

Flexible Digital Display Technologies Using Open Source

Hardware and Software for Automotive Applications

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ENGINEERING TECHNOLOGY

OF WATERFORD INSTITUTE OF TECHNOLOGY

IN COMPLETE FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ENGINEERING

By:

Patrick D. Mc Donnell

Supervised By:

Mr. Henry Acheson

June 2009

Dedicated To:

My Father: John Mc Donnell

And

My Mother: Lish Mc Donnell

 i

Declaration

I hereby certify that the material presented in this document is entirely my own work

and has not been submitted previously as an exercise or degree at this or any other

establishment of higher education. I the author alone have undertaken the work except

where otherwise stated.

Signed: ________________________

Date: ________________

 ii

Acknowledgements

I hereby acknowledge the contributions to my work and offer my thanks to people who

have helped and supported me during my work over the past two years.

My Supervisor:

Mr. Henry Acheson: I would like to thank Henry for his constant encouragement,

invaluable guidance and excellent supervision during the last two years.

My Family:

I would like to thank my family for their support, encouragement and understanding

throughout all of my studies.

The AAEC (Advanced Automotive Electronic Control) Research Group:

I would like to take this opportunity to thank all members, both past and present, of the

research group whose assistance, knowledge and support has been first rate. I would

like to pay a particular thanks to John Manning, Gavin Walsh and Niall Murphy for

their additional support throughout the project.

My Friends:

A special word of thanks goes to my girlfriend, Aideen, and all my friends. Their humor

and encouragement will never be forgotten.

Additional Support:

I would like to thank Robin Getz and Jason Berry for their in-depth knowledge and

support during the project.

There are also many more people who have contributed in countless others way and

deserve my thanks also – Thank you!

 iii

Abstract

With the advances in electronics, digital dashboards are now becoming available for use

in the automotive industry. The main difference between an analog dashboard and a

digital dashboard configuration is that the later may easily be reconfigured.

To accommodate the influx of digital graphical displays in vehicles, manufacturers have

started to run micro Real Time Operating Systems (RTOS) inside their vehicles. Two

options are offered to manufacturers when choosing a RTOS for their project;

commercial OSs or open source OSs. Commercial OS contain many overheads which

include an upfront capital investment and licensing fee for each unit produced. While

open source OS are royalty free and offer no such financial overheads. Any application

software that is written by the manufacturer for a commercial OS, is seen as proprietary

software, and hence is not accessible by other manufacturers. Whilst any software

written and licensed for use with an open source OS would be accessible, therefore

leading to reduction in manufacturing costs and time.

The main objective of this research was to develop a flexible digital display using open

source hardware and software for use in automotive applications. The development of a

digital dashboard using these technologies can allow for individual customisation and in

addition facilitate a significant reduction in the design cycle time. The designed display

controller incorporated an Analog Devices Blackfin development board onto which an

open source OS was ported. Automotive information was read from a CAN network

and was used to manipulate the data displayed on the digital dashboard.

 iv

Table of Contents

Declaration.. i

Acknowledgements.. ii

Abstract... iii

Table of Contents ... iv

List of Figures... ix

List of Tables .. xiii

List of Abbreviations ... xiv

1 Introduction..1

1.1 Introduction..2

1.2 Thesis Contributions ..4

2 Technical Literature Review...5

2.1 Introduction..6

2.2 Selection of a Processor ...6

2.2.1 Automotive Conditions Specifications ..7

2.2.2 CAN Support..8

2.2.3 Graphical Display Support...9

2.2.4 Clock Capabilities ..10

2.2.5 Memory ..11

2.2.6 Synopsis of Reviewed Processors..12

2.3 Development Host..13

2.3.1 coLinux ..13

2.3.1.1 Pseudo Physical RAM ...14

2.3.1.2 Context Switching..15

2.3.1.3 Interrupt Handling..16

2.3.1.4 Advantages of using coLinux ..17

2.3.1.5 Disadvantages of using coLinux ..17

2.4 uClinux...18

2.4.1 Differences between uClinux and Linux..18

2.4.1.1 No Memory Management Unit ..18

2.4.1.2 Kernel Differences ...19

 v

2.4.1.3 Memory Allocation (Kernel)..19

2.4.1.4 Memory Allocation (Application)..20

2.4.1.5 Applications and Processes ..21

2.4.2 Booting uClinux...21

2.4.2.1 U-Boot..22

2.5 Graphics Libraries..22

2.5.1 DirectFB...23

2.5.1.1 Access to Graphics Hardware by DirectFB23

2.5.1.2 DirectFB Features ..24

2.5.2 SDL ..25

2.5.2.1 SDL Libraries...26

2.5.2.2 SDL Features..27

2.5.3 Selecting the Graphical Library ...28

2.6 Inter Process Communications...29

2.6.1 Semaphores ..29

2.6.2 Shared Memory..30

2.6.3 Message Queues...31

2.6.4 Named Pipes ..32

2.6.5 Selecting an IPC...33

2.7 Controller Area Network..34

2.7.1 CAN Bit Encoding ...35

2.7.2 CAN Bit Rates and Timings ..37

2.7.3 Propagation Delay..39

2.7.4 Synchronisation..40

2.7.4.1 Hard Synchronisation...40

2.7.4.2 Resynchronisation..41

2.7.5 CAN Message Framing..41

2.7.5.1 Data Frame...42

2.7.5.2 Remote Frame ..43

2.7.5.3 Overload Frame..44

2.7.5.4 Error Frame ..44

2.8 Summary ..44

 vi

3 System Configuration and Design ..45

3.1 Introduction..46

3.2 System Configuration Overview..47

3.3 coLinux ..47

3.3.1 Installing coLinux ..48

3.3.2 Configuring coLinux..48

3.3.2.1 Configuring the Network ...48

3.3.2.2 Configuring the FTP server..51

3.3.2.3 Installing the Blackfin Toolchains ...52

3.4 U-Boot..53

3.4.1 Compiling U-Boot..53

3.4.1.1 Compiling U-Boot for Loading over the UART..............................54

3.4.2 Loading U-Boot onto the BF548 ...55

3.4.3 Saving U-Boot to Flash..57

3.4.4 Configuring the Network Settings in U-Boot57

3.4.5 Testing U-Boot...59

3.5 The uClinux Kernel..60

3.5.1 Configuring and Compiling the uClinux Kernel..................................60

3.5.2 Testing the new uClinux Kernel ..63

3.6 CAN Functionality ...64

3.6.1 Initial CAN Setup...64

3.6.1.1 Activating the CAN Driver ..65

3.6.2 Initial Testing ...66

3.6.2.1 Baud Rate Error ...67

3.6.2.2 CAN Header Files ..68

3.6.2.3 Editing the System Clock...69

3.6.3 Testing CAN on the BF548 ...73

3.6.3.1 Testing the can_send program ...74

3.6.3.2 Testing the receive program...75

3.7 Simple Directmedia Layer ...77

3.7.1 Graphical Representations ...77

3.7.2 Digital Representation of a Standard Dash Configuration...................78

3.7.2.1 Graphics Creation ..78

3.7.2.2 Initial SDL Code (Analog Dials) ...79

 vii

3.7.2.3 Using a Random Number Generator to Vary the Speed81

3.7.2.4 Integrated Dial Code ..82

3.7.3 Digital Bar Chart Representation...85

3.7.3.1 Graphics Creation ..85

3.7.3.2 Initial SDL Code (Bar Chart)...87

3.7.3.3 Basic Bar Chart Code...88

3.7.3.4 Changing the Bar Colour with Speed...90

3.7.3.5 Decrementing the Speed ..91

3.7.3.6 Using a Random Number Generator to Vary the Speed92

3.7.3.7 Displaying Error Messages with the Bar Chart................................96

3.8 Inter Process Communications...97

3.8.1 Writing to a Pipe ..98

3.8.1.1 Naming and Creating a Pipe ..98

3.8.1.2 Writing to the Created Pipe..99

3.8.2 Reading from a Pipe...100

3.8.3 Disadvantages of Named Pipes..102

3.8.3.1 Editing the Write Program to allow the Transmission of Integers.102

3.8.4 Editing the Read Program to allow the Manipulation of Integers103

3.8.5 Testing the Transmission and Reception of Integers103

3.8.5.1 Editing the Write Program ...103

3.8.5.2 Editing the Read Program ..104

3.8.5.3 Running the Test Programmes ...104

3.9 Summary ..105

4 System Implementation and Testing ..107

4.1 Introduction..108

4.2 CAN Implementation...108

4.2.1 CAN Message Breakdown...108

4.2.2 CAN Sample Code...109

4.2.3 Editing the Sample Code..110

4.2.3.1 Creating the Named Pipes..112

4.2.3.2 Populating the Variables used when Writing to the Named Pipes.112

4.2.3.3 Populating the Variable used for the CAN ID113

4.2.3.4 Populating the Speed Variable ...113

 viii

4.2.3.5 Populating the rpm Variable ..114

4.2.3.6 Writing the Populated Variables to their Named Pipes115

4.2.4 Testing the CAN with Named Pipes Code...115

4.3 SDL Implementation..117

4.3.1 Merging the Digital Dash and Bar Chart Code..................................117

4.3.2 Opening and Reading Named Pipes in SDL......................................118

4.3.3 Manipulating the Received Data..118

4.3.3.1 Manipulating the CAN ID..119

4.3.3.2 Manipulating the Speed Data ...120

4.3.3.3 Manipulating the rpm data ...124

4.4 Testing the Final System..125

4.4.1 Initial Testing ...126

4.4.2 Testing the Final System..129

4.5 Stress Testing the End System ...133

4.5.1 Testing System for Initial Goals ..134

4.5.2 Testing the System for Limitations ..136

4.6 Summary ..138

5 Conclusion...139

5.1 Introduction..140

5.2 Conclusions..140

5.3 Recommendations for further Research and Development144

References ...145

Appendix A – Write to Pipes Program ..152

Appendix B – Read from Pipes Program...154

Appendix C – CAN Program ..155

Appendix D – Video Program...164

 ix

List of Figures

Fig. 1.1 Currently used OSs ...3

Fig. 1.2 Planned Future use of OS ..3

Fig. 2.1 Integrated Vs Peripheral CAN..8

Fig. 2.2 coLinux running natively on Windows OS ..14

Fig. 2.3 Address Space Transition used in Context Switching....................................16

Fig. 2.4 Memory Allocation using Power-Of-Two Method ..20

Fig. 2.5 Memory Allocation using Kmalloc2 ..20

Fig. 2.6 DirectFB System Diagram..23

Fig. 2.7 DirectFB Access to the Framebuffer Device and the Graphics Hardware24

Fig. 2.8 Abstraction Layer of Windows and Linux SDL Platforms26

Fig. 2.9 SDL Application ...28

Fig. 2.10 IPC at process level ..29

Fig. 2.11 Semaphore Metaphor..30

Fig. 2.12 Shared Memory ..31

Fig. 2.13 Message Queue...32

Fig. 2.14 Blocking Vs. Non-Blocking Named Pipes ...33

Fig. 2.15 Point-to-Point Wiring System...34

Fig. 2.16 CAN Network...35

Fig. 2.17 Differential Bus Signalling ...36

Fig. 2.18 ISO11898 Nominal Bus Levels ..37

Fig. 2.19 CAN Message Layout...37

Fig. 2.20 CAN Message in TQ ..39

Fig. 2.21 Propagation Delay between Nodes ...40

Fig. 2.22 SJW used in Resynchronisation..41

Fig. 2.23 Standard CAN Data Frame...42

Fig. 3.1 System Configuration Overview ..47

Fig. 3.2 Sharing Ethernet Connection..49

Fig. 3.3 Configuring the coLinux TAP Interface...49

Fig. 3.4 Edited coLinux Interfaces File..50

Fig. 3.5 Edited coLinux Resolv.conf File ..50

Fig. 3.6 Pinging coLinux from Windows ..51

 x

Fig. 3.7 Pinging Windows from coLinux ..51

Fig. 3.8 Configured FTP Server...52

Fig. 3.9 Setting Boot Mode to UART..54

Fig. 3.10 Configuring and Compiling U-Boot ...54

Fig. 3.11 Configuring LdrViewer ..55

Fig. 3.12 Testing Communications between LdrViewer and BF548...........................56

Fig. 3.13 U-Boot Transferred Successfully ...56

Fig. 3.14 Network Configuration of Development Host..58

Fig. 3.15 Configuring the Network in U-Boot...58

Fig. 3.16 Downloading the uImage..59

Fig. 3.17 Booted Kernel ...60

Fig. 3.18 Main Menu for Configuring the uClinux Kernel..61

Fig. 3.19 Selecting Vendor and Product ..61

Fig. 3.20 Including SDL Library Files...62

Fig. 3.21 Including SDL and CAN Examples..62

Fig. 3.22 Compiling New Kernel...63

Fig. 3.23 Running Hello World Test Program...64

Fig. 3.24 Activating the CAN driver..66

Fig. 3.25 Error Frames at 125kbaud ..67

Fig. 3.26 CAN signal from BF548...67

Fig. 3.27 CAN RX at 133kbps ...68

Fig. 3.28 CAN RX from BF548 at 125kbps ..73

Fig. 3.29 can_send Command..74

Fig. 3.30 Sending CAN messages using can_send ..74

Fig. 3.31 Messages received on CANalyzer ..75

Fig. 3.32 Example of Received Message ...75

Fig. 3.33 Messages used to Test the Receive Program..76

Fig. 3.34 Messages Received using receive program ..76

Fig. 3.35 Speed dial at 0 mph...78

Fig. 3.36 rpm dial at 0 rpm...79

Fig. 3.37 End users display ..79

Fig. 3.38 Flow Chart of Basic SDL Dial program ...80

Fig. 3.39 Flow Chart for Integrated Dial Code ..83

Fig. 3.40 Bar Chart...86

 xi

Fig. 3.41 Speed below 70mph..86

Fig. 3.42 Speed greater than 70mph and below 100mph...86

Fig. 3.43 Speed greater than 100mph...86

Fig. 3.44 Bar Chart with Error Message ..87

Fig. 3.45 Output from Initial Code ..88

Fig. 3.46 Basic Bar Chart Flow Chart..89

Fig. 3.47 Flow Chart for Bar Chart Representation of Speed......................................93

Fig. 3.48 Users Prompt for Selecting Errors ..97

Fig. 3.49 Background set as Error 2...97

Fig. 3.50 Running Write to Pipes code on BF548 ...100

Fig. 3.51 Displaying the Contents of the Named Pipe...100

Fig. 3.52 Running Write program in conjunction with Read program101

Fig. 3.53 Read from Pipes..102

Fig. 3.54 User Prompt to enter Integer...105

Fig. 3.55 Output from Read Program ..105

Fig. 4.1 Breakdown of CAN message..109

Fig. 4.2 Receive Flow Chart ..110

Fig. 4.3 Receive with Named Pipes Flow Chart ..111

Fig. 4.4 Test Messages sent using CANalyzer...115

Fig. 4.5 Messages received and Wrote into Named Pipes ...116

Fig. 4.6 Read Pipes Program Displays Sent Data ..116

Fig. 4.7 CAN ID used to select Display Configuration ...117

Fig. 4.8 Communications between both Processes ..119

Fig. 4.9 Final System ...126

Fig. 4.10 Error displayed during Initial Testing...126

Fig. 4.11 Initialised Screen ..127

Fig. 4.12 Applying the Dials to the Screen ..127

Fig. 4.13 Applying the Bar Chart to the Screen...127

Fig. 4.14 Changing to the Dials from the Bar Chart ..128

Fig. 4.15 Applying the Bar Chart to the Screen...129

Fig. 4.16 Applying the mask..129

Fig. 4.17 Applying the Dials to the Screen with the Mask ..129

Fig. 4.18 Messages sent using CANalyzer ..130

Fig. 4.19 Messages Received by the CAN program ..130

 xii

Fig. 4.20 SDL program Reading Data from Pipes ...130

Fig. 4.21 Output on the LCD Screen for Message 1..131

Fig. 4.22 Output on the LCD Screen for Message 2..131

Fig. 4.23 Output on the LCD Screen for Message 3..132

Fig. 4.24 Flow Chart of End System..133

Fig. 4.25 Setting the Period of each CAN Message to 100ms in CANalyzer............134

Fig. 4.26 Messages when Stress Testing the End System ...135

Fig. 4.27 Setting the Period of each CAN Message to 50ms in CANalyzer..............136

Fig. 4.28 Received Error using a Message Period of 50ms136

Fig. 5.1 System Configuration Overview ..142

Fig. 5.2 Final System ...143

 xiii

List of Tables

Table 2.1 Ambient Operating Temperatures of Selected Processors.............................7

