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ABSTRACT 
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Abstract 

 

Modern vehicles are becoming more and more sophisticated, with more 

functions being controlled by a microprocessor unit. As new functions are developed 

there is not only more of a demand on the control unit, but there is also more demand 

placed on the communication network(s) within a car.  There is also a growing need for 

fast and dependable networks for new safety features such as X-by-wire applications.  

A trend in the automotive industry to make cars more eco-friendly has emerged. 

As the amount of applications increases then the number of wires within a car increases 

and this can potentially add a large amount of weight leading to increased fuel 

consumption. This along with the need for higher performance networks led to the 

development of the FlexRay protocol. 

FlexRay is a newly developed network protocol that is intended to address the 

current and future needs of the automotive industry. It is backed by many automotive 

manufacturers and suppliers. As such, FlexRay looks increasingly likely to become the 

network application of choice for many companies, especially where safety critical 

systems are implemented. 

The purpose of this research was to design, implement and test a simulation 

model of a FlexRay network node. This simulation model could be a benefit to system 

developers to ensure accurate communication is achieved by tracing the flow of 

information through a FlexRay-based system and ensuring all timing constraints are met. 

The model was built using MATLAB, Simulink and SimEvents.  The basis of the model 

was a node that incorporated a separate host microcontroller and communications 

controller. The communications controller was based on The Bosch E-Ray IP. The 

simulation model comprised of the application, software driver, communications and 

physical bus layers of a FlexRay based system. The model was then calibrated against a 

real world system over a number of different test cases and constraints. 

The final part of the research involved running tests to determine if the model 

that has been built, was built in a correct manner i.e. validation of the simulation model. 

The model was then evaluated for its ability to carry out its intended role. 
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Chapter 1 . Thesis Overview 

 

1.1 Problem Specification 
The main aim of this project is to research the workings of a FlexRay node and 

to suggest a method to optimally configure that node within a network. 

As FlexRay is a new network protocol there is a need to fully understand how 

best to configure the network. This is so the maximum use of the network with a 

minimum associated cost can be achieved. The optimisation should also be done as 

there are several other networking schemes, such as CAN, LIN and MOST. No one 

networking scheme is perfect for all applications, and more than one type of network 

may be needed to efficiently implement all the systems found within a car. 

Implementing any number of these at the same time could increase cost and ultimately 

lead to problems if the systems do not work well together.  

FlexRay looks likely to become the networking scheme of choice for safety 

critical systems such as X-by-wire systems (Pop et. al. 2007, p51). It is therefore 

important to identify any problems or areas for improvement early on. This will lead to 

a wider range of applications being developed that could increase customer comfort and 

safety. 

The building of a model will allow the testing of a node with various 

configurations in a faster and cheaper way then by experimentation on a real network. It 

is therefore necessary to understand how a FlexRay network operates and how a node 

interacts with the other nodes on a network in order to accurately obtain realistic data. 

 

 

1.2 Research Questions 

 The main goal of this research is to develop a method to optimise a FlexRay 

node for efficient and reliable communication. 
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 This research leads to a number of key questions that are to be answered. These 

questions are as follows: 

• What aspects of the FlexRay controller configuration most affects the 

performance and design of distributed vehicle applications? 

• What guidelines should be used to configure the protocol stack for best 

application performance? 

• What techniques can be used to optimise local buffer usage for specific vehicle 

applications using a fixed global network message schedule? 

 

 

1.3 Document Layout 

The layout of this document is as follows: 

 

• Chapter 1 – Thesis Overview: This chapter covers the problem specification, 

solution requirements and research questions in relation to this research.  

 

• Chapter 2 – Literary Review Introduction: This chapter introduces the topics 

and criteria for discussion covered in the literary review section of this thesis. 

 

• Chapter 3 – Automotive Networks: This chapter covers the current state of 

automotive networking technology. 

 

• Chapter 4 – FlexRay: This chapter describes the FlexRay protocol.  

 

• Chapter 5 – Performance Analysis: This chapter describes methods to carry 

out performance analysis. Different methods that have been used in the past are 

also introduced. 

 

• Chapter 6 – E-Ray: This chapter covers the workings of the Bosch E-Ray 

communication controller. 

 



THESIS OVERVIEW 

- 4 - 

• Chapter 7 – Discrete Event Simulation: This chapter describes the discrete 

event simulation method of modeling systems. Different simulation software 

packages are introduced and evaluated. MATLAB, the simulation package that 

was ultimately chosen is covered in detail. The selection process for the 

simulation software is also discussed. 

 

• Chapter 8 – FlexRay Software Drivers: This chapter focuses on the different 

software drivers that are available to implement FlexRay systems.  

 

• Chapter 9 - Literary Review Summary: This chapter summaries the literary 

review and the available literature. It also discusses the need for further research 

in the area of automotive networks. 

 

• Chapter 10 - Methodology: This chapter covers the methodology used to carry 

out the research.  

 

• Chapter 11 - Simulation Model Development: This chapter documents the 

specification and implementation of FlexRay node simulation model. 

 

• Chapter 12 - Verification: This chapter discusses the steps used to verify the 

model.  

 

• Chapter 13 - Calibration: This chapter covers the calibration procedure for the 

model. Test cases are outlined and the calibration process is reviewed. The 

equipment that was used is outlined and test results are summarised. 

 

• Chapter 14 - Validation: This chapter covers the steps used to validate the 

simulation model. Test cases are outlined and the validation process is reviewed. 

 

• Chapter 16 - Conclusion: This chapter summarises the work done during the 

research, conclusions drawn from the results and suggestions for areas of further 

study are put forward. 
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Chapter 2 . Literary  Review 

Introduction 

 

2.1 Scope 

The literary review introduces key concepts and topics that were looked at to 

successfully complete the project. The information provided allows the reader to gain an 

understanding of why the research is necessary. It also allows the reader to form 

opinions on the methods that were chosen to complete the research. The background 

information provided also allows the reader to understand the significance of the 

research. 

A number of topics are covered in this literary review. The main topics covered 

can be summarised as: 

• The main aspect of the project involves improving the performance of a FlexRay 

node, therefore FlexRay and its alternatives are explored. 

• The Bosch E-Ray chip is the FlexRay communications controller that was 

available for study to this project. Its key features and implementation are 

described. 

• The method of adapting and running tests of a FlexRay node is simulation. The 

reasons for this methodology to be chosen along with simulation theory are 

covered. 

• The current state of automotive networking and the need for research in this area 

are introduced. 

• Analysis techniques to quantify the performance of the model are discussed. 
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2.2 Terminology 

This section outlines terminology that will be used in the following chapters. It 

is an alphabetical listing with brief definitions for each phrase. It should be noted that 

the definitions may not cover all terms that the reader is unfamiliar with. An attempt by 

the author has been made to give a brief explanation, within the scope of this thesis, of 

all the technical terms used that the reader may not be familiar with. If an explanation of 

a term is given elsewhere in this thesis it has been omitted from this section. 

 

Actuator: A device that converts electrical signals into physical actions. An example of 

this is a D.C. motor which converts an electrical signal into a turning motion. 

Application: A piece of software that defines how information is handled or processed 

by a computer system. 

Bus: The physical wire or wires over which information is sent between two different 

nodes on a network (see the definition of a node given below). 

Channel: This is a path through which information ‘flows’. A FlexRay bus is an 

example of a channel. 

Communications Controller: A computer chip specifically designed to transmit and 

receive data over a communications channel. For example, in the case of a FlexRay 

communications channel, data is handled according to the FlexRay protocol 

specifications. 

Host: A microprocessor unit (MPU) that has a communications controller embedded or 

attached. An application on the host may send and/or receive data to/from the FlexRay 

bus. It may also process information in order to implement a task or function. 

Multiplexing: This is a where one or more device share a common communication 

channel. It splits either the time or frequency spectrum available to allow the devices 

access to the channel. 

Node: A piece of hardware that can consist of a communications controller and host 

MPU. There may also be attached a sensor and/or actuator. The host is attached to the 

communications channel via a communications controller. The application running on 

the node defines its function. 

Register: A dedicated area of an electronic chip that stores values used to determine the 

working of the device or program.  
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Sensor: A sensor reads in information from a physical device and converts it into an 

electrical value. An example of this is a thermistor that converts temperature into an 

analogue or digital signal that can be displayed on a dash board display. 

X-by-wire: A method of replacing physical mechanical links with computer-assisted 

actuators.  

 

2.3 Criteria for Discussion 

Each chapter was included under one of the following criteria: 

1. It provides necessary information to understand the need of the project. 

2. It provides necessary information to understand the methods used to 

carry out the project. 

3. It gives an understanding of the equipment and methodologies available 

to successfully carry out the project. 

 

2.4 Limits of the Review 

The literary review covers many topics. However there are a number of areas 

related to FlexRay that have not been covered. An attempt has been made to only 

include the necessary information to allow the reader to understand the need for the 

research. 
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Chapter 3 . Automotive Networks  

 

3.1 Introduction 

 There are a number of different communication protocols that have been 

developed for use by the automotive industry. Each networking scheme is intended for a 

different purpose. This chapter introduces various networking protocols used in the 

automotive industry. It also attempts to outline the challenges faced by automotive 

networks and highlight any weaknesses in relation to the available networks. 

 

 

3.2 Automotive Networks 

Since the first electronic device was installed in an automotive vehicle the 

number of components has increased dramatically. It is estimated that up to 90% of 

innovations in the automotive industry are due to electric and electronic systems 

(Fennel 2006). This is set to increase further with new applications such as x-by-wire 

applications. 

Figure 3.1 (TechInsights 2008) shows how the increase in the number computer 

components leads to an exponential increase of the number of connections needed to 

connect each device. Without employing a serial communications network to connect 

each ECU the increased number of wires would become impractical. Each of the 

communications networks described in this chapter uses serial transmission over a small 

number of wires. This allows all the nodes on the network to be connected while 

reducing the number of individual point-to-point connections. 
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Figure 3.1: Computer components and possible connections 

 

Navet et. al. (2005) describes how in 1994 the Society for Automotive Engineers 

(SAE) defined a classification for automotive networks. Every automotive networking 

protocol belongs to one of the SAE classes of automotive networks. Table 3.1 details 

the classifications.  

 

Class Functions Bit Rate Example Protocols 

A Simple, low-cost, control applications. <10kb/s LIN, TTP/A 

B Inter-ECU communication applications 10 – 125 kb/s J1850, low-speed CAN 

C Powertrain/chassis applications 125 kb/s – 1 Mb/s High-speed CAN 

D
*
 Multimedia applications, X-by-wire, 

Fault tolerant applications 

> 1 Mb/s MOST, TTP/C, FlexRay 

Table 3.1: SAE automotive network classifications 

 

Usually the higher the classification of a particular networking protocol, the 

more complex it becomes. This complexity comes with advantages and drawbacks. For 

instance FlexRay is more complex than LIN; however FlexRay provides a higher bit 

rate and the ability to transmit data in both a time-triggered and event-triggered manner. 

This will increase the cost in terms of setup time and the actual cost of components 

while providing greater data throughput. 

 

 

                                                

*
 Class D is not formally defined. However it is considered to be networks operating over 1Mb/s (Navet et. 

al. 2005).  
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3.3 Networking Type Overview 

Each of the protocols described in this chapter can be classified as either an 

event-triggered or time-triggered system. A time-triggered network sends messages at 

fixed points in time. Event-triggered systems send messages in reaction to stimuli. For 

instance if a person wishes to open a window in a car they might press a button. This 

event will then generate a message to operate a motor to control the window. This 

section highlights some problems and benefits of both types of system. 

Event-triggered: Event-triggered messages have unpredictable transmission 

patterns; this makes analysis of performance relatively difficult. However for sporadic 

transmission behavior this is a good implementation and leads to a flexible system 

(Kopetz 2000). A comparative study of time-triggered and event-triggered systems 

found that, during heavy bus loading, event-triggered messages may fail to transmit due 

to higher priority messages blocking lower priority messages. However when an 

average delay is taken of the messages sent, the event-triggered protocols experienced a 

shorter delay (Claesson et. al. 2003). This may be due to the fact that higher priority 

messages may not occur as frequently as lower priority events. From the point of view 

of resource utilisation this leads to event-triggered systems being superior but they do 

not scale as easily as time-triggered systems, this is due to a lack of any ‘temporal 

firewall’ (Kopetz 1991).  A temporal firewall is a way to prevent unwanted 

communications between the different nodes on a network by the multiplexing of time 

slices to allow or deny communication. 

Time-triggered: Time-triggered messages have predictable transmission 

patterns; this makes for easier performance analysis. Interoperability of the different 

nodes in the network is also an advantage achieved from employing this method as each 

node is given a specific time slot to transmit. Time-triggered systems are also ideal for 

real-time systems where deadlines must be met (Kopetz 2000). The design stage of a 

time-triggered system can be more complicated compared to a similar system 

implemented as an event-triggered system. This is because timing constraints must be 

met to ensure information is sent out before a deadline. This leads to a more detailed 

planning phase where timing constraints of all aspects of a system should be considered. 

It is necessary that an application running on a particular node transmits any data to any 

interested nodes within a given time. This design stage will however lead to a reduced 

verification time of the time-triggered system (Kopetz 1991). 
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Event-triggered vs. Time-triggered: Scheler and Schröder-Preikschat (2006) 

compare event-triggered and time-triggered architecture. They looked at analysability, 

predictability, testability, extensibility, fault-tolerance and resource utilisation. A 

summary of this breakdown can be seen in Table 3.2. It can be concluded from their 

findings that neither approach is sufficient for every system. If the data is sporadic then 

event-triggered protocols will be a good approach under low bus loadings. However if 

the system is a real-time system and must adhere to strict timing constraints, then time-

triggered protocols should be used. However the development process may be longer in 

this case. 

Figure 3.2 shows the traffic patterns for event-triggered and time-triggered 

systems. In event-triggered system messages may attempt to gain access to the 

communications bus at the same time. The message with the highest priority will gain 

access to the bus. Other messages must then wait until the communications bus is free 

before again attempting to gain access to the bus. In a time-triggered system a message 

is assigned to a slot at the design time. In Figure 3.2 Message 1 has the highest priority 

and message 3 the lowest Priority. The time-triggered messages are all represented by 

different colours. The slots may make use of a multiplexing technique to allow different 

messages to be transmitted during the same time slot but over different communications 

cycles. It can be seen that the same message is transmitted during the same time slot 

every communication cycle if multiplexing of the slots is not implemented. 

Multiplexing of slots must be set at design time also. 

 

 

Figure 3.2: Event-triggered and time-triggered network patterns 
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 Time-Triggered  Event-Triggered Conclusion 

Analysability Statistically computed 

schedules are used to 

analyse the schedulability. 

Response time analysis 

technique is used need to 

analyse the schedulability. 

Neither method provides 

a better solution as 

detailed knowledge is 

necessary to perform the 

analysis. 

Predictability Easily analysed for 

predictability. 

Dynamic response to 

events makes the system 

less predictable. A system 

may still be deterministic. 

Time-triggered systems 

make analysis of 

communication patterns 

easier as this is set at 

design time. 

Testability Best to test for worst case 

performance. Typical load 

scenarios are not 

sufficient to test properly. 

Best to test for worst case 

performance. Typical load 

scenarios are not sufficient 

to test properly. 

Neither method is easier 

to test. 

Extensibility The need to recalculate 

static schedules is 

necessary if adding 

functions. 

The response time analysis 

will need to be recomputed 

if added functionality is 

introduced to the system. 

Neither method makes it 

easier to extend the 

functionality of the 

system. 

Fault-Tolerance Different nodes can make 

the same decision at the 

same time. 

It is harder to achieve a 

fault-tolerant system unless 

a leader-follower system is 

used. 

In general time-triggered 

systems provide more 

fault-tolerance within a 

system.  

Resource 

Utilisation 

A node is seen as 

redundant during any 

communication cycle if it 

has nothing to send. This 

means there is wasted 

resources. 

A resource will only be 

requested when needed. 

Event-triggered systems 

can maximise the 

resource in more cases 

than time-triggered 

systems 

Table 3.2: Event-triggered vs. time-triggered systems 

 

 

3.4 Automotive Network Protocols 

Figure 3.3 (Leen and Heffernan 2002, p89) shows a breakdown of the types of 

systems implemented electronically in cars. Figure 3.4 (Denner et. al. 2004) shows the 

functional area breakdown for each networking scheme. 
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Figure 3.3: Automotive network applications 

 

 

Figure 3.4: Automotive networks functionality breakdown 

 

As can be seen from Figures 3.3 and 3.4, there is no one networking scheme that 

is designed to carry out all necessary communications. It is can also be seen that with 
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the present situation, automotive electronic and electrical systems need a proper 

communications network to communicate. Without any multiplexed communications 

systems there would be a huge amount of wiring dedicated to the transmission of 

information between two specific nodes. The inclusion of an interconnected multiplexed 

communication network also reduces the number of duplicate sensors in a vehicle. In a 

multiplexed networking scheme sensor data can be shared to a number of different 

nodes all at the same time. The reduction in the number of duplicate sensors has a cost 

saving benefit for the manufacturer and customer. Without a multiplexed networking 

system a vehicle would be seen as having a drastic weight increase and thus relatively 

poor performance of the vehicle, in terms of both power and fuel economy, when 

compared to a vehicle where a multiplexed networking system is implemented.  

 

 

3.5 Event-Triggered Protocols 

3.5.1 Controller Area Network (CAN) 

The CAN networking scheme was first introduced in 1986. It was developed by 

Bosch with help from Mercedes-Benz and Intel. The development of the protocol was 

started as early as 1983 in a bid to increase functionality for the automotive industry. 

The reduction in wiring within a vehicle was a consequence of the protocol. Since it 

was introduced it has been used in a wide range of applications within cars as well as in 

other areas. Most cars produced in Europe will contain at least one CAN. It has been 

used in trains, ships and industrial control applications (CiA 2007). It has even been 

implemented in the 2008 BMW RG 1200 GS Adventure motorcycle (BMW Motorrad 

USA 2008). 

In 1991 the CAN specification 2.0 was published by Bosch. In 1993 CAN was 

standardised as ISO 11898 by the International Organisation of Standards with an 

extended frame format being standardised with an amendment in 1995. A time triggered 

communication protocol for CAN (TTCAN) was developed in 2000 (CiA 2007). 
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3.5.1.1 CAN Protocol 

 This section is a combination of information from Denner et. al. (2004), Carley 

(2006), CiA (2006), Schofield (2006), Robert Bosch GmbH (1991) and Jurgen (1999). 

 The CAN bus is made up of a number of ECUs that all have a priority rating. A 

CAN bus can be seen in Figure 3.5 (Ecartec Ltd. 2008). Figure 3.5 depicts different 

nodes connected onto the same CAN bus. Each node performs a different function. 

 

 

Figure 3.5: CAN Bus 

 

To determine which node may communicate at any one time an identifier field is 

used in the message frame. The node with the highest priority will be allowed to 

transmit its message. When several nodes attempt to transmit a message at the same 

time the message with the highest priority will gain access without any delay. This is 

due to the ‘wired-AND’ bus arbitration. As the arbitration is based on a logical ‘AND’ 

operation, the lowest the message identifier has the highest message priority. In this way 

dynamic transmission is achieved. The diagram below, Figure 3.6 (Softing 2008), 

shows how a logic ‘0’ ensures that a low message identifier ensures a higher priority. 
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Figure 3.6: CAN bus arbitration 

 

After a message is transmitted the nodes can again attempt to gain access to the bus. 

The CAN protocol supports two frame formats, standard and extended. The 

message format is similar for both protocols, differing only in the number of identifier 

bits. Figure 3.7 (Schofield 2006), shows the standard frame format, which contains 11 

identifier bits. For the extended frame format the main difference is that the identifier 

contains 29 bits. This means that the frames vary in length between 130 to 150 bits 

(maximum). The data segment however is limited to 0 to 64 bits (8 bytes). 

 

 

Figure 3.7: CAN standard frame format 

 

The segments of a CAN message are as follows: 

• SOF: Start of Frame bit. 

• Arbitration field that consists of the identifier and a remote frame indicator. 
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• The control field indicates the number of data bytes in the message. 

• The data field contains 0 – 8 bytes of data. 

• The CRC field is a 15 bit cyclic redundancy check (CRC) used by the receiving 

node to detect any errors in the received frame. 

• The ACK field is to allow all receivers to acknowledge error free reception of 

the message. 

• The end of frame bits indicate the end of transmission of the frame. 

• Int is the inter frame space where data is not to be transmitted to ensure frame 

integrity. 

 

3.5.2 Local Interconnect Network (LIN) 

The local interconnect network (LIN) is a deterministic system for ECU 

communication with sensors, actuators and controls. The LIN specification version 2.1 

was released in 2006. In August of 2004 the Society of Automotive Engineers (SAE) 

released J2606 which recommends a practice for implementing LIN (Vector Informatik 

GmbH 2008, p1). 

A LIN network always consists of one master node and a number of slave nodes. 

It is designed so it can easily be interfaced, through a gateway, to other communication 

busses such as CAN (Ahlmark 2000, p1). Figure 3.8 (Ahlmark 2000, p4) shows a LIN 

bus configuration. 

 

 

Figure 3.8: LIN bus with single master node and ‘n’ slave nodes 

 

The LIN protocol operates as a Master/Slave configuration. Only the master is 

able to initiate communication. A LIN frame consists of a header and response sections. 

Communication with a slave involves the master sending the header part of a message. 

If the master wants to send data to the slave it continues to send the response part. If the 
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master requests data from the slave the slave sends the response part 

(STMicroelectronics 2001, p4).  

The header section of the frame consists of a break field, sync field and a frame 

identifier. The frame identifier uniquely defines the frame. The break field is used to 

identify the start of a transmission and the sync field is to allow receiving nodes to 

synchronise with the transmitted bits (LIN Consortium 2006, p29). The slave task, 

configured to provide the response associated with the frame identifier, will begin 

transmission as depicted in Figure 3.9 (LIN Consortium 2006, p13). The response 

consists of a data field and a checksum field. All slave nodes interested in the data 

associated with the frame identifier receives the response, verifies the checksum and 

uses the data received (LIN Consortium 2006, p13). This broadcast scheme operates at 

speeds up to 20kbits/s (Ahlmark 2000, p4). 

 

 

Figure 3.9: LIN communication 

 

3.5.3 Media Oriented Systems Transport (MOST) 

Media Orientated Systems Transport (MOST) is a protocol that has been 

developed to handle high volume data transfer. This is usually in the form of 

‘infotainment’ data for audio and visual devices. Currently MOST is implemented using 

a plastic optical fiber (POF) communication bus. This provides a number of advantages 

such as weight saving and protection from electromagnetic interference. However there 

is also an electrical physical specification (TechInsights 2008). 

MOST does not require a reconfiguration of the topology if new systems are 

added. The extra components can simply be added into the network by adding a 

connector to the physical bus. In this way MOST can be seen to have a plug and play 

approach to system integration (TechInsights 2008). 

MOST can operate at two different speeds. There are 25Mbit/s and 50Mbit/s 

speed grades specified (MOST Cooperation 2006, p16). There are also a number of 
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different communication channels over which data can be transmitted. These are as 

follows (MOST Cooperation 2006, pp17-18): 

• Control Channel: This channel is used for small data frames with ‘bursty’ like 

transmission. The data rate for this channel is a relatively low 10kbits/s. The 

data is transported to a specific address and is protected by a CRC just like the 

packet data channel. 

• Streaming Data Channel: This is used for continuous data such as data from an 

audio or video device. 

• Packet Data Channel: This channel is defined for large ‘bursty’ traffic. This 

could be in the form of navigational map images. 

• Management Streaming/Package Bandwidth: In a MOST system the 

management streaming and packet data streaming can be allocated space on the 

overall bandwidth.  

A MOST system can have up to 64 nodes. Any of these nodes can be the 

TimingMaster and all the other nodes are Slaves. The TimingMaster provides 

generation and transportation of the system clock, the frames, and blocks. All Slave 

devices derive their clock from the MOST bus (MOST Cooperation 2006, p106). In this 

way MOST is a Master/Slave protocol. 

One MOST25 (the 25Mbit/s variant) frame consists of 64 bytes. The first byte is 

used for administrative purposes. The next 60 bytes are used for Stream and Packet 

Data Transfer. A Boundary section of the header defines in 4 byte steps the number of 

data bytes. The Boundary value can only have values between 6 and 15. This means at 

least 24 bytes are available for Stream data transfer. All Stream data bytes are 

transmitted before the Packet data bytes. The next two bytes of each frame are reserved 

for Control data and the last byte is another administrative byte (MOST Cooperation 

2006, p108). Figure 3.10 (MOST Cooperation 2006, p108) and Table 3.3 (MOST 

Cooperation 2006, p108) show and describe the MOST25 data frame. 
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Figure 3.10: MOST25 frame 

 

 

Table 3.3: MOST25 frame byte summary 

 

MOST50 is designed for high bandwidth, and one MOST50 frame consists of 

128 bytes. The first 11 bytes are used for administrative purposes. Within this 4 bytes 

are used for Control data. The Control Message length can vary depending on the actual 

control message to be sent. Better utilisation of the bandwidth regarding Control 

Messages is obtained in this way. The next 117 bytes are used for Packet and Stream 

data transfer (MOST Cooperation 2006, p108). Figure 3.11 (MOST Cooperation 2006, 

p109) and Table 3.4 (MOST Cooperation 2006, p109) show and describe the MOST50 

data frame. 
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Figure 3.11: MOST25 frame 

 

 

Table 3.4: MOST25 frame byte summary 

 

 

3.6 Time-Triggered Protocols 

Car manufactures faced a problem when attempting to implement new safety-

critical applications in cars using event-triggered communication systems. For instance, 

in a brake-by-wire system it is important to determine the greatest latency experienced 

in the system. It is important to know that when a driver presses the brake pedal the 

system will respond within a given time. The most widely used communication protocol 

in the automotive industry (CAN) is an event-driven communication protocol. This 

leads to an inability to determine the worst case scenario. Higher priority messages 

could potentially always block a message. This led to the need for a new protocol 

specification. By dividing up the available bandwidth into time slots a more 

deterministic protocol could be achieved. Two time-triggered protocols will be 

discussed in this section, namely TTP and FlexRay. 
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3.6.1 Time-Triggered Protocol (TTP) 

This section is based on the works of Böhm (2005), Elmenreich and Ipp (2003) 

and Elemenrich and Krywult (2005). 

TTP/A and TTP/C are two real-time protocols based on a TDMA scheme. 

TDMA (Time Division Multiple Access) is a method of multiplexing a single 

communication medium. To allow multiple nodes in a network to gain access to the 

communications bus each node is allocated a time slice. During this time slice or slot 

the node may transmit its message. If a node wants to transmit a message it must wait 

for the assigned slot to come around. When a node is not transmitting a message it can 

receive messages from other nodes. TTP/C is intended for connecting a number of 

nodes to achieve a dependable real-time system. TTP/A is a lower cost version and has 

reduced functionality. It is intended to use TTP/A as a bus to connect sensors and 

actuators. 

In TTP/C the frame size can vary between 2 and 240 bytes. Each frame can 

carry a number of messages. In different communication rounds different messages can 

be transmitted during a node’s allocated slot. The data is protected by a 24 bit CRC.  To 

ensure each node sends its frame during the correct time slot the use of a bus guardian is 

employed. This is a separate component to the communication controller. The bus 

topology can be seen in Figure 3.12 (Elemenreich and Ipp 2003,P2). A star topology 

can also be employed. The star topology implements two stars that also act as central 

guardians for the network. In Figure 3.12, the CNI layer is a connection between the 

communications controller and the host computer. This encompasses all necessary 

physical connections as well as any software driver used. 

 

 

Figure 3.12: TTP bus topology 
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To ensure that each node transmits at the allocated time the bus guardian must 

have a global view of the time. The current view of the global time is obtained using a 

clock synchronisation algorithm. This algorithm determines the current time based on 

the arrival of frames from other nodes and the expected time of arrival of the frames. 

Figure 3.13 below shows the TTP communication cycle (Elemenreich and Ipp 2003, 

P4). 

 

 

Figure 3.13: TTP communication cycle 

 

From the TTA Group website (TTA-Group 2008), it can be seen that TTP is still 

found in various applications. The main area that TTP is used for appears to be in 

aerospace applications. 

 

3.6.2 FlexRay 

The FlexRay protocol was developed after BMW and DaimlerChrysler worked 

together to develop a networking scheme for future developments such as drive-by wire 

applications. The partnership soon led to a protocol specification which is the basis for 

FlexRay systems (FlexRay Consortium 2007). Due to the fact that BMW was heavily 

involved in the development and its similar characteristics, FlexRay can be seen as a 

legacy protocol of ‘byteflight’. Byteflight was also developed by BMW and uses both 

time-triggered and event-triggered access to the communication bus (BMW 2000). 

Like TTP, FlexRay is based on a TDMA approach. If a node wishes to transmit 

a message it must wait until its communication slot comes around. It may then transmit 

a single message that can consist of a data section of between 0 and 254 bytes. The 

header of a message is protected by an 11 bit CRC while the frame as a whole is 

protected by a 24 bit CRC. The frame format can be seen in Figure 3.14 (FlexRay 

Consortium 2005, p.90). The communication cycle is divided into 4 segments. These 
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segments allow the nodes to transmit in a time-triggered way as well as an event-

triggered fashion. 

 

 

Figure 3.14: FlexRay frame 

 

A FlexRay network supports bus and star topologies just as TTP does. However 

it also supports hybrid topologies. This can be seen in Figure 3.15 (FlexRay Consortium 

2005, p.24). 

 

 

Figure 3.15: FlexRay hybrid topology 

 

3.6.2.1 FlexRay Characteristics 

The FlexRay protocol differs from TTP in its communications cycle structure. 

The characteristics of FlexRay will help to distinguish itself from other networking 
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schemes and these are briefly introduced in this section. The FlexRay protocol is 

discussed in more detail in chapter 4. 

 Figure 3.16 shows an example of a bus access scheme for FlexRay (Vector 

Informatik GmbH 2006). The first thing that should be noted is the use of two channels. 

A node may be allowed to transmit a frame of data on one or both of these channels. 

FlexRay also allows for a node to transmit a frame on a particular channel while a 

different node transmits data during the same slot but on the other channel. This must be 

agreed before implementation during the design stage.  This configurability creates an 

efficient use of the available bandwidth. As a node may transmit the same data on both 

channels during its allocated slot FlexRay also provides the ability to be configured with 

redundancy as standard. 

 

 

Figure 3.16: FlexRay bus access 

 

The second piece of information that can be drawn from Figure 3.16 is that the 

communications cycle is split into a number of sections. In the diagram these are named 

as the static segment, the dynamic segment and symbol. There is a fourth segment not 

named in the diagram. This segment is the network idle time.  

The static segment consists of slots that are of fixed length. The dynamic 

segment allows a frame to be transmitted with a variable length. To allow this a 

mechanism was developed. The dynamic segment uses minislots to form a type of 

flexible TDMA scheme (FTDMA) (Heller et. al. 2008, p206). Minislots are smaller in 

size than static slots. A dynamic frame can however transmit over a number of 
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minislots. The slot counter will not increment until the frame has finished transmitting 

its data. A node that wishes to transmit a frame must still wait for its slot to transmit in 

the dynamic segment. If a node has no frame to transmit during its assigned dynamic 

slot then a single minislot time will expire before the slot counter is incremented. A 

node must also ensure that there is sufficient time to transmit its frame before the end of 

the dynamic segment. If there is insufficient time to do so, the node must wait until the 

next communication cycle before attempting to do so again. 

Another aspect of the FlexRay communication protocol is the ability to assign 

different frames to the same slot. This is done by using the same slot but during a 

different communication cycle. There are 64 cycles and they are numbered and range 

between 0 and 63. When the 64
th

 cycle completes the cycle count is reset to 0 and the 

whole process starts again. This can be seen in Figure 3.17. 

 

 

Figure 3.17: Cycle multiplexing 

 

In FlexRay there is a need to know the current communication time. This is 

necessary to avoid any potential conflicts when nodes attempt to transmit their frames. 

Unlike other networking schemes where the current time is transmitted by a single node, 
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every FlexRay node keeps track of the current time. Figures 3.18-3.20 (inclusive) 

(Vector Informatik GmbH 2006), convey the mechanism that is used to synchronise all 

nodes in a cluster. A number of nodes are setup to transmit ‘sync’ frames. These are 

then used by all nodes in a cluster to obtain the timing information. 

  

 

Figure 3.18: Rate differences 

 

The sync algorithm checks the rate at which the nodes local clock is advancing. 

The arrival times of the sync frames are then compared to this. If the nodes clock is 

running faster or more slowly than it should be, measures are taken to correct this. 

Figure 3.18 illustrates how three nodes’ global time advance rate could be different. 

This is known as rate correction in FlexRay. 

The offset to the node’s view of arriving frames to the global time is also 

checked. If it is found that the node views slots as beginning before or after the arrival 

of the sync frames, then again a corrective action can be taken. Figure 3.19 shows the 

offset differences of three nodes. The method of correcting this is known as offset 

correction in FlexRay. 
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Figure 3.19: Offset differences 

 

Figure 3.20 shows that when both rate and offset corrections are applied, then all 

nodes should share a common view of the global time. These checks must be conducted 

while any communication is taking place. If this does not happen then differences in 

local oscillator components will cause a divergence in the view of the global time. 

 

 

Figure 3.20: Rate and offset correction applied 

 

 

3.7 Automotive Network Design 

There are a number of different networking protocols and as such a network 

designer must choose the most appropriate protocol(s) to meet their needs. This is the 
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first step to creating a reliable and efficient networking system. However once the 

networking scheme has been chosen there is still a need to define the systems 

configuration and constraints. This involves for example assigning messages to frame 

IDs. In the standard CAN frame format there are an 11-bit identifier field. This allows 

2,048 different messages to be assigned to the various nodes implemented in a vehicle.  

The extended version specifies a 29-bit identifier which produces 536,870,912 possible 

messages. FlexRay also uses an 11-bit identifier field for frames. If all of these 

identifier IDs are used there will be a large number of messages to assign to different 

nodes and systems. All communications protocols require careful configuration to 

achieve a suitable and efficient networking system. If the configuration is not done 

correctly then errors may be observed in the system.  

A number of tools and methodologies to configure or monitor CAN systems 

already exist. This is due to the age and knowledge of the protocol. FlexRay is a newer 

communications protocol with a limited number of implementations. To assist 

developers to optimise a FlexRay based system there have been a number of tools 

developed to ease the network design process. There have also been a number of studies 

into the implementation of FlexRay. Sections 3.7.1 – 3.7.3 will review the tools and 

research conducted into the area of FlexRay and the configuration of FlexRay based 

systems. 

 

3.7.1 Configuration and Monitoring Tools 

This section covers a number of tools to configure FlexRay nodes. There are 

also a number of special tools used to monitor traffic on a FlexRay physical bus. These 

will be briefly coved in this section. 

 

3.7.1 .1 Vector Informatik Tools 

Chapter 13 discusses the Vector CANalyzer software and the VN3600 FlexRay 

interface hardware module in more detail. CANalyzer uses a hardware interface such as 

the VN3600 module to monitor traffic on a communication network. The CANalyzer 

software can display the information in a number of different ways, i.e. graphically or 

textually. Network data can also be generated for transmission over the network that is 

under observation. CANalyzer supports a number of different networking protocols 
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such as CAN, MOST and FlexRay. This can help ease the troubleshooting of a system 

implemented using a number of different networking protocols (Vector Informatik 

GmbH 2007, p1). 

Vector supply a number of different hardware modules to suit different needs 

and budgets. These include the FlexCard, VN3300 and VN7600 network interfaces as 

well as the VN3600 hardward interface module. CANoe.FlexRay is a tool for 

development, simulation and test of ECUs and distributed networks for FlexRay and 

provides a variant for CAN. As well as these monitor tools Vector supply a number of 

FlexRay software modules to aid the development of applications (Vector Informatik 

GmbH 2009a). 

Vector offer a FlexRay network development tool called DaVinci Network 

Designer FlexRay (DaVinci) (Vector Informatik GmbH 2009b). Clusters and 

controllers can have necessary network constraint parameters assigned and checked 

against version 2.1 of the FlexRay specification. DaVinci supports the FIBEX file 

exchange format and provides an interactive method of designing the FlexRay schedule. 

Figure 3.21 shows the design of a FlexRay schedule using DaVinci (Vector Informatik 

GmbH 2009b, p1). 

    

 

Figure 3.21: DaVinci FlexRay schedule design 
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3.7.1 .2 Elektrobit Corporation Tools 

Elektrobit Corporation (here after referred to as EB) provides a number of tools that 

support the development of automotive applications. The EB tresos product family is a 

brand under which all the tools and hardware necessary to develop automotive systems 

are sold by EB. Figure 3.22 (Elektrobit Corporation 2009a) shows a breakdown of the 

tresos product family. 

 

 

Figure 3.22: EB tresos product family 

 

The EB61x0 and EB5100 are hardware interfaces for both FlexRay and CAN. 

The EB61x0 is designed to be usable in an automotive application or in an office 

environment and is designed for a variety of purposes such as the monitoring of a 

FlexRay bus when used with the tresos Busmirror software. The EB5100 is based on the 

PMC cards standard with a high performance controller.  It is designed to be used with 

various carrier boards such as PCI, PXI, VME or PHS bus-based systems and to be able 

to perform calculations to meet real-time system constraints.  

EB tresos Designer is a system design tool similar to that of the Vector DaVinci 

software. Constraints applied to the system in Designer are checked against the FlexRay 

specification and a FlexRay schedule is designed in an interactive manner. The EB 

tresos Inspector with the EB61x0 allow for measurement and analysis of FlexRay or 

CAN networks while EB tresos Busmirror with either the EB61x0 and EB5100 provide 

FlexRay cluster emulation solutions. 
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3.7.1.3 dSPACE GmbH Tools 

dSpace also provide a number of tools to help support and develop FlexRay 

systems (dSpace GmbH 2009). The dSPACE FlexRay Configuration Package allows 

for rapid prototyping and hardware-in-the-loop (HIL) applications. The FlexRay 

configuration package is used to integrate dSPACE hardware as simulation and/or 

monitoring nodes in a FlexRay networks. The nodes are configured using the dSPACE 

FlexRay Configuration Tool using a communication matrix containing schedule 

information for signals and frames transmitted over a FlexRay bus. This information 

can also be linked to a MATLAB/Simulink model using the RTI FlexRay Configuration 

Blockset which results in a FlexRay application that can be executed on a dSPACE 

based system (dSpace GmbH 2009). 

dSapce ControlDesk is a single experiment software package for the 

development of  a controller. The same tools can be used for environment,  virtual 

instrumentation, automation, and parameter set handling. Real-Time data can be 

recorded and parameters can be tuned using ControlDesk. ControlDesk also provides 

detailed timing analysis of FlexRay data and can be used with a number of different 

FlexRay platforms (dSpace GmbH 2009). 

 

3.7.2 FlexRay Design Research 

FlexRay is a relatively new communications protocol. There is a lot of interest 

in using the FlexRay protocol for time critical systems due to the deterministic nature of 

the TDMA network arbitration scheme. It also provides a dynamic arbitration segment 

within a communication cycle which provides flexibility and helps reduce redundancy 

in the networking system. These factors make FlexRay a highly desirable protocol to 

implement. As was stated at the start of section 3.7, there have been a number of areas 

where research has been conducted in the area of FlexRay. The research into FlexRay 

has been done for, amongst other reasons, easing the transition for other protocols such 

as CAN to this newer communication protocol. This should help reduce redundancy and 

development time of FlexRay based systems. This section will highlight some of the 

areas where research has been focused to achieve this. 
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3.7.2.1 FlexRay PDU Configuration 

FlexRay frame length is fixed at the design time of a FlexRay cluster. This will 

mean that all static frames will transmit a fixed length payload while dynamic frames 

will adhere to a maximum payload length. It is important then that a frame is configured 

to transmit the maximum number of data bytes during a communication cycle. To 

achieve maximum payload usage frames can be split into a number of protocol data 

units (PDUs). The frame may then contain a number of different messages within the 

same frame. Any node that is interested in any information contained in one or more of 

the PDUs must then store the entire frame and extract the desired data. 

The paper by Stöger (2008) describes the use of assigning a number of different 

messages to a single FlexRay frame. Problems associated with this multiplexing of 

payload data is with the application layer overheads. If a frame is received and the there 

are a number of different PDUs contained within the frame that are desired by the 

receiving node, then processing time is spent extracting the information and passing the 

relevant information to the associated tasks. Message PDUs may also be cycle 

multiplexed within a single frame. For instance a frame may contain ‘PDU 1’ during 

every communication cycle but ‘PDU 2’ is transmitted during every even 

communication. During all odd cycles ‘PDU 3’ takes the place of PDU 2 within the 

transmission frame. This could mean there is the need for this frame to have more than 

one buffer assigned on a receiving node so that correct PDU extraction can be carried 

out efficiently. For instance two buffers could be assigned to receive on the frame ID. 

The first buffer would accept all frames received during even communication cycles and 

a second buffer would receive during odd communication cycles. This can lead to a 

more complex view of the communication system but can lead to a more efficient use of 

buffers and frame transmission. 

The paper by Brandstätter and Böke (2008) highlights how PDU-based 

communication can lead to better FlexRay based applications but also aid in the 

migration process for older communications schemes such as CAN. They also highlight 

how development of tools that use the FIBEX file format have aided in networking 

tools by vendors such as Vector to easily adapt to PDU frame formats. This allows for 

PDU layer analysis of FlexRay communication and will aid in the transition to this 

frame assignment procedure. 
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3.7.2.2 FlexRay Scheduling 

 Another area that has been researched is the scheduling of frames necessary for 

time-triggered networks such as FlexRay. The work of Pop et. al. (2003), Pop et. al. 

(2006), Pop et. al. (2006) and Pop (2007) address this area. In the paper by Pop et. al. 

(2006) a method to analyse the ‘schedulability’ of the communication protocol is put 

forward. This is based on the timing properties of the static messages and a worst-case 

response time for dynamic messages. The timing analysis then determines timing 

properties for all tasks and messages in a system.  

The work of Balogh et. al. (2007) also looks at the scheduling of time-triggered 

systems such as FlexRay or TTP. This focuses on the allocation of tasks to nodes as 

well as the scheduling of tasks and the communication parameters. This method should 

then produce a schedule that incorporates sufficient time to run all tasks and transmit all 

messages. The configuration of a distributed system can then be optimised to meet a 

variety of different constrains such as a cost or extensibility constraints.  

 

3.7.2.3 Time Triggered vs. Event Triggered Architectures 

A number of studies have been carried out into the suitability of event-triggered 

and time-triggered protocols. This mainly compares the different protocol types for their 

suitability to perform different tasks. This can be seen in the paper by Scheler and 

Schröder-Preikschat (2006) as discussed in section 3.3. 

 The study and implementation of the different communication protocol variants 

has also led to the study of the migration process. Event-triggered protocols act in a 

different manner than time-triggered protocols and this can cause problems when 

converting from one protocol type to another. Older protocols such as CAN are also in 

many cases simpler than newer protocols such as FlexRay. The complexity of some of 

the new protocols, along with the knowledge of the system designers of older protocols, 

means that the migration from older to newer protocols can be a slow process. The cost 

to migrate from one protocol to another may also increase when migrating from an older 

to a newer protocol and this consideration needs to be considered. The increase in cost 

is associated with training personnel and an increase in costs during development of a 

new system. Higher cost of new equipment and devices for any new protocol could also 

be an issue as these tend to be pricier than similar equipment/devices for a more 
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established protocol. The higher costs can be a contributing factor for a slow or low 

adoption of a new protocol. This has led to migration frameworks being developed to 

ease the transition. This can be seen in the work of Cummings (2008). 

 

3.7.3 FlexRay System Development Summary 

As can be seen from the tools developed for FlexRay systems and the research 

that has already been conducted into the area of FlexRay, a lot of effort has been put 

into the scheduling of the overall system. There has also been a lot of effort put into the 

analysis of task allocation and ‘schedulability’ across distributed time-triggered 

systems. This is to optimise a number of constraints such as the number of nodes 

necessary to fully implement the required system. This analysis can also lead to an 

optimisation of constraints such as a slot time and number of static slots needed. By 

using PDUs within a frame maximum utilization of frames can be achieved and a better 

overall system performance can be configured. 

The research outlined in this thesis aims to address a number of questions 

including what aspect of a node most affects the performance of an automotive 

distributed system. Proper analysis of the flow of data will allow a designer to identify 

the bottlenecks with a given system. Configurations of various aspects of the system can 

then be adjusted to ensure all internal and external node deadlines are met. This will 

ensure timely and reliable transmission of data. This is an area where little research has 

previously been conducted. This could be a big advantage where a system designer 

must improve the performance of a system that incorporates software modules designed 

by an outside company. Little confidence can be placed in the modification of such 

software models to streamline the execution as the design may not be known. The 

system designer must therefore focus efforts, to improve the system, on other aspects of 

the system.  

In the paper by Stöger (2008) as described in section 3.7.2.1, the uses of a 

number of different message buffers for a single message frame were discussed. This 

allows PDUs within a FlexRay frame to be multiplexed across a number of different 

communication cycles. The assignment of more than one message buffers to a single 

frame will increase have an impact on the resources needed by the node. By analysing 

the flow of data through a node the message buffer accesses by the host controller may 
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also be improved. This could lead to an optional assignment of frames to dedicated 

message buffers and to a FIFO message buffer structure.  

 

 

3.8 Conclusion 

Ageing communication protocols such as CAN with small data package sizes 

and poor determinism meant that the automotive industry was facing a problem. 

Master/Slave systems that are available either have small packet sizes or are designed 

specifically for infotainment systems. The lack of a suitable networking scheme that 

could handle the requirements for newer, more sophisticated safety systems and x-by-

wire technology has led to the development of a new protocol. FlexRay was developed 

to meet the current and future needs of automotive manufacturers. By using a TDMA 

scheme a more deterministic system can be achieved. This leads to the possibility of 

newer and more sophisticated applications being implemented in cars.  

With the backing of a number of automotive manufacturers and parts suppliers 

FlexRay seems set to become a widely used network scheme. It is a new protocol and 

there is a large amount of research ongoing in various aspects of the protocol. This 

includes optimisation of the communication cycle. However there are other difficulties 

that are associated with FlexRay. For Example, the RAM and ROM requirements need 

to be studied. The implementation costs of communication controllers could be 

drastically reduced if it was understood what the exact resource requirements are. The 

overall systems performance of a node could also be improved by fully understanding 

the flow and timings of data flow through a communication controller.  
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Chapter 4 . FlexRay 

 

4.1 Introduction 

The FlexRay protocol was developed when BMW and DaimlerChrysler decided 

to cooperate. Together they had realised that automotive network solutions at the time 

were inadequate for future developments such as drive-by wire. They were soon joined 

by Motorola and Philips to form the FlexRay consortium. Other leading automotive and 

electronic companies such as Bosch and VW soon joined (FlexRay Consortium 2007). 

The partnership soon led to a protocol specification which is the basis for FlexRay 

systems. This protocol has also been the basis of FlexRay IP-modules such as the Bosch 

E-Ray communications controller (Robert Bosch GmbH 2007).  

The core of the FlexRay protocol is a time-triggered communication system. 

This is in contrast to some earlier event-triggered automotive applications such as CAN. 

The use of a time-triggered protocol ensures a fixed delay in the transmission of data. 

This is in contrast to an undeterminable time that data must wait before it is transmitted 

using an event-triggered protocol, due to there being potentially higher priority 

messages blocking access to the bus. The FlexRay approach is more suitable for safety 

applications such as brake-by-wire when it is important that a message is not blocked 

from accessing the network.  

The protocol also provides flexibility and determinism by providing a dynamic 

segment in a communication cycle. In this way it provides both synchronous and 

asynchronous communication modes as standard.  The physical layer also includes a 

bus guardian to support error containment and provides for a data rate of up to 

10Mbit/sec on each of two channels giving an equivalent overall data rate of up to 

20Mbit/sec. FlexRay can therefore be seen as being designed for present and future 

needs of automotive applications (FlexRay Consortium 2007).  

 If not otherwise stated, the information in this chapter was referenced from the 

FlexRay Consortium (2005). 
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4.2 Network Topology 

 The FlexRay protocol allows for various bus topologies. These can be a point to 

point connection, a passive star, linear passive bus, active star network, cascaded active 

stars, hybrid topologies and dual channel topologies (FlexRay Consortium 2005, p.21; 

FlexRay Consortium 2006, pp26-31).  

 

 
Figure 4.1: A passive bus topology 

 

Figure 4.1 and Figure 4.2 show the basic layout of a passive bus topology and a 

single channel hybrid network respectively. Note that in a network a node need not be 

attached to both channels of the network, also a node attached to a single channel need 

not be attached to channel A but to either channel A or channel B. The FlexRay 

protocol will support hybrid topologies as long as the limits of each topology which 

makes up the hybrid topology (i.e. the star and bus topologies) are not exceeded. 

 

 
 

Figure 4.2: Single channel hybrid network 

 

It should also be noted that each channel can be implemented as a different bus 

topology. For instance channel A can be a bus topology while channel B is implemented 

as a star topology. This makes FlexRay a very flexible and adaptive communications 

system for a wide range of applications. 

Node 1 Node 2 

Star  

   1 

Star  

   2 

Node 3 Node 4 Node 5 

Node 1 Node 2 

Channel B 

Channel A 
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4.3 FlexRay Hardware   

Each FlexRay node has a communication controller, a host, a power supply unit 

and two bus drivers, one for each channel.  Figure 4.3 (FlexRay Consortium 2005, p26) 

shows the logical connections of each element. 

The host handles the applications of the system while the FlexRay protocol is 

handled by the communications controller. The bus driver is used to read and write data 

to the physical medium over which the data is transmitted. In sleep mode it also has the 

ability to start a wakeup procedure if it detects a wakeup signal. The communications 

controller will mainly handle the framing of data and the checking of received data. 

This is to ensure no data was corrupted before passing it to the host. 

Figure 4.3: Logical interface 

 

 The host passes information such as control information and payload data to the 

communications controller. The communication controller relays status information and 

data received. The host interface to the bus driver allows it to change the operation of 

the bus driver as well as read status and error flags. 

 The connections between the communications controller and the bus driver 

allow data to be transferred from the communications controller to the bus driver and 

vice versa. There is also a ‘transmit enable not’ line which indicates that the bus driver 

can transmit data on its corresponding channel. 
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4.4 Global Time and Timing 

 Figure 4.4 (FlexRay Consortium 2005, p170) shows the timing hierarchy used in 

FlexRay. It consists of a communication cycle, macrotick and microtick levels. These 

will be discussed from the bottom up. 

 

 

 

Figure 4.4: Timing hierarchy 

  

4.4.1 Microtick 

 In a FlexRay system the most basic unit of time is a microtick. This is derived 

from a node’s local oscillator. In this way the length of a microtick will vary from 

controller to controller. This leads to controllers drifting away from each other with 

respect to the beginning of segments of the communication cycle. This can lead to 

errors and as such there needs to be a way to synchronise time. 

 

4.4.2 Macrotick 

 The macrotick in a FlexRay system is made up of fixed number of microticks. 

The number of microticks which make up a macrotick may vary between nodes in a 

system due to different operating frequencies. This will ensure that all macroticks will 

have the same duration across the network within a given tolerance. This means that all 
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nodes on a network will have the same number of macroticks per communication cycle. 

The communication cycle will be covered in section 4.5. 

 

4.4.3 Global Time 

 In a FlexRay network it has been established that there are different levels of 

time representation to help the network stay synchronised. However this will still lead 

to a drift of the local time of the nodes if there is no correction applied to the nodes. 

This is because there is no global reference point for the time. Instead there is a local 

time for each node. This is the controller’s idea of the global time based on aspects such 

as its idea of what macrotick was last transitioned and when it should transition for the 

next macrotick. Every node uses a synchronisation algorithm to keep its view of the 

global time as accurate as possible. 

 

4.4.4 Synchronisation Algorithm 

 This is a distributed clock synchronisation algorithm, where all the nodes in a 

cluster synchronise themselves to the other nodes in the cluster by monitoring the 

transmissions of sync frames sent from other nodes. A node will then try to adjust its 

view of the global time to that of the other nodes. After this process has been carried out 

all nodes should share the same view of the global time to within a given tolerance. This 

tolerance is known as the precision of the network.  

The clock synchronisation is performed using two processes. These are the 

microtick generation process and the clock synchronisation process. 

 

4.4.4.1 Clock Synchronisation Process 

 This process measures both rate and offset differences of the expected times of 

arriving messages and the actual arrival times. Rate correction is done during the whole 

communications cycle while offset correction is done during the network idle time. The 

correction values are in terms of microticks which are needed to be added to the 

communications cycle and this value may be negative as well as positive.  

The calculation of the offset correction is done every cycle but the corrections 

are only applied during the idle time of odd communication cycles. The calculation 
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must be completed before the offset correction phase begins but any calculated values 

must not be applied until the idle time. 

 The rate correction values are calculated once every two cycles after the static 

section of the odd cycle. The values are based on the values observed during the two 

cycles before the calculation. Again the calculation must be complete before the offset 

correction phase begins but any calculated values must not be applied until the idle time.  

Figure 4.5 (FlexRay Consortium 2005, p172) shows the relationship between clock 

synchronisation and the media access timeframe. 

 

 

Figure 4.5: The relationship between clock synchronisation and the media access time frame 

 

4.4.4.2 Macrotick Generation Process 

 This process produces macroticks which are ‘corrected’ based on the rate and 

offset correction values. 

4.4.5 Correction Term Calculation 

 In order to calculate the correction value a fault-tolerant midpoint algorithm is 

used. This defines a parameter ‘k’ based on the number of terms in a sorted list of time 

deviations. These deviations are between the reference points for expected timestamps 

and actual timestamps. Table 4.1 (FlexRay Consortium 2005, p184) displays the 

relationship between the number of values in the sorted list and ‘k’. 
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Number of values k 

1-2 0 

3-7 1 

>7 2 

Table 4.1: k as a function of a list of values 

 

The value of k is obtained from this table and it is then used to figure out how 

many of the largest and smallest values should be removed, i.e. if k is calculated to be 2 

then the two largest and smallest values are taken out of the list. The next largest and 

smallest are then averaged and the result is the node’s deviation from the global time for 

the purposes of the correction.  

 The calculated values will then be checked against predefined limits. If each of 

the values lies within its limits then the node is said to be synchronised. Otherwise an 

error condition is detected and appropriate flags are set or a procedure can be put in 

place to change the correction term to its limit or another predefined value. 

 

 

4.5 Media Access Control 

 Figure 4.6 (FlexRay Consortium 2005, p100) shows the breakdown of the 

communication cycle into the various segments. The segments as shown in Figure 4.6 

will be discussed from left to right. 

 

Figure 4.6: Communication cycle 
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4.5.1 Static Segment 

 The static segment transmits data using a Time-Division Multiple Access 

(TDMA) technique to allow different nodes to transmit and receive data over the 

network at predefined times. 

