

Mode 30250

Table 13.9: IBF averages

13.5.1.9 Output Buffer transfer Timings

As with the IBF values the interrupt times are correlated until the FFRD time is

taken into account. When the FFRD times are taken into account there is low correlation

between the payload size and transfer time. Figure 13.37 shows the interrupt times with

cleaned up data. The buffer read time that was calculated was also taken into account in

the graph.

OBF Transfer Timings

0

20000

40000

60000

80000

100000

120000

0 50 100 150 200 250 300

Data (Bytes)

T
im

e
 (

n
s
)

Series1

Figure 13.37: OBF interrupt timings

MODEL CALIBRATION & VALIDATION

- 305 -

The mean, median and mode were again calculated for this data set. Table 13.10

shows the averages calculated. The value of 79950 ns was taken as the average output

buffer transfer time. Again the time to access a message buffer needs to be taken into

account. This gives an overall output buffer transfer time average of 79950 ns - 4300 ns

= 75650 ns

 Full Data Range Time (ns)

mean 74250.5952

median 79950

mode 79950

Table 13.10: OBF averages

When the analysis of this data was done it was realised that the software driver

receive times calculated would be affected by these timings. The two software drivers

receive times were then analysed to calculate correct and useable formule. Figures 13.38

and 13.39 show the amended software driver receive times.

FFRDReceive Times
y = 4469.6x - 14314

R2 = 0.9435

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

0 100 200 300

Data (Bytes)

T
im

e
 (

n
s
) FFRD Receive Time -

OBF

Linear (FFRD Receive

Time - OBF)

Figure 13.38: FFRD amended receive timings with linear trend line

MODEL CALIBRATION & VALIDATION

- 306 -

COMM Receive Time - OBF

y = 4984.1x + 5004.9

R2 = 0.9953

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

0 100 200 300

Data (Bytes0

T
im

e
 (

n
s
)

Series1

Linear (Series1)

Figure 13.39: COMMSTACK amended timings with linear trend line

By using the formule obtained from this analysis, more confidence can be placed

in the timing applied to the various points of the system between the message RAM and

the application layer.

13.5.1.10 Discussion of the Data

The technique that was used involved using interrupts. This is not ideal as there

is an overhead associated with an interrupt in terms of time. When the interrupt occurs it

may not be serviced immediately if there is a higher or equal priority interrupt being

serviced. All possible measurements were taken to reduce the effect of these times on

the gathered data.

From the list of desired timing parameters given in section 13.5.1 it was known

what timing information was received from the system. The time to transmit a frame of

a given payload size was calculated based on the FlexRay specifications. It was

necessary to monitor the rest of the values. The data collected was then carefully

analysed for correct timing relationships. The timing data for the Fujitsu FlexRay

software driver and the COMMSTACK software driver were both obtained. For the

purpose of the calibration procedure however the model will only be calibrated to the

COMMSTACK software driver.

All the timing data collected will not be a completely accurate representation of

the timings of a real world system. With the time and equipment available however this

is the best data that can be obtained. The calibration of the model will therefore be

MODEL CALIBRATION & VALIDATION

- 307 -

conducted against the best possible data set available. The timing value and formula for

each parameter are shown in Table 13.11. In Table 13.11 ‘x’ represents the data size of

any entity passing through that layer. These timing constraints can then be applied to the

simulation model. The simulation model can then be monitored and the timing data

obtained can be compared to the actual real world system.

Constraint Time (ns)

COMMSTACK Transmit Time 89319)*2.6208()*6137.7(2
++− xx

COMMSTACK Receive Time 9.5004)*1.4984(+x

Input Buffer Handling Time 25950

Output Buffer Handling Time 75650

Message RAM Access Time 4300

Transient Buffer Handling Time 1900 ns

Physical Bus Transfer Time 100)*8)))(x*(2+x))(8*(8+2+1+((6 ++

Table 13.11: System timing constraints

The timing data for the FIFO was not obtainable due to time constraints and

errors when collecting the data. Unfortunately this meant that Test Case 6 could not be

successfully completed. The calibration tests could only be carried out over the first five

test cases as there was no FIFO timing to compare the data from the model to. This is

due to the fact the Designer configuration software does not at the present time support

FIFO applications.

13.5.2 Calibration Verification Results

The model for each test case was configured with the timing constraints and the

tests were run. The model needed to be configured to obtain all appropriate data

however. Each of the tests was originally run over a single communication cycle.

However this did not always produce the desired data. This is because the random

element of deciding the generation of frames on the physical bus will not always

produce the frames for the simulation node to store. Also the updating of a transmit

message buffer may not happen before the buffer is checked for any transmit data. In

order to check the model acted in the desired manner the model tests needed to be

changed.

MODEL CALIBRATION & VALIDATION

- 308 -

The possibility to run the test over two communication cycles was explored.

This would guarantee that all frames would be transmitted from the simulated node at

least once. However there was still no guarantee that the desired frames would be

generated by the physical bus subsection. The model was therefore changed to generate

only those frames that were desired for the tests. The random element of the physical

bus was also removed for these tests to ensure that a frame entity would be generated

for desired slots. To ensure the node model transmitted the desired frames during a

single communication cycle, the message RAM buffer entities were initialised to

indicate all relevant messages buffers were ready for transmission. This can be seen as

the buffer having been updated at a time before the simulation start time. This will

ensure that any buffer that is checked before it is updated will still transmit the

associated frame.

Other changes made to the model were that only a single request was generated

by the application layer model subsystem at the start of a communication cycle. Other

requests are then generated when a request has signalled completion. This will allow the

application to act in a more realistic manner when compared to the real world system.

The final change involved the timing constraints and the implementation into the model.

The majority of the timing constraints were fixed lengths and these were simple set as

the time of a single server block. To implement the software driver and physical bus

timings lookup tables were used. Lookup tables had been used in other sections of the

model and were verified as being suitable to produce the correct output for a desired

input. Tables 13.12 – 13.16 compare the timing obtained from the simulation model and

the timing constraints imposed on them. However the tests outlined in this section,

section 13.5.2, were run to verify that the timing obtained from the model matched the

constraints as calculated in sections 13.5.1.

MODEL CALIBRATION & VALIDATION

- 309 -

Test Case: 1 Calculated Constraint (ns) Simulation Model Time (ns)

Frame3 101704.9 Frame3 101704.9 Software Driver Transmit Time

Frame44 101704.9 Frame44 101704.9

Frame6 141973.1 Frame6 14973.1 Software Driver Receive Time

Frame18 141973.1 Frame18 14973.1

Frame3 25950 Frame3 25950 Input Buffer Time

Frame44 25950 Frame44 25950

Frame6 75650 Frame6 75650 Output Buffer Time

Frame18 75650 Frame18 75650

Frame3 1900 Frame3 1900 Media Access Buffer Time

Frame44 1900 Frame44 1900

Frame6 1900 Frame6 1900 Frame and Symbol Processing

Time Frame18 1900 Frame18 1900

Frame3 10900 Frame3 10900

Frame44 10900 Frame44 10900

Frame6 10900 Frame6 10900
Physical Bus Timing

Frame18 10900 Frame18 10900

Note: All model subsystems timing data was calibrated to the desired times.

Table 13.12: Calibration test case 1 data

Test Case: 2 Calculated Constraint (ns) Simulation Model Time (ns)

Frame2 210437.5 Frame2 210437.52 Software Driver Transmit Time

Frame444 325465.05 Frame444 325465.08

Frame1 104686.9 Frame1 104686.9 Software Driver Receive Time

Frame181 204368.9 Frame181 204368.9

Frame2 25950 Frame2 25950 Input Buffer Time

Frame444 25950 Frame444 25950

Frame1 75650 Frame1 75650 Output Buffer Time

Frame181 75650 Frame181 75650

Frame2 1900 Frame2 1900 Frame Transmit Time

Frame444 1900 Frame444 1900

Frame1 1900 Frame1 1900 Frame Receive Time

Frame181 1900 Frame181 1900

Frame2 28900 Frame2 28900

Frame444 48900 Frame444 48900

Frame1 28900 Frame1 28900
Physical Bus Timing

Frame181 48900 Frame181 48900

Note: All model subsystems timing data was calibrated to the desired times.

Table 13.13: Calibration test case 2 data

MODEL CALIBRATION & VALIDATION

- 310 -

Test Case: 3 Calculated Constraint (ns) Simulation Model Time (ns)

Frame3 634002 Frame3 634002 Software Driver Transmit Time

Frame65 887720.28 Frame65 887720.28

Frame6 503414.9 Frame6 503414.9 Software Driver Receive Time

Frame66 802460.9 Frame66 802460.9

Frame3 25950 Frame3 25950 Input Buffer Time

Frame65 25950 Frame65 25950

Frame6 75650 Frame6 75650 Output Buffer Time

Frame66 75650 Frame66 75650

Frame3 1900 Frame3 1900 Media Access Buffer Time

Frame65 1900 Frame65 1900

Frame6 1900 Frame6 1900 Frame and Symbol Processing

Time Frame66 1900 Frame66 1900

Frame3 108900 Frame3 108900

Frame65 168900 Frame65 168900

Frame6 108900 Frame6 108900
Physical Bus Timing

Frame66 168900 Frame66 168900

Note: All model subsystems timing data was calibrated to the desired times.

Table 13.14: Calibration test case 3 data

Test Case: 4 Calculated Constraint (ns) Simulation Model Time (ns)

Frame3 1174996. 331 Frame3 1174996.331 Software Driver Transmit

Time Frame28 150639.63 Frame28 150639.63

Frame6 1270966.3 Frame6 1270966.3 Software Driver Receive

Time Frame29 54845.9 Frame29 54845.9

Frame3 25950 Frame3 25950 Input Buffer Time

Frame28 25950 Frame28 25950

Frame6 75650 Frame6 75650 Output Buffer Time

Frame29 75650 Frame29 75650

Frame3 1900 Frame3 1900 Media Access Buffer Time

Frame28 1900 Frame28 1900

Frame6 1900 Frame6 1900 Frame and Symbol

Processing Time Frame29 1900 Frame29 1900

Frame3 262900 Frame3 262900

Frame28 18900 Frame28 18900

Frame6 262900 Frame6 262900
Physical Bus Timing

Frame29 18900 Frame29 18900

Note: All model subsystems timing data was calibrated to the desired times.

Table 13.15: Calibration test case 4 data

MODEL CALIBRATION & VALIDATION

- 311 -

Test Case: 5 Calculated Constraint (ns) Simulation Model Time (ns)

Software Driver Transmit

Time

Frame2 114029.9808 Frame2 114029.9808

Software Driver Receive

Time

Frame1 24941.3 Frame1 24941.3

Input Buffer Time Frame2 25950 Frame2 25950

Output Buffer Time Frame1 75650 Frame1 75650

Media Access Buffer Time Frame2 1900 Frame2 1900

Frame and Symbol

Processing Time

Frame1 1900 Frame1 1900

Frame2 12900 Frame2 12900 Physical Bus Timing

Frame1 12900 Frame1 12900

Note: All model subsystems timing data was calibrated to the desired times. To obtain all results, the

model was run for twice. The first test requested to update the buffer for frame 2. The second test

requested the data stored in the buffer for frame 1 only.

Table 13.16: Calibration test case 5 data

For each of the test cases the model followed the desired pattern of timing

constraints. The use of look up tables ensures that the correct timing delay is chosen

where a variable delay is associated. They also reduces the execution time of the model

by reducing the number of calculations at run time. The models ability to calculate a

desired subsystem delay is therefore verified as working as desired.

13.5.3 Calibration Results vs. Real World Results

As the timing of the model was verified as working, the models timing output

must be compared to real world system timing. This will give a measure of how well the

model was calibrated. To do this the data from the model was again analysed to produce

MODEL CALIBRATION & VALIDATION

- 312 -

a set of timing data that is a match to the real world system timings. Tables 13.17-13.21

show the calibration data.

All real world values are averages of the collected data set for each message

identifier. All the real world values are the time related to analysed subsystem data. For

instance the frame receive and transmit times are based on the time of the interrupt

compared to the start of the associated slot start time. The input buffer and output buffer

times relate to the time for information to pass through these stages only. All these

times also take into account the interrupt latency time. The correlation column on the

right of Tables 13.17-13.21 relates how well the model data set corresponds to the real

world data set.

A 10% divergence between the real world results and the simulation results was

deemed acceptable after an investigation into the timing constraints of FlexRay was

undertaken (see Appendix B.2.1 of the FlexRay specifications). It was found that the

greatest static slot action point offset was 63 macroticks and the longest duration of a

static slot is 661 macroticks. This means that for valid communication to be achieved

with the largest static slot that could be defined, a maximum of approximately 10% of

the slot could be taken as an empty space, (i.e where no communication appears on the

physical bus), before the frame transmission begins. A 10% difference was then used as

a measure for the acceptable divergence value for each of the calibration and validation

tests as outlined in this thesis.

Test Case 1 Real World Time (ns) Simulation Model Time

(ns)

Divergence

(%)

Frame3 111750 Frame3 101704.9452 -8.99 Software Driver Transmit

Time Frame44 111475 Frame44 101704.9452 -8.76

Frame6 32585.7 Frame6 14973.1 -54.05 Software Driver Receive

Time Frame18 21571.4 Frame18 14973.1 -30.59

Frame3 21527.8 Frame3 30250 +40.52 Input Buffer Time

Frame44 21277.8 Frame44 30250 +42.17

Frame6 93416.6667 Frame6 79950 -14.42 Output Buffer Time

Frame18 86055.5556 Frame18 79950 -7.10

Frame3 19000 Frame3 12800 -32.64 Frame Transmit Time

Frame44 19000 Frame44 12800 -32.64

Frame6 19000 Frame6 19000 0.00 Frame Receive Time

Frame18 19000 Frame18 19000 0.00

Table 13.17: Calibration test case 1 analysis

MODEL CALIBRATION & VALIDATION

- 313 -

Test Case 1 Results:

From the correlation column there are a number of values close to ±10%. It can be seen

that there are a number of values that range from approximately -54% up to +42%.

These values will not produce an accurate representation of the data flow around the

FlexRay node.

Test Case 2 Real World Time (ns) Simulation Model Time

(ns)

Divergence

(%)

Frame2 189650 Frame2 210437.5 +10.96 Software Driver Transmit

Time Frame444 399700 Frame444 325465.1 -18.58

Frame1 120933.3 Frame1 104686.9 -13.43 Software Driver Receive

Time Frame181 204968.8 Frame181 204368.9 -0.29

Frame2 31750 Frame2 30250 -4.72 Input Buffer Time

Frame444 32277.8 Frame444 30250 -6.28

Frame1 84222.2222 Frame1 79950 -5.08 Output Buffer Time

Frame181 84250 Frame181 79950 -5.11

Frame2 26400 Frame2 28900 +9.46 Frame Transmit Time

Frame444 47900 Frame444 50800 +6.05

Frame1 37500 Frame1 35101 -6.40 Frame Receive Time

Frame181 57000 Frame181 55101 -3.34

Table 13.18: Calibration test case 2 analysis

Test Case 2 Results:

The data for this calibration test case is a lot closer than that of test case 1. The majority

of values lie within ±10% of the real world values. Again this is deemed acceptable for

the initial calibration run. However there are two values that are almost -20% off the

real world value. These times may again produce inaccurate results.

MODEL CALIBRATION & VALIDATION

- 314 -

Test Case 3 Real World Time (ns) Simulation Model Time

(ns)

Divergence

(%)

Frame3 544525 Frame3 634002 +16.43 Software Driver Transmit

Time Frame65 931650 Frame65 887720.3 -4.72

Frame6 503666.667 Frame6 503414.9 -0.05 Software Driver Receive

Time Frame66 800666.667 Frame66 802460.9 +0.22

Frame3 38055.56 Frame3 30250 -20.52 Input Buffer Time

Frame65 38277.78 Frame65 30250 -20.97

Frame6 85027.7778 Frame6 79950 -5.97 Output Buffer Time

Frame66 85000 Frame66 79950 -5.94

Frame3 106700 Frame3 110800 +3.84 Frame Transmit Time

Frame65 168000 Frame65 170800 +1.67

Frame6 117000 Frame6 115101 -1.62 Frame Receive Time

Frame66 176900 Frame66 175101 -1.02

Table 13.19: Calibration test case 3 analysis

Test Case 3 Results:

Like the data of test case 2, the majority of values lie within ±10% of the real world

values. Again this is deemed acceptable for the initial calibration run. However there are

two values that are almost -20% off the real world value. These times may again

produce inaccurate results.

Test Case 4 Real World Time

(ns)

Simulation Model Time

(ns)

Divergence

(%)

Frame3 1171875 Frame3 1174996 +0.27 Software Driver Transmit

Time Frame28 267950 Frame28 150639.6 -43.79

Frame6 1274175 Frame6 1270966.3 -0.25 Software Driver Receive

Time Frame29 70125 Frame29 54845.9 -21.79

Frame3 35166.7 Frame3 30250 -13.98 Input Buffer Time

Frame28 31944.4 Frame28 30250 -5.30

Frame6 87000 Frame6 79950 -8.10 Output Buffer Time

Frame29 86500 Frame29 79950 -7.57

Frame3 258000 Frame3 264800 +2.64 Frame Transmit Time

Frame28 19000 Frame28 20800 +9.47

Frame6 270000 Frame6 271000 +0.37 Frame Receive Time

Frame29 31000 Frame29 27000 -12.90

Table 13.20: Calibration test case 4 analysis

MODEL CALIBRATION & VALIDATION

- 315 -

Test Case 4 Results:

The data for test case 4 follows the pattern of the previous 3 test case data sets. The

majority of the results lie within ±10% of the real world values but with four values

outside this range.