Table 2.2 CAN Capabilities of Selected Development Boards9

Table 2.3 Graphical Display Support of Selected Development Boards10

Table 2.4 CPU Frequency of Selected Development Boards11

Table 2.5 Available Memory of Selected Development Boards..................................11

Table 2.6 Synopsis of Reviewed Processors..12

Table 2.7 Segments of a CAN Message...38

Table 3.1 coLinux Network Configurations ..50

Table 3.2 Created Files from U-Boot Compilation..55

Table 3.3 Logical OR Truth Table...84

Table 3.4 Change Over Values of Coloured Bars..90

Table 3.5 Logical AND Truth Table..95

Table 3.6 Bar Chart Error Screens ...96

Table 4.1 2D Array used in Receive Program ...113

 xiv

List of Abbreviations

ACK Acknowledge

ANSI American National Standards Institute

ARGB Alpha Red Green Blue

bkg Background

bpp Bits Per Pixel

BRP Baud Rate Prescaler

CAN Controller Area Network

CANH CAN High

CANL CAN Low

CPU Central Processing Unit

DLC Data Length Code

DPLL Digital Phase Lock Loop

FIFO First In First Out

FTP File Transfer Protocol

GIF Graphics Interchange Format

HDD Hard Disk Drive

Hz Hertz

IC Integrated Circuit

IDT Interrupt Descriptor Table

IDTR Interrupt Descriptor Table Register

IP Internet Protocol

IPC Inter Process Communication

ISR Interrupt Service Routines

JPEG Joint Photographic Experts Group

LCD Liquid Crystal Display

LSB Least Significant Bit

MB Mega Bytes

MBR Master Boot Record

MMU Memory Management Unit

mph Miles Per Hour

MSB Most Significant Bit

NBR Nominal Bit Rate

 xv

NBT Nominal Bit Time

NRZ Non Return to Zero

NTQ Number of Time Quanta

OS Operating System

PC Personal Computer

PNG Portable Network Graphics

PNM Portable aNy Map

PPRAM Pseudo Physical RAM

PS1 Phase Segment 1

PS2 Phase Segment 2

RAM Random Access Memory

ROM Read Only Memory

RPM RPM Package Manager

rpm Revolutions Per Minute

RTF Rich Text Format

RTOS Real Time Operating System

RTR Remote Transmission Request

SCLK System Clock

SDL Simple Directmedia Layer

SJW Synchronised Jump Width

SOF Start-of-Frame

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

TFT Thin Film Transistor

TIFF Tagged Image File Format

TQ Time Quanta

TTF True Type Font

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

VESA Video Electronics Standards Association

VM Virtual Memory

XPM X PixMap

 1

1 Introduction

 2

1.1 Introduction

In the automotive industry an analog/mechanical dashboard display is still the standard.

This type of dashboard contains basic dials which usually include a speedometer,

tachometer, temperature gauge, fuel gauge and warning lamps which may include low

oil level, low fuel level, Engine Management, ABS etc. One of the limitations with this

type of dash display is that the positioning of all instrumentation is fixed and cannot be

reconfigured [1].

With the advances in electronics, digital dashboards are now becoming available for use

in the automotive industry. The main difference between analog and digital dashboards

is that the digital dashboard may easily be reconfigured. With a digital dashboard,

information can be displayed either numerically or via a digital representation of an

analog/mechanical dial. Hence, any dial can be removed if it is required to display a

warning signal to the driver [2]. An example of this is the Night Vision Assist system

used in the Mercedes S-Class. This system uses an infrared beam which goes beyond

the reach of the head lights along with a special camera mounted in the rear view mirror

which reads the infrared signals. The resulting image is displayed on the dashboard

instead of the normal speedometer, which is reconfigured to be a bar graph at the

bottom of the digital dashboard. This system is said to increase visibility by 125% while

driving at night [3].

The Night View Assist system developed by Mercedes is just one example of the

flexibility a digital dashboard has to offer. It could be used to display any information

on the screen in real time. In a high-end sports car this type of dashboard could be used

to display engine analysis and performance while in a family car it could display more

safety-orientated information.

To accommodate the influx of digital graphical displays in vehicles, manufacturers

began to utilise micro Real Time Operating Systems (RTOS) on the controlling

microprocessor system. The microprocessors derive the vehicles data by linking to the

CAN network.

 3

Currently there are two options for manufacturers when choosing an RTOS for their

project; a commercial OS or an open source OS. Commercial OSs contain many

overheads which include an upfront capital investment and licensing fee for each unit

produced [4]. While open source OSs are royalty free and offer reduced financial

overheads.

Fig. 1.1 Currently used OSs

In a recent survey undertaken by the website embedded.com, major global

manufacturers were questioned on their use of RTOS in their embedded environments.

The current trend is shown in Fig. 1.1. When questioned on future projects their

responses were much different as can be seen in Fig. 1.2.

Fig. 1.2 Planned Future use of OS

Using the data in Fig. 1.1 and Fig. 1.2, it can be seen that the projected use of open

source OSs will rise from 20% to 41%, with the potential to rise as high as 74%. The

main reason cited for the move to open source is costs (savings) associated with it [5].

This research investigates the development of a flexible digital display using open

source hardware and software for use in automotive applications. The development of a

digital-dashboard using these technologies can allow for individual customisation and in

addition facilitate a significant reduction in the design cycle time and costs.

 4

1.2 Thesis Contributions

The material and information presented in this thesis has been compiled on the basis of:

(i) A comprehensive technical literature review of the current innovations in

dashboard technology.

(ii) Design, configuration and implementation of a proposed digital display

system using open source hardware and software.

(iii) Testing and conclusions.

The work presented in this thesis is laid out as follows:

Chapter 2 gives an overview of the most relevant information from all technical

literature reviewed during the research stage of this study. This chapter also outlines the

possible choices available during the design of the proposed system.

Chapter 3 provides an overview of the choices made and methods used to configure and

design the proposed system. It also gives a complete explanation of the operation of the

system with emphasis on the OS and application software.

Chapter 4 discusses how the final system was implemented and fully tested. This

includes the development of a CAN process, video process and Inter Process

Communications. The testing of the final system is also described in this chapter.

Chapter 5 outlines the conclusions made based on the research and testing. A discussion

on further possibilities for research based on findings from this study is also provided.

 5

2 Technical Literature Review

 6

2.1 Introduction

The purpose of this chapter is to give an overview of the most relevant information from

all technical literature reviewed during the research stage of this study. This chapter will

also outline the possible choices available during the design of the proposed system.

The information based on the literature review presented in this chapter is laid out as

follows:

• Section 2.2 outlines the choices available when selecting a processor for this

project. This section covers the pros and cons of the processors under selected

headings. It also includes the selection process and the reasons for use of a

particular processor.

• Section 2.3 provides the background information on the development host

environment chosen for use in this project.

• Section 2.4 gives an overview of the operating system (OS) chosen for the

process used in this project. It also details the bootloader that was used in

conjunction with the OS.

• Section 2.6 discusses the possible options for Inter Process Communications and

outlines each option and offers insight on the selection process.

• Section 2.7 gives an overview of the Controller Area Network protocol required

for communication between the selected processor and external electronic

control modules.

• Section 2.8 concludes the chapter with a brief summary.

2.2 Selection of a Processor

When selecting a processor for an automotive display application, key factors have to be

taken into consideration. In an automotive environment the selected processor will have

to endure very harsh conditions. The processor is required to perform at an optimal level

to deal with the high computational needs of a graphical display along with the data

transmission from the CAN network. It must also accommodate an appropriate

operating system. The key considerations taken into account when selecting the

processor are listed below:

 7

• Automotive Conditions Compatibility

• Controller Area Network (CAN) support

• Graphical Display support

• Clock capabilities

• Memory

As the project was designed to use open source hardware and software, all of the

scrutinised processors fully supported the use of an open source operating system. The

development boards below contain suitable processors for the completion of this project

and were evaluated using the key considerations above to determine the most suitable.

• Cogent CSB337 [6], [16], [17]

• Analog Devices ADSP-BF548 EZ Kit [7], [8]

• Atmel AT91SAM9263 [9], [10], [11]

• Cirrus EDB9315 [12], [13]

2.2.1 Automotive Conditions Specifications

Many conditions inside the automotive environment act as a hindrance to electronic

components, one of which is the working temperature range [14]. Each board’s

temperature range was evaluated to ensure their durability in such an environment. The

temperature range for Integrated Circuits (IC’s) in the automotive setting is -40°C to

125°C [14]. Each board’s specified temperature range was compared to the typical

temperature found in an automotive environment to evaluate their use, as shown in

Table 2.1.

Processor Temperature Range (°C)
Cogent CSB337 0 to 70

Analog Devices ADSP-BF548 - 40 to + 85
Atmel AT91SAM9263 - 40 to + 85

Cirrus EDB9315 - 40 to + 85

Table 2.1 Ambient Operating Temperatures of Selected Processors

 8

All of the boards’ ambient operating temperatures are in the typical temperature range

for an automotive setting, except for the Cogent CSB337. The Cogent CSB337 ambient

operating temperature range is far less than the other three processors.

2.2.2 CAN Support

The CAN protocol is an automotive standard for vehicle communications, therefore, it

was desirable to have an integrated CAN controller on the chosen development board.

However if this was not possible, an SPI bus on the development board could be

implemented for CAN communications [15]. This would lead to extra costs in designing

and implementing a peripheral CAN controller, as well as having to implement a driver

for the SPI CAN.

Fig. 2.1 Integrated Vs Peripheral CAN

As illustrated in Fig. 2.1, the use of peripheral CAN leads to an increase of components

required. Also with a development board which supports an open source OS and has

integrated CAN, it will be likely that the drivers for the integrated CAN will be

contained in the kernel. When using the SPI port there will be no need for SPI-CAN

drivers. The table below shows the CAN capabilities of the development boards under

evaluation.

 9

Processor Integrated CAN Total Number of Rx/Tx
Buffers

Cogent CSB337 Yes 2Rx
2TX

Analog Devices ADSP-
BF548 Yes

8 Rx
8 Tx

16 Configurable

Atmel AT91SAM9263 Yes 16 Configurable

Cirrus EDB9315 No N/A

Table 2.2 CAN Capabilities of Selected Development Boards

With reference to Table 2.2, it can be seen that three of the four boards contain

integrated CAN ports. The Cirrus EDB9315 does not contain an integrated CAN port

but it does however have an SPI port, therefore CAN communications could still be a

possibility. Comparing the three evaluation boards that do contain integrated CAN, it

can be seen that the ADSP-BF548 (BF548) contains more CAN buffers than its rivals

and hence makes its CAN handling abilities more powerful than the others.

2.2.3 Graphical Display Support

As this project was designed to display automotive data, it was essential that the chosen

development board had the capabilities to support a graphical display. Also as it was

designed to replace the standard dash configuration in a vehicle, the graphical display

had to be quite powerful and needed to be able to accommodate in-depth images. An

LCD screen was essential and as with CAN, an integrated screen was ideal as the

appropriate drivers would probably be contained in the kernel.

 10

Processor LCD
Controller

Integrated
LCD Screen Resolution (bpp)

Cogent CSB337 Yes No 8

Analog Devices ADSP-
BF548 Yes Yes 24

Atmel AT91SAM9263 Yes Yes 16
(without limitation)

Cirrus EDB9315 Yes Yes 24

Table 2.3 Graphical Display Support of Selected Development Boards

As illustrated in Table 2.3, all of the boards under evaluation do have an integrated LCD

controller, however the Cogent CSB337 does not have an integrated LCD screen. If the

CSB337 was to be used, an external LCD screen would have to be included, therefore

increasing the cost of the project. Comparing the other three development boards, it can

be seen that the Atmel AT91SAM9263 supports 16bpp (bits per pixel) without

limitations, it can supports 24bpp but this is at the cost of losing the Ethernet port. This

leaves the BF548 and EDB9315 on par in their capabilities of display graphics.

2.2.4 Clock Capabilities

As this project will have an OS running on the development board’s core along with

application programmes running on top of the OS, it is desirable to have a processor

with a relatively high clock frequency. As the OS used in the project is a Real Time OS

(RTOS) and all application programmes will be run in real time, it is beneficial to have

a high clock frequency. As in all cases, there are some tradeoffs in power consumption

when using high frequency clocks, but a high bandwidth real time system is more

important than power consumption for this application.

 11

Processor Max. CPU Clock Frequency
(MHz)

Cogent CSB337 180

Analog Devices ADSP-BF548 533

Atmel AT91SAM9263 200

Cirrus EDB9315 200

Table 2.4 CPU Frequency of Selected Development Boards

Table 2.4 shows that the BF548 has considerably the highest clocking frequency of all

the processors. The AT91SAM9263 and EDB9315 have the same processor clock

frequency, with the CSB337 clock frequency being slightly lower. As speed is essential

for the project, the BF548’s processor is the most desirable of the four boards.

2.2.5 Memory

As an OS is required, it is vital that the development board has a sizeable amount of

memory. This memory is needed due to the fact that a boot loader, OS, application code

and a number of images will all be stored on the development board.

Processor SDRAM
(MB)

Flash
(MB)

Memory
Card

Support
Hard Drive

Cogent CSB337 32 8 No No

Analog Devices ADSP-
BF548 64 32 Yes Yes (40GB)

Atmel AT91SAM9263 64 256 Yes No (does have
HDD Port)

Cirrus EDB9315 64 32 No No

Table 2.5 Available Memory of Selected Development Boards

 12

As shown in Table 2.5, the Atmel AT91SAM9263 has a very large amount of flash

memory when comparing it to any of the other development boards. It also supports a

memory card (i.e. it has an SD memory card reader) and has a port to add a hard drive,

however there is no HDD supplied. The BF548, while having less flash memory when

comparing it to the AT91SAM9263, does however have a 40GB HDD supplied with its

development board. The Cirrus EDB315 does have a substantial amount of integrated

memory but does not offer any expansion on this, while the CDB337 has very little

integrated memory. This leaves the BF548 and AT91SAM9263 equal, based on their

size of memory.

2.2.6 Synopsis of Reviewed Processors

It was concluded from Table 2.6, that the Cogent CSB337 would not suffice for this

project, as it did not contain the desired functionality needed. The BF548,

AT91SAM9263 and EDB9315 are all sufficiently equipped for use in this project;

however the BF548 was the processor of choice.

Processor Auto.
Spec.

CAN
Handling
Abilities

Graphical
Display

Clock
Capability Memory

Cogent
CSB337 Poor Sufficient Poor Poor Poor

Analog
Devices
ADSP-
BF548

Sufficient Excellent Excellent Excellent Excellent

Atmel
AT91SAM

9263
Sufficient Sufficient Sufficient Poor/

Sufficient Excellent

Cirrus
EDB9315 Sufficient Poor Excellent Poor/

Sufficient Sufficient

Table 2.6 Synopsis of Reviewed Processors

 13

This was due to the EDB9315 needing peripheral CAN to be added to the board and

also its lower clock speed when comparing it to the BF548. Likewise, the

AT91SAM9263 had lower clocking capabilities and graphical display resolution when

compared to the BF548. As the BF548 had outstanding CAN handling abilities, along

with very high screen resolution, a 533MHz processor and large amount of memory,

including a 40GB hard drive, it was the obvious choice for use in this project. The next

section will discuss the development host, which will be used to develop and compile

the software to run on the BF548 processor.

2.3 Development Host

As the BF548 was selected as the processor of choice, it was recommended by Blackfin

to use Cooperative Linux (coLinux) as the development host. Apart from coLinux,

many other Linux operating systems could have been used, including Red Hat, Ubuntu,

etc [18]. Along with the recommendation from the processor’s manufacturer, it offered

many other merits for its use as explained in the following sections.

2.3.1 coLinux

Cooperative Linux (coLinux) is the first open source method used for optimally running

a Linux kernel natively alongside another OS, including Microsoft Windows, as shown

in Fig. 2.2. CoLinux is a port of the Linux kernel which can freely run without the use

of any virtualisation software, in a way which is much more optimal than using any

virtualisation software [19].

 14

Fig. 2.2 coLinux running natively on Windows OS

Special driver software is used so that the coLinux kernel runs in a privileged mode on

the host OS. Due to its operation in privileged mode, and by constantly switching

between the host OS state and the coLinux kernel state, full control of the machine

Memory Management Unit (MMU) is granted to coLinux in its own allocated address

space. Therefore, coLinux acts in accordance to a native Linux kernel, while achieving

almost the same performance and functionality that would be expected from a

standalone Linux machine [18], [19].

2.3.1.1 Pseudo Physical RAM

As coLinux runs alongside Microsoft Windows, it does not work on the principle of the

entire physical RAM being bestowed upon it during boot up, as is the case when

Microsoft Windows boots. Instead coLinux is allocated a fixed set of physical pages

and the translations needed to operate transparently in that set. This leads to coLinux

considering the allocated pages to be the entire physical memory and this is known as

Pseudo Physical RAM (PPRAM).