 The static segment is broken down into smaller time slots known as static slots. 

These slot are assigned to a message ID so that only that message may be sent during 

that slot time every communication cycle. There is a possibility to use a cycle 

multiplexing system however. 

 During the transmissions of frames in the static segment frames may be sent 

over one or both of the channels at a time. Only one node however can transmit on a 

given channel with a given frame ID during a given slot.  

As has been stated the entire network shares a ‘global view’ of the time on a 

given network. This ensures that nodes on the network agree on when a slot starts and 

ends. This helps to avoid different messages being sent out at the same time.  

 

4.5.2 Dynamic Segment 

 To make FlexRay more usable there can be a dynamic segment included if 

desired by the network designer. This is where a node can transmit data at arbitrary 

times. If two nodes want to transmit data at the same time then the message with the 

lower message ID is transmitted first and the other messages have to wait until that 

message is transmitted before commencing transmission. This is similar to CAN, but 

transmission can only begin if there is time to transmit the entire message before the end 

of the dynamic segment. If there is insufficient time left to transmit the message then 

the message will be kept for the dynamic segment of the following communication 

cycle. 

 The dynamic segment is broken up into smaller sections known as minislots. 

These are defined in terms of macroticks where the start of a minislot defines an action 

point where transmission may begin. 

 During the Dynamic segment the slot counters may be incremented at different 

action points and thus two different message IDs may be transmitted on the bus at the 

same time over the two channels. The dynamic messages’ slot IDs are number 

sequentially from the last static message ID. 
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4.5.3 Symbol Window 

 A symbol is used to signal a need to wakeup a cluster amongst other things. The 

meaning of a symbol depends on the symbol sent and the status of the controller at the 

time. Within the symbol window a single symbol may be sent. If there is more than one 

symbol to be sent then a higher level protocol must determine which symbol gets 

priority as the FlexRay protocol provides no arbitration for the symbol window.   

 

4.5.4 Network Idle Time 

 The network idle time is used to calculate clock adjustments and correct the 

nodes’ view of the global time. It also performs communication specific tasks and uses 

the remaining time of the communication cycle. 

 

 

4.6 Frame Format 

 Figure 4.7 (FlexRay Consortium 2005, p90) shows the frame format of a 

FlexRay message. It is broken down into three sections: the header, payload and trailer 

sections. 

 

 

Figure 4.7: Frame format 

 

The frame bits are transmitted from left to right as you look at Figure 4.7, i.e. the 

reserved bit is sent first followed by the payload preamble indicator bit etc. 
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4.6.1 Header Section 

The header section is broken down into smaller sections. It is five bytes in length 

which is broken down into a reserved bit, payload preamble indicator bit, null frame 

indicator bit, sync frame indicator bit, startup frame indicator bit, a frame ID (11 bits), 

the payload length (7 bits), a header CRC (11 bits) and a cycle count (6 bits).  The CRC 

is not computed by the communications controller which is transmitting the frame. 

Instead the CRC is passed to the communications controller by the host as it does not 

generally change during the static segment. The CRC is recalculated by a receiving 

communications controller. This is to ensure that a received frame was received with no 

errors. This CRC code is calculated for all channels and uses the following polynomial: 

1278911
+++++ xxxxx . The initialised value for the register that is used to calculate 

the CRC is the same for both channels and is 0x1A. 

For further information on how the CRC is generated and the other sections of 

the header see the FlexRay Consortium protocol specification (2005, pp97-99). 

 

4.6.2 Payload Section 

 The payload section is used to send data and contains 0 to 254 bytes of data. 

Each byte of data is generally referred to by its position in the payload, i.e. the first bye 

is called “data 0”, the second “data 1” and so on.  

 In some cases the payload may also be used to transmit more frame information 

as an option. This data would be a message ID field in the dynamic segment and a 

network management vector in the static segment. 

 

4.6.2.1 Network Management Vector 

 This can take up 0 to 12 bytes of the payload section and would be placed at the 

start of this section i.e. “nm0” would be used instead of “data 0” and “nm1” instead of 

“data 1” etc. 

 In order to allow a node to determine if a message contains a network 

management vector the network preamble indicator bit is set in the header section and it 

must only be transmitted during the static segment of the communications cycle. All 

nodes in a cluster must be configured with the same network management vector length. 
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 The network management vector is used to coordinate startup and shutdown 

decisions based on factors such as the application state. It is part of a network 

management service. 

 

4.6.2.2 Message ID Field 

 During the dynamic segment of the communications cycle a message ID field 

may be placed as the first two bytes in the payload section. This allows the receiving 

frame to determine how the data should be used or filtered. The message ID is 16 bits 

long and can only be transmitted during the dynamic segment of the communication 

cycle. To determine whether a message contains a message ID a receiver checks the 

payload preamble indicator bit in the header. If this is set the payload contains a 

message ID field.  

 

4.6.3 Trailer Section 

 The trailer section is made up of a 24 bit CRC code for the frame (FlexRay 

Consortium 2005, p96). It is calculated over the header and payload sections of the 

frame and the polynomial used for all channels is: 

13678101113141619202224
++++++++++++++ xxxxxxxxxxxxxx

This will give a Hamming distance of six for a payload of up to 248 bytes, otherwise for 

payloads of 248 bytes and over the Hamming distance is four. 

The initial value of the register used to calculate the CRC is different depending 

on which channel is being used. For channel A the value is 0xFEDCBA and for channel 

B the value is 0xABCDEF. The CRC for the frame is calculated, unlike the header CRC, 

by the communications controller. This means that the frame CRC is calculated by the 

communications controller during transmission and reception of a frame.  

On reception of a frame, the transmitted CRC is checked against a CRC which is 

calculated based on the received header and payload sections. If these two values differ 

then an error has been detected, otherwise the frame was received error free. The result 

of this should be signalled to the host by using an indicator such as a flag. The host can 

then follow an error procedure. This could involve signalling to the network that a 

frame was received with an error or the host could attempt to recover the data 

depending on the configuration of the system. 
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4.7 Coding & Decoding  

 As there are two channels there is a need to perform coding and decoding 

independently, however it is carried out in the same manner. In order to implement the 

coding and decoding FlexRay implements three processes, the coding/decoding process 

(CODEC), the bit strobing process and the wakeup pattern process.  

 

4.7.1 Bit Stream Assembly 

 To transmit a frame the following steps need to be taken: 

1. The frame data is broken up into individual bytes. 

2. A transmit start sequence followed by the frame start sequence is transmitted. 

3. An expanded byte sequence for each data byte is created by prefixing the byte 

start sequence before the bits of the bytes. 

4. This is then assembled, in order, into a single bit stream for transmission. 

5. The CRC is then calculated for the frame, and expanded byte sequences are 

created for this data before being appended to the bit stream. 

6. The frame end sequence at the end of the bit stream is added. 

7. If the frame is in the dynamic segment the dynamic trailing sequence is 

appended. 

Figure 4.8 (FlexRay Consortium 2005, p57) shows a bit stream with all encoding 

having been done in the static segment. For a dynamic segment diagram see the 

FlexRay Consortium (2005, p58). 

 

 

Figure 4.8: Encoded bit stream 
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4.7.2 Frame Encoding 

 In order to transmit data a node must represent the communication elements as a 

bit stream before it can be transmitted over the physical medium. This section deals 

with how a frame is encoded for transmission. 

 

4.7.2.1 Transmission Start Sequence (TSS) 

 This is used to ensure proper setup of the network. An active star will use this to 

properly configure input and output connections. This type of setup will cause an active 

star to truncate a number of bits at the start of a frame or symbol. This will therefore 

ensure that the frame or symbol contents are not corrupted or truncated.  

 

4.7.2.2 Frame Start Sequence (FSS) 

 The FSS is used to compensate for possible quantisation errors after the TSS. It 

is defined as a high bit.  

  

4.7.2.3 Byte Start Sequence (BSS) 

 This sequence is used for timing information of the streaming bits.  It consists of 

a high bit followed by a low bit. Each frame data byte will be sent onto the channel as 

an expanded byte sequence, where eight data bits are prefixed with a single byte start 

sequence. 

 

4.7.2.4 Frame End Sequence (FES) 

 This end sequence is used to mark the last byte of a frame. It is a low bit 

followed by a high bit. It is appended to the last expanded byte sequence of the frame. 

These are the last two bits sent if the frame is transmitted in the static segment. If this is 

the case the transmit enable line will be set to high to prevent further transmission. For a 

frame sent in the dynamic segment there is an additional sequence added. 
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4.7.2.5 Dynamic Trailing Sequence (DTS) 

 The DTS is used for frames sent in the dynamic segment only. It is so that the 

exact minislot action point can be determined and to prevent false detection of a channel 

idle state by receiving nodes. This is transmitted directly after the frame end sequence. 

 It consists of a low level transmission of at least one bit length, but the length is 

not fixed for longer periods. This is followed by a high output for one bit length. Once 

the output has been high for one bit time the transmit enable line is set high. This will 

mean that the duration of the dynamic trailing sequence is variable and can range in 

length between two bits and the length of a minislot plus two bit times. 

 

4.7.3 Frame Decoding 

This section deals with the decoding process of received frames on a channel. 

This is again performed on each channel in the same manner but separately. The 

decoding of a frame or a symbol is carried out one at a time i.e. if a frame is being 

decoded another frame or symbol can not be decoded at the same time on the channel. 

The successful decoding of a frame/symbol will happen as long as at least the channel 

idle delimiter time is observed between the last bit of the previous frame/symbol and the 

current frame/symbol. A successfully decoded frame or symbol will not guarantee that 

the received data is correct or valid. Figure 4.9 (FlexRay Consortium 2005, p66) shows 

the frame decoding process. 

 

 

Figure 4.9: Received bit stream 

 

At each of the points in the diagram (a-e) the following is happening: 

a. The end of the channel idle point is detected. 

b. A potential frame start sequence is detected. 

c. The header is received. 



LITERARY REVIEW 

- 59 - 

d. All frame data is received at this stage and the frame ending sequence is 

expected followed by a dynamic trailing sequence if the frame was sent during 

the dynamic segment. 

e. The channel idle delimiter time is reached and another frame or symbol can be 

received. 

 

4.7.4 Symbol Encoding 

 There are three defined symbols used in the FlexRay protocol.  These are: 

1. The collision avoidance symbol (CAS). 

2. The media access test symbol (MTS). 

3. The wakeup symbol (WUS). 

The symbols for the CAS and MTS use the same bit pattern and are distinguished 

by the receiving node based on the status of the node. The encoding process does not 

distinguish between them. 

 

4.7.4.1 CAS and MTS 

The CAS symbol is used by coldstart nodes to begin startup of a cluster while the 

MTS is used for testing the media access control operation. The bit pattern for the 

CAS and MTS is as follows: 

1. A transmission start sequence is first transmitted. 

2. A low level is transmitted for a defined symbol period. 

The symbols are transmitted with the transmit enable being synchronous with the 

transmit data signal. This is shown in figure 4.10 (FlexRay Consortium 2005, p59). 

 

 

Figure 4.10: CAS and MTS encoding 
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4.7.4.2 WUS 

 The WUS symbol is used to signal to other nodes on the cluster a desire to 

wakeup the network and to begin transmission of frames. The node shall transmit a 

low logic level for a given ‘wakeup low’ period. This is followed by an idle state 

which has a defined time. This will then be repeated for a globally defined number of 

times. Figure 4.11 (FlexRay Consortium 2005, p59), shows a wakeup pattern made up 

of two wakeup symbols. 

 

 

Figure 4.11: Wakeup pattern using two wakeup symbols 

 

A node should be able to detect any transmissions on a channel during 

transmission of a wakeup pattern in case there is another wakeup pattern from another 

node or activity already on the bus. This sort of collision can then be handled to 

ensure that there is no error or protocol violation performed on the channel. 

 

4.7.5 Symbol Decoding 

4.7.5.1 CAS and MTS 

 The received symbol will be decoded by the node in the same way for both 

symbols.  

 As the transmission start sequence is a low level for a given time and this is 

immediately followed by the CAS or MTS symbol, which is also represented by a low 

level of a given time, there is no way for the receiver to distinguish between the 

symbol and the start sequence. Therefore a successful detection  of a symbol is 

determined if a low level is detected for a given time within the CAS/MTS min and 

max limits defined in the protocol of the nodes of the network. 
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4.7.5.2 WUS 

 The detection of a wakeup pattern is to be considered as being successful 

under the following conditions: 

1. A low level that is as long as the WUS low period is detected. 

2. This is followed by a high level that has duration of the WUS idle time.  

3. Steps 1 and 2 are repeated until the number of wakeup symbols which make 

up a wakeup pattern are received 

4. The duration of the wakeup pattern does not exceed its constraint limit. 

 

4.7.6 Sampling and Voting 

 When data is sent on a channel, nodes which receive the data must determine 

what was sent on the channel. In order to do this a sampling and majority voting 

scheme is used. This is done independently on each channel. 

 The sampling is done at the received input and each sample is stored. The 

sampling period and number of stored samples depends on the application and 

hardware used. The node shall then perform a majority voting operation on the stored 

data. 

 This majority voting operation is used to filter any glitches detected on the 

channel. In this case a glitch is an event which temporarily changes the logic value of 

the received data to that of a value other than that which was transmitted. The 

receiving node shall continually check the stored samples and if the majority of the 

samples are a logic one then the output from this process shall be a logic one. 

Otherwise a logic zero is detected. This voted value is the value which is then used by 

further decoding processes or stored as the received message. 

 It should be noted that this process will cause a delay to appear in the received 

bit pattern or the voted value which is relative to the clock period of the sample clock. 

Figure 4.12 (FlexRay Consortium 2005, p61) shows a received bit pattern along with 

a glitch and the delay caused by this process. 
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Figure 4.12: Sampling and majority voting of a received bit pattern at the input 

 

The example shown in Figure 4.12 shows a sample length of 5 and sampling is done 

on the rising edge of the clock. 

 

 

4.8 Wakeup 

 This section covers the basics of getting a FlexRay cluster to full operation 

from the sleep mode.  

 

4.8.1 Cluster Wakeup 

 The cluster wakeup is performed by a macro and follows the procedure 

outlined below. It is necessary that the bus drivers are supplied with power. If the bus 

driver is supplied with power it has the ability to wake up the other nodes’ systems. 

There must also be a wakeup source supplied to at least one node. 

 The host can transmit the wakeup pattern on each of its channels individually 

but it should not be transmitted on both channels at the same time to avoid faulty 

nodes interrupting communication on both channels. The host will configure which 

channel is to be woken up and ensure communication on the channel is not disturbed. 

The protocol also allows for nodes connected to a single channel to wakeup the 

network on both channels. This is done through a node connected to both channels 

being used to wakeup the other channel. To avoid certain failures it is recommended 

that both channels should be woken by different controllers. 

 If the wakeup pattern is successfully received by a node which is asleep, this 

node shall wakeup.  The bus driver will handle the detection of the wakeup pattern, 

with the communications controller only needing to recognise the wakeup pattern 
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during the wakeup and startup phases to avoid collisions. It is also impossible for the 

communications controller to determine if all nodes connected to a network received 

the wakeup pattern and are awake at the startup phase.  

 It should be noted that any number of nodes trying to wakeup the network will 

be resolved by the wakeup procedure so that only one node will wakeup the network. 

However if there is a fault which causes two nodes to transmit the pattern at the same 

time, then the resulting signal can still wakeup the network.  

 The Bosch E-Ray chip fully supports the FlexRay protocol and an application 

note has been produced on the wake up procedure (Robert Bosch GmbH 2006) that is 

a good reference on the requirements to wakeup a node. 

 

4.8.2 Startup and Reintegration 

 To communicate across a TDMA system there has to be synchronisation of all 

of the nodes. A startup procedure is therefore put in place to initially synchronise all 

the nodes. 

 To start up a network all the nodes must first be awake. When all the nodes are 

ready then a startup process or ‘coldstart’ can begin. This is done by a few coldstart 

nodes. There is a limited amount of coldstart nodes in a network. In a network of less 

than three nodes, all nodes are configured to be coldstart nodes. For networks with 

three or more nodes, there must be at least three nodes configured as coldstart nodes. 

 To begin the startup procedure, a coldstart node transmits a CAS. It can then 

transmit frames. After the first four cycles following the CAS it is joined by the other 

nodes, starting with the coldstart nodes then the remaining nodes in the network. All 

frames sent during startup are sync frames and so all coldstart nodes should be 

configured as sync nodes. 

 After collecting startup fames, if there are no clock correction errors detected 

then a node will enter normal operation. This process varies depending on the 

configuration of the node. For further detail see the FlexRay Consortium protocol 

(2005, p157).  
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4.9 Conclusion 

 The protocol outlined by the FlexRay consortium has been discussed in this 

document. It has briefly covered basics of why the protocol is needed and how it is 

implemented. 

 As can be seen it was developed with current and future needs in mind. 

However FlexRay is still a new technology. As such there are areas where 

improvement may be gained or needed. This will become clearer as more and more 

vehicles have FlexRay systems implemented on them. The first car to do so was the 

2006 X5 (Berwanger et al. 2004; BMW Manufacturing Co. 2006) with more vehicles 

expected in 2009. As the technology matures the use of FlexRay is set to increase in 

areas such as drive-by-wire and safety systems. This makes FlexRay a very good 

research and development area. 
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Chapter 5 . Performance Analysis 

 

5.1 Introduction 

Analysis of software can improve the quality of a system leading to greater 

satisfaction from the user and ultimately to increased profit for the developers. By 

analysing a system throughout the software development stage programming errors 

can be found. This helps to identify errors at an early stage and reduces development 

time and costs. 

Likewise hardware systems need to be analysed. By performing various tests 

on a system it is possible to identify bottlenecks or shortcomings of a system. An 

example could be a real-time system that needs to transmit a message over a network 

before a given time. If the software transmits the message before the given time, the 

message may still be held up by the driver of the communication device. Likewise the 

communication hardware may be slow and the message transmission deadline may be 

missed. The analysis of systems should identify any type of shortcomings in a system. 

Possible solutions to the problems can then be made based on these observations. 

There have been a number of experiments carried out that involve the 

simulation of networking systems. This chapter will introduce system analysis 

methods and metrics that have already been implemented. It will also outline some 

research and techniques that have carried out the simulation of these communication 

networks.  

 

5.2 System Performance and Analysis 

Analysing the performance of real-time systems is an important task. In a real-

time system it is essential that deadlines are not missed. By applying performance 

analysis it is possible to optimise the system. This can reduce or eliminate the chance 

of a missed deadline. 
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System performance can be classed as response time, Worst-Case-Execution-

Time (WCET) and memory-loading. Response time is the time taken between the 

initialisation of a task and its completion. WCET is the longest time that a computer 

takes to processes information. Memory-loading is the percentage of available 

memory to the amount being used (Laplante 1992, p199).  

For a FlexRay based system these can be seen as the hardware and software 

delays. The amount of time it takes a message to pass from a task through the 

communications controller and onto the communication bus could seriously affect the 

performance of the system. Other aspects are the processing time for the tasks and the 

communications schedule. The resource utilisation, such as the amount of memory 

used, could also affect the performance of the system. Too much memory makes the 

system costs unnecessary high. Too little allocated memory and messages could be 

lost or miss deadlines. 

The performance and analysis of a system will depend on the nature of the 

system. If the system is event-triggered there will be a set of measurements and 

techniques to analyse the system. If a similar system is implemented as a time-

triggered system the techniques and measurements could differ. The different 

performance analysis techniques are outside the scope of this research.  

 

5.2.1 Response Time 

The response time of a system will depend on the implementation of the 

system. Different implementations will lead to different sources of response time 

delay. The different sources of delay will determine what actions can be applied to 

reduce the delay (Laplante 1992, p199). The following are examples of possible 

response time delays. 

For polled loop systems there are three different sources of delay: the 

hardware delay in setting the event, the time to test the event and the time needed to 

process associated events. The time it takes to process the event and to enter the 

handler routine can be significant, while the time it takes to process the handler 

routine will depend on the implementation. This can be made worse by events piling 

up on each other (Laplante 1992, pp199-200). If there are ‘n’ overlapping event the 

response time can be calculated as follows (Laplante 1992, p200): 

nfP 
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where, f is the time needed to check the event and P is the time to process the event. 

 For an interrupt system there are a number of factors that must be taken into 

account. Figure 5.1 (Laplante 1992, p201) shows the response time of an interrupt-

driven system.  

 

 

Figure 5.1: Interrupt-driven response time 

 

Interrupt system response time is affected by factors such as the time it takes a 

system to detect an interrupt and context switch time. The context switching time is 

the time it takes to transition from the normal program flow to the interrupt handler. 

The context switch time can be treated as standard executable code when calculating 

this time. In general the response time for task ‘i’ (Ri) is given as (Laplante 1992, 

p200): 

Ri= Li+ CS+ Si+Ai 

where, L is the interrupt latency, Cs is the context save time, S is the scheduling time 

and A is the execution time. 

 For a CPU with an interrupt controller and multiple interrupts the schedule 

time is negligible. When a single interrupt is used with an interrupt controller the 

schedule time can be calculated by using instruction counting (Laplante 1992, p201). 

Calculation of the latency can prove difficult however if a lower priority routine tries 

to interrupt a higher priority routine. The best response time is the time it takes the 

higher priority task to complete its routine. The worst case cannot be determined as 

the lower priority may be interrupted itself.  

When a higher priority task interrupts a lower priority task the worst case 

response time is calculated as follows; The propagation delay to signal an interrupt 

and the CPU detecting this signal (Lp) and the maximum of either the completion time 

of the longest instruction (Li) or the maximum time a lower priority task may disable 
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tasks (LD) (Laplante 1992, p202).  This can be expressed as the following formula 

(Laplante 1992, p202): 

Li= Lp + max{Li,LD} 

 

5.2.2 Worst Case Execution Time (WCET) 

The ability to know execution times of modules before the system 

implementation is important. This can help the system to meet its goals and can even 

help in the selection of hardware. During the testing it will then be possible to identify 

the problem modules (Laplante 1992, pp204-5). 

To predict or measure the WCET several methods have been developed. These 

include (Laplante 1992, pp205-210): 

Logic Analysers: This is one of the best ways to analyse execution time of a 

module. It will usually take into account CPU utilisation and hardware 

latencies. However the software usually needs to be complete. 

Instruction Counting: If the software is not complete or a logic analyser is 

not available this can be employed. It involves tracing the longest path through 

the code and adding the (maximum) execution times of each instruction. 

Pictorial Representations: By employing a bar chart with different shading 

or colouring a pictorial representation for periodic systems can be achieved. 

The width of the boxes represents the execution times while the height 

corresponds to different priority levels. Figure 5.2 (Laplante 1992, p209) 

shows an example of a timing chart. To construct this chart an interrupt must 

happen at the appropriate point. If a higher priority task interrupts a lower 

priority task it can be placed on the graph at that time. The lower priority task 

will then complete after the higher priority task execution time. If a lower 

priority task interrupts a higher priority task it is placed after the higher 

priority task end time. If this is done then an accurate representation is 

achieved. If the chart cannot be completed then the system is time-over loaded. 
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Figure 5.2: Timing chart example 

 

Calculations of the instruction times can require additional information other 

than that provided by manufacturers. This is due to accesses to I/O devices or 

memory. To achieve a more accurate time-execution analysis a simulation of the 

system can be run. This can be configured with various parameters and tests run. 

However some simulations become very difficult due to complexities in the systems. 

This is especially true when pipelined systems or RISC architectures are modelled. 

 

5.2.3 Memory-Loading 

With memory becoming cheaper and denser the analysis of memory-loading is 

seen as less of a concern. However where multiple ECUs are present, like in a car 

where there is a large distributed system, efficient memory use could lead to a large 

saving (Laplante 1992, p224). For instance in a FlexRay based system there is 

memory associated with the application and with the communications controller. 

Therefore efficient use of memory in a FlexRay based system could have a huge 

impact. Figure 5.3 (Laplante 1992, p225) shows an example of a typical memory map.  
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Figure 5.3: Standard memory map 

 

The memory loadings in a system are usually a sum of all the areas in 

memory. This can be summed up in the following formula (Laplante 1992, p224): 

MT=MP.PP+MR.PR+MS.PS 

where MT is the total memory-loading, MP,MR and MS are the memory loading for the 

program, RAM and stack areas respectively. The PP, PR and PS are the percentages of 

total memory allocated to the different areas. 

 As the program area is usually stored in ROM it may be treated like RAM for 

calculations. This is because the RAM size is usually fixed at design time. Therefore 

to calculate the memory-loading (M) for either area the following formula can be 

used: 

T

U
M =  
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where U is the number of used locations in memory and T is the total memory area 

for either the RAM or ROM.  

For the stack area the same basic formula can be used. However U is 

calculated in a different manner. For any task, s, the amount of locations that it 

requires to store the register, program counter and variables will be defined as CS. The 

maximum number of tasks that can be stored in the stack at any stage will be defined 

as tmax. This leads to a formula of U as follows: 

Us= CS. tmax 

 

5.2.4 Improving Performance Measures 

This section is based on sections 9.4 and 9.6 of Laplante (1992, pp210-224; 

pp227-230). These sections (of Laplante) focus mostly on optimising code to 

influence the performance of the system. This is due to the fact that the hardware will 

in many cases be fixed at an early stage. However hardware optimisation could lead 

to increased performance metrics. As was stated in section 5.2.1.2 simulation is an 

important tool in analysis of systems. This is one of the best ways to identify any 

shortcomings of a hardware system and could ultimately lead to improved hardware 

components. 

The basic approach behind reducing response time and time-loading is the 

identification of wasteful code. This can be due to compilers generating useless code 

or by poor programming. For instance, floating point numbers take longer to perform 

calculations on than integer values. If a programmer chooses a floating point variable 

when an integer variable can be used, then this will increase the execution time 

unnecessarily. Also there can be waste generated by certain events. An example of 

this from Laplante is that of a system that employs a temperature sensor. The 

temperature takes time to measure as the value must pass through an analogue-to-

digital converter (ADC). When this is being carried out the application may have to 

wait for a flag from the ADC to indicate it has finished the conversion. The system 

will then need to process this information and take any necessary action. However 

temperature cannot change drastically in most scenarios. Therefore it may be wasteful 

to measure temperature for example every 10ms. To ensure response times are kept to 

a minimum, all factors such as a map look-ups or a 32bit divides should be accounted 

for and steps taken if necessary to reduce the response time where necessary. 
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Some problems are not due to either poor compile time code generation or 

poor programming. It is therefore necessary to optimise the code. The methods 

outlined in this section are orientated toward real-time systems. As was stated floating 

point arithmetic is slower than integer arithmetic. By using a method called ‘scaled 

arithmetic’ a reduction in processing time may be achieved. It involves representing 

numbers as a two’s complement number with the least significant bit (LSB) acting as 

a scale factor and the most significant bit (MSB) acting as a sign indicator. Operations 

on the number can then be performed and converted to a floating point number at the 

last step. An alternative method to calculating values at run time is to contain some 

operations values in a look-up table. This involves pre-calculating values of an 

operation such as the value of Cos(x). If the range of values that x can be is known 

before run time then a look up table can be created. A drawback is, as more points are 

included more memory is taken up. Also the precision of the values may suffer when 

using a lookup table. 

To help reduce memory-loading there are a number of defined techniques. 

These include the selection of variables. If a variable is created it will take up space in 

one area of memory. If this variable holds an intermediate result the variable may not 

be necessary.  By removing this intermediate result and implementing the calculation 

in a later stage a memory register may be saved. Another form of memory loading is 

where unreachable code is generated. For example debugging code is never used at 

run time. It is therefore necessary to determine any code that will never be executed 

during run time and ensure it is not included at compile time. Other effects could be 

memory fragmentation. While not an actual form of memory loading, it can produce 

effects similar to memory-loading. Therefore if possible this should be avoided. 

Finally the use of bitfields for Boolean variables instead of a byte (or even a word) is 

also a technique for saving memory. 

 

 

5.3 Software Metrics 

Measures of performance of a system are also known as ‘metrics’. Metrics 

relate to a system designer how well a system performs then intended tasks.  This will 

also lead to more accurate conclusions being drawn from the systems output. By 
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developing a set of software metrics, an improvement in productivity, development 

time and product quality can be observed (Möller and Paulish 1993, p8). 

 

5.3.1 The Need for Metrics 

Since the 1970’s the development of computer hardware has increased at a 

rate greater than that of software. Processors can now be found with a number of 

processing cores. This value ranges from 1 to 8 microprocessor cores such as the 

processor found in the Sony Playstation 3 (one is disabled however). This has resulted 

in most bottlenecks being traced back to the software (Shepperd and Ince 1993, p8).  

This increase in hardware performance causes an increase in the time needed 

to develop programs as well as affecting reliability. More powerful computers can 

potentially run more complex and bigger programs in less time than on slower 

computers. This increase in the size of computer programs as well as their complexity 

makes them more difficult to troubleshoot. The complexity therefore affects reliability 

and this trend leads to a need to identify and eliminate any problems if possible at an 

early stage. Such problems can be bottlenecks of data being passed through a system 

or where deadlocks/livelocks may occur. Figure 5.4 (Möller and Paulish 1993, p3) 

shows how a number of factors, related to a badly written piece of software, could 

affect a company. 

Metrics can also be used as a measure of not only software performance, but 

also of system performance. This could be in the form of the number of messages that 

pass through a communications controller. Equally the number of messages (of a 

given size) per microsecond, that a software driver maybe able to pass between a 

microprocessor and a communications controller could be measured. In this case a 

bottle neck could be revealed by creating metrics for a given system.  

Figure 5.4 could be changed to reflect the poor performance as an indication 

of, for example, a loss of transmission in a communication system. The inaccurate 

estimation side of the diagram would reflect a poor system setup, for instance an 

unnecessarily long communication cycle in a FlexRay based system. This would lead 

to an overall poor system and reduced system confidence. 
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Figure 5.4: The effect of bad software on a company 

 

By employing metrics the following activities can developed to ensure a 

reduction in cost and increased efficiency in software engineering (Fenton 1991, p9): 

• Cost and effort estimation models and measures 

• Productivity measures and models 

• Quality control  and assurance 

• Data Collection 

• Quality models and measures 

• Reliability models 

• Performance evaluation and models 

• Algorithmic/computational complexity 

• Structural and complexity metrics 

Figure 5.5 (Möller and Paulish 1993, p71) shows how the use of software 

metrics can help to find software errors. It is hoped that most errors are found before a 

system goes to the customer. This helps to highlight how a detailed evaluation of a 

system can benefit any system. In Figure 5.5, KLOC stands for ‘thousand lines of 

code’. 
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Figure 5.5: Number of faults found in software  

 

By employing metrics a performance measurement will be defined. This will 

allow stake holders to gain a proper understanding of the different performance 

aspects. If the metrics have been properly defined they should also eliminate 

confusion as to what measurements are being defined by the set of performance 

measures.  

 

5.3.2 System Measurement Framework 

This section is based on the framework as described in chapter 3 of ‘Software 

Metrics’ (Fenton 1991).  It is adapted to be relevant to the research outlined in this 

thesis.  

The various states of any system that are important to identify are any 

attributes or entities that are of interest to the study. In any system these fall into the 

following categories: 

• Processes 

• Products 
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• Resources 

Anything that will be of interest in a computer application will usually be related to 

the above categories. The measurement will be an attribute or entity of one of those 

categories. 

 Attributes can be further segmented into internal or external attributes. Internal 

attributes are processes, products or resources that are related to the system. External 

attributes on the other hand are how processes, products or resources are related to the 

system and its environment. These can be seen as reliability or performance attributes. 

These phrases can be very vague and have many meanings. This makes them more 

difficult to define and quantify. Table 5.1 (Fenton 1991, p44), shows a selection of 

possible entities along with examples of both external and internal attributes for each 

entity example. External and internal attributes may or not affect each other. For 

example age should not affect the productivity of any member of a workforce, while 

time to construct a product could possibly impact the cost or quality of the product 

being developed. The examples shown in Table 5.1 are specific to a software system. 

However this can be adapted to any generic system.  

 

 



LITERARY REVIEW 

- 78 - 

 

Table 5.1: Components of software measurement 

 

5.3.2.1 Processes 

Processes are system related activities that are normally defined by time. They 

can be seen as time slices. This may be the time to develop a software function. It 

could also be the time taken as the software processes a specific task. A metric based 

on processes can be seen as: 

run task  totime

processed messages ofnumber 
 

 This measure could increase or decrease depending on other messages that are 

to be processed. It may also be affected by the size of each message. 
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5.3.2.2 Products 

These are taken as deliverables or objects based on the system. This could be 

in the form of an output a host controller produces based on information it has 

received from other nodes on a network. The node may then need to send its output 

over the network. An external attribute that can be applied to this could be the 

reliability of the system. The time to execute a function, functionality and redundancy 

are all internal attributes related to this type of product. The internal attributes can be 

a big factor in relating how good the external attributes are. 

 

5.3.2.3 Resources 

Resources are the inputs for the system. These can be number of nodes, type 

of software driver, available RAM, type of host used. As can be seen these can be 

individual system components. If there are insufficient resources for a system to 

perform correctly the level of performance will be affected. 

 

5.3.3 Performance Evaluation and Models 

Once the various attributes, entities, resources etc. have been identified it is 

important to create predictions or assessments based on these measurements. Of the 

activities listed in section 5.3.1 the ‘performance evaluation and models’ activity is 

the most relevant to this research. Again this is taken from Fenton (1991,p13,  pp57-

58).  

The performance evaluation and models activity is generally concerned with 

the measuring of efficiency. This can be a wide range of metrics, including speed of 

computation and memory requirements for given inputs. It also covers a wide range of 

performance metrics corresponding to aspects such as response times and completion 

rates. 

The efficiency attributes are mainly the focus for developers. These attributes 

are usually concerned with external attributes. For example the type of software driver 

used in a system could be an attribute. Internal attributes can also be measured even 

when the machine the application will run on, is not known.  This is done by looking 

at the complexity and type of the system being used. Reasonable analysis can be made 

by analysing of some internal attributes. 
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5.4 Previous Systems Analysis 

This section will focus on techniques that have already been used to analyse 

systems. The focus will be on FlexRay performance analysis carried out to date. This 

section describes the focus of the investigation as well the techniques used to carry 

out the analysis. It also explores other networking performance analysis techniques 

including topics such as internet traffic modelling. This should allow the reader to 

gain an insight into some of the problems faced when analysing a networking system. 

Included will be sections that look at modelling application software. This presents a 

significant problem when modelling any system. Without a particular software 

package to base an application model on, the model may not represent a real world 

system. If this is the case this could present a significant downfall for any simulation. 

 

5.4.1 FOCUS Modelling of FlexRay 

Zhang (2008) introduces the FOCUS modelling language and how it was used 

to simulate the FlexRay protocol. The FOCUS modelling language is a formal 

framework for the development of distributed systems. It consists of a range of 

techniques to formalise specifications with well-defined semantics (Zhang 2008, 

p334). 

The concept model as defined in ‘Modelling and Analyzing of a Time-

Triggered Protocol for Automotive Systems’ (Zhang 2008, pp336-339) is as follows: 

• Processors are defined as communication controllers or bus guardians. A set is 

created for each type and these are connected to synchronised clocks.  The 

connections to and from processors are unidirectional. Each processor has a 

configuration that defines its workings. 

• Messages are defined as a set that contain information such as slot, cycle and 

data. 

• An assumption of perfect synchronicity is made. The base time is a slot and it 

is assumed that the transmission and reception of messages takes no 

significant amount of time. 

• Faults can and do occur. Faults can only occur at processors. If there is a fault 

then the processor will not produce any result. A component may however 

produce a subsequent result after a fault. This is because a fault could be the 
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failure of a component to transmit a message during its slot. It may however 

send a message during another cycle. 

Figure 5.6 shows the architectural concept that was used to model the FlexRay system 

(Zhang 2008, p337). 

 

 

Figure 5.6: FlexRay conceptual architecture 

 

Based on this and the concept model, a formal specification was defined. This 

methodology and the formalisation allows for the model to be seen as components 

and their interactions using messages (Zhang 2008, p340). 

The FOCUS modelling concept as outlined by Zhang centres on the features 

used to achieve the model.  Zhang (2008) outlines the features of FOCUS as follows: 

 

‘The FOCUS notation uses operators such as union, element of and intersection as 

the syntax. Functions are also important in FOCUS and operations on streams are 

mostly defined by functions. The central concept of FOCUS is the idea of streams. 

Streams are a finite or infinite sequence of elements (also known as messages). The 

streams can also be defined as timed or untimed streams. The difference between 

timed streams and untimed streams is that timed streams contain timing information 

and untimed streams do not contain any timing information. The time is modelled in a 

discrete manner and assumes a global time divided into intervals known as ticks.’  

 

There is also an emphasis put on modular development. This means that 

FOCUS sees a component as being made up of a number of related services. To 

determine the interaction of components a logical expression is used to relate inputs 

and outputs. The specification for the various components can also be described by 
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using an assumption and guaranteed style, thus splitting the formula into two styles, 

assumption and guarantee respectively. The assumption are properties that are 

assumed to be true while guaranteed properties defines the behaviours that always 

hold if the assumption holds. 

The table below, Table 5.2 (Zhang 2008, p337), shows a summary of the type 

definitions used by Zhang to define the FlexRay protocol. 

 

 

Table 5.2: FOCUS type definitions for FlexRay 

 

Figure 5.7 (Zhang 2008, p339) shows the specification definition for 

scheduled transmission. This only allows the communication controller for a given 

slot to transmit. This is just one property needed to have the communication controller 

operate correctly. 

 

 

Figure 5.7: Scheduled transmission definition 

 

It can be seen from Table 5.2 and Figure 5.7 the use of functions and the syntax used 

in FOCUS. 
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5.4.1.1 FOCUS Based Modelling, Pros and Cons 

The FOCUS modelling approach as was stated is based on a modular 

development approach. This is a very good approach to development. This can be 

seen as function development in ‘C’. This is a standard practise as it allows for easier 

testing and debugging of small sections of code. The FOCUS approach also uses 

mathematical terms to define the operation of modules. These terms such as ‘subset 

of’ are standard mathematical terms and many developers would be familiar with it. 

This would ease the familiarisation stage of learning a new development process. 

The mathematical terms could also be seen as a drawback too. The definitions 

developed using these terms could be difficult to debug/troubleshoot. This could lead 

to a longer development phase than necessary. The work carried out by Zhang also is 

small. Larger models may take a lot of specification and computation time. Again if 

there is a problem with any definition it may be difficult to correct. 

 

 

5.4.2 FlexRay Based Performance Analysis 

Haigescu et. al. (2007) outline a framework for modelling FlexRay based 

systems. The framework they propose encompasses modelling schedulers and the 

protocol. They argue that most analysis of FlexRay based systems concentrate on the 

bus and the scheduling based on this. They also argue that the analysis of the dynamic 

segment has been overlooked. The dynamic segment is an important section of the 

FlexRay protocol. It is argued that the dynamic segment if utilised correctly will allow 

the full advantages of the protocol to be realised. 

To test their framework a model of an adaptive cruise control system was 

developed in Java with a MATLAB front end. The model was based on the diagram 

as shown in Figure 5.8 with all messages mapped to the dynamic segment (Haigescu 

et. al. 2007, p289). 
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Figure 5.8: FlexRay model system base 

 

The paper also looks at problems and difficulties associated with modelling 

FlexRay. The focus of the difficulties is on the dynamic segment. This is due to how 

the dynamic segment works and how it restricts access. For instance the dynamic 

segment can also be blocked from a node if a higher priority message consumes most 

or all the dynamic segment. These problems had to be taken into account when 

developing the framework for their model. Their framework was based on a 

mathematical framework for analysing the timing properties of multiprocessor 

embedded systems. 

The mathematical models that were used were defined by a number of 

properties such as task activation rate boundaries and number of activation times. 

Mathematical models will be looked at in more detail in section 5.4.5. For more 

information on the specific mathematical models used in the approach outlined above 

see Haigescu et. al. (2007). 

 

5.4.2.1 Mathematical Modelling, Pros and Cons 

Mathematical models attempt to define the system being modelled using 

mathematical expressions. These expressions can then be analysed to determine the 

performance of a system. In many cases the mathematical expressions can be easily 

converted into an executable computer programme using a wide range of software 

applications. This allows the developer to use the programming language they are 

most comfortable with or knowledgeable in using. Mathematical models can be found 

in a wide variety of applications. They are also used in a number of disciplines such 

as electronics, the sciences and financial areas. Mathematical models and expressions 

have also been used for a long time.  



LITERARY REVIEW 

- 85 - 

However it can be difficult to accurately define systems using mathematical 

expressions. The mathematical statement defining the characteristics of a system 

could affect its precision. As more precision is required the mathematical statement 

could become very complex. As was stated in section 5.4.1.1 larger models may take 

a lot of computation time. If there is a problem with any definition it may be difficult 

to correct. The use of functions can help with this stage. In this case a complex 

mathematical expression can be broken up into smaller sections and calculated 

separately before the final result is achieved. 

 

 

5.4.3 UML Based FlexRay Model 

In the paper by Yang et. al. (2005) they propose the use of Unified Modelling 

Language (UML) when designing system models. The paper presents a development 

platform that is based on OSEK/VDX. This includes a model design and verification 

process. This platform can be seen in Figure 5.9 taken from the paper by Yang et. al. 

(2005, p241). 

 

 

Figure 5.9: System development process. 

 

The approach was achieved by developing SmartOSEK. This is an integrated 

development environment (IDE). It is split into two modules, one for the OSEK 
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operating system and another to handle the OSEK communication. It provides a 

graphical design and verification user interaction service. 

The system model is split between a framework model and an algorithm 

model. The framework model describes the complete architecture of the system. The 

algorithm model describes the implementation of the system algorithms. The 

algorithm model development can be supported by vendor tools such as Ptolemy and 

Simulink. However the systems model is described in UML as Smart Designer 

supports UML. 

The UML system model is converted into an OSEK/VDX Model using Smart 

Designer. Figure 5.10, shows the workflow of the Smart designer (Yang et. al. 2005, 

p242). The workflow begins with the model editor which allows developers to design 

the UML model. This model is saved into an .XML file format and the model 

convertor analyses this file. The model converter then converts the UML model into 

an OSEK/VDX model by consulting the Model Database. The model database holds 

information such as objects, relationships and constraints to achieve this. The results 

converter then passes the processing results onto the Model editor. This is so that the 

UML model can be modified based on these results. The OSEK/VDX model can then 

be passed to the smart generator that creates the implementation code for the 

application. 

 

 

Figure 5.10: The Smart Designer workflow 
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When the OSEK/VDX model is complete it can be verified using the Smart 

Simulator. The results of this verification process can then be used to modify the 

system model. To do this the Smart Simulator provides a SmartOSEK COM and 

SmartOSEK OS simulator to accurately simulate the communication and OSEK 

scheduling that is compliant with the OSEK/VDX specifications. Figure 5.11 below 

shows the Smart Simulator system components (Yang et. al. 2005, p241). Note that 

there is a CAN and J1939 simulator to simulate in-vehicle network communication 

systems. There is also an interrupt simulator and actuator simulator. 

 

 

Figure 5.11: The Smart Simulator architecture 

 

Smart Simulator uses Smart Analyzer to provide timing analysis of the model. 

Built into the Smart Simulator it can deal with mixed pre-emptive and group-based 

pre-emptive scheduling models. 

  An example of a model transformed in SmartOSEK can be seen below in 

Figure 5.12 (Yang et. al. 2005, p244). Using the results of the smart simulator 

developers can modify the two model types (UML and OSEK/VDX) to refine the 

system. 
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Figure 5.12: SmartOSEK engine control system 

 

5.4.3.1 Smart Designer, Pros and Cons 

The workflow again is broken down into separate segments in this method. It 

also uses a common programming language (UML) to define the models. These  

models are converted into an OSEK/VDX model that can be analysed to highlight 

improvements. The program can also produce a set of C code files that can be used in 

a real world system. This can be a big benefit as a verified application layer can 

quickly be developed. The designer is restricted to OSEK/VDX models and this 

means that a limited number of systems can be analysed. There are also a small 

number of communications protocols that it can simulate. For protocols such as LIN, 

FlexRay or MOST another simulator would be needed. This may be overcome by 

modifying the simulator. The Smart Generator stage, while it produces a C file, may 

not always find the best solution. This code may then require a programmer to 

optimise the code. This may not always be the quickest solution. 

 

5.4.4 SymTA/S  

The papers by Heina et. al. (2005), Richter and Ernst (2006) and Racu et. al. 

(2007) present a timing analysis technique for automotive and other inter-ECU 

communications. To accomplish this they propose the use of SymTA/S, a system-

level performance and analysis tool developed by Symtavision. The timing analysis 
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approach is based on formal scheduling analysis techniques and symbolic simulation 

(Heina et. al. 2005). 

 The approach taken by SymTA/S is to view components of a system as 

entities that interact/communicate through the use of event streams. This leads to a 

well structured model with respect to architecture. It also means that the output stream 

of one entity is the input stream of another entity. The analysis can then be viewed as 

a flow of event streams.  

Local scheduling analysis algorithms are coupled using event streams. These 

are described as event models with parameters. Heina et.al (2005) describes an event 

model with periodic parameter ‘P’ and jitter, ‘J’.  They give an example of an event 

occurring with periodicity of 4 and a jitter of 1. Figure 5.13 (Heina et. al. 2005) shows 

an ‘event stream’ that stems from this definition. 

 

 

Figure 5.13: Event stream with P=4 and J=1 

 

The gray boxes represent the time where an event may occur. 

Events can be used to activate tasks. The activating event can be generated in 

a number of ways such as time based and external or internal signalling. Each task has 

an input FIFO and can write to the input FIFO of dependant tasks. In order for the 

task to execute it needs to be mapped to a communication resource. A scheduler is 

used to resolve any conflicts with a shared communication resource. Using this worst-

case or best-case time analysis can be performed (Heina et. al. 2005). In Figure 5.14 

(Heina et. al. 2005) there is a system modelled using SymTAS. In Figure 5.14 the 

system is a set top box. It receives video signal from rf_video and then sends it to a 

T.V. by means of a decoder (decryption). Internet traffic (rf_IP) can also be received 

and sent to a hard drive (hd). 
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Figure 5.14: SymTAS developed model 

 

Using these models information can be extracted from the models of a given 

schedule and automatic adaption of the event streams can be done to meet specific 

demands. 

 

5.4.4.1 SymTAS, Pros and Cons 

The benefits of the SymTAS program are very similar to those of discrete 

event analysis. These benefits are covered in more detail in section 5.4.6. 

 

5.4.5 Mathematical Models 

The work outlined in Pop et.al. (2003), Pop et.al. (2006) Pop et.al. (2007) and 

Pop (2007) concerns the analysis and optimisation of distributed embedded systems 

such as FlexRay. To achieve this, mathematical models that represent the systems 

under study were created. Tests were then run and conclusions were drawn from the 

results. 

The paper presented by Pop et. al. (2006) looks at timing analysis of the FlexRay 

communication protocol. This paper focuses on the analysis of the schedule of a 
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FlexRay node. To do this they developed an application model. The following 

definitions are some of those as presented in Pop et. al. (2006) and define the 

application model: 

• ‘A’ is a set of acyclic, directed and polar graphs – Gi(Vi,Ei) ∈ A 

• A node τij ∈  Vi is the j-th task/message in Gi 

• eijk∈Ei is an edge from τij to τik and indicates τij is an output that is also the 

input of τik 

• A task is ready when all its inputs have arrived and will issue its output after it 

terminates 

• A message is ready after its sender task finishes and is available after its 

transmission has ended 

• Messages passed over a bus are modelled as communication tasks that are 

inserted on the arc connecting the sender and receiver 

• The policy of the scheduling of the tasks is known and the type of 

transmission is also know (static or dynamic) 

• A task τij∈ Vi is assigned to execute on Node τij 

• Task τij has a worst case execution time C τij 

• Communication time of a message ‘m’ is given by Cm = 

Frame_size(m)/bus_Speed 

The tasks and messages must then be scheduled. This is different for different 

types of messages and tasks. For instance static messages can be defined in schedule 

tables while for dynamic messages the worst case execution times must be know first. 

Once the interactions between the various elements of a system are known, a 

computer program can be implemented to carry out the analysis of a system. Figure 

5.15 below shows a scheduling algorithm (Pop et. al. 2006). 

 

 

Figure 5.15: Scheduling Algorithm 
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There are many elements that define the FlexRay protocol. These are covered 

in some detail in Pop et. al. (2006). Other papers that can fall into this area are the 

papers by Kandasamy and Aloul (2005) and Bril et. al. (2006). These papers look at 

allocating and scheduling messages on a TDMA network and CAN networks 

respectively. To do this mathematical constraints and relationships are defined for the 

system under investigation. The system can then be analysed and scheduling of the 

system can be achieved. The pros and cons of mathematical modelling are covered in 

section 5.4.2.1. 

 

5.4.6 Discrete Event Simulation 

Zhu (2007) and Zhu and Jackman (2007) present a discrete event simulation 

implementation of an automotive system. Discrete event simulation focuses on the 

flow of entities around a system. These entities are routed based on attributes and 

operated on at servers. In this way the flow of information through a system may be 

modelled. This takes into account the delays in the system and can help find 

bottlenecks in a system. Chapter 7 of this thesis covers theory related to discrete event 

simulation in more detail. 

The simulation model presented by Zhu and Jackman (2007) was based on a 

gateway between a CAN network and a FlexRay network. The simulation was 

designed to accurately model a gateway that met the AUTOSAR specification. To 

build the model Simulink and SimEvents were used. Figure 5.16, shows the 

implementation of the upper layer, multicast non TP-PDU transmit model. 

 



LITERARY REVIEW 

- 93 - 

 

Figure 5.16: Network gateway Simulink/SimEvents model 

 

The use of Simulink/SimEvents allows for modular model building with 

distinct subsystems and sections of the system. It also allows for a clear flow of 

entities through a model. This can be seen from Figure 5.16 with the transmission and 

confirm functions being split into different sections of the model. The different types 

of simulation software are covered in section 7.8 of this thesis with section 7.9 

focusing on MATLAB and Simulink/SimEvents. 

 

5.4.6.1 Discrete Event Simulation, Pros and Cons 

Discrete event simulation, as its name suggests, focuses on modelling a system 

at discrete events in time. It is not concerned with continuous systems. This makes the 

use of discrete event simulation very suitable for modelling a protocol such as 

FlexRay or TTP. In these systems all communication happens at discrete points in 

time. This even happens during the ‘dynamic’ segment of the FlexRay 

communication cycle. There are also a large number of books or other reference 

material that covers the theory.  

There are drawbacks to discrete event simulation however. One such 

drawback is that most systems to be modelled are not wholly discrete systems. Many 

systems have continuous and discrete attributes. This means that the developer must 

take this into account and make a combined discrete-continuous system. An 

alternative is to model any continuous elements as discrete elements. 
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5.4.7 Automesh 

Automesh was presented in a paper by Vutturu et.al. (2006). Automesh is a 

combination of several software model simulators. The paper, by Vutturu et.al. 

(2006), focuses on the features of Automesh that allow it to be used to carryout 

performance evaluation of vehicular communications. In particular it looks at a 

broadcast network scheme that transmits information between vehicles in order to 

share data such as traffic information. The system under investigation took into 

account a number of factors such as driver behaviour and geographical topography 

along with the communication network protocol. 

The Automesh architecture therefore takes the form shown in Figure 5.17 

(Vutturu et.al. 2006). The five main modules of the Automesh system are:  

• The Driving Simulator 

• Network Simulator 

• Propigation Simulator 

• Geographic Database 

• Graphical User Interface module 

 

 

Figure 5.17: Automesh architecture 

 

The driving simulator defines the location of vehicles in the system. The 

location of the vehicles changes based on a number of factors including information 
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obtained from other vehicles. It also takes into account environmental and vehicle 

dynamics. These include speed limits and traffic light locations as well as the 

acceleration characteristics of the vehicles.  

The network simulator allows the prebuilt models of communication protocols 

to be used. The propagation simulator takes into account various factors that could 

effect the transmission of information between vehicles. This can be affected by 

factors such as vehicle positioning within a group of buildings among other things. 

This can be quite complex and as such there is an option to use simple or complex 

propagation models. As the propagation of signals can be affected by geographical 

factors there is a need to have a geographical database. This will hold information 

such as road layout and building information. This can mean a realistic system can be 

achieved. 

The final part of the system is the Graphical User Interface (GUI). This allows 

for easy configuration of the simulation scenarios as well as providing an animation 

(in real-time or offline) of the simulation events. 

 

5.4.7.1 Automesh, Pros and Cons 

The focus of Automesh is on the communication of information between cars 

in a given area. This information is intended to communicate information such as 

traffic jams for example. This will allow drivers follow a different less congested 

route to their destination.  The Automesh simulator therefore takes into account 

geographical considerations into account. This will help analyse the effectiveness of 

any wireless communications protocol. This can be useful to a designer of these 

applications. However for the research as presented in this thesis it would be an 

unsuitable tool. 

There are a number of ideas that may be useful for FlexRay based research. 

For instance, the propagation simulator could be relevant concept that could be used 

in a FlexRay model. Ideas from the different analysis techniques may be taken and 

adapted to produce a more suitable FlexRay analysis tool.  
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5.4.8 Combined Simulator System 

The paper presented by Hatnik and Altmann (2004) discuss the use of 

simulator coupling. This is to allow the combination of different models that are 

found in different tool boxes of different software packages. This allows for the best 

models to be combined, producing a better overall simulation model. The focus of the 

paper is on modelling a distributed system where data is sent from one or more 

sources over an Ethernet LAN. Figures 5.18 (Hatnik and Altmann 2004) and 5.19 

(Hatnik and Altmann 2004) show an abstract view of a distributed system and how it 

could be mapped onto the co-simulation environment. 

 

 

Figure 5.18: Abstract distributed system 

 

 

 

Figure 5.19: Co-simulation mapped example 

 

The data streams are generated and sent to C-applications connected to the 

Ethernet model. The Ethernet model is constructed in NS-2. The data processor is 

modelled in Simulink and the router is modelled in ModelSim.  Each of these models 
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must have some way to be connected. As such the communication structure for the 

whole system is as shown below in Figure 5.20 (Hatnik and Altmann 2004). 

 

 

Figure 5.20: Simulator communication structure 

 

As can be seen from Figure 5.20, the models communicate over TCP/IP and 

use sockets to do so. This allows for the different models to be run on a single 

computer or on a number of different systems. These systems could be running 

different operating systems such as Linux, Solaris or Windows. This however means 

that a coupling component of each model must be implemented and the 

synchronisation of the simulation has to be done using call backs or blocking 

read/write socket routines. 

NS-2 is a tool to simulate communication network protocols. It also allows for 

traffic generators to be included to carry out performance and throughput analysis. 

Abstract client and server models inside the model produce basic loads. These can 

create or consume packages. The models are described by a set of parameters such as 

packet size and distribution. 