Test Case 5 Real World Time

(ns)

Simulation Model Time

(ns)

Divergence

(%)

Software Driver Transmit

Time

Frame2 116850 Frame2 114030 -2.41

Software Driver Receive

Time

Frame1 30850 Frame1 24941.3 -19.16

Input Buffer Time Frame2 34600 Frame2 30250 -12.57

Output Buffer Time Frame1 84150 Frame1 75650 -10.10

Frame Transmit Time Frame1 9000 Frame1 12901 +43.34

Frame Receive Time Frame2 20000 Frame2 19101 -4.49

Table 13.21: Calibration test case 5 analysis

Test Case 5 Results:

There is one value that is approximately 43% greater than the desired value. There are

then three values at are in an around 10% different while two more values lie within

20% of their desired values.

13.5.3.1 Calibration Results vs. Real World Conclusion

The first run of calibration tests produced a set of data that was then compared to

the real world values. The number of values that were outside a difference of ±10%

compared to the real world system was recorded. It was decided that a difference of

±10% was a reasonable level of accuracy for an calibration run. When the model is

within ±5% of the real model reasonable assumptions of the system based on the model

output can be made. To increase the accuracy of the model will require the study of the

areas where the model underperforms and it is therefore unlikely that a single run of

calibration tests will produce a highly accurate model. If the accuracy of a model is

below ±10% however there is likely to be some error in the implementation of the

model. This could be in the implementation of the model subsystems or in the collected

MODEL CALIBRATION & VALIDATION

- 316 -

timing data from the real world system. Table 13.22 shows the number of these ‘errors’

for each timing parameter.

Parameters Unacceptable Differences

Software Driver Transmit Time 3

Software Driver Receive Time 6

Input Buffer Time 5

Output Buffer Time 1

Frame Transmit Time 3

Frame Receive Time 1

Table 13.22: Calibration test results summary

From Table 13.22 it is clear that the greatest errors were observed in the

‘Software Driver Receive’ and ‘Input Buffer’ Times. It is possible that by concentrating

on improving these values the model can achieve an acceptable level of accuracy.

The timing of the model follows the applied constraints perfectly as can be seen

in section 13.5.2. One way to calibrate the model more accurately would be to collect

more real world data. This could therefore mean that there was insufficient calibration

test cases performed to accurately calibrate the model. It may also be possible that with

a limited number of usable interrupts, on the E-Ray communications controller, that

insufficient timing data can be obtained in this way. More data, form more calibration

test runs, will allow an increase in the understanding of the timing constraints and may

be the most practical solution to increase the model accuracy. This new data can then

again be applied to the model and the output checked. Another possibility would be to

look at how the model was constructed and behaves. It could be discovered from

analysis of the model that a subsystem of the simulation does not accurately reflect the

real-world implementation. The subsystem could then be re-modelled by using different

modelling blocks to achieve the desired output from the system. This could then be

adjusted if needed to develop a more accurate simulation model. It is suspected that the

message handler subsystem of the simulation model may not handle the various entities

passed to it in most suitable manner. Further calibration runs should therefore

concentrate on this area of the simulation model.

This initial calibration run has identified where the simulation model differs

from the real world system. More calibration runs can help improve the accuracy of the

MODEL CALIBRATION & VALIDATION

- 317 -

system to a 95 or 99% accuracy. The accuracy desired will determine the number of

runs ultimately needed.

13.5.4 Data Pipeline Analysis

The model was designed to analyse the flow of data through the system. The

model was therefore constructed as two pipelines. The data either originates from the

application layer, is sent through the pipeline to the physical bus, or the data originates

from the physical bus up through the receive pipeline to the application layer. This

means that the overall timing of the pipelines will give a measure of the accuracy of the

simulation model as a whole and not just each subsystem.

To ensure that the pipeline timing is accurate the overall flow of data was

analysed. The transmitted data originates from the application layer, passes through the

software driver, input buffer and communications controller. The overall path time for

the real world system and the simulation model were compare as shown in Table 13.23.

Again the correlation column shows how well the two sets of data relate to each other.

The difference between the two sets of data is also compared to the static slot time

length as well as the communication cycle. This produces a good accuracy metric.

MODEL CALIBRATION & VALIDATION

- 318 -

Transmit

Pipeline

Real World Time

(ns)

Simulation Model

Time (ns)

Divergence

(%)

Slot Time

Correlation

(%)

Cycle Time

Correlation

(%)

Frame

3

152277.8 Frame

3

144754.9452 -4.94 30.09 0.05 Test Case

1

Frame

44

151752.8 Frame

44

144754.9452 -4.61 27.99 0.04

Frame

2

247800 Frame

2

269587 +8.79 50.67 0.14 Test Case

2

Frame

444

479877.8 Frame

444

406515.1 -15.29 170.61 0.46

Frame

3

689280.56 Frame

3

775052 +12.44 69.73 1.72 Test Case

3

Frame

65

1137927.78 Frame

65

1088770.3 -4.32 39.97 0.98

Frame

3

1465041.7 Frame

3

1470046 +0.34 1.80 0.10 Test Case

4

Frame

28

318894.4 Frame

28

201689.6 -36.75 42.16 2.34

Test Case

5

Frame

2

160450 Frame

2

157181 -2.04 12.11 2.87

Average Correlation -5.15 49.46 0.97

Table 13.23: Transmit pipeline timing

The correlation between the transmit pipeline data for the real world and

simulation model have a number of test cases that have a ±10% difference. Test case 2

and test case 4 both fall outside this. This means that for a majority of the test cases the

model is within an acceptable range. When the differences are compared to the

communication cycle length, the model has an accuracy value well within the various

values (an accuracy of less than 100% percent indicates the model is accurate to with

that parameter). The model can therefore said to be accurate to within a cycle length.

The differences were also checked against a static slot length. The accuracy for all but

one test case fell within one static slot length (170.61 % accurate). Frame 444 of test

case 2 had an accuracy of greater than one slot length, but less than two slot lengths.

The accuracy of the transmit pipeline of the model can therefore said to be accurate to

within two static slot lengths.

MODEL CALIBRATION & VALIDATION

- 319 -

The received data originates from the physical bus, passes through the

communications controller, input buffer and software driver. The overall path time for

the real world system and the simulation model were compare as shown in Table 13.24.

Receive

Pipeline

Real World Time

(ns)

Simulation Model

Time (ns)

Divergence

(%)

Slot Time

Correlation

(%)

Cycle Time

Correlation

(%)

Frame

6

127902.3667 Frame

6

113923.1 -10.93

55.91707 0.08737

Test

Case 1

Frame

18

126626.9556 Frame

18

113923.1 -10.03

50.81542 0.079399

Frame

1

242655.5222 Frame

1

219737.9 -9.44

53.2968 0.143235

Test

Case 2

Frame

181

346218.8 Frame

181

339419.9 -1.96

15.8114 0.042493

Frame

6

705694.4448 Frame

6

626465.9 -11.23

64.41345 1.584571

Test

Case 3

Frame

66

1062566.667 Frame

66

1057511.9 -0.48

4.109567 0.101095

Frame

6

1631175 Frame

6

1627916.3 -0.57

1.172194 0.065174

Test

Case 4

Frame

29

187625 Frame

29

161795.9 -13.77

9.291043 0.516582

Test

Case 5

Frame

1

135000 Frame

1

119692.3 -11.34

56.69519 13.42781

Average Correlation -7.75 1.783081 34.61357

Table 13.24: Receive pipeline timing

The correlation between the receive pipeline data for the real world and

simulation model have a number of test cases that have a ±10% difference. Test Case 2

and test case 4 both fall outside this. This means that for a majority of the test cases the

model is within an acceptable range.

When the differences are compared to the communication cycle length, the

model has an accuracy value well within the cycle length values. The model can

therefore said to be accurate to within a cycle length. The differences were also checked

against a static slot length. The accuracy for all of the test cases fell within one static

slot length. The accuracy receive pipeline can therefore said to be accurate to within one

static slot lengths.

MODEL CALIBRATION & VALIDATION

- 320 -

13.6 Conclusion

The hardware and software tools described in this chapter have been chosen for various

reasons. Some of the equipment was available to the Automotive Control Group at

Waterford Institute of Technology (W.I.T.) before this project was started. Other

equipment had to be bought from a set budget. As some of the equipment was already

available to the research group it makes sense to use it. This means the budget can be

used more efficiently.

 The equipment that has been outlined is sufficient to implement the simulation

of a FlexRay network as well as calibrate and validate the simulation model. The

software that has been acquired has been done so with ease of use in mind amongst

other considerations. This will mean for example less time will be spent getting familiar

with the tools and so more time can be dedicated to the implementation of the project.

The software was also chosen as it is used in industry and so is seen as reliable for the

functions intended. The hardware that was chosen was done so as it too is easy to get

familiar with. It was also chosen because it was industry standard and had a high level

of reliability and performance.

The tests that were run were designed to obtain the real world timing data as

accurately as possible. However there will be slight inaccuracies in the values obtained.

This is down to a number of factors such as the limitation of the knowledge of actual

implementations of a system. The model was calibrated to this data set as this was the

best that could be obtained.

The calibration of the model outlined above obtained two sets of data. The

simulation was then run and timing information obtained from the model. This was

checked against the obtained real world timing constraints. The pipeline timing aspect

of the model was also analysed and metrics of performance developed. Some of the

values were inconsistent with the overall timing of the flow of data but may have been

accurate enough to conduct initial validation testing. As the pipeline times were within

acceptable times the calibration was deemed sufficient to perform the validation tests. In

this way the initial calibration testing of the model was deemed a success. The

simulation model is not calibrated to a high level of accuracy and further calibration test

will be needed until an acceptable level of accuracy is achieved.

MODEL CALIBRATION & VALIDATION

- 321 -

13.7 References

Banks, J., Carson, J. S., Nelson, B. L. and Nicol, D. M. (2001) Discrete-Event System

Simulation, New Jersey: Prentice Hall.

Robert Bosch GmbH (2006) E-Ray FlexRay IP-Module User’s Manual, Revision 1.2.3,

Reutlingen: Robert Bosch GmbH.

CMP Media LLC (2007) Active Hub [online], available at:

http://www.techweb.com/encyclopedia/defineterm.jhtml?term=activehub [accessed 14

January 2008].

Dependable Computer Systems (2006) COMMSTACK <FlexRay> 1.8 User’s Manual,

Vienna, Austria.

Dependable Computer Systems (2007) DESIGNER PRO 4.3.0 - DESIGNER PRO,

DESIGNER PRO <LIGHT> and DESIGNER PRO <SYSTEM> Document Version 2.2,

Vienna, Austria.

Freund, J. (1979) Modern Elementary Statistics, 5
th

 edition, New Jersey: Prentice Hall.

Fujitsu Limited (2004a) FR Family SOFTUNE
TM

 Workbench User’s Manual for V6,

Japan.

Fujitsu Limited (2004b) FR60 32-Bit microcontroller MB91460 Series User’s Manual,

Version 1.21, Japan.

Fujitsu Microcontroller Info Team (2008) R Re: [FME#2008081513000241] FlexRay

examples, email to Robert Shaw (rshaw@wit.ie), 8 October [accessed 3 February 2009].

Fujitsu Microelectronics Europe (2007a) MB88121 Series, MB91460 Series Evaluation

Board SK-91F467-Flexray Software Guide v1.5, Langen, Germany.

Fujitsu Microelectronics Europe (2007b) MB88121 Series, MB91460 Series Evaluation

Board SK-91F467-Flexray User Guide v1.6, Langen, Germany.

MODEL CALIBRATION & VALIDATION

- 322 -

Fujitsu Microelectronics Europe (2007c) SK-91F467-FLEXRAY [online], available at:

http://mcu.emea.fujitsu.com/mcu_tool/detail/SK-91F467-FLEXRAY.htm [accessed 24

January 2008].

Fujitsu Microelectronics Europe (2007d) Fujitsu FlexRay Driver Manual v1.3, Langen,

Germany.

Fujitsu Microelectronics Europe GmbH (2007e) 91460_dynamic1_91467d-v16

[online], available at: http://mcu.emea.fujitsu.com/mcu_tool/detail/SK-91F467-

FLEXRAY.htm [accessed 3 February 2008].

Fujitsu Microelectronics Europe GmbH (2007f) 91460_dynamic_int1_91467d-v15

[online], available at: http://mcu.emea.fujitsu.com/mcu_tool/detail/SK-91F467-

FLEXRAY.htm [accessed 3 February 2008].

TZ Mikroelektronik (2004a) FLEXPS Dokumentation, Göppingen, Germany.

TZ Mikroelektronik (2004b) FLEXPS, Göppingen, Germany.

TZ Mikroelektronik (2007a) FlexConfig Basic, Göppingen, Germany.

TZ Mikroelektronik (2007b) FlexTiny Family Instructions for Use, Göppingen,

Germany.

Vector Informatik GmbH (2007a) CANalyzer.FlexRay 7.0 Datasheet, Stuttgart,

Germany.

Vector Informatik GmbH (2007b) CANalyzer 7.0 Datasheet, Stuttgart, Germany.

Vector Informatik GmbH (2007d) Hardware Interfaces for FlexRay and CAN Datasheet,

Stuttgart, Germany.

MODEL CALIBRATION & VALIDATION

- 323 -

Chapter 14 . Validation

14.1 Introduction

This chapter will focus on the procedure of validating the simulation model.

Validation of a model is different to verification of the model. In chapter 7 it stated that

verification was the process of building the model correctly while validation is

concerned with determining if the right model was built. The validation procedure

outlined in this chapter is designed to test if the right model was built. The procedure is

determined by what the model is supposed to achieve and how it should act. The

behaviour of the model was analysed by using suitable tests. The tests used will be

discussed to show how the validation procedure was fulfilled. The validation test cases

will then be stated and the results analysed. Any conclusions about the tests run will

then be stated.

Figure 14.1 (Banks et. al. 2001, p16) shows where validation fits into the model

building process.

MODEL CALIBRATION & VALIDATION

- 324 -

Figure 14.1: Model building process

14.2 Validation Procedure

The validation stage of a modelling study can be a difficult exercise. This is

because ‘no model is ever totally representative of the system under study.’ (Banks et.

al. 2001, p375). Each time a model is revised, as shown in Figure 14.2 (Banks et. al.

2001, p375), it increases the cost, time and effort to achieve a more accurate model. It is

therefore necessary to have an idea as to what the model is intended to do and to test it

for this. It is also clear that the validation stage of the model building process depends

on the success of previous steps in the building process such as the verification and

MODEL CALIBRATION & VALIDATION

- 325 -

calibration stages. This means that if the validation stage is not a success the modeller

may need to return to earlier steps in the modelling procedure.

Figure 14.2: Calibration iterative process

Naylor and Finger are credited in Banks et. al. (2001, p376) as formulating a

three step approach to aid the validation process. These steps are as follows:

• Build a model of high face validity.

• Validate the model assumptions.

• Compare the model input-output transformations to the real world input-output

transformations.

These steps will now be discussed in relation to the study undertaken as outlined in this

thesis.

• The model was demonstrated to and discussed with research supervisor Brendan

Jackman during the models construction stage. Any improvements or changes

were then discussed and changes implemented as necessary. The operation of

the model was also tested during the verification stage of the model

development. The model can therefore be said to have high face validity.

• The model was built by comparing the model to a real world system and its

specifications. The behaviour of the model was also verified for accurate

behaviour and calibrated against a real world system. In this way the models

assumptions can be said to be validated.

• The ability of the model to make good predications of a real world system is

seen as the ‘ultimate test’ of the model (Banks et. al. 2001, p378). To achieve

MODEL CALIBRATION & VALIDATION

- 326 -

complete validation, it was necessary to conduct further tests. These tests are

outlined in section 14.2.1.

14.2.1 Validation of Input-Output Transforms

The ability of a model to predict the future behaviour of a real system is the only

objective test of a model. The model should be able to accurately predict the

performance of the real system, if for instance the arrival rate of entities at a server is

increased. When the model is able to do this the model can be considered as an accurate

representation of the real world system(Banks et. al. 2001, p378).

The input-output transform validation process is then essentially a validation

where accurate measures of performance are obtained from a set of given inputs. This

validation procedure can be done using a separate set of historical data than that used

for calibration. In this way the models behaviour can be tested in an unbiased way

(Banks et.al. 2001, p378).

Section 14.3 will outline the procedure that was undertaken to validate the model

according to this definition.

14.3 Validation Data Collection

The validation stage used the same technique to collect timing information as

that of the calibration stage as outlined in 13.3. The same equipment and procedure that

was used for calibration was used to collect real world timing data. This data was then

compared to the timing data obtained from the simulation model after it was run. If the

model data was deemed to be acceptably similar to the real world timing information,

then the simulation model can be deemed validated. However it was also necessary to

analyse usefulness of the model system.

The parameters of the validation test cases are outlined in Table 14.1. As with

the calibration tests, the configuration files were made from a combination of

DECOMMSYS Designer output files and FlexConfig ‘.chi’ files.

MODEL CALIBRATION & VALIDATION

- 327 -

ID Cycle

Length

(µs)

Number

of Static

Slots

Number

of Mini

Slots

Static

Slot

Length

(µs)

Mini Slot

Length

(µs)

Static

Frame

Payload

(words)

Dynamic

Frame

Payload

(words max)

Channels NIT &

Symbol

Length

(µs)

Node Tx

Frames

Node Rx

Frames

Latest

Tx

Note

1 5000 60 276 35 10 1 16 A&B 140 3 and 65

(A)

6 and 66

(B)

271 Based on the

CANalyzer example

2 5000 79 148 39 10 8 16 A&B 439 3, and

159 (A)

6 and

155 (B)

143 Based on the BMW

example

3 5000 60 245 35 10 4 20 A 450 3 and 65 6 and 66 240 Channel A only

4 9908 120 490 35 10 4 20 B 808 3 and 65 6 and 66 485 Channel B only, max

NIT and double static

and mini slots

5 300 6 12 27 6 2 20 A&B 66 3 and 7

(A)

6 and 8

(B)

2 Small static slot and

mini slot

6 4354 60 195 39 10 8 16 A&B 64 3 and 65

(A)

6 and 66

(B)

190 Minimum NIT and

Symbol window.