The PPRAM is allocated to coLinux using the standard function calls in each OS such

that it is not mapped in any address space on the host. These allocated pages will always

be resident and will only be freed once coLinux is closed. To map the allocated pages in

coLinux virtual address space, page tables are used, therefore its address space

resembles that of a regular kernel. The coLinux address space also has its own special

 15

fixmaps, such that the page tables themselves are mapped in order to provide the ability

to translate from PPRAM addresses to physical addresses. Likewise, a special physical-

to-PPRAM map is allocated and mapped to decrease the time needed for handling

events which require physical addresses to be translated into PPRAM addresses. Due to

bi-directional memory address mapping, negligible overhead is achieved in page faults

and user space mapping operations [20], [18], [19].

2.3.1.2 Context Switching

When coLinux is running on a host OS, it only uses one of the host processes to provide

a context for itself and its process. This one process, which is named as the coLinux-

daemon, is known as a Super Process as it frequently calls the kernel driver to perform a

context switch from the host OS to the coLinux kernel and back. This capability allows

complete control of the CPU and MMU of the machine without affecting the host OS.

For the Intel 386 architecture a complete context switch requires the top directory table

pointer register (CR3) to be changed. However, both the instruction pointer (EIP) and

CR3 cannot easily be changed in the one instruction. Therefore, CR3 has to be mapped

in both contexts for the change to be possible. Design limitations make it problematic to

map the code at the same virtual address in both contexts. However both contexts can

divide the kernel and the user space differently, such that one virtual address can

contain a user mapped page in one OS and a kernel mapped page in the other. When

context switching coLinux uses an intermediate address space, known as the “passage

page” as shown in Fig. 2.3.

 16

Fig. 2.3 Address Space Transition used in Context Switching

The “passage page” is defined by specially created page tables in both coLinux and the

development host contexts. It maps the same code that is used for the switch at both of

the virtual addresses that are involved. When a switch occurs, first CR3 is changed to

point at the “passage page”. EIP is then relocated to the other mapping of the passage

code using a jump. Finally CR3 is changed to point to the top page directory of coLinux

[20], [19].

2.3.1.3 Interrupt Handling

As a complete MMU context switch involves the Interrupt Descriptor Table Register

(IDTR), coLinux sets an interrupt vector table to handle any hardware interrupts that

occur while the system is in a running state. CoLinux will not act on these interrupts,

but instead it will only forward the interrupts invocations to the host OS, with the host

OS having to act on any interrupts for proper functionality. This enables the support of

the coLinux-daemon itself.

The interrupt vectors for the internal processor exceptions and system call vectors are

not edited such that coLinux handles its own page faults and other exceptions. However,

the other interrupt vectors point to a special proxy Interrupt Service Routines (ISRs). If

an ISR is invoked during coLinux time on the processor by an external hardware

 17

interrupt, a context switch is made to the host OS. On the host side, the address of the

relevant ISR is determined by looking at its Interrupt Descriptor Table (IDT). With this

an interrupt call stack is forged and a jump occurs to the address. The interrupt flag is

disabled during the invocation of the ISR in coLinux and the handling of the interrupt

on the host OS. The interrupt handling operation adds a minute latency in the interrupt

handling of the host OS, but this is so small it can be neglected [20], [19].

2.3.1.4 Advantages of using coLinux

The main advantage of using coLinux, with regards to this project, is that it can run on

Microsoft Windows, therefore only one machine is needed to run Microsoft Windows

and a Linux development suite. This substantially reduces development costs by the use

of only one PC as well as coLinux being open source [19]. As coLinux is the same as

using a Linux box, all the toolchains needed for this project can be installed and

implemented within coLinux with all application software being written and compiled

in the same environment [18].

2.3.1.5 Disadvantages of using coLinux

As coLinux runs in tandem with Microsoft Windows this can also be one of its main

disadvantages, due to the hardware abstraction layer being shared between both OSs.

This abstraction layer does not have any hardware memory protection, as is the same

between Microsoft Windows and coLinux and their device drivers. If coLinux violates

Microsoft Windows address space, this will cause coLinux to crash along with

Microsoft Windows and hence crash the machine [18].

There are also some security implications when using coLinux. If a malicious user gains

root access to coLinux, then this user could potentially compromise the security of the

Microsoft Windows machine. CoLinux is password protected so there is a degree of

protection to combat this problem [18], [19].

To load or use coLinux, the user must have administrator rights to the host OS.

However, coLinux can be started as a service, and so it is possible to start coLinux as a

 18

normal user, if the user has being granted the right to start the service [18], [19]. The

next section will describe the OS and boot loader used in this project.

2.4 uClinux

uClinux (Micro (µ) Controller Linux) is an embedded port of the Linux Operating

System. It was developed by Kenneth Albanowski and D. Jeff Dionne in January of

1998 and was first demonstrated on a Palm PDA. In February 1999, it was ported to its

first microprocessors, the Motorola MCF5206 and MCF5307 ColdFire. Since then it has

been ported to an array of microprocessors including Analog Devices Blackfin

processors. As with all ports of Linux, uClinux is free software and licensed under the

GNU Public License [21].

2.4.1 Differences between uClinux and Linux

As stated above, uClinux is a micro OS, which was ported from the Linux OS, and runs

on microprocessors. As this operating system is designed for embedded systems, with

small amounts of memory, therefore a lot of functionality had to be taken from the

Linux OS. The main differences between both OSs will now be described [22].

2.4.1.1 No Memory Management Unit

The main difference between Linux and uClinux OSs is the absence of a memory

management unit (MMU) in the latter. In Linux, memory management is achieved

through the use of Virtual Memory (VM). However, uClinux was created for systems

which do not support VM, and hence they can not implement memory management.

With VM, all processes run at the same address, albeit a virtual one, with the VM

system being responsible for the physical memory that is mapped to these locations.

The VM process sees its memory to be contiguous, despite the physical memory it

occupies usually being scattered. Using VM, arbitrarily located memory can be mapped

to anywhere in the processes address space, making it possible to add memory to an

already running process. Without VM, each process has to be located at a place in

 19

memory where it can run, with this area of memory being contiguous. Generally, this

memory can not be expanded as there may be other processes above and below it.

Therefore, processes in uClinux cannot increase the size of its available memory during

runtime [22], [23], [24].

2.4.1.2 Kernel Differences

As uClinux does not support VM, all standard executable formats used in Linux are

unsupported; instead, a new format is used, the flat format. The flat format is a

condensed executable format that stores only executable code and data, along with the

relocations needed to load the executable into any location in memory.

The implementation of mmap, which is a function used when mapping between a

process address space and a file, shared memory object or typed memory object, is also

quite different. Though often transparent to the user, an understanding is needed to

ensure it is not used inefficiently on an uClinux system. Unless the uClinux mmap can

point directly to the file within the filesystem, thereby guaranteeing that it is sequential

and contiguous, it must allocate memory and copy the data into the allocated memory.

In uClinux only one filesystem, romfs, guarantees that files are stored contiguously,

therefore this file system must be used. Only read-only mappings can be shared, which

means a mapping must be read only to avoid the allocation of memory. The kernel must

also consider the filesystem to be in ROM, i.e. nominally read-only area within the

CPU’s address space. This is possible if the filesystem is present somewhere in RAM or

ROM, however not if the filesystem is on a hard disk, as the contents are not directly

addressable by the CPU. Device drivers also need to be edited when porting to uClinux,

depending on the hardware the driver is used for [21], [22], [18], [25].

2.4.1.3 Memory Allocation (Kernel)

uClinux offers a choice of two kernel memory allocators, the standard Linux allocator

and kmalloc2 (or page_alloc2 depending on the kernel version). The standard linux

allocator is not desirable for applications running on uClinux as its uses a power-of-two

allocation method. This method allocates memory to the next power of two, e.g. if a

 20

process required 33kB of memory, then it will be allocated 64kB of memory (26 = 64)

as this is the next step up from 32 (25 = 32). Therefore, 31kB of memory is not used,

hence leading to fragmented memory, as shown in Fig. 2.4.

Fig. 2.4 Memory Allocation using Power-Of-Two Method

Using this allocation method on a PC is sufficient as memory is usually not a major

factor, but as uClinux is used in embedded applications, this amount of memory

wastage is unacceptable. For this reason, the memory allocator kmalloc2 was developed

for uClinux.

In kmalloc2, the power-of-two memory allocation is used for allocations up to one page

in size, where a page is 4kB. It then allocates memory to the nearest page. The previous

example used 64kB, but with kmalloc2 only 36kB (9 pages) will be allocated, as shown

in Fig. 2.5.

Fig. 2.5 Memory Allocation using Kmalloc2

Only 3kB of memory is now un-used when comparing it to the 33kB in the previous

method. Kmalloc2 will also take steps to avoid fragmenting memory [21], [22], [18].

2.4.1.4 Memory Allocation (Application)

The major difference between both OSs in terms of application memory allocation is the

lack of a dynamic stack in uClinux. The programmer must now be aware of stack

requirements as the uClinux toolchains allocate 4kB, by default, for the stack, which is

 21

very small for modern applications. However, there are methods to increase the stack

size.

Another substantial difference in uClinux is the lack of a dynamic heap, which allows

an application to increase its process size. Dynamic heaps are traditionally implemented

using sbrk/brk system calls, which increase/decrease the size of a process’s address

space. Due to uClinux being unable to implement the functionality of brk and sbrk, it

instead implements a global memory pool. When using a global memory pool, the

programmer must be very cautious as a runaway process can use all of the system’s

available memory. Its use offers some advantages, as only the amount of memory

actually required is used, unlike in a pre allocated heap. This is extremely important for

uClinux systems, as they generally run with little memory [21], [22], [18].

2.4.1.5 Applications and Processes

Another difference with uClinux is the lack of the fork() system call, uClinux does

however offer the vfork() system call. The system calls fork() and vfork() allow a

process to split into two processes, a parent and child. A process can split many times to

create multiple children. When a process calls fork(), the child is a duplicate of the

parent in every way, however it shares nothing with the parent and can operate

independently, as can the parent. When using vfork(), the parent is suspended and

cannot continue executing until the child exits or calls exec(), the system call used to

start a new application. The child, directly after returning from vfork(), is running on the

parent's stack and is using the parent's memory and data. This means the child can

corrupt the data structures or the stack in the parent, resulting in failure [21], [22], [18].

2.4.2 Booting uClinux

As with every operating system, uClinux needs a bootloader to start the kernel from its

location in memory. A boot loader is a small piece of software that executes on power

up of a CPU. Linux uses software called lilo or grub, which resides on the master boot

record (MBR) of the machines hard drive. After the PC BIOS performs various system

 22

initialisations, it will execute the boot loader in the MBR. The boot loader then passes

system information to the kernel and then executes the kernel.

In an embedded system the role of a boot loader is more complicated as it does not

contain a BIOS to perform initial system configuration. The low level initialisation of

microprocessors, memory controllers, and other board specific hardware varies from

board to board and CPU to CPU. These initialisations must be performed before a

uClinux kernel image can be executed.

Depending on the application, the kernel may be stored in the processor’s memory or

the boot loader may have to download the kernel from a remote server. The boot loader

which is used for booting uClinux on Blackfin processors is “Das U-Boot” [26], [27].

2.4.2.1 U-Boot

U-Boot is an open source, cross platform boot loader. It provides support for a large

quantity of embedded development boards and a wide variety of CPUs including ARM,

Coldfire, Blackfin, Microblaze and x86. U-Boot has its origins in the 8xxROM project,

where it was called “PPCBoot”. In 2002 the PPCBoot team retired the project which led

directly to the creation of U-Boot.

U-Boot is a boot loader which is usually stored in the flash memory of an embedded

system. It can load files from a variety peripherals including serial connections, Ethernet

network connection, or flash memories. U-Boot can parse many types of filesystems on

many different storage devices. It is executed upon power up or reset of a CPU and is

used to load another application (in this case a uClinux kernel) [18], [26], [27]. The next

section discusses the graphical libraries selected to create the final system display.

2.5 Graphics Libraries

There are two different graphical libraries supported by the BF548 uClinux kernel:

• DirectFB

• SDL

 23

Both of these are open source libraries and can be used with C programming language

to create graphical displays. The merits of both libraries will be explained in the

following sections.

2.5.1 DirectFB

DirectFB (Direct FrameBuffer) is a thin layer library, which provides input device and

handling abstraction, hardware graphics acceleration, integrated windowing system with

support for translucent windows and multiple display layers on top of the Linux

Framebuffer Device. DirectFB is a complete hardware abstraction layer with software

fallbacks for any graphics operation that is not supported by the underlying hardware. It

was designed for use in embedded systems and offers maximum hardware accelerated

performance with minimum resource usage and overhead [28], [31], [33]. The DirectFB

system diagram is shown in Fig. 2.6.

Fig. 2.6 DirectFB System Diagram

2.5.1.1 Access to Graphics Hardware by DirectFB

DirectFB relies on the existing kernel interface to access the graphics hardware and

requires a working framebuffer to function. For some chipsets (including the BF548)

there is a special framebuffer driver in the Linux kernel; however unsupported chipsets

can use a VESA (Video Electronics Standards Association) framebuffer, although with

some limitations. DirectFB uses the framebuffer device to perform the following tasks:

• Initialising the video mode

• Memory mapping of the development board’s framebuffer

• Changing the viewpoint of the framebuffer

 24

If DirectFB supports the development board and the framebuffer driver for the chipset is

present in the Linux kernel, it will use the framebuffer device in addition to the tasks

mentioned above to perform the following tasks:

• Memory mapping of the development board’s memory mapped I/O ports

• Disable the framebuffer driver’s internal acceleration

To execute a specific graphics operation, the DirectFB chipset driver will access the

memory mapped I/O ports of the graphics hardware to submit the command to the

card’s acceleration engine. The actual hardware acceleration is completed entirely in

user space [29], [32], as shown in Fig. 2.7.

Fig. 2.7 DirectFB Access to the Framebuffer Device and the Graphics Hardware

2.5.1.2 DirectFB Features

DirectFB supports many different graphics operations, which can be done in hardware if

supported by the chipset driver, or as a software fallback. The main features of DirectFB

are as follows [30]:

• Windowing System - DirectFB has a fast windowing system which supports

translucent windows. Windows using ARGB (Alpha Red Green Blue) Surfaces

can be blended on a per pixel basis, with each window having its own global

transparency.

 25

• Resource Management – DirectFB has its own resource management for video

memory, where display layers or input drivers can be locked for exclusive

access. It provides abstraction for the different graphics targets.

• Graphic Drivers – DirectFB uses loadable driver modules for hardware

acceleration. Many of the biggest driver card chipsets are supported including

Matrox, ATI, NeoMagic, 3dfx and Intel. DirectFB will still run on unsupported

chipsets, but there will be no acceleration support.

• Input Drivers – DirectFB supports many input devices including standard

keyboards, serial and PS2 mice, joysticks, devices using the Linux input layer,

touch screens and infra red controls. It is also possible to use an event buffer or

query the hardware directly.

• Image Loading – DirectFB includes image providers, which allow for many

image formats to be loaded directly into DirectFB surfaces. These image formats

include JPEG, PNG and GIF among others.

• Video Playback – DirectFB also includes video providers, which allow for the

rendering of many video formats. These video formats include mpeg1/2, AVI,

Macromedia Flash, MOV and video4linux.

• Font Rendering – DirectFB supports anti-aliasing text drawings and includes

font providers which allow for the loading of DirectFB bitmap fonts and

TrueType fonts (TTF).

2.5.2 SDL

SDL (Simple Directmedia Layer) is a cross-platform multimedia library that has been

used in commercial projects and video games. SDL works with a platform’s underlying

multimedia capabilities to provide a consistent and open API across many OSs. It

provides access to the computer’s multimedia capabilities where possible, and will

attempt to compensate if the computer’s underlying support is missing in some areas. It

is possible to use individual components of SDL separately, e.g. a game might use SDL

for audio and another toolkit for graphics. The SDL library consists of several sub-APIs,

which provide cross-platform support for video, audio, input handling, multithreading,

OpenGL rendering contexts, and various other amenities [34], [35], [36]. The

abstraction layers of Linux and Windows used in SDL are shown in Fig. 2.8.

 26

Fig. 2.8 Abstraction Layer of Windows and Linux SDL Platforms

2.5.2.1 SDL Libraries

SDL was deliberately designed to provide the bare bones of creating a graphical

program. Therefore, the most basic library (SDL.h) does not contain all the desired

functionality. Hence more libraries have been developed and these can be included in

any project to add extra functionality [37], [38]. The main SDL libraries are:

• SDL Image – SDL Image (SDL_image.h) provides functionality such that many

more image file types can be loaded, rather than the standard bitmap. The image

files include PNM, XPM, GIF, JPEG, TIFF and PNG. It also adds support for

alpha transparency.