The network model usually consists of a number of node models that contain 

the necessary node information such as the network stack information. To achieve a 
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co-simulator however some nodes needed to be modified. The idea of Hatnik and 

Altmann (2004) was to create interface nodes (i-nodes) to connect to simulator 

interface. They were designed to allow NS-2 to act as the master simulator. Figure 

5.21 below (Hatnik and Altmann 2004) shows their NS-2 model. 

 

 

Figure 5.21: NS-2 model showing the interface module 

 

The ModelSim implementation of the router block uses VHDL. It is also 

possible to use Verilog. VHDL and Verilog are briefly introduced in section 6.11 of 

this thesis.  

A VHDL model will usually consist of an interface and dedicated 

architectures to describe the operation of the system.  The architectures are generally 

described as behavioural and/or structural implementations. Figure 5.22 (Hatnik and 

Altmann 2004) shows the behavioural description in VHDL. In this description the 

model of the router takes header information from the data received. Based on 

information such as source and destination addresses, the model decides what to do 

with the data packet.  
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Figure 5.22: Router block model 

 

Simulink was used to implement the server model. As was already stated, 

section 7.9 of this thesis will cover MATLAB and Simulink in detail. The user mode 

Linux block shown in Figure 5.20 was implemented as real-world applications to send 

and receive ‘real data packages’. 

 

5.4.8.1 Combined Simulator Approach, Pros and Cons 

The combined simulator approach has many benefits for model developers. 

The main advantage is the ability to choose the best simulation tool for individual 

sections of the model. This will help to optimise each model subsection. It also breaks 

down the model at an early stage. This can help to create a clear concept of the goals 

to be achieved. The model could also then be run on different machines. This could 

reduce the run time of the application by spreading the computation over many 

different processors. This approach also can use an actual network to transmit data. 

This shows real-world systems can be used instead of a model representation. This 

reduces the development time due to the communication medium not being modelled. 

This can also reduce errors in the model. 
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However the use of more than one computer could be costly if you do not 

have easy access to multiple computers. It may also restrict the time when computers 

can be utilised to run the tests. For instance this could mean that the computers can 

only be used at night when they are normally idle. The development of the model may 

also be affected by this approach. This method of model development requires the 

developer or developers to be able to use a wide range of software and modelling 

techniques. If a number of developers are required to build the model it is clear that 

the cost to do this could be quite high. 

From a development perspective problems could occur when running the 

model if the simulation clock is not correctly synchronised. Other problems could be 

found also when developing code to get the different applications to communicate 

correctly. Finally as different simulation methods use different methods to solve/run 

the simulation model, difficulty could be found when implementing them together. 

 

5.4.9 Previous Analysis Conclusion 

A number of different system analysis techniques have been discussed. Each 

different technique has its own unique set of pros and cons. To ensure the research 

outlined in this thesis is carried out correctly it is important to first choose the correct 

system performance analysis technique. By choosing the most suitable technique to 

perform the FlexRay system analysis more time could be spent developing the 

necessary analysis tool and less time developing the necessary methods and tasks to 

perform the analysis. This will result in an overall better and efficient analysis system 

and ultimately a more accurate set of results.  

Each of the different analysis techniques were compared to each other and to 

the objectives of the research. These objectives included looking at the movement of 

data around a node and buffer usage. As data moves around the node various 

constraints must be met. The analysis tool should allow a system designer to analyse 

the necessary data to optimise a node. 
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 Timing 

Analysis 

Data Flow 

Analysis 

Flexibility Reference 

Material 

Dedicated 

Commercial 

Software 

Notes 

DES Yes Yes Yes Yes Yes A similar study has already been conducted using DES. A wide 

variety of software packages can be used and there is a wide 

variety of reference material available. 

Combined 

Simulator  

Yes Yes Yes Yes – separate for 

each simulator 

element 

Yes A developer would need to a good standard of a number of 

different software tools. Problems could be encountered when 

interfacing the different simulator types as well as the different 

simulators. 

SymTas Yes Yes Yes No Yes Similar to DES but with only one company offering the software. 

There is also no specific reference material not offered from the 

development company. 

Mathematical 

Modelling 

Yes Yes Yes Yes No All mathematical expressions must relate to a variable such as 

time. The accuracy of the model may be affected by poor or 

incorrect mathematical relationships. 

Automesh Yes Yes yes No No A number of elements of the Automesh such as the propagation 

simulator may be useful to the study. 

UML Not as 

standard 

Yes Yes Yes No UML models must be converted into other software languages 

before execution. This could increase development time. 

Focus 

Modelling 

Yes Yes Yes No No This has been used to model a FlexRay node already. 

Table 5.3: System analysis technique requirements summary  

 



LITERARY REVIEW 

- 102 - 

Table 5.3 shows a summary of the system analysis technique review. The 

previous system analysis techniques that have been looked at all scored highly in this 

review. This is not surprising as they have all been used in the past to successfully 

perform their intended purposes. To choose the most suitable analysis technique it was 

necessary to focus the comparison of the techniques on the tools and support available 

to achieve a successful outcome to the research. This immediately highlighted the 

combined simulator and discrete event simulation techniques. The other options were 

discarded for the most-part based on the limited knowledge and support of the 

techniques and methods used. For example mathematical models were discarded even 

though a generic programming language may have been used to achieve the ultimate 

goal but the accuracy may have been affected by poor mathematical expressions. All 

required methods and tools to simulate a FlexRay node would also need to be defined 

formally and this would increase the development time. 

Discrete event simulation has a large amount of reference material to help 

develop a model. The software available has, in some cases, been available for a 

number of years and is widely understood. This means that a large amount of work can 

be saved by using the methods and techniques already developed for any specific 

software that may be chosen. The time spent developing the model can then be 

dedicated to creating the model rather than learning how to use the modelling software. 

There are also a large number of online support forums for a number of the different 

modelling software programs.  This is an advantage as this means expert knowledge on 

the software programs can easily be consulted. 

The combined simulator approach allows the best simulation model to be 

developed. By breaking down a system into various subsystems a clear picture of the 

operation can be achieved. The most suitable modelling technique and software can 

then be chosen to model any aspect of the system. This has drawbacks however as it 

requires a developer to be knowledgeable in a number of different modelling techniques 

and software packages. The different subsystems must ultimately be combined into an 

overall system simulation model. This could lead to problems as different simulation 

techniques will represent different aspects of the system, time for example, in different 

ways. It could then prove difficult to combine all the different modelling subsystems 

and could slow the execution of the model down as one subsystem may have to wait for 

a following subsystem to complete a task. 
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 Due to the issues of the combined simulator approach it was decided that 

discrete event simulation should be used.  

 

 

5.5 Conclusion 

System performance analysis is an important step in product development. It 

forces the developer to focus on the system under development from an early stage, i.e. 

the initial development stage, through to the release of the system. However to achieve 

this, a proper set of metrics must be developed. This will allow the accurate 

interpretation of the analysis results.  By defining a good set of metrics early on in the 

design stage of a system a better product can be delivered. The metrics can be used to 

help investigate the performance of the actual system under investigation. They can also 

be applied to the project as a whole. When the project is complete, system analysis 

helps to quantify how well the system performs. This includes the execution time and 

memory requirements. It can also help to judge if the application is suitable for its 

intended purpose. 

As can be seen from section 5.4 a large number of different ways of simulating 

and analysing systems has been explored. New methodologies have also been suggested 

based on these methodologies and these have been explored. Each simulation method 

was then analysed for its suitability to conduct the research presented in this thesis. 

However there has not emerged a single method that is better than any other method. 

The method chosen should be suitable to the properties of the system under 

investigation.  

In section 5.4.6 discrete event simulation was introduced. This focuses on the 

amount of time it takes for an entity to be serviced before moving onto another part of 

the system. Where the entity goes could depend on attributes associated with the entity. 

This approach lends itself to performance analysis of data flow through a system. This 

is a big advantage for the research described in this thesis. For this reason it was chosen 

as the most suitable analytical approach. 

Other factors that were not covered however would be cost, support and 

availability, etc. of the software to be used. These were all also considered before 
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discrete event simulation was decided upon. The factors that were considered when 

choosing the most suitable software are covered in chapter 7. 
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Chapter 6 . E-Ray 

 

6.1 Introduction 

The Bosch E-Ray communications controller was developed to fully conform to 

the FlexRay protocol and has been conformance tested successfully (Robert Bosch 

Gmbh 2006a; FlexRay Consortium 2006). It is a full FlexRay IP-Module with message 

handling, has driver support from reputable companies and is one of the most widely 

used FlexRay modules (Robert Bosch Gmbh 2006a). It is available as an FPGA netlist 

or as VHDL source code. The message RAM holds up to 128 message buffers and each 

message buffer can hold up to 254 data bytes (FlexRay Consortium 2006), depending 

on the configuration of the chip for a given application. 

All the messaging functions such as message acceptance or rejection and the 

schedule for messages are handled by a message handler. The registers of the module 

can also be accessed by an external CPU via a host interface. This can then be used to 

control or change various aspects of the module. This could include the protocol 

controllers, interrupt control or access to the message RAM as well as other aspects of 

the module’s features (FlexRay Consortium 2006). 

 

 

6.2 Features 

 Some of the features of the E-Ray module are (Robert Bosch Gmbh 2006b; 

FlexRay Consortium 2006): 

1. 100% conformance with the FlexRay protocol specification v2.1. 

2. Dual channel with up to 10MBits/s data rate on each as defined in the FlexRay 

Consortium protocol (2005). 

3. Configurable message RAM. 

4. Host access to message buffers. 

5. Filtering for frame, channel ID and cycle counter values. 
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6. Support for network management. 

7. Maskable module interrupt. 

8. 8/16/32-bit generic interface for connection to customer-specific host CPUs. 

 

 

6.3 Components  

 Figure 6.1 shows a block diagram of all the components of an E-Ray module. It 

is based on the block diagram found in the Bosch product information (2006a). 

 

 

Figure 6.1: Block diagram of the workings of an E-Ray chip 

 

The red lines in Figure 6.1 represent data flowing from left to right; the blue lines are 

data flowing from right to left. The black connecting lines represent data flow in both 

directions. 
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6.3.1 Module Functions 

6.3.1.1 Generic Interface 

 This allows a customer-specific CPU to be connected to the E-Ray IP-module 

through an 8, 16 or 32-bit generic interface (Robert Bosch Gmbh 2006a; Robert Bosch 

Gmbh 2006b). 

 

6.3.1.2 Input and Output Buffers 

 These allow storage of two complete messages each. This is for transfer between 

the host and the message RAM. The input/output buffer RAM is 8448 bits in size and is 

broken down into 4*64*32 bits (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 

2006b). 

 

6.3.1.3 Message Handler 

 This controls the data transfer between the input/output buffers and the message 

RAM. It also controls the transfer between the protocol units transient buffers and the 

message RAMs (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b). 

 

6.3.1.4 Message RAM 

 The message RAM is a single-ported RAM which stores the configuration and 

FlexRay messages. The message RAM is 4,352 bits in size (Robert Bosch Gmbh 2006a; 

Robert Bosch Gmbh 2006b). 

 

6.3.1.5 Global Time Unit 

 This is a common base for both channels and provides the microtick and 

macrotick, clock synchronisation, cycle counter and the timing control for the static and 

dynamic segments of the communications cycle (Robert Bosch Gmbh 2006a; Robert 

Bosch Gmbh 2006b). 
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6.3.1.6 Network Management 

 This handles the network management algorithm (Robert Bosch Gmbh 2006a; 

Robert Bosch Gmbh 2006b). 

 

6.3.1.7 System Universal Control 

 This controls wakeup, startup and integration of the node into a cluster (Robert 

Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b). 

 

6.3.1.8 Interrupt Control 

 This controls generation of module interrupts. The interrupt flags and timers can 

be found here (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b). 

  

6.3.1.9 Frame/Symbol Processing 

 This is where the timings of frames and symbols are enforced. It also tests the 

received messages for errors such as corrupted data and syntax and sets the slot status 

flags (Robert Bosch Gmbh 2006a; Robert Bosch Gmbh 2006b). 

 

6.3.1.10 Protocol Unit 

 This is the connection to the physical medium of the network. It consists of a 

shift register and protocol finite state machine (FSM). The transient buffer RAM is 

connected to these for temporary storage. The transient buffer RAM is 8448 bits in size 

which is broken down as 2*128*33 bits (Robert Bosch Gmbh 2006a; Robert Bosch 

Gmbh 2006b).   

 

 

6.4 Register Map 

The E-Ray module has an address space of 2K bytes. This gives an address 

range of 0x0000 to 0x07FF. The address space of the E-Ray in the range 0x0000 to 

0x000F are reserved for customer specific CPUs. The function of these changes from 
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CPU to CPU. The registers are organised into 32-bit wide registers but have the ability 

to be accessed as 8 or 16 bit registers (Robert Bosch Gmbh 2006b, p18). 

 The message buffers are assigned according to the following table, Table 6.1 

(Robert Bosch Gmbh 2006b, p 18). 

 

 

Table 6.1: Message buffer assignment 

 

The message buffers can be assigned in various ways. To configure the message 

buffers the Message RAM configuration register should be set as desired. The 

maximum number of message buffers that can be assigned is 128 and the maximum 

length of the payload is 254 bytes. The number of buffers however depends on the 

configured maximum length of the system’s payload (Robert Bosch Gmbh 2006b, p18). 

As can be seen in Figure 6.2, there are three sections that the memory has been divided 

into: 

1. The static buffers 

2. The static or dynamic buffers 

3. The FIFO 

The first section is used for the static section only. The first message buffer, 

buffer 0, is used to hold the startup/sync frame or the single slot frame if the node can 

transmit one. If these are different for both channels then buffer 1 is used to store the 

other channel’s sync or single slot frame (Robert Bosch Gmbh 2006b, p18). 

The second group is used for buffers assigned to either the static or dynamic 

segments. They can be reconfigured during runtime to suit the given situation (Robert 

Bosch Gmbh 2006b, p18). 

The buffers belonging to the third and final group can be assigned to a receive 

FIFO. 
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6.5 Communication Controller States 

 This section will describe the different states the controller can be in and what 

they do. Figure 6.2, shows all possible states and the possible transitions in and out of 

each state. This diagram is based on two diagrams in the E-Ray’s user manual (Robert 

Bosch Gmbh 2006b, p105; Robert Bosch Gmbh 2006b, p110). 

 

 

Figure 6.2: Possible communications controller states 

 

Each state and some details on each are given in sections 6.5.1-6.5.9. 

 

6.5.1 DEFAULT_CONFIG 

 In the DEFAULT_CONFIG state the communications controller is stopped and 

all registers are accessible. The physical pins connecting the device to the physical layer 

are also set to an inactive state. As can be seen from the diagram, when leaving this 

state the controller can only transition to the CONFIG state and to enter this state the 

controller must be powered on/ reset or transition from the HALT state (Robert Bosch 

Gmbh 2006b, p107). 
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6.5.2 CONFIG 

 The controller will enter and remain in this state with the physical pins still 

inactive. This state is used to configure the controller and if this state has been arrived at 

through the HALT-DEFAULT_CONFIG route additional information will be available 

to the host to ensure that the setup is fault free. To exit from this state an unlock 

sequence is used using the lock register (Robert Bosch Gmbh 2006b, p107). 

 

6.5.2.1 Unlock Sequence 

 The unlock sequence is a three write process. The first write to the lock register 

is with the value 0xCE. This is followed by a second write with the value 0x31 followed 

by the third write with the command you wish i.e. READY, MONITOR_MODE, ATM 

or LOOP_BACK, to the SUC configuration register 1. 

 If the write sequence is interrupted by other write accesses between the second 

and third write then the controller stays in the CONFIG state and the process must be 

repeated (Robert Bosch Gmbh 2006b, p23). 

 

6.5.3 MONITOR MODE 

 This mode is used to receive frames and detect wakeup patterns. This state can 

be used to debug the system. An example of this is if a startup of a FlexRay network 

fails. In this mode it may only be possible to receive messages on only one channel 

(Robert Bosch Gmbh 2006b, p108). 

 

6.5.4 READY 

 This state is used to either transition to the WAKEUP state or STARTUP state. 

This is so that the node will be able to wakeup a cluster or integrate into a running 

cluster (Robert Bosch Gmbh 2006b, p108). 

 

6.5.5 STARTUP 

 Any node entering startup will follow the steps as shown in Figure 6.3 (Robert 

Bosch Gmbh 2006b, p114). 
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Figure 6.3: State diagram for node entering startup 

 

Figure 6.3 shows the standard integration method of a node. For further details 

on the startup procedure see the Bosch application note on the startup (Robert Bosch 

Gmbh 2006d), the FlexRay protocol (FlexRay Consortium 2005) and the E-Ray’s user 

manual (Robert Bosch Gmbh 2006b, pp113-7).  

 

6.5.6 NORMAL ACTIVE 

 A node entering the NORMAL_ACTIVE mode will start to communicate across 

a cluster in the way defined by the FlexRay protocol (FlexRay Consortium 2005). This 

means that the node sends and receives FlexRay frames and performs synchronisation. 

The host interface is also operational (Robert Bosch Gmbh 2006b, p118). 
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6.5.7 NORMAL PASSIVE 

 The NORMAL_PASSIVE state is entered when the error state changes from 

active to passive. In this mode frames are received over the physical medium but no 

transmissions occur from the node. The host interface will also be operational and clock 

synchronisation will still occur (Robert Bosch Gmbh 2006b, p118). 

 

6.5.8 HALT 

This state is entered when a freeze command is received in any state; a halt state 

is entered when the controller is in either the NORMAL_ACTIVE or 

NORMAL_PASSIVE states or when exiting from either the NORMAL_ACTIVE or 

NORMAL_PASSIVE state because the counter for the clock correction failed limit was 

reached. The state that the controller was in prior to entering the HALT state is held in 

the CC Status Vector register (Robert Bosch Gmbh 2006b, p108). 

 

6.5.9 WAKEUP 

 This section describes the operation of the controller’s states for wakeup. For a 

full description of the wakeup procedure of a FlexRay node see the FlexRay protocol 

(FlexRay Consortium 2005) and the Bosch wakeup application note (Robert Bosch 

Gmbh 2006c). 

 

6.5.9.1 WAKEUP STANDBY 

 This state allows transition from various other states to the WAKEUP_LISTEN 

or READY states. 

 

6.5.9.2 WAKEUP LISTEN 

 In this state the controller listens for wakeup patterns (WUP) sent from other 

nodes in the cluster. The state is controlled by two timers. One will allow the wakeup of 

a cluster faster in a non-noisy environment while the other is used where noise-

interference is an issue (Robert Bosch Gmbh 2006b, p111). 
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6.5.9.3 WAKEUP SEND 

 This state transmits a wakeup pattern while checking for collisions on a given 

channel. After successful wakeup of a cluster the node must enter the startup mode 

(Robert Bosch Gmbh 2006b, p111). 

 

6.5.9.4 WAKEUP DETECT 

 This state attempts to indentify the reason a wakeup collision was detected. If it 

cannot determine another wakeup attempt by another node or ongoing communication 

on the channel as the reason for a collision within a given time, the node leaves this 

state and the reason for the collision is set as unknown (Robert Bosch Gmbh 2006b, 

p111). 

 

 

6.6 Error Handling 

 The implemented error handling procedure is intended to allow all non-affected 

communicating nodes to continue operating as normal if a single node experiences a 

lower layer error (Robert Bosch Gmbh 2006b, p103). Table 6.2 (Robert Bosch Gmbh 

2006b, p103), shows the error modes along with how the controller behaves during this 

time. 
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Table 6.2: Error modes 

 

Below is a detailed description of how the controller deals with various events. 

 

6.6.1 Freeze Command 

 If a severe error is detected by the host then it can transition the controller to the 

HALT state from any other state by using the FREEZE command. The protocol 

operations control state from which the HALT state was entered can be read from the 

CC status vector register (Robert Bosch Gmbh 2006b, p104). 

 

6.6.2 Halt Command 

 The host may from time to time wish to stop the controller by using the HALT 

command. This will stop communication on the node and if the controller is in 

NORMAL_ACTIVE or NORMAL_PASSIVE mode this will happen at the end of the 

current communication cycle. If this command is used in any other state the command 

will not be accepted. In order to shut down the entire FlexRay network a higher level 

protocol should be used (Robert Bosch Gmbh 2006b, p104). 

 

6.6.3 Clock Correction Failed 

 When the counter for the clock correction failed reaches first the ‘maximum 

without clock correction passive’ value the controller will transition from the 

NORMAL_ACTIVE to the NORMAL_PASSIVE state. If the ‘maximum without clock 

correction fatal’ limit is reached then the controller will transmit from either 

NORMAL_ACTIVE or NORMAL_PASSIVE to the HALT state. 
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 The counter allows the host to monitor the inability of a node to perform clock 

correction. It is incremented at the end of the odd communication cycles if either the 

rate or offset correction term is missing. If they are both detected then the counter is set 

to zero. It is also reset to zero if the controller enters the READY or 

NORMAL_ACTIVE state and will stop incrementing once the ‘maximum without 

clock correction fatal’ limit is reached (Robert Bosch Gmbh 2006b, p103). 

 

6.6.4 Passive to Active Counter 

 This counter defines the number of cycle pairs that must have valid clock 

correction terms before the controller is allowed to transition from 

NORMAL_PASSIVE to NORMAL_ACTIVE. If this is set to zero then no transition is 

allowed (Robert Bosch Gmbh 2006b, p104). 

 

6.6.5 Parity Checking 

 An even parity check is used to ensure integrity of data stored in the RAM 

blocks. The RAM blocks have a parity generator and checker attached as shown in 

Figure 6.4 (Robert Bosch Gmbh 2007, p7) which locally generates the parity bit and 

stores it with the data (Robert Bosch Gmbh 2007, p6). This is checked each time data is 

read from the RAM blocks but the parity checker is not able to detect which bit is 

incorrect and cannot repair errors. If an error is detected an associated flag is set (Robert 

Bosch Gmbh 2007, pp9-10). 
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Figure 6.4: RAM blocks with local parity generators and checkers 

 

It should be noted that the generators and checkers are not part of the RAM but 

lie between the core and RAM (Robert Bosch Gmbh 2007, p6). 

 Errors can be caused by a faulty RAM cell. This may just be a temporary fault 

and not a permanently damaged logic cell. However as a cell will be updated at a 

regular interval then the problem may be self-curing or may lead to the application 

using an error correction routine on the detected block. If a parity error is detected the 

transmission of the frame will be blocked (Robert Bosch Gmbh 2007, p12). 

 For a FIFO buffer when a parity error is detected then all data to be stored in the 

message buffer is lost. If the error is detected in the header section however, the FIFO 

needs to be reconfigured (Robert Bosch Gmbh 2007, p14). 

 To correct the problem, if one exists, then through a word-wise read the word 

which is affected can be found. The error can then be bypassed through reconfiguration 

of the data pointer to the message buffer in question or through reconfiguration of the 

message buffer if the error is detected in the header section of the message RAM 

(Robert Bosch Gmbh 2007, pp14-5). 
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6.7 Message Handling 

 A message handler controls data transfers between the input/output buffers and 

the message RAM as well as the message RAM and the transient RAMs. All the access 

to the RAMs is done as 33 bit accesses. This is because there are 32-bits of data and an 

additional parity bit.  The use of the message handler is to avoid any possible conflict 

between the host and the channel protocol controllers attempting to access  the message 

RAM (Robert Bosch Gmbh 2006b, p130). 

 The message RAM is scanned according to the following table, Table 6.3 

(Robert Bosch Gmbh 2006b, p130). 

 

 

Table 6.3: Message RAM scan 

 

The scan is terminated at the start of the network idle time section of the 

communications cycle even if the scan is not completed. The scan starts during slot 1 of 

the actual cycle starting with message RAM slot 2 with the scan of the first message slot 

done in the previous cycle. This check on the first slot is done in parallel with the scan 

of the message RAM to determine if there is a message buffer configured for slot 1 of 

the next cycle (Robert Bosch Gmbh 2006b, p130). 

 If the application needs to operate with more than 128 different messages then 

the static and dynamic buffers can be reconfigured during the operation of the node. To 

do this the header section of the respective message buffers is updated using the write 

header section 1 register. 

 If the reconfiguration of the message buffer is done before the transmission or if 

the buffer is updated the message is lost (Robert Bosch Gmbh 2006b, p130).  
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6.7.1 Host Access to the Message RAM 

 The host access to the message RAM occurs through the input and output 

buffers. It is done by the host writing the number of the target/source message buffer to 

the input buffer command request or output buffer command request registers (Robert 

Bosch Gmbh 2006b, p132). 

 The buffers are built as a double buffer structure so that the host can access one 

half of the buffer while the other half (the shadow) is accessed by the message handler 

to allow transfer between the message RAM and input/output buffers (Robert Bosch 

Gmbh 2006b, p132). Figure 6.5 (Robert Bosch Gmbh 2006b, p132), shows the 

connections between the message RAM, the message handler and the Host. 

 

 

Figure 6.5: Host – message RAM interface 

 

6.7.2 Input Buffer to Message RAM transfer 

 When the host writes to the target message buffer in the message RAM by using 

the command register, the input buffer host and shadow are swapped as in Figure 6.6 

(Robert Bosch Gmbh 2006b, p133). 
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Figure 6.6: Double buffer structure input 

 

This is in addition to the input buffer command mask and input buffer command 

register bits being swapped as in Figure 6.7 (Robert Bosch Gmbh 2006b, p133). 

 

 

Figure 6.7: Swapping input buffer command mask & input buffer command register bits 

  

The message RAM can now be filled with the data from the input buffer shadow 

while the host is still free to write to the input buffer host. When the write operations 

have finished and been indicated the process can start again (Robert Bosch Gmbh 2006b, 

p133). 

 

6.7.3 Output Buffer to Message RAM Transfer 

 The message RAM is read by the host writing to the output buffer command 

register to start transfer as defined by the output buffer command mask register. The 

output buffer is a double buffer, as can be seen in Figure 6.8 (Robert Bosch Gmbh 

2006b, p135). This is structured like the input buffer to facilitate faster data transfer.  
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Figure 6.8: Double buffer structure output 

 

 The host and shadow buffers are swapped when a transfer request is made by the 

host. Some output buffer command mask and output buffer command register bits are 

also swapped as in Figure 6.9 (Robert Bosch Gmbh 2006b, p135). 

 

 

Figure 6.9: Swapping output buffer command mask & output buffer command register bits 

 

The bits from the output buffer command mask and output buffer command register use 

internal storage to swap the bits as can be seen in Figure 6.9. 

 

6.7.2 Protocol Controller Access to Message RAM 

 The transient buffer RAMs are used to buffer data before transfer between the 

two FlexRay protocol controllers and Message RAM takes place. They consist of a 

double buffer each so that one can be assigned to the protocol controller and the other 

one is accessible to the message handler. This allows for greater throughput as a 

message being received can be stored while the message handler writes a message to 

‘Transient Buffer Tx’ buffer at the same time (Robert Bosch Gmbh 2006b, p138).  

Figure 6.10 (Robert Bosch Gmbh 2006b, p138), shows the layout of the transient buffer 

RAMs along with connections in and out of it. 
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Figure 6.10: Transient buffer RAMs 

 

 

6.8 Message RAM 

 As has been stated earlier access to the message RAM is handled by a message 

handler to avoid conflicts. It can store up to 128 messages depending on configuration 

and payload lengths. 

 The message RAM is organised as 2048 x 33 (= 67,548) bits as each data word 

is 32 bits wide with an added parity bit for protection. To achieve the flexibility that 

FlexRay demands the RAM is broken up into a header partition and data partition 

(Robert Bosch Gmbh 2006b, p139). This is shown in Figure 6.11 (Robert Bosch Gmbh 

2006b, p139). 
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Figure 6.11: Message RAM configuration example 

 

 The header partition is used to store the header section of each message, is made 

up of 4 x 32+1 bit words and contains amongst other things a pointer to the data section 

(Robert Bosch Gmbh 2006b, p139). 

 The data section has a maximum of 30 message buffers of 254 data bytes in 

length each. This can be changed depending on configurations i.e. if the data section 

was 128 bytes then the maximum number of message buffers would be 56 or 128 with a 

data section of 48 bytes (Robert Bosch Gmbh 2006b, p139). 

 The header section is broken down as shown in Figure 6.12 (Robert Bosch 

Gmbh 2006b, p140).  
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Figure 6.12: Header segment in message RAM 

 

 Each header word is broken down as follows (Robert Bosch Gmbh 2006b, 

pp141-2): 

Header 1:  

• Frame ID 

• Cycle Code 

• Channel filter configuration (CHA, CHB) 

• Transmit/receive configuration (CFG) 

• A payload preamble transmit bit (PPIT) 

• A transmit mode configuration (TXM) 

•  Message buffer interrupt enable (MBI) 

Header 2: 

• Header CRC 

• Payload length configured in terms of 2-byte words 

• Payload length received in terms of 2-byte words 
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Header 3: 

• The data pointer 

• Receive cycle count 

• A received on channel indicator (RCI) 

• A startup frame indicator (SFI) 

• A sync frame indicator (SYN) 

• A null frame indicator (NFI) 

• A payload preamble indicator (PPI) 

• Reserved bit (RES) 

 

Message Buffer Status 

 This is the final header section and is made up of: 

• A valid frame received on channel A (VFRA) bit 

• A valid frame received on channel B (VFRB) bit 

• A syntax error observed on channel A (SEOA) bit 

• A syntax error observed on channel B (SEOB) bit 

• A content error observed on channel A (CEOA) bit 

• A content error observed on channel B (CEOB) bit 

• A slot boundary violation observed on channel A (SVOA) bit 

• A slot boundary violation observed on channel B (SVOB) bit 

• A transmission conflict indication on channel A (TCIA) bit 

• A transmission conflict indication on channel B (TCIB) bit 

• An empty slot on channel A (ESA) bit 

• An empty slot on channel B (ESB) bit 

• A message lost (MLST) bit 

• Cycle count status 

• A received on channel indicator status (RCIS) 

• A startup frame indicator status (SYNS) 

• A null frame indicator status (NFIS) 

• A payload preamble indicator status (PPIS) 

• A reserved bit status (RESS) 
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The data partition starts after the last word of the header section and the data 

sections are stored as in Figure 6.13 (Robert Bosch Gmbh 2006b, p143). This example 

shows a data section with an odd number of 2-byte words and thus the last 16-bits in the 

32-bit word are unused (Robert Bosch Gmbh 2006b, p143). 

 

 

Figure 6.13: Data partition in message RAM example 

 

 The beginning and end of the data section are determined by the data pointer and 

payload configuration length configured in the header section. This makes it a flexible 

system and suitable for FlexRay (Robert Bosch Gmbh 2006b, p143). 

 

6.8.1 Message RAM Configuration  

 To define how many buffers are assigned to the static and dynamic segments as 

well as the FIFO, the message RAM configuration register should be configured by the 

application programmer (Robert Bosch Gmbh 2006e, p6). 

 Some of the bits to be configured in this register are the first dynamic buffer, 

first buffer of the FIFO and the last configured buffer (Robert Bosch Gmbh 2006e, p6). 

These are also known as FDB, FFB and LCB respectively and referred to as such in 

Table 6.1 a the start of this chapter. 

 To define the size of the FIFO the FFB bits and LCB bits are used and if a 

dynamic buffer or buffers are configured then the value stored in the FFB bits should be 

greater than that of the value in the FDB. To disable the dynamic buffers the FDB value 

should be greater than 128 and to disable the FIFO the FFB value should also be greater 

than 128. LCB must also be greater than FBD and FFB as it is not possible to put the 
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FIFO header section or dynamic header section before the static section.  It should be 

noted that there is no checking in place that the configuration is valid and as such it is 

up to the programmer to ensure the setup meets the specifications (Robert Bosch Gmbh 

2006e, p8). 

 The first buffer, buffer 0, can be used to store a startup frame, sync frame, a 

single slot frame or a normal frame. This is defined by various registers. If the value of 

the startup, sync or single slot frame is different for channels A and B then the second 

buffer can be assigned to channel B and the first buffer is used for channel A (Robert 

Bosch Gmbh 2006e, pp8-9). 

 

 

6.9 Filtering and Masking  

 Filtering is done by comparing the configuration of message buffers against slot, 

cycle and channel ID values. A message buffer will only be updated or transmitted if 

matching occurs (Robert Bosch Gmbh 2006b, p121). The combinations for filtering that 

are permitted are (Robert Bosch Gmbh 2006b, p121): 

• Slot counter & channel ID 

• Slot counter , cycle counter & channel ID 

 

6.9.1 Slot Counter Filtering 

 The header section of the transmit buffer and the receive buffer holds a frame ID. 

The frame ID from the message buffer is compared to the slot counter values in order to 

assign transmit and receive buffers to the slot. If two message buffers have the same 

frame ID then the lowest message buffer will be used if the cycle counter filter is the 

same (Robert Bosch Gmbh 2006b, p121). 

 

6.9.2 Cycle Counter Filtering 

 Again each message buffer will hold a cycle set field in the header section. If a 

match is observed this is due to one of the elements of the cycle set being matched. The 

set of cycle numbers belonging to the cycle set is determined as shown in Table 6.4 
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(Robert Bosch Gmbh 2006b, p122) with an example shown in Table 6.5 (Robert Bosch 

Gmbh 2006b, p122). 

 

 

Table 6.4: Cycle set definition 

 

 

Table 6.5: Examples of cycle sets 

 

 Received messages are only stored if the cycle counter value during which the 

message is received matches an element of the cycle set and the other filtering criteria 

are met (Robert Bosch Gmbh 2006b, p122).  

 Transmit frames are transmitted on the desired channel or channels when an 

element in the cycle set matches the cycle counter value and other filtering criteria are 

met. It should be noted that sharing of a static time slot, across a number of different 

nodes, by using cycle counter filtering is not allowed (Robert Bosch Gmbh 2006b, 

p122). 

 

6.9.3 Channel ID Filtering 

 Each message buffer has a filtering field for the channel in the header section 

that uses 2-bits. For receive buffers it acts as a filter while transmit buffers use it as a 
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control field (Robert Bosch Gmbh 2006b, p123). This can be seen in Table 6.6 (Robert 

Bosch Gmbh 2006b, p123). 

 

 

Table 6.6: Channel filtering bit configurations 

 

 The frames to be transmitted will be sent out according to this configuration if 

other filtering criteria are met. Received frames will be stored if they are received on the 

correct channel as specified by the table and other filtering criteria are met. Only frames 

transmitted or received during the static segment of the communication cycle are 

allowed to be configured for both channels. When dynamic segment frames that are set 

up so both bits of the channel ID filter are set as a logic one then this will be treated as 

though the bits were both set as a logic zero, i.e. ‘no transmission’ (Robert Bosch Gmbh 

2006b, p123). 

 

6.9.4 FIFO Filtering 

 The filtering for the FIFO is different to the message RAM filtering. This uses a 

rejection filter and filter mask.  The filter consists of a channel, frame and cycle counter 

filter. The cycle counter filter determines the cycle set to which the other filtering is 

applied and all other frames in other cycles are rejected. A valid received frame is stored 

in the FIFO if the rejection filter and rejection filter mask do not correspond to the 

frame and there is no matching receive buffer (Robert Bosch Gmbh 2006b, p123). 

 

 

6.10 FIFO 

 The FIFO is a First-In-First-Out cyclical buffer. The buffers belonging to it are 

found one after another in the register map. The message RAM configuration register 

defines the first and last register of the FIFO using the values in the FFB bits and LCB 
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bits with a maximum of 128 buffers for the FIFO (Robert Bosch Gmbh 2006b, p128; 

Robert Bosch Gmbh 2006f, p6). 

 The FIFO is used to store incoming frames that do not have a dedicated receive 

buffer. It also treats null frames that are not filtered out as data frames and stores them 

(Robert Bosch Gmbh 2006b, p128; Robert Bosch Gmbh 2006f, p6). 

 There are two index registers associated with the FIFO, and these are the put 

next index (PIDX) register and the get next index (GIDX) register. When a new 

message is to be stored in the FIFO it is stored in the buffer pointed to by the PIDX 

register and this is then incremented. The GIDX register is used to point to the next 

buffer which is to be read and it increments when a buffer is read (Robert Bosch Gmbh 

2006b, p128; Robert Bosch Gmbh 2006f, p7). 

 If the PIDX register reaches the value of the GIDX then the FIFO is filled. If a 

new message is written before the oldest message is read this will cause an overrun flag 

to be set (Robert Bosch Gmbh 2006b, p128; Robert Bosch Gmbh 2006f, p7). Three of 

the possible states the FIFO can be in are shown in Figure 6.14 (Robert Bosch Gmbh 

2006b, p129) below.  

 

 

Figure 6.14: Empty, not empty and overrun states 

 

When the PIDX and GIDX registers differ a FIFO not empty status is detected 

(Robert Bosch Gmbh 2006f, p7). 

 To access the FIFO outside the CONFIG and DEFAULT_CONFIG states 

involves the host triggering a transfer from the message RAM to the output buffer by 

writing the first message buffer of the FIFO to the output buffer command request 
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register. The message handler then will transfer the message pointed to by the GIDX 

register to the output buffer and the GIDX register is incremented (Robert Bosch Gmbh 

2006b, p129). 

 

  

6.11 Packaging 

 As the E-Ray IP-module is described in VHDL there is no specific packaging 

designed. It is left to the company who buys the license for the E-Ray module to 

package it and sell it on. This means that some features found in a certain E-Ray chip 

may not be available in another by a different manufacturer or indeed the same 

manufacturer.  

For instance the Fujitsu MB88121 is a 64 pin low profile quad flat pack chip and 

amongst other things also contains a DMA support unit and a Serial Peripheral Interface 

(SPI) interface possibility (Fujitsu Microelectronics Europe GmbH 2007).  Both of 

these additions were implemented by the manufacturer as the E-Ray module does not 

have specifications for either. 

 

6.11.1 VHDL 

VHDL is a hardware description language. It stands for Very High Speed 

Integrated Circuit (VHSIC) Hardware Description Language (HDL). It was developed 

in the 1970s and 1980s as part of the U.S. Department of Defence VHSIC program. It 

was initially intended to be used to describe complex circuits. This was to help make the 

designs of hardware modules easier to understand by different contractors. It was also 

designed to allow simulation of the circuit designs. In 1996 IEEE 1076.3 became a 

VHDL synthesis standard based on the IEEE 1164 and IEEE 1076 standards. Verilog is 

another type of HDL used whose programming syntax is considered less verbose but 

lacks features when compared to VHDL (Shakill 1996). 
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6.12 Conclusion 

 The E-Ray IP-module developed by Bosch is a very useful and flexible device. 

It is fully compliant with the FlexRay protocol v2.1 and allows customer specific CPUs 

to connect to it. This makes it one of the most common FlexRay protocol IP modules 

available.  

 It can be seen that there are a number of aspects that must be defined in order for 

the E-Ray chip to function as intended. These setup parameters could have an enormous 

effect on the performance of the node. A number of errors could be present in a system 

if the node is not setup correctly. These include missed deadlines or loss of data due to 

data being stored incorrectly or not accessed in time. It is therefore useful to be able to 

test the configuration. The research outlined in this thesis makes this process easier. 
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Chapter 7 . Discrete Event 

Simulation 

 

7.1 Introduction 

Testing of systems can be costly in both time and money. If a new product is 

being developed and a prototype is run for the first time it may not work as expected. 

This can lead to the design team spending time just diagnosing problems, especially if 

the system is large and complicated. Simulating a system before a real world system is 

developed has become popular due to the nature of simulation; it can be repeated may 

times and the data obtained from it easily collected. If a problem arises a computer 

model can be changed quickly and cheaply when compared to a prototype.  Banks et al. 

(2001, p3) sum up simulation as the imitation of a real-world process or system over 

time. This can be done by hand or on a computer, with an artificial history of the system 

being logged. From this history observations on how the system works and how it 

behaves can be observed. 

Woolfson and Pert (1999, pv) wrote that experiments controlled by computer, 

with the data logged and analysed by a computer are allowing an increase in the range 

and the accuracy of what can be done. 

However simulation is not only restricted to new products but can also be 

applied to existing products; this is because technically simulation is used to produce 

results from a model without experimenting with a real-world system (Ripley 1987, p1). 

It can be used by an engineer or scientist to get a better understanding of the behaviour 

of a system and to pinpoint any areas for improvement. It should also be stated that 

simulation is not necessarily restricted to engineering and scientific applications. 

Simulation has contributed to problem solving in the areas of economics, management, 

as well as in social and behavioural sciences (Neelamkavil 1987, pxv.). This chapter is 

written in terms of discrete event simulation (DES) specifically. 
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7.2 Systems 

 It is important when introducing the topic of system simulation to first 

understand what is meant by the term ‘system’. A system is the key concept of 

simulation in terms of understanding what is to be achieved. It is defined as a collection 

of entities (elements of a real world system, such as parts of a cars engine) that interact 

with each other in a manner to accomplish some goal (Law and Kelton 1982, p2).   

The definition above is a very good general definition of what a system is. In a 

simulation setting a system is defined by the particular area of study. A system 

describing a communication protocol in an automotive application will be defined by 

what particular protocol is used and what applications it ise designed to run. It is not 

necessary to incorporate the type of car or who will be driving the car in the system. It is 

important however to include any application using the system and the communication 

method as they work together to form the communication system.  

 In the study of a system a few terms must be defined. These will help us clarify 

the idea of a system. The terms are as follows (Banks et al. 2001, p10): 

• Entities : These are objects of interest in the system i.e. customers in a bank. 

• Attributes: These are defined as properties of entities i.e. bank balance. 

• Activities: These are time periods of specific length i.e. checking a bank balance. 

It is the case that the collection of entities that might encompass a system used in one 

study might just be a subset of the system used in another study (Law and Kelton 1982, 

p2). 

 Entities will also have a particular set of ‘states’ associated with them. For 

instance in a communications application the number of frames a node must send, the 

time it takes to send a single frame or the number of frames that can be sent by a 

particular node at any given time. Therefore states can be seen as variables describing 

the system at any stage of the study (Banks et al. 2001, p10).  

Events can occur within a system or come from the environment outside the 

system and change the state of the system. In the communications applications example 

an event could be the completion of transmission of a frame from a node or an error 

check which returns no errors, and so the number of frames to be transmitted will 

decrease. The generation of new data to be transmitted from a sensor could also be an 

event. 
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7.2.1 Continuous and Discrete Systems 

 Systems are also broken down into discrete and continuous system types. Figure 

7.1 shows a discrete system variable and Figure 7.2 shows a continuous system variable 

(Banks et al. 2001, p12). 
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Figure 7.1: Discrete-system state variable 

  

  

Figure 7.2: Continuous-system state variable 

 

 Discrete system simulation involves modelling a system as it changes over a 

period of time. The state variables will change at defined points in time (Law and 

Kelton 1982). To describe this Law and Kelton (1982, p4) described a barber shop or 

information desk at an airport. In this example customers arriving have to wait their turn 

in a queue and this happens at discrete points. After each customer is serviced the next 

customer can be serviced and so the number of customers in the queue will decrease but 

again at discrete points in time. 

 A continuous system is one where the variables change in an analogue fashion. 

This means that the variables change continually with respect to time. An example of 

this (Banks et al. 2001, p10) would be the level of water behind a dam. The water level 
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behind the dam will be continually changing as it is subject to weather i.e. precipitation 

and evaporation, which will cause the level of the water to rise and fall. The water level 

will also be subject to the operation of the dam and how much water is allowed to pass 

in the production of electricity. 

 In practical applications it is not always convenient to model a system as either 

discrete or continuous since real world systems rarely have attributes that are wholly 

discrete or continuous. Usually a system is a combination of both but one definition will 

encapsulate the majority of the operation of the system enough to classify it as either 

discrete or continuous (Banks et al. 2001, p10). However it is sometimes necessary to 

construct a system with aspects of both, and these simulations are called ‘combined 

discrete-continuous’ simulations (Law and Kelton 1982, p47). 

 

 

7.3 Simulation Process 

 The steps in a simulation study are shown in Figure 7.3 (Banks et al.2001, p16).  

The main steps can be summarised as follows: 

1. Problem identification/formulation 

2. Building of a model 

3. Model verification 

4. Model validation 

5. Experimental tests 

6. Results Analysis 

These steps are discussed in Chapter 10. The problem identification/formulation 

stage will identify the need for a simulation model to be constructed and define the 

problem statements. This is an important stage of simulation but outside the scope of 

this chapter as it is the job of the person conducting a study to identify the need to 

simulate a system.  
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Figure 7.3: Simulation study steps 

 

 

7.4 Building Models 

 To simulate a system requires the building of a model of the system. This is due 

to the fact that it is not always possible to easily change a system and monitor the 

changes. The system under investigation could be an existing real-world application that 

will be modified or a new design for a product in development. In both cases it could be 

costly to build a prototype of the new system just for a major design flaw to be present. 

 The model of a system should be comprehensive enough to allow conclusions 

to be drawn from the simulation output data. The idea of a model is that it is a 

simplified version of the system under investigation (Banks et al.2001, p13). As such a 

model is described as having entities, attributes and activities just as a system. The 
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difference between a real-world system and a model is that a model only contains 

components that are of interest to the study (Banks et al. 2001, p13).  

Models can be as detailed as the designer wants them to be. Woolfson and Pert 

(1999, p1) give an example of a child’s toy car. In this example they describe how a 

simple model may be made out of clay, with disks for wheels and lines etched in the 

side to represent doors of the car. This will do as a child’s toy car but it does not have 

all the features a real car does. No matter how many extra features are added to make it 

more like a car, the only truly accurate representation of a car is a real car. Therefore the 

designer must include only those attributes that are relevant to the area of study. 

 Models fall under different classifications. Models may be mathematical or 

physical, with mathematical models being broken down into further subcategories. A 

simulation model is a type of mathematical model that can be Monte Carlo simulation 

(static), dynamic, deterministic or stochastic (random), discrete or continuous (Banks et 

al. 2001, p13).  Static models deal with simulations at a specific point in time while a 

dynamic model is used for simulating systems as they change over time. A system that 

has behaviour in terms of fixed inputs and that will produce a single set of outputs is 

described as deterministic. A random model is used where the inputs are random and as 

such will produce a random set of outputs. Discrete models have inputs that change at 

given points in time while a continuous model has an ever changing input (Banks et al. 

2001, p12).  Figure 7.4 shows one possible breakdown of the different types of 

simulation models. 

 



LITERARY REVIEW 

- 142 - 

 

Figure 7.4: Simulation models 

 

7.4.1 Hardware in the Loop Simulation 

A consideration when building a simulation model is that of using ‘Hardware in 

The Loop Simulation’ (HILS). In many systems an output is not directly related by a 

simple mathematical formula. For instance a simple system circuit is that of a 

potentiometer connected to an Analogue to Digital Converter (ADC) and an LCD 

digital display. As the position of the potentiometer changes so too does the ADC 

output value which is then displayed on the LCD screen. This is easily tested by simply 

turning the potentiometer and checking the display. Real world systems may contain 

this simple circuit as part of an overall more complicated system.  

The success of complicated systems can be dependant on adequate testing. 

Testing becomes more and more complicated for real-word systems where multiple 

embedded systems are involved. The output of a testing procedure may be formed by a 

microcontroller that receives information form a number of different sources. To 

adequately test such a system would mean stopping the test at a number of points in 

time and observing if the correct output was produced. This can become difficult and 

time consuming as each output must be verified based on every possible input that is 
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received from the different system elements. It is made even more difficult if each 

subsystem is not easily stopped to allow the inputs and outputs to be checked. This will 

mean testing must be carried out in real time (Gomez 2001).  

HILS is a technique that allows a system to be ‘fooled’ into thinking it is 

operating in the real world. An example of such a system is a vehicle, missile or 

aeroplane as all of these examples will receive multiple inputs and an onboard 

microcomputer should produce a desirable output. A HILS system will therefore fool an 

aeroplane into thinking its flying or a vehicle into thinking that the engine is running 

and that the vehicle is in motion. A HILS simulator will then need to provide all inputs 

for the system to allow all the subsystems of the overall system under test to function 

correctly (Gomez 2001).  This can allow a developer to by-pass the model building 

stage if done correctly. 

Gomez (2001) highlights the difference between a HILS approach and that of 

simulating a control algorithm using MATLAB. A test of the control algorithm using 

MATLAB will be run using a PC with ‘faked’ inputs to the system and observe the 

output using the same PC. The output obtained will be represented as a graph or set of 

numbers but it cannot produce a real-world hardware signal. The control algorithm will 

also be run in an environment that does not represent real-world time. Instead the 

control algorithm will be simulated based on a simulation clock that may have 

correlation to real-world time. A HILS test has the advantage of allowing the real 

hardware to be tested while running the real-world software and in real time. Figure 7.5 

(Xun et. al. 2008) shows an example of a flight control HILS system. In this system the 

simulation computer controlling the mathematical models provides the external 

environment for a flight control system. 

 

 

Figure 7.5: Flight control HILS system 
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The advantages of using HILS relates to a number of factors such as high 

precision. For systems where safety could be an issue (such as passenger safety in a 

vehicle or aircraft), testing the different systems requires a high precision and 

confidence in the different component outputs. HILS provides a cheaper alternative to 

testing a complete aircraft or vehicle system (Xun et. al. 2008). HILS will then also 

allow any prototype of a system to be built at a later stage in the development cycle 

(Zhu et. al. 2009). Hwang et. al. (2006) highlight how a vehicle or aircraft may be tested 

in a safer manner by using HILS. When a vehicle is being tested using HILS, it may be 

tested for an output during dangerous manoeuvres that could be dangerous for a test 

driver or pilot to perform before it is tested in the real world. This could lead to a 

decrease in accidents where a person’s life may be put at risk. Safety is listed as an 

advantage by Applied Dynamics International (2007) along with cost and time benefits. 

Using HILS they emphasise how a reduction in cost and time can be achieved. This is 

as parallel tests of different subsystems can be carried out in a timely fashion. 

HILS does not suit every test however and the type of testing will indicate if 

HILS is suitable. One major factor when considering if HILS is suitable is that little 

information may be extracted from a device if the system does not behave as expected. 

HILS does not let you analyse the internal behaviour of a system at run time only the 

outputs of the system under test (Gomez 2001). 

 

 

7.5 Validation & Verification 

It is important to first distinguish between the verification and validation of a 

model. Verification of a model is determining if the model of the system works as 

intended. The validation of the model is a process to determine if the simulation model 

is an accurate representation of the system under investigation.  

Verification of the model will usually consist of debugging a computer program 

if the simulation is computer based. It focuses on “building the model right” (Banks et 

al. 2001, p367). Validation is more concerned with “building the right model” (Banks et 

al. 2001, p367). 

Once the model of a system has been constructed it cannot be used immediately 

for measuring data. It is important to first calibrate the model. A simulation model 
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might be acting in a very similar manner to the real system; however its exact behaviour 

may not truly reflect the system aspects that the model is intended to simulate. The 

model may fail to produce accurate information if it has not been calibrated and 

validated (Mitrani 1982, p41).  

Figure 7.6 (Banks et al. 2001, p369), shows the ongoing model-building process 

with the use of validation and verification. 

 

 

Figure 7.6: Model building, verification and validation 

 

 To carry out the validation it can be seen from Figure 7.6 that calibration is used. 

Essentially this means that the model is compared to a real world system and 

adjustments made to the model to more accurately reflect the real world. This process is 

then repeated until an acceptable level of accuracy is achieved (Banks et al. 2001, p369). 

One possible way in which a model may be validated incorrectly is if only one data set 

is used. In this case the model may be able to accurately represent the system for this set 

only. It is therefore important to validate the model using a number of different data sets 

(Banks et al. 2001, p375). 

 

 

7.6 Tests and Analysis 

 Once a model has been constructed and validated then the next step of 

simulation is to run the experiment and collect the data for analysis.  The data collected 

should be relevant to the experiment under study and the method of collection should 
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lead to easy analysis. This may seem trivial with the ability of modern computers to 

handle vast amounts of data along with the ease of creating charts from the data. 

However time should be spent when designing the system to determine if the data being 

collected is relevant. Also time should be given over to consider if there is any data not 

collected that could lead to better understanding of the system and what is happening. It 

should be noted that extra readings might be needed when validating the model to 

ensure all sections perform as intended, but these readings may not be of any use to the 

actual experiment under consideration. 

 Analysis of the data is also important. Once data is collected it should be 

presented to anyone who wishes access to the data to easily draw their own conclusions. 

For this reason the use of charts can be useful. It is rarely possible to be able to draw 

conclusions from a long list of numbers. This means that data should not only be 

represented this way but also in a visual way in the form of charts and graphs. 

 At the analysis stage it might be discovered that not enough information was 

collected and more runs of the simulation with different variables may be needed to gain 

a clearer view of the systems behaviour and/or performance (Banks et al. 2001, p18). 

 

 

7.7 Simulation of Queues, Statistics and Random Numbers  

 The modelling of events is an important part of simulation. This can be in the 

form of a queue of people waiting to be served in a bank or shop, instructions waiting to 

be processed on a processor or aeroplanes waiting to take off from an airport. If the 

server or servers, i.e. bank tellers, CPU’s or runways for the same of examples given 

above, are currently busy then a queue is formed.  

A queuing method is then generally needed to handle the arriving customers (a 

customer is any entity that is seen to be seeking service from a system (Banks et al. 

2001, p205)). For instance in an airport aeroplanes arriving and departing will have a 

fixed schedule and so how the queue forms and acts may be easily understood. In a 

supermarket customers arriving at a checkout may seem to choose a random queue to 

enter based on their perceptions of what would be the quickest line to join; the arrival of 

customers in the shop may also be of a random nature.  
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 For these reasons simulation may require the modeller to be knowledgeable in 

the area of statistics and random numbers. It should also be noted that a stochastic 

model may even be used to analyse a deterministic system (Ripley 1987, p1). Stochastic 

systems can be quite difficult to analyse and even more so as the system under 

investigation becomes larger. For these reasons methods to evaluate these problems 

have been developed. Included in these are the Monte Carlo method and the Markov 

process. 

 

7.7.1 The Monte Carlo Method 

 The Monte Carlo method was developed during the Second World War 

by Stanisław Ulam and John von Neuman. It was designed to quickly solve problems 

they were coming across while developing the atomic bomb. The name was derived due 

to the fact that random numbers were used to determine variables. This can be 

compared to many gambling scenarios such as roulette tables or throwing dice 

(Woolfson and Pert 1999, p22). This makes the simulation of large systems easier than 

would otherwise be possible. The use of Monte Carlo methods also allows different 

configurations of the system to be run more quickly. As such a whole system and not a 

subsection of the system may therefore be described where other methods may prove 

too costly or difficult to use (Woller 1996).  

 In summary Monte Carlo techniques are any techniques where random numbers 

and probability are used to solve a scenario.  It is used in many different applications 

such as nuclear physics or traffic control problems. Within different disciplines there 

can be many different techniques and subsets of Monte Carlo simulation (Woller 1996). 