7 15982 2 2640 39 6 8 60 A&B 64 2 and

100 (A)

1 and

770 (B)

2617 Maximum number of

mini slots and

minimum static slots

and NIT and Symbol

window

8 5408 8 0 659 NA 127 NA A&B 136 3 6 0 Maximum static slot

length and payload

Table 14.1: Validation test case parameters

MODEL CALIBRATION & VALIDATION

- 328 -

The random numbers used for each test case simulation runs are shown in Table 14.2.

Test

Case

Application

Generation

Application

Response

Physical

Bus A-1

Physical Bus

A-2

Physical

Bus B-1

Physical

Bus B-2

1 456511 578 1675424 9414884 7 2214

2 185 68132217 7506 56238 200926 205738

3 821433 303758 21417824 216 95413 445253

4 4447 660924 24963 6602275 25548 353118

5 6154 1388908 57650387 39245 72912 5971

6 79 21856 67 384193844 1829106 465256

7 9218 7426 505 60735 377 8074

8 732 938 864818 516961 632116 87399

Table 14.2: Validation test case random number seeds

14.4 Validation Review

The validation process of building a model highlights how successfully the

model was built. To do this real world data was obtained for the timing and behaviour

of the system for a number of test cases. The model was then set to perform the same

tests and data collected. The two sets of data were then analysed for similarity. If the

model produced the same information then the model was said to be validated.

14.4.1 Validation Data & Results

The data presented in this section represents the real world data that the

simulation model must accurately reflect. As was stated in section 14.3, the same

techniques to collect the data as used in section 13.3 were used again. The tables below,

Tables 14.3 -14.10 show both the timing data for the real world system and those

obtained from simulation model. This compares the actual real world timing data and

the simulations models data. This is similar to the Calibration stage of comparing the

real world data to the simulated data.

MODEL CALIBRATION & VALIDATION

- 329 -

Test Case 1 Real World Time (ns) Simulation Model Time (ns) Divergence (%)

Frame3 102675 Frame3 101704.9 -0.94 Software Driver

Transmit Time Frame65 357850 Frame65 280185 -21.70

Frame6 3791.666667 Frame6 14973.1 +294.89 Software Driver

Receive Time Frame66 135093.75 Frame66 164496.1 +21.76

Frame3 31444.4444 Frame3 30250 -3.80 Input Buffer Time

Frame65 31361.1111 Frame65 30250 -3.54

Frame6 85333.33333 Frame6 79950 -6.31 Output Buffer Time

Frame66 85305.55556 Frame66 79950 -6.28

Frame3 6100 Frame3 12800 +109.84 Frame Transmit

Time Frame65 45700 Frame65 42800 -6.35

Frame6 27200 Frame6 19000 -30.15 Frame Receive

Time Frame66 54900 Frame66 49000 -10.75

Table 14.3: Validation test case 1 data

Test Case 1 Results:

The Results for test case 1 show a similar set of results as was obtained from the

calibration procedure. The majority of simulated models times fall within ±10% of the

real world data. There are a number of data points that lie outside this range however

indicating that the simulation model requires further calibration. For instance frame 6

indicates that the model is out by almost 300% at the software driver receive side while

frame 3 takes almost 110% more time to transmit over the physical bus.

Test Case 2 Real World Time (ns) Simulation Model Time (ns) Divergence (%)

Frame3 164250 Frame3 186701.1 +27.65 Software Driver

Transmit Time Frame159 352550 Frame159 280185 -20.53

Frame6 61100 Frame6 84750.5 +38.71 Software Driver

Receive Time Frame155 134250 Frame155 164496.1 +22.53

Frame3 35861.1111 Frame3 30250 -15.65 Input Buffer Time

Frame159 35916.6667 Frame159 30250 -15.78

Frame6 85750 Frame6 79950 -6.76 Output Buffer

Time Frame155 85777.8 Frame155 79950 -6.79

Frame3 20111.1111 Frame3 26800 +33.26 Frame Transmit

Time Frame159 45500 Frame159 42800 -5.93

Frame6 31000 Frame6 33000 +6.45 Frame Receive

Time Frame155 45000 Frame155 49000 +8.89

Table 14.4: Validation test case 2 data

MODEL CALIBRATION & VALIDATION

- 330 -

Test Case 2 Results:

The data does not contain any difference between the two sets of data that is as large as

some seen in test case 1. However in this test case the majority of the model data times

are within a ±30% range of the real world system data. This again supports the need for

further calibration.

Test Case 3 Real World Time (ns) Simulation Model Time (ns) Divergence (%)

Frame3 130725 Frame3 138497.3 +5.95 Software Driver

Transmit Time Frame65 386075 Frame65 325465.1 -15.70

Frame6 24916.6667 Frame6 44877.7 +80.11 Software Driver

Receive Time Frame66 169944.444 Frame66 204368.9 +20.26

Frame3 34333.3333 Frame3 30250 -11.89 Input Buffer Time

Frame65 34611.1111 Frame65 30250 -12.60

Frame6 85000 Frame6 79950 -5.94 Output Buffer

Time Frame66 84944.4 Frame66 79950 -5.88

Frame3 15000 Frame3 18800 +25.33 Frame Transmit

Time Frame65 48100 Frame65 50800 +5.61

Frame6 29100 Frame6 25000 -14.09 Frame Receive

Time Frame66 54100 Frame66 57000 +5.36

Table 14.5: Validation test case 3 data

Test Case 3 Results:

The data set for test case 3 again indicates the need for further calibration of the model.

The values are within approximately ±20% of each other. The largest difference is seen

in the software driver receive side. This is similar to the previous 3 test case results

where the biggest difference was seen at this stage of the data flow.

MODEL CALIBRATION & VALIDATION

- 331 -

Test Case 4 Real World Time (ns) Simulation Model Time (ns) Divergence (%)

Frame3 130625 Frame3 138497.3 +6.27 Software Driver

Transmit Time Frame125 386125 Frame125 325465.1 -15.71

Frame6 23333.3333 Frame6 44877.7 +92.33 Software Driver

Receive Time Frame126 168500 Frame126 204368.9 +21.29

Frame3 37638.8889 Frame3 30250 -19.63 Input Buffer

Time Frame125 38138.8889 Frame125 30250 -20.68

Frame6 85000 Frame6 79950 -5.94 Output Buffer

Time Frame126 84861.1 Frame126 79950 -5.79

Frame3 14800 Frame3 18800 +27.02 Frame Transmit

Time Frame125 48000 Frame125 50800 +5.83

Frame6 29300 Frame6 25000 -14.68 Frame Receive

Time Frame126 92000 Frame126 57000 -38.04

Table 14.6: Validation test case 4 data

Test Case 4 Results:

The biggest difference between the two sets of data is again seen at the software driver

receive side at 192%. The frame receive time is also out by about 38%. The majority of

the remaining simulation data differs by approximately ±20%.

Test Case 5 Real World Time (ns) Simulation Model Time (ns) Divergence (%)

Frame3 113900 Frame3 114030 +0.11 Software Driver

Transmit Time Frame7 386125 Frame7 325465.1 -15.71

Frame6 6777.777778 Frame6 24941.3 +267.99 Software Driver

Receive Time Frame8 171111.1111 Frame8 204368.9 +19.44

Frame3 37666.6667 Frame3 30250 -19.69 Input Buffer

Time Frame7 38166.6667 Frame7 30250 -20.74

Frame6 84888.9 Frame6 79950 -5.82 Output Buffer

Time Frame8 84833.3 Frame8 79950 -5.76

Frame3 7100 Frame3 14800 +108.45 Frame Transmit

Time Frame7 48800 Frame7 50800 +4.10

Frame6 18400 Frame6 21000 +14.13 Frame Receive

Time Frame8 63100 Frame8 57000 -9.67

Table 14.7: Validation test case 5 data

MODEL CALIBRATION & VALIDATION

- 332 -

Test Case 5 Results:

The difference between the two sets of data again differs in a number of stages by about

±20%. The biggest differences are seen in the software driver receive time and frame

transmit time parameters.

Test Case 6 Real World Time (ns) Simulation Model Time (ns) Divergence (%)

Frame3 164250 Frame3 186701.1 +13.67 Software Driver

Transmit Time Frame65 352525 Frame65 280185 -20.52

Frame6 60571.42857 Frame6 84750.5 +39.92 Software Driver

Receive Time Frame66 133611.1111 Frame66 164496.1 +23.12

Frame3 34833.3333 Frame3 30250 -13.16 Input Buffer

Time Frame65 35194.4444 Frame65 30250 -14.05

Frame6 85805.6 Frame6 79950 -6.82 Output Buffer

Time Frame66 85777.8 Frame66 79950 -6.79

Frame3 20200 Frame3 26800 +32.67 Frame Transmit

Time Frame65 45500 Frame65 42800 -5.93

Frame6 31200 Frame6 33000 +5.77 Frame Receive

Time Frame66 55000 Frame66 49000 -10.91

Table 14.8: Validation test case 6 data

Test Case 6 Results:

The data sets differ by approximately ±20% for a number of parameters. The software

driver receive time and the frame transmit time are again the two values that differ by he

greatest amounts. The differences at these stages are not as great as in previous stages.

MODEL CALIBRATION & VALIDATION

- 333 -

Test Case 7 Real World Time (ns) Simulation Model Time (ns) Divergence (%)

Frame2 169000 Frame2 186701.1 +10.47 Software Driver

Transmit Time Frame100 722275 Frame100 724665.7 +0.33

Frame1 61541.66667 Frame1 84750.5 +37.71 Software Driver

Receive Time Frame770 535138.8889 Frame770 603096.9 +12.70

Frame2 37833.3333 Frame2 30250 -20.04 Input Buffer

Time Frame100 38611.1111 Frame100 30250 -21.65

Frame1 84888.9 Frame1 79950 -5.82 Output Buffer

Time Frame770 85750 Frame770 79950 -6.76

Frame2 23000 Frame2 26800 +16.52 Frame Transmit

Time Frame100 130000 Frame100 130800 -20.15

Frame1 33900 Frame1 33000 -2.65 Frame Receive

Time Frame770 141000 Frame770 137000 -2.84

Table 14.9: Calibration test case 7 data

Test Case 7 Results:

The data sets produce a similar result to that of test case 6. The difference between the

two sets is approximately ±20% in a number of cases. The software driver receive time

and the frame transmit time are again the two values that differ by a greater amount.

Test Case 8 Real World Time (ns) Simulation Model Time (ns) Divergence (%)

Software Driver

Transmit Time

Frame3 1229050 Frame3 1174996 -4.40

Software Driver

Receive Time

Frame6 1150500 Frame6 1270966 +10.47

Input Buffer Time Frame3 35472.22 Frame3 30250 -14.72

Output Buffer

Time

Frame6 539138.889 Frame6 79950 -85.17

Frame Transmit

Time

Frame3 259700 Frame3 264800 +1.96

Frame Receive

Time

Frame6 652900 Frame6 271000 -58.49

Table 14.10: Validation test case 8 data

MODEL CALIBRATION & VALIDATION

- 334 -

Test Case 8 Results:

The results for test case 8 produce the greatest difference between the two data sets. For

the output buffer the two data sets correlate by only 15% approximately. For the other

tests this value was never outside a ±20% correlation bracket. The model data for this

stage of the pipeline correlated to the real world data by 93-94% in every other test case.

The receive frame time also had a low correlation of about 41%. The remainder of the

values correlate to about a 20% difference between the two data sets.

14.4.1.1 Validation Data Conclusion

The validation tests show a strong need to recalibrate the system. The majority

of the real world and model timings observed were within a ±20% of each other. A

number of the observed times greatly differed from the real world values and the

difference was in some cases were greater than ±50%. For the initial calibration stage a

difference of about ±10% was desired. The differences observed at this stage are

therefore not acceptable. Table 14.11 shows how may of the models subsystem timing

data differed to the real world system by more than the desired ±10% range.

Parameters Unacceptable Differences

Software Driver Transmit Time 7

Software Driver Receive Time 13

Input Buffer Time 12

Output Buffer Time 1

Frame Transmit Time 7

Frame Receive Time 10

Table 14.11: Validation test results summary

The building of the model is an iterative process. The model must therefore be

observed for accuracy and changed as needed. This could mean a redesign of a

subsystem or subsystems in the model to achieve greater accuracy. The real world data

that the model was calibrated to may not be completely accurate and a new way to

collect and analyse the data may be needed

MODEL CALIBRATION & VALIDATION

- 335 -

14.4.2 Data Pipeline Analysis

As with the calibration analysis a measure of the transmit data and receive data

pipelines of the model were done. The ability to analyse the timing of the flow of data

through a FlexRay node was the ultimate goal of the simulation model. By analysing

these times a measure of the accuracy of the model as a whole, and not just the

subsystems can be achieved. The differences between the real world data and the

simulation data is then compared the cycle time and static slot time for each test case.

This gives a metric of the accuracy of the model to a known value. Table 14.12 shows

the data for the transmit pipeline. Table 14.13 shows the data for the receive pipeline.

MODEL CALIBRATION & VALIDATION

- 336 -

Transmit

Pipeline

Real World Time

(ns)

Simulation Model

Time (ns)

Divergence

(%)

Slot Time

Correlation

(%)

Cycle Time

Correlation

(%)

Frame

3

140219.4444 Frame

3

144754.9 +3.23 12.96 0.09 Test Case

1

Frame

65

434911.1111 Frame

65

353235 -18.78 233.36 1.63

Frame

3

220222.2222 Frame

3

243751.1 +10.68 60.33 0.47 Test Case

2

Frame

159

433966.6667 Frame

159

353235 -18.60 207.00 1.61

Frame

3

180058.3333 Frame

3

187547.3 +4.16 21.40 0.15 Test Case

3

Frame

65

468786.1111 Frame

65

406515.1 -13.28 177.92 1.25

Frame

3

183063.8889 Frame

3

187547.3 +2.45 12.81 0.05 Test Case

4

Frame

125

472263.8889 Frame

125

40651.1 -13.92 1233.18 4.36

Frame

3

158666.6667 Frame

3

159080 +0.26 0.15 0.14 Test Case

5

Frame

7

473091.6667 Frame

7

406515.1 -14.07 24.66 22.19

Frame

3

219283.3333 Frame

3

243751.1 +11.16 62.74 0.56 Test Case

6

Frame

65

433219.4444 Frame

65

353235 -18.46 205.09 1.84

Frame

2

229833.3333 Frame

2

347751.1 +51.31 302.35 0.74 Test Case

7

Frame

100

790886.1111 Frame

100

885715.7 +11.99 243.1528 0.59

Test Case

8

Frame

3

1524222.22 Frame

3

1470046 -3.55 8.220974 1.00

Average Correlation -0.36 187.02 2.44

Table 14.12: Transmit pipeline timing

The accuracy of the transmit model pipeline falls well within a communication

cycle length, with the greatest difference at 22.19% of a communication cycle. The

accuracy compared to a static slot varies greatly form 0.15% of a static slot time to

MODEL CALIBRATION & VALIDATION

- 337 -

302%. The majority of the values that have an accuracy greater than one static slot are

for dynamic messages.

Receive

Pipeline

Real World Time

(ns)

Simulation Model

Time (ns)

Divergence

(%)

Slot Time

Correlation

(%)

Cycle Time

Correlation

(%)

Frame

6

116325 Frame 6 113923.1 -2.06 6.86 0.05 Test

Case 1

Frame

66

247599.3056 Frame

66

293446.1 +18.52 130.99 0.92

Frame

6

177850 Frame 6 197700.5 +11.33 50.90 0.40 Test

Case 2

Frame

155

265027.8 Frame

155

293446.1 +10.72 72.87 0.57

Frame

6

139016.6667 Frame 6 149827.7 +7.78 30.89 0.22 Test

Case 3

Frame

66

308988.844 Frame

66

341318.9 +10.46 92.37 0.65

Frame

6

137633.3333 Frame 6 149827.7 +8.86 34.84 0.12 Test

Case 4

Frame

126

345361.1 Frame

126

341318.9 -1.17 11.55 0.04

Frame

6

110066.6778 Frame 6 125891.3 +14.38 5.86 5.27 Test

Case 5

Frame

8

319044.4111 Frame 8 341318.9 +6.98 8.25 7.42

Frame

6

177577.0286 Frame 6 197700.5 +11.33 51.60 0.46 Test

Case 6

Frame

66

274388.9111 Frame

66

293446.1 +6.95 48.86 0.44

Frame

1

180330.5667 Frame 1 197700.5 +9.63 44.54 0.11 Test

Case 7

Frame

770

761888.8889 Frame

770

820046.9 +7.63 149.12 0.364

Test

Case 8

Frame

6

2342538.889 Frame 6 1621916 -30.76 109.35 13.33

Average Correlation +6.04 56.59 2.02

Table 14.13: Receive pipeline timing

MODEL CALIBRATION & VALIDATION

- 338 -

The accuracy of the receive pipeline model pipeline falls well within a

communication cycle length, with the greatest difference at 13.33% of a communication

cycle. The accuracy compared to a static slot varies greatly form 5.86% of a static slot

time to 149%. The majority of the values that have an accuracy greater than one static

slot are again for dynamic messages.

As the accuracy of the pipelines is greater than some of the individual stages of

model, the allocation of timing to the individual subsystems may be incorrectly

allocated. One subsystem takes longer compared to the real world system, while a

following subsystem takes a shorter time. The various timings of the subsystems could

therefore be adjusted to more accurately reflect the real world systems.

As the dynamic messages are generally less accurate than static messages, the

model may need to be studied from this perspective to achieve greater accuracy.

14.4.3 Buffer Access Time Analysis

The model must be able to also produce a set of results that are useful to a

systems analyst. The purpose of the model was to produce an output that could be used

to improve the overall system. By analysing the timing of the individual model

subsystems, bottlenecks could be detected and the system improved. In a number of

cases the delays of the data may not be decreased in a simple manner. A system analyst

may then have to find another way to increase efficiency in the system. By analysing the

time a buffer is accessed (this could be to read from or write to the buffer), an

improvement may be made in the design of the application layer’s execution.

Table 14.1 shows the time a buffer is checked by the E-Ray chip for

transmission (Request to Send Time) and this is compared to the time the buffer is

updated by the host (Buffer Update Time).