• SDL Mixer – SDL Mixer (SDL_mixer.h) adds the functionality of a simple

multi-channel audio mixer. It supports eight channels of sixteen bit stereo audio,

plus a single channel of music. It can currently load Microsoft WAV files,

Creative Labs VOC files and MP3 files.

• SDL Net – SDL Net (SDL_net.h) is a small networking library, with a sample

chat client and server application. It offers a portable interface for TCP and UDP

protocols.

• SDL RTF – SDL RTF (SDL_rtf.h) allows the display of simple Rich Text

Format (RTF) files in SDL applications.

 27

• SDL TTF – SDL TTF (SDL_ttf.h) is a True Type font rendering library. It

offers powerful outline fonts and anti-aliasing such that high quality text can be

obtained in applications.

2.5.2.2 SDL Features

Along with the libraries explained above, SDL also has built in functions that are used

in the creation of graphical applications [38], [40]. These are as follows:

• Event Based Inputs – SDL provides inputs from the keyboard, mouse, joystick

etc., using an event based model. As SDL is cross-platform, it has the same

events for any OS.

• Time and Timers – SDL provides a reliable time and timer API that is both

machine and OS independent. The SDL timer APIs allow for the creation of

thousands of timers.

• Threads – SDL provides a thread API which acts as a simplified version of

pthreads. These threads provide all the basic functionality desired from threads

while masking the low level complicated details. These threads are supported on

all OS that supports SDL and threads.

• Graphics – As well as the capability of working at a raw pixel level, SDL also

supports OpenGL software which allows for hardware accelerated 2D and 3D

graphics. SDL can also support the machines framebuffer.

Combining the aforementioned libraries with the features explained above can lead to

very powerful graphical applications while using SDL. An example of an SDL

application using these features and libraries is shown in Fig. 2.9.

 28

Fig. 2.9 SDL Application

2.5.3 Selecting the Graphical Library

As the display and manipulation of data in accordance with messages received from a

CAN network was the priority and not the standard of graphics used, it was decided that

the graphical display would only need to display 2D graphics. As 3D graphics would

not be used, there would be no need for a hardware graphic accelerator.

As DirectFB uses a graphic accelerator and is mainly used in 3D applications, it was

decided that this level of graphical display would exceed the requirements for the

project [41]. SDL was chosen on the merits that it has been used in many commercial

applications, as well as being natively written in C [34]. Also all of the required libraries

were contained in the uClinux distribution that was selected as the OS for the BF548. If

a graphic accelerator was needed later in the project, SDL supports OpenGL which

could be used for this application, and SDL can also run on top of DirectFB [41]. For

these reasons SDL was selected as the graphical library to be utilised. The next section

will outline the options which can be implemented as the Inter Process Communications

for this project.

 29

2.6 Inter Process Communications

Inter Process Communications (IPC) are used in uClinux to transfer data between

running processes on the kernel, as shown in Fig. 2.10. These IPCs also offer

concurrency when transferring data such that no data is desecrated during data transfer.

This is achieved by only allowing one process to use the IPC at a time, i.e. that one

process will not try read data while another process is writing data [42].

Fig. 2.10 IPC at process level

The four main IPCs used in Linux are [48], [53]:

• Semaphores

• Shared Memory

• Message Queues

• Named Pipes

2.6.1 Semaphores

Semaphores can be best described as counters used to control access to shared resources

by multiple processes. Semaphores are used as a locking mechanism to prevent

processes from accessing a shared resource at the same time, i.e. leading to

concurrency.

A semaphore can be compared to a key to a locked room (shared resource), with a key

keeper (uClinux) and many people who wish to gain access to the locked room

(processes). As there is only one key (semaphore) for the room, once the key keeper has

loaned the key to one of the people wishing to gain access to the room, every other

 30

person has to wait until the key has been returned to the key keeper. If many people

want access to the key at the one time, the key keeper will give the key to the person

with the highest priority, as shown in Fig. 2.11. Systems calls are used to create and

manipulate semaphores; these are included in the standard Linux “System V IPC

commands” [49].

Fig. 2.11 Semaphore Metaphor

2.6.2 Shared Memory

Like semaphores, shared memory is another form of IPC provided by the “System V”

release of Linux. Shared memory can be described as the mapping of a segment of

memory that will be mapped and shared by more than one process. In shared memory,

one process will create the segment, with any number of processes being able to read or

write from it [50], as shown in Fig. 2.12.

Shared memory is the fastest method of IPC which could be used in the project, due to

there being no intermediation. It can be employed to save on the amount of memory

used by avoiding having two copies of shared pages in memory. If executable code is

shared, then only one copy is needed in physical memory and those pages can be

mapped into the address space of all other processes that are executing that code [43].

 31

Fig. 2.12 Shared Memory

A major drawback when using shared memory is that it does not offer concurrency. To

establish concurrency when using shared memory, a mechanism like semaphores would

also have to be utilised in conjunction with it [54].

2.6.3 Message Queues

Message queues are best described as link lists within the kernel’s address space.

Messages are sent to a message queue by the sending process, and can then be received

from the queue by one or many reading processes, in several different ways. Each

message queue can be identified by its unique IPC identifier, which is assigned to the

message queue upon creation [51].

Message queues offer the benefits of being able to buffer the sent messages until the

receiver is ready to receive them, therefore a process can send a message and it will be

saved until the receiver is ready for the message. As the messages are buffered, any

process can read the sent messages from it as long as it knows the message queues IPC

identifier [44]. A small message queue configuration is shown in Fig. 2.13.

 32

Fig. 2.13 Message Queue

As with semaphores and shared memory, message queues are also implemented using

“System V IPC commands”.

2.6.4 Named Pipes

A Named Pipe can be described as a FIFO (First In – First Out). A Named Pipe is an

object which allows for communications between processes, i.e. it is like a file, which

bytes of data can be written to and read from. When reading from a pipe, the receiving

process receives the same data bytes that were written in and in the same order that they

were written by the sending process [45], [57].

When using Named Pipes, the pipe can be set to two different operating modes;

blocking and non-blocking. In blocking mode, the pipe will block after being opened for

a read, it will only unblock when the pipe is opened for a write or vice versa. If a

process writes data into the pipe, it will be blocked until another process reads that data,

the pipe will now be blocked until the first process writes more information into the

pipe. In non-blocking mode, the pipe can be continually written to without a read and

vice versa. However, if a process is reading from the pipe the other process will not be

let write to the pipe until the read is complete [52]. These operating modes are shown in

Fig. 2.14. Unlike the previous three methods of IPCs, Named Pipes do not use the

“System V IPC commands” [55].

 33

Fig. 2.14 Blocking Vs. Non-Blocking Named Pipes

2.6.5 Selecting an IPC

As stated earlier, semaphores, shared memory and message queues all require the

“System V IPC commands” for creation and operation. To support the “System V IPC

commands” the OS being used requires a Memory Management Unit (MMU), which

uClinux does not contain. However, since the 2006 release of the uClinux kernel, these

system calls have been integrated. These calls have been implemented in some projects

and appear to function as desired [58].

As shared memory does not offer any concurrency as an IPC, without using another

mechanism, it was not a viable option for this project. To enable concurrency when

using shared memory, semaphores would have to be used, which offered no benefits as

semaphores could have been used without shared memory [46].

Upon further research of semaphores and message queues, it was discovered that both

can lead to deadlock and starvation between processes. Deadlock occurs when two or

more processes are waiting for a resource which one of the other processes holds. These

processes will wait forever, as none of the processes can make any progress and release

its resources until the other releases a resource, which it will not until it receives a

 34

desired resource. Starvation occurs when a process is prevented from proceeding

because of another process contains the resource it desires. It is different to deadlock as

it is possible for the process to get the desired resource, but due to adversity in the

timing of resource requests, it never receives the desired resource [47], [56].

As Named Pipes are a simpler mechanism for IPCs, and only use a file like system to

read and write information, they can not lead to deadlock or starvation. Also using the

blocking mode operation, it can be guaranteed that no information will be lost when

communicating between two processes. With Named Pipes also being used as an IPC in

uClinux since its creation, with the other methods only recently being supported in the

kernel, it was decided that Named Pipes would be the best option for this particular

project [45], [52]. The next section will discuss the external data network which will be

used in this project, Controller Area Network.

2.7 Controller Area Network

The addition of electronic units in vehicles in the early ‘80s led to the need for real time

communications within vehicles. The point-to-point wiring system was previously

employed to connect all electronic units contained in the vehicles. With the addition of

more electronic units, additional dedicated signal lines had to be added to the vehicle,

which in turn increased the cost and decreased the reliability of each vehicle [60]. A

point-to-point wiring system is shown in Fig. 2.15.

Fig. 2.15 Point-to-Point Wiring System

 35

To fulfil the need for multiplexed communications, and replace point-to-point wiring,

Controller Area Network (CAN) was developed in the 1980s by the “Robert Bosch

GmbH” company. With CAN, point-to-point wiring was replaced by a single serial bus

connecting all control systems and electronic devices using NRZ bit coding (Non

Return to Zero) on the network [61], [63]. A typical CAN network is shown in Fig.

2.16.

Fig. 2.16 CAN Network

2.7.1 CAN Bit Encoding

The CAN bus protocol uses NRZ bit encoding for data transmission. NRZ bit encoding

uses logic 0 and logic 1 to represent the data. If two or more logic 1s occur in

succession, the waveform does not return to logic 0 level until a logic 0 actually occurs,

or vice versa. In the CAN protocol these two logical states are known as dominant

(logic 0) and recessive (logic 1). ISO11898 defines a differential voltage, VDIFF, to

represent these two logic states [60], [65].

Typically, a twisted pair configuration is used for the CAN bus, which prevents

electromagnetic interference from other electrical devices internal or external to the

vehicle. One of the wires is labeled as CAN High (CANH), while the other is labeled

CAN Low (CANL). The differential signal between the voltages carried in each wire

defines the bus state [63], [64], as can be calculated using the following equation (2.1)

and shown in Fig. 2.17.

 36

CANLCANHDIFF VVV −=

(2.1)

Where: VDIFF is the Differential Voltage (V)

VCANH and VCANL are the CANH and CANL Voltages respectively (V)

Fig. 2.17 Differential Bus Signalling

In the dominant state the differential voltage between CANH and CANL will be greater

than a minimum threshold. Conversely, when in the recessive state the differential

voltage is less than a minimum threshold. A dominant signal bit will always have

precedence over a recessive bit, due to the fact that CAN uses a Wired-AND

mechanism. Using this system, if any node transmits a dominant bit, the bus will be in

the dominant state; the CAN network will stay in the dominant state until all nodes on

the network transmit a recessive bit [61]. These threshold voltages adhere to the

ISO11898 nominal bus levels as shown in Fig. 2.18.

 37

Fig. 2.18 ISO11898 Nominal Bus Levels

2.7.2 CAN Bit Rates and Timings

The bit time of a CAN message is divided into four segments; The Synchronisation

Segment (Synch Seg.), Propagation Time Segment (Prop Seg.), Phase Buffer Segment 1

(Phase Seg. 1) and Phase Buffer Segment 2 (Phase Seg. 2) as shown in Fig. 2.19 and

explained in Table 2.7 [68].

Fig. 2.19 CAN Message Layout

 38

Name Use Time Period (TQ)

Sync. Seg
To synchronize the nodes on the bus. Bit
edges are expected to occur within the
Sync Seg.

1

Prop. Seg. To compensate for physical delays
between nodes. Programmable : 1 - 8

Phase
Seg.1 and

2

To compensate for edge phase errors on
the bus. PS1 can be lengthened or PS2
can be shortened by resynchronisation

PS1- Programmable : 1 - 8
PS2- Programmable : 2 - 8

Table 2.7 Segments of a CAN Message

As illustrated in Fig. 2.19, the Nominal Bit Time (NBT), or tbit, is made up of the four

non-overlapping segments; therefore the NBT is the summation of the four segments

[69].

21 PSPSPropSegSynchSegbit ttttt +++=

(2.2)

Where: tbit is the bit period (seconds),

 tSynchSeg is the synchronisation segment period (seconds),

 tPropSeg is the propagation segment period (seconds),

 tPS1 and tPS2 are the periods (seconds) for phase segment 1 and 2

 respectively.

Each of the four segments are made up of integer units called Time Quanta (TQ). The

length of each Time Quantum is based on the oscillator period, with the base TQ

equalling twice the oscillator period. The TQ length equals one TQ clock period

(tBRPCLK), which is programmable using the Prescaler named the Baud Rate Prescaler

(BRP) [69], [68], as shown in the following equation (2.3).

OSC
OSC F

BRP2TBRP2TQ *** ==

(2.3)

 39

Where: TQ is the time quantum (seconds),

 BRP is a user-configurable prescaler integer unit,

 TOSC is the period of the oscillator used within a node (seconds),

 FOSC is the frequency of the oscillator used within a node (Hertz).

The Nominal Bit Rate (NBR), which is the number of bits per second transmitted by an

ideal transmitter with no resynchronisation, can now be calculated using the following

equation (2.4).

bit
bit t

1fNBR ==

(2.4)

Where: NBR is the nominal bit rate (seconds),

 fbit is the frequency of a bit (hertz),

 tbit is the bit period (seconds).

Developing Fig. 2.19 using the preceding equations, it can be seen that NBT can be

broken down further into a number of TQ. The Synch Seg. is always equal to 1 TQ

(Table 2.7) and the other three segments being the programmer’s choice depending on

the application and desired NBR, as shown in Fig. 2.20 [69].

Fig. 2.20 CAN Message in TQ

2.7.3 Propagation Delay

As the CAN protocol is implemented to use a non destructive bit-wise arbitration

scheme, it is affected by propagation delays. If two nodes transmit their messages at the

same time, they must arbitrate for control of the bus, with the arbitration only being

effective if both nodes can sample the bit at the same time. Extreme propagation delays

will result in invalid arbitration. The propagation delay of a CAN system can be

 40

calculated as being a signal’s round trip time on the physical bus, and is represented

mathematically as shown in the following equation (2.5) and illustrated in Fig. 2.21.

)(* drvcmpbusprop ttt2t ++=

(2.5)

Where tprop is the network propagation delay (seconds),

 tbus is the time duration of a signal’s round-trip (seconds),

 tcmp is the input comparator delay (seconds),

 tdrv is the delay of the output driver (seconds).

Fig. 2.21 Propagation Delay between Nodes

2.7.4 Synchronisation

In the CAN protocol, synchronisation occurs on the recessive to dominant edges and

their purpose is to control the distance between edges and sample points. The Phase

Buffer Segments (PS1 and PS2), along with the Synchronisation Jump Width (SJW) are

used to compensate for the oscillator tolerances. Both PS1 and PS2 may be lengthened

or shortened by synchronisation. There are two methods used for achieving and

maintaining synchronisation; Hard Synchronisation and Resynchronisation [68].

2.7.4.1 Hard Synchronisation

Hard Synchronisation only occurs on the first logic 1 to logic 0 (recessive to dominant)

edge during a bus idle condition. This represents a Start-of-Frame (SOF) condition.

Hard Synchronisation forces the edge to lie within the Synchronisation Segment by

 41

causing the bit timing counter to reset to the Synchronisation Segment; hence,

synchronising all receivers to the transmitter. Hard Synchronisation only occurs once

during a message, and resynchronisation can not occur during the same bit time [68],

[70].

2.7.4.2 Resynchronisation

Resynchronisation is implemented to maintain the synchronisation achieved by Hard

Synchronisation. Due to oscillator drift between nodes, the receiving nodes can lose

synchronisation if resynchronisation was not employed after Hard Synchronisation.

Resynchronisation is achieved by implementing a Digital Phase Lock Loop (DPLL)

function which compares the position of the expected edge (within the Sync Seg.) to the

actual position of a recessive-to-dominant edge on the bus. The DPLL will then adjust

the bit time as necessary. The SJW is used to compensate for any phase error by the

defined amount in resynchronisation. It is a value programmed by the user, in a range of

1 to 4 TQ, by which the bit period can be lengthened or shortened [68], [70], as shown

in Fig. 2.22.

Fig. 2.22 SJW used in Resynchronisation

2.7.5 CAN Message Framing

The CAN protocol defines 4 different types of data frames:

(i) Data Frame

(ii) Remote Frame

(iii) Overload Frame

(iv) Error Frame

 42

2.7.5.1 Data Frame

As the data frame is the most commonly employed frame type, it will be discussed in

greater detail than the other three message frames. A Standard CAN data frame is

shown in Fig. 2.23.

Fig. 2.23 Standard CAN Data Frame

As illustrated in Fig. 2.23, the Standard CAN data frame consists of many different

fields; this is also true for the other three frame types. Each field is comprised of a

number of bits. The composition of the data frame is as describe below [59], [62], [64],

[66].