 

7.7.2 The Markov Process 

 Didkovsky (1996) defines the Markov process as a way of determining the 

likelihood of a random dependant event occurring. The likelihood of some random 

events can be influenced by previous events. Didkovsky (1996) explains that a coin toss 

cannot be modelled as a Markov process as the coin has no memory of what occurred 

before. However a communicating node in an automotive network may respond to a 

message it has received and can be modelled as a Markov model. Weisstein (2007a) 

defines the Markov process in the following way: 



LITERARY REVIEW 

- 148 - 

 “A random process whose future probabilities are determined by its most recent 

values. A stochastic process is called Markov if for every and , we 

have  

 

This is equivalent to  

” 

 

7.7.2.1 Markov Chains 

 A Markov chain is a series of random states that is dependant on probabilities of 

transitioning from one state to another state (Carter 1996).  Markov Chains can give a 

good representation of a system over a small sample, however on large systems they 

may make little sense (Didkovsky 1996).  

To calculate a Markov chain a matrix is often used. In this form the elements of 

the matrix represent the possibility of transitioning from one state to another. This can 

be seen below where P1,2 represents a transition from state one to state two, P2,1 

represents a transition from state two to state one etc.  

 









=

2,21,2

2,11,1

PP

PP
X  

 

In “An Introduction to Computer Simulation” Woolfson and Pert (1999, p138) give 

three conditions to be satisfied to generate variables to settle down to the required 

distribution: 

1. The sum of the elements in a row should equal 1. 

2. ( ) ( ) ijijii PxPPxP ,, = , where ( )ixP  is the required probability for the variable ix . 

3. The elements allow all the variables to be accessed. 

If the process is useful then successive operations will generate all possible values 

of the variable and the probability distributions should eventually settle down to the 

required distributions and remain there (Woolfson and Pert 1999, p137). 

 

7.7.3 Queuing Theory 

 Queuing Theory falls into two types of categories (Slater 2000): 
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1. Open Queuing Network. 

2. Closed Queuing Network. 

The first type (open queuing network) is where an external system generates 

customers to be processed by the network and then arrives at an external source. The 

closed queuing network has a fixed population and this population cannot leave the 

system. Figure 7.7 (Slater 2000) shows an open queuing system and Figure 7.8 (Slater 

2000) shows a closed queuing system. The yellow circle represents a customer source 

and the purple inverted trapezoid is a sink. The blue boxes connected to the red dots are 

service centres. Each of the black lines indicate a possible path an entity may trave 

down. 

 

 

Figure 7.7: Open queuing network 

 

 

Figure 7.8: Closed queuing network 

 

When performing queuing analysis there are a few factors to be addressed, such as 

how the customers are arriving and how long it takes to process a customer. From this a 
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standard notation for queuing theory has been developed. To characterise a queuing 

system the Kendell notation is often used (Willing 1999, p5). The Kendell notation is of 

the form: 

A/B/m/N – S 

Where A is the distribution of the arrival of customers, B is the distribution of the the 

service times, m is the number of servers and N is taken as ∞  if not given but represents 

the maximum size of the waiting line. S is optional but represents the service discipline. 

This is taken as First-In-First-Out (FIFO) if not given. A and B can represent a Markov 

(M), deterministic (D), Erlang-k (Ek), Hyper-k (Hk) or General (G) distribution. S can 

be a FIFO, Last-In-First-Out (LIFO), random, Round Robin or priority service 

discipline. An example of the above would be an M/M/1 queuing system. This is a 

Markov distributed system, with one server and a FIFO service discipline.  

There is also notation for various aspects of the system such as the number of 

customers in a closed network (K), customer number (Cn) and the arrival rate to node i 

(Ai) amongst others as these are important aspects of the queue. Also the type of queue 

(FIFO, LIFO etc.) is an important aspect of system as it will define how entities are 

routed through a network, and as such needs to be carefully considered and represented. 

A queuing theory model will allow a systems analyst to obtain a number of 

performance metrics. Some metrics that could be obtained are: average queue length, 

average queue wait time and server throughput rates. Analysis of these metrics may 

allow a system analyst to identify problems in a system such as bottlenecks. Steps may 

then be implemented to improve the performance of the system. 

 

 

7.8 Simulation Software 

 Software used to create models and run simulations have varied from general 

purpose programming languages, such as C++, to general purpose simulation software 

(GPSS) that is solely designed to carry out simulation. Some of these GPSS systems 

incorporate a graphical user interface (GUI) to create the model and run the system. 
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7.8.1 General Purpose Programming Languages 

 The use of general purpose programming languages (GPPL) has diminished due 

to the ease of simulation specific languages or software packages to create, run and 

extract data from a simulation. The use of a language such as C or C++ could still 

however suit a particular system to be simulated. The decision to use a GPPL could be 

affected by the ability of a given programmer and constraints in time, where for 

example there is inadequate time to learn how a new language or software package 

operates. Another consideration could be that the level of detail required for a 

simulation may not be available from any software package currently available. 

 The programmer must, when using a programming language such as C++, create 

everything to do with the simulation such as each subroutine that defines how each 

component of the model acts, to events and entities and how they affect other 

components. A clock that defines that system at various states and a way to present the 

gathered data must also be provided (Banks et al. 2001, p104). The availability of 

simulation libraries such as CSIM however does help programmers.  CSIM is a package 

of commonly used classes and procedures for use with C or C++ (Mesquite Software 

2006). Chapter 4 of Discrete-Event System Simulation (Banks et al. 2001) covers the 

use of C++ and CSIM in detail and provides examples. 

 

7.8.2 General Purpose Simulation Software (GPSS) 

 Simulation specific software has been around since IBM first released GPSS in 

the 1960’s (Banks et al. 2001, p115). Due to its ease of use and as it was the first 

program of its type it became a popular simulation package. It was improved by other 

companies as well as IBM to make it more user friendly (Dictionary of Computer 

Languages 1998). 

 The GPSS/H software was introduced by the Wolverine Software Corporation. 

It is based on the IBM GPSS software with added features to increase its ease of use and 

has been continually updated to keep it a powerful tool. It is a simulation language that 

is programmed like most programming languages in the form of text entry; this is unlike 

some newer simulation tools that use a graphical user interface where placed objects 

have properties and behaviours associated with them (Crain 1997).  The use of a non 
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graphical user interface is so that GPSS/H can remain versatile enough for a wide range 

of different implementations (Crain 1997).   

 Despite the ease of use of newer graphical simulation systems GPSS based 

software is still in use today. This means that it has been in operation for over 40 years. 

It was designed by Geoffrey Gordon so that it could be used by “non-programmers” and 

is still advertised as such (Wolverine Software Corporation 2007). 

 

7.8.3 Graphical Simulation Software 

 The trend of newer simulation software is in the use of a graphical user interface 

(GUI). This is where objects such as entity generators are placed onto a screen and can 

have their properties changed. In this way they act as desired by the programmer to 

model the system under investigation. Examples of such software are Simulink by the 

MathWorks Inc. and SIMUL8 from the SIMUL8 Corporation (The MathWorks Inc. 

1997; SIMUL8 2007).  

 Advantages of using such a system are the ease of use to construct systems, 

allowing even novices to build a simple model easily. It also forces the programmer to 

follow the basic model building process. However it is not always possible for this type 

of software to be flexible enough to simulate complicated systems accurately. The 

model may also become quite large visually and may need to be broken down into 

smaller and smaller subsystems (Crain 1997). Breaking down a system into smaller 

subsystems can also be seen as an advantage. The programmer can more easily see if 

any part of the model is not performing as intended when debugging the model. 

 These types of simulation program usually provide easy and quick methods for 

displaying results without any previous programming experience or without transferring 

the data into another program such as Microsoft Excel. 

 

 

7.9 MATLAB, Simulink and SimEvents 

 MATLAB is a highly flexible development environment. It allows easy data 

analysis and visualisation through a high-level technical computing language. It 

provides an interactive environment for algorithm development and numeric 

computation (The MathWorks, Inc. 2007a). Add-ons such as Simulink extend the 
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functionality of MATLAB. In this case Simulink provides a new graphical way to 

implement simulation models. To make implementing various applications easier,  

additions called ‘Toolboxes’ are supplied. There are a number of toolboxes available for 

MATLAB such as the fuzzy logic toolbox, neural network toolbox and image 

processing toolbox to name a few (The MathWorks, Inc. 2007a). Figure 7.9 (The 

MathWorks, Inc. 2007b) shows the relationship between MATLAB, Simulink and the 

applications that can be developed using them. 

 

 

Figure 7.9: MathWorks product overview 

 

7.9.1 MATLAB 

Cleve Moler was a math professor at the university of New Mexico where he 

wanted his students to be able to use computers to solve problems using EISPACK and 

LINPACK. This required writing Fortran programs however and he didn’t want his 

students to have to learn how to write Fortran programs. In the late 1970s after reading a 

book by Niklaus Wirth he used Fortran and portions of LINPACK and EISPACK to 

develop the first version of MATLAB. There was only a matrix data type with 80 

functions and to add a function, you had to modify the source code and recompile the 

program (Mohler 2004). Figure 7.10 (Moler 2004) shows the basic graphical 

representations from the first MATLAB. Figure 7.11 shows the same result run on a 
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modern version of MATLAB. This shows how the program has developed over the 

years. 

 

 

 

Figure 7.10: First MATLAB graphics 
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Figure 7.11: Modern MATLAB graph 

 

 In 1981 Jack Little, the CEO of The MathWorks realised the importance of the 

newly released PC from IBM. He and a college of his, Steve Bangert, reprogrammed 

MATLAB in C, adding in extra features and graphical power, and in 1984 The 

MathWorks Inc. was founded. The founding members were Jack Little, Steve Bangert 

and Cleve Moler (Moler 2004).  Since then The MathWorks Inc. has grown and in 1993 

registered one of the first commercial websites and a version of MATLAB to run on the 

Windows operating system. A Linux version was later released in 1995 (Moler 2006). 

Figure 7.12 (Moler 2006) again shows the growth of the power and graphical abilities of 

the software. Figure 7.12 is of an L-shaped membrane which is the company logo. 
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Figure 7.12: MATLAB graphical development 

 

 As of the 1
st
 of September 2007 the current version of MATLAB is R2007b. It 

comes with MATLAB 7.5 as well as Simulink 7 (The MathWorks, Inc. 2007a). 

 

7.9.1.1 MATLAB Development Environment 

 The main MATLAB window is shown in Figure 7.13; this is the window that 

opens when MATLAB is initially started. There are three main windows: the current 

directory you are working from, a command history window and the main command 

window where code or commands can be entered. These commands can change how a 

piece of code runs or to run code held in “m-files”. 

 

 

Figure 7.13: MATLAB environment 
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 An m-file is a file where code can be entered and stored for retrieval later. It can 

then be run again and again without having to write the code again and is like a ‘.c’ file 

for c-code. Figure 7.14 shows an m-file with code to generate the graphs shown in 

Figures 5.5 & 5.6.  This code was taken from Moler (2004). 

 

 

Figure 7.14: An m-file 

 

7.9.2 Simulink 

 Simulink has become widely used by both industry and academic modellers for 

simulation of dynamic systems since its release in 1990 (The MathWorks, Inc 1999; 

Moler 2006). As it is embedded in MATLAB it comes with all the analysing ability of 

MATLAB so that results can be easily displayed, analyzed and interpreted all in the 

same environment as they were obtained (The MathWorks, Inc 1999). MATLAB can 

also export its data and graphs easily to other software such as Microsoft Word or Excel.  

 Where MATLAB stores commands in an m-file and runs commands which look 

similar to lines of code or mathematic expressions, Simulink is a model building tool 

where models are built using a GUI. To place an object that forms the model into the 

model window shown in Figure 7.15 is a simple case of ‘dragging and dropping’ a 

virtual object. Figure 7.15 also shows a simple model that was built using Simulink. 

Figure 7.16 is the Simulink library where the objects are selected. There is also the 

ability to make your own blocks. 
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Figure 7.15: Simulink environment 

 

 

Figure 7.16: Simulink library 

 

The models that can be built can be ‘hierarchical’ so that they are easier to 

visualise. Each level can then be entered into to view the level below. The models can 

however be built from the top down or the bottom up. This allows a developer to 

approach the model building in a way that helps them understand the function of the 

system (The MathWorks 1999).  

Once the model is built it can be run and data easily obtained. The parameters of 

the system can then be changed quickly and the test run again to see how these changes 
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affect the performance of the system and these results easily compared to the previous 

results (The MathWorks 1999). 

 

7.9.3 SimEvents 

 SimEvents is an add-on to Simulink. It allows for discrete-event simulation to be 

achieved through the additional components that come as part of the package. Activity-

based models are created by the modeller to evaluate system parameters. Entities are 

configured with attributes which can then be used to model applications such as packet-

based networks, real-time operating systems and computer architectures (The 

MathWorks, Inc. 2007a).  

As was stated SimEvents has its own components associated with it. These can 

be found in the Simulink library under the heading SimEvents. The SimEvents library 

can also be opened in its own window as shown below in Figure 7.17. 

 

 

Figure 7.17: SimEvents library window 

 

When one of the boxes shown in Figure 7.17 is opened it will produce another 

set of options; these could be options that refine the selection you made, i.e. when 

selecting the generators block you get another set of options. In this case it would be 

event, entity or signal generators. When there are no more variations to pick from then a 

selection of objects to choose from will be displayed. These can then be dragged and 

dropped onto the model screen. Figure 7.18 shows the two different types of entity 

generator that can be selected.  
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Figure 7.18: SimEvents entity generator objects 

 

SimEvents contains all basic blocks as standard to create a model for a discrete-

event simulation. With MATLAB and Simulink it is a flexible program that can be used 

to model many systems. 

 

7.9.4 SimEvents Model Building Tutorial 

This section is based on the ‘Building a Simple Discrete-Event Model’ section 

of the SimEvents – Getting Started Guide (The MathWorks, Inc. 2007c). All diagrams 

are also taken from the SimEvents – Getting started Guide. 

The system is a simple queuing system in which entities arrive in a deterministic 

way, to a queue, and proceed to a server that operates at a fixed rate. The type of system 

is a D/D/1 queuing system which implies a deterministic arrival rate, a deterministic 

service rate, and a single server. 

As was previously stated, SimEvents provides a library of simulation blocks. 

These include all necessary blocks to perform discrete event simulation such as a server 

block and an entity generator block. Other blocks include blocks to both set and read 

attributes as well as versions of Simulink blocks to be used with SimEvents. One such 

block is the SimEvents Signal block. It is important to use any special SimEvents blocks 

where possible. Results obtained may represent false information if Simulink blocks are 

used.  

To build the simple D/D/1 queuing system for this example the following types 

of blocks should be chosen:  
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• An entity generator is needed. The time based entity generator will be 

used for this example. 

• A queue is needed and the FIFO queue was used in this example. 

• A server is also needed. As it is a single server structure, the single 

server option was chosen. 

• An entity sink was also needed. This was to accept any entity after it 

passes through the server. 

• Finally a SimEvents signal scope is needed to display data. 

 

It is important to choose the correct block to accurately reflect the system being 

modelled. In most cases there is a choice of what block is needed to model the system. 

If the queuing system is a LIFO then choosing the FIFO queue would cause the model 

to act in an incorrect way. The correct blocks used in this example are shown in Figure 

7.19. 

 

 

Figure 7.19: SimEvents tutorial blocks 

 

Once the correct blocks are chosen, they must be configured. For example the 

time-based entity generator needs to know how often to generate an entity. In this 

example the entity generator was setup to produce an entity every second. The generator 

was also set to generate an entity at the start of the simulation. The service time of the 

server was also set as 1. These settings are all done through the parameters dialog box 

of the appropriate blocks. 

However to obtain any data the scope must be able to obtain some information 

from the system. The single server’s parameters block is shown in Figure 7.20. Figure 

7.19 shows that the ‘number of entities departed’ option was set to ‘on’ for the single 

server.   
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Figure 7.20: Single server parameters box 

 

When a statistics option is enabled, a new output port is added to the block. This 

can then be connected to the input of the signal scope. A path for entities must also be 

made between the different blocks. The correct path configuration is shown in Figure 

7.21. Note the new output on the signal server marked as ‘#d’. The different connection 

types do not allow a signal port to be connected to an entity path port and vice versa. 

Also an output port cannot be connected to another output port, while inputs ports 

cannot be connected to other inputs ports. 

 

Figure 7.21: Tutorial blocks connected 
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When the model is built the simulation can then be run. Figure 7.22 shows the results 

displayed on the signal scope after the model was run for 10 seconds. Other results 

would be obtained if different statistics were monitored, or if different parameters were 

used for the service time or arrival rates. 

 

 

Figure 7.22: Tutorial results 

 

Large systems can be constructed by following the same steps as described 

above. Small subsections can be created and tested one by one and added to an overall 

system model. Each subsystem needs only to reflect the behaviour of the basic 

operation of that subsystem. The systems parameters such as service time can then be 

configured and simulations run. 

 

 

7.10 Simulation Software Selection 

 Shannon (1975, pp107-109) and Banks et. al. (2001, pp100-103) both propose 

steps for choosing simulation software. The steps and questions proposed can be 

combined as follows: 

 

Part1: Investigation of Possibilities and Initial Screening 

1. An important factor in choosing the software is hardware availablility. If a 

new computer is to be purchased it can be configured to suit the needs of the 

modeller. In most cases this is not possible. It is therefore important to know 

the limits of the hardware. 
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2. Is there sufficient documentation or vendor support available? If this is not 

the case then problems encountered may not be easily dealt with. 

Alternatives could however be internet forums where help can be obtained 

from regular users of the software. 

3. Are the advertising claims accurate? If there is a checklist with ‘yes’ and 

‘no’ entries does the variation or licence you are interested in purchasing 

provide all the required features. Do the implementation and capabilities of 

the features match what you are looking for? 

4. Is the package able to generate a model that is cross platform compliant?  A 

cross platform compliant model has wider use than if it is only executable on 

a single operating system. 

5. The speed of the simulation should be considered. Debugging of the model 

may take a long time if the model is slow to execute. 

6. The costs of software packages can be very high. What is the range of 

software packages available for your budget? 

7. The ease of which the simulation package can be learnt. A graphical package 

may remove to need to learn syntax but it will not remove the need to use 

procedural logic. 

 

Part 2: Overall Choice Based on Problems to be Solved 

1. The type of simulation to be run is evaluated. Based on this an appropriate 

software package can be chosen. Questions to ask should include: Is the 

model an event-, process- or activity-oriented system? Is there a reliance on 

random numbers? If so what is the capability of the software to generate the 

random numbers? 

2. Data needs to be obtained for analysis therefore the ease of obtaining and 

storing data, i.e. format, needs to be investigated  

3. The software should be flexible enough to meet your needs. Can functions 

written in a general purpose software language be included if needed? If so 

what programming languages does it support? 

 

As can be seen, based on the considerations proposed above a suitable software 

package can be chosen. The selection process is broken down into two parts. The first 
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part is intended to discard software that may be more difficult to use, adapt or costly. 

The second part tries to identify, from the remaining choices, the most suitable software 

package for the problems at hand. In many cases a software package may be quickly 

marked as unsuitable.  

With little or no modification these steps can be applied to any other necessary 

hardware or software choices that need to be made. 

 

7.10.1 Simulation Software Selection 

Table 7.1 shows the options that were considered for the software used to carry 

out the research as outlined in this thesis. The features and benefits are compared for 

each possible software package also. Each of the considerations were given a score 

based on factors such as budgetary considerations and prior knowledge of the package. 

Each score was rated between 0 and 10, where 10 is the highest score possible for any 

category and 50 the highest over all score possible.  

 

 Simulation Methods provided Suitability† Ease of Use Support Cost‡ Total 

C++ 0 3 8 6 6 24 

GPSS 8 9 7 8 5 36 

SimEvents 9 9 8 9 10 45 

Table 7.1: Simulation software selection analysis  

 

The most suitable software package based on the comparisons shown in Table 

7.1 was deemed to be the SimEvents software add-on package for MATLAB. The 

MATLAB aspect of the software package made it an attractive option. MATLAB 

provides an environment where computations on outputs obtained from a model can be 

analysed. This can then be easily converted into graphical representations (i.e. charts 

and graphs) if desired. Other benefits also included the fact that the system had been 

                                                

†
 The suitability metric was calculated based on the information as covered in section 7.8 and the 

requirements to carryout the research correctly. 
‡
 This was based on the price for a student version, with MATLAB with SimEvents priced around €115. 

The Wolverine GPSS/H cheapest price was €273 and a copy of MicroSoft Visual Studion 2008 standard 

edition was price at €234. All prices are approximate values. 
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designed to perform discrete event simulation. SimEvents therefore provides a number 

of features, such as a simulation clock, as standard. While generic programming 

languages could have been used, features such as the simulation clock also need to be 

created. However a generic simulation package could be have been chosen. This would 

have had the benefit of not requiring the developer to learn a new programming 

language. The graphical method of creating a model in SimEvents was deemed easy to 

learn. Therefore minimum time would be spent learning a new software package. A big 

factor was also the cost of any software package used. The MATLAB and SimEvents 

price was the cheapest software package. The price also included MATLAB which can 

be used to analyse data.  

The support provided for SimEvents is the best of all three packages looked at. 

The help files are not only extensive, but the online help and user forms have a large 

number of people who participate in them. SimEvents therefore also proved to be the 

best value for money. This allowed the best value combination of hardware and 

software to be obtained to conduct the research.  

It should be noted that no one option is necessarily better for the purpose of 

conducting a similar research topic. Other studies may prefer to use a GPPL as it would 

provide an easier way to streamline the model in terms of execution speed and memory 

demands. For the constraints on the research conducted in this thesis SimEvents was the 

most suitable. The scores obtained were biased based on factors such as budget and the 

developer’s exposure to different software packages and this is acknowledged. 

 

 

7.11 Conclusion 

 Model building has a wide range of uses. These vary from a simple child’s toy 

to a sophisticated model used in simulation of a system for analysis. This simulation 

again has a wide range of uses, be it the simulation of computer architectures or that of a 

queue of people waiting in line. These simulations can be run to give the modeller a 

better understanding of how a system works. They can also be modified to see how a 

change to a system affects the performance of the system. They can be important as an 

evaluation tool for a developer of a system to determine how effective his real system is. 

This is important as it may not always possible to change the real world system in 
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various ways to get feedback. It is also important to consider different simulation 

possibilities, such as HILS testing, before deciding on using a simulation model. 

Different approaches to evaluation of system will have different benefits and drawbacks. 

 For an in-vehicle network such as FlexRay, simulation allows the 

designer/analyst to see how the system works, and through their greater understanding 

of the system they can draw conclusions on how to improve the system. This could be 

in terms of looking at message flow and suggesting for example new levels of RAM, 

which could have an important impact on the cost of the network as memory is an 

expensive resource. The scheduling of the network could also be analysed in an easier 

fashion than taking readings of a real network and improvements could also be drawn 

from this type of simulation. This makes simulation an important tool in developing 

technologies as it has a wide range of applications. 

The best software and hardware tools can also be chosen using the steps outlined 

in this chapter. This can have a big impact on the performance and functionality of the 

model. This means that sufficient thought and time should be put to this process. The 

software tools available were evaluated against each other and the most suitable 

software was found to be SimEvents. 
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Chapter 8 . FlexRay Software 

Drivers 

 

8.1 Introduction 

The research described in this thesis concerns improving the flow of data 

through a FlexRay node. An important area that should be looked at is the software 

driver linking the communication controller and the host. How data is handled at this 

stage could have an enormous effect on the performance of the node. Data is passed 

from the host to the communications controller for transmission. If the data is not 

passed in adequate time, it may not transmit during its allocated slot time. It will then 

have to wait until the next communication cycle before the data is transmitted. It is 

therefore necessary to know how the driver performs to fully optimise the node. 

Software drivers are intended to provide an abstract interface between hardware 

and user defined pieces of software (Dependable Computer Systems 2006). This chapter 

will outline the DECOMSYS::COMMSTACK FlexRay software driver. It will 

introduce AUTOSAR and the method it uses to transfer data between software 

components. The Fujitsu FlexRay driver will also be covered. Figure 8.1 shows the 

various software driver options available to a FlexRay based system. A system designer 

must choose one of the software options for the implementation on the host 

microcontroller. In Figure 8.1 the options are (a) AUTOSAR FlexRay stack, (b) the 

DECOMSYS::COMMSTACK FlexRay software driver and (c) the Fujitsu FlexRay 

driver.  
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Figure 8.1: FlexRay software driver options 

 

 

8.2 COMMSTACK 

The DECOMSYS::COMMSTACK<FlexRay> is a software driver (here after 

referred to as ‘driver’) designed to provide a FlexRay interface to specific hardware 

implementations. It was designed with flexibility in mind. As such it is not dependant 

on other external components for operation (Dependable Computer Systems 2006).  

DECOMSYS::COMMSTACK<FlexRay> allows higher layer software to be 

developed with little sense of the behaviour and properties of a FlexRay node. This 

allows the designer to be unaware of the actual communication controller 

implementation (Dependable Computer Systems 2006). Figure 8.2 (Dependable 

Computer Systems 2006, p4), shows a system implementing the (here after referred to 

as ‘COMMSTACK’). 
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Figure 8.2: COMMSTACK system overview 

 

DECOMSYS::COMMSTACK<CONFIGURATOR> is a plug-in for 

DECOMSYS Designer. It outputs the following files (Dependable Computer Systems 

2004, p5): 

• A ‘.h’ file containing basic configuration options 

• A  ‘.c’ file containing frame identifier and queue configurations 

• A ‘.c’ file implementing the host specific communication controller 

initialisation functions. 

 

8.2.1 System Design 

The COMMSTACK internal structure can be seen in Figure 8.3 (Dependable 

Computer Systems 2006, p6). It is broken down as follows (Dependable Computer 

Systems 2006, p7): 

• FlexRay Hardware: One of several communications controllers will be 

used for an application. 

• Hardware Configuration: This contains hardware mapping information.  

• Application Configuration: A post-build configuration holds all 

application specific configurations. 

• COMMSTACK: This is ported to the dedicated host-CPU for a specific 

development environment. 
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Figure 8.3: COMMSTACK system architecture 

 

8.2.1 System Design 

The behaviour of COMMSTACK is defined by a state machine. This can be 

seen in Figure 8.4 (Dependable Computer Systems 2006, p7). For further information 

on each state see Dependable Computer Systems (2006, pp8-10). 
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Figure 8.4: COMMSTACK state diagram 

 

 

8.3 AUTOSAR 

AUTOSAR was developed from 2003 when the core partners of the AUTOSAR 

partnership signed a contract. Since then the AUTOSAR partnership has developed a 

number of specifications (Fennel et. al. 2006).  These companies worked together to 

produce the AUTOSAR standard to support automotive electronic/electrical 

developments to meet current and future needs of the automotive industry (AUTOSAR 

GbR 2008). 

A major focus of the AUTOSAR partnership is the re-use of software 

components. Traditionally software components were developed with a hardware focus. 

This approach leads to difficulty when replacing or upgrading hardware components. 

By developing a run time environment to support re-use of software components a 

reduction in costs and complexity can be achieved. 
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8.3.1 AUTOSAR Goals 

As was stated one of the main focuses of the AUTOSAR partnership is the 

development of the necessary tools and specifications to achieve re-use of software 

components. To realise this the main goals initially were to establish a standard for use 

in future vehicle applications (AUTOSAR GbR 2008a). In the first phase of AUTOSAR 

the focus was on powertrain, chassis, active and passive safety, body and comfort. 

Applied to these the main objectives were a consideration of the following desirable 

elements (AUTOSAR GbR 2008a): 

• Consideration of safety requirements. 

• Scalability for different platforms and vehicles. 

• Standardisation of basic system functions. 

• The ability to move functions to different nodes on the network. 

• Integration of modules from different suppliers. 

• Maintainability. 

• Increased use of ‘off the shelf’ hardware. 

•  Software updates/upgrades for vehicles. 

 

8.3.2 Virtual Functional Bus 

To achieve their goals and objectives the Virtual Functional Bus (VFB) concept 

was developed by the AUTOSAR partnership.  Using a VFB AUTOSAR is able to 

separate the functionality of a node into the software components (applications) and the 

basic software (communications methods for example) of the hardware module. The 

communication is handled by the basic software on a node. The applications 

functionality is obtained from combinations of software components. The application 

layer is then executed using a Run Time Environment (RTE). Figure 8.5 (AUTOSAR 

GbR 2008b, p10) shows how the decoupling of the software is achieved. 
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Figure 8.5: Virtual functional bus concept 

 

Data to be sent from one software component to another is conceptually sent 

through the VFB during the development process. At compile time the software 

components are then mapped to specific hardware modules.  

The programmer will conceptually send and receive information from other 

software components through the VFB. At compile time however the VFB is replaced 

by an application programming interface (API). This means that if one software 

component needs to pass data to another software component or request a service 

supplied by another software component, it does so through the use of API calls. So at 

compile time only the functionality necessary to achieve this is set up in the basic 

software portion of the node. This eliminates unnecessary code generation for the 

module. Another advantage is that the software component no longer needs to know 
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where the other software component is located. It only needs to know what services or 

information it can accept or provide. 

 

8.3.3 AUTOSAR Components and Interfaces 

There are three types of components defined by AUTOSAR (Buttle 2005): 

1. Atomic software components 

2. Sensor/actuator software components 

3. Composite components 

A software component is assigned to one of these categories based on its functionality. 

Each software component can have as many interface ports as needed. 

 The interface types are broken down into: 

1. Provided interfaces 

2. Required interfaces 

The communication is then defined as either a sender-receiver or a client-server type. 

Sender-receiver is like a publish-subscribe type interface where information is sent out 

and anybody can take that information. Client-Server can be seen as a function calling 

interface (Jackman 2008).  

 Figure 8.6, shows the different type of component interface. Figure 8.5 is based 

on a diagram by Buttle (2005). 

 

 

Figure 8.6: Software component communication interface types 
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8.3.4 AUTOSAR FlexRay Stack 

Figure 8.7 (TTTech Automotive GmbH 2007) shows where the FlexRay stack 

components mapped onto the basic software of a hardware module using AUTOSAR. 

 

 

Figure 8.7: FlexRay stack layout 

 

The AUTOSAR FlexRay stack consists of a number of components and layers. 

These components and layers include a FlexRay driver. It is designed to allow a 

software developer to know little or no information about the underlying FlexRay 

system. The programmer merely passes information from the application and the 

FlexRay stack is designed to handle the information. In this way the programmer need 

only know how to use a hardware independent API call. 

The FlexRay stack is made up of: FlexRay-specific modules, drivers, the 

interface layer, the protocol data unit (PDU) router, the FlexRay transport protocol (TP) 

layer and the protocol-independent communication (COM) layer. In some cases a 

communication-specific layers like the network management (NM) layer also defined. 

The FlexRay driver is part of a microcontroller abstraction layer that provides access to 

the FlexRay controller through a hardware-independent API (Weka Fachmedien GmbH 

2008).  

 



LITERARY REVIEW 

- 179 - 

The following definitions of the different FlexRay stack components are from Galla 

et. al. (2007): 

• The transport protocol module is used to segment and reassemble large PDUs.  

A PDU is simply a message or frame of a particular networking scheme. The 

PDUs are transmitted from and to the Diagnostic Communication Manager. 

• The PDU router is used to either send messages to higher protocol layers or to 

perform a gateway service. This could mean gating the message between two 

FlexRay networks or between FlexRay and another networking scheme such as 

CAN. 

• The COM module provides signal-based communication to the run-time 

environment. This can be in the form of inter-ECU or intra-ECU communication. 

• The Diagnostic Communication Manager provides a way to allow tester devices 

to control diagnostic functions in an ECU using the communication network.  

• The network management module provides a coordinating mechanism for the 

ECUs on the network. It is split between a generic network management and a 

protocol specific network management scheme. 

• The FlexRay interface module facilitates the transmission and reception of the 

PDUs. It allows multiple PDUs to be packed into a single frame at the 

transmission ECU and to be successfully extracted again at the receiving ECU. 

This is affected by the timing constraints of the FlexRay protocol. The packed 

PDUs are sent to and received from the FlexRay driver. 

• The FlexRay driver provides the basis for the FlexRay interface module by 

facilitating the transmission and reception of frames to and from a 

communication controller. It too is affected by the timing constraints of the 

FlexRay protocol. 

 

 

8.4 Fujitsu FlexRay Driver 

The Fujitsu FlexRay driver is intended to ease the familiarisation phase of using 

FlexRay for developers (Fujitsu Microelectronics Europe 2007, p8). It supports the 32-

bit MB91460 family processors, MB88121 series communication controllers, 16-bit 

MB96340 family processors and the MB91F465X series processors with integrated 
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communication controllers. It is designed to be compatible with 

DEYCOMSYS::DESIGNER (Fujitsu Microelectronics Europe 2007, pp9-10). 

 

8.4.1 Driver Concept 

The driver is designed to be viewed as several layers. The minimal number of 

layers and their function can be seen in Figure 8.8 (Fujitsu Microelectronics Europe 

2007, p11). 

 

 

Figure 8.8: Fujitsu FlexRay driver layers 

 

The Architecture of the driver is shown in Figure 8.9 (Fujitsu Microelectronics Europe 

2007, p11). 

 

 

Figure 8.9: Fujitsu FlexRay driver architecture 
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The ffrd_api_functioni() evaluates one of 90 API calls available for the FlexRay driver. 

It then calls a relevant routine from ffrd_ccal_function(). This layer contains all the 

routines to handle the API calls. Following this the macro from ffrd_fhal_function() is 

called to add the offset address for the E-Ray chip. Using ffrd_hal_function() the 

macros for different MCU-FlexRay controller access is located. It should be noted that 

the files, macros and functions are only included at compile time if needed (Fujitsu 

Microelectronics Europe 2007, p12). 

 

8.4.2 Program Flow 

The services of the FlexRay driver is shown in Figure 8.10 (Fujitsu 

Microelectronics Europe 2007, p15). As can be seen, the initialisation service and some 

of the control services and status services are available after a reset. When the 

initialisation service is completed all other services are available (Fujitsu 

Microelectronics Europe 2007, p15).  

 

 

Figure 8.10: Fujitsu FlexRay driver services 
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8.5 Conclusion 

It is important to know how the data is transferred from the host to the 

communications controller. If data is not transferred in a timely fashion it may miss the 

transmission slot it is assigned to. If this is the case the data will not be sent out during 

the current communication cycle. This may lead to problems as the data will used for 

decision making or in calculations. The FlexRay drivers outlined above are designed to 

be used for a wide range of systems.  

AUTOSAR looks set to be adopted by a large section of the automotive industry. 

The driver could therefore have a huge effect on the performance of networks. 

COMMSTACK is a well defined library of necessary FlexRay interface functions. This 

makes it a very useful driver for non-AUTOSAR applications. The Fujitsu FlexRay 

driver is a useful tool to allow early development and familiarisation. It can also be used 

for lower level functions which could be useful for some applications, i.e. timing 

analysis.  

Both the COMMSTACK and FFRD software drivers will be used in this 

research. COMMSTACK is the software driver that shall be modelled. The features and 

timing of this will be implemented into the simulation model. The FFRD driver will be 

used in the calibration and validation stages of the model building process. This is used 

to obtain timing information from the real world system implementations. Zhu (2007) 

already developed a simulation of an AUTOSAR based system and so will not be used 

in this research. 
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Chapter 9 . Literary Review  

Conclusion 

 

9.1 Literary Review Summary 

 The chapters contained in the literary review should encompass all relevant 

information necessary to see the importance of this research. The reader should also be 

able to determine the strengths of the methodologies chosen. The review has not 

covered all possible methods available but has outlined popular approaches. This is due 

to the amount of possible areas to cover in these topics. To cover all possible areas 

would be unwieldy and add little to the review.  

From the material covered it can be seen that the research previously conducted 

in the area of FlexRay has had a strong focus on the optimisation of the communication 

schedule. This can be seen from the research highlighted in Chapter 5. The hardware 

that is available also must pass conformance testing. The Bosch E-Ray is used in a 

number of devices and is supported by a number of different third party software 

products. The research that is outlined in this thesis focuses on the flow of data around a 

FlexRay node. This could help a developer to ensure a FlexRay node is optimised with 

respect to the timing of the system. This is an area which has little or no research 

conducted to date.  

Different system analysis techniques were researched and a suitable option was 

chosen based on this. This is seen in chapter 5, and chapter 7 describes the chosen 

method in greater detail. From this a suitable software packages to carry out the 

intended research was also discussed and a decision made as the most suitable package 

commercially available. Finally all aspects of a FlexRay node were researched to ensure 

all relevant aspects of any node were included for the analysis that was conducted. 
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9.2 Available Literature 

For the most part the information available for this research is good, accurate 

and accessible. There may however be a limit to the range of material available. For 

instance the FlexRay protocol is well defined and as such there are not many 

alternatives to the specifications laid out by the FlexRay consortium. The E-Ray chip is 

designed to be implemented in an FPGA and has been well documented by the 

designers. Manufacturer’s datasheets on the specific implementations can therefore add 

little to the information outlined in the E-Ray user’s manual. For simulation there are a 

number of well written books and other resources. These cover a multitude of different 

simulation methods and techniques. Performance analysis of software is also a big area 

of interest to companies. This is due to the ever present need to reduce cost. Also 

software development can be expensive and time consuming. Therefore there is a huge 

amount of material in the area of analysis. 

For the most part the available literature is plentiful and well written. There are 

very few topics that can’t be found in some document or book. There are also a number 

of papers or theses written on FlexRay scheduling and scheduling optimisation. These 

can be useful during the initial phase of learning.  

 

 

9.3 Areas of Further Study 

The necessary elements to complete this research have been covered in the 

literary review. It is necessary to be familiar with syntax of the programming language 

and methodology to write software programs. This is outside the scope of the thesis and 

therefore is left to the reader to gain knowledge and experience in this area if necessary.  

The automotive industry looks set to become more and more dependant on electric and 

electronic innovations. This means the area is rapidly changing and new products 

emerging. This leads to greater research possibilities and a wider area of study. 
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Section III:  

Model Development 
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Chapter 10 . Methodology 

 

10.1 Introduction 

The unpredictability of circuits and systems increases with the size and 

complexity of the system. It is not possible to predict accurately how a system reacts to 

even a small change. The research presented here aims to develop a simulation model of 

a FlexRay node for analysis. The performance of the node, which includes buffer 

utilisation and throughput latency of data, will then be analysed. Recommendations for 

improvement can then be suggested based on observations made. This section will 

introduce the steps taken for successful simulation of a real world FlexRay node. 

 

 

10.2 Simulation Process 

In section 7.3 a simulation process was laid out. This process was followed for 

this research and the steps taken are outlined below (Banks et. al. 2001, p15-20). The 

process steps, as outlined by Banks et. al. (2001), are clear, concise and easily followed. 

They were also developed with a discrete event simulation model, (the modelling 

technique chosen for this research), and as such were followed as an appropriate 

methodology.  Figure 10.1, is again the flow diagram for the simulation process (Banks 

et. al.2001, p16). Each step is discussed in turn. 
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Figure 10.1: Simulation study steps 

 

 

Problem Formulation: This is the first step of the simulation process. It is important 

that the analyst has a clear understanding of the problems that are to be addressed. This 

may involve discussions with any policy makers or stakeholders about the problems that 

may be faced for the system under investigation. The problem formulation may take 

time and problems may need to be re-examined may times before this step is complete. 

 

Setting of Objectives and Overall Project Plan: At this stage it is decided if 

simulation is the correct procedure to address the problems. If simulation is found to be 

the correct action to take a project plan is devised. Alternatives to the different systems 

are devised and a method for analysing the suitability of these alternatives is defined. 
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Other considerations are constraints on time, people and the overall cost involved in 

undertaking the project.  

 

Model Conceptualisation: During this step the fundamentals of the system under 

investigation are defined. The model should be kept as simple as possible with 

complexity added only as needed. This will reduce the costs of building the model. If 

possible the user of the model should be consulted during this process. This will create a 

better quality and more user-friendly model. 

 

Data Collection: The earlier this stage is started the better the model will be. This is 

due to the time it takes to collect the data. The problem under investigation will 

determine the data to be collected. The data collected will include data from a real-

world system. Data from the model may be collected at the calibration stage to analyse 

the accuracy of the model. The real-world data is used to calibrate and validate the 

model.  

 

Model Translation: This step is where the model is converted from a conceptual object 

into a computer program. The type of simulation software is chosen based on a number 

of criteria. Some of the considerations when choosing the simulation software were 

discussed in chapter 7.  

 

Verification: This stage of the simulation study involves debugging the model. The 

functionality of the model can be tested by passing in a set of inputs and checking the 

set of outputs obtained against a set of expected outputs. The model can be verified by 

testing various subsystems as they are constructed. 

 

Validation: This step may need to be repeated many times. This step determines if an 

accurate representation of the system under investigation has been achieved.  If the 

model cannot be deemed to be an accurate representation it may be necessary to go back 

to the data collection stage or model conceptualisation stage. Once the model accurately 

depicts the real world system over a number of scenarios it can be said to be validated. 

 

Experimental Design: At this stage the experiments to be simulated are determined. 

This can be based on runs that have already be performed and analysed. The 
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considerations of this stage are, time taken to run or initialise the model and the number 

of repetitions of each run. 

 

Production Runs and Analysis: The simulations measure of performance is 

determined during this stage.  

 

The Need for More Runs: The focus of this stage is to determine if more runs of the 

model are necessary. Based on the analysis done at this stage the nature of any 

additional experiments are determined. 

 

Documentation: The documentation of the simulation process is an important step. The 

documentation should be split between regular progress reports to any stakeholders and 

an overall model program report. The progress reports can be used to help any potential 

users to understand how the program works and clarify any misunderstandings. It also 

has the advantage of forcing the model builder to look at current progress and identify 

problems that arise. This can help the designer  to meet deadlines. The overall program 

report will allow users to understand how the model operates and ultimately helps them 

to draw correct conclusions for the data obtained. It also allows modification of the 

model to suit other needs, if necessary, by other modellers.  

 

Implementation: The success of this step is dependant on how well each of the 

previous steps were carried out. If the workings of the model are fully understood by the 

user and the model has been built with the problems under investigation in mind, the 

model should be a success. Likewise if the implementation has been impaired by a lack 

of understanding on the overall required outputs then the model may be deemed a 

failure. 
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10.3 Simulation Process in Relation to the Research 

Problem Formulation: The problems faced by the adoption of FlexRay on a large 

scale were discussed in section 1.1 of this thesis. The problems covered were the main 

motivation behind the research outlined in this thesis. 

 

Setting of Objectives and Overall Project Plan: The flow of data through a FlexRay 

node will depend on a number of factors such as the communication schedule or the 

buffering implementation. This would make running a wide range of scenarios on real 

world systems costly. The simulation of a node was chosen as a better alternative.  A 

simulation model designed to analyse aspects of a FlexRay node will there fore be 

constructed and tested for suitability. The simulation model development flow process 

as defined in Banks et al. (2001, p16) will be used. 

 

Model Conceptualisation: The features of the system relevant to the study were 

selected and defined. This includes the message RAM and handling of the 

communication schedule. Rejected aspects of the FlexRay node include the wakeup and 

startup phases. This is due to these phases having no impact on the flow of data through 

the node during communication. 

 

Data Collection: The data to be collected was determined. All data from a real world 

system and the model were collected and analysed. The data that was collected included 

timing information for the software drivers to complete different tasks. Other data 

collected were timing constraints associated with the E-Ray communications controller 

implementation. 

 

Model Translation: The model was built using SimEvents. This software was decided 

upon as it has all the required elements necessary to build a discrete-event model. It is 

also flexible as it allows the use of user defined elements or functions written in ‘C’ to 

be included. The steps involved in choosing the simulation program are outlined in 

section 7.10. 
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Verification: The model was verified in stages by testing the different subsections. 

When the model is completed it is verified as a whole. This stage was performed using 

SimEvents.  

 

Validation: The model was validated against a small real world network. This included 

a number of different set of constraints to judge the performance of the model over a 

number of different scenarios. This was repeated until the model could be said to be 

validated. It was also evaluated to judge its ability to carryout its intended function. 

 

Documentation: This was done at regular intervals. This is backed up by regular 

meetings with stakeholders in the research. 

 

The following steps relate to the completed model as a tool. These are done to 

test real world scenarios where improvement in system performance is desired. 

 

Experimental Design: The experiments are done as needed 

 

Production Runs and Analysis: The experiments are run and the performance metrics 

obtained. 

 

The Need for More Runs: This is done as needed. 

 

Implementation: The real world system can be modified and improved based on the 

output of the simulation experiments. 

 

10.4 Conclusion 

 The FlexRay protocol is new and emerging. This leads to a wide range of 

research opportunities to improve FlexRay products and systems. The complexity of 

setting up a FlexRay node makes it difficult to analyse over a wide range of constraints. 

The cost to set up an adequate real world FlexRay network to test a hypothesis can  also 

become prohibitive. As it is not always possible to observe real world systems a 

simulation of a FlexRay system is a more effective and viable solution.  Using the 

methodology outlined in this chapter an effective model should be achieved.  
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Chapter 11 . Simulation Model 

Development 

 

11.1 Introduction 

The simulation model was designed to accurately represent a real world FlexRay 

node. To achieve this, the model was based on the Bosch E-Ray communications 

controller. This chapter will outline the specification of the FlexRay node that defined 

the structure and performance of the simulation. The model will be broken down into its 

various subsystems. The functionality of these subsystems will be explained. 

This model used MATLAB, Simulink and SimEvents to build, verify and 

validate the model. The various operation and performance characteristics of the 

components used will be described as necessary throughout this chapter. Due to the size 

of the model developed, only a small number of the main subsystems will be described. 

Figure 11.1 (Banks et. al. 2001, p16) highlights the stage at which the model 

development occurs in the model development cycle. At this stage research into the 

operation of the system has been done and the simulation model is built. 

 



MODEL DEVELOPMENT 

- 196 - 

 

Figure 11.1: FlexRay development steps 
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11.2 Specification Development Process 

When the specification for the model was developed, it was based on the 

specifications of the separate components making up a FlexRay system. The structure of 

a node based system can be seen in Figure 11.2. 

 

Figure 11.2: FlexRay node elements 

 

The elements of the node are the application, the software driver and E-Ray 

communications controller. The FlexRay network represents the physical bus over 

which data is transmitted. It was necessary to understand how each of these layers work 

and interact to accurately reflect the workings of a FlexRay node. 

By viewing a FlexRay based system in the divisions shown in Figure 11.2, the 

build process was more easily modularised. This meant that each element of the system 

could be built and tested separately. The final model then consists of these individual 

subsystems. This method allows each section to be built to the specifications applicable 

to it. It does mean however that there may be some work needed when connecting the 

elements of the overall system together. Problems can arise in the form of syntax issues, 
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i.e. attribute names vary slightly, or in the form of a system receiving an entity it cannot 

handle. 

 

 

11.3 Simulation Model Specifications 

Each of the nodes’ elements was considered in relation to their inputs/outputs 

and functionality. Figure 11.3 shows the inputs, outputs and considerations that were 

necessary to be investigated for the application layer. 

 

 

Figure 11.3: Application inputs, outputs and considerations 

 

As can be seen the considerations that were examined were elements that affect 

the speed and flow of data. For each section a number of considerations were 

investigated. The remaining sections of the FlexRay node considerations can be seen in 

Figures 11.4, 11.5 and 11.6. 
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Figure 11.4: Software driver inputs, outputs and considerations 

 

 

Figure 11.5: Communications controller inputs, outputs and considerations 
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Figure 11.6: Physical bus inputs, outputs and considerations 

 

After this process it was decided that the startup and wakeup processes would 

have no effect on the flow of data through a communicating node. Therefore it was felt 

that these two processes would have no bearing on the outcome of the research. All the 

other considerations as outlined in Figures 11.3 to 11.6 could have a big impact on the 

flow and timing of data. For this reason it was necessary to accurately depict them in the 

model. 

The next step was to investigate the workings and makeup of those elements 

outlined above and to implement them in the simulation model.  

 

11.3.1 The Model Design Philosophy 

Each of the four basic elements that make up a FlexRay node (application, 

software driver, communications controller as well as the physical bus layers) may be 

made up of a number of subsystems. The simulation model was therefore designed to 

accurately reflect these divisions. This section will outline how each of the sections is 

divided up and their subsequent implementation in SimEvents. 

The two diagrams Figures 11.7 and 11.8 show the top layer of the simulation 

model and the main elements of the FlexRay node model. The design of the top layer is 

used to give a more realistic breakdown of the model. However it provides no 

functionality to the model. 
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Figure 11.7: Top layer of simulation model 

 

 

Figure 11.8: FlexRay model subsections 

 

When designing the blocks and subsystems of the model the guidelines as 

defined by MAAB (Mathworks Automotive Advisory Board [MAAB] 2007) were used. 

These guidelines are for use when modeling with MATLAB, Simulink and Stateflow. 

Therefore not all the guidelines were useable without minor alterations. The basic 

workings of each section of the model are discussed briefly later in section 11.5. For a 

more complete explanation of the workings of FlexRay, E-Ray and the FlexRay 

software drivers see chapters 4, 6 and 8 of this thesis. 
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To make an adaptable model a number of entities types were designed. Each entity 

had a number attributes associated with them. These entities were used to represent the 

main signals of concern to the study. The entities that were developed were: 

• Requests: These entities represent the signals and data sent between the 

communications controller and the host of the node. The host is a combination 

of the application layer and the software driver. 

• Slots: These are in the form of static, dynamic and minislots. They define when 

slots begin. 

• Cycle: This is used to represent when a new communication cycle begins. This 

is used by various other subsystems to identify the current time also. 

• Frames: These entities represent the data to be transmitted over the physical bus. 

The various paths that the different entitles could take though the model are shown in 

Figure 11.9. In Figure 11.9 R= request entity, S= slot entity, F= frame entity and C = 

communication cycle entity. The E-Ray module abbreviations shown are the Controller 

Host Interface (CHI),  Input Buffer (IBF), Output Buffer (OBF), Protocol Register (PRT) 

and Transient buffer (TBF). Message is abbreviated as MSG. 

 

 

Figure 11.9: Entity Paths 

 

As can be seen there are a limited number of paths that any one type of entity may take. 

This will be discussed in section 11.3.2 

It was also decided that colour coding the model would make debugging the 

model easier and quicker. To do this a colour coding convention was developed. This 

colour coding chart can be seen in Appendix A. 
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11.3.2 Entity Types 

As was stated in section 11.3.1 there are four basic entity types that were 

developed to model a FlexRay system. These represent the signals that are of interest to 

this research. These signals are in the form of timing (slot and communication cycle 

entities) as well as data signals (request and frame entities). Figure 11.9 also showed 

that there are two basic directions that these entities can take i.e. transmit and receive. 

Figures 11.10 -11.13 show a flow of the slot, request, frame and cycle entities 

throughout the model.  

Figure 11.10 shows that the generation of slots is based on synchronisation 

entities that are produced by the synchronisation block. The generation of slots is done 

in the global time unit subsection of the model. The current slot entity is then passed to 

a number of blocks. This allows the message RAM to check for any frame that would 

be sent during the next slot. The media access control block also uses a slot entity to 

ensure that the current frame in the transfer buffer is the next valid frame before 

allowing the controller to commence communication. Finally the physical bus uses the 

current slot entity to check if slot is assigned to the simulated node. If the slot is 

assigned as a receive slot for the node then there is no possibility that the physical bus 

will generate a frame during that slot. If the slot is not assigned to that node, the 

physical bus has a possibility to generate a frame. 

Any slot that is received from the physical bus is used by the global time unit to 

create a dynamic slot if the static segment is complete. The generation of the dynamic 

slot occurs at the generation time of a minislot if a slot has been received from the 

physical bus. This means that while transmission is occurring, during the dynamic 

segment, the current slot entity must be blocked from entering the communications 

controller model. 
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Figure 11.10: Slot entity paths 

 

In Figure 11.11 the request entity paths can be seen. These entities are generated 

from the application layer. These requests could be in the form of asking for a stored 

frame in the message RAM of the communications controller. It could also be a request 

to update a buffer assigned to a transmission frame. These requests must pass from the 

application layer into the driver. The requests will then pass through the appropriate 

layers of the communications controller. 

As can be seen from Figure 11.11 the requests can travel down from the 

application to the communications controller. Requested data will then travel back 

through the communications controller and software driver if necessary. 

 

 

Figure 11.11: Request entity paths 

 

Frame entities represent any frame that is to be transmitted on or successfully 

received from the physical bus layer. They pass through a number of different blocks. 
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This is shown in Figure 11.12. They are stored in the message RAM and passed onto 

the bus at the appropriate time using the media access control subsystem. If a frame is 

generated by the physical bus layer and it matches the filtering criteria, the frame is 

stored in the message RAM. Another entity could have been created to represent the 

buffer entities. These would contain the same information as the frame entities. This 

means that there is another type of entity used in the model but was never formally 

defined. 

 

 

Figure 11.12: Frame entity paths 

 

The final entity type is the cycle entity. This defines the start of a new 

communication cycle. It is passed up the application layer as an ‘interrupt’ to give the 

application layer a time reference. The global time unit subsystem receives this entity at 

the start of the symbol window/network idle time. This is then used to indicate that 

dynamic slot generation should cease. The paths the cycle entity will take are shown in 

Figure 11.13. 

 

 

Figure 11.13: Cycle entity paths 
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Table 11.1 describes all the entity attributes. It includes the static slot and 

minislot entities that are used to define the start of slot entities. The static slot, minislot 

and cycle entities encompass all of the entities necessary to perform the synchronisation 

of the model. This is further described in section 11.5.1.1. 

 

Type Attribute 

Attribute 

Number Notes 

Slot    

 Slot_No 1 Used to identify a particular slot 

 Remaining_Mini 2 

Used to calculate the remaining transmission time in 

the physical bus. 

 Cycle_Count 3 This represents the current communications cycle 

Requests    

 Request_Type 1 

1 = get frame for transmission. 2 = get frame for the 

host. 3 = update frame attributes. 4 = read from the 

FIFO 

 Frame_ID 2 

The frame to be updated, transmitted or sent to the 

host. 

 Data 3 The update data if any. 

 Channel_Config 4 

The channel the message is to be transmitted on if 

necessary. 

 TX_Type 5 

1 = The frame should be transmitted. This is used 

when updating a message buffer for transmission. 2 = 

the frame was received and should not be transmitted 

Frames    

 Frame_ID 1 Used to identify a particular frame 

 Cycle_Code 2 Used for filtering if desired. 

 Channel_Config 3 

1 = transmit/receive on A. 2 = transmit/receive on B. 3 

= transmit/receive on A & B. This is the same for 

Request Entities. 

 Data 4 The data length of the frame 

 TX_Type 5 1 = The frame should be transmitted.. 