MODEL CALIBRATION & VALIDATION

- 339 -

Buffer

Update

Frame

ID

Request to Send Time

(ns)

Buffer Update Time

(ns)

Difference

(ns)

3 35000 132454.9 -97454.9 Test Case 1

65 2140000 443389.9 1696610.0

3 39000 217451.1 -178451.1 Test Case 2

159 3821000 528386.1 3292613.9

3 35000 169247.3 -134247.3 Test Case 3

65 2140000 525462.4 1614537.6

3 35000 169247.3 -13427.3 Test Case 4

125 4230000 525462.4 42704537.6

3 27000 144780 -117780 Test Case 5

7 135000 439300 -439300

3 39000 217451.1 -178451.1 Test Case 6

65 2370000 528386.1 1841613.9

2 39000 217451.1 -178451.1 Test Case 7

100 654000 972866.8 -318866.8

Test Case 8 3 659000 1205746 -546746

Table 14.14: Buffer update time

In Table 14.14 it can be clearly seen that there is a big difference between the

time a buffer is updated by the application and the time the buffer is checked for

transmission. A negative value indicates that a buffer was updated after the E-Ray

checked the buffer, while a positive value indicates the buffer was updated before this

time. All the times shown for the E-Ray chip to check a buffer assigned to dynamic

frames is relative to a best case scenario for the frame to be transmitted.

Table 14.15 shows the difference between when a buffer is updated from a

frame transmitted over the physical bus and stored in a buffer (Buffer Update Time) to

the time the software driver attempts to read the buffer (Request to Read Time). As with

the data in Table 14.14, there can be a large time difference when a message may wait

in a buffer (this is indicated by a positive difference in the Table 14.15). The negative

differences correspond a time where a buffer was accessed before the buffer was

updated during the current communication cycle.

MODEL CALIBRATION & VALIDATION

- 340 -

Buffer

Update

Frame

ID

Request to Read Time

(ns)

Buffer Update Time

(ns)

Difference

(ns)

6 448189.9 194000 254189.9 Test Case 1

66 543613 2199000 -1655387

6 528386.1 228000 300386.1 Test Case 2

155 698386.6 3865300 -3166913.4

6 530262.4 200000 330262.4 Test Case 3

66 655590.1 2257000 -1601409.9

6 530262.4 200000 330262.4 Test Case 4

126 655590.1 4357000 -3701409.9

6 225000 156000 69000 Test Case 5

8 611186.3608 225000 386186.3608

6 533186.064 228000 305186.064 Test Case 6

66 698386.6 2439000 -1740613.4

1 977666.8128 33000 58166.8128 Test Case 7

770 1142867 4817000 -3674133

Test Case 8 6 1210546 3566000 -2355454

Table 14.15: Buffer read time

By analysing this data it may be possible to improve the flow of data around the

system. For instance an analyst may discover that a message assigned to the third slot

can never be updated at the start of the current communication slot. It may be necessary

to then update the buffer at the end of a communication cycle to reduce the latency

experienced by a message before it transmitted. It may also be seen that a receive

message buffer should be read at a later time in the communication cycle to obtain the

most up-to-date data.

14.4.3.1 Buffer Utilisation Analysis

At the start of the model building process it was hoped that the buffer usage of

the system could be analysed. As static messages are generally time-critical messages

they should have assigned buffers that will always available to store data to or read data

from. Therefore the access time analysis (as in section 14.4.3) of a buffer is the most

efficient way to analyse the buffering ‘utilisation’. This also applies to dynamic

messages with assigned buffers. As these buffers will always be available to store data

MODEL CALIBRATION & VALIDATION

- 341 -

to or read data from, the access times of the buffers should be analysed to optimise the

system.

The FIFO is a dynamic system that can store a number of messages. In general

static messages will not be stored in the FIFO and so only dynamic messages should be

stored in the FIFO. However the FIFO rejection filters will store all messages with a

frame ID within a given range. This means that the FIFO could store data not utilised by

the node’s application. Therefore by analysing the utilisation of the FIFO, messages

may be assigned to a dedicated receive buffer to help achieve an optimal configuration.

No timing data for the FIFO could be obtained and as such no tests could be run.

However this could become an important aspect in both the real world and the

simulation model systems.

14.4.4 Application Layer Execution Time Analysis

The model output was again analysed for useful information. It was seen that

length of time a message spends in the software driver stage was a significant part of the

overall data flow. The application layer must wait for the software driver to complete its

operation before more it can execute another instruction. As the application layer should

be synchronised to the communication cycle the amount of time the application can

execute for is limited before it must restart the task. If it is known how much time is

allotted to the software driver, the remaining time can then be assigned to other

operations such as data processing. Table 14.16 shows the percentage of the

communication cycle that the application layer has to wait for the software driver to

perform all its tasks.

MODEL CALIBRATION & VALIDATION

- 342 -

Cycle Length Percentage (%) Test

Case

Total Software Driver

Time (Real World)

(ns)

Total Software

Driver Time

(Model) (ns)

Real World Model

1 822325 721259.1 16.45 14.43

2 946925 876032.7 18.4 17.52

3 947000 873109 18.94 17.46

4 946925 873109 9.56 8.81

5 863100 828705.2608 287.70 276.24

6 737525 876032.664 16.94 20.12

7 1735000 1759114.213 10.86 11.01

8 2426175 2525912.631 44.86 46.71

Table 14.16: Total software driver times

As can be seen from Table 14.16 a large amount of time may be spent by the

application layer waiting for the software drive to complete all the tasks. In test case 5

the percentage is almost 300%, indicating that the application layer could not run in one

communication cycle. This could mean that the task may need to be split over a number

of nodes. Likewise for test case 8, there is almost half the execution time is taken over

by the software drive passing information between the host MCU and the E-Ray

communications controller. The remaining time may be insufficient to process all the

data during one communication cycle.

14.4.5 Validation Data with Random Number Generator

The function of the physical bus layer was to generate a set of frames that

simulate the traffic on the FlexRay network. The calibration and validation stages, as

described in chapters 13 and 14, required that the physical bus subsystem of the model

to be set up to mimic the two node real world system that was implemented in W.I.T. by

removing the random nature of the physical bus subsystems frame generation. This

meant that the operation of the physical bus could not be fully validated over these tests.

To achieve a validation of the physical bus layer it was necessary to implement

the same validation test cases with the random element reintroduced. The physical bus

subsystem data was analysed and then compared to the desired outcome. For each test

case the physical bus generated a random set of frames from the physical bus that were

either accepted or rejected by the node. This was the desired operation of the physical

MODEL CALIBRATION & VALIDATION

- 343 -

bus subsystem. This would mean a systems analyst could apply a FlexRay network

frame pattern to the physical bus subsystem and a reasonable sent of frames would then

be produced by the simulation model. This ultimately would allow an analyst achieve a

good insight into the optimal timing for dynamic frames buffer access.

14.5 Conclusion

By following the steps as outlined in this chapter, chapter 14, the model was

tested against a real world system. To ensure the model was an accurate representation

of the system under investigation, a real world data set was obtained from the real world

system. The model was run with the new test case constraints also applied. The timing

of the system was then checked against the real world system data. A number of frames

were not passed to the physical bus by the simulation model communications controller.

Further analysis of the data showed that this was due to message buffers not being

updated in time for the frames assigned to the static segment. The dynamic frames that

were not transmitted were not transmitted as the dynamic slot was never reached during

the simulation run. Likewise for the frames received from the FlexRay bus model, some

frames were never stored. This was due to the physical bus not generating a frame

during the given slot. For each of the tests the behaviour of the simulation model was

therefore validated.

 ‘Validation is concerned with building the right model’ (Banks et. al. 2001,

p367). This is the ultimate test for the simulation model. The simulation model that was

built and tested as described in this thesis was to be used to analyse the flow of data

through a FlexRay based system. To be able to analyse the flow of data a number of

subsystems were implemented to logging timing of various entities as they pass through

the various model subsystems. In section 14.4.1.2 the buffer access times were analysed

based on the data obtained from the simulation model. From this the data showed that a

number of deadlines were missed to update buffers. This meant that a message would

have to wait for the next communication cycle to transmit the data. Also the application

driver may attempt to read data before new data is stored in the buffer. By analysing the

model data time constraints for the application layer can be calculated. By modifying

the application layer model to match the timing constraints the new configuration can be

tested. In section 14.4.1.3 the software driver execution time was analysed. This

MODEL CALIBRATION & VALIDATION

- 344 -

produced a metric that describes the total driver execution time over a communication

cycle length. This is the minimum time the application layer will execute an instruction

for. If this is known the remaining time can be assigned to calculations or system checks.

An optimum application configuration could then be developed and tested using the

model. The ability to extract and analyse this data therefore meets the purpose of the

simulation model. The right model has therefore been built.

From the behaviour of the simulation model and the model’s outputs there is a

strong suggestion that the correct model was built. However this stage of the model

development cycle has indicated a strong need for further calibration and validation of

the timing constraints of the model.

Figure 14.3 (Banks et. al. 2001, p16) displays the stages after the model is fully

validated and calibrated as working correctly to a desired level of accuracy. Only after a

simulation model has reached an acceptable level of accuracy can confidence be placed

in the simulation model to accurately reflect the real world system. From the

highlighted segments of Figure 14.3 it can be seen that experiments can then be

conducted using the model. The results of the system can then be analysed and

improvements for the simulation system noted. The simulation can then be run with

these implemented. If the test results produce the desired output then the real system can

then be implemented with these improvements incorporated.

MODEL CALIBRATION & VALIDATION

- 345 -

Figure 14.3: Final model steps

14.6 References

Banks, J., Carson, J. S., Nelson, B. L. and Nicol, D. M. (2001) Discrete-Event System

Simulation, New Jersey: Prentice Hall.

CONCLUSION

- 346 -

Section V:

Conclusion

CONCLUSION

- 347 -

Chapter 15 . Conclusion

15.1 Introduction

The aim of the research outlined in this thesis was to develop a method to

optimise a FlexRay node. This is to ease the transition to this new communication

protocol. The use of FlexRay could lead to an increase in efficiency and reliability of

the communication network in automobiles. In order to achieve the optimisation, it

was necessary to look at industry standard tools as well as the FlexRay protocol.

15.2 Research Summary

To achieve the optimisation of a FlexRay node a simulation model was

developed. This consisted of the application, software driver, communication

controller and the FlexRay physical bus layers. The individual model subsystems

were based on industry standard tools and systems such as the Bosch E-Ray

communications controller.

The communications controller was modeled on the Bosch E-Ray controller

and the software driver was based on the DECOMSYS FlexRay driver

‘COMMSTACK’. The application layer was based on sample software provided for

the Fujitsu SK-91F467-FlexRay development boards. It was also necessary to develop

a communications bus over which data could be sent and received. This layer needed

to generate a number of messages that the simulated node may accept. The physical

layer model must also accept messages from the simulated node. This model was then

tested for its suitability to perform the desired functionality.

CONCLUSION

- 348 -

15.3 Research Questions

At the start of the research a number of questions were asked. These research

questions will again be listed and then answers proposed.

15.3.1 Research Questions

1. What aspects of the FlexRay configuration most affects the performance and

design of distributed vehicle applications?

2. What guidelines should be used to configure the protocol stack for best

application performance?

3. What techniques can be used to optimise local buffer usage for specific

vehicle applications using a fixed global network message schedule?

15.3.2 Research Answers

1. FlexRay is a complicated protocol with many variables and constraints. The

main benefit of the FlexRay protocol is the combination of both time-triggered

and event-triggered segments in the same system. The event-triggered segment

allows the designer of a system to assign messages to different priorities for non

critical systems. The time-triggered segment allows a system to be implemented

with guaranteed known message latency. In order to maximise the effectiveness

of the protocol there are a number of areas that should be looked at. These areas

include the communication cycle and the distribution of messages to either static

or dynamic messages. The allocation of frames to static or dynamic messages

will have a big impact on the arrival of messages to nodes on the bus. From this

research it was also found that the application layer could also have a big impact

on the system. If the application cannot process frames arriving at a node in a

timely fashion, then errors may be created. These errors include calculations

based on old information or a message buffer being updated after it is checked

for transmission. A system designer should there analyse the flow of data from

the application layer. The optimal execution order of application layer tasks will

ensure deadlines are met throughout the entire node. All aspects need to be

considered and the longest delays of messages accounted for.

CONCLUSION

- 349 -

2. The protocol stack is a combination of the physical bus over which information

is transmitted, the communications controller implementation, software driver

and the application. To ensure that the entire stack performs correctly none of

these aspects can be ignored. When configuring the protocol stack the following

will apply:

• An application, running on a processor with insufficient resources, may

not execute in the desired manner. The application will be affected by

various different factors also and this must be accounted for. For instance,

the longest time seen in the flow of data around a node, during the

research, was that of the software driver execution delay. A system

designer must allow sufficient time to execute all tasks including the

software delay. In chapter 3 current FlexRay products currently on the

market were discussed. This included software modules to implement

FlexRay systems. If these are used it may be difficult to understand the

execution of the software and this could mean it may be difficult to meet

deadlines in the system. Analysis of the other system stack parameters

may therefore lead to the best configuration.

• The application will also be effected by the various factors relating to the

communication cycle. This was seen in the validation chapter where the

test case 5 application layer had insufficient time to execute in a single

communication cycle. It is up to the developer of the application to fit to

the predefined cycle length.

• It is necessary for the system designer to ensure the message buffers are

read before new information is received and stored over any unread data.

Likewise the application should be respond to messages in the required

time. Again from the validation chapter it was seen that a message may

reside in a receive buffer for a long period before an attempt to read the

data is performed. Optimising the message buffer access will ensure

efficient communication is achieved.

• Using cycle multiplexing techniques allows different information to be

sent during different communication cycles for a given slot. This could

be taken into account when designing the application and allow

CONCLUSION

- 350 -

messages of different generation periods to implemented on the same

node and network.

• The number of FlexRay networks implemented in a vehicle as well as

the number of nodes used should be investigated. By splitting the nodes

into different functional networks, an optimisation of the automotive

applications could be achieved. This could mean for example that all

body domain information could be sent over a separate network to any

engine or comfort system networks. The different networks could then be

connected if necessary using a number of ‘gateway’ nodes.

3. A simulation model of a communications system can be used to gain an insight

into how a system performs. The model could be setup to display a number of

different statistics. These could include the utilisation of a message buffer. For

instance, message IDn could be assigned a dedicated receive buffer in the

message RAM of a communications system. By observing the buffer usage it

could be discovered that this buffer is rarely updated. The analyst could then

decide that the message buffer could be assigned to message IDm and message

IDn could be stored in the FIFO.

The simulation model could also indicate that a message buffer is never read

by the application. This could mean that the application takes too long to

execute and can never reach a point when the application requests the message

buffers contents. This could be an indicator that the application needs to be

moved to another node with more resources. This will lead to an optimal

configuration can be achieved for the overall global communications system.

15.4 Research Conclusions

A way to analyse the flow of data through a FlexRay node has been developed

and presented in this thesis. By analysing the data flow thoroughly it is possible that

huge benefits could be obtained. The deadlines for messages can be analysed and any

potential bottlenecks accounted for. The flow of data can then be guaranteed from the

application layer down to actual transmission time.

CONCLUSION

- 351 -

Another big advantage of this system is the ability to analyse the buffer usage. It

may be found that the buffer allocation is insufficient or unnecessary. This could allow

messages to be swapped between a dedicated receive buffer and the FIFO to optimise

the system. The following extract from an e-mail received from the Elektrobit support-

team (Skorepa 2008) highlights the use of the FIFO in industry.

“FIFO Support is currently no official feature of Designer Pro. FIFO support exists in the

enginieering [sic] version of Designer Pro for BMW.

A minmal [sic] FIFO support for the full version of Designer Pro is on the feature list for

2009.”

From the e-mail it can be seen that there is a desire by industry to use FIFO message

buffers in FlexRay applications. Only proper analysis of this will therefore produce

optimal configurations.

In conclusion a simulation of the communications controller, used in a FlexRay

based system, could help increase optimisation and reduce development time and costs.

15.4.1 Observations

A number of observations have been made about the simulation model and its

testing procedure. These are as follows:

• The testing was split up into two different sections, verification and validation

testing. This ensured that the model and its individual subsystems performed as

intended. This testing procedure also meant that no biased conclusions would be

drawn from the validation section of the testing.

• The testing was designed to see if the model would accurately reflect a real

world system. These tests were therefore designed to include a wide range of

parameters including the maximum and minimum constraints that any system

may observe in a real-world system. The tests included two real-world examples

thus ensuring that realistic system constraints were included during the testing.

• It was noticed during testing that the model would never transmit during slot 1

of any communication cycle. However there was insufficient time to fix this

problem. It was noted that if anyone desired to test a system where the node was

to setup to transmit during slot 1 this could be worked around. The proposed

CONCLUSION

- 352 -

solution is that the tester simply needs to increase the frame IDs by one. This

should have minimal effect on the buffering or timing analysis of the

communications controller.

• SimEvents is a powerful tool. It is part of the MATLAB software program. This

provides SimEvents with powerful data analysis tools. This is a hung advantage

as data does not need to be exported to another program for analysis. However

the version used to develop the simulation model has a few bugs and problems.

Based on correspondence with Michael Clune (Clune 2008) it was discovered

that some problems associated with developing the message RAM was a well

known problem.

“While you have made good progress in creating, what amounts to admission

control or a semaphore circuit that controls the number of entities that can access

a region of the model, the access is presently limited to one 'in' path and one 'out'

path and the logic is fairly easy to track. The complexity will, most likely come

when there are multiple input entity paths and multiple output entity paths. With

this, the calculation complexity grows quite quickly. Once we recognized that,

we realized that we needed a pair of blocks to make the admission control more

scalable and easier to model. This is the motivation for the Entity Combiner and

Entity Splitter blocks. The current version of SimEvents contains these blocks

and some demos for using them effectively. Also, I am working on a demo that

models multiple CPUs accessing a common memory chip with access control

modeled [sic] by these blocks.”