• Start of Frame Field – The SOF marks the beginning of the Data Frames and

the Remote Frames. It consists of a single ‘dominant’ bit.

• Arbitration Field – The Arbitration Field consists of the Identifier Field and the

Remote Transmission Request (RTR) Bit. The Identifier Field is 11bits in

length, and transmitted in order of ID10 to ID0. The seven most significant bits

(MSBs) (ID10 – ID4) must all not be ‘recessive’. For data frames, the RTR Bit

must be ‘dominant’, and for a Remote Frame the RTR Bit has to be ‘recessive’.

 43

• Control Field – The Control Field consists of 6 bits. 4 bits are used for the Data

Length Code (DLC), which indicates the number of bytes in the Data Field, one

bit is for the IDE, while the last bit is reserved for future expansion.

• Data Field – The Data Field contains the data to be transmitted within the data

frame. It can contain 0 to 8 bytes, which are transferred MSB first.

• CRC Field – The CRC Field contains a cyclic redundancy check sequence,

along with the CRC Delimiter which is set to be a single ‘recessive’ bit.

• ACK Field – The ACK (Acknowledge) Field consists of two bits, one for the

ACK Slot and another for the ACK Delimiter. A transmitting node will send two

‘recessive’ bits, if a receiver receives the message correctly it will acknowledge

this by sending a ‘dominant’ bit in the ACK Slot back to the transmitter.

• End of Frame Field – The End of Frame Field consists of a sequence of seven

‘recessive’ bits.

The data frame described above is the Standard CAN Data Frame as outlined in the

CAN2.0A specifications. There has been a subsequent protocol release (CAN2.0B)

which describes the Extended Data Frame. The main difference between both frames is

that the Extended Data Frame has the capacity to support a twenty nine bit Identifier

Field as opposed to the Standard eleven bits. Thus the extended frame format offers a

greater ID range [62], [66].

2.7.5.2 Remote Frame

Remote Frames are used to request information between nodes. A node which desires

information will transmit a Remote Frame on the CAN bus, on receiving the Remote

Frame the node which contains the desired data will then transmitted it on the CAN bus.

The Remote Frame’s composition is nearly identical to that of the Data Frame with the

only exceptions being that its RTR bit is ‘recessive’ along with its DLC being set to 0,

to indicate no data is being transmitted [62], [67].

 44

2.7.5.3 Overload Frame

The Overload Frame is comprised of an Overload Flag and an Error Delimiter. It is used

for to tell the network that it is currently occupied and it is not ready to receive any

further messages [61], [67].

2.7.5.4 Error Frame

An Error Frame consists of two fields; an Error Flag Field and an Error Delimiter Field.

The content of the Error Flag Field is dependent on the error status of the node which

has detected the error. The Error Delimiter consists of eight ‘recessive’ bits. If any node

on the CAN bus detects a bus error, it will generate an Error Frame. Once the Error

frame has been formed bus activity will return to normal and the node in which the error

occurs will attempt to re-transmit any aborted messages [61], [67].

2.8 Summary

This chapter reviewed the literature needed to successfully design and implement the

project. The main points covered in this chapter were:

• The selection of the processor to be used in this project, the Blackfin ADSP

BF548 EZ-KIT

• The development host to be used to write and compile applications, boot

loaders and kernels. In this case coLinux was selected as the development host.

• The OS to be used on the selected processor, in this case uClinux, along with

the boot loader, U-Boot.

• The selection of SDL as the graphical library which will be used to generate the

graphical display.

• The method of Inter Process Communication to be used in the project.

• The operation and implementation of the CAN protocol.

The next chapter will discuss the configuration of the development host and

environment as discussed in this section.

 45

3 System Configuration and Design

 46

3.1 Introduction

This chapter details the configuration and design of the complete system. All choices

made and methods used were based on the findings from the literature review. To

explain the system’s configuration and design process undertaken for this study the

chapter is divided into the following sections:

• Section 3.2 illustrates the configured system. It introduces all of the individual

components needed. These components will be explained in further detail in the

following sections.

• Section 3.3 outlines the configuration of the development host, coLinux. This

section describes the steps needed to install and configure coLinux, such that it

can be used to develop and compile U-boot, the uClinux kernel and any

application code for the BF548.

• Section 3.4 describes the compilation and porting of the boot loader, U-Boot and

also details the saving of U-Boot to flash memory.

• Section 3.5 covers the compiling and porting of the evaluation boards OS,

uClinux. The configuration of the uClinux kernel is also covered and describes

the inclusion and exclusion of functionality in the kernel.

• Section 3.6 outlines the configuration and modification of the CAN drivers, as

well as testing of sample code. It describes the problems encountered and

solutions faced while designing the CAN software on the BF548.

• Section 3.7 details the design principles for the graphical display used in the

project. It covers the design principles and development of basic SDL code,

along with the testing of this code.

• Section 3.8 outlines the method used for Inter Process Communications in the

project. It details the initial development and testing of the Named Pipes.

• Section 3.9 provides a summary of information presented in this chapter.

 47

3.2 System Configuration Overview

This chapter describes the configuration of the development host (PC) and evaluation

board (BF548). A complete overview of the system is shown in Fig. 3.1. Each section of

the diagram will be explained in more detail in the following sections.

Fig. 3.1 System Configuration Overview

3.3 coLinux

When developing software for a uClinux based project, a Linux development host is

required. This development host is used to compile the boot loader (U-Boot), the

board’s OS (uClinux) and any applications that are run on the BF548. coLinux was

chosen as the development host for the project, as it can operate on top of a Windows

 48

OS, and hence a full Linux box was not needed. The installation and configuring of

coLinux will be explained in the next section.

3.3.1 Installing coLinux

The Debian version of coLinux was used in the project. The Debian installer file was

downloaded from the Blackfin website [71]. When the installer file was run on the

Windows machine, it set up a one gigabyte (1GB) partition that was then used for all

coLinux files. When the installation was complete, the partition contained all of the

standard directories associated with any Linux machine. Finally a batch file was written

to create a Windows shortcut for coLinux.

3.3.2 Configuring coLinux

coLinux had to be configured such that the Windows partition and the coLinux partition

could communicate with each other. This was achieved by configuring a network

connection such that coLinux could use the Windows Ethernet network connection for

downloading new packages, and also for transferring files between both operating

systems.

3.3.2.1 Configuring the Network

During the installation of coLinux, a TAP interface was automatically created in the

network connections folder of Windows. It is this interface that is used to connect both

the coLinux and the Windows OSs to the Ethernet. To allow connections, the Windows

Ethernet connection had to be shared as shown in Fig. 3.2 [72].

 49

Fig. 3.2 Sharing Ethernet Connection

This TAP interface was configured to have an IP address of 192.168.0.1 and a subnet

mask of 255.255.255.0 as shown in Fig. 3.3.

Fig. 3.3 Configuring the coLinux TAP Interface

The Windows side of the network configuration was now complete. To configure the

network on coLinux the resolv.conf and interfaces files had to be edited to include the

IP address, subnet mask, gateway IP and the name server [73]. The interfaces file was

edited to contain the information shown in Table 3.1 and edited interfaces file is shown

in Fig. 3.4.

.

 50

Name Address
IP Address 192.168.0.100
Gateway IP 192.168.0.1
Subnet Mask 255.255.255.0

Table 3.1 coLinux Network Configurations

Fig. 3.4 Edited coLinux Interfaces File

When editing the resolv.conf file, the IP address set for the TAP interface is set as the

name server as shown in Fig. 3.5.

Fig. 3.5 Edited coLinux Resolv.conf File

coLinux was now configured to connect to the Ethernet. To test these connections ping

was used as shown in Fig. 3.6 and Fig. 3.7.

 51

Fig. 3.6 Pinging coLinux from Windows

Fig. 3.7 Pinging Windows from coLinux

Finally communications between coLinux and the World Wide Web were verified by

using the “apt-get update” command. This command connects to the Web and updates

any coLinux packages that are not the latest revision. The web addresses which are used

for the updates were configured during the installation of coLinux. When the command

was run, each package currently installed in coLinux was checked and updated if a

newer version was available; hence proving that coLinux connected to the web. With

coLinux and Windows communicating, a method was needed to transfer files between

both OSs. This was accomplished using an FTP (File Transfer Protocol) server.

3.3.2.2 Configuring the FTP server

The FTP server used in the project was Serv-U. This server was downloaded and

configured such that a folder called FTP Documents was created on the Windows OS.

This folder was the used to send and receive files from coLinux. As the folder was

 52

situated on the Windows OS, the Domain IP of the server had to be set to the IP address

of the Windows OS, 10.9.100.134. The configured server is shown in Fig. 3.8.

Fig. 3.8 Configured FTP Server

To send and receive files from coLinux, the command “ftp 10.9.100.134” is used to log

on to the server. The user is asked to enter a username and password, once these are

entered properly, the user can receive files from the folder in the Windows environment

using the “get filename” command. To send files from coLinux to Windows the “put

filename” command is used. With the FTP server functioning correctly, full

communications were established between coLinux and Windows. Next the Blackfin

toolchains had to be installed in coLinux.

3.3.2.3 Installing the Blackfin Toolchains

The Blackfin toolchains contain all the necessary library files and cross compilers

needed to compile code that is to be run on a Blackfin BF548 board, including U-Boot,

uClinux and any application programmes. There are two toolchains which need to be

installed, blackfin-uclinux and blackfin-linux-uclibc. Both of these toolchains were

downloaded from the Blackfin website [74]. The rpm (RPM Package Manager) versions

 53

of the toolchains were downloaded to coLinux and were installed using the “alien –i

filename” command [18].

With the toolchains installed in coLinux, the path had to be edited such that it includes

the Blackfin toolchains. The path is used while compiling any code, to point to the

appropriate cross compiler, i.e. if compiling a uClinux kernel, without editing the path

to include the appropriate cross compilers, an error will be received. To edit the path the

following command is used;

“export PATH=$PATH:/opt/uClinux/bfin-uclinux/bin:/opt/uClinux/bfin-linux-

uclibc/bin”

With the path edited to include the Blackfin toolchains, coLinux can now be used to

compile programmes to run on the BF548. As a boot loader is needed to boot the

uClinux kernel on the board, U-Boot had to be compiled first.

3.4 U-Boot

U-Boot is the boot loader used when running uClinux on a Blackfin platform. Its job is

to point the CPU to the starting address of the OS, in this case a uClinux Kernel. To

accomplish this, the latest version of U-Boot was compiled and then saved into flash

memory such that it will run every time the BF548 board is powered up. When

compiling and porting U-Boot to the BF548, the steps given by Blackfin were closely

followed [18].

3.4.1 Compiling U-Boot

To compile U-Boot the Blackfin toolchains must be installed in the development host,

coLinux, as stated earlier. The latest version of U-Boot was downloaded and

uncompressed using the command, “tar jxf U-Boot-1.1.6-2008R1.tar.bz2”. This

command will unpack U-Boot and put it into a directory with the same name, i.e. the

directory U-Boot-1.1.6-2008R1 will be created in coLinux. With the source code

installed in coLinux, U-Boot was then compiled.

 54

3.4.1.1 Compiling U-Boot for Loading over the UART

As the compiled version of U-Boot was to be loaded to the BF548 using the UART, this

had to be set in the header file for the device. To accomplish this, the Blackfin boot

mode must be set to Blackfin boot UART in the BF548-ezkit header file, as shown

below [18]. This edited header file is shown in Fig. 3.9.

#define BFIN_BOOT_MODE BFIN_BOOT_UART

Fig. 3.9 Setting Boot Mode to UART

After setting the boot mode to UART in the header file, the edited configuration file had

to be compiled for the changes to take affect. The command “make bf548-ezkit_config”

was used to compile the configuration file, as shown in Fig. 3.10.

Fig. 3.10 Configuring and Compiling U-Boot

 55

Once U-Boot has compiled successfully the following files are created in the U-Boot

directory, as shown in Table 3.2.

File Description
u-boot Compiled ELF image
u-boot.bin u-boot converted to a raw binary
u-boot.hex u-boot.bin converted to Intel Hex format
u-boot.srec u-boot.bin converted to Motorola S-records format
u-boot.ldr u-boot converted to Blackfin Loader format
u-boot.ldr.hex u-boot.ldr converted to Intel Hex format
u-boot.ldr.srec u-boot.ldr converted to Motorola S-records format

Table 3.2 Created Files from U-Boot Compilation

U-Boot was loaded on the BF548 using a UART loader (LdrViewer), and the file

required was “u-boot-ldr”.

3.4.2 Loading U-Boot onto the BF548

LdrViewer was used to load U-Boot, through the UART to the BF548 evaluation board.

This was achieved by connecting an RS232 cable from COM1 on the development

machine to the BF548 board and setting switch 1 on the BF548 to 7 (UART boot). The

U-Boot file (u-boot-ldr) was then opened and both the baud rate and com port were set

in LdrViewer. The port was then tested using the “test port” button as shown in Fig.

3.11.

Fig. 3.11 Configuring LdrViewer

 56

When testing the port, if the message highlighted in Fig. 3.11 is received then the

LdrViewer can successfully talk to the port. The “Autobaud” button was then used to

test the connections between LdrViewer and the BF548 as shown in Fig. 3.12.

Fig. 3.12 Testing Communications between LdrViewer and BF548

If the message highlighted in Fig. 3.12 is received after running the “Autobaud”, the

BF548 is ready to receive the U-Boot file over the UART. This was achieved by

pressing the “Send DXE” button. When the U-Boot file had been successfully sent, the

feedback from the target was displayed in LdrViewer as shown in Fig. 3.13.

Fig. 3.13 U-Boot Transferred Successfully

 57

3.4.3 Saving U-Boot to Flash

When storing U-Boot into the flash memory, it was written into the serial flash on the

BF548. However when booting from flash, the boot mode will be set SPI boot. This

meant that U-Boot had to be recompiled, this time setting the boot mode to be SPI. To

accomplish this, the BF548 U-Boot header had to be edited as shown below. With the

following line replacing the previous boot mode, U-Boot was recompiled and ported to

the BF548 as explained above.

#define BFIN_BOOT_MODE BFIN_BOOT_SPI_MASTER

This new version of U-Boot was then written into the serial flash, giving the BF548 the

capabilities to boot from flash. When writing to the flash the following command was

entered into the virtual console (HyperTerminal) when connected to the board [18].

eeprom write 0x1000000 0 $(filesize)

The command above writes U-Boot into the serial flash of the board at address

0x1000000. When using the command the variable filesize will be replaced by the

actual size of the U-Boot file. The boot mode switch (switch 1) was then set to 3 (SPI

boot mode) and the board was reset. Now and every time the board is reset, U-Boot will

run automatically from the serial flash.

3.4.4 Configuring the Network Settings in U-Boot

U-Boot is used to boot the uClinux kernel, which for this project was stored on the

development host. U-Boot will have to be able to connect to Ethernet so that it can port

the uClinux kernel from the development host. To configure the network settings on the

BF548, the network settings of the development host had to be established. These

settings were established using the command “ipconfig” in DOS, Fig. 3.14.

 58

Fig. 3.14 Network Configuration of Development Host

From Fig. 3.14 it can be seen that the development host’s IP address is 10.9.100.134. As

the development host is used as a server for the board to port the uClinux kernel from,

this address was used for the server IP. The default gateway, 10.9.251.251, was used by

the board to connect to the network; hence this will be used for the gateway IP. Lastly

the board itself must be given an IP address, as the address 10.9.100.89 was not being

used on the network; this was assigned to the board. These settings were applied to the

board by entering the following commands in U-Boot.

set serverip 10.9.100.134

set ipaddr 10.9.100.89

set gatewayip 10.9.251.251

These settings were then saved by writing their values into the U-Boot that is stored in

flash using the command “save;” as can be seen in Fig. 3.15.

Fig. 3.15 Configuring the Network in U-Boot

 59

Now every time the BF548 is booted, these network configurations will be used, so that

U-Boot will be able to connect to the network.

3.4.5 Testing U-Boot

To test U-Boot a pre-compiled version of a uClinux kernel (uImage) was downloaded

from the Blackfin website [76]. This uImage was then stored on the development host

so that U-Boot would be able to access it through the network. To port the uImage to

the board, the “tftp 0x1000000 uImage” command was used in U-Boot, where tftp is

the command used to transfer the file using ftp, 0x1000000 is the starting address in

RAM where the file is to be placed and uImage is the actual kernel. When the command

was entered, the following was displayed on the virtual console (Fig. 3.16).

Fig. 3.16 Downloading the uImage

When the uImage is downloaded, it can be then booted using the command “bootm”.

Fig. 3.17 shows that the uClinux kernel has booted successfully and therefore proves U-

Boot is functioning correctly using the pre-compiled kernel. However, this pre-

compiled kernel does not have the desired functionality required for the project; hence a

new kernel has to be configured compiled using coLinux.