Static 

Slots   Describes the actual static slot 

 Slot_Number 1 Used to identify a particular slot 

 Remaining_Mini 2 

This is set to ensure that the physical bus isn’t blocked 

for generating frames during the static segment 

Mini Slots   Describes the current minislot 

 

Mini_Slot_Num

ber 1 

Used to identify the number of minislots that have 

expired during the current dynamic segment 

Cycle 

Count    

 

Cycle_Count_Nu

mber 1 Holds the current cycle count, values range from 0-63 

Table 11.1: Entity attributes 
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11.4 Model Metrics 

Before metrics can be developed from the output of the model an analyst must 

be able to obtain measurements from output. The following sections will describe the 

measurements that can be obtained from the model. 

 

11.4.1 Data Flow Measurements 

It has been stated that the model views the FlexRay system as a flow of data 

through the system.  An example of this is illustrated in Figure 11.14. In Figure 11.14 

the small squares within the separate model components represent the various delays 

associated with the system. The messages must pass through each of these to reach their 

destination. As can be seen there are two paths that the data may take. The data may 

originate on the communications bus. This represents data sent by the various nodes of 

the system. It will take time to propagate over the bus and into a node. The data will 

then work its way up through the communications controller and the software driver to 

the application layer. The data can then be processed.  

  

 

Figure 11.14: Model as a flow of data 

 

Figure 11.14 shows how there can be one or more delays associated with any 

one layer of the model.  The implementation of these layers will have an effect on the 

performance and operation of the system. For instance the manner in which the 

application handles data from the communications controller will effect how quickly 

incoming data can be processed. The implementation may be seen only as one delay or 

as many delays and this will depend on the setup and characteristics of the layer in 

question. By analysing the paths better conclusions can be made.  
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Figure 11.15: E-Ray data flow path 

Figure 11.15 shows one path that data may take through the E-Ray chip. The diagram is 

numbered as follows: 

1. Data moves off the bus and is placed in the protocol controllers. 

2. The message then moves into the transient buffer. 

3. From here the message is passed to the message handler to be placed in a 

Message Buffer. 

4. The message remains in the Message Buffer until requested by the host. 

5. The message is passed into the output buffer by the message handler. 

6. The message is passed from the output buffer to the software driver. 

7. Finally the message passes to the application layer for processing. 

The path will experience extra delays as the data moving in one direction could 

affect the movement of the data in the opposite direction. The messages stored in the 

message RAM will also spend a potentially indeterminate amount of time in a buffer 

before being read or transmitted. By recording data entering various stages and the time 

when it is passed onto the next stage a clear view of the data flow can be achieved. This 

will help to identify why, if any, deadlines are missed, or why a message is overwritten 

before it is processed or transmitted. Any ‘bottlenecks’ in the system can then be 

analysed and a solution proposed. 

In Figure 11.2 the overall conceptual view of a FlexRay node was shown. The 

data flow through such a system is also shown in Figure 11.14. Various aspects of a 

FlexRay system could be of interest to any particular systems analysis. For the model to 

be a useful as a performance analysis tool it must return suitable measurement values. 

Once these metrics were determined the model could then be modified to return these 

values.  

The first consideration taken into account was the time base of FlexRay. This 

was taken as a real world value directly from the simulation clock. This would be easy 

to achieve and all measurements could then be easily time-stamped and saved as 

MATLAB workspace variables. The time stamps could then be compared to the 

1 2 3 4 5 6 7 
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expected start times of slots or communications cycle start events. This would give an 

accurate view of when any simulation event occured. 

Another consideration taken into account was the type of analysis that was 

required for the model. The function of the model would have a big effect on the type of 

metrics that should be obtainable from the model. For instance the focus of this model 

was on the flow of data through a FlexRay node. This means that the power 

consumption of the node could not be measured and any metrics based on this could be 

ignored in this study. 

The final consideration was to attempt to record as many possible measurements 

that may be required by a user of the model. This would then make the model as useable 

for as many tests and testing situations as possible. 

When these were all taken into account the metrics could be developed and 

analysed for suitability. The model could then be constructed to accommodate any 

measurements necessary to achieve the required flexibility. For more information on 

performance analysis and metrics see chapter 5 of this thesis. 

 

11.4.2 Application Measurements 

Figure 11.3 shows the considerations for the application layer of the model. The 

application layer takes in data from and passes data to the software driver. This data can 

be seen as data from the communications controller. The role and operation of the driver 

will be introduced in section 11.4.3. The information passed to the driver is either 

configuration data during startup or data for transmission after the startup phase to/from 

the communications controller.  As the model is not concerned with the startup phase 

data to and from the model application layer is only concerned with communication 

data. The main concern with the application would therefore be the number of frames
§
 it 

can process within a given communication cycle.  

The number of frames that the application processes within a given 

communication cycle could give an insight into the suitability of the setup. For instance 

                                                

§ A frame is not completely passed on by the host. For any given static slot the host merely updates the 

data section in memory RAM allocated to a particular frame and the header section remains unchanged. 

For more information see chapters 4 and 6 of this thesis. 
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a node could be set up to read a sensor and output data as well as calculate a value based 

on received data and output this calculated value. If the application is not able to 

transmit the data to the communications controller within a given time the data may not 

be transmitted during the current communication cycle. This could indicate that the 

application coding takes too long to execute or that the communication schedule is not 

appropriate. Likewise if the application executes very rapidly the node’s host controller 

may be idle for long periods. This could mean that an extra application may be added to 

that node (hardware limitations such as memory requirements permitting).  

Due to these considerations it was decided that to measure: 

• The number of frames sent to the communications driver. 

• The number of incoming frames serviced.  

• The overall execution time of the application. 

 

11.4.3 Software Driver Measurements 

Like the application, the software driver is concerned with data for transmission 

and data received to/from the application and communications controller. This can be 

seen in Figure 11.4. However unlike the application the driver cannot generate data. It 

merely accepts data and passes it between the communications controller and the 

application. In this way the most significant effect that the driver will have will be to 

slow down the data as it waits for the communications controller or application to 

respond to commands.  

The measurements that can be drawn from this layer are: 

• The wait time of a frame to be passed from the host to the communications 

controller. 

• The wait time of a frame to be passed from the communications controller to the 

host. 

 

11.4.4 Communication Controller Measurements 

The communications controller considerations are shown in Figure 11.5. This is 

an important aspect of the model. This layer is where the research conducted in the 

thesis is focused. The communications controller is responsible for ensuring that frames 

are only transmitted during their allocated slots. It must also accept frames sent over the 

physical bus if those frames match the acceptance filter criteria. Both transmit and 
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receive frames must be stored in the communications controller until ready to be 

transmitted or requested by the application. 

To be able to measure the performance of this layer it is necessary to know: 

• What data is coming into and out of the controller. 

• The channel(s) a frame is transmitted/received on. 

• The frames that are passed and rejected by the filtering for the FIFO and normal 

filtering. 

• The number of frames stored in the FIFO. 

• The average wait time for a message stored in the message RAM should also be 

recorded.  

• The number of requests from the application layer that are serviced by the 

controller. 

• The values for the various slots and communication segments. 

 

11.4.5 Physical Bus Measurements 

  The physical bus transmits frames received from any communications controller. 

The communications controller must ensure that it only transmits data during its 

allocated slots. In this way the model of the physical bus must be able to generate 

frames to simulate traffic from other nodes. The physical bus must not block the frames 

from the communications controller model unless it is the dynamic segment. In the 

dynamic segment frames can occupy as many minislots as necessary. Figure 11.6 again 

shows some considerations that should be taken into account.  

The physical bus is completely dependant on the communication cycle. As such 

all the measurements should be considered in terms of the communication cycle. If 

possible however the different segment times should be taken into consideration. In this 

way the bus loading for the static and dynamic segment can be viewed separately. 

The measurements therefore that could be taken are: 

• The frames received from the communication controller. 

• The frames generated and transmitted as other nodes on the bus. 

• The average wait time that the frame occupied the bus.  

• Each measurement should be split up to represent each of the two 

communication channels. 
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11.4.6 Model Metrics Summary 

To make a useful and adaptable model a number of items were investigated. In 

this section the metrics that may be desired were discussed. There are a number of 

possible metrics that an analyst may want. The model was therefore designed to provide 

as many of these as possible. A number of measurement blocks were added to the 

model. This will be seen in section 11.5. A list of all the recordable values and variables 

for the model can be seen in Appendix B of this thesis. 

 

 

11.5 The Model 

11.5.1 Communications Controller Model 

The communications controller will be modelled on a Bosch E-Ray 

communications controller chip. This meets the specifications laid out in the FlexRay 

specifications. The divisions and functional blocks of a communications controller can 

be seen in Figure 11.16 (Robert Bosch GmbH 2006a, p14). Figure 11.16 is the block 

diagram of an E-Ray chip. The simulation model of the communication controller was 

designed to reflect the layout of these diagrams.  

The various sections of Figure 11.16 are as follows: 

• IF: interface. 

• IBF: the input buffers. 

• OBF: the output buffers. 

• TBF: transient buffer RAM. 

• PRT: FlexRay channel protocol controller. 

• GTU: global time unit. 

• SUC: system universal control. 

• FSP: frame and symbol management. 

• NM: the network management. 

• INT: interrupt handler. 
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Figure 11.16: E-Ray block diagram 

 

Figure 11.17 shows the functionality that was required for the communications 

controller layer of the model. This was based on the specifications of the E-Ray 

controller and the FlexRay specifications. The outer circle show the areas of interest to 

this research.  

 

 

Figure 11.17: Communications controller tasks 

 

The model representation of the E-Ray chip can be seen in Figure 11.18. The 

naming of the sections is based on that of Figure 11.16. This was to achieve a higher 

level abstraction more consistent with that of the FlexRay protocol. For instance the 

input buffers and output buffers form part of the controller host interface. By naming 

the model subsystem input buffer and output buffer it may not be clear to all users of the 

model immediately that the buffers were used for transfer between the host and the 
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communications controller and not onto the physical bus from the communications 

controller. Instead the use of ‘Media_Access_Control’ and 

‘Frame_And_Symbol_Processing’ was used. 

 

 

Figure 11.18: Model of the communications controller 

 

This naming convention was used for the following reasons. The paths that a 

message may take through a E-Ray communications controller is show in Figure 11.16. 

The subsystemss coloured yellow, in Figure 11.16 help to maintain the accurate running 

of the node. They have little bearing on the flow data through the node with the 

exception of the frame and symbol processing and the global time unit subsystem. The 

frame and symbol processing subsystem accepts or rejects the frames arriving and 

allows the node to transmit the frame only during its current slot. The global time unit 

merely tells the communications controller the current global time. 

The role of the transient buffer RAMs (there is one for each channel) is to store 

any messages to be sent out on the bus as well as the most recent message received on 

the bus. Figure 11.19 shows the structure of the single transient buffer RAMs (Robert 

Bosch Gmbh 2006, p138).  
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Figure 11.19 Transient buffer RAM structure 

 

As there are separate dedicated receive and transmit buffers it is possible to split 

these components up into two separate functional blocks. Therefore the transmit buffers 

become the media access control and only allow the correct message to be sent out. The 

receive buffers then becomes the frame and symbol processing subsystem as they only 

send the data to the message handler if the received frame matches filter criteria. 

 

11.5.1.1 Synchronisation Model 

The synchronisation block, Figure 11.20, acts as part of the global time unit of 

the E-Ray chip. It carries out the same function as the macrotick generation and clock 

synchronisation processing blocks as defined by the FlexRay specification (2005).  It 

forms along with the ‘Global_Time_Unit’ subsystem in the 

‘Protocol_Operations_Control’ subsystem the whole clock synchronisation and time 

handler. The function of the synchronisation subsystem is to give a reference for when 

slots begin. 
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Figure 11.20: Synchronisation block 

 

The synchronisation subsystem as can be seen in Figure 11.20, is divided into 

four main sections. These sections are the ‘Initialise_All_Segments’, ‘Static_Segment’, 

‘Dynamic_Segment’ and the ‘Symbol_Window_And_NIT’ blocks. The function and 

operation of these blocks will be discussed below. 

The synchronisation susbsystem is controlled by a cycle entity that is passed 

between each lower level subsystem in turn. When a susbsytem has the cycle entity it is 

allowed to perform its function. For example, if the static segment subsystem is in 

possession of the cycle entity it is allowed to generate static slots. After a predefined 

time the cycle entity is passed to the next subsystem and this subsystem then performs 

its function. The flow of the cycle entity can be seen below in Figure 11.21. Also at the 

start of each cycle the cycle entity is passed up to higher layers of the model. 
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Figure 11.21: Cycle entity flow diagram 

 

11.5.1.1.1 Synchronisation Initialisation Block 

This block sets up the static and dynamic segment subsystems. It also generates 

the cycle entity that is used to control the operation of the different subsystems. Each 

initialisation segment is confined to a different subsection. This is again to aid 

readability and to avoid confusion. Figure 11.22 shows the subsystems used in the 

initialisation subsystems. 
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Figure 11.22: Initialisation block 

 

The static initialisation generates static slot entities that will be used to 

determine the current static slot in the static segment subsystem. This is shown in Figure 

11.23. Each entity is generated using the SimEvents time-based generation block. This 

means that at fixed, evenly spaced points in time a new entity is created. 

 

 

Figure 11.23: Initialise static segment block 
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Each generated static slot has an attribute assigned to it. This attribute is the 

‘Slot_Number’ attribute. Its value is obtained from the memory block that adds one 

every time an entity passes through the ‘Assign_Slot_Numbers’ block. Once the 

number of static slots has been obtained the 

‘Required_Number_Of_Static_Slots_Initialised’ block is asserted. This will cause the 

generation process to be blocked. This model block is based on time but is set using 

workspace variables. 

The dynamic initialisation subsystem generates minislots that will be used to 

determine the current dynamic slot during the dynamic segment. This subsystem 

operates in the same way as the static slot initialisation subsystem. When the required 

numbers of minislots are obtained a signal is asserted and this causes this subsystem to 

be blocked from generating more entities. 

The subsystem that initialises the cycle entity works in a similar way to the static 

and dynamic initialisation subsystems. This subsystem differs from the static and 

dynamic initialisation subsystems as it only generates one entity. As such the set 

attribute block does not need an external signal to indicate what the attribute value 

should be. This is instead ‘hard-coded’ using a dialog box in the parameters of the set 

attribute block. 

 

11.5.1.1.2 Static Segment Subsystem 

In this subsystem, shown in Figure 11.24, the static slots from the initialisation 

subsystem are stored in a FIFO. When the cycle entity arrives it enables slots to move 

from the FIFO into a server. Before they are moved into the server however they are 

replicated and sent to higher levels of the model. The server holds the static slots each 

for the desired length of a static slot. The cycle entity should therefore only allow 

enough time for the required number of static slots to be replicated and sent out. 

After the slot entity has left the server it is sent back to the FIFO so that during 

the next cycle the process can begin again. This eliminates the need to continually 

generating slot entities.  
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Figure 11.24: Static segment block 

 

Figure 11.25 shows the cycle entity detection subsystem elements. This 

subsystem accepts the initial cycle entity. It then replicates the entity and sends it to 

higher subsystems that it may require the entity to function correctly. The cycle entity 

will then enter the server. This server holds the cycle entity and creates a signal that 

allows the enable gate in the static segment block to pass slot entities. 

It is necessary to have a second server to avoid timing issues. After the last slot 

has passed from the FIFO the cycle entity passed to the second server. This server holds 

the entity for the remaining time of the static segment. It was found that an extra static 

slot entity could pass from the FIFO arbitrarily if this second server was not employed. 

If an extra slot entity passes from the FIFO then errors occur based on the slot numbers.  

 

 

Figure 11.25: Get start of cycle 

 

11.5.1.1.3 Dynamic Segment Subsystem 

The dynamic segment operates in a similar way to the static segment. Entities 

are allowed to be generated when an enable signal is asserted. This signal is asserted 

when the cycle entity enters the ‘Cycle_Entity_Detection’ subsystem. It can be seen in 

Figure 11.26 that there is a replicate block within this subsystem. This block takes the 

generated minislot and passes it to two ‘out ports’. This allows for the system to keep 
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track of the current dynamic slot on each channel separately. This necessary due to the 

workings of the ‘Global_Time_Unit’ subsystem and will be discussed later. 

 

 

Figure 11.26: Dynamic segment block 

 

The minislot generation takes place as shown below in Figure 11.27. As can be 

seen it operates in the same way as the static slot generation.  

 

 

Figure 11.27: Dynamic channel block 

 

The enable block for the dynamic segment is less complicated than for the static 

segment. This is because it has no routing blocks for the initialisation stage or a 

replication block section for the cycle entity. It does however utilise the two server 

approach to eliminate any erroneous minislot generation errors. Therefore the only 

required elements are those only shown in Figure 11.28. 

 

 

Figure 11.28: Dynamic enable block 
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11.5.1.1.4 Symbol Window and NIT Subsystem 

The symbol window and network idle time (NIT) subsystem holds the cycle 

entity for the remainder of the communication cycle. It also increments the cycle count 

attribute. Figure 11.29 shows the blocks used to achieve this. The cycle count attribute 

is obtained from the entity when it enters the block. When it leaves the block an updated 

cycle count replaces the old value. On entering this subsystem, the cycle count entity is 

replicated and sent to the global time unit subsystem. This will then stops dynamic slot 

generation. 

 

 

Figure 11.29: Network idle time and symbol window block 

 

The ‘Increment_Cycle_Count’ subsystem was constructed as shown in Figure 11.30. It 

essentially carries out the following logic, written as ‘C’ code: 

 

Cycle_count = Cycle_count +1; 

If (Cycle_count > Cycle_count_max) 

 Cycle_count = 0; 

End if 
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Figure 11.30: Increment cycle count block 

 

It is important to include the non-SimEvents blocks in a ‘Discrete Event 

Subsystem Block’. This block helps to maintain the timing accuracy of the model. If 

these blocks weren’t used then false values could be taken for any calculated values. 

These include the amount of time an entity stays in a server for instance. This is 

highlighted in the help file of the SimEvents program under the heading ‘Role of 

Discrete Event Subsystems in SimEvents Models’ (The MathWorks, Inc. 2007): 

 

‘The purpose of a discrete event subsystem is to call the blocks in the subsystem at the 

exact time of each qualifying event and not at times suggested by the time-based 

simulation clock. This is an important change in the semantics of the model, not merely 

an optimization.’ 

 

Discrete event subsystems however cannot hold SimEvents blocks. If a set of blocks 

makes up a subsystem of the modelled system a standard Simulink subsystem can be 

used to create a clear separation of components. 

 

11.5.1.2 Global Time Unit Model 

 Within the model there is a ‘Synchronisation’ subsystem and a 

‘Global_Time_Unit’ subsystem. These subsystems work together to define the start of 

both static slots and dynamic slots. The synchronisation subsystem as discussed in 

11.5.1.1, simply produces entities that define the start of static slots and minislots. 

However dynamic slots can overlap a number of minislots. It is therefore necessary to 
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have a separate global time unit subsystem. This is seen in Figure 11.31 and is 

consistent with operation of FlexRay as outlined in the protocol. 

 

 

Figure 11.31: Global Time Unit 

 

To accurately reflect the beginning of a static slot, the static slots are sent 

directly through the ‘Global_Time_Unit’ block. When this happens the cycle count is 

added as an attribute and the slot passes through to both the physical layer and to other 

blocks of the communications controller. This means that no delay should be 

experienced by a static slot. The cycle count attribute is added for uses by other layers 

that may be using the entity. The subsystem to add the cycle count is shown in Figure 

11.32. This subsystem simple takes the cycle count from the current cycle count entity 

and adds it to the slots using a ‘set attribute’ block. 

 

 

Figure 11.32: Cycle count attribute adder 
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 In order to accurately reflect the beginning of a dynamic slot however is more 

complicated. In order to do this a slot must be taken back from the physical bus model. 

When a static slot arrives back from the bus its slot number is checked. If it is any slot 

besides the last static slot it is discarded. If it is the last static slot, the slot number is 

incremented and it is sent out. It will only be sent out however when a minislot arrives. 

This relies on the physical bus subsystem being able to hold the slot while a message is 

on the bus. If this does not happen, a new dynamic slot will be generated every time a 

minislot arrives. Figure 11.33 shows the basic components of the dynamic slot 

generator subsection of the ‘Global_Time_Unit’ subsystem. 

 

 

Figure 11.33: Dynamic slot generator 

 

This subsystem also uses a copy of the cycle entity from the 

‘Symbol_Window_And_NIT’ from the synchronisation subsystem to indicate that no 

more dynamic slots should be produced. Any pending entity can then be discarded. 

 

11.5.1.3 Message Handler and Message RAM 

Figure 11.11 shows the breakdown of an E-Ray communications controller. It 

shows the various components necessary to achieve a FlexRay compliant 

communications controller. In Figure 11.34 below a small section of the diagram is 

shown. It describes all the connections to the Message Handler and the Message RAM. 

As can be seen only the Message Handler has access to the Message RAM. Other 

systems can only access the Message RAM through the Message Handler. This should 

prevent any access conflicts to the RAM. Not all systems connected to the Message 

Handler are shown. For instance the current slot is shared by the global time unit so that 

any pending message can be transmitted at the appropriate time. 
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Figure 11.34: Message Handler 

 

The basic operation of the Message Handler and Message RAM can be seen in 

Figure 11.35. The basic operation is as follows: 

Any request for data, current slot or received data entities can be accepted by the 

message handler which passes them to the message RAM. The message RAM buffers 

are all modelled as frame entities. When any input is received the buffer entities are 

searched for a matching buffer to the input. If a matching buffer entity is located the 

buffer is updated or the value is read out to be transferred to the application layer or 

passed to the physical bus as appropriate. If there is no dedicated buffer then no read or 

update will be experienced. 

While the message buffers are being read or updated no other entity is allowed 

to pass through the message handler. This prevents any interference from other blocks. 

This also follows the operation of a real-world E-Ray communications controller. If a 

frame is transmitted the buffer entity associated with the transmitted frame is returned to 

the message buffer queue. This along with the fact that received messages are stored in 

the same queue meant that there was a possibility that a frame could be transmitted 

when not appropriate. For instance the system may be set up to only transmit a 

particular message once. To overcome this problem a ‘TX_Type’ attribute was added to 

these entities. This attribute is only used within the message RAM subsystem. It is used 

to indicate whether the data associated with that message buffer should be transmitted 

or not. Initially all buffers are set to ‘no transmission’. If a buffer is updated then this 

attribute must be changed. If a frame is transmitted it must still meet filtering criteria. 

Also this indicator is not always set to ‘no transmission’. The model can be set to either 

‘Single Shot’ mode or ‘Continuous’ mode. In single shot mode this indicator is reset to 

‘no transmission after a message has been sent out by the message RAM. In continuous 

mode the attribute is not reset and the data is transmitted every valid slot. 
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Figure 11.35: Message RAM model operation 

 

As there is no way to directly measure the time it takes to search the message 

RAM and update/read a buffer (using the techniques described in Chapter 13) , there is 

no time associated with the search or update of the message buffers within the model. 

Instead the time to handle these requests is all associated with the message handler.  

The message buffers are all stored within a priority queue block until a request 

accesses them.  There can be a FIFO set up within the message buffers according to the 

E-Ray chip specifications. To achieve this, a separate FIFO queue block was added to 

the message RAM section. This does not need to be searched and as such is read and 

written to differently. Figures 11.36 and 11.37 show the division of the message RAM 

buffers and the connections to the message handler. Note how the input and output sides 

of the message handler are separate. This means that a busy or enable signal must be 

used to indicate that no more entities can enter the message handler. 

 

 

Figure 11.36: Message RAM buffers 
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Figure 11.37: Message handler model blocks 

 

If a request entity is received by the message handler and it is allowed to pass to 

the message RAM, then the requested buffer will be sent to the 

‘Controller_Host_Interface’ after a calculated time based on the size of the data to be 

transferred. If data is to be sent out over the communication bus however it must first 

match given criteria.  This includes cycle filter and only slots matching the appropiate 

slot will be sent out. When the frame is sent to the ‘Media_Access_Control’ block for 

transmission,  it will be routed to either a the channel A or channel B access block, or 

both, depending on the value of the entities’ ‘Channel’ attribute.  

 

11.5.1.4 Remaining Communications Controller Elements 

The remaining communication controller elements include the 

‘Media_Access_Control’, ‘Frame_And_Symbol_Processing’ and 

‘Controller_Host_Interface’ subsystems. For these blocks the arriving entities will have 

a ‘Data’ attribute associated with them. This attribute indicates the length of data to be 

transferred through the subsystem and based on this value the entity will be delayed for 

a calculated time. 
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The ‘Media_Access_Control’ and ‘Controller_Host_Interface’ subsystems 

merely delay the entities; however the ‘Frame_And_Symbol_Processing’ subsystem has 

more functionality. This block checks arriving frames and filters them. It will reject the 

arriving frame entities based on the value of the ‘Frame_ID’ and what channel it arrives 

on. It also can be configured to filter the frames based on the current cycle. Figure 11.38 

shows how the output buffer is constructed to reflect the real world implementation. As 

an entity enters the buffer its data length is checked and the delay it would experience 

due to this is calculated.   

 

 

Figure 11.38: Output buffer structure 

 

11.5.2 Physical Bus Model 

The FlexRay physical bus is the medium over which data is transmitted. It 

consists of one or two channels, Channel A and Channel B, over which data can be 

transmitted. Each node is connected to one or both of the channels. There are various 

connection possibilities available such as active or passive star and linear bus. However 

a node does not know how it is connected to a FlexRay network. It only sends data over 

the network during its allocated slot(s). Transmission of these frames also occurs over 

predetermined channels. In this way any particular node is able transmit and receive 

data.  

Figure 11.39 shows the basic operation of the physical bus. This layer must 

accept the slot entities generated by the simulated node. If there is a frame generated by 

the node the physical bus must also accept this. If there is no frame assigned to the node 

for a given slot, the physical bus has the potential to generate a frame entity. The 

physical bus may produce a frame for either both channels or just one of the channels. 
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Figure 11.39: Physical operation diagram 

 

The model of the physical bus must simulate the real world behaviour. To do 

this it must accept frames from the node model and generate frames to be passed to the 

node model. The node model will then have to determine if the frames are to be 

accepted or rejected. Another consideration of the physical bus is the propagation delay 

of the data. The bus can operate at different communication speeds. This means a 

10Mbit/s data rate equates to a bit time of 0.1µs, while other data rates will have other 

bit times. The propagation delay will be based on the data rate and length of the data to 

be sent. This was considered when the model was built. The main sections of the 

physical bus model can be seen in Figure 11.40 below. 

 

 

Figure 11.40: Physical bus model 
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As can be seen from Figure 11.40 the physical bus has been split up into two 

channels, Channel A and Channel B. There is a third subsection to the model which 

produces the additional frames from other nodes. These additional frames are not 

generated during the slot time of slots allocated for transmission from the main model 

node. In any other slot other than the slots allocated to the ‘main’ node a frame 

generation can occur. For the dynamic slots the message should only be allowed to be 

sent over the bus if there is sufficient time to transmit the data completely.  

Figure 11.41 below shows the Channel A model. It consists of an enable gate, 

slot filter, a propagation delay subsystem, routing system and a record subsystem. This 

is the same configuration as used for Channel B.  

 

 

 

Figure 11.41: Channel ‘X’ layer 

 

The enable gate is used to allow flexibility in test of different scenarios. 

Independent enabling of the channels is done using two work space variables. This 

allows for simulation of different node configurations such as a node connected to both 

or only one channel. This is consistent with real world system configuration possibilities. 

The frame filter block is the same subsystem as used in the ‘frame and symbol 

processing’ subsystem in the communications controller model block. The slot entities 

that are filtered in this block are sent to the alternate frames subsystem of the physical 

bus model as well as sent back up to the communications controller.  The frames 

however are sent to the propagation delay block. 

The elements of the propagations delay block can be seen in Figure 11.42. 

Figure 11.43 shows the slot routing subsystem. To calculate the propagation delay for 

the frames it was first necessary to obtain the data length of the transmitting frame. 

When this is done the server ‘Channel_’X’_Transmission_Delay’ is set to delay the 

frame by a calculated amount. In the slot delay block a slot will be delayed until an 

action point. If no frame is present on the bus after this the slot may advance from this 

subsystem. 
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Figure 11.42: Propagation delay calculation blocks 

 

 

Figure 11.43: Delay slots blocks  

 

When the frame is released from the propagation delay block it is passed with 

the slot entity and sent to the communications controller. In Figure 11.42 a delay slot 

indicator can be seen. This allows the bus to delay the reception of the slot entities by 

the node and this is used to define the dynamic slots. Figure 11.50 will show the same 

configuration as used in the delay calculation in the propagation delay calculation block. 

The alternative frames block is the third main block in the physical bus model. It is used 

to generate the additional frames that are present in a real world system. This can be 

seen in Figure 11.44.  

 

 

Figure 11.44: Additional frames layer 

 

As frames can sent over both channels at the same time in static segment, 

Channel A sends the static slots for both channels in this case. This will help to reduce 

model configuration. This also means that a ‘Transmit_Frame’ and a ‘Transmit?’ block 
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for each channel are needed. These two blocks will also need to act in a different way as 

the transmission pattern for each channel can be different. This should not cause any 

problems when simulating a node connected to Channel B only. This is due to how the 

channel is determined using attributes. Any node connected to one channel only should 

have their frame attributes modified accordingly. It should also be possible to set up the 

system to allow different frames to be sent out on the bus during the static segment to 

simulate slot multiplexing. 

The routing subsystem elements can be seen below in Figure 11.45. In this 

system the incoming frames from the previous stages are checked for the channel 

attribute. If this is set to just one channel the message is routed to that channel. However 

Channel A can generate frames that are transmitted on both channels. Therefore the 

frame in that case must be replicated and transmitted to both channels. This is a similar 

data routing subsystem as used in the message RAM block. It should be noted that 

channel B could alternatively be setup to transmit on both channels. 

 

 

Figure 11.45: Frame routing block 

11.5.3 Application Model 

The application layer of the model is based on the operation of the sample 

programs provided for the Fujitsu SK-91F467-FlexRay evaluation boards. The 

particular software was the 91460_dynamic1_91467d-v16 project developed by Fujitsu 

Microelectronics Europe (2008). This software attempts to remain synchronised with 

the communication cycle. It then proceeds to run a task at the start of the 

communication cycle. This task sends new data, if any, to the communications 

controller to be transmitted over the communication network. It also requests data that 

may have been received and successfully stored in the message RAM. Figure 11.46 

shows the flow of the application layer’s basic operation. Figure 11.47 shows the 

application subsystem components to model this behaviour. 
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Figure 11.46: Application layer operation 

 

 

Figure 11.47: Application layer 

 

The application model operates in the following way. At the start of the 

communication cycle an interrupt is received from the communications controller. The 

application then proceeds to produce new ‘request entities’. These requests can be 

requests to update a message buffer for transmission or to request data stored in the 

message RAM. Each of these requests will take a set amount of time to ‘process’ the 

data. 

There is an additional functional subsystem included with the application model. 

This allows received frames to be ‘responded’ to. This means that for instance if a 

message is received during slot 6 the application may process this data and transmit new 

data during say slot 10 for example. This can be easily configured to produce any 

response required. 
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11.5.4 Software Driver Model 

The software driver model is based on the DECOMSYS 

COMMSTACK<FLEXRAY> version 1.8. Based on a conversation with an employee 

of Elektrobit Corporation (DECOMSYS was bought by Elektrobit) who had worked on 

developing the software driver, it was discovered that there was no buffering used in the 

implementation of the software (Elektrobit Corporation 2008). This meant that the 

software driver would simply delay the data being passed to the communications 

controller from the host or vice versa. This delay would be based on the size of the data 

to be transferred in either direction. Figure 11.48 shows how the software driver has two 

tasks to perform. The first task is to transfer data from the host to the communications 

controller. The second task is to transfer data from the communications controller. The 

software driver can stay in one state indefinitely but can never process data flowing in 

opposite directions at the same time.  Figure 11.49 shows the software driver subsystem. 

 

 

Figure 11.48: Driver operation 

 

 

Figure 11.49: Software driver layer 

 

It can be seen that there is only one route that entities can pass through. This 

allows data to flow in both directions. This implementation mirrors that of a software 
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driver. A software driver is a bit of code that can usually only handle one task at a time. 

To ensure the entities are routed correctly an attribute (Routing) is set as they enter the 

subsystem. This attribute is then read by the routing block which passes the data in the 

right direction. 

Figure 11.50 shows the setup to calculate the delay of the software driver. The 

discrete event subsystem is used to calculate the delay. Based on the SimEvents help 

there is a single server block placed between the get attribute block and the server that 

carries out the delay. The ‘buffer’ server is set to a delay of zero. This ‘double server’ 

setup is used where ever calculations are done using a discrete event subsystem. 

 

 

Figure 11.50: Software driver delay 

 

11.5.5 Data Recorder Subsections 

All the ‘baby blue’ coloured blocks in the model are used to save data to the 

MATLAB workspace. A list of all variables that can be saved can be found in Appendix 

B. Figure 11.51 below shows a recorder taken from the physical bus. This recorder 

sends the transmission frames attribute values to the workspace. This is for later 

analysis if desired and can be enabled or disabled using a workspace variable to route 

the frames into an entity sink. Figure 11.52 shows how an entity passes into the record 

block. As an entity passes through the top layer of a recorder block it is copied and sent 

to the record block. The other copy of the entity is sent on to the next part of the model. 

As this does not contain any server block it will not affect the timing of the entity 

passing through the model. 
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Figure 11.51: Bus monitor model  

 

 

Figure 11.52: Bus monitor model  

 

There are essentially three types of entity that may be of interest to an analyst. 

These are Slots, Frames and Requests. Other variations on this are the static slot, 

minislot, NIT and cycle start indicator or buffer entities. All these entity types are all 

slight variations on the slot entity and have similar recorders.  

As was stated all these recorder elements can be enabled or disabled. This allows 

an analyst to only record data specific to the areas of interest to them. This helps reduce 

the amount of data stored in memory. This can also help to reduce the execution time of 

the model. 
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11.6 Conclusion 

By following the specifications of the different components an accurate model 

was created. However not all aspects of the real world components had to be modelled. 

This was due to the nature and interests of the investigation being undertaken. This 

means that a faster executing model can be built and that the development time of the 

model can be kept to a minimum. 

The model was viewed as a flow of data or messages from the physical bus up 

through the E-Ray chip and into the application through the COMMSTACK software 

driver. This flow of data also happens in the opposite direction, where the application 

sends out data through the software driver and communications controller onto the 

communications bus. This view of the model eased the development process and 

allowed the model to be broken down into functional blocks. The function of these 

blocks was then defined by the real-world component functionality. 

Breaking down the model into different subsections also makes it more 

adaptable. For instance the application layer responds to an interrupt indicating the start 

of the communication cycle. If a user is testing a system configuration that behaves in a 

different way, then this model layer can simply be changed without developing a whole 

new overall FlexRay model. The use of workspace variables also allows users to set up 

the constraints of the system in a MATLAB environment without having to go through 

all the model’s layers. This makes for a more user friendly model overall.  
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Chapter 12 . Verification 

 

12.1 Introduction 

Figure 12.1 shows where the verification stages fits into the model building 

section. The verification stage is highlighted in Figure 12.1.The need for verification of 

a model was discussed in section 7.5 of this thesis. Section 7.5 also discussed the basic 

methodology behind the verification process. This chapter will discuss the different 

tests that were carried out to achieve the verification of the FlexRay simulation model.  

 

 

Figure 12.1: Model development flow chart  

 

The verification process is broken down into two different sections. The first 

section describes the verification process used for each major model subsystem. The 

second section describes the method to verify the FlexRay model’s operation as a whole.  
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The relevant test parameters are highlighted and the data obtained from the tests 

documented.  

 

 

12.2 Verification 

E.W. Dijkstra is summarised in Francez (1992, p1) as saying “testing can reveal 

the presence of errors, not their absence”.  From this quote it can be seen that the testing 

of a system can potentially be a long and complicated one. There must be enough 

testing performed on a system to allow the developer to certify their program is working 

as intended. An infinite number of test runs are impossible and impractical for a tester 

to perform. A small, finite number of tests may merely ‘debug’ the program as stated by 

Francez (1992, p1). This would mean that the system performs accurately for a given set 

of inputs and that every line of code executes without any errors.  

Using a limited number of tests does not convey whether a program performs as 

intended. For example a simple function written in ‘C’ may accept a variable and scale 

this value by multiplying the value by a given number, say 250. If the function is not 

passed the expected type of variable, for instance, the function will not execute and the 

program needs to be debugged. During this process the programmer should fix the error 

and ensure either 1) the function is passed the correct type of variable or, 2) the function 

can handle different variable types. 

Verification of a system is however distinct from the debugging phase of the 

system. In the verification process the system is passed a set of known parameters. The 

system is then executed and the output checked against the expected output of the 

system. In the example above it can be seen that the function described can only be 

verified if the output is a correctly scaled version of the input. All the functions of a 

system may be verified individually from the system as a whole. When all functions are 

integrated into an entire system, verification of the whole system may also be done. 

Banks et. al. (2001, pp369- 370) describe steps that should be followed, if 

possible, to accurately verify a simulation model. The following steps are described as 

‘common sense suggestions’ and ‘are basically the same ones any software engineer 

should follow’. The steps are as follows: 

1. Have the model checked by someone other than the developer. They will be able 

to verify the model logic if the development has been properly documented. 
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2. A flow diagram of the possible actions a system can take when event occurs 

should be developed. All these possibilities can then be checked for correct 

performance. 

3. Check the output of the model for ‘reasonableness’ for a wide range of inputs. 

4. Make sure that the input parameters are correct. This should be done at the start 

and end of the tests. This ensures that the values obtained are a match for the 

inputs the developer wished to check. 

5. Document the operation of each major section of the model. Also document the 

use and definition of every variable used in the system. 

6. If a visual output from the model can be obtained, ensure that this output also 

accurately represents the expected output. This should also be used during the 

testing phase if possible even if the final implementation of the model does not 

produce any visual output. 

7. Make use of any debugging functionality available to monitor the program. It 

may be necessary to concentrate on the subsystems one at a time, but this will 

make the overall model more robust. 

A  number of these steps were followed as closely as possible during the verification 

process of the FlexRay simulation model. This process is described in section 12.2.1.  

Some tests may produce a large amount of data that may be ‘extremely 

cumbersome’ to check for correctness (Banks et. al. 2001, p374). However it is 

necessary to check that all possible events occur and the correct action is followed. 

Also a short simulation will produce a set of outputs that is easier to check. In this 

way artificial data could be used to produce the occurrence of all events, no matter 

how rare they may be (Banks et. al. 2001, p374). As this stage precedes the 

calibration stage the model does not have to accurately represent the timing of the 

actual system. In this way the system must only respond in the correct manner based 

on the inputs applied to the system. 

 

12.2.1 Model Verification Procedure 

The model verification was split into different two types of verification. The first 

was a ‘debugging’ procedure that was aimed at ensuring the individual model 

subsystems worked as intended. The tests at this stage were designed to discover any 

flaws in the basic operation of the models subsystems. Using the MathWorks support 

and the help files solutions to problems were quickly implemented (The MathWorks, 
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Inc. 2008). The tests were then run again until the models subsystem performed as 

desired.  

The second stage of the verification process was to integrate the blocks and test 

them. This was important as problems can occur when integrating the different blocks. 

These problems could be simple syntax errors where different blocks expect different 

attribute names or a misspelling has occurred. The model at this stage was also analysed 

for correctness of behaviour. An example would be to check that the model would only 

transmit during the assigned slots.  

The following sections, section 12.3 and 12.4 will outline the debugging and 

verification processes separately. 

 

 

12.3 Model Subsystem Debugging 

Each of the model subsystems is intended to perform a different task. In order to 

test the model each subsystem must be fully compatible with the other model 

subsystems. Tests were developed to test the functionality of each subsystem. When all 

the debug tests were run with no error the subsystem could be considered as being 

debugged. Section 12.3.1 will outline the methods and functions available to debug and 

verify the model blocks. These methods and functions are standard MATLAB or 

SimEvents features. These were also used throughout the integration verification, 

calibration and validation stages of the model building process. 

 Figure 12.2 shows a block diagram of each of FlexRay simulation model 

subsystems. These represent each of the blocks that were constructed and tested as 

described in this chapter. In Figure 12.2 OBF stands for output buffer, IBF is the input 

buffer, FSP is the frame and symbol processing subsystem and MAC is the media 

access control subsystem. The GTU subsystem is the global time unit subsystem. This 

subsystem does not pass information. Instead it controls the view of the current 

communication slot.  

The FlexRay simulation model groups the OBF and IBF blocks together into a 

controller host interface (CHI) subsystem. The verification of these E-Ray subsystems 

will therefore be discussed as one FlexRay simulation model subsystem. 
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Figure 12.2: Model subsystem block diagram 

 

To debug and verify the different subsystems a number of tests were run.  These 

tests checked for correct execution of the subsystem. During the debugging process it 

was noticed that execution of a subsystem could quickly be performed. In a number of 

the debugging tests the problems observed involved the subsystem expecting a slight 

attribute name difference. This could be a simple case of mistyping the attribute during 

the model development stage. However the execution of the model subsystem may still 

be incorrect. For each model subsystem a number of tests were developed and run. An 

example of these tests was for the synchronisation block where a number of tests were 

run to observe the correct generation of the static and minislots. In a number of cases 

during some cycles an extra slot would pass through the enable gate of either the static 

section or the dynamic section. The model was changed to produce the correct output 

from this block. The subsystem was then considered as working as intended after all the 

tests produced the correct output. 

The output from the model synchronisation subsystem test was obtained and is 

shown in Table 12.1. This was done by storing the arrival times of static slot and 

minislot entities at the output stage of the synchronisation model block subsystem for 

example. All the recorded values were stored in the MATLAB workspace for later 

analysis. This method was used in all tests where the behaviour of the model was 
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observed. This is a useful feature of MATLAB and SimEvents as the data can then be 

analysed without exporting the data to another software package such as MS Excel. 

 

Cycle 
Times 

Static 
Slots 

Mini Slot 
A 

Mini Slot 
B 

0.000000 0.000000 0.002100 0.002100 

0.005000 0.000035 0.002110 0.002110 

0.010000 0.000070 0.002120 0.002120 

0.015000 0.000105 0.002130 0.002130 

0.020000 0.000140 0.002140 0.002140 

0.025000 0.000175 0.002150 0.002150 

0.030000 0.000210 0.002160 0.002160 

0.035000 0.000245 0.002170 0.002170 

0.040000 0.000280 0.002180 0.002180 

0.045000 0.000315 0.002190 0.002190 

0.050000 0.000350 0.002200 0.002200 

Table 12.1: Synchronisation test 1 simulation time results 

 

The data shown in Table 12.1 is a small portion of the data recorded during the run of 

test case 1. The time for each cycle, static slot and mini slot was then analysed for 

correctness. This is shown in Table 12.2. 

 

Time between cycle 
starts 

Static slot 
length Mini slot length A Mini slot length B 

0.005000 0.000035 0.000010 0.000010 

Table 12.2: Synchronisation test 1 results summary 

 

Graphs were also obtained of the arrival entities at a given point of the model. 

These graphs were used to check that any entity did not arrive out of sync. They could 

also be used to display entity attributes as desired. This can be seen below in the 

synchronisation test 1 cycle entity attribute scope, Figure 12.3. Note that there should be 

2 rounds of 64 cycles = 128 cycle entities. However there are 129 entities in the diagram 

below. This is because the entity is detected just at the end of the simulation time. The 

behaviour is the desired output from the model. 
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Figure 12.3: Synchronisation test 1 attribute scope graph for cycle entities 

 

As can be seen from the sample data and test summary tables given above, the 

model produces data and this can be easily analysed in the MATLAB environment. 

These data capture and analysis techniques for observing the models behaviour have 

proven to be sufficient to carryout the testing procedures. These techniques were 

therefore used to observe all models behaviour including the calibration and validation 

tests as described in chapters 13 and 14. 

During a number of the integration debugging tests the model did not work as 

intended. In many cases the model would end up in an infinite loop. This would mean 

that the simulation time would not advance and the simulation run would need to be 

forcibly stopped. The problem was traced back to the message handler model subsystem. 

When this block was being tested it was necessary to increase the total number of debug 

tests for this subsystem. A wider variety of tests were necessary to ensure that every 

aspect of the message RAM worked. The tests in some cases would replicate a given 

condition more than once. For example there were four tests carried out to check if the 

message handler would retrieve a message stored in the RAM and pass the information 

to the host. 

During the frame and symbol processing subsystem testing a number of 

problems were dealt with. An example of this is that an initial frame that entered the 

block would be accepted for storage in the message RAM. This was even the case when 

the subsystem was set up to reject the entity. The filtering for the remaining frames 

would also be one frame off. For example frame 5 would be accepted instead of frame 4.  

During the testing of the software driver subsystem a number of problems were 

observed. These included the blocking of information passing through the software 
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driver in one direction.  The software driver model was adjusted until the desired 

performance was obtained. The software driver was then considered verified. 

When the application layer tests were run a number of errors were detected. 

These included the incorrect setting of attributes. The model was then modified to fix 

any problems. Each of the tests was run until the desired output was achieved. Each test 

of the verification process eventually produced the correct results. This meant that the 

model was performing as desired; therefore the verification of the application layer was 

deemed a success. 

 

12.3.1 Model Systems Debugging Results 

Each of the main model subsystems were broken down and tested as they were 

built. As problems were discovered the model subsystem was changed until the correct 

performance was observed. The debugging tests allowed the system to be tested for 

bugs as well as correct performance. This should ensure correct execution of the model 

in all situations. The model can then be verified as a whole and the correct performance 

of the subsystems should be observed. The methods to obtain and analyse data from the 

model have also been tested as sufficient to carry out the verification procedure. 

 As the verification stage happens before the calibration stage, there is no way to 

test the delay calculation blocks completely. These blocks must be developed after the 

calibration data is collected. Only when the calibration data is collected is the 

relationship between the length of time a block takes to execute and a given variable, for 

instance payload size, known. 

 

 

12.4 Simulation Model Verification 

The following test case parameters, as listed in Table 12.3, were developed to 

verify the FlexRay simulation model. The configuration constraints listed in Appendix 

B of the FlexRay specification were consulted for relevant parameters when developing 

the Test Cases (FlexRay Consortium 2005, pp.214-220). Only parameters that were 

relevant to the study were considered.  

Other constraints that needed to be considered were the limitations of the tools 

available to configure the FlexRay settings. These tools are discussed in chapter 13. The 

tools limit the number of buffers that can be assigned for instance. This impacts the 
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calibration and validation constraints and limits the number of messages that can be 

assigned. As the tools impact the real-world system setting it will impact the simulation 

model settings. 

Table 12.2
**

 illustrates the parameters used in the verification stage of model 

development process. The test case parameters were designed to test the functionality of 

the system. These tests are still useful to test to see if the messages are transmitted or 

received correctly. 

                                                

**
 The BMW example timing is taken from an article by Berwanger et. al. (2004, pp. 6-8). This article 

highlights how BMW intend to have a fixed communications schedule with a static segment with a length 

of 3ms and a dynamic segment of 2ms approximately. This has been followed as closely as possible. In 

the table, any letter in brackets following a frame ID refers to the communication channel a frame is 

transmitted/received on. If there is only one channel or the frame is transmitted on both communication 

channels then the frame ID is not indicated. 



MODEL DEVELOPMENT 

- 249 - 

ID Cycle 

Length 

Number 

of Static 

Slots 

Number 

of Mini 

Slots 

Static 

Slot 

Length 

Mini 

Slot 

Length 

Static 

Frame 

Payload 

Dynamic 

Frame 

Payload 

(max) 

Channels NIT & 

Symbol 

Length 

Node Tx 

Frames 

Node 

Rx 

Frames 

Latest 

Tx 

Note 

1 16000 

µs 

630 0 25 µs NA 1 word NA A&B 250 µs 3 and 44 6 and 18 0 Max cycle length, no 

mini slots 

2 16000 

µs 

2 1548 43 µs 10 µs 10 words 20 words A&B 431 µs 2 and 

444 (A) 

1 and 

181 (B) 

1543 Max cycle length, 

Min static slots 

3 5000 µs 20 209 123 µs 10 µs 50 words 80 words A&B 447 µs 3 and 65 

(A) 

6 and 66 

(B) 

192 Medium cycle 

length/number of 

static slots/ number 

of mini slots 

4 5000 µs 17 34 278 µs 6 µs 127 

words 

5 words A&B 67 µs 3 and 28 

(A) 

6 and 29 

(B) 

29 Large static slot size, 

small number  mini 

slots 

5 114 µs 2 0 27 µs NA 2 words NA A&B 60 µs 2 1 0 Min cycle length 

6 5000 µs 60 239 36 µs 10 µs 6 words 20 words A&B 447 µs 3 and 65 8 – 15 

(all A) 

234 received frames 

stored in FIFO 

7 5000 µs 60 276 35 µs 10 µs 1 word 16 words A&B 137 3 and 65 

(A) 

6 and 66 

(B) 

271 Based on the 

CANalyzer example 

8 5000 µs 79 148 31 µs 10 µs 8 words 16 words A&B 436 

 

 

3, 10, 52 

and 159 

(A) 

6 and 

155 (B) 

143 Based on the BMW 

example 
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Table 12.3: Verification test case parameters 

 

 

9 5000 µs 60 245 35 µs 10 µs 4 words 20 words A 447 µs 3 and 65 6 and 66 240 Channel A only 

10 9908 µs 120 490 

 

35 µs 10 µs 4 words 20 words B 805 

 µs 

3 and 65 6 and 66 485 Channel B only, 

max NIT  

11 300 µs 6 12 31 µs 6 µs 2 words 20 words A&B 63 µs 3 and 7 

(A) 

6 and 8 

(B) 

2 Small static slot and 

mini slot 

12 4354 µs 60 195 39 µs 10 µs 8 words 16 words A&B 61 µs 3 and 65 

(A) 

6 and 66 

(B) 

190 Min NIT/Symbol 

window.  

13 15982 

µs 

2 2640 39 µs 6 µs 8 words 60 words A&B 61 µs 2 and 

100 (A) 

1 and 

770 (B) 

2617 Max number of mini 

slots and min static 

slots /NIT and 

Symbol window 

14 5408µs 8 0 659 µs NA 127 

words 

NA A&B 136 µs 3 6 0 Max static  slot 

length and payload 
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Once the testing parameters were defined, it was necessary to define the desired 

output of the system.  Each of the test cases were analysed and the desired performance 

of the model was determined. In each case it was determined that for each test case 

there should be at least one request generated from the application layer and passed 

through the software driver to the communications controller. These requests could be 

to indicate a desire to transmit data, or a request for received data. Therefore it would 

also be necessary to see what messages were stored in the message RAM as well as 

what data was transmitted from the node. If the model performed in the desired way 

then the model was deemed as being verified as performing correctly. 

 

12.4.1 Simulation Random Numbers 

The simulation model makes use of random number generators to vary the 

generated frames by the physical bus layer model. By using seeds the results obtained 

from a single simulation run are repeatable. To obtain a different set of random 

numbers, different seeds must be used. A seed value must be a number between 0 and 

4,294,967,295 (The MathWorks, Inc. 2008). Table 12.4 shows the random numbers that 

were used for each of the 14 test cases. 

 

Test 

Case 

Application 

Generation 

Application 

Response 

Physical Bus 

A-1 

Physical Bus 

A-2 

Physical 

Bus B-1 

Physical 

Bus B-2 

1 901 1763  272 777 15973 12 

2 231 405706 19881 3103 568 86418 

3 6068 93 1527392702 790176266 708 6382325 

4 860 916904 4000676564 72711 411327 284444 

5 891 270206 432287947 159790 93808 1001 

6 7621 8 1578461665 9797 173 63272 

7 456511 578 1675424 9414884 7 2214 

8 185 68132217 7506 56238 200926 205738 

9 821433 303758 21417824 216 95413 445253 

10 4447 660924 24963 6602275 25548 353118 

11 6154 1388908 57650387 39245 72912 5971 

12 79 21856 67 384193844 1829106 465256 

13 9218 7426 505 60735 377 8074 

14 732 938 864818 516961 632116 87399 

Table 12.4: Verification test case random number seeds 
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This method of using seeds helps create repeatable simulation runs and therefore 

repeatable results. 

 

12.4.2 Verification Test Cases and Results 

The verification test cases were based on the verification test case parameters. 

The following table, Table 12.3, describe the expected behaviour of the model during 

these tests. For each layer an expected behaviour is given. If the simulation model 

performed as desired the result was a pass. If the model did not produce the correct 

response the result was a fail. Tables 12.5-12.18 summarises the verification test cases 

and verification result. 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

1 Send an update for 

frames 3 and 44. 

Request data 

received from 

frames 6 and 18 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 44 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.5: Verification test case 1 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

2 Send an update for 

frames 3 and 181. 

Request data 

received from 

frames 6  and 444 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 181 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.6: Verification test case 2 result summary 
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Test Case Application  Driver Communications 

Controller 

Physical Bus 

3 Send an update for 

frame 3. Request 

data received from 

frames 6 and 66. 

Then generate an 

update for frame 65  

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 65 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.7: Verification test case 3 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

4 Send an update for 

frames 3 and 28. 

Request data 

received from 

frames 6 and 29 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 28 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.8: Verification test case 4 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

5 Send an update for 

frame 2. Request 

data received from 

frame 1 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frame 2 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.9: Verification test case 5 result summary 
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Test Case Application  Driver Communications 

Controller 

Physical Bus 

6 Send an update for 

frames 3 and 65. 

Request three 

frames stored in the 

FIFO 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 65 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.10: Verification test case 6 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

7 Send an update for 

frames 3 and 65. 

Request data 

received from 

frames 6 and 66 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 65 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.11: Verification test case 7 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

8 Send an update for 

frames 3, 10, 52 

and 159. Request 

data received from 

frames 6 and 155 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3, 10, 52 and 159 

correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.12: Verification test case 8 result summary 
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Test Case Application  Driver Communications 

Controller 

Physical Bus 

9 Send an update for 

frames 3 and 65. 

Request data 

received from 

frames 6  and 66 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 65 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.13: Verification test case 9 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

10 Send an update for 

frames 3 and 125. 

Request data 

received from 

frames 6  and 126 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 125 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.14: Verification test case 10 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

11 Send an update for 

frames 3 and 7. 

Request data 

received from 

frames 6  and 8 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 7 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.15: Verification test case 11 result summary 

 

 

 

 

 

 

 

 



MODEL DEVELOPMENT 

- 256 - 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

12 Send an update for 

frames 3 and 65. 

Request data 

received from 

frames 6  and 66 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frame 3 and 65 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.16: Verification test case 12 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

13 Send an update for 

frames 3 and 100. 

Request data 

received from 

frames 6  and 770 

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frames 3 and 100 correctly 

Generate a set of 

frame entities 

Result: Pass 

Table 12.17: Verification test case 13 result summary 

 

Test Case Application  Driver Communications 

Controller 

Physical Bus 

14 Send an update for 

frame 3. Request 

data received from 

frame 6   

Handle 

requests in 

an 

appropriate 

manner 

Update relevant buffers based 

on data received from either 

the physical bus layer or 

application layer. Transmit 

frame 3. 