The newest SimEvents version provides blocks that were mention in the e-mail

from Michael Clune. These blocks were developed to cut down on the

processing time. The blocks were also specifically designed to perform the

message handler access type of problem. The improvements would be a great

benefit to any other simulation model that was developed.

• The method that SimEvents uses to ensure the correct interleaving of blocks is to

use a single server (of zero service time) in parallel with a discrete event

subsystem block which would perform a calculation in zero simulation time.

The single server block creates a block where an entity can reside. When

modeling buffers this is not always desirable as this method may create, if the

developer is not careful, what could be seen as an extra buffer. This is especially

CONCLUSION

- 353 -

important in the case where the number of buffers is small i.e. one or two

buffers. Due care must therefore be taken to ensure that the system performs in

the correct manner.

• The time to setup all the model parameters can be time consuming. Also when

data is obtained from the model there can be a lot of information to analyse. To

improve the usefulness of the model a front end application could be developed.

This wasn’t done due to time constraints. However a front end application could

be used to import either a ’.chi’ file or the output configuration file from the

Designer Pro software. These files would contain most of the necessary

information to setup the model for execution. The front end application would

automate the setup process, thus greatly reducing the setup time, while also

eliminating any potential mistakes. The front end application could be used to

display the information obtainable from the simulation model in a user friendly

way. These two additions would greatly increase the effectiveness of the system.

15.5 Area of Further Study

There are a number of possible research opportunities in the area of FlexRay.

This is due to the relatively young age of the protocol. This is highlighted by the fact

that the FlexRay consortium has extended the consortium agreement past its initial

expiration date for an extra year. The new agreement is due to expire on the 31
st

December 2009 (FlexRay Consortium 2008). Possible research topics include:

• The application layer and its implementation. There are no set guidelines on how

the application should be implemented. In many instances that the author has

come across the application has been based on synchronizing to the

communications cycle. However there is no research that looks at implementing

the application as an event-triggered system based on interrupts. The effects of

implementing such a mixed event-triggered/time-triggered system are therefore

unknown for FlexRay systems. There is a possibility that a design methodology

could be developed to implement and optimise a wide variety of different

application types.

CONCLUSION

- 354 -

• When an event-triggered application is compared to a system where the

application is more closely synchronized to the communication cycle

observations would be made about the accuracy of each system. In turn this

could lead to in investigation into the hardware needed to achieve an optimal

system configuration. A separate standalone communications controller cannot

convey to the same accuracy, the current communication time of the system than

that of a system where the host and communications controller are integrated

into a single electronic chip. There is already a number of microcontrollers

available with built in FlexRay features (Fujitsu Microelectronics Europe 2006)

and this further highlights the need to conduct such a study.

• There are a number of implementations of FlexRay drivers. Some are basic

software drivers, while others provide increased functionality. There are also a

number of AUTOSAR FlexRay stacks. The effect on the timing of a system

could be greatly affected by the software driver implementation. It is therefore

possible that research could be conducted into the optimisation of this aspect of

FlexRay.

15.6 References

Berwanger, J., Schedl, A. and Peller, M (2004) BMW – First Series Cars with FlexRay

in 2006, Automotive electronics + systems Special Edition, Development Solutions 19

for FlexRay ECUs, 6-8.

Clune, M. (2008) RE: Denying access to entities until

a task is finished in SimEvents, email to Robert Shaw (rshaw@wit.ie), 8

December [accessed 15 Dec 2008].

Fujitsu Microelectronics Europe (2006) MB91F465XA Factsheet, Langen: Fujitsu

Microelectronics Europe GmbH.

CONCLUSION

- 355 -

Skorepa, P. (2008) Subject: I am attempting to set up a FIFO using Designer PRO

<Light> {HD - TicketID 2220LJJL}, email to Robert Shaw (rshaw@wit.ie), 16

December [accessed 16 Dec 2008].

FlexRay Consortium (2008) About FlexRay [online], available: http://flexray.com/

[accessed 9 December 2008].

BIBLIOGRAPHY

- 356 -

Section VI:

Bibliography

BIBLIOGRAPHY

- 357 -

Ademaj, A., Sivencrona, H., Bauer, G. and Torin, J. (2003) Evaluation of Fault

Handling of the Time-Triggered Architecture with Bus and Star Topology, Proceedings

of the 2003 International Conference on Dependable Systems and Networks, San

Francisco, California, June 22 - 25, 2003, IEEE Computer Society Washington, DC,

USA, 123-132.

Aidemark, J., Folkesson, P. and Karlsson, J. (2005) A Framework for Node-Level Fault

Tolerance in Distributed Real-Time Systems, Proceedings of the 2005 International

Conference on Dependable Systems and Networks, Yokohama, Japan, June 28 - July 1,

IEEE Computer Society Washington, DC, USA, 656 – 665.

Airtricity® Holdings Limited (2007) Kyoto Protocol [online], available:

http://www.airtricity.com/ireland/environment/kyoto_protocol/ [accessed 19

Novemeber 2007].

Altium Limited (2006) Connecting Memory and Peripheral Devices to a 32-bit

Processor v1.1, New South Wales, Australia.

Amar, J. G. (2006) The Monte Carlo Method in Science and Engineering, Computing in

Science and Engineering, 8(2), 9-19.

AUTOSAR GbR (2008) Specification of the FlexRay Driver version 2.2.1, Munich,

Germany.

AUTOSAR GbR (2008) Specification of the FlexRay Interface version 3.0.2, Munich,

Germany.

AUTOSAR GbR (2008) Specification of the FlexRay Network Management version

3.0.2, Munich, Germany.

AUTOSAR GbR (2008) Specification of the FlexRay Transceiver Driver version 1.2.2,

Munich, Germany.

BIBLIOGRAPHY

- 358 -

AUTOSAR GbR (2008) Specification of the FlexRay Transport Layer version 2.2.1,

Munich, Germany.

Awan, I., Yar, A. and Woodward, M.E. (2006) Analysis of Queueing Networks with

Blocking under Active Queue Management Scheme, Proceedings of the 12
th

International Conference on Parallel and Distributed Systems, Minneapolis, Minnesota,

USA, July 12-15 2006, IEEE Computer Society Washington, DC, USA, 61-68.

Barr, M. (1999) Programming Embedded Systems, California: O’Reilly & Associates,

Inc.

Bauer, D., Yaun, G., Carothers, C., Yuksel, M. and Kalyanaraman, M. (2004) A Case

Study in Meta-Simulation Design and Performance Analysis for Large-Scale Networks,

Ingalls, R.G., Rossetti, M.D., Smith, J.S. and Peters, B.A., eds., Proceedings of the 2004

Winter Simulation Conference, Washington D.C., USA, December 5-8 2004, , IEEE

Computer Society Washington, DC, USA, 206 – 214.

Beichl, I. and Sullivan, F. (2006) Guest Editors’ Introduction: Monte Carlo methods,

Computing in Science and Engineering, 8(2), 7-8.

Berwanger, J., Schedl, A. and Peller, M (2004) BMW- First Series Cars with FlexRay

in 2006, Automotive electronics + systems, Development Solutions 19 for FlexRay

ECUs, 6-8.

BMW Manufacturing Co. (2006) THE NEW BMW X5

Perfect Blend of Driving Dynamics, Functionality and Exclusivity [press release], 8

August, available:

http://www.bmwusfactory.com/media_center/releases/release.asp?intReleaseNum=209

&strYear=2006 [accessed 2 October 2007].

Böhm, S. (2005) H-RAFT – Heuristic Reachability Analysis for Fault Tolerance

Protocols Modelled in SDL, Proceedings of the 2005 International Conference on

BIBLIOGRAPHY

- 359 -

Dependable Systems and Networks, Yokohama, Japan, June 28 - July 1, IEEE

Computer Society Washington, DC, USA, 466 - 475.

Brey, B. (1998) Embedded Controllers: 80186, 80188, and 80386EX, New Jersey:

Prentice Hall.

Buchana, W. (1996) Applied PC Interfacing, Graphics and Interrupts, Harlow: Addison

Wesley.

Carley L. (2006) Controller Area Network (CAN) Diagnostics [online], available:

http://www.aa1car.com/library/can_systems.htm [accessed 12 June 2008].

Carlson, J., Lennvall, T. and Fohler, F. (2003) Enhancing Time Triggered Scheduling

with Value Based Overload Handling and Task Migration, in Proceedings of the Sixth

IEEE International Symposium on Object Oriented Real-Time Distributed Computing,

Hokkaido, Japan, May 14-16, 2003, IEEE Computer Society Washington, DC, USA,

121-128.

Chadwick, J. (2006) A Timing Analysis of Automotive Time-Triggered Systems,

unpublished thesis (M.Sc.), Waterford Institute of Technology.

Chung, L. Ma, W. and Cooper, K. (2006) Requirements Elicitation through Model-

Driven Evaluation of Software Components, Proceedings of the fifth International

Conference on Commercial-off-the-Shelf (Cots)-Based Software Systems, Bilbao,

Spain, February 7-11 2005, IEEE Computer Society Washington, DC, USA, 187-196.

Claesson, V., Ekelin, C. and Suri, N. (2003) The Even-Triggered and Time-Triggered

Medium-Access Methods, Proceedings of the Sixth IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, Hakodate, Hokkaido, Japan, May

14-16, 2003, IEEE Computer Society Washington, DC, USA, 1-4.

Corbet, J., Rubini, A. and Kroah-Hartman, G. (2005) Linux Device Drivers, Third

Edition, California: O’Reilly & Associates, Inc.

BIBLIOGRAPHY

- 360 -

de Mesquinta, M..A. and Hernandez, A.E. (2006) Discrete-Event Simulation of Queues

with Spreadsheets: A Teaching Case, Perrone, L.F., Wieland, P.F., Lui, J., Lawson,

B.G., Nicol, D.M. and Fujimoto, eds., Proceedings of the 2006 Winter Simulation

Conference, Monterey, California, USA, December 3-6, 2006, IEEE Computer

Society Washington, DC, USA, 2277 – 2283.

Demmeler, T. and Giusto, P. (2001) A Universal Communication Model for an

Automotive System Integration Platform, Proceedings of Design, Automation, and Test

in Europe, Munich, Germany, 13-16 March 2001, IEEE Computer Society Washington,

DC, USA, 47-54.

Denbigh, P. (1998) System Analysis & Signal Processing, Harlow: Addison Wesley.

Dennis, A., Wixom, B.H. and Roth, R.M. (2006) Systems Analysis & Design, New

Jersey: Wiley.

Dependable Computer Systems (2007) DESIGNER PRO 4.3.0 - DESIGNER PRO,

DESIGNER PRO <LIGHT> and DESIGNER PRO <SYSTEM> Document Version 2.2,

Wein, Austria.

Dependable Computer Systems (2007) DESIGNER PRO 4.3.0 - DESIGNER PRO,

DESIGNER PRO <LIGHT> and DESIGNER PRO <SYSTEM> Document Version 2.2,

Vienna, Austria.

Di Natale, M. (2006) Optimizing the Multitask Implementation of Multirate Simulink

Models, Proceedings of the Twelfth Real-Time and Embedded Technology and

Applications Symposium, San Jose, California , United States, April 4-7 2006, IEEE

Computer Society Washington, DC, USA,335 - 346

Ding, S., Murakami, N., Tomiyama, H. and Takada, H. (2005) A GA-Based Scheduling

Method for FlexRay Systems, Proceedings of the International Conference on

Embedded Software, Jersey City, New Jersey, USA, September 19-22 2005, IEEE

Computer Society Washington, DC, 110 – 113.

BIBLIOGRAPHY

- 361 -

Elmenreich, W., Bauer, G. and Kopetz, H. (2003) The Time-Triggered Paradigm,

Proceedings of the Workshop on Time-Triggered and Real-Time Communication,

Manno, Switzerland, December 12.

Epstein, M., Tiwari, A., Shi, L. and Murray, R. (2005) Estimation of Linear Stochastic

Systems Over a Queueing Network, Proceedings of the 2005 Systems Communications,

Montreal, Canada, August 14-17 2005, IEEE Computer Society Washington, DC, USA,

389-394.

Field, T., Harder, U. and Harrison, P. (2002) Network Traffic Behaviour in Switched

Ethernet Systems, Proceedings of the 10
th

 IEEE International Symposium on Modelling,

Analysis and Simulation of Computer and Telecommunications Systems, Fort Worth,

Texas, USA, October 11-16 2002, IEEE Computer Society Washington, DC, USA, 243

– 260.

Freescale Semiconductor (2008) Local Interconnect Network [online], available:

http://www.freescale.com/webapp/sps/site/application.jsp?nodeId=022050123D

[accessed 12 June 2008].

FrontRunner Computer Performance Consulting (2002) Eight Steps to a

Successful Performance Study [online], available: http://www.frontrunnercpc.com/

[accessed 28 May 2008].

Fujitsu (2008) Applications – Body and Comfort Electronics [online], available:

http://www.fujitsu.com/emea/services/industries/automotive/microelectronics/applicatio

ns.html [accessed 12 June 2008].

Fujitsu Limited (2007) FlexRay ASSP MB88121B User’s Manual, Japan.

Fujitsu Microelectronics Europe (2005) MB88121 Factsheet, Langen: Fujitsu

Microelectronics Europe GmbH.

BIBLIOGRAPHY

- 362 -

Fujitsu Microelectronics Europe (2006) FlexRay 32-bit Microcontroller FlexRay-

FPGA-EVA-KIT-369, Hardware Modification for Interrupt Usage Application Note,

Revision 1.0, Langen: Fujitsu Microelectronics Europe GmbH.

Fujitsu Microelectronics Europe (2006) FlexRay 32-bit Microcontroller FlexRay-

FPGA-EVA-KIT-369, Interrupt Usage On FlexRay CC Application Note, Revision 1.0,

Langen: Fujitsu Microelectronics Europe GmbH.

Fujitsu Microelectronics Europe (2006) MB91F467D Preliminary Datasheet, MB91460

Series, Revision 0.995, Langen: Fujitsu Microelectronics Europe GmbH.

Fujitsu Microelectronics Europe (2007) Fr Family 32-bit Microcontroller

Fujitsu Microelectronics Europe (2008) FlexRay 32-bit Microcontroller SK-91F467-

FlexRay, Using SPI on SK-91F467-FlexRay, Application Note, Langen, Germany.

Fujitsu Microelectronics Europe GmbH (2005) Automotive Solutions CMOS FlexRay

ASSP MB88121/MB88121A/MB88121B/MB88121C preliminary datasheet, Revision

1.0, Langen: Fujitsu Microelectronics Europe GmbH

Garmus, D. and Herron (1996) Measuring the Software Process- a Practical Guide to

Functional Measurement, New Jersey: Prentice Hall.

Han, C. and Shin, K.G. (1995) Real-Time Communication in Fieldbus Multiaccess

Networks, Proceedings of the Real-Time Technology and Applications Symposium,

Chicago, Illinois, USA, May 15-17, 1995, IEEE Computer Society Washington, DC,

86-95.

Harrison, P.G. and Patel, N.M. (1993) Performance Modelling of Communication

Networks and Computer Architecture, Wokingham: Addison-Wesley Publishing

Company.

BIBLIOGRAPHY

- 363 -

HW Server s.r.o.(2005) LIN - Local Interconnect Network [online], available: http://hw-

server.com/docs/lin.html [accessed 16 June 2008].

Jackman, B. (2008) Class Notes on OSEX/VDX, Waterford Institute of Technology.

Karami, J. and Salahoor, K. (2006) Design and Implementation of an Instructional

Foundation Fieldbus-Based Pilot Plant, Proceedings of the International Multi-

Conference on Computing in the Global Information Technology, Bucharest, Romania,

August 1-3, 2006, IEEE Computer Society Washington, DC, 32-36.

Konak, A., Smith, A. and Kulturel-Konak, S. (2004) New Event-Driven Sampling

Techniques for Network Reliability Estimation, Ingalls, R.G., Rossetti, M.D., Smith, J.S.

and Peters, B.A., eds., Proceedings of the 2004 Winter Simulation Conference,

Washington D.C., USA, December 5-8 2004, , IEEE Computer Society Washington,

DC, USA, 224-231.

Kopetz, H. (1998) The Time-Triggered Architecture, The First IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing, Kyoto, Japan, April

20 – 22, IEEE Computer Society Washington, DC, USA, 22-29.

Kopetz, H. (1998) The Time-Triggered Model of Computation, 19th IEEE Real-Time

Systems Symposium, Madrid, Spain, December 2-4, IEEE Computer

Society Washington, DC, USA, 168-177.

Lee, D. and Shi, J.D. (2004) Statistical Analysis for Simulating Schedule Networks,

Ingalls, R.G., Rossetti, M.D., Smith, J.S. and Peters, B.A., eds., Proceedings of the 2004

Winter Simulation Conference, Washington D.C., USA, December 5-8 2004, IEEE

Computer Society Washington, DC, USA, 1283 – 1289.

Lee, H.J., Kim, S.H., Park, H.S. and Park, B.S. (2008) Discrete Event System

Simulation Approach For A Nuclear Facility Operational Analysis, Proceedings of

Innovative Production Machines and Systems Conference, July1-14, Whittles

Publishing, Dunbeath, Caithness Scotland.

BIBLIOGRAPHY

- 364 -

Leen, G. and Heffernan, D. (2002) Expanding Automotive Electronic Systems,

Computer, 35(1), 88-93.

Leen, G. and Heffernan, D. (2006) Modeling and Verification of a Time-Triggered

Networking Protocol, Proceedings of the International Conference on Networking,

International Conference on Systems and International Conference on Mobile

Communications and Learning Technologies, April 23-29, Mauritius, IEEE Computer

Society Washington, DC, USA, 178-188.

Leppla G. (2008) Mapping Requirements to AUTOSAR Software Components,

unpublished thesis (M.Sc.), Waterford Institute of Technology.

Levi, S. and Agrawala, A.K. (1990) Real Time System Design, Singapore: McGraw-

Hill.

Lexico Publishing Group, LLC (2008) Dictionary.com [online], available:

http://dictionary.reference.com/ [accessed 4 June 2008].