 60

Fig. 3.17 Booted Kernel

3.5 The uClinux Kernel

As the uClinux kernel contains a lot of different functionality, some of which was

required and some which was not, an optimum kernel had to be configured and

complied for use in this project.

3.5.1 Configuring and Compiling the uClinux Kernel

The latest version of uClinux for the BF548 was downloaded from the Blackfin website

[76]. This source code was unpacked in coLinux using the “tar” command as explained

earlier. To configure the uClinux kernel to be compiled, the “make menuconfig”

command was used in coLinux whilst inside the uClinux directory. This command runs

a menu script; this menu script is then used to configure the uClinux kernel, as shown in

Fig. 3.18.

 61

Fig. 3.18 Main Menu for Configuring the uClinux Kernel

As can be seen in Fig. 3.18, the main menu offers four options, Vendor/ Product and

Kernel/ Library selections, and the option to load or save configurations files. The first

option is used to set which vendor of board being used, i.e. Analog Devices, and which

product, i.e. BF548. As the uClinux kernel can be compiled for many different types of

processors, it is essential to select the correct vendor and product to ensure operation.

The selection used in this project is shown in Fig. 3.19.

Fig. 3.19 Selecting Vendor and Product

 62

The second option offered on the main screen is used to configure the libraries and

functionality included in the uClinux kernel. Inside this option, the choice to

reconfigure the current kernel configuration is offered. If the user chooses to

reconfigure the current kernel configuration, many pages of options will be displayed.

Using these options the user can select the desired functionality in the kernel.

Fig. 3.20 Including SDL Library Files

As explained in the literature review, SDL and CAN were required for the final system

in this project. It was, therefore, important that all of the available SDL and CAN

functionality were included in the new kernel as shown in Fig. 3.20 and Fig. 3.21.

Fig. 3.21 Including SDL and CAN Examples

 63

After including all desired functionality, the new configuration was then saved and the

“make” command is used to compile the new uClinux kernel as shown in Fig. 3.22.

Fig. 3.22 Compiling New Kernel

Once the kernel has compiled successfully, a new directory is created inside the uClinux

directory. The new directory was named “images” and contained the newly compiled

uClinux kernel (uImage). This uImage was then ported to the board and booted using U-

Boot as before. With the new uClinux kernel running on the BF548 board a simple

“hello world” program was used to test the new kernel’s functionality.

3.5.2 Testing the new uClinux Kernel

The code for the “hello world” program was written in ‘C’. This program was compiled

and ported to the BF548. After porting the program to the board, its permissions had to

be changed, such that the OS has permission to execute the file. To achieve this, the

command “chmod 777 hello_world_test” is used. The chmod (change mode) command

is used to change the access permissions of the file, 777 is a numerical way of settings

all users’ access rights to read, write and execute. The hello_world_test is the name of

the compiled file.

After changing the access rights of the file, it was then run using the

“./hello_world_test” command. When the program was run, its displayed “Hello

 64

World!!” on the virtual console and hence proved that the new kernel was functioning

properly, as seen in Fig. 3.23. After successfully testing the new uClinux kernel on the

board, other programmes were then developed to run on the BF548 to check full

functionality.

Fig. 3.23 Running Hello World Test Program

3.6 CAN Functionality

The design and operation of the CAN program for this project, included editing the

drivers in the kernel for the successful operation on the board. This is explained in the

next sections.

3.6.1 Initial CAN Setup

The BF548 contains two CAN ports (CAN0 and CAN1); which are used to connect the

board to an external CAN network. To access these ports, their drivers were included in

the compiled uClinux kernel. As stated earlier, the BF548 board was the latest

generation of Blackfin boards and therefore all of its functionality had not been fully

tested. This became apparent when the CAN drivers failed to initialise the CAN ports.

This lead to the CAN driver files being edited. It transpired that the kconfig file did not

include the BF548 which lead to there been no CAN drivers included in this processor’s

 65

kernel. Investigating the kconfig file, it was noticed that the file contained three

different Blackfin model numbers, none of which were the BF548 as shown below.

depends on CAN4LINUX && EMBEDDED && (BF534 || BF536 ||

BF537)

This observation was then passed back to Blackfin and it was discovered that the BF548

CAN driver was not actually included in the new kernel. Blackfin suggested making the

following edits to the kconfig file of the CAN driver [58].

depends on CAN4LINUX && EMBEDDED && (BF534 || BF536 ||

BF537 || BF548)

After this change was made the driver was now available in the BF548 configuration

file as shown below.

Character devices --->
 CAN, the car bus and industrial fieldbus --->
 [*] can4linux support, the car bus and industrial fieldbus
 <M> Analog Devices BlackFin CAN Controller

Note: The <M> means the driver will be a module in the kernel

With the “Analog Devices BlackFin CAN Controller” driver selected, the kernel was

recompiled. During this compilation different errors were encountered. These errors

were associated with one of the Blackfin CAN C programs (core.c). After investigating

the program file it was noticed that the section for the BF548 looked incomplete and the

missing values were consistent with the errors received. These results were passed to a

moderator of the Blackfin website, who implemented the required changes such that the

driver would work for the BF548.

3.6.1.1 Activating the CAN Driver

As the CAN driver is a module driver, it has to be loaded into the kernel. To do this the

kernel must first be fully booted, and then the command “modprobe can” is used.

Where “modprobe” is a program used to add and remove modules from the uClinux

 66

Kernel [18]. After entering the command the CAN driver was activated and the

confirmation of this was shown on the virtual console, Fig. 3.24. With this the CAN on

the BF548 was ready for initial testing.

Fig. 3.24 Activating the CAN driver

3.6.2 Initial Testing

CAN sample code, with a baud rate of 125kbps, was provided in the uClinux kernel and

was used to test the CAN communications between the BF548 and a mikroElektronica

EasyPIC 4 board. On initial testing it was found that no communication was achieved

between both devices. CANalyzer, the automotive industries standard tool for CAN

network development and analysis, was used to monitor the traffic on the CAN bus. It

was first connected to the EasyPIC 4 board at the specified baud rate (125kbps) and

communications without errors was achieved. When CANalyzer was connected to the

BF548 at the specified baud rate, error messages were detected on the CAN bus, Fig.

3.25.

 67

Fig. 3.25 Error Frames at 125kbaud

It was believed that these errors were due to the baud rate setting on the BF548 being

incorrect.

3.6.2.1 Baud Rate Error

The bus between the BF548 and CANalyzer was probed using an oscilloscope to look at

the signal voltage and frequency, as seen in Fig. 3.26.

Fig. 3.26 CAN signal from BF548

With the value of the time period of the CAN signal determined to be approximately

7.5µs, the value of frequency was then calculated.

 68

133.33Kbps
7.5*10

1
T
1f 6 === −

(3.1)

Setting the baud rate on CANalyzer to the calculated frequency, 133kbps, allowed

communications without errors between the two devices, Fig. 3.27.

Fig. 3.27 CAN RX at 133kbps

3.6.2.2 CAN Header Files

With the baud rate established to around 133kbps and not the desired 125kbps, the CAN

header files for the BF548 were checked to ensure that the CAN variables were set to

the correct values. The section of code which configured the CAN for 125kbps was

found at line 480 of the header file.

#if CAN_SYSCLK == 125
{----- lines cut -----}

#define CAN_BRP_125K 49
#define CAN_TSEG_125K 0x002f

From the code above it can be seen that the BRP (Baud Rate Prescaler) is set to 49, also

it can be seen that the value for TSEG is set to 0x002f. This hex number breaks down as

follows,

 TSEG2 TSEG1

TSEG = 0x 0 0 2 F

 69

The hex number above, shows that the value of TSEG2 is 0x2 (210) and the value of

TSEG1 is 0xF (1510). With these two values and the value of the propagation segment,

which was set in the header file, the value of the NTQ (Number of Time Quanta) was

established.

NTQ = prop_seg + TSEG1 + TSEG2

(3.2)
 = 3 + 15 + 2

 = 20

Using the information ascertained from above and a system clock (SCLK) of 125MHz,

as stated in product documentation, the baud rate was found as follows.

)*)((NTQ1BRP
SCLKRateBaud
+

=

(3.3)

 Baud Rate =
20)*(50
10*125 6

 Baud Rate = 125kbps

From above, the settings in the CAN configuration file should warrant the desired baud

rate. Also from the header file, the values of the BRP and NTQ are known to be correct.

From this information, it can be seen that the only variable not confirmed, and would

cause the baud rate to be incorrect, is the system clock. Therefore the system clock must

not be operating at 125MHz.

3.6.2.3 Editing the System Clock

Once it was discovered that SCLK was not running at the desired speed and after

researching the Blackfin site yielded no answers, a post was placed on the Blackfin

website [58]. From the replies received, it was discovered that the clock might have not

been set correctly in the kernel. The easiest fix for this was to edit the system clock on

boot up such that each time the kernel boots it sets all its clocks to 125Mhz, this in turn

will set the correct baud rate. To do this, changes had to be made to the kernel

 70

configuration file. The system clock is determined using the following equation (3.4),

[18].

DIVSCLK

MULTVCO
2

CLKIN((
 SCLK

CLKIN_HALF

_

)_*)
=

(3.4)

4

)20*)10*25
0

6

2
((

 SCLK =

4
500*10 SCLK

6

= =125*106

SCLK=125MHz

Where: CLKIN - The clock input frequency

 CLKIN_HALF - Cut input frequency in half

VCO_MULT - Clock input multiplier

CCLK_DIV - Core clock divider

SCLK_DIV - System clock divider

Note: CLKIN_HALF can only be 1 or 0.

Once the changes were made in the kernel configuration file, it was recompiled and

downloaded to the BF548. When the new kernel was booted, it froze. The kernel was

recompiled, downloaded and booted once more yielding the same result but eliminating

compilation errors. On researching this new issue it was discovered that the kernel

version (2008R1) used contained a bug which caused the kernel to freeze while re-

programming the clocks on boot-up.

This left two possible options;

(i) Upgrade to the latest kernel release

(ii) Edit the system clock in the current kernel

 71

Careful deliberation resulted in the use of the second option, with a major factor being

all previous development in the project to this time had worked with the current version

of the kernel, and the newer kernel might involve newer problems.

There were two possible options in which to achieve the desired CAN baud rate;

(i) Change the clock in U-Boot and recompile it, so that it sets the system clock to

125MHz.

(ii) Edit the kernel’s CAN header files so that it could take the current system

clock and manipulate it to get the desired 125kbps baud rate.

It was decided that the second option would be the best, as all previous development

had been working fine in the current kernel, and changing the system clock in U-Boot

might lead to other problems. This option offered the benefits of a deeper understanding

of CAN in uClinux.

To edit the CAN header files, the actual system clock frequency was required. This was

established by checking the parameters in U-Boot. These parameters were stored in the

BF548 U-Boot header file and were used in the following equation (3.5) to calculate the

actual system clock.

DIVSCLK

MULTVCO
2

CLKIN((
 SCLK

CLKIN_HALF

_

)_*)
=

(3.5)

4

)21*)10*25
0

6

2
((

 SCLK =

4
*105 SCLK

625
= =131.25*106

SCLK=131.25MHz

 72

With the correct value of the system clock, equation 3.3 can now be used to find the

value of the CAN baud rate.

*NTQ)1((BRP
SCLKBaudrate

)+
=

(3.6)

2))151)*(3((49
131.25*106

+++
=

50*20
131.25*106

=

= 131.25kbps

From above it can be seen that CAN was actually running at 131.25kbps instead the

desired 125kbps. With the value of the system clock at 131.25MHz and the desired

CAN baud rate of 125kbps. Using these values, and using the initial value of BRP (49),

as set in the CAN header file, then the value for NTQ can be established.

1)*NTQ)((49
131.25*10 125*10

6
3

+
=

(3.7)

(50*NTQ)
131.25*10 125*10

6
3 =⇒

1050NTQ*50 =⇒

21NTQ =⇒

The desired NTQ was accomplished by setting TSEG1 = 15 and TSEG2 = 3 such that.

NTQ = 3 + 15 + 3

(3.8)
 21 = 3 + 15 + 3

 21 = 21

The value of TSEG_125K in the CAN header file was then set to 0x003F, instead of

0x002F as shown below.

 73

#if CAN_SYSCLK == 125
{----- lines cut -----}

#define CAN_BRP_125K 49
#define CAN_TSEG_125K 0x003f

The kernel was recompiled with the new edited header files and downloaded to the

evaluation board resulting in the CAN network running at the desired 125kbps. Fig.

3.28 shows the output from the BF548 CAN port when connected to CANalyzer

Fig. 3.28 CAN RX from BF548 at 125kbps

3.6.3 Testing CAN on the BF548

To test CAN on the BF548, the sample code inside the uClinux kernel was used. This

sample code contained two programmes;

(i) can_send – This program is used to send CAN messages from the BF548 and

has many different options for sending CAN messages.

(ii) receive – A program which is used to listen for CAN messages on the

network. If a CAN message is received, it is displayed in the

virtual console.

Each of the above programmes were tested individually and their results are explained

below.

 74

3.6.3.1 Testing the can_send program

To test the can_send program, the BF548 was connected to CANalyzer. Both

CANalyzer and the BF548 baud rates were set to 125kbps. The can_send program

offers many options to send CAN messages, including bursts of 10 or 20 messages, but

for initial testing, single messages were sent using the command line. This method was

chosen so that the user knows exactly what messages are sent and hence confirming the

operation of can_send. The command used to send CAN messages is shown in Fig.

3.29.

Fig. 3.29 can_send Command

To test can_send, seven different CAN messages were sent from the BF548 using the

command line as shown in Fig. 3.30.

Fig. 3.30 Sending CAN messages using can_send

While sending the messages shown above, the following data was received by the

CANalyzer, Fig. 3.31.

 75

Fig. 3.31 Messages received on CANalyzer

Fig. 3.31 shows that all CAN messages that were sent from the BF548 were transmitted

on the bus and received by CANalyzer correctly. The testing of the can_send program

was complete, and was proved that the CAN communication was working successfully.

3.6.3.2 Testing the receive program

To test the receive program, both the BF548 and CANalyzer were connected and set to

125kbps. The receive program was then run on the BF548, whilst messages were

transmitted on the CAN network using CANalyzer. The receive program monitored the

CAN network and if any CAN messages were received, these were displayed on the

virtual console. An example of a typical display is shown in Fig. 3.32.

Fig. 3.32 Example of Received Message

 76

The received messages comprises of six different parts;

(i) Received with ret – Used to signal if a message has been received. If a
message is received with no errors this will equal 1, if
there is errors it will equal -1

(ii) Receive time – Displays the board’s time stamp when the message

was received

(iii) CAN ID – Displays the CAN ID. The CAN ID for this program
was displayed in decimal

(iv) Data Length – Displays the data length of the CAN message

(v) Data Bytes – Display the data contained in the CAN message, this

was displayed in hex

(vi) Flags – Displays flags associated with the CAN message

Fig. 3.33 Messages used to Test the Receive Program

To test the receive program, messages were sent using CANalyzer, as shown in Fig.

3.33, these were received by the BF548 and displayed on the virtual console, Fig. 3.34.

Fig. 3.34 Messages Received using receive program

 77

All the messages sent using CANalyzer were received, with no errors, on the BF548.

With testing complete, an edited version of the receive program was used later in this

project. This edited program uses the data received in the CAN messages to change the

information displayed on the BF548’s LCD Panel (Implementation and Testing

chapter).

3.7 Simple Directmedia Layer

Initial testing of the Simple Directmedia Layer (SDL) was performed using the SDL

software provided in the uClinux kernel.

3.7.1 Graphical Representations

The objective of this project was to create a flexible digital display, therefore it was

decided that two different forms of graphical representations would be used to display

information.

(i) A digital representation of a standard instrument display configuration. This

configuration contained two dials, a speedometer (speed) and a tachometer

(rpm).

(ii) A digital bar chart. This would display the speed in the form of a bar chart

along with any error messages that were ascertained from the CAN network.

During early development and testing of both SDL programs, a random number

generator was used to change both the speed and rpm. Both programmes were written

and tested individually. Later in the project, both programmes were combined with the

data from the CAN network being used to dictate the variables currently dictated by the

random number generator (see Implementation and Testing section).

 78

3.7.2 Digital Representation of a Standard Dash Configuration

The Digital Dash configuration was based on the analog dials used in the majority of

cars presently. This configuration contained both a speed dial and an rpm dial.

3.7.2.1 Graphics Creation

The two dials were created using a graphics editor. However some considerations had to

be assessed before creating the graphics for the dash configuration. After researching

the available options, key decisions were made with the design layout such that:

(i) An image file would be created for each increment in speed or rpm for each

dial. This decision was made due to the heavy computational needs of SDL

to rotate an image. To overcome the amount of memory required to store all

the images, each image was stored as a PNG (Portable Network Graphics)

file, which offers very good compression ratios when compared to other

standard image file types.