Generate a set of 

frame entities 

Result: Pass 

Table 12.18: Verification test case 14 result summary 

 

For each of the verification test cases the model acted as desired. The models 

output was checked at various stages and verified as the correct response. As the model 

acted as desired for each of the given test cases the model can be deemed to be verified. 
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12.5 Model Execution Time 

During the initial stages of the integration testing of the model it was noted that 

the model was extremely slow to execute. This time was generally 3+ hours for a single 

communications cycle. This time is clearly not a practical time for the system to execute 

to be a useable tool. A number of methods were used to attempt to speed up the 

simulation model. These included removing as many floating point calculations as 

possible and reducing the number of blocks that execute. To achieve this, the profiler 

tool in Simulink was used to highlight any blocks that were rarely executed. From this it 

was noticed that the model recorder blocks, even when switch ‘off’ were producing an 

output of all 0’s. This meant that the model was outputting a lot of data to RAM despite 

having nothing to output. 

To ensure that all the proposed solutions were producing results, a number of 

tests were run.  These tests were conducted on two sets of testing parameters as well as 

combinations of system parameters.  

The first test run was based on a communications cycle of 5000µs. This was 

broken into a static segment consisting of 60 static slots with duration of 35µs. The 

network idle time and symbol window had duration of 450µs and the dynamic segment 

was broken down into 245 mini slots with duration of 10µs each. This test essentially 

used the parameters as described for verification test case 7. 

The second test run was based on a communications cycle of 5000µs. This was 

broken into a static segment consisting of 82 static slots with duration of 60µs. The 

network idle time and symbol window had duration of 50us and the dynamic segment 

was broken down into 5 mini slots with duration of 6µs each. This test essentially used 

the parameters as described for verification test case 8. 

The tests were then run with different configurations of system parameters set. 

The time (to the nearest minute) was recorded for both the start and end times of the 

simulation runs. The results and system parameters are summarised below in Table 

12.19. It should be noted that each of the tests were run under the accelerator mode in 

SimEvents and that as many variables from the workspace were defined as static in the 

optimisation pane of the simulation setup. Originally the tests were performed on a Dell 

Optiplex GX270 with a Pentium 4 processor running at 2.8GHz and with 512MB of 

RAM. The version of MATLAB was R2006a. They were then transferred to a Dell 

Optiplex 745 with a Pentium D running at 3GHz and with 1GB of RAM. The version of 
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MATLAB on this machine was R2008a. All values listed in Table 12.19 were obtained 

from the second computer. 

 

Test Floats 

used 

Profiler 

status 

Recorder 

modules 

Testing 

Parameters 

Start 

Time 

End 

Time 

Time Taken 

(approx) 

1 Yes Yes Yes 1 9.35 13.25 3 hours 50 

minutes 

2 No No Yes 1 15.08 15.30 22 minutes 

3 Yes No No 1 14.13 14.53 40 minutes 

4 No No No 1 15.05 15.08 5 minutes 

5 No Yes No 1 9.47 10.10 23 minutes 

6 Yes Yes No 1 10.10 13.53 3 hours 43 

minutes 

7 No No No 2 10.13 10.17 4 minutes 

8 Yes Yes No 2 10.18 10.41 23 minutes 

9 No No Yes 2 12.17 13.11 54 minutes 

10 Yes Yes Yes 2 9.27 14.55 5 hours 28 

minutes 

Table 12.19: Speed tests 

 

In Table 12.19 all the times in the ‘Time Taken (approx)’ column is colour 

coded. If the time taken to execute the model was deemed in the preferable time range 

(<10 minutes) is marked in green. Any time deemed as acceptable (10-30 minutes) is 

marked as orange and any other time is marked in red. 

It can be seen that eliminating the analysing software reduces the execution time 

of the model. There is also a noticeable difference when comparing the execution time 

of two different FlexRay parameter configurations. Finally the elimination of any 

floating point calculations also helped reduce the execution time of the model. To 

eliminate floating point calculations all timing values were presented as nanoseconds. 

The analysis the output of the model must therefore take this into account. Lookup 

tables were also used where pre-run-time calculations could be performed. 
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12.6 Conclusion 

 During this phase of the model development, the model was purely tested for 

functionality. The tests were designed to reproduce as many errors as possible in a 

controlled environment. Each of the model sections was tested for functionality using a 

basic prototype. This was tested for soundness of concept before being fully 

implemented. This implementation was then tested and verified on its own. When this 

was done all the subsystems were integrated into the final model. The integrated model 

was then verified as a single FlexRay simulation model system. 

During the integration testing, a number of errors were found. These ranged 

from basic errors such as mistyped attribute names and routing errors (i.e. an ‘out-port’ 

of a subsystem was not connected to the correct ‘in-port’ of a following subsystem), to 

more complicated problems. Such problems included a problem where two request 

entities attempted to access the message handler at the same time. The problems were 

dealt with one at a time and appropriate solutions found. The model was again tested for 

correct functionality. Only when no errors were observed and the functionality of a 

system observed as correct, was the FlexRay model and its subsystems deemed to be 

verified.  

As can be seen (from the timing analysis section of the testing) a number of 

techniques were used to speed up the execution time of the model. The profiler tool was 

used as an example to demonstrate the use of a different type of analysis tool besides 

the recorder modules. Each of the techniques mentioned helped reduce the execution 

time of the model. 

It can be seen that any model that uses any form of analysis tools will be slowed 

down. However eliminating all analysis tools produces a model that is useless as no data 

can be obtained from it. This means that any model should only contain the necessary 

recorder modules needed to carry out a study on a system. In this way it was discovered 

that the general-purpose model design could not be practically implemented using the 

available equipment. This also focuses the model from a general into a specific analysis 

tool. An alternative approach to a general-purpose model is to allow the user of the 

model to create recording modules for each separate test they wish to conduct. However 

this will make the model less user friendly. 
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Chapter 13 . Calibration 

 

13.1 Introduction 

The calibration process outlined in this chapter focuses on adjusting the model 

to accurately reflect a real FlexRay node. The chapter describes the process of obtaining 

timing data from a real world FlexRay node.  

All calibration is an iterative process to finely adjust the system. This can be 

seen in Figure 13.1 (Banks et. al. 2001, p375).  

 

 

Figure 13.1: Calibration iterative process 

 

The data obtained using the techniques discussed below was used in the 

validation stage also. Figure 13.2 (Banks et. al. 2001, p16) highlights the stage at which 

calibration is done in the model development flowchart. In Figure 13.2 the validation 

stage is highlighted. This is due to calibration being the first stage of the overall 

validation process. However the process is discussed as a separate step for the purpose 

of this research. 
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This chapter will first describe the equipment that was used to carry out the 

calibration. Next, the process of obtaining the timing data will be described. The test 

cases will then be described and the results will be presented. Finally the procedure used 

will be reviewed.  

 

 

Figure 13.2: Simulation model development process 
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13.2 Test Equipment 

13.2.1 Hardware 

 This section describes the hardware components to calibrate the simulation 

model. 

 

13.2.1.1 Fujitsu SK-91F467-FLEXRAY 

The Fujitsu SK-91F467-FLEXRAY is a development board. It is designed for 

development of both the MB88121 FlexRay communication controller and the 

MB91F467DA 32-BIT Flash microcontroller, both by Fujitsu (Fujitsu Microelectronics 

Europe 2007b, p7). 

 The features of the board include (Fujitsu Microelectronics Europe 2007b, p8): 

• 5V, 3.3V, 2.5V and 1.8V on-board switching regulators using a 9-12V 

unregulated DC power supply 

• 23Mbit SRAM on-board memory 

• In-Circuit serial flash programming 

• Three LIN/RS-232 UART interfaces 

• Three high-speed CAN interfaces 

• Two FlexRay Channel interfaces (Channel A & B) 

• Possibility of using FlexRay physical layer driver modules from TZ 

Mikroelektronik (TZM) 

• Status indicators (LEDs) with the option of connecting an alpha-numeric LCD. 

The operating speeds of the MCU are up to 100MHz using an external 4MHz 

crystal oscillator and a PLL built into the MCU. The FlexRay communication controller 

operates at 10MHz using a crystal mounted in a socket (Fujitsu Microelectronics 

Europe 2007b, p10). The FlexRay physical connectors, CAN connectors and 

LIN/RS232 connectors are all 9-Pin D-sub connectors. If the TZM driver modules are 

not used then the FlexRay communications use RS485 transceivers. Figure 13.3 shows 

a top down view of the development board (Fujitsu Microelectronics Europe 2007b, 

p13).  
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Figure 13.3: Top down view of the Fujitsu SK-91F467-FLEXRAY development board 

 

Figure 13.3 shows edge connectors that are connected to the MCU pins marked 

with an ‘A’, the MCU is marked with a ‘B’ , the communications controller is marked 

with a ‘C’ and external bus interfaces are marked with a ‘D’. The external bus interfaces 

(D) allow expansions such as Fujitsu graphic device sub boards or user application 

devices to be connected to the bus of the board (Fujitsu Microelectronics Europe 2007b, 

p10). The expansion slots for the TZM physical bus driver modules can be seen just 

above the two bottom right 9-pin D-sub connectors in Figure 13.2. The board also 

comes supplied with an AC-DC power adaptor with various plug adaptors to suit many 

type of plug connectors. 

 

13.2.1.2 TZM FlexTiny 

 The TZM FlexTiny family is a group of interface modules of physical layer 

drivers for different bus systems (TZ Mikroelektronik 2007b, p7). Some of the different 
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bus systems that are supported by the FlexTiny family are (TZ Mikroelektronik 2007, 

p1): 

• FlexRay 

• CAN 

• LIN 

They offer different bus termination and/or shielding options. Figure 13.4 (TZ 

Mikroelektronik 2007b, p1) shows a picture of one of the modules. 

 

 

Figure 13.4: FlexTiny module 

 

When these are placed in the development board it is essential that jumpers on 

the board are reconfigured to ensure that the RS485 transceiver is isolated from the 

FlexTiny module. 

 

13.2.1.3 TZM Passive Star 

 To create a FlexRay network two passive star adaptors are available to connect 

each node of each channel together. Each star has six 9-pin D-sub connectors. The use 

of a passive star saves money as an active star is not necessary for the tests carried out 

for this project. A passive star simply takes data sent out on from one node and repeats 

it on all other lines connected to it. An active star will regenerate the signal to keep the 

signal strong and is unnecessary for small networks. A picture of the TZM passive star 

is shown in Figure 13.5 (TZ Mikroelektronik 2004b). 
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Figure 13.5: Passive star 

 

13.2.1.4 Vector Hardware Interfaces for FlexRay and CAN 

The Vector CANalyzer software that is discussed in section 13.2.2, monitors 

data on a FlexRay network using a hardware interface. This is an interface to the 

FlexRay physical bus and this is achieved through a Vector VN3600 FlexRay interface 

module. This connects a computer to a FlexRay network through a USB 2.0 connection. 

It contains an Intel PXA270 microcontroller operating at 312MHz with 8MBytes of 

RAM. There are two communication controllers. For startup there is a Fujitsu 

MB88121B and for analysis a Bosch E-Ray implemented on an Altera Cyclone II 

EP2C70 (Vector Informatik GmbH 2007d, p5). Figure 13.6 (Vector Informatik GmbH 

2007d, p5) shows a VN3600 interface. 

 

 

Figure 13.6: Vector VN3600 USB interface for FlexRay 
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13.2.2 Software 

 This section describes the software used in the project. The software is used to 

create a simulation as well as to support the hardware. 

 

13.2.2.1 DECOMSYS Designer Pro
††

 

 Designer Pro is a design tool that supports the configuration of various FlexRay 

communication layers. These include (Dependable Computer Systems 2007, p1): 

• The frame-based communication layer DECOMSYS::COMMSTACK 

• The signal-based communication layer DECOMSYS::FLEXCOM 

• The operating system Application Execution System (AES) 

There is also the ability to upgrade designs generated using DECOMSYS::DESIGNER 

using an XCEDF importer. 

 Designer Pro separates the workflow of the network into the system workflow 

and the supplier workflow, helping to design the system step by step. There are also 

controller support modules that allow the design tool to get all information needed for 

supported controllers. SIMTOOLS is integrated into Designer Pro and adds Simulink 

blocks for FlexRay design. This helps create a model-based design flow. (Dependable 

Computer Systems 2007, p1).  

 

13.2.2.1.1 System Workflow 

 The system workflow allows the system designer to (Dependable Computer 

Systems 2007, p2): 

• Define an architecture specification. 

• Define a system specification. 

• Define a communication schedule 

• Export network design data in FIBEX or .bor data exchange formats. 

                                                

†† In June 2007 Elektrobit Corporation bought Decomsys Beteiligungs GmbH. Since then they have been 

selling products under the EB Tresos brand. The EB Tresos Designer offers the same interface and 

abilities as the Decomsys Designer tool. 
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This system workflow allows all relevant communications cycle parameters to be set. 

This is then used to set up any node configuration. The system workflow therefore steps 

the user through the relevant steps to configure the networks parameters. This data can 

then be exchanged between a number of different system developers. 

 

13.2.2.1.2 ECU Workflow 

The ECU workflow allows the system designer to (Dependable Computer Systems 2007, 

p2): 

• Import network data. 

• Define a hardware specification. 

• Define an application/task assignment to ECU’s and application/task definition. 

• Configure the driver. 

The ECU workflow allows a developer to access information about aspects of the 

communication cycle such as the assigned slots for a given node. The developer can 

then configure the node and produce node specific driver configuration files. 

 

13.2.2.1.3 User Interface 

 The user interface is shown below in Figure 13.7 (Dependable Computer 

Systems 2007, p3) and consists of three windows: 

• An operations window 

• A display window 

• A log window 
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Figure 13.7: Designer Pro main window 

 

The operations window allows selection of either system workflow (shown in 

red) or ECU workflow (shown in blue) (Dependable Computer Systems 2007, p3). 

 When setting up various aspects of the FlexRay network there are various 

constraints that must be met. There is no point in trying to set up a network that has too 

many or few static slots or in defining a long cycle time unnecessarily. Designer Pro 

helps the designer to avoid mistakes during design time. This can be seen from Figure 

13.8 (Dependable Computer Systems 2007, p13) and Figure 13.9 (Dependable 

Computer Systems 2007, p12). Figure 13.8 shows the first page of the FlexRay 

configuration wizard and Figure 13.9 is the second page of the FlexRay configuration 

wizard. As can be seen in the right-hand column of both screens there is a constraints 

column. These warn of violations in the configuration of the network. In Figure 13.8 

there are a number of constraints flagged (in red) in the right hand column as incorrect. 

The nodes and frames are also assigned and set up in a similar user-friendly way. 
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Figure 13.8: The first page of the FlexRay configuration wizard 

 

 

Figure 13.9: The second page of the FlexRay configuration wizard 
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13.2.2.2 Fujitsu Softune – FR Family Softune Workbench 

 The Fujitsu Softune Workbench is a tool for developing programs for Fujitsu 

family microprocessors or microcontrollers. It includes a development manager, 

simulator debugger, emulator debugger, monitor debugger and an integrated 

development environment (Fujitsu Limited 2004a, pi). The main window is shown in 

Figure 12.8. The project visible in Figure 13.10 is an example program from the SK-

91F467-FLEXRAY Fujitsu website (Fujitsu Microelectronics Europe 2007c) and is the 

91460_static2_91467d-v13 example. 

 

 

Figure 13.10: Softune Workbench main window 

 

 As can be seen from Figure 13.10 the application is broken into three main 

windows: 

• A window to select files to edit (top left) 

• An editor window (top right) 

• An error reporter below 

The file selection window allows you to see what files are currently contained in 

your project and select a file to edit. The editor window allows editing of the code. 
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Finally the error report window displays any errors that are detected during a make or 

build of a project. 

 

13.2.2.3 TZM FlexConfig 

 The FlexConfig tool is used to configure FlexRay communication controllers. 

The parameters are set and checked against limits or constraints to eliminate possible 

configuration errors (Fujitsu Microelectronics Europe 2007a, p58). FlexConfig allows 

users to generate all the configuration files for each node in a cluster including node 

specific buffer settings (TZ Mikroelektronik 2007a, p1). There are also different types 

of communication controller supported, such as the Bosch E-Ray and the Freescale 

FPGA 9.1. Figure 13.11 shows the FlexConfig main window. 

 

 

Figure 13.11: FlexConfig main window 

 

13.2.2.4 Vector CANalyzer.FlexRay 

 CANalyzer is an analysis tool for networks or distributed systems. It supports 

CAN, LIN, MOST and FlexRay systems, allowing the user to configure the system to 
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observe and analyse traffic patterns for specific network implementations and 

constraints (Vector Informatik GmbH 2007b, p1). 

 The basic functions provided by CANalyzer include (Vector Informatik GmbH 

2007b, p1): 

• Listing of bus traffic. 

• Graphical and textual representation of network traffic values. 

• Sending predefined messages. 

• Sending logged messages. 

• Statistics on messages. 

• Bus Load and disturbance statistics. 

• Generation of bus disturbances. 

The data observed can also be logged in files allowing for retrieval of 

experiment data for offline analysis. The logged information can also be confined to 

specific time windows or given event triggers (Vector Informatik GmbH 2007b, p3). 

CANalyzer.FlexRay needs to be configured to access a FlexRay node. To do 

this CANalyzer.FlexRay allows several methods for importing configuration data such 

as manual input of the network data or importing .chi files. It is also compatible with 

several PCI interfaces as well as the VN3600 USB interface. This allows easy 

integration into a FlexRay network under study (Vector Informatik GmbH 2007a, p2). 

Figure 13.12 (Vector Informatik GmbH 2007b, p1) shows the CANalyzer.FlexRay trace 

window. 

 

 
Figure 13.12: CANalyzer.FlexRay trace window 
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13.2.2.5 MATLAB, Simulink and SimEvents 

 The simulation model will be built and run using MATLAB, Simulink and 

SimEvents. MATLAB, Simulink and SimEvents are covered in detail in section 7.9 of 

this thesis.  

 

 

13.3 Calibration Procedure 

The first step in any calibration procedure is to obtain the timing information to 

calibrate the model.  When the timing data is obtained the model can be tested to see if 

it can react in the same way as the real world system. Modifications to the model can 

then be made to more accurately reflect the real world system. 

 

13.3.1 Gathering Timing Information  

To obtain the timing parameters of an E-Ray chip the following techniques were 

used. These technique were applied to the remainder of the components as outlined in 

sections 13.3.2 to 13.3.7 (inclusive). The technique was necessary as CANalyzer is 

unable to give timing information for the operation of the E-Ray chip. To gain timing 

data for these operations it was necessary to time them with the use of a free run timer 

and interrupts. A sample program from Fujitsu was obtained and modified for each 

calibration test case. The sample programs used were called ‘91460_dynamic1_91467d-

v16’ (Fujitsu Microelectronics Europe GmbH 2007e) and 

‘91460_dynamic_int1_91467d-v15’ (Fujitsu Microelectronics Europe GmbH 2007f). 

These programs are set up to both use the FlexRay Driver (FFRD) and the 

‘91460_dynamic1_91467d-v16’ program was set up for use with the 

DECOMSYS::COMMSTACK<FlexRay> v1.8 software driver also.  

The samples both use a reload timer to synchronise a time-triggered task to the 

FlexRay cycle. The value of the reload timer is checked against the current 

communication cycle time at regular intervals. This is to ensure there is no drift between 

the two values as they do not share a common clock. When a push button is pressed a 

counter value is updated and this data is transmitted over the static segment of the 

communication cycle. Another button is connected to the analogue to digital converter 

(ADC). The data obtained from the ADC is transmitted across the physical bus during 

the dynamic segment. 
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For the messages assigned to receive buffers the communications controller 

automatically stores the information. The host must then check this data. The 

‘91460_dynamic1_91467d-v16’ program does this automatically every communication 

cycle. The ‘91460_dynamic_int1_91467d-v15’ program reacts to an interrupt generated 

when the assigned dynamic message is received. The program will then check the 

received message buffer. 

Both programs were needed to calibrate the software model. The 

‘91460_dynamic_int1_91467d-v15’ was used as it was designed to work with the 

FFRD and was initialised already for use with interrupts. The 

‘91460_dynamic1_91467d-v16’ was also used as it could be used with the 

COMMSTACK software driver. The two could then be compared and reasonable 

timing data could be obtained for both the software driver and the E-Ray 

communications controller. The ‘91460_dynamic1_91467d-v16’ could also be used 

with the FFRD and interrupts were enabled for this purpose. However the 

‘91460_dynamic_int1_91467d-v15’ had already been setup at this stage and so was 

used to separate the two sets of tests. The use of separate programs also helps to reduce 

confusion when switching between the different tests for the different software drivers. 

 

13.3.1.1 E-Ray Interrupts 

The structure of the E-Ray communications controller is shown in Figure 13.13 

(Robert Bosch GmbH 2006, p14). The information needed to calibrate the model 

concerned the time it took information to be generated by the application and sent, 

through the software driver and communications controller, to the physical bus. As the 

information passes between the communication controller and host controller, and the 

communications controller and the physical bus, it is handled by a number of buffers. 

As FlexRay uses a TDMA scheme any message must be stored before its allocated time 

slot comes around. To do this there is a message RAM as well as a variety of input and 

output buffers.  
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Figure 13.13: E-Ray structure 

 

The time it takes a message to pass through each stage will vary. This time will 

be affected by the size of data to move as well as the implementation of a particular 

transfer stage. To be able to determine the time it takes for each stage it was necessary 

to time each stage. To do this interrupts were used. 

The E-Ray is designed to provide information in the form of interrupts. These 

interrupts can be used by a developer to create a dynamic program that reacts to 

different circumstances. They can also be used to analyse the performance of the 

system. An interrupt can be set to generate when one of the following happens (Robert 

Bosch GmbH 2006, p 147):  

• An error occurs. 

• A status change is detected. 

• A timer is asserted. 

• A stop watch event occurs. 

The interrupts that can be used to check the timing performance are the status 

interrupts. There are 20 status interrupts but not all the interrupts usable for the timing 

tests. Figure 13.14 shows the E-Ray status interrupt register (SIR) (Robert Bosch GmbH 

2006, p 27). 
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Figure 13.14: E-Ray status register interrupts 

 

The SIR register is covered in chapter 6. The interrupts of interest in the SIR 

will be briefly covered here. The interrupts of interest are (Robert Bosch GmbH 2006, 

pp. 27-8): 

• Transmit Interrupt (TXI): This interrupt occurs when a successful transmission  

of a frame occurs. 

• Receive Interrupt (RXI): This interrupt occurs when a New Data flag is set for a 

receive buffer. 

• Transfer Input Buffer Completed (TIBC): This interrupt occurs whenever a 

transfer between the Input buffer and Message RAM is completed. 

• Transfer Output Buffer Completed (TOBC): This interrupt occurs whenever a 

transfer between the Message RAM and Output buffer is completed. 

To ensure that multiple interrupts do not occur unexpectedly for interrupts TXI and 

RXI it is also necessary to set the message buffer interrupt flag (MBI) bit in a message 

buffers header. This ensures that only a message buffer with MBI set will generate an 

interrupt. This makes analysis easier to conduct and ensures that an interrupt for a 

particular message can be tracked. 

 

13.3.1.2 Interrupt Information 

The Fujitsu SK-91F467-FLEXRAY has a number of external interrupt lines 

connecting the MB91F467D host controller to the MB88121 communications controller 

(the E-Ray chip).  According to the ‘readme’ file (Fujitsu Microelectronics Europe 

GmbH 2007f), supplied with the 91460_dynamic_int1_91467d-v15 program, the 

interrupt line connections between the host and communication controller chips are as 

shown in Table 13.1. 
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Host (MB91F467DA) E-Ray (MB88121A) 

ext. Int4 Int0 

ext. Int5   Int1 

ext. Int6   Int2 

Table 13.1: SK-91F467-FlexRay development board interrupt connections 

 

The readme file also states that interrupt signal of the MB88121A is active high. 

It should also be noted that the status interrupts are usually assigned to interrupt line 1 

while error interrupts are assigned to line 0 (Fujitsu Microcontroller Info Team 2008). 

When all this information is gathered it is then possible to setup the 

MB91F467D host controller to accommodate this. As status interrupts are being used, 

the MB91F467DA external interrupt 5 should be initialised using rising-edge detection, 

the port assigned to an external interrupt input and external interrupt 5 enabled. The 

interrupt vector table external interrupt 4 and 5 priority should be assigned to a value 

between 16 and 30 (inclusive) to enable the interrupt (Fujitsu Limited 2004b, p313). 

When the interrupt is detected the ffrd_api_interrupt_line1() function should be 

assigned to handle the interrupt.  This is a function provided by the FFRD and clears the 

interrupt line flags. It also checks which interrupt was asserted and calls the appropriate 

handler (Fujitsu Microelectronics Europe (2007d). 

The FFRD is used instead of the COMMSTACK interrupts for these levels of 

interrupts. This is because the FFRD provides interrupt services to handle the desired 

interrupts. The COMMSTACK only provides interrupts associated with the absolute 

timer, relative time and cycle start interrupts (Dependable Computer Systems 2006, 

p15). 

 

13.3.1.3 Timers Used 

In order for calibration data to be extracted from the programs a way to measure 

the time was needed. The FFRD provides a ‘get_time()’ function. This function returns 

the approximate global time in microseconds. This time stamp can be used when a 

message is sent or received. This time would then reflect the time it takes for a message 

to pass into/from the physical bus to the chip. The offset from the expected start time of 

the time slot would then be used to calculate the exact value. This function will take a 

fixed time to calculate the current global time. To calculate the time for messages to 
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pass into the host MCU would require two time stamps to achieve similar calculations. 

To overcome this problem another method was proposed. 

The Fujitsu MB91460 Series microcontrollers have a number of features such as 

an analogue to digital converter (ADC), a digital to Analogue converter (DAC) and 

reload timers. It also provides a number of 16-bit free-run timers. These free-run timers 

can be setup in various ways and controlled by software. A free-run timer was therefore 

set up to count up and the value was then read after an operation was completed. These 

were operations such as transferring data between the host and the communications 

controller which could then be accurately timed. Figure 13.15 shows the various 

registers and possible settings for the free-run timer (Fujitsu Limited 2004b, p736).  

 

 

Figure 13.15: Free-run timer settings 

 

Before the free-run value could be used it was necessary to know what each 

count tick represented. It was known that the host clock was operating at 16Mhz. The 

free-run timer was set to count every 4 clock ticks. At 16Mhz the clock period is 62.5ns. 

This gives a time of 250ns for every count of the free-run timer. 

 

13.3.1.4 Hardware Configuration 

The hardware that was used was a single SK-91F467-FlexRay development 

board, two passive stars and a Vector VN3600 FlexRay interface connected to both the 

passive stars and a laptop. The laptop was used to run the CANalyzer.FlexRay software 
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that controls the VN3600 interface. The SK-91F467-FlexRay development board was 

fitted with two FlexRay versions of the FlexTiny physical layer drivers (one for each 

FlexRay channel). A second computer was also used to load the application software 

onto the development board. This was used to load the board with the test programs and 

to monitor the system. The hardware that was used was set up as in Figure 13.16. 

 

 

Figure 13.16: Calibration hardware setup 

 

The passive stars were used to allow for additional nodes to be connected if 

desired. It is not necessary to use them when only connecting two nodes together. 

 

13.3.1.5 MONDEBUG  

MONDEBUG is the monitor debugger mode of Softune Workbench. To 

perform the monitor debugger debugging, the target monitor program must be placed 

into the target system. The monitor debugger software then communicates with the host 

computer using a COM port of the computer. A monitor program must be ported to the 

target hardware (Fujitsu Limited 2004a, p120). When a valid monitor program is loaded 

the status LEDs will be as shown in Figure 13.17 (Fujitsu Limited 2004b, p58). 
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Figure 13.17: Flow directions of data in a FlexRay system 

 

This mode of operation allows the user to use breakpoints and watch windows to 

monitor the status of various system of the developed program. This allows the 

developer to avoid using UARTs and COM ports to transfer data which may affect the 

timing of the system. Variables used to monitor the timing of a system can simply be 

checked after a breakpoint has been reached. 

 

13.3.1.6 Timing Procedure 

A procedure to measure the time taken to transfer data in the chip was developed 

in the following way. Data transferred to the chip was split into two directions. The first 

direction was called ‘up’ and the second was called ‘down’. The up direction referred to 

the data that is obtained from the physical bus and passed to the host via the 

communications controller. The down direction was the flow of data from the host 

computer to the communications controller and finally to the physical bus. This is 

illustrated in Figure 13.18. Host A is receiving data from the physical bus so data is 

flowing in the up direction. Host B is transmitting data to the physical bus and so the 

flow of data is in the down direction. 
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Figure 13.18: Flow directions of data in a FlexRay system 

 

When this distinction was made a clearer work flow was developed. It was also 

clear from the setup procedure of the interrupts that this distinction would be an 

advantage. As the MBI bit of a message buffer must be set then a single message could 

be tracked. This meant that different payloads could easily be tested by switching this 

bit on for different messages with different payloads.  

 

13.3.1.5.1 Data Flow Timing Tests (Up Direction) 

This concerns the receive side of the communication process. Therefore one 

message buffer should have its MBI bit set to logic 1. When the interrupt occurs 

indicating that a new message has been received, a time stamp of the current 

communication global time can be taken. As the node will have transmitted during a 

given slot, the start of the slot time will be known. The time to receive a frame can be 

calculated. Also if the payload size is known then a metric can be derived based on this 

value i.e. the time per byte. 

Host A Host B 

   CC A    CC B 

  Physical Bus 

CC = Communications Controller 

Down Direction Up Direction 

= Flow of Data 
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The next stage would be to get the node to request the data stored in the message 

buffer. Just before this is done the free-run timer should be started. When the Output 

buffer has received data from the message handler a time stamp can be recorded from 

the interrupt using the free-run timer. Next when the software driver has signalled it has 

successfully received the data, another time stamp could be obtained. 

This can be repeated for a number of different payload sizes along with different 

FlexRay communication configurations. This ensures that accurate measurements can 

be made. The different FlexRay communication configurations will allow the testing of 

any possible effect that a different configuration may produce.  

The time it takes the COMMSTACK driver to return from a read buffer 

command should also be made. This can be compared to the FFRD timings and a 

reasonable execution time can then be obtained for the COMMSTACK.  

 

13.3.1.5.2 Data Flow Timing Tests (Down Direction) 

The transmit aspect is handled by the node by passing information flowing down 

through the node. Again one message buffer should have its MBI bit set to ‘1’. The first 

stage would be to get the host to update a transmit message buffer. Firstly though, the 

free-run timer should be started just before the host attempts to update the buffer. When 

the Input buffer of the communications controller interrupts the program the free-run 

timer can be checked and timing data can be obtained for this operation. 

When the buffer indicates that an update of its contents has occurred then 

another time stamp can be obtained from the free-run timer. When the software driver 

indicates a successful transfer of data to the communications controller, then a final time 

stamp should be obtained from the free-run timer. 

Finally the transmit interrupt should be setup. When this interrupt occurs then 

the current global communication time should be recorded. This can then be compared 

to the start time at which the slot should begin.  

This can be repeated for a number of different payload sizes along with different 

FlexRay communication configurations. This ensures that accurate measurements can 

be made. The different FlexRay communication configurations will allow the testing of 

any possible effect that a different configuration may produce. 

The time of it takes the COMMSTACK driver to return from an update buffer 

command should also be made. This can be compared to the FFRD timings and a 

reasonable execution time can then be obtained for the COMMSTACK.  
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13.4 Calibration Test Cases 

In order to be useful the different test case configuration parameters needed to 

be converted into setup files for the hardware. In the case of CANalyzer and the FFRD a 

‘.chi’ file was needed. The COMMSTACK software driver uses DECOMSYS Designer 

files to set up the communications controller. To create these Designer and FlexConfig 

were used. However these two programs configure the settings in different ways.  

Tests were run with both configurations and it was discovered that the 

FlexConfig-generated configurations wouldn’t always allow synchronisation with the 

hardware devices. The Designer configurations worked as expected however. New chi 

files were then constructed with the buffer assignments from the FlexConfig software 

and the other constraints from the Designer files. These were tested and worked as 

desired. The buffering was tested separately also to ensure the right configuration had 

been achieved. 

At this stage the configuration of the Test Case 6 was incompatible with real 

world configurations. The FIFO rejection filter could not be configured as desired. Test 

case 6 could therefore not produce the required timing information. Table 13.2 shows 

the test case parameters for each calibration test. This includes the updated Test 6 FIFO 

parameters. 
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Table 13.2: Calibration test case parameters 

 

 

ID Cycle 

Length 

(µs) 

Number 

of Static 

Slots 

Number 

of Mini 

Slots 

Static 

Slot 

Length 

(µs) 

Mini 

Slot 

Length 

(µs) 

Static 

Frame 

Payload 

(words) 

Dynamic 

Frame 

Payload 

(words max) 

Channels NIT & 

Symbol 

Length 

(µs) 

Node Tx 

Frames 

Node Rx 

Frames 

Latest 

Tx 

Note 

1 16000  630 0 25  NA 1  NA A&B 250 3 and 44 6 and 18 0 Maximum cycle 

length with no mini 

slots 

2 16000  2 1548 43  10  10  20  A&B 431 2 and 

444 (A) 

1 and 

181 (B) 

1543 Maximum cycle 

length, Minimum 

static slots 

3 5000  20 209 123  10  50  80  A&B 447  3 and 65 

(A) 

6 and 66 

(B) 

192 Medium cycle 

length, medium 

number of static 

slots, medium 

number of mini slots 

4 5000  17 34 278  6  127  5  A&B 67  3 and 28 

(A) 

6 and 29 

(B) 

29 Large static slot 

size, small number  

mini slots of mini 

slots 

5 114  2 0 27  NA 2  NA A&B 60  2 1 0 Minimum cycle 

length 

6 5000  60 239 36  10  6  20  A&B 447  3 and 65 61 (B) 234 All received 

messages stored in 

FIFO 
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Again for the model tests it was necessary to run the model with repeatable 

results. The seeds that were used can be seen in Table 13.3. 

 

Test 

Case 

Application 

Generation 

Application 

Response 

Physical Bus 

A-1 

Physical Bus 

A-2 

Physical 

Bus B-1 

Physical 

Bus B-2 

1 901 1763  272 777 15973 12 

2 231 405706 19881 3103 568 86418 

3 6068 93 1527392702 790176266 708 6382325 

4 860 916904 4000676564 72711 411327 284444 

5 891 270206 432287947 159790 93808 1001 

6 7621 8 1578461665 9797 173 63272 

Table 13.3: Calibration test case random number seeds 

 

 

13.5 Calibration Data & Results 

13.5.1 Calibration Data 

When the collection of data was carried out, it was noted that a single 

development board would not easily synchronise with the VN3600 correctly. Test Case 

2 was the only configuration that worked sufficiently. Vector (the CANalyzer 

developers) were contacted for help and feedback obtained to try to resolve the issue. A 

possible reason for this problem was the exact implementation of the two hardware 

devices (the VN3600 interface and SK-91F467-FLEXRAY development board) were 

not quite compatible. Another possible answer is that the CANalyzer equipment was not 

properly configured.  It was felt that it would be more beneficial to have at least two 

development boards running the same configuration and application software. Another 

SK-91F467-FlexRay development board was obtained and the issue was no longer 

present in the setup. The revised hardware configuration can be seen in Figure 13.19. 
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Figure 13.19: Calibration hardware setup – revised 

 

A single serial RS232 connection was used to program the development boards 

with appropriate application software. This allowed for greater control of when 

information was sent or received from the boards. The data obtained is outlined below. 

For each measurement and payload length ten timings were taken.  

The timing data that was desired to be obtained for the model was as follows: 

• The software driver transmission time 

• The software driver receive time 

• The time for the IBF to pass data to the Message RAM 

• The time for the OBF to receive data from the Message RAM 

• The time to transfer data to a transient buffer from the Message RAM 

• The time to transfer data to the Message RAM from a transient buffer 

• The Message RAM buffer update time 

• The Message RAM read time 

 

13.5.1.1 Interrupt latency and Time Function Timings 

The timing data gathered for the calibration tests was taken from real world 

observed times. These were obtained from a SK-91F467-FLEXRAY development 

board. The time for the communications controller to signal a specific condition (i.e. an 

VN3600 Interface 

Passive Star A Passive Star B 

USB Connection 

RS232 Connection 

FlexRay 

Development 

Boards 
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interrupt) will take a given time. Any program that is currently being executing on the 

host controller will also need to be halted before the interrupt handler can be executed. 

To ensure that the program can continue correct execution after the interrupt is serviced 

a context for the program running must be saved. This all takes time and is known as 

the interrupt latency. It is important to know how long this takes to ensure accurate 

timing information can be obtained. To get accurate timing information it is also 

necessary to know how long a function takes to get a time stamp. This can then be 

accounted for when analysing the timing information obtained from the development 

board. 

Two timing functions (the ffrd_api_get_time() function and free run timer 

functions) were used to obtain timing information from the board as was  stated in 

13.3.1.3. To obtain accurate execution times for the timers, ten timestamps were taken 

one after another during the program flow. Each time value was stored to a different 

element of an array. To ensure that an accurate time was obtained, each function was 

written explicitly. This ensured that no delay would occur due to the implementation of 

a ‘for’ loop, for example. An example of this is as shown as follows:  

 

Time[0] = ffrd_api_get_time(); 

Time[1] = ffrd_api_get_time(); 

................... 

................... 

Time[9] = ffrd_api_get_time(); 

 

The times were then compared to each other and the difference in time 

calculated. The difference in time between two consecutive time stamps is the time 

taken to execute the function. This was done for both timers for each of the test cases. 

This ensured that a large enough number of runs were done to allow for any false 

readings. These could be from an interrupt happening between two of the functions 

being executed. This would cause a larger time than usual. Tables 13.4 and 13.5 show 

the execution times of the FFRD ffrd_api_get_time() function and the free-run timer 

functions.  
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Test Case 1  2 3 4 5 

 67 66 66 66 66 

 66 67 65 66 67 

 66 66 66 66 66 

 67 66 66 65 63 

 66 66 66 66 69 

 66 67 66 66 67 

 66 66 66 66 66 

 67 66 66 66 66 

 66 67 66 66 67 

Table 13.4: ffrd_api_get_time() time differences (µs) 

 

Test Case 1 2 3 4 5 

 1500 1500 1500 1750 1500 

 1750 1750 1750 1500 1750 

 1500 1500 1500 1750 1500 

 1750 1750 1750 1500 1750 

 1500 1500 1500 1750 1500 

 1750 1750 1750 1500 1750 

 1500 1500 1500 1750 1500 

 1750 1750 1750 1500 1750 

 1500 1500 1500 1750 1500 

Table 13.5: Free run timer differences (ns) 

 

Based on these obtained times it was concluded that the ffrd_api_get_time() 

function takes roughly 66 µs to obtain a time. The free run timer can also obtain a time 

stamp about every 1500 ns based on the setup of the system. These values are taken 

from analysing the mean, median and mode of the differences observed. 

The time for an interrupt to be detected and the interrupt handler to be run was 

also tested. To do this the ‘Timer 0’ absolute timer of the E-Ray was used. This timer 

can be configured to interrupt at a specific macrotick time during all or specific 

communication cycles. At the specific macrotick that the timer interrupts the host and  

as the execution time of the ffrd_api_get_time() function was known, an accurate 

interrupt latency could be calculated. When these times were obtained the latency times 

were calculated by subtracting the interrupt Timer 0 configured macrotick value and the 

ffrd_api_get_time() execution time. The observed interrupt latency times are shown in 

Table 13.6.  
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Test Case 1 2 3 4 

 64 64 64 64 

 63 64 64 64 

 64 64 64 64 

 63 64 63 64 

 64 64 63 64 

 63 64 63 64 

 63 64 63 64 

 63 64 64 64 

 63 64 63 64 

 64 64 63 64 

   Table 13.6: Interrupt latency times (µs) 

 

The value of 64 µs was taken as the interrupt latency based on the values observed. This 

value was taken into account for all relevant calibration timing data recorded. 

 

13.5.1.2 Fujitsu FlexRay Driver Transmit Times 

The time to correctly transfer data between the host and communications 

controller was measured. This is the time it takes the software driver to pass the 

information to the communications controller. The diagram below shows a strong 

relationship between the size of the data to be transferred and the time taken to transfer 

the data. As the size of data increases the time to pass on the information increases also. 

Figure 13.20 is a graph of times observed versus the number of data bytes passed from 

the application layer to the communications controller. 
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Figure 13.20: Fujitsu FlexRay Driver transmit timings 

 

The trend line function of Microsoft Excel was used to place a trend line on the 

graph. It also calculates an R
2
 value. This value is a relationship between how much the 

x values, i.e the data size, changes compared to how much the y values changes, i.e. the 

deviation in the time taken,. An R
2
 value of ‘1’ means that there is a direct relationship 

between the two values and one value effects the other. On the other hand an R
2
 value 

of 0 means that there is not a relationship between sets of values, therefore as one set of 

values changes the other set remains the same (Freud 1979, p394).  A graph of software 

drivers transmit times including a trend line is shown in Figure 13.21. 
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Figure 13.21: Fujitsu FlexRay Driver transmit timings with linear trend line 
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With the R
2
 value being close to 1, this indicates that there is a strong 

relationship between the payload size and the transfer time. A number of trend line 

types were tested and the highest value of R
2
 was taken as the correct relationship trend. 

Figure 13.22 shows a polynomial trend line as the second trend line type that had the 

same R
2
 value. 
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Figure 13.22: Fujitsu FlexRay Driver transmit timings with polynomial trend line 

 

There is no significant difference between the two formule for the trend. Both 

maintain an offset and a time factor based on the size of data to transfer. The 

polynomial formula is more computationally intense however and so the linear trend 

line formula was taken as the correct relationship formula. This formula was therefore 

used in the simulation model to calculate the delay for the FFRD software driver based 

on the amount of data bytes to be transmferred. 

 

13.5.1.3 Fujitsu FlexRay Driver Receive Times 

The graphs of the FFRD receive times show a strong relationship between the 

size of the data to be transferred and the time taken to transfer the data. In Figure 13.23 

the relationship between the time taken to obtain the data from the communications 

controller and the data size is shown. 
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Figure 13.23: Fujitsu FlexRay Driver receive timings  

 

There was an outlier contained within the data however. The data was therefore 

‘cleaned’. To do this each set of timing figures were looked at. If a timing value was not 

consistent with the other values in its range then this value was removed. Interrupt 

latency could explain the outliers that were much larger than similar times. This is due 

to possible implementations of the E-Ray chip itself. The implementation may delay the 

signalling of an interrupt for an unknown time. The detection by the host of an interrupt 

can also not be accurately determined. 

 In terms of results that were obtained that were smaller than similar results, 

these times may be due to the communications controller losing synchronisation. For 

example when data is passed to the communications controller from the host, the data 

will not be passed if the controller is not synchronised to the bus. This will stop the 

driver function from completing a task and a small time for the execution will be 

recorded. It may also be due to the speed of the host detecting an interrupt event. This 

goes some way to explaining the outliers observed in the collected data.  

Figure 13.24 shows a ‘cleaned’ data set where the outliers were taken out. This 

gives a better correlation between the payload size and the transfer time. 
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Figure 13.24: Fujitsu FlexRay Driver receive timings with linear trend line 

 

As the linear trend line had the best correlation between the two sets of data, the 

trend line formula was taken as the relationship between the two sets of data. 

 

13.5.1.4 COMMSTACK Transmit Times 

The COMMSTACK software driver was tested next. It was again discovered 

that there is a strong relationship between the size of the data to be transferred and the 

time taken to transfer the data as can be seen in Figure 13.25 where one value varies 

with the other. 
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Figure 13.25: COMMSTACK transmit timings 
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The correlation is similar to the Fujitsu FlexRay software driver but the 

polynomial trend line was a better fit. The two diagrams below, Figures 13.26 and 13.27, 

show the R
2
 value for both a polynomial trend line and a linear trend line. This was 

done using a cleaned set of data. 
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Figure 13.26: COMMSTACK transmit timings with polynomial trend line 
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Figure 13.27: COMMSTACK transmit timings with linear trend line 

 

Despite the Fujitsu FlexRay driver (FFRD) having a linear relationship it was 

decided to use the polynomial formula for the COMMSTACK data set. This is as the 

two software drivers may perform the sending of data to the communications controller 
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in different ways. As the polynomial trend line was a better fit in this case the formula 

was used to calculate the simulation models delays. 

 

13.5.1.5 COMMSTACK Receive Times 

In Figure 13.28 a strong relationship between the size of the data to be 

transferred and the time taken to transfer the data can be seen. 
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Figure 13.28: COMMSTACK receive timings 

 

When the data was cleaned up the following trend line (as shown in the Figure 

13.29) was discovered to have roughly the same fit as the polynomial trend line. The 

polynomial had an R
2
 value of 0.9972 while the linear trend line formula had an R

2
 

value of 0.997. This was seen as a very minor difference. The COMMSTACK software 

driver will also to have be presented data from the communications controller in the 

same way the FFRD software driver is presented data. Therefore there would be minor 

differences in the handling of the data. It was therefore decided that the linear 

relationship would be used.  
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Figure 13.29: COMMSTACK receive timings with linear trend line 

 

13.5.1.6 Transmit Timings 

The transmit timings were obtained using a time stamp when the transmit frame 

interrupt was received by the host. This time stamp was compared to the expected slot 

start time and the expected transmission time length. The remaining time was then taken 

as the time it took to transfer the data between a transient buffer and the protocol 

controller block. Figure 13.30 shows the R
2
 value and data points for the interrupt times 

collected. 
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Figure 13.30: Transmit interrupt timing with linear trend line 
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The data range was analysed by removing the calculated transmit times for the 

different payload lengths. This left a set of points as shown in Figure 13.31. The values 

of the transmit times are less than the frame transmission times. This indicates that the 

transmit interrupt occurs when a message has been successfully passed to the protocol 

transceiver from a transient buffer. This is justified as the interrupt is only generated 

when a frame is successfully transmitted. The interrupts can therefore not occur before 

this point. After a message is transferred to the transceiver the message can be 

transmitted. This must happen within a given time for message to be accepted as valid. 

The FlexRay protocol allows for this as well as allowing for time at the end of a slot. 

Almost all the times observed were all within this threshold. This is also the only time 

that can be deduced for this stage. 
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Figure 13.31: Transmit times 

 

The transfer times obtained between the transient buffer and protocol transceiver 

are shown Figure 13.32 below. There are number of different points on the graph but 

there is no straight line on which all the points lie that can be determined from the 

information. Therefore the data was analysed for the averages of the information. 
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Figure 13.32: Transient buffer transfer times 

 

Table 13.7 shows the mean, median and mode for the data set. All the values are 

a similar value (i.e. 1900 ns). The calculated mean is also greater than 1900 ns by less 

than 5%. For this reason the time for this stage is taken as 1900 ns. As there was no way 

to determine the time it takes to transfer a message from the protocol transceiver to the 

transient buffer, the value of 1900 ns was assumed for this time also. 

 

 Time (ns) 

mean 1987.5 

median 1900 

mode 1900 

Table 13.7: Transmit averages 

 

13.5.1.7 Receive Timings 

The receive timings refer to the time taken for a frame assigned buffer to signal 

that a message is received.  The time the buffer was updated was taken from an interrupt. 

This time was compared to the expected start time the relevant transmission slot and the 

time to transmit a frame. The time to transfer the message to the protocol transceiver 

and vice versa was also taken into account. This meant the time for the slot to be 

received and the buffer updated was then known.  Figure 13.33 shows a graph of the 

receive interrupt times measured. 
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Figure 13.33: Receive interrupt timings 

 

In Figure 13.34 the calculated buffer update times are shown. As with the 

transfer timings between a transient buffer and the protocol transceiver, the data is not 

very correlated. However as with the transient buffer and the protocol transceiver 

transfer times that was discussed in 13.5.1.6, the averages of this data set can be 

analysed. 
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Figure 13.34: Buffer update timings 

 

In Table 13.8 the calculated mean, median and mode for the data set can be seen. 

The median and mode were calculated as 4300 ns with the mean roughly 10% more at 
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4725 ns. As the mean was only 10% greater than the median or mode the buffer update 

time was taken as 4300 ns. The time to read a Buffer was also taken as this time as there 

was no way to determine this time accurately.  

 

 Full Data Range Time (ns) 

mean 4725 

median 4300 

mode 4300 

Table 13.8: Receive averages 

 

The time of 4300 ns must also be taken as the buffer update time as the message 

handler simply selects which E-Ray block has access to the message RAM at any 

particular time. The time obtained is therefore a measure of the time to access a 

particular message buffer. 

 

13.5.1.8 Input Buffer Transfer Timings 

The interrupt time occurs at seemingly correlated times as the timer was started 

just before the FFRD driver sent the information to the communications controller. 

However the interrupt time does not represent the time it takes to transfer the data 

between the input buffer of the E-Ray chip and the message RAM. When the software 

drivers transfer time is taken into account the real input buffer transfer time can be 

calculated. It is also necessary to take into account the buffer access time calculated in 

section 13.5.1.7. Figure 13.35 shows the input buffer interrupt times minus the interrupt 

handler time and buffer update time. 
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Figure 13.35: IBF interrupt timings with series trend line 

 

When the software driver’s times are accounted for, there is very low correlation 

between the transfer times. This is shown in Figure 13.36. The R
2
 value obtained 

indicates there is a small correlation between the payload size and the transfer time. 
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Figure 13.36: IBF timings with linear trend line 

 

The mean, medium and mode for the data were therefore calculated for the data 

set. The calculated values are shown in Table 13.9. These averages are a measure of the 

time it takes a message to be passed from the input buffer and a message buffer in the 

message RAM. The median and mode values are both equal to 30250 ns. The mean of 
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the collected data is larger at 41732.11 ns. However there are a number of outliers in the 

collected data. This could be due to the input buffer waiting to gain access to the 

message RAM.  The time of 30250 ns was therefore chosen as the average input buffer 

time. 

A buffer update time of 4300 ns was also already determined from the Receive 

timing data set. This would indicate that the average time spent in the input buffer is 

30250 ns -4300 ns = 25950 ns. 

 

 Full Data Range Time (ns) 

Mean 41735.119 

Median 30250 

Mode 30250 

Table 13.9: IBF averages 

 

13.5.1.9 Output Buffer transfer Timings 

As with the IBF values the interrupt times are correlated until the FFRD time is 

taken into account. When the FFRD times are taken into account there is low correlation 

between the payload size and transfer time. Figure 13.37 shows the interrupt times with 

cleaned up data. The buffer read time that was calculated was also taken into account in 

the graph. 
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Figure 13.37: OBF interrupt timings  
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The mean, median and mode were again calculated for this data set. Table 13.10 

shows the averages calculated. The value of 79950 ns was taken as the average output 

buffer transfer time. Again the time to access a message buffer needs to be taken into 

account. This gives an overall output buffer transfer time average of 79950 ns - 4300 ns 

= 75650 ns 

 

 Full Data Range Time (ns) 

mean 74250.5952 

median 79950 

mode 79950 

Table 13.10: OBF averages 

 

When the analysis of this data was done it was realised that the software driver 

receive times calculated would be affected by these timings. The two software drivers 

receive times were then analysed to calculate correct and useable formule. Figures 13.38 

and 13.39 show the amended software driver receive times. 
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Figure 13.38: FFRD amended receive timings with linear trend line 
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COMM Receive Time - OBF
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Figure 13.39: COMMSTACK amended timings with linear trend line 

 

By using the formule obtained from this analysis, more confidence can be placed 

in the timing applied to the various points of the system between the message RAM and 

the application layer. 

 

13.5.1.10 Discussion of the Data 

The technique that was used involved using interrupts. This is not ideal as there 

is an overhead associated with an interrupt in terms of time. When the interrupt occurs it 

may not be serviced immediately if there is a higher or equal priority interrupt being 

serviced. All possible measurements were taken to reduce the effect of these times on 

the gathered data. 

From the list of desired timing parameters given in section 13.5.1 it was known 

what timing information was received from the system. The time to transmit a frame of 

a given payload size was calculated based on the FlexRay specifications. It was 

necessary to monitor the rest of the values. The data collected was then carefully 

analysed for correct timing relationships. The timing data for the Fujitsu FlexRay 

software driver and the COMMSTACK software driver were both obtained. For the 

purpose of the calibration procedure however the model will only be calibrated to the 

COMMSTACK software driver. 

All the timing data collected will not be a completely accurate representation of 

the timings of a real world system. With the time and equipment available however this 

is the best data that can be obtained. The calibration of the model will therefore be 
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conducted against the best possible data set available. The timing value and formula for 

each parameter are shown in Table 13.11. In Table 13.11 ‘x’ represents the data size of 

any entity passing through that layer. These timing constraints can then be applied to the 

simulation model. The simulation model can then be monitored and the timing data 

obtained can be compared to the actual real world system. 

 

Constraint Time (ns) 

COMMSTACK Transmit Time 89319)*2.6208()*6137.7( 2
++− xx  

COMMSTACK Receive Time 9.5004)*1.4984( +x   

Input Buffer Handling Time 25950  

Output Buffer Handling Time 75650  

Message RAM Access Time  4300  

Transient Buffer Handling Time 1900 ns 

Physical Bus Transfer Time 100)*8)))(x*(2+x))(8*(8+2+1+((6 ++  

Table 13.11: System timing constraints 

 

The timing data for the FIFO was not obtainable due to time constraints and 

errors when collecting the data. Unfortunately this meant that Test Case 6 could not be 

successfully completed. The calibration tests could only be carried out over the first five 

test cases as there was no FIFO timing to compare the data from the model to. This is 

due to the fact the Designer configuration software does not at the present time support 

FIFO applications. 

 

13.5.2 Calibration Verification Results 

The model for each test case was configured with the timing constraints and the 

tests were run. The model needed to be configured to obtain all appropriate data 

however. Each of the tests was originally run over a single communication cycle. 

However this did not always produce the desired data. This is because the random 

element of deciding the generation of frames on the physical bus will not always 

produce the frames for the simulation node to store. Also the updating of a transmit 

message buffer may not happen before the buffer is checked for any transmit data. In 

order to check the model acted in the desired manner the model tests needed to be 

changed. 
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The possibility to run the test over two communication cycles was explored. 

This would guarantee that all frames would be transmitted from the simulated node at 

least once. However there was still no guarantee that the desired frames would be 

generated by the physical bus subsection. The model was therefore changed to generate 

only those frames that were desired for the tests. The random element of the physical 

bus was also removed for these tests to ensure that a frame entity would be generated 

for desired slots. To ensure the node model transmitted the desired frames during a 

single communication cycle, the message RAM buffer entities were initialised to 

indicate all relevant messages buffers were ready for transmission. This can be seen as 

the buffer having been updated at a time before the simulation start time. This will 

ensure that any buffer that is checked before it is updated will still transmit the 

associated frame. 

Other changes made to the model were that only a single request was generated 

by the application layer model subsystem at the start of a communication cycle. Other 

requests are then generated when a request has signalled completion. This will allow the 

application to act in a more realistic manner when compared to the real world system. 