Lv, J., Li, T. and Li, X. (2007) Network Traffic Prediction Algorithm and its Practical

Application in Real Network, 2007 IFIP Conference on Network and Parallel

Computing – Workshops, Dalian, China, September 18-21 2007, IEEE Computer

Society Washington, DC, USA, 512-517.

Lv, J., Li, X., Anh, T.Q. and Li, T. (2006) A New Algorithm for Network Traffic

Prediction, Proceedings of the 11
th

 IEEE Symposium on Computers and

Communications, Pula-Cagliari, Sardinia, Italy, June 26-29 2006, IEEE Computer

Society Washington, DC, USA, 1006 - 1012.

Maier, R., Bauer, G., Stöger, G. and Poledna, S. (2002) Time-Triggered Architecture: A

Consistent Computing Platform, IEEE Micro, 22(4), 36-45.

Massey, R. (2001) Introduction to Interrupts [online], available:

http://www.embedded.com/story/OEG20010518S0075 [accessed 29 July 2008].

BIBLIOGRAPHY

- 365 -

Mathworks Automotive Advisory Board (MAAB) (2007), Control Algorithm Modeling

Guidelines Using MATLAB, Simulink, and Stateflow Version 2.0.

MB91460 Series Start 91460.ASM Application Note, Langen, Germany.

Mueller, C. (2004) Addressing: the Root of All programming Evils, Proceedings of the

28th Annual International Computer Software and Applications Conference volume 2,

Hong Kong, China, September 28-30 2004 , IEEE Computer Society Washington, DC,

USA 14-15.

Murphy R. (2009) A Migration Framework from CAN to FlexRay, unpublished thesis

(M.Sc.), Waterford Institute of Technology.

Nadlerlinger, A., Pletzer, J., Pree, W. and Templ, J. (2007) Model Driven Development

of FlexRay-Baed Systems with the Timing Definition Language (TDL), Proceedings of

the Fourth International Workshop on Software Engineering for Automotive Systems,

Minneapolis, Minnesota, USA, May 20-26 2007, IEEE Computer Society Washington,

DC, USA.

Nossal, R. and Lang, R. (2002) Model-based System Development- an Approach to

building X-by-Wire Applications, IEEE Micro, 22(4), IEEE Computer

Society Washington, DC, USA, 56-63.

Okabe, N. (2005) Issues of Control Networks when Introducing IP, Proceedings of the

2005 Symposium on Applications and the Internet Workshop Trento, Italy, January 31

– February 4 2005, IEEE Computer Society Washington, DC, USA, 80-83.

Oldfield, J.V. and Dorf, R.C. (1995) Field Programmable Gate Arrays, Canada, John

Wiley & Sons, Inc.

Pree, W. and Templ, J.(2007) Forget about FlexRay, FlexRay Product Day, November

29, Fellbach Germany, Carl Hanser Verlag, Münch.

BIBLIOGRAPHY

- 366 -

Peterson, J.L. (1991) Petri Net Theory and the Modelling of Systems, New Jersey:

Prentice-Hall.

Phillips, C.L. and Nagle, H.T. (1995) Digital Control Systems Analysis and Design,

third edition, New Jersey: Prentice Hall.

Pont, M.J. (2001) Patterns for Time-Triggered Embedded Systems – Building Reliable

Applications with the 8051 Family of Microcontrollers, Harlow: Addison-Wesley.

PROFIBUS (2007) PROFIBUS PA Technology and Application, System Description,

Karlsruhe: PROFIBUS Nutzerorganisation e.V.

QNX Software Systems Ltd (2004) Media Orientated Systems Transport (MOST),

Canada: QNX Software Systems Ltd.

Ray, J. and Koopman, P. (2006) Efficient High hamming Distance CRCs for Embedded

Networks, Proceedings of the 2006 International Conference on Dependable Systems

and Networks, Philadelphia, Pennsylvania , USA, June 25-28, IEEE Computer

Society Washington, DC, USA, 3-12.

Real-Time Systems Group University of Technology Vienna (2002) Specification of the

TTP/A-Protocol V2.00, Vienna, Austria: Real-Time Systems Group.

Ripoll, I., Pisa, P., Abeni, L., Gai, P., Lanusse, A., Saez, S. and Privat, B. (2002) WP1 -

RTOS State of the Art Analysis [online], available:

http://www.mnis.fr/ocera_support/rtos/book1.html [accessed 11 June 2008].

Sangiovanni-Vincentelli, A. and Di Natale, M. (2007) Embedded Systems Design for

Automotive Applications, 40(10), 43-51.

Saski, H., Iwasaki, H. and Suda, T. (2004) Simulation of Information Propagation for

Vehicles in Physical Communication Network Models, Proceedings of the 2004

BIBLIOGRAPHY

- 367 -

International Symposium on Applications and the Internet Workshops, Tokyo, Japan,

January 26-30 2004, IEEE Computer Society Washington, DC, USA, 408-416.

Schedl, A. (2004) OSEKtime – Zeitgesteurte Erweitrung des OSEK Standards, Time-

Triggered Real-Time Operating Systems and Fault Tolerent Communication Layer for

Drive-by-Wire Applications.

Schober, C. (2004) Distributed Real-TimeApplications, unpublished thesis - diploma

thesis, Salzburg University of Applied Sciences and Technologies.

Scott, A.V. and Buchanan, W.J. (2000) Truly Distributed Control Systems using

Fieldbus Technology, Proceedings of the Seventh IEEE International Conference on

Engineering of Computer Based Systems, Edinburgh, Scotland, UK, April 3-7 2000,

IEEE Computer Society Washington, DC,165 – 173.

Seo, S.H., Park, J.H., Hwang, S.H. and Jeon, J.W. (2006) 3-D Car Simulator for testing

ECU Embedded Systems, Proceedings of SICE-ICASE International Joint Conference,

Bexco, Busan, Korea, October 18-21 2006, Computer Society Washington, DC, USA,

550-554.

Sharma, A.K. (1998) Programmable Logic Handbook, USA, McGraw-Hill.

Sparachmann, M. (2001) Automatic Generation of Parallel CRC Circuits, IEEE Design

& Test of Computers, 18(3), 108-114.

Tang, K.H., Sambamoorthy, M., Lin, P.K. and Kandiah, K. (1996) Chiller plant Control

and Efficiency Optimisation, CAN Newsletter, September 2006, 8-16.

Techmer, A. and Leiteinturier (2006) Implementing FlexRay on Silicon, Proceedings of

the International Conference on Networking, International Conference on Sysstems and

International Conference on Mobile Communications and Learning Technologies,

Piscataway, New Jersey, April 23-29 2006, IEEE Computer Society Washington, DC,

USA, 34-39.

BIBLIOGRAPHY

- 368 -

telos EDV Systementwicklung GmbH (2008) MOST Network [online], available:

http://www.telos.info/MOST-R-Network.31.0.html [accessed 16 June 2008].

The MathWorks, Inc. (2000) Creating Graphical User Interfaces version 1,

Massachusetts: The MathWorks, Inc.

The MathWorks, Inc. (2008) SimEvents® Release Notes, Massachusetts: The

MathWorks, Inc.

Tindell, K. and Clark, J. (1994) Holistic Schedulability for Distributed Hard Real-Time

Systems, Microprocessing and Microprogramming - Euromicro Journal (Special Issue

on Parallel Embedded Real-Time Systems) 40, 117-134.

Tracey, N. (2001) Comparing OSEK and OSEK Time.

Valdimarsson, E. (1995) Queueing Analysis for Shared Buffer Switching Networks for

Non-Uniform Traffic, Proceedings of the Fourteenth Annual Joint Conference of the

IEEE Computer and Communication Society, Boston, Massachusetts, USA, April 2-6,

1995, IEEE Computer Society Washington, DC, USA, 8-15.

Vincent, J-M. (2005) Perfect Simulation of Queueing Networks with Blocking and

Rejection, Proceedings of the 2005 Symposium on Applications and the internet

Workshops, Trento, Italy, January 31 – February 4 2005, IEEE Computer

Society Washington, DC, USA, 268-271.

Walrand, J. (1998) Communication Networks – A First Course, Second Edition,

America: WCB/ MacGraw-Hill.

Walsh, J. (2008) Construction Of Vehicle Deterioration Models Based On Driving Style

Analysis, unpublished thesis (M.Sc.), Waterford Institute of Technology.

Yin, Q., Jiang, Y., Jiang, S. and Yong Kong, P. (2002) Analysis on General

Stochastically Bounded Bursty Traffic for Communication Networks, Proceedings of

BIBLIOGRAPHY

- 369 -

the 27
th

 Annual IEEE Conference on Local Computer Networks, Tampa, FL, USA,

November 6-8 2002, IEEE Computer Society Washington, DC, USA, 141-149.

Zanoni, E. and Pavan, P. (1993) Improving the Reliability and Safety of Automotive

Electronics, IEEE Micro, 13(1), 30-48.

Zhao, W. and Xia, F. (2006) Design and Simulation of Function Block Based

Networked Control Systems, Proceedings of the First International Conference on

Innovative Computing, Information and Control, Beijing, China, August 30 - September

1 2006, IEEE Computer Society Washington, DC, USA, 287 – 291.

Zheng, W., Chong, C., Pinello, C., Kanajan, S. and Sangiovanni-Vincentelli (2005)

Extensible and Scalable Time Trigered Scheduling, in Proceedings of the Fifth

International Conference on Application of Concurrency to System Design, St Malo,

France, June 7-9, 2005, IEEE Computer Society Washington, DC, USA, 132-141.

APPENDICES

- I -

Section VII:

Appendices

APPENDIX A

- II -

Appendix A:

Model Colour Coding

APPENDIX A

- III -

The table below, Table A.1, shows the colour coding values for each element of the

model. This was used to distinguish signals from different parts of the model. The table

gives the RGB (Red, Green and Blue) values and the HSL (Hue, Saturation and

Luminescence) values as well as a sample. The RGB and HSL values are simple do

different ways of representing colour in the computers colour space. Both were given

only as reference. It is not necessary to have all this information to reproduce these

colours.

Layer Red Value Green Value Blue Value Hue Saturation Luminescence Sample

Top Layer

Physical Bus 251 253 181 41 227 204

Host 204 197 245 166 169 208

Physical Bus

Data In 182 126 90 16 93 128

Data Out 254 189 101 23 237 167

Host

Driver 126 157 237 149 181 171

Application 255 209 125 26 240 179

Communications Controller 163 241 174 86 177 190

Driver

To Application 255 209 125 26 240 179

To Communications Controller 163 241 174 86 177 190

Application

To Driver 126 157 237 149 181 171

Communications Controller

Data To/From Driver 126 157 237 149 181 171

Transmit Data 254 189 101 23 237 167

Receive Data 182 126 90 16 93 128

Synchronisation 252 139 142 239 228 184

Media Access Control 104 174 102 79 74 130

Frame and Symbol Processing 255 255 128 40 240 180

Protocol Operations Control 187 136 249 178 217 181

Controller Host Interface 149 191 173 103 59 160

Synchronisation

Static Segment 255 128 0 20 240 120

Dynamic Segment 0 209 209 120 240 98

Symbol & Network Idle Time 128 128 128 160 0 120

APPENDIX A

- IV -

Initialise 107 150 61 59 101 99

Cycle Count 97 189 252 136 231 164

Media Access Control

Data For Transmission 254 189 101 23 237 167

Frames In 187 136 249 178 217 181

Slots In 159 150 117 31 43 130

Frame and Symbol Processing

Received Data In 182 126 90 16 93 128

Received Data out 187 136 249 178 217 181

Cycle Count 97 189 252 136 231 164

Protocol Operations Control

Static Slots In 255 128 0 20 240 120

Mini Slots In 0 209 209 120 240 98

Cycle Entity 97 189 252 136 231 164

Data To/From Driver 126 157 237 149 181 171

Received Data 182 126 90 16 93 128

Transmit Data 254 189 101 23 237 167

Slots To Media Access Control 104 174 102 79 74 130

Global Time Unit 159 150 117 31 43 130

Message Handler 254 177 214 221 234 203

Received Message Routing 182 126 90 16 93 128

Controller Host Interface

Data To Driver 126 157 237 149 181 171

Data To Protocol Operations Control 187 136 249 178 217 181

Message Handler

Message RAM Initialisation 107 150 61 59 101 99

Message RAM 192 192 192 160 0 181

Requests In/Out 126 157 237 149 181 171

Receive Data 182 126 90 16 93 128

Transmit Data 254 189 101 23 237 167

Slots In 159 150 117 31 43 130

Global Time Unit

Slots To MAC 104 174 102 79 74 130

Slots To Message Handler 254 177 214 221 234 203

Static Slots 255 128 0 20 240 120

Mini Slots 0 209 209 120 240 98

Receieved Data 182 126 90 16 93 128

Overall Model

Record Data 165 209 254 140 235 197

Table A.1: Model colour coding

APPENDIX B

- V -

Appendix B:

Model Variables

& Attributes

APPENDIX B

- VI -

The tables below, Tables B.1-B.8, marked as input variables indicate values that must

be supplied. Tables marked as output are variables that are returned by the model for

analytical purposes.