(ii) The speed dial would also be in a separate file to that of the rpm dial such

that one of each would be called by SDL, thus reducing the memory used to

store the files. If both dials were in the same image, then multiple versions of

the fixed speed with different rpm would be required and vice versa.

Once these decisions were made, the dials were then created. Each incremental image of

a dial was achieved by rotating the needle by one degree in the image editing software.

The following diagram is the image used to represent the speed at 0 mph, Fig. 3.35.

Fig. 3.35 Speed dial at 0 mph

 79

The rpm dials were created such that they would be slightly smaller in size and also

using a different background colour. This was merely for variation on the screen. The

following diagram is the image used to represent rpm at 0 rpm, Fig. 3.36.

Fig. 3.36 rpm dial at 0 rpm

The SDL code called one image of each dial. Fig. 3.37 shows the display for a speed of

0 mph and rpm of 0 rpm.

Fig. 3.37 End users display

3.7.2.2 Initial SDL Code (Analog Dials)

Initial SDL code was very basic and only included one dial, the speed dial at first. This

program used a for loop to go from 0mph to 5mph. The speed was set using a variable

in the for loop i.e. if the variable “i” is equal to zero then the speed displayed on the

screen was 0 mph. A flow chart for the program is shown in Fig. 3.38.

 80

Fig. 3.38 Flow Chart of Basic SDL Dial program

To implement the flow chart above, the following code was used.

for (i=0;i<=5;i++)

{

sprintf(mph, "%d.png", i);

 message1 = IMG_Load(mph);

 apply_surface(0, 0, message1, screen);

 if(SDL_Flip(screen) == -1)

 {

 return 1;

 }

 SDL_delay(del);

 SDL_FreeSurface(message1);

}

 81

The variable message1 is initialised as an SDL surface, the desired image is then loaded

into a variable. The 2nd line of the code places the string x.png into the variable mph,

where x is equal to the value of i, e.g. if i = 3, then 3.png is stored in the variable. It is

the variable mph which is then used to load the desired image. This image is then

applied to the screen surface, where the variable screen is an SDL surface which is set

to the dimensions of the actual screen on the BF548 evaluation board. The two zeros in

the “apply_surface” function, represent where the image is applied, pixel 0 horizontally

and pixel 0 vertically i.e. the top left hand corner of the screen. The “SDL_Flip”

function displays the image in memory onto the evaluation board’s screen. If this

returns “-1” then the code will exit. A delay was introduced when displaying each

image, such that the images do not change so abruptly that the human eye can not

distinguish each step of the needle. Lastly the surface is freed to facilitate the loading of

the next image into the variable message1.

3.7.2.3 Using a Random Number Generator to Vary the Speed

As the speed will not vary linearly in reality, it was necessary to test the code using a

random number generator. The two major differences needed in the code when using a

random number generator are:

(i) As a random number generator will not vary linearly in a given direction, the

code requires the capability to both increase and decrease the speed displayed

relative to the previous number generated.

(ii) The code will have to increment/decrement the speed on the screen so that the

dial doesn’t just jump, for example, from 25mph to 12mph, hence the code

will have to include some form of stepping mechanism.

To overcome the issues explained above an “if else” statement was used to distinguish

the direction of the speed and is shown below.

mph_value = rand() % 140;

if(mph_value < last_mph)

 {

 82

 last_mph = last_mph - 1;

 }

else if (mph_value > last_mph)

 {

 last_mph = last_mph + 1;

 }

sprintf(mph, "%d.png", last_mph);

The value of mph_value is set by the random number generator, where %140 sets 140

as its maximum value. The value of last_mph is initially set to zero. On the first

iteration of the loop, mph_value will always be greater than last_mph, so the speed will

increase, in steps of 1mph, until the value of last_mph equals that of mph_value. When

this occurs a new value will be generated for mph_value and depending on whether it is

greater or smaller than last_mph, the speed will either increase or decrease.

After fully testing the code used to display the speed dial, the same code was

implemented for the rpm dial. With both programmes running as desired independently,

the next step was to integrate both programmes into one.

3.7.2.4 Integrated Dial Code

As SDL is a sequential language, the code needs to run such that each dial will rotate

concurrently rather than the speed dial running to completion, then the rpm dial running.

As seen in Fig. 3.39 the code still runs sequentially, however each needle will only

rotate one increment and then the next needle will rotate one increment, and so on.

When one needle has run to completion and the dial displays the desired information,

the other needle will then run constantly until it has completed. When both dials display

the information received from the random number generator, new values for the speed

and the rpm are then generated. Due to the delay between each needle rotation being so

diminutive, the human eye can not distinguish when one needle is rotating and the other

isn’t. This visually leads to concurrency in both the dials. To achieve this, a “do –

while” loop was used.

 83

Fig. 3.39 Flow Chart for Integrated Dial Code

 84

do{
 if(rpm_finished != 1)
 {
 // Display rpm

 if(last_rpm == rpm_value)
 {
 rpm_finished = 1;
 }
 }

 if(mph_finished != 1)
 {
 // Display mph

 if(last_mph == mph_value)
 {
 mph_finished = 1;
 }
 }

 }
while((rpm_finished != 1) || (mph_finished != 1));

The code uses two variables; mph_finished and rpm_finished, both of which are

initialised to zero. These variables were used to flag when the corresponding needle had

run to completion, i.e. when the mph dial displays the desired speed, mph_finished is

then set to 1. To accomplish this an “if” statement was used such that, if the variable

last_mph was equal to the variable mph_value, set by the random number generator,

then mph_finished is set. When this occurs the rpm needle will now rotate to completion

and hence set rpm_finished to 1. The ending expression for the “do-while” states that

when rpm_finished is set, OR (||) mph_finished is set then exit the loop. A truth table for

a logical OR is shown below, where A and B are inputs and X is the output.

A B X

0 0 0

0 1 1

1 0 1

1 1 1

Table 3.3 Logical OR Truth Table

 85

The truth table above shows that only when both A and B are false, will X also be false.

This is the same principle in the code, only when rpm_finished is false and

mph_finished is false, will the ending expression be false and hence the code will exit

the “do-while” loop. In the code the ending expression states “rpm_finished != 1”, this

statement is always true (1) until the rpm needle has reached the desired rpm. When the

needle has run to completion it will then set rpm_finished to 1 and hence make the rpm

side of the ending expression false (0). When the mph needle has run to completion it

will do the same and set the ending expression to be false thus exit the “do-while” loop.

The dials code was now successfully running as desired using the random number

generator. This code was later used with CAN messages, so that the CAN message

varied the speed and rpm on the dials rather than the random number generator. This

will be discussed later in this document (Implementation and Testing chapter).

3.7.3 Digital Bar Chart Representation

The digital bar chart contained both a bar chart that represented the speed and also an

error message area, which would display any faults transmitted on the CAN network.

The idea being, if there were no faults requiring the user’s attention then the dials

display would be used. However, if a fault was introduced then the screen would drop

its dials configuration (speed and rpm), and display just the speed using the bar chart

configuration with its error message area clearly displaying the fault. In this section all

testing was preformed using the bar chart and later in this document, testing will be

performed on the dials and bar chart combined (Implementation and Testing chapter).

3.7.3.1 Graphics Creation

The approach used to create the bar chart in SDL was slightly different than that used

for the dials. The bar chart configuration required a background bar chart with tiny

coloured bars placed on top to represent the speed. An advantage of this approach is it

required a very small amount of memory to save the images as the coloured bars are

minute. By displaying the bar chart in this fashion it proved that there are many

 86

different ways to program the display. The bar chart design used for the project can be

seen in Fig. 3.40.

Fig. 3.40 Bar Chart

It was decided that as the speed increased the bars on the display would change colour

such that;

(i) Any speed less than 70 mph was displayed in green (Fig. 3.41)

Fig. 3.41 Speed below 70mph

(ii) Any speed less than 100 mph but greater than 70 mph was displayed in yellow

(Fig. 3.42)

Fig. 3.42 Speed greater than 70mph and below 100mph

(iii) Any speed over 100 mph was displayed in red (Fig. 3.43)

Fig. 3.43 Speed greater than 100mph

 87

To fill the bar chart the same coloured bar is placed multiple times over the background,

therefore instead of creating an image for each speed as in the dials code, only one red,

one green and one yellow bar was required. When displaying error messages it was

decided to place the error message in the same image as the background bar chart such

that, if an error was to be displayed it would be part of the background. Three different

errors were created for testing purposes and an example of one is shown in Fig. 3.44.

Fig. 3.44 Bar Chart with Error Message

3.7.3.2 Initial SDL Code (Bar Chart)

Initial code written for the bar chart design, was used to prove that using one image as a

background and imposing another image on top to represent the speed was possible.

The implemented code was as follows.

message = IMG_Load("green.PNG");

background = IMG_Load("basic_dial_black.PNG");

 //Apply the background to the screen

apply_surface(0, 0, background, screen);

 //Apply the message to the screen

apply_surface(50, 122, message, screen);

apply_surface(54, 122, message, screen);

apply_surface(58, 122, message, screen);

apply_surface(62, 122, message, screen);

 88

The program code above loads two images, the bar chart (“background”) and the green

coloured bar (“message”). The background is placed at location 0, 0 of the screen (top

left hand corner) and then the green bar is placed in 4 different locations, each of which

are 4 pixel apart horizontally. This 4 pixels shift represents the distance between each

bar in the bar chart, as shown in Fig. 3.45.

Fig. 3.45 Output from Initial Code

The code implementation and testing above proved that it was possible to layer images

on top of other images in SDL.

3.7.3.3 Basic Bar Chart Code

Initial development and testing of the bar chart used a “for” loop to vary the speed. The

“for” loop was used to vary the required number of bars to be displayed rather than each

mph increment i.e. due to the scale on the bar graph, each bar represents 1.6mph.

During initial testing the bar chart background with no error messages was used, these

will be introduced later in this section. The objective of the basic code was to increment

the speed from 0 bars to 5 bars, i.e. 8mph. A flow chart for the program is shown in Fig.

3.46.

When writing the program code it was decided that each time the speed was updated

and displayed on the bar chart, the background would also be reloaded. This was to

accommodate later error message development i.e. when errors are introduced, the code

will check for errors between increments/decrements of the speed. If an error occurs, the

background representing that particular error message would then be displayed. No

delay was introduced when reloading the background; therefore the human eye could

not observe this. Similarly when the speed is incrementing/decrementing each bar is

refreshed on the screen but again due to the refresh rate the human eye can not identify

this. A flowchart of the program code is shown in Fig. 3.46.

 89

Fig. 3.46 Basic Bar Chart Flow Chart

The code used to implement the flow chart in Fig. 3.46 is shown below.

for (s=0;s<=5;s++)

 {

 background = IMG_Load(“bground.PNG”);

 message1 = IMG_Load("green.PNG");

 apply_surface(0, 0, background, screen);

 for (k=0;k<=s;k++)

 {

 90

 apply_surface(j, 212, message1, screen);

 j=j+4;

 }

 if(SDL_Flip(screen) == -1)

 {

 return 1;

 }

 SDL_Delay(del);

 SDL_FreeSurface(message1);

 SDL_FreeSurface(background);

 j = 56;

 }

The code above contains two “for” loops. The first “for” loop was used to generate the

speed, and the second “for” loop was used to display the desired speed. The code uses

the variable k to count from 0 to the value of the variable s, which holds the value of the

desired speed. The value stored in k is the number of bars required to represent the

speed. Inside the loop the variable j is used to distinguish where each bar is to be placed

on the screen. j is initialised to 56, which is the starting point of the bar chart, and each

time a new bar is placed onto the screen, 4 is added to j such that the next bar will be

placed 4 pixels to the right of the last. This loop will then run until the value in k is

equal to that in s. When this occurs the code displays the desired speed and then delays

so that the eye can see the change in speed.

3.7.3.4 Changing the Bar Colour with Speed

As mentioned earlier the bar chart design required different ranges of speeds to be

displayed with different coloured bars. To accomplish this, the change over values in

speed and bars was required. This information is represented in Table 3.4.

Bar Colour Green Yellow Red
Speed (mph) 0 - 70 70 - 100 100 – 145
No. of Bars 0 - 41 42 - 59 59 – 88

Table 3.4 Change Over Values of Coloured Bars

 91

With the information above, “if” statements were used in the code so that the colour of

the bars used to display the speed, changed for different ranges of speed. These

statements are shown below:

if ((s>=0) && (s<42))

 {

 //use green bars

 }

else if ((s>=42) && (s<60))

 {

 //use yellow bars

 }

else if ((s>=60) && (s<88))

 {

 //use red bars

 }

The only additional change now needed to the basic code was to load the appropriate

coloured bar, i.e. change the image to be loaded (e.g. yellow.PNG or red.PNG) in the

following line of code:

message1 = IMG_Load("green.PNG");

3.7.3.5 Decrementing the Speed

With the speed bars incrementing and changing bar colour as desired, the code would be

required to decrement the speed also. This was achieved by editing the basic code

previously discussed in this document to add the decrementing functionality. The

changes made to the code are shown below.

for (s=5;s>=0;s--)

 {

 background = IMG_Load(bground);

 message1 = IMG_Load("green.PNG");

 92

 apply_surface(0, 0, background, screen);

 for (m=1;m<s;m++)

 {

 apply_surface(j, 212, message1, screen);

 j=j+4;

 }

The code above sets the initial speed to 5 and decrements to zero; it is the first “for”

loop, based on the variable s, which sets the speed. The second “for” loop, based on the

variable m, sets how many coloured bars are used to display the speed. Comparing this

loop to that used for incrementing the speed there is a slight change. The variable m

“for” loop sets the number of bars to be displayed; therefore if the loop used for

incrementing was the same as that for decrementing, then the actual speed displayed

would be two bars off the actual speed. To eliminate this problem, m was set equal to 1

rather than zero, and the loop was set to terminate when m is equal to s.

3.7.3.6 Using a Random Number Generator to Vary the Speed

As speed does not vary linearly in a vehicle, it was necessary to test the code using a

random number generator. When using a random number generator the code must be

capable of increasing and decreasing the speed accordingly. This was accomplished as

shown in the flow chart in Fig. 3.47.

 93

Fig. 3.47 Flow Chart for Bar Chart Representation of Speed

 94

The flow chart illustrates that several conditions must be met before choosing which

function to run in the code. To accomplish this “if” statements were used and are shown

below:

if ((i>=0) && (i<42) && (t>i))

 {

 green_up;

 }

 else if ((i>=0) && (i<42) && (t<i))

 {

 green_down;

 }

 else if ((i>=42) && (i<60) && (t>i))

 {

 yellow_up;

 }

 else if ((i>=42) && (i<60) && (t<i))

 {

 yellow_down;

 }

 else if ((i>=60) && (i<88) && (t>i))

 {

 red_up;

 }

 else if ((i>=60) && (i<88) && (t<i))

 {

 red_down;

 }

In the code the variable i represents the value last_speed and the variable t represents

the value new_speed.

else if ((i>=42) && (i<60) && (t>i))

 95

The line of code above states, that if the last speed is greater than or equal to 42

(minimum value for the bar colour to be yellow) and less than 60 (maximum value for

the bar colour to be yellow), and if the new speed is greater than the last speed, then use

the function ‘yellow_up’. It can be seen in the last condition, if the new speed is greater

than the last speed displayed, then the number of bars must be incremented to display

the new speed. Also with the values falling inside the yellow range, the function

executed will be the ‘yellow_up’ function.

The “for” loop now had an added stipulation requiring it to perform the loop until the

correct speed is reached. The “for” loop below is taken from the ‘yellow_up’ function,

but each function has their own appropriate “for” loop.

for (s=i;((s<60)&&(s<t));s++)

The “for” loops inside the functions, use the variables set by the random number

generator. When the program enters a function, in this case ‘yellow_up’, it first sets the

variable s to the value of the last speed, this value of s can be anything from 42 to 60 as

the program is inside this particular function. Next the “for” loop checks that the last

speed is less than 60 (max. yellow value) and less than the new speed. To accomplish

this, a logical AND was used, for which a truth table is shown in Table 3.5, where A

and B are inputs and X is the output.

A B X

0 0 0

0 1 0

1 0 0

1 1 1

Table 3.5 Logical AND Truth Table

Using this in the “for” loop inside the condition, when the value of the variable s

increases above the maximum value of the yellow bars (60) then the first stipulation

(s<60) becomes false and hence the program exits this conditional statement. Also if the

value of the variable s is not less than the value of variable t, i.e. last speed is equal to

 96

the new speed, then the code will also exit the function. Looking at the flow chart in

Fig. 3.47 it can be seen that if the value of last speed (variable s) is greater than the

maximum value for the yellow bars then the code will enter the ‘red_up’ function. Once

the value of last speed (variable s) is equal to that of the new speed (variable t), then the

random number generator will generate a new speed.