The final change involved the timing constraints and the implementation into the model. 

The majority of the timing constraints were fixed lengths and these were simple set as 

the time of a single server block. To implement the software driver and physical bus 

timings lookup tables were used. Lookup tables had been used in other sections of the 

model and were verified as being suitable to produce the correct output for a desired 

input. Tables 13.12 – 13.16 compare the timing obtained from the simulation model and 

the timing constraints imposed on them. However the tests outlined in this section, 

section 13.5.2, were run to verify that the timing obtained from the model matched the 

constraints as calculated in sections 13.5.1. 
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Test Case: 1 Calculated Constraint (ns) Simulation Model Time (ns) 

Frame3 101704.9 Frame3 101704.9 Software Driver Transmit Time 

Frame44 101704.9 Frame44 101704.9 

Frame6 141973.1 Frame6 14973.1 Software Driver Receive Time 

Frame18 141973.1 Frame18 14973.1 

Frame3 25950 Frame3 25950 Input Buffer Time 

Frame44 25950 Frame44 25950 

Frame6 75650 Frame6 75650 Output Buffer Time 

Frame18 75650 Frame18 75650 

Frame3 1900 Frame3 1900 Media Access Buffer Time 

Frame44 1900 Frame44 1900 

Frame6 1900 Frame6 1900 Frame and Symbol Processing 

Time Frame18 1900 Frame18 1900 

Frame3 10900 Frame3 10900 

Frame44 10900 Frame44 10900 

Frame6 10900 Frame6 10900 
Physical Bus Timing 

Frame18 10900 Frame18 10900 

Note: All model subsystems timing data was calibrated to the desired times. 

Table 13.12: Calibration test case 1 data 

 

Test Case: 2 Calculated Constraint (ns) Simulation Model Time (ns) 

Frame2 210437.5 Frame2 210437.52 Software Driver Transmit Time 

Frame444 325465.05 Frame444 325465.08 

Frame1 104686.9 Frame1 104686.9 Software Driver Receive Time 

Frame181 204368.9 Frame181 204368.9 

Frame2 25950 Frame2 25950 Input Buffer Time 

Frame444 25950 Frame444 25950 

Frame1 75650 Frame1 75650 Output Buffer Time 

Frame181 75650 Frame181 75650 

Frame2 1900 Frame2 1900 Frame Transmit Time 

Frame444 1900 Frame444 1900 

Frame1 1900 Frame1 1900 Frame Receive Time 

Frame181 1900 Frame181 1900 

Frame2 28900 Frame2 28900 

Frame444 48900 Frame444 48900 

Frame1 28900 Frame1 28900 
Physical Bus Timing 

Frame181 48900 Frame181 48900 

Note: All model subsystems timing data was calibrated to the desired times. 

Table 13.13: Calibration test case 2 data 
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Test Case: 3 Calculated Constraint (ns) Simulation Model Time (ns) 

Frame3 634002 Frame3 634002 Software Driver Transmit Time 

Frame65 887720.28 Frame65 887720.28 

Frame6 503414.9 Frame6 503414.9 Software Driver Receive Time 

Frame66 802460.9 Frame66 802460.9 

Frame3 25950 Frame3 25950 Input Buffer Time 

Frame65 25950 Frame65 25950 

Frame6 75650 Frame6 75650 Output Buffer Time 

Frame66 75650 Frame66 75650 

Frame3 1900 Frame3 1900 Media Access Buffer Time 

Frame65 1900 Frame65 1900 

Frame6 1900 Frame6 1900 Frame and Symbol Processing 

Time Frame66 1900 Frame66 1900 

Frame3 108900 Frame3 108900 

Frame65 168900 Frame65 168900 

Frame6 108900 Frame6 108900 
Physical Bus Timing 

Frame66 168900 Frame66 168900 

Note: All model subsystems timing data was calibrated to the desired times. 

Table 13.14: Calibration test case 3 data 

 

Test Case: 4 Calculated Constraint (ns) Simulation Model Time (ns) 

Frame3 1174996. 331 Frame3 1174996.331 Software Driver Transmit 

Time Frame28 150639.63 Frame28 150639.63 

Frame6 1270966.3 Frame6 1270966.3 Software Driver Receive 

Time Frame29 54845.9 Frame29 54845.9 

Frame3 25950 Frame3 25950 Input Buffer Time 

Frame28 25950 Frame28 25950 

Frame6 75650 Frame6 75650 Output Buffer Time 

Frame29 75650 Frame29 75650 

Frame3 1900 Frame3 1900 Media Access Buffer Time 

Frame28 1900 Frame28 1900 

Frame6 1900 Frame6 1900 Frame and Symbol 

Processing Time Frame29 1900 Frame29 1900 

Frame3 262900 Frame3 262900 

Frame28 18900 Frame28 18900 

Frame6 262900 Frame6 262900 
Physical Bus Timing 

Frame29 18900 Frame29 18900 

Note: All model subsystems timing data was calibrated to the desired times. 

Table 13.15: Calibration test case 4 data 
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Test Case: 5 Calculated Constraint (ns) Simulation Model Time (ns) 

Software Driver Transmit 

Time 

Frame2 114029.9808 Frame2 114029.9808 

Software Driver Receive 

Time 

Frame1 24941.3 Frame1 24941.3 

Input Buffer Time Frame2 25950 Frame2 25950 

Output Buffer Time Frame1 75650 Frame1 75650 

Media Access Buffer Time Frame2 1900 Frame2 1900 

Frame and Symbol 

Processing Time 

Frame1 1900 Frame1 1900 

Frame2 12900 Frame2 12900 Physical Bus Timing 

Frame1 12900 Frame1 12900 

Note: All model subsystems timing data was calibrated to the desired times. To obtain all results, the 

model was run for twice. The first test requested to update the buffer for frame 2. The second test 

requested the data stored in the buffer for frame 1 only. 

Table 13.16: Calibration test case 5 data 

 

For each of the test cases the model followed the desired pattern of timing 

constraints. The use of look up tables ensures that the correct timing delay is chosen 

where a variable delay is associated. They also reduces the execution time of the model 

by reducing the number of calculations at run time. The models ability to calculate a 

desired subsystem delay is therefore verified as working as desired. 

 

13.5.3 Calibration Results vs. Real World Results 

As the timing of the model was verified as working, the models timing output 

must be compared to real world system timing. This will give a measure of how well the 

model was calibrated. To do this the data from the model was again analysed to produce 
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a set of timing data that is a match to the real world system timings. Tables 13.17-13.21 

show the calibration data.  

All real world values are averages of the collected data set for each message 

identifier. All the real world values are the time related to analysed subsystem data. For 

instance the frame receive and transmit times are based on the time of the interrupt 

compared to the start of the associated slot start time. The input buffer and output buffer 

times relate to the time for information to pass through these stages only.  All these 

times also take into account the interrupt latency time. The correlation column on the 

right of Tables 13.17-13.21 relates how well the model data set corresponds to the real 

world data set. 

A 10% divergence between the real world results and the simulation results was 

deemed acceptable after an investigation into the timing constraints of FlexRay was 

undertaken (see Appendix B.2.1 of the FlexRay specifications). It was found that the 

greatest static slot action point offset was 63 macroticks and the longest duration of a 

static slot is 661 macroticks. This means that for valid communication to be achieved 

with the largest static slot that could be defined, a maximum of approximately 10% of 

the slot could be taken as an empty space, (i.e where no communication appears on the 

physical bus), before the frame transmission begins. A 10% difference was then used as 

a measure for the acceptable divergence value for each of the calibration and validation 

tests as outlined in this thesis. 

 

Test Case 1 Real World Time (ns) Simulation Model Time 

(ns) 

Divergence 

(%) 

Frame3 111750 Frame3 101704.9452 -8.99 Software Driver Transmit 

Time Frame44 111475 Frame44 101704.9452 -8.76 

Frame6 32585.7 Frame6 14973.1 -54.05 Software Driver Receive 

Time Frame18 21571.4 Frame18 14973.1 -30.59 

Frame3 21527.8 Frame3 30250 +40.52 Input Buffer Time 

Frame44 21277.8 Frame44 30250 +42.17 

Frame6 93416.6667 Frame6 79950 -14.42 Output Buffer Time 

Frame18 86055.5556 Frame18 79950 -7.10 

Frame3 19000 Frame3 12800 -32.64 Frame Transmit Time 

Frame44 19000 Frame44 12800 -32.64 

Frame6 19000 Frame6 19000 0.00 Frame Receive Time 

Frame18 19000 Frame18 19000 0.00 

Table 13.17: Calibration test case 1 analysis 
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Test Case 1 Results: 

From the correlation column there are a number of values close to ±10%. It can be seen 

that there are a number of values that range from approximately -54% up to +42%. 

These values will not produce an accurate representation of the data flow around the 

FlexRay node. 

 

Test Case 2 Real World Time (ns) Simulation Model Time 

(ns) 

Divergence 

(%) 

Frame2 189650 Frame2 210437.5 +10.96 Software Driver Transmit 

Time Frame444 399700 Frame444 325465.1 -18.58 

Frame1 120933.3 Frame1 104686.9 -13.43 Software Driver Receive 

Time Frame181 204968.8 Frame181 204368.9 -0.29 

Frame2 31750 Frame2 30250 -4.72 Input Buffer Time 

Frame444 32277.8 Frame444 30250 -6.28 

Frame1 84222.2222 Frame1 79950 -5.08 Output Buffer Time 

Frame181 84250 Frame181 79950 -5.11 

Frame2 26400 Frame2 28900 +9.46 Frame Transmit Time 

Frame444 47900 Frame444 50800 +6.05 

Frame1 37500 Frame1 35101 -6.40 Frame Receive Time 

Frame181 57000 Frame181 55101 -3.34 

Table 13.18: Calibration test case 2 analysis 

 

Test Case 2 Results: 

The data for this calibration test case is a lot closer than that of test case 1. The majority 

of values lie within ±10% of the real world values. Again this is deemed acceptable for 

the initial calibration run. However there are two values that are almost -20% off the 

real world value. These times may again produce inaccurate results. 
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Test Case 3 Real World Time (ns) Simulation Model Time 

(ns) 

Divergence 

(%) 

Frame3 544525 Frame3 634002 +16.43 Software Driver Transmit 

Time Frame65 931650 Frame65 887720.3 -4.72 

Frame6 503666.667 Frame6 503414.9 -0.05 Software Driver Receive 

Time Frame66 800666.667 Frame66 802460.9 +0.22 

Frame3 38055.56 Frame3 30250 -20.52 Input Buffer Time 

Frame65 38277.78 Frame65 30250 -20.97 

Frame6 85027.7778 Frame6 79950 -5.97 Output Buffer Time 

Frame66 85000 Frame66 79950 -5.94 

Frame3 106700 Frame3 110800 +3.84 Frame Transmit Time 

Frame65 168000 Frame65 170800 +1.67 

Frame6 117000 Frame6 115101 -1.62 Frame Receive Time 

Frame66 176900 Frame66 175101 -1.02 

Table 13.19: Calibration test case 3 analysis 

Test Case 3 Results: 

Like the data of test case 2, the majority of values lie within ±10% of the real world 

values. Again this is deemed acceptable for the initial calibration run. However there are 

two values that are almost -20% off the real world value. These times may again 

produce inaccurate results. 

 

Test Case 4 Real World Time 

(ns) 

Simulation Model Time 

(ns) 

Divergence 

(%) 

Frame3 1171875 Frame3 1174996 +0.27 Software Driver Transmit 

Time Frame28 267950 Frame28 150639.6 -43.79 

Frame6 1274175 Frame6 1270966.3 -0.25 Software Driver Receive 

Time Frame29 70125 Frame29 54845.9 -21.79 

Frame3 35166.7 Frame3 30250 -13.98 Input Buffer Time 

Frame28 31944.4 Frame28 30250 -5.30 

Frame6 87000 Frame6 79950 -8.10 Output Buffer Time 

Frame29 86500 Frame29 79950 -7.57 

Frame3 258000 Frame3 264800 +2.64 Frame Transmit Time 

Frame28 19000 Frame28 20800 +9.47 

Frame6 270000 Frame6 271000 +0.37 Frame Receive Time 

Frame29 31000 Frame29 27000 -12.90 

Table 13.20: Calibration test case 4 analysis 
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Test Case 4 Results: 

The data for test case 4 follows the pattern of the previous 3 test case data sets. The 

majority of the results lie within ±10% of the real world values but with four values 

outside this range. 

 

Test Case 5 Real World Time 

(ns) 

Simulation Model Time 

(ns) 

Divergence 

(%) 

Software Driver Transmit 

Time 

Frame2 116850 Frame2 114030 -2.41 

Software Driver Receive 

Time 

Frame1 30850 Frame1 24941.3 -19.16 

Input Buffer Time Frame2 34600 Frame2 30250 -12.57 

Output Buffer Time Frame1 84150 Frame1 75650 -10.10 

Frame Transmit Time Frame1 9000 Frame1 12901 +43.34 

Frame Receive Time Frame2 20000 Frame2 19101 -4.49 

Table 13.21: Calibration test case 5 analysis 

 

Test Case 5 Results: 

There is one value that is approximately 43% greater than the desired value. There are 

then three values at are in an around 10% different while two more values lie within 

20% of their desired values. 

 

13.5.3.1 Calibration Results vs. Real World Conclusion 

The first run of calibration tests produced a set of data that was then compared to 

the real world values. The number of values that were outside a difference of ±10% 

compared to the real world system was recorded. It was decided that a difference of 

±10% was a reasonable level of accuracy for an calibration run. When the model is 

within ±5% of the real model reasonable assumptions of the system based on the model 

output can be made. To increase the accuracy of the model will require the study of the 

areas where the model underperforms and it is therefore unlikely that a single run of 

calibration tests will produce a highly accurate model. If the accuracy of a model is 

below ±10% however there is likely to be some error in the implementation of the 

model. This could be in the implementation of the model subsystems or in the collected 
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timing data from the real world system.  Table 13.22 shows the number of these ‘errors’ 

for each timing parameter.  

 

Parameters Unacceptable Differences  

Software Driver Transmit Time 3 

Software Driver Receive Time 6 

Input Buffer Time 5 

Output Buffer Time 1 

Frame Transmit Time 3 

Frame Receive Time 1 

Table 13.22: Calibration test results summary 

 

From Table 13.22 it is clear that the greatest errors were observed in the 

‘Software Driver Receive’ and ‘Input Buffer’ Times. It is possible that by concentrating 

on improving these values the model can achieve an acceptable level of accuracy. 

The timing of the model follows the applied constraints perfectly as can be seen 

in section 13.5.2. One way to calibrate the model more accurately would be to collect 

more real world data. This could therefore mean that there was insufficient calibration 

test cases performed to accurately calibrate the model. It may also be possible that with 

a limited number of usable interrupts, on the E-Ray communications controller, that 

insufficient timing data can be obtained in this way. More data, form more calibration 

test runs, will allow an increase in the understanding of the timing constraints and may 

be the most practical solution to increase the model accuracy. This new data can then 

again be applied to the model and the output checked. Another possibility would be to 

look at how the model was constructed and behaves. It could be discovered from 

analysis of the model that a subsystem of the simulation does not accurately reflect the 

real-world implementation. The subsystem could then be re-modelled by using different 

modelling blocks to achieve the desired output from the system. This could then be 

adjusted if needed to develop a more accurate simulation model. It is suspected that the 

message handler subsystem of the simulation model may not handle the various entities 

passed to it in most suitable manner. Further calibration runs should therefore 

concentrate on this area of the simulation model. 

This initial calibration run has identified where the simulation model differs 

from the real world system. More calibration runs can help improve the accuracy of the 
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system to a 95 or 99% accuracy. The accuracy desired will determine the number of 

runs ultimately needed. 

 

13.5.4 Data Pipeline Analysis 

The model was designed to analyse the flow of data through the system. The 

model was therefore constructed as two pipelines. The data either originates from the 

application layer, is sent through the pipeline to the physical bus, or the data originates 

from the physical bus up through the receive pipeline to the application layer. This 

means that the overall timing of the pipelines will give a measure of the accuracy of the 

simulation model as a whole and not just each subsystem. 

To ensure that the pipeline timing is accurate the overall flow of data was 

analysed. The transmitted data originates from the application layer, passes through the 

software driver, input buffer and communications controller. The overall path time for 

the real world system and the simulation model were compare as shown in Table 13.23. 

Again the correlation column shows how well the two sets of data relate to each other. 

The difference between the two sets of data is also compared to the static slot time 

length as well as the communication cycle. This produces a good accuracy metric. 
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Transmit 

Pipeline 

Real World Time 

(ns) 

Simulation Model 

Time (ns) 

Divergence 

(%) 

Slot Time 

Correlation 

(%) 

Cycle Time 

Correlation 

(%) 

Frame 

3 

152277.8 Frame 

3 

144754.9452 -4.94 30.09 0.05 Test Case 

1 

Frame 

44 

151752.8 Frame 

44 

144754.9452 -4.61 27.99 0.04 

Frame 

2 

247800 Frame 

2 

269587 +8.79 50.67 0.14 Test Case 

2 

Frame 

444 

479877.8 Frame 

444 

406515.1 -15.29 170.61 0.46 

Frame 

3 

689280.56 Frame 

3 

775052 +12.44 69.73 1.72 Test Case 

3 

Frame 

65 

1137927.78 Frame 

65 

1088770.3 -4.32 39.97 0.98 

Frame 

3 

1465041.7 Frame 

3 

1470046 +0.34 1.80 0.10 Test Case 

4 

Frame 

28 

318894.4 Frame 

28 

201689.6 -36.75 42.16 2.34 

Test Case 

5 

Frame 

2 

160450 Frame 

2 

157181 -2.04 12.11 2.87 

Average Correlation -5.15 49.46 0.97 

Table 13.23: Transmit pipeline timing 

 

The correlation between the transmit pipeline data for the real world and 

simulation model have a number of test cases that have a ±10% difference. Test case 2 

and test case 4 both fall outside this.  This means that for a majority of the test cases the 

model is within an acceptable range. When the differences are compared to the 

communication cycle length, the model has an accuracy value well within the various 

values (an accuracy of less than 100% percent indicates the model is accurate to with 

that parameter).  The model can therefore said to be accurate to within a cycle length. 

The differences were also checked against a static slot length. The accuracy for all but 

one test case fell within one static slot length (170.61 % accurate). Frame 444 of test 

case 2 had an accuracy of greater than one slot length, but less than two slot lengths. 

The accuracy of the transmit pipeline of the model can therefore said to be accurate to 

within two static slot lengths.  
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The received data originates from the physical bus, passes through the 

communications controller, input buffer and software driver. The overall path time for 

the real world system and the simulation model were compare as shown in Table 13.24. 

 

Receive 

Pipeline 

Real World Time 

(ns) 

Simulation Model 

Time (ns) 

Divergence 

(%) 

Slot Time 

Correlation 

(%) 

Cycle Time 

Correlation 

(%) 

Frame 

6 

127902.3667 Frame 

6 

113923.1 -10.93 

55.91707 0.08737 

Test 

Case 1 

Frame 

18 

126626.9556 Frame 

18 

113923.1 -10.03 

50.81542 0.079399 

Frame 

1 

242655.5222 Frame 

1 

219737.9 -9.44 

53.2968 0.143235 

Test 

Case 2 

Frame 

181 

346218.8 Frame 

181 

339419.9 -1.96 

15.8114 0.042493 

Frame 

6 

705694.4448 Frame 

6 

626465.9 -11.23 

64.41345 1.584571 

Test 

Case 3 

Frame 

66 

1062566.667 Frame 

66 

1057511.9 -0.48 

4.109567 0.101095 

Frame 

6 

1631175 Frame 

6 

1627916.3 -0.57 

1.172194 0.065174 

Test 

Case 4 

Frame 

29 

187625 Frame 

29 

161795.9 -13.77 

9.291043 0.516582 

Test 

Case 5 

Frame 

1 

135000 Frame 

1 

119692.3 -11.34 

56.69519 13.42781 

Average Correlation -7.75 1.783081 34.61357 

Table 13.24: Receive pipeline timing 

 

The correlation between the receive pipeline data for the real world and 

simulation model have a number of test cases that have a ±10% difference. Test Case 2 

and test case 4 both fall outside this.  This means that for a majority of the test cases the 

model is within an acceptable range.  

When the differences are compared to the communication cycle length, the 

model has an accuracy value well within the cycle length values. The model can 

therefore said to be accurate to within a cycle length. The differences were also checked 

against a static slot length. The accuracy for all of the test cases fell within one static 

slot length. The accuracy receive pipeline can therefore said to be accurate to within one 

static slot lengths. 
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13.6 Conclusion 

The hardware and software tools described in this chapter have been chosen for various 

reasons. Some of the equipment was available to the Automotive Control Group at 

Waterford Institute of Technology (W.I.T.) before this project was started. Other 

equipment had to be bought from a set budget. As some of the equipment was already 

available to the research group it makes sense to use it. This means the budget can be 

used more efficiently. 

 The equipment that has been outlined is sufficient to implement the simulation 

of a FlexRay network as well as calibrate and validate the simulation model. The 

software that has been acquired has been done so with ease of use in mind amongst 

other considerations. This will mean for example less time will be spent getting familiar 

with the tools and so more time can be dedicated to the implementation of the project. 

The software was also chosen as it is used in industry and so is seen as reliable for the 

functions intended. The hardware that was chosen was done so as it too is easy to get 

familiar with. It was also chosen because it was industry standard and had a high level 

of reliability and performance. 

The tests that were run were designed to obtain the real world timing data as 

accurately as possible. However there will be slight inaccuracies in the values obtained. 

This is down to a number of factors such as the limitation of the knowledge of actual 

implementations of a system. The model was calibrated to this data set as this was the 

best that could be obtained. 

The calibration of the model outlined above obtained two sets of data. The 

simulation was then run and timing information obtained from the model. This was 

checked against the obtained real world timing constraints. The pipeline timing aspect 

of the model was also analysed and metrics of performance developed. Some of the 

values were inconsistent with the overall timing of the flow of data but may have been 

accurate enough to conduct initial validation testing. As the pipeline times were within 

acceptable times the calibration was deemed sufficient to perform the validation tests. In 

this way the initial calibration testing of the model was deemed a success. The 

simulation model is not calibrated to a high level of accuracy and further calibration test 

will be needed until an acceptable level of accuracy is achieved. 
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Chapter 14 . Validation 

 

14.1 Introduction 

This chapter will focus on the procedure of validating the simulation model. 

Validation of a model is different to verification of the model. In chapter 7 it stated that 

verification was the process of building the model correctly while validation is 

concerned with determining if the right model was built. The validation procedure 

outlined in this chapter is designed to test if the right model was built. The procedure is 

determined by what the model is supposed to achieve and how it should act. The 

behaviour of the model was analysed by using suitable tests. The tests used will be 

discussed to show how the validation procedure was fulfilled.  The validation test cases 

will then be stated and the results analysed. Any conclusions about the tests run will 

then be stated. 

Figure 14.1 (Banks et. al. 2001, p16) shows where validation fits into the model 

building process. 
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Figure 14.1: Model building process 

 

14.2 Validation Procedure 

The validation stage of a modelling study can be a difficult exercise. This is 

because ‘no model is ever totally representative of the system under study.’ (Banks et. 

al. 2001, p375). Each time a model is revised, as shown in Figure 14.2 (Banks et. al. 

2001, p375), it increases the cost, time and effort to achieve a more accurate model. It is 

therefore necessary to have an idea as to what the model is intended to do and to test it 

for this. It is also clear that the validation stage of the model building process depends 

on the success of previous steps in the building process such as the verification and 
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calibration stages. This means that if the validation stage is not a success the modeller 

may need to return to earlier steps in the modelling procedure. 

 

 

Figure 14.2: Calibration iterative process 

 

Naylor and Finger are credited in Banks et. al. (2001, p376) as formulating a 

three step approach to aid the validation process. These steps are as follows: 

• Build a model of high face validity. 

• Validate the model assumptions. 

• Compare the model input-output transformations to the real world input-output 

transformations. 

These steps will now be discussed in relation to the study undertaken as outlined in this 

thesis. 

• The model was demonstrated to and discussed with research supervisor Brendan 

Jackman during the models construction stage. Any improvements or changes 

were then discussed and changes implemented as necessary. The operation of 

the model was also tested during the verification stage of the model 

development. The model can therefore be said to have high face validity. 

• The model was built by comparing the model to a real world system and its 

specifications. The behaviour of the model was also verified for accurate 

behaviour and calibrated against a real world system. In this way the models 

assumptions can be said to be validated. 

• The ability of the model to make good predications of a real world system is 

seen as the ‘ultimate test’ of the model (Banks et. al. 2001, p378). To achieve 
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complete validation, it was necessary to conduct further tests. These tests are 

outlined in section 14.2.1. 

 

14.2.1 Validation of Input-Output Transforms 

The ability of a model to predict the future behaviour of a real system is the only 

objective test of a model. The model should be able to accurately predict the 

performance of the real system, if for instance the arrival rate of entities at a server is 

increased. When the model is able to do this the model can be considered as an accurate 

representation of the real world system(Banks et. al. 2001, p378). 

The input-output transform validation process  is then essentially a validation 

where accurate measures of performance are obtained from a set of given inputs. This 

validation procedure can be done using a separate set of historical data than that used 

for calibration. In this way the models behaviour can be tested in an unbiased way 

(Banks et.al. 2001, p378).  

Section 14.3 will outline the procedure that was undertaken to validate the model 

according to this definition. 

 

14.3 Validation Data Collection 

The validation stage used the same technique to collect timing information as 

that of the calibration stage as outlined in 13.3. The same equipment and procedure that 

was used for calibration was used to collect real world timing data. This data was then 

compared to the timing data obtained from the simulation model after it was run. If the 

model data was deemed to be acceptably similar to the real world timing information, 

then the simulation model can be deemed validated. However it was also necessary to 

analyse usefulness of the model system.  

The parameters of the validation test cases are outlined in Table 14.1. As with 

the calibration tests, the configuration files were made from a combination of 

DECOMMSYS Designer output files and FlexConfig ‘.chi’ files. 
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ID Cycle 

Length 

(µs) 

Number 

of Static 

Slots 

Number 

of Mini 

Slots 

Static 

Slot 

Length 

(µs) 

Mini Slot 

Length 

(µs) 

Static 

Frame 

Payload 

(words) 

Dynamic 

Frame 

Payload 

(words max) 

Channels NIT & 

Symbol 

Length 

(µs) 

Node Tx 

Frames 

Node Rx 

Frames 

Latest 

Tx 

Note 

1 5000  60 276 35  10  1 16  A&B 140 3 and 65 

(A) 

6 and 66 

(B) 

271 Based on the 

CANalyzer example 

2 5000  79 148 39  10  8 16 A&B 439 3, and 

159 (A) 

6 and 

155 (B) 

143 Based on the BMW 

example 

3 5000  60 245 35  10  4 20 A 450  3 and 65 6 and 66 240 Channel A only 

4 9908  120 490 35  10  4  20  B 808 3 and 65 6 and 66 485 Channel B only, max 

NIT and double static 

and mini slots 

5 300  6 12 27  6  2  20  A&B 66 3 and 7 

(A) 

6 and 8 

(B) 

2 Small static slot and 

mini slot 

6 4354  60 195 39  10  8  16  A&B 64  3 and 65 

(A) 

6 and 66 

(B) 

190 Minimum NIT and 

Symbol window.  

7 15982  2 2640 39  6  8  60  A&B 64  2 and 

100 (A) 

1 and 

770 (B) 

2617 Maximum number of 

mini slots and 

minimum static slots 

and NIT and Symbol 

window 

8 5408 8 0 659  NA 127  NA A&B 136  3 6 0 Maximum static  slot 

length and payload 

Table 14.1: Validation test case parameters 
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The random numbers used for each test case simulation runs are shown in Table 14.2.  

 

Test 

Case 

Application 

Generation 

Application 

Response 

Physical 

Bus A-1 

Physical Bus 

A-2 

Physical 

Bus B-1 

Physical 

Bus B-2 

1 456511 578 1675424 9414884 7 2214 

2 185 68132217 7506 56238 200926 205738 

3 821433 303758 21417824 216 95413 445253 

4 4447 660924 24963 6602275 25548 353118 

5 6154 1388908 57650387 39245 72912 5971 

6 79 21856 67 384193844 1829106 465256 

7 9218 7426 505 60735 377 8074 

8 732 938 864818 516961 632116 87399 

Table 14.2: Validation test case random number seeds 

 

 

14.4 Validation Review 

The validation process of building a model highlights how successfully the 

model was built. To do this real world data was obtained for the timing and behaviour 

of the system for a number of test cases. The model was then set to perform the same 

tests and data collected. The two sets of data were then analysed for similarity. If the 

model produced the same information then the model was said to be validated. 

 

14.4.1 Validation Data & Results 

The data presented in this section represents the real world data that the 

simulation model must accurately reflect. As was stated in section 14.3, the same 

techniques to collect the data as used in section 13.3 were used again. The tables below, 

Tables 14.3 -14.10 show both the timing data for the real world system and those 

obtained from simulation model. This compares the actual real world timing data and 

the simulations models data. This is similar to the Calibration stage of comparing the 

real world data to the simulated data.  
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Test Case 1 Real World Time (ns) Simulation Model Time (ns) Divergence (%) 

Frame3 102675 Frame3 101704.9 -0.94 Software Driver 

Transmit Time Frame65 357850 Frame65 280185 -21.70 

Frame6 3791.666667 Frame6 14973.1 +294.89 Software Driver 

Receive Time Frame66 135093.75 Frame66 164496.1 +21.76 

Frame3 31444.4444 Frame3 30250 -3.80 Input Buffer Time 

Frame65 31361.1111 Frame65 30250 -3.54 

Frame6 85333.33333 Frame6 79950 -6.31 Output Buffer Time 

Frame66 85305.55556 Frame66 79950 -6.28 

Frame3 6100 Frame3 12800 +109.84 Frame Transmit 

Time Frame65 45700 Frame65 42800 -6.35 

Frame6 27200 Frame6 19000 -30.15 Frame Receive 

Time Frame66 54900 Frame66 49000 -10.75 

Table 14.3: Validation test case 1 data 

Test Case 1 Results: 

The Results for test case 1 show a similar set of results as was obtained from the 

calibration procedure. The majority of simulated models times fall within ±10% of the 

real world data. There are a number of data points that lie outside this range however 

indicating that the simulation model requires further calibration. For instance frame 6 

indicates that the model is out by almost 300% at the software driver receive side while 

frame 3 takes almost 110% more time to transmit over the physical bus. 

 

Test Case 2 Real World Time (ns) Simulation Model Time (ns) Divergence (%) 

Frame3 164250 Frame3 186701.1 +27.65 Software Driver 

Transmit Time Frame159 352550 Frame159 280185 -20.53 

Frame6 61100 Frame6 84750.5 +38.71 Software Driver 

Receive Time Frame155 134250 Frame155 164496.1 +22.53 

Frame3 35861.1111 Frame3 30250 -15.65 Input Buffer Time 

Frame159 35916.6667 Frame159 30250 -15.78 

Frame6 85750 Frame6 79950 -6.76 Output Buffer 

Time Frame155 85777.8 Frame155 79950 -6.79 

Frame3 20111.1111 Frame3 26800 +33.26 Frame Transmit 

Time Frame159 45500 Frame159 42800 -5.93 

Frame6 31000 Frame6 33000 +6.45 Frame Receive 

Time Frame155 45000 Frame155 49000 +8.89 

Table 14.4: Validation test case 2 data 
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Test Case 2 Results: 

The data does not contain any difference between the two sets of data that is as large as 

some seen in test case 1. However in this test case the majority of the model data times 

are within a ±30% range of the real world system data. This again supports the need for 

further calibration. 

 

Test Case 3 Real World Time (ns) Simulation Model Time (ns) Divergence (%) 

Frame3 130725 Frame3 138497.3 +5.95 Software Driver 

Transmit Time Frame65 386075 Frame65 325465.1 -15.70 

Frame6 24916.6667 Frame6 44877.7 +80.11 Software Driver 

Receive Time Frame66 169944.444 Frame66 204368.9 +20.26 

Frame3 34333.3333 Frame3 30250 -11.89 Input Buffer Time 

Frame65 34611.1111 Frame65 30250 -12.60 

Frame6 85000 Frame6 79950 -5.94 Output Buffer 

Time Frame66 84944.4 Frame66 79950 -5.88 

Frame3 15000 Frame3 18800 +25.33 Frame Transmit 

Time Frame65 48100 Frame65 50800 +5.61 

Frame6 29100 Frame6 25000 -14.09 Frame Receive 

Time Frame66 54100 Frame66 57000 +5.36 

Table 14.5: Validation test case 3 data 

Test Case 3 Results: 

The data set for test case 3 again indicates the need for further calibration of the model. 

The values are within approximately ±20% of each other. The largest difference is seen 

in the software driver receive side. This is similar to the previous 3 test case results 

where the biggest difference was seen at this stage of the data flow. 
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Test Case 4 Real World Time (ns) Simulation Model Time (ns) Divergence (%) 

Frame3 130625 Frame3 138497.3 +6.27 Software Driver 

Transmit Time Frame125 386125 Frame125 325465.1 -15.71 

Frame6 23333.3333 Frame6 44877.7 +92.33 Software Driver 

Receive Time Frame126 168500 Frame126 204368.9 +21.29 

Frame3 37638.8889 Frame3 30250 -19.63 Input Buffer 

Time Frame125 38138.8889 Frame125 30250 -20.68 

Frame6 85000 Frame6 79950 -5.94 Output Buffer 

Time Frame126 84861.1 Frame126 79950 -5.79 

Frame3 14800 Frame3 18800 +27.02 Frame Transmit 

Time Frame125 48000 Frame125 50800 +5.83 

Frame6 29300 Frame6 25000 -14.68 Frame Receive 

Time Frame126 92000 Frame126 57000 -38.04 

Table 14.6: Validation test case 4 data 

Test Case 4 Results: 

The biggest difference between the two sets of data is again seen at the software driver 

receive side at 192%. The frame receive time is also out by about 38%. The majority of 

the remaining simulation data differs by approximately ±20%.   

 

Test Case 5 Real World Time (ns) Simulation Model Time (ns) Divergence (%) 

Frame3 113900 Frame3 114030 +0.11 Software Driver 

Transmit Time Frame7 386125 Frame7 325465.1 -15.71 

Frame6 6777.777778 Frame6 24941.3 +267.99 Software Driver 

Receive Time Frame8 171111.1111 Frame8 204368.9 +19.44 

Frame3 37666.6667 Frame3 30250 -19.69 Input Buffer 

Time Frame7 38166.6667 Frame7 30250 -20.74 

Frame6 84888.9 Frame6 79950 -5.82 Output Buffer 

Time Frame8 84833.3 Frame8 79950 -5.76 

Frame3 7100 Frame3 14800 +108.45 Frame Transmit 

Time Frame7 48800 Frame7 50800 +4.10 

Frame6 18400 Frame6 21000 +14.13 Frame Receive 

Time Frame8 63100 Frame8 57000 -9.67 

Table 14.7: Validation test case 5 data 
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Test Case 5 Results: 

The difference between the two sets of data again differs in a number of stages by about 

±20%. The biggest differences are seen in the software driver receive time and frame 

transmit time parameters. 

 

Test Case 6 Real World Time (ns) Simulation Model Time (ns) Divergence (%) 

Frame3 164250 Frame3 186701.1 +13.67 Software Driver 

Transmit Time Frame65 352525 Frame65 280185 -20.52 

Frame6 60571.42857 Frame6 84750.5 +39.92 Software Driver 

Receive Time Frame66 133611.1111 Frame66 164496.1 +23.12 

Frame3 34833.3333 Frame3 30250 -13.16 Input Buffer 

Time Frame65 35194.4444 Frame65 30250 -14.05 

Frame6 85805.6 Frame6 79950 -6.82 Output Buffer 

Time Frame66 85777.8 Frame66 79950 -6.79 

Frame3 20200 Frame3 26800 +32.67 Frame Transmit 

Time Frame65 45500 Frame65 42800 -5.93 

Frame6 31200 Frame6 33000 +5.77 Frame Receive 

Time Frame66 55000 Frame66 49000 -10.91 

Table 14.8: Validation test case 6 data 

 

Test Case 6 Results: 

The data sets differ by approximately ±20% for a number of parameters. The software 

driver receive time and the frame transmit time are again the two values that differ by he 

greatest amounts. The differences at these stages are not as great as in previous stages.  
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Test Case 7 Real World Time (ns) Simulation Model Time (ns) Divergence (%) 

Frame2 169000 Frame2 186701.1 +10.47 Software Driver 

Transmit Time Frame100 722275 Frame100 724665.7 +0.33 

Frame1 61541.66667 Frame1 84750.5 +37.71 Software Driver 

Receive Time Frame770 535138.8889 Frame770 603096.9 +12.70 

Frame2 37833.3333 Frame2 30250 -20.04 Input Buffer 

Time Frame100 38611.1111 Frame100 30250 -21.65 

Frame1 84888.9 Frame1 79950 -5.82 Output Buffer 

Time Frame770 85750 Frame770 79950 -6.76 

Frame2 23000 Frame2 26800 +16.52 Frame Transmit 

Time Frame100 130000 Frame100 130800 -20.15 

Frame1 33900 Frame1 33000 -2.65 Frame Receive 

Time Frame770 141000 Frame770 137000 -2.84 

Table 14.9: Calibration test case 7 data 

 

Test Case 7 Results: 

The data sets produce a similar result to that of test case 6. The difference between the 

two sets is approximately ±20% in a number of cases. The software driver receive time 

and the frame transmit time are again the two values that differ by a greater amount.  

 

 

Test Case 8 Real World Time (ns) Simulation Model Time (ns) Divergence (%) 

Software Driver 

Transmit Time 

Frame3 1229050 Frame3 1174996 -4.40 

Software Driver 

Receive Time 

Frame6 1150500 Frame6 1270966 +10.47 

Input Buffer Time Frame3 35472.22 Frame3 30250 -14.72 

Output Buffer 

Time 

Frame6 539138.889 Frame6 79950 -85.17 

Frame Transmit 

Time 

Frame3 259700 Frame3 264800 +1.96 

Frame Receive 

Time 

Frame6 652900 Frame6 271000 -58.49 

Table 14.10: Validation test case 8 data 
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Test Case 8 Results: 

The results for test case 8 produce the greatest difference between the two data sets.  For 

the output buffer the two data sets correlate by only 15% approximately. For the other 

tests this value was never outside a ±20% correlation bracket. The model data for this 

stage of the pipeline correlated to the real world data by 93-94% in every other test case. 

The receive frame time also had a low correlation of about 41%. The remainder of the 

values correlate to about a 20% difference between the two data sets. 

 

14.4.1.1 Validation Data Conclusion 

The validation tests show a strong need to recalibrate the system. The majority 

of the real world and model timings observed were within a ±20% of each other. A 

number of the observed times greatly differed from the real world values and the 

difference was in some cases were greater than ±50%.  For the initial calibration stage a 

difference of about ±10% was desired. The differences observed at this stage are 

therefore not acceptable. Table 14.11 shows how may of the models subsystem timing 

data differed to the real world system by more than the desired ±10% range. 

 

Parameters Unacceptable Differences  

Software Driver Transmit Time 7 

Software Driver Receive Time 13 

Input Buffer Time 12 

Output Buffer Time 1 

Frame Transmit Time 7 

Frame Receive Time 10 

Table 14.11: Validation test results summary 

 

The building of the model is an iterative process. The model must therefore be 

observed for accuracy and changed as needed. This could mean a redesign of a 

subsystem or subsystems in the model to achieve greater accuracy. The real world data 

that the model was calibrated to may not be completely accurate and a new way to 

collect and analyse the data may be needed 
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14.4.2 Data Pipeline Analysis 

As with the calibration analysis a measure of the transmit data and receive data 

pipelines of the model were done. The ability to analyse the timing of the flow of data 

through a FlexRay node was the ultimate goal of the simulation model. By analysing 

these times a measure of the accuracy of the model as a whole, and not just the 

subsystems can be achieved. The differences between the real world data and the 

simulation data is then compared the cycle time and static slot time for each test case. 

This gives a metric of the accuracy of the model to a known value. Table 14.12 shows 

the data for the transmit pipeline. Table 14.13 shows the data for the receive pipeline. 
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Transmit 

Pipeline 

Real World Time 

(ns) 

Simulation Model 

Time (ns) 

Divergence 

(%) 

Slot Time 

Correlation 

(%) 

Cycle Time 

Correlation 

(%) 

Frame 

3 

140219.4444 Frame 

3 

144754.9 +3.23 12.96 0.09 Test Case 

1 

Frame 

65 

434911.1111 Frame 

65 

353235 -18.78 233.36 1.63 

Frame 

3 

220222.2222 Frame 

3 

243751.1 +10.68 60.33 0.47 Test Case 

2 

Frame 

159 

433966.6667 Frame 

159 

353235 -18.60 207.00 1.61 

Frame 

3 

180058.3333 Frame 

3 

187547.3 +4.16 21.40 0.15 Test Case 

3 

Frame 

65 

468786.1111 Frame 

65 

406515.1 -13.28 177.92 1.25 

Frame 

3 

183063.8889 Frame 

3 

187547.3 +2.45 12.81 0.05 Test Case 

4 

Frame 

125 

472263.8889 Frame 

125 

40651.1 -13.92 1233.18 4.36 

Frame 

3 

158666.6667 Frame 

3 

159080 +0.26 0.15 0.14 Test Case 

5 

Frame 

7 

473091.6667 Frame 

7 

406515.1 -14.07 24.66 22.19 

Frame 

3 

219283.3333 Frame 

3 

243751.1 +11.16 62.74 0.56 Test Case 

6 

Frame 

65 

433219.4444 Frame 

65 

353235 -18.46 205.09 1.84 

Frame 

2 

229833.3333 Frame 

2 

347751.1 +51.31 302.35 0.74 Test Case 

7 

Frame 

100 

790886.1111 Frame 

100 

885715.7 +11.99 243.1528 0.59 

Test Case 

8 

Frame 

3 

1524222.22 Frame 

3 

1470046 -3.55 8.220974 1.00 

Average Correlation -0.36 187.02 2.44 

Table 14.12: Transmit pipeline timing 

 

The accuracy of the transmit model pipeline falls well within a communication 

cycle length, with the greatest difference at 22.19% of a communication cycle. The 

accuracy compared to a static slot varies greatly form 0.15% of a static slot time to 
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302%. The majority of the values that have an accuracy greater than one static slot are 

for dynamic messages.  

 

Receive 

Pipeline 

Real World Time 

(ns) 

Simulation Model 

Time (ns) 

Divergence 

(%) 

Slot Time 

Correlation 

(%) 

Cycle Time 

Correlation 

(%) 

Frame 

6 

116325 Frame 6 113923.1 -2.06 6.86 0.05 Test 

Case 1 

Frame 

66 

247599.3056 Frame 

66 

293446.1 +18.52 130.99 0.92 

Frame 

6 

177850 Frame 6 197700.5 +11.33 50.90 0.40 Test 

Case 2 

Frame 

155 

265027.8 Frame 

155 

293446.1 +10.72 72.87 0.57 

Frame 

6 

139016.6667 Frame 6 149827.7 +7.78 30.89 0.22 Test 

Case 3 

Frame 

66 

308988.844 Frame 

66 

341318.9 +10.46 92.37 0.65 

Frame 

6 

137633.3333 Frame 6 149827.7 +8.86 34.84 0.12 Test 

Case 4 

Frame 

126 

345361.1 Frame 

126 

341318.9 -1.17 11.55 0.04 

Frame 

6 

110066.6778 Frame 6 125891.3 +14.38 5.86 5.27 Test 

Case 5 

Frame 

8 

319044.4111 Frame 8 341318.9 +6.98 8.25 7.42 

Frame 

6 

177577.0286 Frame 6 197700.5 +11.33 51.60 0.46 Test 

Case 6 

Frame 

66 

274388.9111 Frame 

66 

293446.1 +6.95 48.86 0.44 

Frame 

1 

180330.5667 Frame 1 197700.5 +9.63 44.54 0.11 Test 

Case 7 

Frame 

770 

761888.8889 Frame 

770 

820046.9 +7.63 149.12 0.364 

Test 

Case 8 

Frame 

6 

2342538.889 Frame 6 1621916 -30.76 109.35 13.33 

Average Correlation +6.04 56.59 2.02 

Table 14.13: Receive pipeline timing 
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The accuracy of the receive pipeline model pipeline falls well within a 

communication cycle length, with the greatest difference at 13.33% of a communication 

cycle. The accuracy compared to a static slot varies greatly form 5.86% of a static slot 

time to 149%. The majority of the values that have an accuracy greater than one static 

slot are again for dynamic messages. 

As the accuracy of the pipelines is greater than some of the individual stages of 

model, the allocation of timing to the individual subsystems may be incorrectly 

allocated. One subsystem takes longer compared to the real world system, while a 

following subsystem takes a shorter time. The various timings of the subsystems could 

therefore be adjusted to more accurately reflect the real world systems. 

As the dynamic messages are generally less accurate than static messages, the 

model may need to be studied from this perspective to achieve greater accuracy. 

 

14.4.3 Buffer Access Time Analysis 

The model must be able to also produce a set of results that are useful to a 

systems analyst. The purpose of the model was to produce an output that could be used 

to improve the overall system. By analysing the timing of the individual model 

subsystems, bottlenecks could be detected and the system improved. In a number of 

cases the delays of the data may not be decreased in a simple manner. A system analyst 

may then have to find another way to increase efficiency in the system. By analysing the 

time a buffer is accessed (this could be to read from or write to the buffer), an 

improvement may be made in the design of the application layer’s execution. 

Table 14.1 shows the time a buffer is checked by the E-Ray chip for 

transmission (Request to Send Time) and this is compared to the time the buffer is 

updated by the host (Buffer Update Time). 
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Buffer 

Update 

Frame 

ID 

Request to Send Time 

(ns) 

Buffer Update Time 

(ns) 

Difference 

(ns) 

3 35000 132454.9 -97454.9 Test Case 1 

65 2140000 443389.9 1696610.0 

3 39000 217451.1 -178451.1 Test Case 2 

159 3821000 528386.1 3292613.9 

3 35000 169247.3 -134247.3 Test Case 3 

65 2140000 525462.4 1614537.6 

3 35000 169247.3 -13427.3 Test Case 4 

125 4230000 525462.4 42704537.6 

3 27000 144780 -117780 Test Case 5 

7 135000 439300 -439300 

3 39000 217451.1 -178451.1 Test Case 6 

65 2370000 528386.1 1841613.9 

2 39000 217451.1 -178451.1 Test Case 7 

100 654000 972866.8 -318866.8 

Test Case 8 3 659000 1205746 -546746 

Table 14.14: Buffer update time 

 

In Table 14.14 it can be clearly seen that there is a big difference between the 

time a buffer is updated by the application and the time the buffer is checked for 

transmission. A negative value indicates that a buffer was updated after the E-Ray 

checked the buffer, while a positive value indicates the buffer was updated before this 

time. All the times shown for the E-Ray chip to check a buffer assigned to dynamic 

frames is relative to a best case scenario for the frame to be transmitted. 

Table 14.15 shows the difference between when a buffer is updated from a 

frame transmitted over the physical bus and stored in a buffer (Buffer Update Time) to 

the time the software driver attempts to read the buffer (Request to Read Time). As with 

the data in Table 14.14, there can be a large time difference when a message may wait 

in a buffer (this is indicated by a positive difference in the Table 14.15). The negative 

differences correspond a time where a buffer was accessed before the buffer was 

updated during the current communication cycle. 
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Buffer 

Update 

Frame 

ID 

Request to Read Time 

(ns) 

Buffer Update Time 

(ns) 

Difference 

(ns) 

6 448189.9 194000 254189.9 Test Case 1 

66 543613 2199000 -1655387 

6 528386.1 228000 300386.1 Test Case 2 

155 698386.6 3865300 -3166913.4 

6 530262.4 200000 330262.4 Test Case 3 

66 655590.1 2257000 -1601409.9 

6 530262.4 200000 330262.4 Test Case 4 

126 655590.1 4357000 -3701409.9 

6 225000 156000 69000 Test Case 5 

8 611186.3608 225000 386186.3608  

6 533186.064 228000 305186.064 Test Case 6 

66 698386.6 2439000 -1740613.4 

1 977666.8128 33000 58166.8128 Test Case 7 

770 1142867 4817000 -3674133 

Test Case 8 6 1210546 3566000 -2355454 

Table 14.15: Buffer read time 

 

By analysing this data it may be possible to improve the flow of data around the 

system. For instance an analyst may discover that a message assigned to the third slot 

can never be updated at the start of the current communication slot. It may be necessary 

to then update the buffer at the end of a communication cycle to reduce the latency 

experienced by a message before it transmitted. It may also be seen that a receive 

message buffer should be read at a later time in the communication cycle to obtain the 

most up-to-date data. 

 

14.4.3.1 Buffer Utilisation Analysis 

At the start of the model building process it was hoped that the buffer usage of 

the system could be analysed. As static messages are generally time-critical messages 

they should have assigned buffers that will always available to store data to or read data 

from. Therefore the access time analysis (as in section 14.4.3) of a buffer is the most 

efficient way to analyse the buffering ‘utilisation’. This also applies to dynamic 

messages with assigned buffers. As these buffers will always be available to store data 
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to or read data from, the access times of the buffers should be analysed to optimise the 

system. 

The FIFO is a dynamic system that can store a number of messages. In general 

static messages will not be stored in the FIFO and so only dynamic messages should be 

stored in the FIFO. However the FIFO rejection filters will store all messages with a 

frame ID within a given range. This means that the FIFO could store data not utilised by 

the node’s application. Therefore by analysing the utilisation of the FIFO, messages 

may be assigned to a dedicated receive buffer to help achieve an optimal configuration. 

No timing data for the FIFO could be obtained and as such no tests could be run. 

However this could become an important aspect in both the real world and the 

simulation model systems.  

 

14.4.4 Application Layer Execution Time Analysis 

The model output was again analysed for useful information. It was seen that 

length of time a message spends in the software driver stage was a significant part of the 

overall data flow. The application layer must wait for the software driver to complete its 

operation before more it can execute another instruction. As the application layer should 

be synchronised to the communication cycle the amount of time the application can 

execute for is limited before it must restart the task. If it is known how much time is 

allotted to the software driver, the remaining time can then be assigned to other 

operations such as data processing. Table 14.16 shows the percentage of the 

communication cycle that the application layer has to wait for the software driver to 

perform all its tasks. 
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Cycle Length Percentage (%) Test 

Case 

Total Software Driver 

Time (Real World)  

(ns) 

Total Software 

Driver Time  

(Model) (ns) 

Real World Model 

1 822325 721259.1 16.45 14.43 

2 946925 876032.7 18.4 17.52 

3 947000 873109 18.94 17.46 

4 946925 873109 9.56 8.81 

5 863100 828705.2608 287.70 276.24 

6 737525 876032.664 16.94 20.12 

7 1735000 1759114.213 10.86 11.01 

8 2426175 2525912.631 44.86 46.71 

Table 14.16: Total software driver times 

 

As can be seen from Table 14.16 a large amount of time may be spent by the 

application layer waiting for the software drive to complete all the tasks. In test case 5 

the percentage is almost 300%, indicating that the application layer could not run in one 

communication cycle. This could mean that the task may need to be split over a number 

of nodes. Likewise for test case 8, there is almost half the execution time is taken over 

by the software drive passing information between the host MCU and the E-Ray 

communications controller. The remaining time may be insufficient to process all the 

data during one communication cycle. 

 

14.4.5 Validation Data with Random Number Generator 

The function of the physical bus layer was to generate a set of frames that 

simulate the traffic on the FlexRay network. The calibration and validation stages, as 

described in chapters 13 and 14,  required that the physical bus subsystem of the model  

to be set up to mimic the two node real world system that was implemented in W.I.T. by 

removing the random nature of the physical bus subsystems frame generation. This 

meant that the operation of the physical bus could not be fully validated over these tests. 

To achieve a validation of the physical bus layer it was necessary to implement 

the same validation test cases with the random element reintroduced. The physical bus 

subsystem data was analysed and then compared to the desired outcome. For each test 

case the physical bus generated a random set of frames from the physical bus that were 

either accepted or rejected by the node. This was the desired operation of the physical 
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bus subsystem. This would mean a systems analyst could apply a FlexRay network 

frame pattern to the physical bus subsystem and a reasonable sent of frames would then 

be produced by the simulation model. This ultimately would allow an analyst achieve a 

good insight into the optimal timing for dynamic frames buffer access. 

 

14.5 Conclusion 

By following the steps as outlined in this chapter, chapter 14, the model was 

tested against a real world system. To ensure the model was an accurate representation 

of the system under investigation, a real world data set was obtained from the real world 

system. The model was run with the new test case constraints also applied. The timing 

of the system was then checked against the real world system data. A number of frames 

were not passed to the physical bus by the simulation model communications controller. 

Further analysis of the data showed that this was due to message buffers not being 

updated in time for the frames assigned to the static segment. The dynamic frames that 

were not transmitted were not transmitted as the dynamic slot was never reached during 

the simulation run. Likewise for the frames received from the FlexRay bus model, some 

frames were never stored. This was due to the physical bus not generating a frame 

during the given slot. For each of the tests the behaviour of the simulation model was 

therefore validated. 

  ‘Validation is concerned with building the right model’ (Banks et. al. 2001, 

p367). This is the ultimate test for the simulation model. The simulation model that was 

built and tested as described in this thesis was to be used to analyse the flow of data 

through a FlexRay based system. To be able to analyse the flow of data a number of 

subsystems were implemented to logging timing of various entities as they pass through 

the various model subsystems. In section 14.4.1.2 the buffer access times were analysed 

based on the data obtained from the simulation model. From this the data showed that a 

number of deadlines were missed to update buffers. This meant that a message would 

have to wait for the next communication cycle to transmit the data. Also the application 

driver may attempt to read data before new data is stored in the buffer. By analysing the 

model data time constraints for the application layer can be calculated. By modifying 

the application layer model to match the timing constraints the new configuration can be 

tested. In section 14.4.1.3 the software driver execution time was analysed. This 
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produced a metric that describes the total driver execution time over a communication 

cycle length. This is the minimum time the application layer will execute an instruction 

for. If this is known the remaining time can be assigned to calculations or system checks. 

An optimum application configuration could then be developed and tested using the 

model. The ability to extract and analyse this data therefore meets the purpose of the 

simulation model. The right model has therefore been built. 

From the behaviour of the simulation model and the model’s outputs there is a 

strong suggestion that the correct model was built. However this stage of the model 

development cycle has indicated a strong need for further calibration and validation of 

the timing constraints of the model. 