Physical Bus

 Channle A Channel_A_Record

 Channle A Channel_A_Enable

 Channle A Byte_Prop_Delay

 Channle A Mini_Time

 Channle B Channel_B_Record

 Channle B Channel_B_Enable

 Channle B Byte_Prop_Delay

 Channle B Mini_Time

 Additional_Frames First_Dynamic

 Additional_Frames Static_Length

 Additional_Frames Channel_Generated_Frame_A

 Additional_Frames Latest_TX

 Additional_Frames Generate_Frame_A_Time

 Additional_Frames Generate_Frame_B_Time

 Additional_Frames Channel_Generated_Frame_B

 Additional_Frames Channel_A_Enable

 Additional_Frames Channel_B_Enable

 Additional_Frames CHA_Prop_Delay

 Additional_Frames Mini_Time

 Additional_Frames Num_Mini

 Additional_Frames Average_Dynamic

 Additional_Frames Variance

 Additional_Frames CHB_Prop_Delay

 Additional_Frames Frame_IDs

Table B.1: Physical Bus input workspace variables

FlexRay Node

 Application Application_Record

 Application Generate_Request_Time

 Application Num_Requests_Generated

 Application Average_Dynamic

 Application Channel_Response

 Application Variance

 Application Request_Generation

 Application First_Dynamic

 Application Channel_Generated_Frame

 Application Read_Length

 Application Request_Types

APPENDIX B

- VII -

 Application Frame_IDs

 Application Request_IDs

 Application Step_Time

 Application Byte_Processing_Time

 Application Request_Length

 Application Frame_ID_Response

 Application Last_Request

 Application Frame_Response

 Application Channel_Response

 Application Static_Length

 Driver Driver_Record

 Driver Driver_Delay

Table B.2: Node input workspace variables

Communications

Controller

 Frame_And_Symbol_Processing FSP_Record

 Frame_And_Symbol_Processing Cycle_Filtering_Indicator

 Frame_And_Symbol_Processing Channel_A_Slot_Filtering

 Frame_And_Symbol_Processing Channel_B_Slot_Filtering

 Frame_And_Symbol_Processing FSP_Delay

 Frame_And_Symbol_Processing Channel_A_FIFO_Slot_Filtering

 Frame_And_Symbol_Processing Channel_B_FIFO_Slot_Filtering

 Frame_And_Symbol_Processing Frame_IDs

 Synchronisation Static_Initialise_Complete

 Synchronisation Mini_Initialise_Complete

 Synchronisation Sync_Record

 Synchronisation Num_Static

 Synchronisation Static_Time

 Synchronisation Static_Segment_Time

 Synchronisation Dynamic_Segment_Time

 Synchronisation Num_Mini

 Synchronisation Mini_Time

 Synchronisation Symbol_NIT_Time

 Controller_Host_Interface CHI_Record

 Controller_Host_Interface IBF_Delay

 Controller_Host_Interface OBF_Delay

 Media_Access_Control MAC_Record

 Media_Access_Control MAC_Delay

Table B.3: Communications controller input workspace variables

APPENDIX B

- VIII -

Protocol

Operations

Control

 Protocol_Operations_Control POC_Record

 Global_Time_Unit Last_Dynamic_Slot

 Global_Time_Unit Last_Static_Slot

 Global_Time_Unit Num_Mini

 Global_Time_Unit Symbol_NIT_Time

 Global_Time_Unit Mini_Time

 Message_Handler Message_Init

 Message_Handler Finished_RAM_Init

 Message_Handler MSG_Handler_Record

 Message_Handler Message_RAM_Delay

 Message_RAM Num_RAM_Locations

 Message_RAM RAM_Update_Time

 Message_RAM Single_Shot_Indicator

 FIFO Num_FIFO_Locations

 FIFO FIFO_Update_Delay

 FIFO FIFO_Read_Delay

Table B.4: Protocol operations control input workspace variables

Model Section Model Block Output Variables

Physical Bus

 Additional_Frames Slot_Num_Generated_Frames_A

 Additional_Frames Remaining_Generated_Frames_Mini_A

 Additional_Frames Cycle_Count_Generated_Frames_A

 Additional_Frames Slot_Num_Generated_Frames_B

 Additional_Frames Remaining_Generated_Frames_Mini_B

 Additional_Frames Cycle_Count_Generated_Frames_B

 Additional_Frames Frame_ID_Generated_Frames_A

 Additional_Frames Cycle_Code_Generated_Frames_A

 Additional_Frames Channel_Config_Generated_Frames_A

 Additional_Frames Data_Generated_Frames_A

 Additional_Frames Frame_ID_Generated_Frames_B

 Additional_Frames Cycle_Code_Generated_Frames_B

 Additional_Frames Channel_Config_Generated_Frames_B

 Additional_Frames Data_Generated_Frames_B

 Channel_A Frame_ID_Channel_A_In

 Channel_A Cycle_Code_A_In

 Channel_A Channel_Config_A_In

 Channel_A Data_A_In

 Channel_B Frame_ID_Channel_B_In

 Channel_B Cycle_Code_B_In

APPENDIX B

- IX -

 Channel_B Channel_Config_B_In

 Channel_B Data_B_In

 Channel_A Frame_ID_Channel_A_Out

 Channel_A Cycle_Code_A_Out

 Channel_A Channel_Config_A_Out

 Channel_A Data_A_Out

 Channel_B Frame_ID_Channel_B_Out

 Channel_B Cycle_Code_B_Out

 Channel_B Channel_Config_B_Out

 Channel_B Data_B_Out

 Channel_A Slot_Num_A

 Channel_A Remaining_Mini_A

 Channel_A Cycle_Count_A

 Channel_B Slot_Num_B

 Channel_B Remaining_Mini_B

 Channel_B Cycle_Count_B

Table B.5: Physical Bus output workspace variables

Model Section Model Block Variable

FlexRay Node

 Application Cycle_Num_Application_In

 Application Request_Type_Application_In

 Application Frame_ID_Application_In

 Application Data_Driver_Application_In

 Application Channel_Config_Application_In

 Application Request_Type_Application_Out

 Application Frame_ID_Application_Out

 Application Data_Driver_Application_Out

 Application Channel_Config_Application_Out

 Driver Request_Type_Driver_To_ERay_In

 Driver Frame_ID_Driver_To_ERay_In

 Driver Data_Driver_To_ERay_In

 Driver Channel_Config_Driver_To_ERay_In

 Driver Request_Type_Driver_To_ERay_Out

 Driver Frame_ID_Driver_To_ERay_Out

 Driver Data_Driver_To_ERay_Out

 Driver Channel_Config_Driver_To_ERay_Out

 Driver Request_Type_ERay_To_Driver_In

 Driver Frame_ID_ERay_To_Driver_In

 Driver Data_ERay_To_Driver_In

 Driver Channel_ERay_To_Driver_In

 Driver Request_Type_ERay_To_Driver_Out

 Driver Frame_ID_ERay_To_Driver_Out

 Driver Data_ERay_To_Driver_Out

 Driver Channel_ERay_To_Driver_Out

 Driver Num_CC_Driver

APPENDIX B

- X -

 Driver Average_Wait_CC_Driver

 Driver Average_CC_Driver_Length

 Driver Num_Driver_CC

 Driver Average_Wait_Driver_CC

 Driver Average_Driver_CC_Length

Table B.6: Node output workspace variables

Model Section Model Block Variable

Communications Controller

 Frame_And_Symbol_Processing Frame_ID_FSP_A_In

 Frame_And_Symbol_Processing Cycle_Code__FSP_A_In

 Frame_And_Symbol_Processing Channel_Config__FSP_A_In

 Frame_And_Symbol_Processing Data_FSP_A_In

 Frame_And_Symbol_Processing Frame_ID_FSP_B_In

 Frame_And_Symbol_Processing Cycle_Code__FSP_B_In

 Frame_And_Symbol_Processing Channel_Config__FSP_B_In

 Frame_And_Symbol_Processing Data_FSP_B_In

 Frame_And_Symbol_Processing Slot_Num_FSP_A_In

 Frame_And_Symbol_Processing Remaining_Mini_FSP_A_In

 Frame_And_Symbol_Processing Cycle_Count_FSP_A_In

 Frame_And_Symbol_Processing Slot_Num_FSP_B_In

 Frame_And_Symbol_Processing Remaining_Mini_FSP_B_In

 Frame_And_Symbol_Processing Cycle_Count_FSP_B_In

 Frame_And_Symbol_Processing Slot_Num_FSP_A_Out

 Frame_And_Symbol_Processing Remaining_Mini_FSP_A_Out

 Frame_And_Symbol_Processing Cycle_Count_FSP_A_Out

 Frame_And_Symbol_Processing Slot_Num_FSP_B_Out

 Frame_And_Symbol_Processing Remaining_Mini_FSP_B_Out

 Frame_And_Symbol_Processing Cycle_Count_FSP_B_Out

 Frame_And_Symbol_Processing Frame_ID_Filter_Frames_A_In

 Frame_And_Symbol_Processing Cycle_Code_Filter_Frames_A_In

 Frame_And_Symbol_Processing Channel_Config_Filter_Frames_A_In

 Frame_And_Symbol_Processing Data_Filter_Frames_A_In

 Frame_And_Symbol_Processing Frame_ID_Filter_Frames_B_In

 Frame_And_Symbol_Processing Cycle_Code_Filter_Frames_B_In

 Frame_And_Symbol_Processing Channel_Config_Filter_Frames_B_In

 Frame_And_Symbol_Processing Data_Filter_Frames_B_In

 Frame_And_Symbol_Processing Frame_ID_Filtered_Frames_A_Out

 Frame_And_Symbol_Processing Cycle_Code_Filtered_Frames_A_Out

 Frame_And_Symbol_Processing Channel_Config_Filtered_Frames_A_Out

 Frame_And_Symbol_Processing Data_Filtered_Frames_A_Out

 Frame_And_Symbol_Processing Frame_ID_Filtered_Frames_B_Out

 Frame_And_Symbol_Processing Cycle_Code_Filtered_Frames_B_Out

 Frame_And_Symbol_Processing Channel_Config_Filtered_Frames_B_Out

 Frame_And_Symbol_Processing Data_Filtered_Frames_B_Out

 Frame_And_Symbol_Processing Frame_ID_FIFO_Filter_Frames_A_In

 Frame_And_Symbol_Processing Cycle_Code_FIFO_Filter_Frames_A_In

APPENDIX B

- XI -

 Frame_And_Symbol_Processing Channel_Config_FIFO_Filter_Frames_A_In

 Frame_And_Symbol_Processing Data_FIFO_Filter_Frames_A_In

 Frame_And_Symbol_Processing Frame_ID_FIFO_Filter_Frames_B_In

 Frame_And_Symbol_Processing Cycle_Code_FIFO_Filter_Frames_B_In

 Frame_And_Symbol_Processing Channel_Config_FIFO_Filter_Frames_B_In

 Frame_And_Symbol_Processing Data_FIFO_Filter_Frames_B_In

 Frame_And_Symbol_Processing Frame_ID_FIFO_Filter_Frames_A_Out

 Frame_And_Symbol_Processing Cycle_Code_FIFO_Filter_Frames_A_Out

 Frame_And_Symbol_Processing Channel_Config_FIFO_Filter_Frames_A_Out

 Frame_And_Symbol_Processing Data_FIFO_Filter_Frames_A_Out

 Frame_And_Symbol_Processing Frame_ID_FIFO_Filter_Frames_B_Out

 Frame_And_Symbol_Processing Cycle_Code_FIFO_Filter_Frames_B_Out

 Frame_And_Symbol_Processing Channel_Config_FIFO_Filter_Frames_B_Out

 Frame_And_Symbol_Processing Data_FIFO_Filter_Frames_B_Out

 Frame_And_Symbol_Processing Frame_ID_Rejected_Frames_A

 Frame_And_Symbol_Processing Cycle_Code_Rejected_Frames_A

 Frame_And_Symbol_Processing Channel_Config_Rejected_Frames_A

 Frame_And_Symbol_Processing Data_Rejected_Frames_A

 Frame_And_Symbol_Processing Frame_ID_Rejected_Frames_B

 Frame_And_Symbol_Processing Cycle_Code_Rejected_Frames_B

 Frame_And_Symbol_Processing Channel_Config_Rejected_Frames_B

 Frame_And_Symbol_Processing Data_Rejected_Frames_B

 Synchronisation Slot_Num_Generated

 Synchronisation Cycle_Num_Generated

 Synchronisation Mini_Num_Generated_A

 Synchronisation Mini_Num_Generated_B

 Controller_Host_Interface Request_Type_Driver_CHI_In

 Controller_Host_Interface Frame_ID_Driver_CHI_In

 Controller_Host_Interface Data_Driver_Driver_CHI_In

 Controller_Host_Interface Channel_Config_Driver_CHI_In

 Controller_Host_Interface Request_Type_Driver_CHI_Out

 Controller_Host_Interface Frame_ID_Driver_CHI_Out

 Controller_Host_Interface Data_Driver_Driver_CHI_Out

 Controller_Host_Interface Channel_Config_Driver_CHI_Out

 Controller_Host_Interface Request_Type_CHI_Driver_In

 Controller_Host_Interface Frame_ID_CHI_DriverI_In

 Controller_Host_Interface Data_Driver_Driver_CHI_In

 Controller_Host_Interface Channel_Config_CHI_Driver_In

 Controller_Host_Interface Request_Type_CHI_DriverI_Out

 Controller_Host_Interface Frame_ID_CHI_Driver_Out

 Controller_Host_Interface Data_Driver_CHI_Driver_Out

 Controller_Host_Interface Channel_Config_CHI_DriverI_Out

 Media_Access_Control Frame_ID_MAC_A_In

 Media_Access_Control Cycle_Code_MAC_A_In

APPENDIX B

- XII -

 Media_Access_Control Channel_Config_MAC_A_In

 Media_Access_Control Data_MAC_A_In

 Media_Access_Control Frame_ID_MAC_B_In

 Media_Access_Control Cycle_Code_MAC_B_In

 Media_Access_Control Channel_Config_MAC_B_In

 Media_Access_Control Data_MAC_B_In

 Media_Access_Control Frame_ID_MAC_A_Out

 Media_Access_Control Cycle_Code_MAC_A_Out

 Media_Access_Control Channel_Config_MAC_A_Out

 Media_Access_Control Data_MAC_A_Out

 Media_Access_Control Frame_ID_MAC_B_Out

 Media_Access_Control Cycle_Code_MAC_B_Out

 Media_Access_Control Channel_Config_MAC_B_Out

 Media_Access_Control Data_MAC_B_Out

 Media_Access_Control Slot_Num_MAC_A

 Media_Access_Control Remaining_Mini_MAC_A

 Media_Access_Control Cycle_Count_MAC_A

 Media_Access_Control Slot_Num_MAC_B

 Media_Access_Control Remaining_Mini_MAC_B

 Media_Access_Control Cycle_Count_MAC_B

Table B.7: Communications controller output workspace variables

Model Section Model Block Variable

Protocol Operations Control

 Protocol_Operations_Control Cycle_Num_POC

 Protocol_Operations_Control Slot_Num_POC

 Protocol_Operations_Control Mini_Num_POC_A_In

 Protocol_Operations_Control Mini_Num_POC_B_In

 Protocol_Operations_Control Frame_ID_Frame_POC_A_In

 Protocol_Operations_Control Cycle_Code_Frame_POC_A_In

 Protocol_Operations_Control Channel_Config_Frame_POC_A_In

 Protocol_Operations_Control Data_Frame_POC_A_In

 Protocol_Operations_Control Frame_ID_Frame_POC_B_In

 Protocol_Operations_Control Cycle_Code_Frame_POC_B_In

 Protocol_Operations_Control Channel_Config_Frame_POC_B_In

 Protocol_Operations_Control Data_Frame_POC_B_In

 Protocol_Operations_Control Frame_ID_FIFO_Frame_POC_A_In

 Protocol_Operations_Control Cycle_Code_FIFO_Frame_POC_A_In

 Protocol_Operations_Control Channel_Config_FIFO_Frame_POC_A_In

 Protocol_Operations_Control Data_FIFO_Frame_POC_A_In

 Protocol_Operations_Control Frame_ID_FIFO_Frame_POC_B_In

 Protocol_Operations_Control Cycle_Code_FIFO_Frame_POC_B_In

 Protocol_Operations_Control Channel_Config_FIFO_Frame_POC_B_In

 Protocol_Operations_Control Data_FIFO_Frame_POC_B_In

 Protocol_Operations_Control Request_Type_POC_In

 Protocol_Operations_Control Frame_ID_POC_In

APPENDIX B

- XIII -

 Protocol_Operations_Control Data_Driver_POC_In

 Protocol_Operations_Control Channel_Config_POC_In

 Protocol_Operations_Control Slot_Num_POC_A

 Protocol_Operations_Control Remaining_Mini_POC_A

 Protocol_Operations_Control Cycle_Count_POC_A

 Protocol_Operations_Control Slot_Num_POC_B

 Protocol_Operations_Control Remaining_Mini_POC_B

 Protocol_Operations_Control Cycle_Count_POC_B

 Protocol_Operations_Control Frame_ID_Frame_POC_A_Out

 Protocol_Operations_Control Cycle_Code_Frame_POC_A_Out

 Protocol_Operations_Control Channel_Config_Frame_POC_A_Out

 Protocol_Operations_Control Data_Frame_POC_A_Out

 Protocol_Operations_Control Frame_ID_Frame_POC_B_Out

 Protocol_Operations_Control Cycle_Code_Frame_POC_B_Out

 Protocol_Operations_Control Channel_Config_Frame_POC_B_Out

 Protocol_Operations_Control Data_Frame_POC_B_Out

 Protocol_Operations_Control Request_Type_POC_Out

 Protocol_Operations_Control Frame_ID_POC_Out

 Protocol_Operations_Control Data_Driver_POC_Out

 Protocol_Operations_Control Channel_Config_POC_Out

 Global_Time_Unit Slot_Num_GTU

 Global_Time_Unit Mini_Num_GTU_A_In

 Global_Time_Unit Mini_Num_GTU_B_In

 Global_Time_Unit Cycle_Num_GTU

 Global_Time_Unit Slot_Num_Bus_Slot_A_GTU_In

 Global_Time_Unit Slot_Num_Bus_Slot_B_GTU_In

 Global_Time_Unit Slot_Num_GTU_A

 Global_Time_Unit Remaining_Mini_GTU_A

 Global_Time_Unit Cycle_Count_GTU_A

 Global_Time_Unit Slot_Num_GTU_B

 Global_Time_Unit Remaining_Mini_GTU_B

 Global_Time_Unit Cycle_Count_GTU_B

 Message_Handler Request_Type_MSG_Handler_A_In

 Message_Handler Frame_ID_MSG_Handler_A_In

 Message_Handler Data_Driver_MSG_Handler_A_In

 Message_Handler Channel_Config_MSG_Handler_A_In

 Message_Handler Request_Type_MSG_Handler_B_In

 Message_Handler Frame_ID_MSG_Handler_B_In

 Message_Handler Data_Driver_MSG_Handler_B_In

 Message_Handler Channel_Config_MSG_Handler_B_In

 Message_Handler Request_Type_MSG_Handler_In

 Message_Handler Frame_ID_MSG_Handler_In

 Message_Handler Data_Driver_MSG_Handler_In

 Message_Handler Channel_Config_MSG_Handler_In

 Message_Handler Request_Type_FIFO_Frame_MSG_Handler_A_In

APPENDIX B

- XIV -

 Message_Handler Frame_ID_FIFO_Frame_MSG_Handler_A_In

 Message_Handler Data_Driver_FIFO_Frame_MSG_Handler_A_In

 Message_Handler Channel_Config_FIFO_Frame_MSG_Handler_A_In

 Message_Handler Request_Type_FIFO_Frame_MSG_Handler_B_In

 Message_Handler Frame_ID_FIFO_Frame_MSG_Handler_B_In

 Message_Handler Data_Driver_FIFO_Frame_MSG_Handler_B_In

 Message_Handler Channel_Config_FIFO_Frame_MSG_Handler_B_In

 Message_Handler Frame_ID_MSG_Handler_A_Out

 Message_Handler Cycle_Code_MSG_Handler_A_Out

 Message_Handler Channel_Config_MSG_Handler_A_Out

 Message_Handler Data_MSG_Handler_A_Out

 Message_Handler Frame_ID_MSG_Handler_B_Out

 Message_Handler Cycle_Code_MSG_Handler_B_Out

 Message_Handler Channel_Config_MSG_Handler_B_Out

 Message_Handler Data_MSG_Handler_B_Out

 Message_Handler Request_Type_MSG_Handler_Out

 Message_Handler Frame_ID_MSG_Handler_Out

 Message_Handler Data_Driver_MSG_Handler_Out

 Message_Handler Channel_Config_MSG_Handler_Out

 Message_RAM Request_Type_RAM_In

 Message_RAM Frame_ID_RAM_In

 Message_RAM Data_Driver_RAM_In

 Message_RAM Channel_Config_RAM_In

 Message_RAM Request_Type_RAM_Out

 Message_RAM Frame_ID_RAM_Out

 Message_RAM Data_Driver_RAM_Out

 Message_RAM Channel_Config_RAM_Out

 Message_RAM Request_Type_FIFO_In

 Message_RAM Frame_ID_FIFO_In

 Message_RAM Data_Driver_FIFO_In

 Message_RAM Channel_Config_FIFO_In

 Message_RAM Slot_Num_RAM

 Message_RAM Remaining_Mini_RAM

 Message_RAM Cycle_Count_RAM

 Message_RAM Frame_ID_RAM_Out

 Message_RAM Cycle_Code_RAM_Out

 Message_RAM Channel_Config_RAM_Out

 Message_RAM Data_RAM_Out

 Message_RAM Num_RAM_Messages

 Message_RAM Average_Wait_Time_RAM

 Message_RAM Average_RAM_Queue_Length

 FIFO Num_FIFO_Messages

 FIFO Average_Wait_Time_FIFO

 FIFO Average_FIFO_Queue_Length

Table B.8: Protocol operations control output workspace variables

APPENDIX B

- XV -

The following table, Table B.9, describes the attributes of the various types of

entities used within the model.

Type Attribute

Attribute

Number Notes

Slot

 Slot_No 1

Remaining_M

ini 2 Used to calculate the remaining transmission time in the physical bus.

 Cycle_Count 3

Request

s

 Request_Type 1

1 = get frame for transmission. 2 = get frame for the host. 3 = update frame attributes. 4 = read from

the FIFO

 Frame_ID 2 The frame to be updated, transmitted or sent to the host.

 Data 3 The update data if any.

Channel_Conf

ig 4 The channel the message is to transmitted if necessary.

 TX_Type 1

1 = The frame should be transmitted. This is used when updating a message buffer for transmission. 2

= the frame was received and should not be transmitted.

Frames

 Frame_ID 1

 Cycle_Code 2 Used for filtering if desired.