Figure 14.3 (Banks et. al. 2001, p16)  displays the stages after the model is fully 

validated and calibrated as working correctly to a desired level of accuracy. Only after a 

simulation model has reached an acceptable level of accuracy can confidence be placed 

in the simulation model to accurately reflect the real world system. From the 

highlighted segments of Figure 14.3 it can be seen that experiments can then be 

conducted using the model. The results of the system can then be analysed and 

improvements for the simulation system noted. The simulation can then be run with 

these implemented. If the test results produce the desired output then the real system can 

then be implemented with these improvements incorporated. 
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Figure 14.3: Final model steps 
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Chapter 15 . Conclusion 

 

15.1 Introduction 

The aim of the research outlined in this thesis was to develop a method to 

optimise a FlexRay node. This is to ease the transition to this new communication 

protocol. The use of FlexRay could lead to an increase in efficiency and reliability of 

the communication network in automobiles. In order to achieve the optimisation, it 

was necessary to look at industry standard tools as well as the FlexRay protocol. 

 

 

15.2 Research Summary 

To achieve the optimisation of a FlexRay node a simulation model was 

developed. This consisted of the application, software driver, communication 

controller and the FlexRay physical bus layers. The individual model subsystems 

were based on industry standard tools and systems such as the Bosch E-Ray 

communications controller. 

The communications controller was modeled on the Bosch E-Ray controller 

and the software driver was based on the DECOMSYS FlexRay driver 

‘COMMSTACK’. The application layer was based on sample software provided for 

the Fujitsu SK-91F467-FlexRay development boards. It was also necessary to develop 

a communications bus over which data could be sent and received. This layer needed 

to generate a number of messages that the simulated node may accept. The physical 

layer model must also accept messages from the simulated node. This model was then 

tested for its suitability to perform the desired functionality. 
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15.3 Research Questions 

At the start of the research a number of questions were asked. These research 

questions will again be listed and then answers proposed. 

 

15.3.1 Research Questions 

1. What aspects of the FlexRay configuration most affects the performance and 

design of distributed vehicle applications? 

2. What guidelines should be used to configure the protocol stack for best 

application performance? 

3. What techniques can be used to optimise local buffer usage for specific 

vehicle applications using a fixed global network message schedule? 

 

15.3.2 Research Answers 

1. FlexRay is a complicated protocol with many variables and constraints. The 

main benefit of the FlexRay protocol is the combination of both time-triggered 

and event-triggered segments in the same system. The event-triggered segment 

allows the designer of a system to assign messages to different priorities for non 

critical systems. The time-triggered segment allows a system to be implemented 

with guaranteed known message latency. In order to maximise the effectiveness 

of the protocol there are a number of areas that should be looked at. These areas 

include the communication cycle and the distribution of messages to either static 

or dynamic messages. The allocation of frames to static or dynamic messages 

will have a big impact on the arrival of messages to nodes on the bus. From this 

research it was also found that the application layer could also have a big impact 

on the system. If the application cannot process frames arriving at a node in a 

timely fashion, then errors may be created. These errors include calculations 

based on old information or a message buffer being updated after it is checked 

for transmission. A system designer should there analyse the flow of data from 

the application layer. The optimal execution order of application layer tasks will 

ensure deadlines are met throughout the entire node. All aspects need to be 

considered and the longest delays of messages accounted for. 
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2. The protocol stack is a combination of the physical bus over which information 

is transmitted, the communications controller implementation, software driver 

and the application. To ensure that the entire stack performs correctly none of 

these aspects can be ignored. When configuring the protocol stack the following 

will apply:  

• An application, running on a processor with insufficient resources, may 

not execute in the desired manner. The application will be affected by 

various different factors also and this must be accounted for. For instance, 

the longest time seen in the flow of data around a node, during the 

research, was that of the software driver execution delay. A system 

designer must allow sufficient time to execute all tasks including the 

software delay. In chapter 3 current FlexRay products currently on the 

market were discussed. This included software modules to implement 

FlexRay systems. If these are used it may be difficult to understand the 

execution of the software and this could mean it may be difficult to meet 

deadlines in the system. Analysis of the other system stack parameters 

may therefore lead to the best configuration. 

• The application will also be effected by the various factors relating to the 

communication cycle. This was seen in the validation chapter where the 

test case 5 application layer had insufficient time to execute in a single 

communication cycle. It is up to the developer of the application to fit to 

the predefined cycle length.  

• It is necessary for the system designer to ensure the message buffers are 

read before new information is received and stored over any unread data. 

Likewise the application should be respond to messages in the required 

time. Again from the validation chapter it was seen that a message may 

reside in a receive buffer for a long period before an attempt to read the 

data is performed. Optimising the message buffer access will ensure 

efficient communication is achieved.  

• Using cycle multiplexing techniques allows different information to be 

sent during different communication cycles for a given slot. This could 

be taken into account when designing the application and allow 
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messages of different generation periods to implemented on the same 

node and network. 

• The number of FlexRay networks implemented in a vehicle as well as 

the number of nodes used should be investigated. By splitting the nodes 

into different functional networks, an optimisation of the automotive 

applications could be achieved. This could mean for example that all 

body domain information could be sent over a separate network to any 

engine or comfort system networks. The different networks could then be 

connected if necessary using a number of ‘gateway’ nodes.   

3. A simulation model of a communications system can be used to gain an insight 

into how a system performs. The model could be setup to display a number of 

different statistics. These could include the utilisation of a message buffer. For 

instance, message IDn could be assigned a dedicated receive buffer in the 

message RAM of a communications system. By observing the buffer usage it 

could be discovered that this buffer is rarely updated. The analyst could then 

decide that the message buffer could be assigned to message IDm and message 

IDn could be stored in the FIFO.  

The simulation model could also indicate that a message buffer is never read 

by the application. This could mean that the application takes too long to 

execute and can never reach a point when the application requests the message 

buffers contents. This could be an indicator that the application needs to be 

moved to another node with more resources. This will lead to an optimal 

configuration can be achieved for the overall global communications system. 

 

 

15.4 Research Conclusions 

A way to analyse the flow of data through a FlexRay node has been developed 

and presented in this thesis. By analysing the data flow thoroughly it is possible that 

huge benefits could be obtained. The deadlines for messages can be analysed and any 

potential bottlenecks accounted for. The flow of data can then be guaranteed from the 

application layer down to actual transmission time.  
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Another big advantage of this system is the ability to analyse the buffer usage. It 

may be found that the buffer allocation is insufficient or unnecessary. This could allow 

messages to be swapped between a dedicated receive buffer and the FIFO to optimise 

the system. The following extract from an e-mail received from the Elektrobit support-

team (Skorepa 2008) highlights the use of the FIFO in industry. 

 

“FIFO Support is currently no official feature of Designer Pro. FIFO support exists in the 

enginieering [sic] version of Designer Pro for BMW.  

A minmal [sic] FIFO support for the full version of Designer Pro is on the feature list for 

2009.” 

 

From the e-mail it can be seen that there is a desire by industry to use FIFO message 

buffers in FlexRay applications. Only proper analysis of this will therefore produce 

optimal configurations. 

In conclusion a simulation of the communications controller, used in a FlexRay 

based system, could help increase optimisation and reduce development time and costs. 

 

15.4.1 Observations 

A number of observations have been made about the simulation model and its 

testing procedure.  These are as follows: 

• The testing was split up into two different sections, verification and validation 

testing. This ensured that the model and its individual subsystems performed as 

intended. This testing procedure also meant that no biased conclusions would be 

drawn from the validation section of the testing.  

• The testing was designed to see if the model would accurately reflect a real 

world system. These tests were therefore designed to include a wide range of 

parameters including the maximum and minimum constraints that any system 

may observe in a real-world system. The tests included two real-world examples 

thus ensuring that realistic system constraints were included during the testing. 

• It was noticed during testing that the model would never transmit during slot 1 

of any communication cycle. However there was insufficient time to fix this 

problem.  It was noted that if anyone desired to test a system where the node was 

to setup to transmit during slot 1 this could be worked around. The proposed 
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solution is that the tester simply needs to increase the frame IDs by one. This 

should have minimal effect on the buffering or timing analysis of the 

communications controller. 

• SimEvents is a powerful tool. It is part of the MATLAB software program. This 

provides SimEvents with powerful data analysis tools. This is a hung advantage 

as data does not need to be exported to another program for analysis. However 

the version used to develop the simulation model has a few bugs and problems. 

Based on correspondence with Michael Clune (Clune 2008) it was discovered 

that some problems associated with developing the message RAM was a well 

known problem.  

 

“While you have made good progress in creating, what amounts to admission 

control or a semaphore circuit that controls the number of entities that can access 

a region of the model, the access is presently limited to one 'in' path and one 'out' 

path and the logic is fairly easy to track.  The complexity will, most likely come 

when there are multiple input entity paths and multiple output entity paths. With 

this, the calculation complexity grows quite quickly.  Once we recognized that, 

we realized that we needed a pair of blocks to make the admission control more 

scalable and easier to model.  This is the motivation for the Entity Combiner and 

Entity Splitter blocks.  The current version of SimEvents contains these blocks 

and some demos for using them effectively.  Also, I am working on a demo that 

models multiple CPUs accessing a common memory chip with access control 

modeled [sic] by these blocks.” 

 

The newest SimEvents version provides blocks that were mention in the e-mail 

from Michael Clune. These blocks were developed to cut down on the 

processing time. The blocks were also specifically designed to perform the 

message handler access type of problem. The improvements would be a great 

benefit to any other simulation model that was developed. 

• The method that SimEvents uses to ensure the correct interleaving of blocks is to 

use a single server (of zero service time) in parallel with a discrete event 

subsystem block which would perform a calculation in zero simulation time. 

The single server block creates a block where an entity can reside. When 

modeling buffers this is not always desirable as this method may create, if the 

developer is not careful, what could be seen as an extra buffer. This is especially 



CONCLUSION 

- 353 - 

important in the case where the number of buffers is small i.e. one or two 

buffers. Due care must therefore be taken to ensure that the system performs in 

the correct manner.  

• The time to setup all the model parameters can be time consuming. Also when 

data is obtained from the model there can be a lot of information to analyse. To 

improve the usefulness of the model a front end application could be developed. 

This wasn’t done due to time constraints. However a front end application could 

be used to import either a ’.chi’ file or the output configuration file from the 

Designer Pro software. These files would contain most of the necessary 

information to setup the model for execution. The front end application would 

automate the setup process, thus greatly reducing the setup time, while also 

eliminating any potential mistakes. The front end application could be used to 

display the information obtainable from the simulation model in a user friendly 

way. These two additions would greatly increase the effectiveness of the system. 

 

 

15.5 Area of Further Study 

There are a number of possible research opportunities in the area of FlexRay. 

This is due to the relatively young age of the protocol. This is highlighted by the fact 

that the FlexRay consortium has extended the consortium agreement past its initial 

expiration date for an extra year. The new agreement is due to expire on the 31
st
 

December 2009 (FlexRay Consortium 2008). Possible research topics include: 

• The application layer and its implementation. There are no set guidelines on how 

the application should be implemented. In many instances that the author has 

come across the application has been based on synchronizing to the 

communications cycle. However there is no research that looks at implementing 

the application as an event-triggered system based on interrupts. The effects of 

implementing such a mixed event-triggered/time-triggered system are therefore 

unknown for FlexRay systems. There is a possibility that a design methodology 

could be developed to implement and optimise a wide variety of different 

application types. 



CONCLUSION 

- 354 - 

• When an event-triggered application is compared to a system where the 

application is more closely synchronized to the communication cycle 

observations would be made about the accuracy of each system. In turn this 

could lead to in investigation into the hardware needed to achieve an optimal 

system configuration. A separate standalone communications controller cannot 

convey to the same accuracy, the current communication time of the system than 

that of a system where the host and communications controller are integrated 

into a single electronic chip. There is already a number of microcontrollers 

available with built in FlexRay features (Fujitsu Microelectronics Europe 2006) 

and this further highlights the need to conduct such a study. 

• There are a number of implementations of FlexRay drivers. Some are basic 

software drivers, while others provide increased functionality. There are also a 

number of AUTOSAR FlexRay stacks. The effect on the timing of a system 

could be greatly affected by the software driver implementation. It is therefore 

possible that research could be conducted into the optimisation of this aspect of 

FlexRay. 
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The table below, Table A.1, shows the colour coding values for each element of the 

model. This was used to distinguish signals from different parts of the model. The table 

gives the RGB (Red, Green and Blue) values and the HSL (Hue, Saturation and 

Luminescence) values as well as a sample. The RGB and HSL values are simple do 

different ways of representing colour in the computers colour space. Both were given 

only as reference. It is not necessary to have all this information to reproduce these 

colours. 

 

Layer Red Value Green Value Blue Value Hue Saturation Luminescence Sample 

Top Layer               

Physical Bus 251 253 181 41 227 204   

Host 204 197 245 166 169 208   

                

Physical Bus               

Data In 182 126 90 16 93 128   

Data Out 254 189 101 23 237 167   

                

Host               

Driver 126 157 237 149 181 171   

Application 255 209 125 26 240 179   

Communications Controller 163 241 174 86 177 190   

                

Driver               

To Application 255 209 125 26 240 179   

To Communications Controller 163 241 174 86 177 190   

                

Application               

To Driver 126 157 237 149 181 171   

                

Communications Controller               

Data To/From Driver 126 157 237 149 181 171   

Transmit Data 254 189 101 23 237 167   

Receive Data 182 126 90 16 93 128   

Synchronisation 252 139 142 239 228 184   

Media Access Control 104 174 102 79 74 130   

Frame and Symbol Processing 255 255 128 40 240 180   

Protocol Operations Control 187 136 249 178 217 181   

Controller Host Interface 149 191 173 103 59 160   

                

Synchronisation               

Static Segment 255 128 0 20 240 120   

Dynamic Segment 0 209 209 120 240 98   

Symbol & Network Idle Time 128 128 128 160 0 120   
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Initialise 107 150 61 59 101 99   

Cycle Count 97 189 252 136 231 164   

                

Media Access Control               

Data For Transmission 254 189 101 23 237 167   

Frames In 187 136 249 178 217 181   

Slots In 159 150 117 31 43 130   

                

Frame and Symbol Processing               

Received Data In 182 126 90 16 93 128   

Received Data out 187 136 249 178 217 181   

Cycle Count 97 189 252 136 231 164   

                

Protocol Operations Control               

Static Slots In 255 128 0 20 240 120   

Mini Slots In 0 209 209 120 240 98   

Cycle Entity 97 189 252 136 231 164   

Data To/From Driver 126 157 237 149 181 171   

Received Data 182 126 90 16 93 128   

Transmit Data 254 189 101 23 237 167   

Slots To Media Access Control 104 174 102 79 74 130   

Global Time Unit 159 150 117 31 43 130   

Message Handler 254 177 214 221 234 203   

Received Message Routing 182 126 90 16 93 128   

                

Controller Host Interface               

Data To Driver 126 157 237 149 181 171   

Data To Protocol Operations Control 187 136 249 178 217 181   

                

Message Handler               

Message RAM Initialisation 107 150 61 59 101 99   

Message RAM 192 192 192 160 0 181   

Requests In/Out 126 157 237 149 181 171   

Receive Data 182 126 90 16 93 128   

Transmit Data 254 189 101 23 237 167   

Slots In 159 150 117 31 43 130   

                

Global Time Unit               

Slots To MAC 104 174 102 79 74 130   

Slots To Message Handler 254 177 214 221 234 203   

Static Slots 255 128 0 20 240 120   

Mini Slots 0 209 209 120 240 98   

Receieved Data 182 126 90 16 93 128   

                

Overall Model               

Record Data 165 209 254 140 235 197   

Table A.1: Model colour coding 
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The tables below, Tables B.1-B.8, marked as input variables indicate values that must 

be supplied. Tables marked as output are variables that are returned by the model for 

analytical purposes. 

 

Physical Bus     

  Channle A Channel_A_Record 

  Channle A Channel_A_Enable 

  Channle A Byte_Prop_Delay 

  Channle A Mini_Time 

      

  Channle B Channel_B_Record 

  Channle B Channel_B_Enable 

  Channle B Byte_Prop_Delay 

  Channle B Mini_Time 

      

  Additional_Frames First_Dynamic 

  Additional_Frames Static_Length 

  Additional_Frames Channel_Generated_Frame_A 

  Additional_Frames Latest_TX 

  Additional_Frames Generate_Frame_A_Time 

  Additional_Frames Generate_Frame_B_Time 

  Additional_Frames Channel_Generated_Frame_B 

  Additional_Frames Channel_A_Enable 

  Additional_Frames Channel_B_Enable 

  Additional_Frames CHA_Prop_Delay 

  Additional_Frames Mini_Time 

  Additional_Frames Num_Mini 

  Additional_Frames Average_Dynamic 

  Additional_Frames Variance 

  Additional_Frames CHB_Prop_Delay 

  Additional_Frames Frame_IDs 

Table B.1: Physical Bus input workspace variables 

 

FlexRay Node     

  Application Application_Record 

  Application Generate_Request_Time 

  Application Num_Requests_Generated 

  Application Average_Dynamic 

  Application Channel_Response 

  Application Variance 

  Application Request_Generation 

  Application First_Dynamic 

  Application Channel_Generated_Frame 

  Application Read_Length 

  Application Request_Types 
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  Application Frame_IDs 

  Application Request_IDs 

  Application Step_Time 

  Application Byte_Processing_Time 

  Application Request_Length 

  Application Frame_ID_Response 

  Application Last_Request 

  Application Frame_Response 

  Application Channel_Response 

  Application Static_Length 

      

  Driver Driver_Record 

  Driver Driver_Delay 

Table B.2: Node  input workspace variables 

 

Communications 

Controller     

  Frame_And_Symbol_Processing FSP_Record 

  Frame_And_Symbol_Processing Cycle_Filtering_Indicator 

  Frame_And_Symbol_Processing Channel_A_Slot_Filtering 

  Frame_And_Symbol_Processing Channel_B_Slot_Filtering 

  Frame_And_Symbol_Processing FSP_Delay 

  Frame_And_Symbol_Processing Channel_A_FIFO_Slot_Filtering 

  Frame_And_Symbol_Processing Channel_B_FIFO_Slot_Filtering 

  Frame_And_Symbol_Processing Frame_IDs 

      

  Synchronisation Static_Initialise_Complete 

  Synchronisation Mini_Initialise_Complete 

  Synchronisation Sync_Record 

  Synchronisation Num_Static 

  Synchronisation Static_Time 

  Synchronisation Static_Segment_Time 

  Synchronisation Dynamic_Segment_Time 

  Synchronisation Num_Mini 

  Synchronisation Mini_Time 

  Synchronisation Symbol_NIT_Time 

      

  Controller_Host_Interface CHI_Record 

  Controller_Host_Interface IBF_Delay 

  Controller_Host_Interface OBF_Delay 

      

  Media_Access_Control MAC_Record 

  Media_Access_Control MAC_Delay 

Table B.3: Communications controller input workspace variables 
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Protocol 

Operations 

Control     

  Protocol_Operations_Control POC_Record 

      

  Global_Time_Unit Last_Dynamic_Slot 

  Global_Time_Unit Last_Static_Slot 

  Global_Time_Unit Num_Mini 

  Global_Time_Unit Symbol_NIT_Time 

  Global_Time_Unit Mini_Time 

      

  Message_Handler Message_Init 

  Message_Handler Finished_RAM_Init 

  Message_Handler MSG_Handler_Record 

  Message_Handler Message_RAM_Delay 

      

  Message_RAM Num_RAM_Locations 

  Message_RAM RAM_Update_Time 

  Message_RAM Single_Shot_Indicator 

      

  FIFO Num_FIFO_Locations 

  FIFO FIFO_Update_Delay 

  FIFO FIFO_Read_Delay 

Table B.4: Protocol operations control input workspace variables 

 

Model Section Model Block Output Variables 

Physical Bus     

  Additional_Frames Slot_Num_Generated_Frames_A 

  Additional_Frames Remaining_Generated_Frames_Mini_A 

  Additional_Frames Cycle_Count_Generated_Frames_A 

  Additional_Frames Slot_Num_Generated_Frames_B 

  Additional_Frames Remaining_Generated_Frames_Mini_B 

  Additional_Frames Cycle_Count_Generated_Frames_B 

  Additional_Frames Frame_ID_Generated_Frames_A 

  Additional_Frames Cycle_Code_Generated_Frames_A 

  Additional_Frames Channel_Config_Generated_Frames_A 

  Additional_Frames Data_Generated_Frames_A 

  Additional_Frames Frame_ID_Generated_Frames_B 

  Additional_Frames Cycle_Code_Generated_Frames_B 

  Additional_Frames Channel_Config_Generated_Frames_B 

  Additional_Frames Data_Generated_Frames_B 

      

  Channel_A Frame_ID_Channel_A_In 

  Channel_A Cycle_Code_A_In 

  Channel_A Channel_Config_A_In 

  Channel_A Data_A_In 

  Channel_B Frame_ID_Channel_B_In 

  Channel_B Cycle_Code_B_In 
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  Channel_B Channel_Config_B_In 

  Channel_B Data_B_In 

  Channel_A Frame_ID_Channel_A_Out 

  Channel_A Cycle_Code_A_Out 

  Channel_A Channel_Config_A_Out 

  Channel_A Data_A_Out 

  Channel_B Frame_ID_Channel_B_Out 

  Channel_B Cycle_Code_B_Out 

  Channel_B Channel_Config_B_Out 

  Channel_B Data_B_Out 

  Channel_A Slot_Num_A 

  Channel_A Remaining_Mini_A 

  Channel_A Cycle_Count_A 

  Channel_B Slot_Num_B 

  Channel_B Remaining_Mini_B 

  Channel_B Cycle_Count_B 

Table B.5: Physical Bus output workspace variables 

 

Model Section Model Block Variable 

FlexRay Node     

  Application Cycle_Num_Application_In 

  Application Request_Type_Application_In 

  Application Frame_ID_Application_In 

  Application Data_Driver_Application_In 

  Application Channel_Config_Application_In 

  Application Request_Type_Application_Out 

  Application Frame_ID_Application_Out 

  Application Data_Driver_Application_Out 

  Application Channel_Config_Application_Out 

      

  Driver Request_Type_Driver_To_ERay_In 

  Driver Frame_ID_Driver_To_ERay_In 

  Driver Data_Driver_To_ERay_In 

  Driver Channel_Config_Driver_To_ERay_In 

  Driver Request_Type_Driver_To_ERay_Out 

  Driver Frame_ID_Driver_To_ERay_Out 

  Driver Data_Driver_To_ERay_Out 

  Driver Channel_Config_Driver_To_ERay_Out 

  Driver Request_Type_ERay_To_Driver_In 

  Driver Frame_ID_ERay_To_Driver_In 

  Driver Data_ERay_To_Driver_In 

  Driver Channel_ERay_To_Driver_In 

  Driver Request_Type_ERay_To_Driver_Out 

  Driver Frame_ID_ERay_To_Driver_Out 

  Driver Data_ERay_To_Driver_Out 

  Driver Channel_ERay_To_Driver_Out 

  Driver Num_CC_Driver 
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  Driver Average_Wait_CC_Driver 

  Driver Average_CC_Driver_Length 

  Driver Num_Driver_CC 

  Driver Average_Wait_Driver_CC 

  Driver Average_Driver_CC_Length 

Table B.6: Node  output workspace variables 

 

Model Section Model Block Variable 

Communications Controller     

  Frame_And_Symbol_Processing Frame_ID_FSP_A_In 

  Frame_And_Symbol_Processing Cycle_Code__FSP_A_In 

  Frame_And_Symbol_Processing Channel_Config__FSP_A_In 

  Frame_And_Symbol_Processing Data_FSP_A_In 

  Frame_And_Symbol_Processing Frame_ID_FSP_B_In 

  Frame_And_Symbol_Processing Cycle_Code__FSP_B_In 

  Frame_And_Symbol_Processing Channel_Config__FSP_B_In 

  Frame_And_Symbol_Processing Data_FSP_B_In 

  Frame_And_Symbol_Processing Slot_Num_FSP_A_In 

  Frame_And_Symbol_Processing Remaining_Mini_FSP_A_In 

  Frame_And_Symbol_Processing Cycle_Count_FSP_A_In 

  Frame_And_Symbol_Processing Slot_Num_FSP_B_In 

  Frame_And_Symbol_Processing Remaining_Mini_FSP_B_In 

  Frame_And_Symbol_Processing Cycle_Count_FSP_B_In 

  Frame_And_Symbol_Processing Slot_Num_FSP_A_Out 

  Frame_And_Symbol_Processing Remaining_Mini_FSP_A_Out 

  Frame_And_Symbol_Processing Cycle_Count_FSP_A_Out 

  Frame_And_Symbol_Processing Slot_Num_FSP_B_Out 

  Frame_And_Symbol_Processing Remaining_Mini_FSP_B_Out 

  Frame_And_Symbol_Processing Cycle_Count_FSP_B_Out 

  Frame_And_Symbol_Processing Frame_ID_Filter_Frames_A_In 

  Frame_And_Symbol_Processing Cycle_Code_Filter_Frames_A_In 

  Frame_And_Symbol_Processing Channel_Config_Filter_Frames_A_In 

  Frame_And_Symbol_Processing Data_Filter_Frames_A_In 

  Frame_And_Symbol_Processing Frame_ID_Filter_Frames_B_In 

  Frame_And_Symbol_Processing Cycle_Code_Filter_Frames_B_In 

  Frame_And_Symbol_Processing Channel_Config_Filter_Frames_B_In 

  Frame_And_Symbol_Processing Data_Filter_Frames_B_In 

  Frame_And_Symbol_Processing Frame_ID_Filtered_Frames_A_Out 

  Frame_And_Symbol_Processing Cycle_Code_Filtered_Frames_A_Out 

  Frame_And_Symbol_Processing Channel_Config_Filtered_Frames_A_Out 

  Frame_And_Symbol_Processing Data_Filtered_Frames_A_Out 

  Frame_And_Symbol_Processing Frame_ID_Filtered_Frames_B_Out 

  Frame_And_Symbol_Processing Cycle_Code_Filtered_Frames_B_Out 

  Frame_And_Symbol_Processing Channel_Config_Filtered_Frames_B_Out 

  Frame_And_Symbol_Processing Data_Filtered_Frames_B_Out 

  Frame_And_Symbol_Processing Frame_ID_FIFO_Filter_Frames_A_In 

  Frame_And_Symbol_Processing Cycle_Code_FIFO_Filter_Frames_A_In 
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  Frame_And_Symbol_Processing Channel_Config_FIFO_Filter_Frames_A_In 

  Frame_And_Symbol_Processing Data_FIFO_Filter_Frames_A_In 

  Frame_And_Symbol_Processing Frame_ID_FIFO_Filter_Frames_B_In 

  Frame_And_Symbol_Processing Cycle_Code_FIFO_Filter_Frames_B_In 

  Frame_And_Symbol_Processing Channel_Config_FIFO_Filter_Frames_B_In 

  Frame_And_Symbol_Processing Data_FIFO_Filter_Frames_B_In 

  Frame_And_Symbol_Processing Frame_ID_FIFO_Filter_Frames_A_Out 

  Frame_And_Symbol_Processing Cycle_Code_FIFO_Filter_Frames_A_Out 

  Frame_And_Symbol_Processing Channel_Config_FIFO_Filter_Frames_A_Out 

  Frame_And_Symbol_Processing Data_FIFO_Filter_Frames_A_Out 

  Frame_And_Symbol_Processing Frame_ID_FIFO_Filter_Frames_B_Out 

  Frame_And_Symbol_Processing Cycle_Code_FIFO_Filter_Frames_B_Out 

  Frame_And_Symbol_Processing Channel_Config_FIFO_Filter_Frames_B_Out 

  Frame_And_Symbol_Processing Data_FIFO_Filter_Frames_B_Out 

  Frame_And_Symbol_Processing Frame_ID_Rejected_Frames_A 

  Frame_And_Symbol_Processing Cycle_Code_Rejected_Frames_A 

  Frame_And_Symbol_Processing Channel_Config_Rejected_Frames_A 

  Frame_And_Symbol_Processing Data_Rejected_Frames_A 

  Frame_And_Symbol_Processing Frame_ID_Rejected_Frames_B 

  Frame_And_Symbol_Processing Cycle_Code_Rejected_Frames_B 

  Frame_And_Symbol_Processing Channel_Config_Rejected_Frames_B 

  Frame_And_Symbol_Processing Data_Rejected_Frames_B 

      

  Synchronisation Slot_Num_Generated 

  Synchronisation Cycle_Num_Generated 

  Synchronisation Mini_Num_Generated_A 

  Synchronisation Mini_Num_Generated_B 

      

  Controller_Host_Interface Request_Type_Driver_CHI_In 

  Controller_Host_Interface Frame_ID_Driver_CHI_In 

  Controller_Host_Interface Data_Driver_Driver_CHI_In 

  Controller_Host_Interface Channel_Config_Driver_CHI_In 

  Controller_Host_Interface Request_Type_Driver_CHI_Out 

  Controller_Host_Interface Frame_ID_Driver_CHI_Out 

  Controller_Host_Interface Data_Driver_Driver_CHI_Out 

  Controller_Host_Interface Channel_Config_Driver_CHI_Out 

  Controller_Host_Interface Request_Type_CHI_Driver_In 

  Controller_Host_Interface Frame_ID_CHI_DriverI_In 

  Controller_Host_Interface Data_Driver_Driver_CHI_In 

  Controller_Host_Interface Channel_Config_CHI_Driver_In 

  Controller_Host_Interface Request_Type_CHI_DriverI_Out 

  Controller_Host_Interface Frame_ID_CHI_Driver_Out 

  Controller_Host_Interface Data_Driver_CHI_Driver_Out 

  Controller_Host_Interface Channel_Config_CHI_DriverI_Out 

      

  Media_Access_Control Frame_ID_MAC_A_In 

  Media_Access_Control Cycle_Code_MAC_A_In 
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  Media_Access_Control Channel_Config_MAC_A_In 

  Media_Access_Control Data_MAC_A_In 

  Media_Access_Control Frame_ID_MAC_B_In 

  Media_Access_Control Cycle_Code_MAC_B_In 

  Media_Access_Control Channel_Config_MAC_B_In 

  Media_Access_Control Data_MAC_B_In 

  Media_Access_Control Frame_ID_MAC_A_Out 

  Media_Access_Control Cycle_Code_MAC_A_Out 

  Media_Access_Control Channel_Config_MAC_A_Out 

  Media_Access_Control Data_MAC_A_Out 

  Media_Access_Control Frame_ID_MAC_B_Out 

  Media_Access_Control Cycle_Code_MAC_B_Out 

  Media_Access_Control Channel_Config_MAC_B_Out 

  Media_Access_Control Data_MAC_B_Out 

  Media_Access_Control Slot_Num_MAC_A 

  Media_Access_Control Remaining_Mini_MAC_A 

  Media_Access_Control Cycle_Count_MAC_A 

  Media_Access_Control Slot_Num_MAC_B 

  Media_Access_Control Remaining_Mini_MAC_B 

  Media_Access_Control Cycle_Count_MAC_B 

      

Table B.7: Communications controller output workspace variables 

 

Model Section Model Block Variable 

Protocol Operations Control     

  Protocol_Operations_Control Cycle_Num_POC 

  Protocol_Operations_Control Slot_Num_POC 

  Protocol_Operations_Control Mini_Num_POC_A_In 

  Protocol_Operations_Control Mini_Num_POC_B_In 

  Protocol_Operations_Control Frame_ID_Frame_POC_A_In 

  Protocol_Operations_Control Cycle_Code_Frame_POC_A_In 

  Protocol_Operations_Control Channel_Config_Frame_POC_A_In 

  Protocol_Operations_Control Data_Frame_POC_A_In 

  Protocol_Operations_Control Frame_ID_Frame_POC_B_In 

  Protocol_Operations_Control Cycle_Code_Frame_POC_B_In 

  Protocol_Operations_Control Channel_Config_Frame_POC_B_In 

  Protocol_Operations_Control Data_Frame_POC_B_In 

  Protocol_Operations_Control Frame_ID_FIFO_Frame_POC_A_In 

  Protocol_Operations_Control Cycle_Code_FIFO_Frame_POC_A_In 

  Protocol_Operations_Control Channel_Config_FIFO_Frame_POC_A_In 

  Protocol_Operations_Control Data_FIFO_Frame_POC_A_In 

  Protocol_Operations_Control Frame_ID_FIFO_Frame_POC_B_In 

  Protocol_Operations_Control Cycle_Code_FIFO_Frame_POC_B_In 

  Protocol_Operations_Control Channel_Config_FIFO_Frame_POC_B_In 

  Protocol_Operations_Control Data_FIFO_Frame_POC_B_In 

  Protocol_Operations_Control Request_Type_POC_In 

  Protocol_Operations_Control Frame_ID_POC_In 
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  Protocol_Operations_Control Data_Driver_POC_In 

  Protocol_Operations_Control Channel_Config_POC_In 

  Protocol_Operations_Control Slot_Num_POC_A 

  Protocol_Operations_Control Remaining_Mini_POC_A 

  Protocol_Operations_Control Cycle_Count_POC_A 

  Protocol_Operations_Control Slot_Num_POC_B 

  Protocol_Operations_Control Remaining_Mini_POC_B 

  Protocol_Operations_Control Cycle_Count_POC_B 

  Protocol_Operations_Control Frame_ID_Frame_POC_A_Out 

  Protocol_Operations_Control Cycle_Code_Frame_POC_A_Out 

  Protocol_Operations_Control Channel_Config_Frame_POC_A_Out 

  Protocol_Operations_Control Data_Frame_POC_A_Out 

  Protocol_Operations_Control Frame_ID_Frame_POC_B_Out 

  Protocol_Operations_Control Cycle_Code_Frame_POC_B_Out 

  Protocol_Operations_Control Channel_Config_Frame_POC_B_Out 

  Protocol_Operations_Control Data_Frame_POC_B_Out 

  Protocol_Operations_Control Request_Type_POC_Out 

  Protocol_Operations_Control Frame_ID_POC_Out 

  Protocol_Operations_Control Data_Driver_POC_Out 

  Protocol_Operations_Control Channel_Config_POC_Out 

      

  Global_Time_Unit Slot_Num_GTU 

  Global_Time_Unit Mini_Num_GTU_A_In 

  Global_Time_Unit Mini_Num_GTU_B_In 

  Global_Time_Unit Cycle_Num_GTU 

  Global_Time_Unit Slot_Num_Bus_Slot_A_GTU_In 

  Global_Time_Unit Slot_Num_Bus_Slot_B_GTU_In 

  Global_Time_Unit Slot_Num_GTU_A 

  Global_Time_Unit Remaining_Mini_GTU_A 

  Global_Time_Unit Cycle_Count_GTU_A 

  Global_Time_Unit Slot_Num_GTU_B 

  Global_Time_Unit Remaining_Mini_GTU_B 

  Global_Time_Unit Cycle_Count_GTU_B 

      

  Message_Handler Request_Type_MSG_Handler_A_In 

  Message_Handler Frame_ID_MSG_Handler_A_In 

  Message_Handler Data_Driver_MSG_Handler_A_In 

  Message_Handler Channel_Config_MSG_Handler_A_In 

  Message_Handler Request_Type_MSG_Handler_B_In 

  Message_Handler Frame_ID_MSG_Handler_B_In 

  Message_Handler Data_Driver_MSG_Handler_B_In 

  Message_Handler Channel_Config_MSG_Handler_B_In 

  Message_Handler Request_Type_MSG_Handler_In 

  Message_Handler Frame_ID_MSG_Handler_In 

  Message_Handler Data_Driver_MSG_Handler_In 

  Message_Handler Channel_Config_MSG_Handler_In 

  Message_Handler Request_Type_FIFO_Frame_MSG_Handler_A_In 



APPENDIX B 

- XIV - 

  Message_Handler Frame_ID_FIFO_Frame_MSG_Handler_A_In 

  Message_Handler Data_Driver_FIFO_Frame_MSG_Handler_A_In 

  Message_Handler Channel_Config_FIFO_Frame_MSG_Handler_A_In 

  Message_Handler Request_Type_FIFO_Frame_MSG_Handler_B_In 

  Message_Handler Frame_ID_FIFO_Frame_MSG_Handler_B_In 

  Message_Handler Data_Driver_FIFO_Frame_MSG_Handler_B_In 

  Message_Handler Channel_Config_FIFO_Frame_MSG_Handler_B_In 

  Message_Handler Frame_ID_MSG_Handler_A_Out 

  Message_Handler Cycle_Code_MSG_Handler_A_Out 

  Message_Handler Channel_Config_MSG_Handler_A_Out 

  Message_Handler Data_MSG_Handler_A_Out 

  Message_Handler Frame_ID_MSG_Handler_B_Out 

  Message_Handler Cycle_Code_MSG_Handler_B_Out 

  Message_Handler Channel_Config_MSG_Handler_B_Out 

  Message_Handler Data_MSG_Handler_B_Out 

  Message_Handler Request_Type_MSG_Handler_Out 

  Message_Handler Frame_ID_MSG_Handler_Out 

  Message_Handler Data_Driver_MSG_Handler_Out 

  Message_Handler Channel_Config_MSG_Handler_Out 

      

  Message_RAM Request_Type_RAM_In 

  Message_RAM Frame_ID_RAM_In 

  Message_RAM Data_Driver_RAM_In 

  Message_RAM Channel_Config_RAM_In 

  Message_RAM Request_Type_RAM_Out 

  Message_RAM Frame_ID_RAM_Out 

  Message_RAM Data_Driver_RAM_Out 

  Message_RAM Channel_Config_RAM_Out 

  Message_RAM Request_Type_FIFO_In 

  Message_RAM Frame_ID_FIFO_In 

  Message_RAM Data_Driver_FIFO_In 

  Message_RAM Channel_Config_FIFO_In 

  Message_RAM Slot_Num_RAM 

  Message_RAM Remaining_Mini_RAM 

  Message_RAM Cycle_Count_RAM 

  Message_RAM Frame_ID_RAM_Out 

  Message_RAM Cycle_Code_RAM_Out 

  Message_RAM Channel_Config_RAM_Out 

  Message_RAM Data_RAM_Out 

  Message_RAM Num_RAM_Messages 

  Message_RAM Average_Wait_Time_RAM 

  Message_RAM Average_RAM_Queue_Length 

      

  FIFO Num_FIFO_Messages 

  FIFO Average_Wait_Time_FIFO 

  FIFO Average_FIFO_Queue_Length 

Table B.8: Protocol operations control output workspace variables 
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The following table, Table B.9, describes the attributes of the various types of 

entities used within the model.  

 

Type Attribute 

Attribute 

Number Notes 

Slot       

  Slot_No 1   

  

Remaining_M

ini 2 Used to calculate the remaining transmission time in the physical bus. 

  Cycle_Count 3   

        

Request

s       

  Request_Type 1 

1 = get frame for transmission. 2 = get frame for the host. 3 = update frame attributes. 4 = read from 

the FIFO 

  Frame_ID 2 The frame to be updated, transmitted or sent to the host. 

  Data 3 The update data if any. 

  

Channel_Conf

ig 4 The channel the message is to transmitted if necessary. 

  TX_Type 1 

1 = The frame should be transmitted. This is used when updating a message buffer for transmission. 2 

= the frame was received and should not be transmitted. 

        

Frames       

  Frame_ID 1   

  Cycle_Code 2 Used for filtering if desired. 

  

Channel_Conf

ig 3 

1 = transmit/receive on A. 2 = transmit/receive on B. 3 = transmit/receive on A & B. This is the same 

for Request Entities. 

  Data 4   

  TX_Type 1 1 = The frame should be transmitted. 2 = the frame was received and should not be transmitted. 

        

Static 

Slots       

  Slot_Number 1   

  

Remaining_M

ini 2   

        

Mini 

Slots       

  

Mini_Slot_Nu

mber 1   

        

Cycle 

Count       

  

Cycle_Count_

Number 1   

Table B.9: Entity attributes 
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Abstract 

The FlexRay Protocol was developed by the FlexRay 

consortium which was started when BMW and 

DaimlerChrysler worked together to create a new 

network scheme that would suit their current and 
future needs. They were soon joined by other 

companies such as Bosch and Phillips [1]. FlexRay is 

set to become widely used in the automotive industry 

where it will replace or support existing networking 

schemes such as CAN. It has already been 

implemented by BMW in the 2006 X5 [2]. This paper 

will introduce the key features of the FlexRay 

protocol and where relevant it will be compared it to 

CAN and the existing Fieldbus technologies such as 

PROFIBUS and Foundation Fieldbus. 

 

 

1. Introduction 

 The core concept of the FlexRay protocol 

is a time triggered approach to network 

communications. This is a different approach to 

some earlier successful networking schemes. For 

instance CAN (controller area network) was first 

developed for use in the automotive industry but 

was found to be useful in other areas such as 

industrial control applications [3]. The CAN 

networking scheme uses a priority driven bus 

arbitration system. This means that a message with 

a higher priority message ID will be given access 

to the network if a lower priority message is also 

looking for access to the bus. The resulting 

message transmission delays can lead to problems 

for safety systems and because of this a TDMA 

(time division multiple access) method was chosen 

for the FlexRay protocol [4].  

The TDMA scheme used by FlexRay has 

some similarities to Fieldbus communication 

systems. With the Foundation Fieldbus a repeating 

communication cycle determines which node may 

transmit using a master-slave networking scheme. 

This ensures that only one node may have access 

to the physical bus at any one time [5][6][7]. 

 

 

2. FlexRay in Automation 

FlexRay is an option for upgrading 

existing network systems using CAN in the 

automotive industry as well as other industrial 

control applications. It could also be used for new 

applications in industrial automation, where safety 

and reliability in a work environment is of utmost 

importance, due to its deterministic approach to 

communication of the messages. This is helped by 

the use of a two channel topology where each 

channel is able to work independently, but the two 

channels can also be used to communicate the 

same information and as such has built in 

redundancy. 

 The FlexRay protocol has been designed 

to carry information at a rate of 10Mbits/s over 

each of its two channels while CAN has a data rate 

of 1Mbit/s [3][8]. This means that an equivalent 

data rate of 20Mbits/s can be achieved which is 

twenty times that of a CAN based system. The 

high bit rate of FlexRay systems makes it suitable 

as the basis of a network backbone even where 

CAN is already in use.  

A Fieldbus network has a data rate of 

around 31.5Kbits/s. When the data rate is 

compared to that of FlexRay there emerges a view 

that FlexRay, if used with an existing CAN system, 

could take on a similar role of the HSE 

communication role used in Foundation Fieldbus 

[5][6][7].  

 

 

3. Network Topology 

The FlexRay protocol defines a two 

channel network, channel A and channel B. A 

node can be attached to one or both of these 

channels. If a node is attached to a single channel 

it does not matter if it is channel A or channel B.  

The FlexRay protocol allows for various 

bus topologies. These can be a point to point 

connection, passive star, linear passive bus, active 

star network, cascaded active stars, hybrid 
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topologies and dual channel topologies. The 

FlexRay protocol will support hybrid topologies as 

long as the limits of each topology which makes 

up the hybrid topology (i.e. the star and bus 

topologies) are not exceeded [8][9]. Fig 1 [8] 

shows the possible connections in a dual channel 

configuration. Other possibilities for the network 

configuration are to have each channel connected 

in a different way as shown in Fig 2 [8]. 

 

 

 

 
Fig 1. Dual channel configurations 

   

 
Fig 2. Dual channel implemented as different network types 

 

 

In Fig 2 channel A is implemented as a bus while 

channel B is a star topology. The possible 

combinations of FlexRay topologies make it a very 

adaptive and flexible system which can be 

designed to suit various applications. 

 

 

4. FlexRay Hardware  

Each node has a communication controller, 

a host, a power supply unit and two bus drivers, 

one for each channel.  Fig 3 [8] shows the logical 

connections of each element. 

The host handles the applications of the 

system while the FlexRay protocol is handled by 

the communications controller. The bus driver is 

used to read and write data to the physical medium 

over which the data is transmitted. In sleep mode it 

also has the ability to start the wakeup procedure if 

it detects a wakeup symbol. The communications 

controller will mainly handle the framing of data 

and the checking of received data to ensure it was 

uncorrupted before passing it to the host. The host 

and communications controller share information 

such as control information and payload data from 

the host, while the communication controller relays 

status information and data received. The host 

interface to the bus driver allows it to change the 

operation of the bus driver as well as read status 

and error flags. 

 

 

5. Media Access Control 

 CAN uses a serial bus priority driven 

networking scheme but allows for a time triggered 

communications using a higher protocol such as 

TTCAN [10]. This means that in a basic CAN 

system if any two nodes wish to transmit data at 

the same time, the message with the higher priority 

can transmit while the other message must wait. In 

contrast the FlexRay protocol uses a TDMA 

approach and also allows for a node to send frames 

in a dynamic way. To do this the protocol defines a 

recurring cycle called the communications cycle. 

This cycle has the same format and is of the same 

time length each time it occurs and in the case of 

FlexRay is divided into four sections: the static 

segment, dynamic segment, the symbol window 

and the network idle time. Fig 4 [8] shows a 

breakdown of the communication into various 

sections. Each section is then also broken down 

into its different slots.  

The communications protocol of Fieldbus 

technologies operates in a very similar way to that 

of FlexRay. However in Fieldbus technologies 

there is one master node that controls the 

scheduling of the transmission. In FlexRay each 

node has its own view of the global time and will 

only transmit in allocated slots; this means that the 

network is not dependant on any one node to 

maintain the communication schedule. The 

Fieldbus configuration means that the network is 

liable to fail if the master node fails. In Fieldbus 



APPENDIX D 

- XXII - 

technologies however there is redundancy 

designed into the devices. This reduces the 

probability of an entire network failure [5]. In 

section 6 the method that each FlexRay node uses 

to determine the current time is outlined. 

 

 

 

 

 
Fig 3. Logical connections

 

 

 

 
Fig 4. Communication cycle 

 

 

 

5.1 TDMA 

 In a TDMA system the communication 

cycle is broken down into smaller time segments 

referred to as slots. The duration of the slots in the 

static segment are the same. The slots are assigned 

to a given communication node so that in every 

communication cycle only that node can transmit 

at that time. It should be noted that FlexRay does 

provide a cycle multiplexing system so that 

information can be sent out every odd cycle for 

example. This allows another message to be sent in 

that slot during the even communications cycles 

and again this message would also be set to that 

slot in that multiple of the communication cycles. 

Also a node may get more than one slot per 

segment depending on the setup of the system and 

the need to send different messages.  

 This approach to message arbitration 

leads to a very deterministic networking scheme 

making it very suitable for monitoring and safety 

systems applications. 

 

5.2 Static Segment 

 The static segment is broken down into 

smaller sections called static slots. Every static slot 

is of the same duration. During transmission each 

slot is assigned to a specific message and only that 

message can transmit during that slot time.  

 

5.3 Dynamic Segment 

 The Dynamic segment is an optional 

section of the communication cycle. It is broken 

down into smaller sections known as minislots. If a 

node wishes to communicate it must wait until its 

minislot comes around. If no transmission occurs 

after a given period the minislot counter is 

incremented and the node with the next 

message/frame id may begin transmission of data. 

The data to be sent will only be sent if there is 

enough time left in the dynamic segment. In this 

way the dynamic segment is priority driven with 

the message with the lowest ID having the highest 

priority, just like CAN.  

 

5.4 Symbol Window 

 A symbol is used to signal a need to wake 

up a cluster amongst other things. This depends on 

the symbol sent and the status of the controller at 

the time. Within the symbol window a single 

symbol may be sent. If there is more than one 

symbol to be sent then a higher level protocol must 

determine which symbol gets priority as the 

FlexRay protocol provides no arbitration for the 

symbol window.  

 

5.5 Network Idle Time 

The network idle time is used to calculate clock 

adjustments and correct the node’s view of the 

global time. It also performs communication 
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specific tasks and uses up the remaining time of 

the communication cycle. 

 

6. Timing 

In FlexRay it is important for every node 

to share the same view of time. This is due to the 

fact that messages are sent at specific times and so 

if there is no global view of time then errors can 

occur.  

To achieve a global view of time each 

node derives, from the oscillator, a value known as 

a microtick. This value will vary from node to 

node. The next level of time is called a 

 
Fig 5. Timing hierarchy 

 

 
Fig 6. FlexRay frame format 

 

 

macrotick and is made up of a given number of 

microticks. This number will vary from node to 

node so that the duration of a macrotick is the 

same length throughout the network. Each node 

will then see the communication cycle in terms of 

macroticks and this should be the same for all 

nodes in the network. Fig 5 shows the breakdown 

of the timing in a FlexRay system. 

The nodes in a network will still tend to 

drift away from one another in terms of their view 

of the global time. As such the FlexRay protocol 

defines a clock synchronisation method to keep the 

networks timing the same within a given tolerance. 

 

 

7. Frame Format 

 The frame of a FlexRay message is 

broken down into 3 sections: the header, payload 

and trailer section as seen is Fig 6. When 

compared to the CAN frame format, both standard 

format and extended format, it can be seen that the 

frame format of FlexRay is much larger. This is 

partly due to the extra error checking.  

The header section contains status 

information such as status bits indicating if the 

fame is a null frame, i.e. contains no payload data, 

or if the frame should be used for clock 

synchronisation. There are also bits to indicate the 

length of the payload transmitted and cyclic 

redundancy check (CRC) bits so the receiver can 

determine if the header was received correctly. 

The payload contains the data to be 

transmitted over the network. The payload may 

also be used to transmit more frame information as 

an option and this would be indicated in the header 

of the frame. The payload length can vary from 0 

to 254 bytes. When compared to the 0 to 8 bytes in 

a CAN frame this is a significant improvement. 

 The trailer section contains a 24 bit CRC 

that is calculated over the payload and header 

sections. This is used by the receiving node again 
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to determine if the frame was received without any 

errors. 

 

 

8. FlexRay vs. CAN vs. Fieldbus Summary 

 The Following table, Table I, compares 

the feature of FlexRay, CAN and Fieldbus 

technologies.  The use of FlexRay systems in 

automation could be a useful tool. However when 

designing a communication system the following 

trade-offs between FlexRay and other 

communication protocols should be considered; 

there would be no point in implementing a FlexRay 

system if CAN would be sufficient. Likewise if a 

high data rate is required then FlexRay may be a 

more suitable scheme to use. 

 

 
Table I 

FlexRay vs. CAN vs. Fieldbus 
 FlexRay CAN Fieldbus 

Communication 

Method 

TDMA but 

allows for a 

dynamic 

communication 

as standard 

Dynamic 

arbitration 

on the bus, 

allowing 

for a time 

triggered 

approach 

using a 

higher 

protocol 

Master -Slave 

configuration 

where a master 

determines who 

can transmit data 

Data Rate 10Mbits/s on 

two channels 

giving a 

combined total 

of 20Mbits/s 

1Mbit/s Values in the 

kbits/s range 

between slaves 

but increasing to 

up to 100MBits/s 

for applications 

such as the HSE 

connection of 

Foundation 

Fieldbus 

Number of 

transmission 

bytes 

0-254 0-8 1-244 data bytes 

with between 9 

and 11 control 

bytes for 

PROFIBUS-PA 

Number of 

communication 

channels 

2 – second 

channel can be 

used as a 

redundant 

channel 

1 1 

Error Checking 11 bit header 

CRC & 24 bit 

frame CRC 

15 bit CRC 1 byte frame 

check sequence 

in PROFIBUS-

PA 

Determinisim TDMA leads 

to 

deterministic 

behaviour 

No, unless 

a higher 

protocol is 

used 

Master -Slave 

configuration 

leads to a 

predictable 

pattern 

Complexity High Low High 

Areas of Use New protocol 

means less 

widely used 

but high levels 

of research for 

future 

applications 

CAN 

widely used 

in 

automation 

and 

automotive 

applications 

Widely used for 

automation 

purposes 

 

 

9. Automation Examples 

I. Automation Example: Environment Control 

An example of where a FlexRay system 

could be used is in environmental control of 

buildings. This could have an important role in 

manufacturing companies in the future due to the 

trend of reducing the reliance on fossil fuels to help 

reduce pollution along with stricter emission laws. 

This is clear from the Kyoto agreement where 

countries from around the world are looking to 

reduce their emissions to 5% above that of their 

1990 levels by 2012 [11]. This is compounded by 

the need of companies to reduce manufacturing 

costs and with the increasing price of fossil fuels as 

these also have an effect on their production costs, 

a more efficient environmental control system 

could help reduce overall costs. Reference [12] is a 

CAN based controller designed to attempt to 

maximise the efficiency of an air conditioning 

system and thus to minimise the cost of running 

such a system. 

 

 

 

 
Fig 7. Block diagram for cooler example 

 

 

 

 This idea can be extended to be used by a 

FlexRay system. The idea behind this would be a 

main controller connected to various sensors and 

actuators over a FlexRay bus. This is illustrated in 

Figure 7 with the main controller having the ability 

to receive data from sensors and to send control 

signals down to the actuators. The diagram 

illustrates the sensors and actuators as just the 

microcontroller that would be connected to them. 

Due to the deterministic nature of 

FlexRay this type of system could be set up to 

monitor or activate the various nodes to increase 

the efficiency throughout the plant. The sensors 

placed throughout the plant, both internally and 

externally, can be used together to determine the 

best course of action based on internal and external 

environmental conditions [12]. The high data rate 

would also mean that more nodes could be serviced 

in a given time and with bigger possible data 

payloads information from a given area, such as air 

temperature and humidity, could be combined into 

one packet for further efficiency. This could also 

mean that more sensors could be serviced by a 

single controller.  
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Fig 8. Remote PID loop control 

 

 

 

II. Automation Example: Remote PID Control

  

Example 2 takes the idea of a controller 

further by using FlexRay to implement a PID 

controller. Again the high data rates will mean that 

information will arrive at the controller relatively 

quickly. The controller will again be able to 

monitor the incoming data and calculate suitable 

control signals using a PID algorithm. Again the 

deterministic nature of FlexRay lends itself to this 

type of application due to PID needing a regular 

time base for the calculations and FlexRay only 

sending data out at predetermined points, e.g. every 

3 milliseconds. Figure 8 is a basic block diagram of 

a FlexRay based PID system. The FlexRay 

specifications don’t specify a particular connection 

type but usually it is a shielded or unshielded 

twisted pair with a maximum distance of 24m 

between nodes [13]. However there is research on-

going into the use of fibre optic cabling. This 

would make it very suitable in some manufacturing 

applications where noise is an issue or where the 

environment may become hazardous in the 

presence of electricity. 
 

10. Conclusion 

The FlexRay protocol developed by the FlexRay 

consortium has already found applications in the 

automotive industry and looks set to become the 

network scheme favoured especially in x-by-wire 

applications and other safety critical systems. 

There is on-going research into the migration from 

CAN based systems to FlexRay based systems and 

as such the protocol could find itself being used in 

many areas outside the automotive industry. With 

its deterministic time-triggered approach and the 

high data rates achievable it is also suitable for 

safety and control applications. This paper has 

briefly introduced the FlexRay protocol. The 

protocol has further defined areas of the network 

scheme such as frame and symbol coding/decoding 

as well as start-up of and integration of a node into 

a network that are detailed in the FlexRay protocol 

specification. 
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