Channel_Conf

ig 3

1 = transmit/receive on A. 2 = transmit/receive on B. 3 = transmit/receive on A & B. This is the same

for Request Entities.

 Data 4

 TX_Type 1 1 = The frame should be transmitted. 2 = the frame was received and should not be transmitted.

Static

Slots

 Slot_Number 1

Remaining_M

ini 2

Mini

Slots

Mini_Slot_Nu

mber 1

Cycle

Count

Cycle_Count_

Number 1

Table B.9: Entity attributes

APPENDIX C

- XVI -

Appendix C:

The Model

APPENDIX C

- XVII -

Source Code

APPENDIX D

- XVIII -

Appendix D:

Technical Papers

APPENDIX D

- XIX -

2008 IEEE International Symposium on

Industrial Electronics,

30 June - 2 July 2008,

Cambridge, United Kingdom

‘An Introduction to FlexRay as an Industrial Network’

Robert Shaw, Brendan Jackman

APPENDIX D

- XX -

An Introduction to FlexRay as an Industrial

Network

Robert Shaw, Brendan Jackman

Automotive Control Group,

Waterford Institute of Technology,

Waterford,

Ireland.
E-mail: rshaw@wit.ie, bjackman@wit.ie

Website: http://www.wit.ie/automotive

Abstract

The FlexRay Protocol was developed by the FlexRay

consortium which was started when BMW and

DaimlerChrysler worked together to create a new

network scheme that would suit their current and
future needs. They were soon joined by other

companies such as Bosch and Phillips [1]. FlexRay is

set to become widely used in the automotive industry

where it will replace or support existing networking

schemes such as CAN. It has already been

implemented by BMW in the 2006 X5 [2]. This paper

will introduce the key features of the FlexRay

protocol and where relevant it will be compared it to

CAN and the existing Fieldbus technologies such as

PROFIBUS and Foundation Fieldbus.

1. Introduction

 The core concept of the FlexRay protocol

is a time triggered approach to network

communications. This is a different approach to

some earlier successful networking schemes. For

instance CAN (controller area network) was first

developed for use in the automotive industry but

was found to be useful in other areas such as

industrial control applications [3]. The CAN

networking scheme uses a priority driven bus

arbitration system. This means that a message with

a higher priority message ID will be given access

to the network if a lower priority message is also

looking for access to the bus. The resulting

message transmission delays can lead to problems

for safety systems and because of this a TDMA

(time division multiple access) method was chosen

for the FlexRay protocol [4].

The TDMA scheme used by FlexRay has

some similarities to Fieldbus communication

systems. With the Foundation Fieldbus a repeating

communication cycle determines which node may

transmit using a master-slave networking scheme.

This ensures that only one node may have access

to the physical bus at any one time [5][6][7].

2. FlexRay in Automation

FlexRay is an option for upgrading

existing network systems using CAN in the

automotive industry as well as other industrial

control applications. It could also be used for new

applications in industrial automation, where safety

and reliability in a work environment is of utmost

importance, due to its deterministic approach to

communication of the messages. This is helped by

the use of a two channel topology where each

channel is able to work independently, but the two

channels can also be used to communicate the

same information and as such has built in

redundancy.

 The FlexRay protocol has been designed

to carry information at a rate of 10Mbits/s over

each of its two channels while CAN has a data rate

of 1Mbit/s [3][8]. This means that an equivalent

data rate of 20Mbits/s can be achieved which is

twenty times that of a CAN based system. The

high bit rate of FlexRay systems makes it suitable

as the basis of a network backbone even where

CAN is already in use.

A Fieldbus network has a data rate of

around 31.5Kbits/s. When the data rate is

compared to that of FlexRay there emerges a view

that FlexRay, if used with an existing CAN system,

could take on a similar role of the HSE

communication role used in Foundation Fieldbus

[5][6][7].

3. Network Topology

The FlexRay protocol defines a two

channel network, channel A and channel B. A

node can be attached to one or both of these

channels. If a node is attached to a single channel

it does not matter if it is channel A or channel B.

The FlexRay protocol allows for various

bus topologies. These can be a point to point

connection, passive star, linear passive bus, active

star network, cascaded active stars, hybrid

APPENDIX D

- XXI -

topologies and dual channel topologies. The

FlexRay protocol will support hybrid topologies as

long as the limits of each topology which makes

up the hybrid topology (i.e. the star and bus

topologies) are not exceeded [8][9]. Fig 1 [8]

shows the possible connections in a dual channel

configuration. Other possibilities for the network

configuration are to have each channel connected

in a different way as shown in Fig 2 [8].

Fig 1. Dual channel configurations

Fig 2. Dual channel implemented as different network types

In Fig 2 channel A is implemented as a bus while

channel B is a star topology. The possible

combinations of FlexRay topologies make it a very

adaptive and flexible system which can be

designed to suit various applications.

4. FlexRay Hardware

Each node has a communication controller,

a host, a power supply unit and two bus drivers,

one for each channel. Fig 3 [8] shows the logical

connections of each element.

The host handles the applications of the

system while the FlexRay protocol is handled by

the communications controller. The bus driver is

used to read and write data to the physical medium

over which the data is transmitted. In sleep mode it

also has the ability to start the wakeup procedure if

it detects a wakeup symbol. The communications

controller will mainly handle the framing of data

and the checking of received data to ensure it was

uncorrupted before passing it to the host. The host

and communications controller share information

such as control information and payload data from

the host, while the communication controller relays

status information and data received. The host

interface to the bus driver allows it to change the

operation of the bus driver as well as read status

and error flags.

5. Media Access Control

 CAN uses a serial bus priority driven

networking scheme but allows for a time triggered

communications using a higher protocol such as

TTCAN [10]. This means that in a basic CAN

system if any two nodes wish to transmit data at

the same time, the message with the higher priority

can transmit while the other message must wait. In

contrast the FlexRay protocol uses a TDMA

approach and also allows for a node to send frames

in a dynamic way. To do this the protocol defines a

recurring cycle called the communications cycle.

This cycle has the same format and is of the same

time length each time it occurs and in the case of

FlexRay is divided into four sections: the static

segment, dynamic segment, the symbol window

and the network idle time. Fig 4 [8] shows a

breakdown of the communication into various

sections. Each section is then also broken down

into its different slots.

The communications protocol of Fieldbus

technologies operates in a very similar way to that

of FlexRay. However in Fieldbus technologies

there is one master node that controls the

scheduling of the transmission. In FlexRay each

node has its own view of the global time and will

only transmit in allocated slots; this means that the

network is not dependant on any one node to

maintain the communication schedule. The

Fieldbus configuration means that the network is

liable to fail if the master node fails. In Fieldbus

APPENDIX D

- XXII -

technologies however there is redundancy

designed into the devices. This reduces the

probability of an entire network failure [5]. In

section 6 the method that each FlexRay node uses

to determine the current time is outlined.

Fig 3. Logical connections

Fig 4. Communication cycle

5.1 TDMA

 In a TDMA system the communication

cycle is broken down into smaller time segments

referred to as slots. The duration of the slots in the

static segment are the same. The slots are assigned

to a given communication node so that in every

communication cycle only that node can transmit

at that time. It should be noted that FlexRay does

provide a cycle multiplexing system so that

information can be sent out every odd cycle for

example. This allows another message to be sent in

that slot during the even communications cycles

and again this message would also be set to that

slot in that multiple of the communication cycles.

Also a node may get more than one slot per

segment depending on the setup of the system and

the need to send different messages.

 This approach to message arbitration

leads to a very deterministic networking scheme

making it very suitable for monitoring and safety

systems applications.

5.2 Static Segment

 The static segment is broken down into

smaller sections called static slots. Every static slot

is of the same duration. During transmission each

slot is assigned to a specific message and only that

message can transmit during that slot time.

5.3 Dynamic Segment

 The Dynamic segment is an optional

section of the communication cycle. It is broken

down into smaller sections known as minislots. If a

node wishes to communicate it must wait until its

minislot comes around. If no transmission occurs

after a given period the minislot counter is

incremented and the node with the next

message/frame id may begin transmission of data.

The data to be sent will only be sent if there is

enough time left in the dynamic segment. In this

way the dynamic segment is priority driven with

the message with the lowest ID having the highest

priority, just like CAN.

5.4 Symbol Window

 A symbol is used to signal a need to wake

up a cluster amongst other things. This depends on

the symbol sent and the status of the controller at

the time. Within the symbol window a single

symbol may be sent. If there is more than one

symbol to be sent then a higher level protocol must

determine which symbol gets priority as the

FlexRay protocol provides no arbitration for the

symbol window.

5.5 Network Idle Time

The network idle time is used to calculate clock

adjustments and correct the node’s view of the

global time. It also performs communication

APPENDIX D

- XXIII -

specific tasks and uses up the remaining time of

the communication cycle.

6. Timing

In FlexRay it is important for every node

to share the same view of time. This is due to the

fact that messages are sent at specific times and so

if there is no global view of time then errors can

occur.

To achieve a global view of time each

node derives, from the oscillator, a value known as

a microtick. This value will vary from node to

node. The next level of time is called a

Fig 5. Timing hierarchy

Fig 6. FlexRay frame format

macrotick and is made up of a given number of

microticks. This number will vary from node to

node so that the duration of a macrotick is the

same length throughout the network. Each node

will then see the communication cycle in terms of

macroticks and this should be the same for all

nodes in the network. Fig 5 shows the breakdown

of the timing in a FlexRay system.

The nodes in a network will still tend to

drift away from one another in terms of their view

of the global time. As such the FlexRay protocol

defines a clock synchronisation method to keep the

networks timing the same within a given tolerance.

7. Frame Format

 The frame of a FlexRay message is

broken down into 3 sections: the header, payload

and trailer section as seen is Fig 6. When

compared to the CAN frame format, both standard

format and extended format, it can be seen that the

frame format of FlexRay is much larger. This is

partly due to the extra error checking.

The header section contains status

information such as status bits indicating if the

fame is a null frame, i.e. contains no payload data,

or if the frame should be used for clock

synchronisation. There are also bits to indicate the

length of the payload transmitted and cyclic

redundancy check (CRC) bits so the receiver can

determine if the header was received correctly.

The payload contains the data to be

transmitted over the network. The payload may

also be used to transmit more frame information as

an option and this would be indicated in the header

of the frame. The payload length can vary from 0

to 254 bytes. When compared to the 0 to 8 bytes in

a CAN frame this is a significant improvement.

 The trailer section contains a 24 bit CRC

that is calculated over the payload and header

sections. This is used by the receiving node again

APPENDIX D

- XXIV -

to determine if the frame was received without any

errors.

8. FlexRay vs. CAN vs. Fieldbus Summary

 The Following table, Table I, compares

the feature of FlexRay, CAN and Fieldbus

technologies. The use of FlexRay systems in

automation could be a useful tool. However when

designing a communication system the following

trade-offs between FlexRay and other

communication protocols should be considered;

there would be no point in implementing a FlexRay

system if CAN would be sufficient. Likewise if a

high data rate is required then FlexRay may be a

more suitable scheme to use.

Table I

FlexRay vs. CAN vs. Fieldbus
 FlexRay CAN Fieldbus

Communication

Method

TDMA but

allows for a

dynamic

communication

as standard

Dynamic

arbitration

on the bus,

allowing

for a time

triggered

approach

using a

higher

protocol

Master -Slave

configuration

where a master

determines who

can transmit data

Data Rate 10Mbits/s on

two channels

giving a

combined total

of 20Mbits/s

1Mbit/s Values in the

kbits/s range

between slaves

but increasing to

up to 100MBits/s

for applications

such as the HSE

connection of

Foundation

Fieldbus

Number of

transmission

bytes

0-254 0-8 1-244 data bytes

with between 9

and 11 control

bytes for

PROFIBUS-PA

Number of

communication

channels

2 – second

channel can be

used as a

redundant

channel

1 1

Error Checking 11 bit header

CRC & 24 bit

frame CRC

15 bit CRC 1 byte frame

check sequence

in PROFIBUS-

PA

Determinisim TDMA leads

to

deterministic

behaviour

No, unless

a higher

protocol is

used

Master -Slave

configuration

leads to a

predictable

pattern

Complexity High Low High

Areas of Use New protocol

means less

widely used

but high levels

of research for

future

applications

CAN

widely used

in

automation

and

automotive

applications

Widely used for

automation

purposes

9. Automation Examples

I. Automation Example: Environment Control

An example of where a FlexRay system

could be used is in environmental control of

buildings. This could have an important role in

manufacturing companies in the future due to the

trend of reducing the reliance on fossil fuels to help

reduce pollution along with stricter emission laws.

This is clear from the Kyoto agreement where

countries from around the world are looking to

reduce their emissions to 5% above that of their

1990 levels by 2012 [11]. This is compounded by

the need of companies to reduce manufacturing

costs and with the increasing price of fossil fuels as

these also have an effect on their production costs,

a more efficient environmental control system

could help reduce overall costs. Reference [12] is a

CAN based controller designed to attempt to

maximise the efficiency of an air conditioning

system and thus to minimise the cost of running

such a system.

Fig 7. Block diagram for cooler example

 This idea can be extended to be used by a

FlexRay system. The idea behind this would be a

main controller connected to various sensors and

actuators over a FlexRay bus. This is illustrated in

Figure 7 with the main controller having the ability

to receive data from sensors and to send control

signals down to the actuators. The diagram

illustrates the sensors and actuators as just the

microcontroller that would be connected to them.

Due to the deterministic nature of

FlexRay this type of system could be set up to

monitor or activate the various nodes to increase

the efficiency throughout the plant. The sensors

placed throughout the plant, both internally and

externally, can be used together to determine the

best course of action based on internal and external

environmental conditions [12]. The high data rate

would also mean that more nodes could be serviced

in a given time and with bigger possible data

payloads information from a given area, such as air

temperature and humidity, could be combined into

one packet for further efficiency. This could also

mean that more sensors could be serviced by a

single controller.

APPENDIX D

- XXV -

Fig 8. Remote PID loop control

II. Automation Example: Remote PID Control

Example 2 takes the idea of a controller

further by using FlexRay to implement a PID

controller. Again the high data rates will mean that

information will arrive at the controller relatively

quickly. The controller will again be able to

monitor the incoming data and calculate suitable

control signals using a PID algorithm. Again the

deterministic nature of FlexRay lends itself to this

type of application due to PID needing a regular

time base for the calculations and FlexRay only

sending data out at predetermined points, e.g. every

3 milliseconds. Figure 8 is a basic block diagram of

a FlexRay based PID system. The FlexRay

specifications don’t specify a particular connection

type but usually it is a shielded or unshielded

twisted pair with a maximum distance of 24m

between nodes [13]. However there is research on-

going into the use of fibre optic cabling. This

would make it very suitable in some manufacturing

applications where noise is an issue or where the

environment may become hazardous in the

presence of electricity.

10. Conclusion

The FlexRay protocol developed by the FlexRay

consortium has already found applications in the

automotive industry and looks set to become the

network scheme favoured especially in x-by-wire

applications and other safety critical systems.

There is on-going research into the migration from

CAN based systems to FlexRay based systems and

as such the protocol could find itself being used in

many areas outside the automotive industry. With

its deterministic time-triggered approach and the

high data rates achievable it is also suitable for

safety and control applications. This paper has

briefly introduced the FlexRay protocol. The

protocol has further defined areas of the network

scheme such as frame and symbol coding/decoding

as well as start-up of and integration of a node into

a network that are detailed in the FlexRay protocol

specification.

Acknowledgements

 We would like to thank fellow research

group members Gareth Leppla and Richard

Murphy for their constructive comments and

suggestions while writing this paper.

References

[1] FlexRay Consortium (2007) about FlexRay

[online], available:

http://www.flexray.com/index.php?sid=254188fe2

bd59eb7108227f0adea90f5&pid=80&lang=de

[accessed 19 Oct 2007].

[2] BMW Manufacturing Co. (2006) THE NEW

BMW X5

Perfect Blend of Driving Dynamics, Functionality

and Exclusivity [press release], 8 August, available:

http://www.bmwusfactory.com/media_center/relea

ses/release.asp?intReleaseNum=209&strYear=200

6 [accessed 2 October 2007].

[3] Schofield, M. (2006) Controller Area Network

[online], available:

http://www.mjschofield.com/index.htm [accessed

30 Oct 2007].

[4] EPN online (2005) Drive-By-Wire: Electronics

Vs Mechanical Engineering [online], available:

http://www.epn-online.com/page/16409/drive-by-

wire--electronics-vs-mechanical-engineering.html

[accessed 31 Oct 2007].

[5] PROFIBUS (2007) PROFIBUS PA

Technology and Application, System Description,

Karlsruhe: PROFIBUS Nutzerorganisation e.V.

[6] Samson (2000) Foundation Fieldbus Technical

Information, Part 4 Communication, Frankfurt:

Samson AG.

[7] Samson (1999) PROFIBUS-PA Technical

Information, Part 4 Communication, Frankfurt:

Samson AG.

 [8] FlexRay Consortium (2005) FlexRay

Communication System Protocol Specification,

Version 2.1 Revision A, Stuttgart: FlexRay

Consortium GbR.

[9] FlexRay Consortium (2006) FlexRay

Communications System Electrical Physical Layer

Specification, Version 2.1 Revision B, Stuttgart:

FlexRay Consortium GbR.

[10] CiA (2007) Controller Area Network (CAN)

[online], available: http://www.can-cia.org/

[accessed 30 Oct 2007].

[11] Airtricity® Holdings Limited (2007) Kyoto

Protocol [online], available:

http://www.airtricity.com/ireland/environment/kyo

to_protocol/ [accessed 19 Novemeber 2007].

APPENDIX D

- XXVI -

[12] Tang, K.H., Sambamoorthy, M., Lin, P.K. and

Kandiah, K. (1996) Chiller plant Control and

Efficiency Optimisation, CAN Newsletter,

September 2006, 8-16.

[13] FlexRay Consortium (2006) FlexRay

Communications System Electrical Physical Layer

Application Notes, Version 2.1 Revision B,

Stuttgart: FlexRay Consortium GbR.