3.7.3.7 Displaying Error Messages with the Bar Chart

With the bar chart displaying the speed as desired from the random number generator,

the last functional requirement to be met for the bar chart was to display error messages

on the screen. Using the random number generator to generate the speed, it was decided

to prompt the user to select the error message at the start of the program. This decision

was made due to only a small number of error message screens being created for testing

purposes. The code to select the error messages is shown below.

printf("Please select error (1-3)\n");

scanf("%d", &err);

sprintf(bground, "err%d.PNG", err);

printf("%s will be displayed as background\n",

bground);

The program code above prompts the user to select an error message between 1 and 3.

The value entered by the user is then initialised to an integer. This integer sets the

number of the error file, i.e. if the user enters the number 2, then the string err2.PNG

will be saved in the variable bground. A table of the error messages is shown in Table

3.6.

Filename Description

err1.PNG Basic Bar Chart with no errors

err2.PNG Back left tyre pressure low

err3.PNG ABS Failure

Table 3.6 Bar Chart Error Screens

 97

When executing the code, the following was displayed on the virtual console.

Fig. 3.48 Users Prompt for Selecting Errors

From Fig. 3.48, the error selected was error 2; this in turn was displayed on the BF548’s

screen, as shown in Fig. 3.49.

Fig. 3.49 Background set as Error 2

The bar chart code was now producing the desired functionality using the random

number generator. This program code was then used with CAN messages, such that the

CAN message would vary the speed on the bar chart rather than the random number

generator and the CAN ID would set the error message to be displayed. This is

discussed later in this document (Implementation and Testing chapter).

3.8 Inter Process Communications

The Inter Process Communications (IPC) used in this project is called Named Pipes,

which allows for communications between running processes in the uClinux kernel,

namely, the CAN and the SDL processes. When using pipes, one has to be able to write

 98

to a pipe and read from the same pipe. This involves writing two different pieces of

code as explained below.

3.8.1 Writing to a Pipe

As Named Pipes was used in the project the first thing that had to be accomplished was

to name and create the actual pipe used.

3.8.1.1 Naming and Creating a Pipe

The name of the pipe is created by using a “#define” in C code. The name of the pipe

being used for the initial test was “RECFIFO”; receive FIFO (First In First Out). To

name the pipe, the following line of code was used:

#define RFIFO_FILE "RECFIFO"

The line above sets the name of RFIFO_FILE to be “RECFIFO”; this was then used to

create the Named Pipe, to name the actual pipe. To create the pipe the following line of

code was used:

mknod(RFIFO_FILE, S_IFIFO | 0666, 0);

To create a Named Pipe the mknod() function must be used. When using the mknod(),

three arguments have to be passed to the function; the first argument is the desired name

of the Named Pipe. As RFIFO_FILE is defined as the desired name for this pipe, it is

passed as the first argument. The second argument is the creation mode, in the example

above the second argument is “S_IFIFO | 0666”, this line tells the mknod() function to

create a Named Pipe (S_IFIFO) and sets the access permissions. In this case the access

permission is 0666 which sets all users permissions to read and write. The last argument

passed is a device number, as this is not used in Named Pipes it is set to zero [52].

 99

3.8.1.2 Writing to the Created Pipe

When writing to a pipe, data is required to be put into the pipe. Later in the project this

data was taken from the CAN network, but in the interim a simple string was used. To

create the string the following line of code was used.

char mes[] = "Hello World\n";

The line of code above sets up a string called mes containing “Hello World”. To write

the string to the pipe it first has to be opened.

fp = open(RFIFO_FILE, O_WRONLY);

The line above opens the pipe, RFIFO_FILE, and sets it to write only (O_WRONLY).

A third argument can be added to the code above, known as the non-blocking option

(O_NONBLOCK). This option allows the pipe to be opened for another write even if

the current data has not been read. This option was not desired in this case and was not

enabled in the code [52]. With the pipe open, it can be written to by using the following:

write(fp, mes, 12);

The write function above takes three arguments; firstly the file that the write function is

to write to, in this case this is fp, which is the opened pipe. The second argument is the

buffer the function has to write from; in this case the buffer will be the string mes. The

last argument is the number of bytes of data to be written from the buffer, in this case

12. Lastly the pipe must be closed; this accomplished using the following:

close(fp);

Since the non blocking option was not enabled, this pipe can not be opened again until

the data has been read from the pipe. This was desired for the project as it prevents any

data being lost.

Once the program was ported to the BF548, its access rights were changed to make the

program executable. The contents of the directory were then listed to show the write

 100

program was on the evaluation board (wrpipes_test). The program was then run as

shown in Fig. 3.50.

Fig. 3.50 Running Write to Pipes code on BF548

When the program was executed, it created a pipe and wrote the string into it. The

program waited until the pipe was read from, and then exited. As of yet no code had

been written to read form the pipe. Instead the “cat” command was used to display the

contents of a file; in this case the Named Pipe (RECFIFO). To display the contents of

the Named Pipe the command “cat < RECFIFO” was used. The command was run on

PuTTY to display the contents of the pipe, as the write pipes program was still running

on the virtual console. The following was shown on the PuTTY screen, Fig. 3.51.

Fig. 3.51 Displaying the Contents of the Named Pipe

From Fig. 3.51, it can be seen that the pipe contained the string “Hello World”, which

was written to the pipe by the write to pipes program (wrpipes_test). This test proved

that the write to pipes program was working correctly. Next code had to be written to

read from a Named Pipe.

3.8.2 Reading from a Pipe

Reading from a Named Pipe is less difficult than writing to a Named Pipe, but both

follow the same methodologies with the exception of a few minor steps. When reading

from a Named Pipe the pipes name has to be defined in the code as explained earlier.

 101

No Named Pipe has to be created when reading, however, the Named Pipe must be

reopened. To open a Named Pipe for reading the following code is used.

fp1 = open(RFIFO_FILE, O_RDONLY);

This Named Pipe was now set to be read only (O_RDONLY) when opening and again it

can be seen that the non blocking option was not set, therefore the Named Pipe will be

in blocking mode. With the Named Pipe open, the program can now read the file. This

is accomplished using the following:

read(fp1, readbuf1, 12);

The line of code above read 12 bytes of data from the open pipe, fp1, and then placed

the data in the buffer readbuf1, which was initialised as an array of 12 characters. After

reading from the pipe, the pipe was again closed using the close function. Lastly, the

contents of readbuf1 were displayed to the user using:

printf("%s",readbuf1);

The code was compiled and ported, along with the write program (wrpipes_test) to the

BF548 and the access permission of both programmes were changed. The contents of

the directory were listed to show that both programmes were in the directory. The write

program (wrpipes_test) was then executed using the virtual console as shown in Fig.

3.52.

Fig. 3.52 Running Write program in conjunction with Read program

 102

At the same time, the read program (rdpipes_test) was run on PuTTY, the results of

which are shown in Fig. 3.53.

Fig. 3.53 Read from Pipes

Fig. 3.53 shows that the read program (rdpipes_test) functioned properly and the string

that was written into the pipe using the write program (wrpipes_test) was successfully

read from the pipe. These methodologies were applied to the CAN and display

programmes as discussed later in this document (Implementation and Testing chapter).

3.8.3 Disadvantages of Named Pipes

The main disadvantage of using Named Pipes is that integers can not be sent

successfully through the pipe, instead the ASCII equivalent of the integers are sent. To

send integers using a Named Pipe, the integers had to be converted into a string. This

was not an issue in the example programs above as the only data sent were strings. To

overcome this issue some extra lines of code had to be added to both the read and write

programs.

3.8.3.1 Editing the Write Program to allow the Transmission of Integers

To send an integer using a Named Pipe, it must first be converted into a string and then

sent through the pipe. To do this, the “sprintf” function was used.

int x;

char y[3];

sprintf(y, "%d", x);

The code initialises x as an integer and y as an array of 3 characters (string). The

“sprintf” function, prints the integer value stored in x into the string y, i.e. if x was equal

 103

to 10, then 10 would be stored in the form of a string in y. Therefore y will contain 10 in

string format. This format can now be sent using a Named Pipe.

3.8.4 Editing the Read Program to allow the Manipulation of Integers

The read program does not need to be edited to receive the integers in the string format.

However the read program will only be able to display the integer in its string format.

The string format of an integer was not the desired format; therefore the read program

had to change the string version of the integer to an actual integer. This is accomplished

using following line of code.

t = atoi(y);

The variable t is initialised to be an integer. The line of code above uses the “atoi”

function to convert the string contained in y into an integer and then places into the

variable t.

3.8.5 Testing the Transmission and Reception of Integers

To test the transmission and reception of integers using Named Pipes, the example code

used in sections 3.8.1 and 3.8.2 were edited.

3.8.5.1 Editing the Write Program

The write program (wrpipes_test) was edited such that the user was prompted to enter

an integer between 0 and 100. This integer was then converted into a string and written

into the Named Pipe, RECFIFO, as shown below.

printf("Please enter a number between 0 and 100.\n");

scanf("%d", &i);

sprintf(mes, "%d", i);

fp = open(RFIFO_FILE, O_WRONLY);

write(fp, mes, 3);

 104

close(fp);

The integer inputted by the user was stored in the variable i, which is then converted

into a string and written into the Named Pipe.

3.8.5.2 Editing the Read Program

The read program (rdpipes_test) was also edited; such that the number the user entered

in the write program would be displayed on the virtual console. This was achieved using

the following:

fp1 = open(RFIFO_FILE, O_RDONLY);

read(fp1, readbuf1, 3);

close(fp1);

j = atoi(readbuf1);

printf("String: %s\n",readbuf1);

printf("Integer: %d\n",j);

This code reads the string from the Named Pipe, RECFIFO, and then stores it in the

variable readbuf1. The contents of readbuf1 is then converted into an integer and stored

in the variable j. The string, readbuf1, and the integer, j, were both displayed on the

virtual console to show the user that they were the same.

3.8.5.3 Running the Test Programmes

After editing the write and read programmes both were run on the BF548 evaluation

board. The write program (wrpipes_int) was executed on the virtual console as shown

below, Fig. 3.54.

 105

Fig. 3.54 User Prompt to enter Integer

As the write program was running on the virtual console, the read program (rdpipes_int)

was running on PuTTY as shown, Fig. 3.55.

Fig. 3.55 Output from Read Program

From Fig. 3.55, the number the user had entered in the write program i.e. 64, has been

successfully sent through the pipe and converted back into an integer.

3.9 Summary

In this chapter the system design was taken from the problem definition and

requirements, to a final system design. This chapter reviewed the methods used and

choices made when configuring and designing the proposed system. The main points

covered in this chapter were:

• The configuration of the development host, coLinux, which was used to compile

all code that ran on the BF548.

• The compilation and porting of both U-Boot and uClinux to the evaluation

board.

 106

• The changes made to the CAN driver for proper execution on the BF548, along

with the testing of the CAN sample code.

• The design of the display programmes in SDL, including the testing of the both

the Analog Display and the Bar Chart configurations.

• The design methods used for Named Pipes as the IPC for the system, which

included testing of basic Named Pipes programs.

The next chapter will discuss the implementation and testing of the final system using

the design processes discussed in this chapter.

 107

4 System Implementation and Testing

 108

4.1 Introduction

This chapter outlines and explains all methods used during the system implementation

and testing stage of this study. The chapter is divided into the following sections:

• Section 4.2 outlines the methods used when implementing the CAN process for

the final system. This will include the manipulation of received data from the

CAN network and the addition of Named Pipes to the CAN code.

• Section 4.3 describes the methodologies applied when implementing the SDL

process in the final system. This included the integration of both SDL programs

explained earlier. Also IPC were added to the SDL code to allow

communications between the display and CAN processes

• Section 4.4 details the results found while testing the final system, and

comments on these results.

• Section 4.5 shows the results found from stress testing the final system, and

comments on these results.

• Section 4.6 provides a summary of information presented in this chapter.

4.2 CAN Implementation

The sample code supplied with the uClinux kernel was used to receive data from a CAN

network. This code was edited such that the desired parts of the message would be

parsed from the CAN message and, using Named Pipes, be sent to the SDL code. This

sent data would then be manipulated and displayed on the BF548’s LCD screen.

4.2.1 CAN Message Breakdown

The first step was to design the CAN message strategy to be used in conjunction with

the SDL code. After some research it was discovered that there were no set standards or

practices concerning CAN message data and the displaying of information. From this

research it was discovered that automotive manufacturers use different bytes of the

CAN message data to represent the speed, i.e. one manufacturer might use byte 4 and 5,

while another might use byte 1 and 2. With no standard to adhere too, the selection of

 109

which bytes to use was completely the programmer’s choice. The data bytes chosen for

this project are shown in Fig. 4.1.

Fig. 4.1 Breakdown of CAN message

The CAN ID was used to configure the screen layout e.g. to display either the digital

dash or the bar chart configuration. The CAN ID would also set the error screen to be

displayed if the bar chart configuration was chosen. Both bytes 0 and 1 were used to

represent the speed and byte 2 was used to represent the rpm.

4.2.2 CAN Sample Code

The CAN sample code (receive) provided in the uClinux kernel was used for CAN

communications between the BF548 and the CAN network. This code was already fully

tested as explained earlier (CAN design section). A flow diagram for the receive

program is shown in Fig. 4.2.

The receive program extracts both the CAN ID and the data length from the CAN

message. Using the data length, the program executes a “for” loop to obtain each data

byte from the received CAN message. When the variable i is equal to the data length, all

the data bytes have been extracted from the message and the code will then await the

next message.

Due to the layout of the code, it allows for easy extraction of the desired data for this

project. As the CAN ID is stored in its own variable, this variable can be used to write

the CAN ID into a Named Pipe. Likewise due to each data byte being stored in

individual variables, e.g. data byte 0 from the first received CAN Message will be

stored in the variable rx[0].data[0], this allows for the insertion of individual data bytes

into a Named Pipes with relative ease.

 110

Using the information gained above, the CAN receive sample code was then edited to

add Named Pipes, so as to allow for Inter Process Communications (IPCs) between the

CAN program and the SDL program.

Fig. 4.2 Receive Flow Chart

4.2.3 Editing the Sample Code

The CAN receive sample code had to be edited such that the values of the CAN ID, of

both byte 0 and 1 (speed) and byte 2 (rpm) be put into three different pipes IDFIFO,

SPEEDFIFO and RPMFIFO respectively. To accomplish this, the same methodology

 111

used when developing the write to pipes program (wrpipes_test) was applied. A flow

chart for the edited receive program is shown in Fig. 4.3.

Fig. 4.3 Receive with Named Pipes Flow Chart

 112

4.2.3.1 Creating the Named Pipes

To add Named Pipes to the receive code; firstly the three pipes must be defined.

#define SPEEDFIFO_FILE "SPEEDFIFO"

#define IDFIFO_FILE "IDFIFO"

#define RPMFIFO_FILE "RPMFIFO"

The Named Pipes are then created using the mknod() function as explained earlier (see

IPC section).

mknod(SPEEDFIFO_FILE, S_IFIFO|0666, 0);

mknod(IDFIFO_FILE, S_IFIFO|0666, 0);

mknod(RPMFIFO_FILE, S_IFIFO|0666, 0);

With the Named Pipes created, the variables used to populate these must be developed.

4.2.3.2 Populating the Variables used when Writing to the Named Pipes

The receive code required two “for” loops to obtain the CAN messages. The first “for”

loop is used to monitor the number of CAN messages received from the network, while,

the second monitored the data sent in each message. Both “for” loops are also used to

populate a 2D array. The first “for” loop uses the variable i as one coordinate of the

array. The variable i stores the number of messages received. The second “for” loop

uses j to count the data bytes from 0 to the data length for each message, for each

increment the value of the equivalent data byte is stored in the array location

rx[i].data[j]. An example of a 2D array is shown in Table 4.1. Looking at the table, it

can be seen that the value of data byte stored in rx[2].data[1] is 3, where 2 is the value

of i and 1 is the value of j.

 113

Table 4.1 2D Array used in Receive Program

4.2.3.3 Populating the Variable used for the CAN ID

The CAN ID array location was then used to populate the variable for the CAN ID; this

was accomplished using the code below.

sprintf(id, "%d", rx[i].id);

The line of code above, copies the value from the array location, rx[i].id, into the string

id. The i variable in the array rx[i].id distinguishes which CAN message the ID is taken

from, e.g. if the CAN message was the first received message then its ID would be

stored in rx[0].id. The CAN ID variable is now populated and ready to write to the

Named Pipe. Next the speed and the rpm variables must also be populated.

4.2.3.4 Populating the Speed Variable

As mentioned earlier, the speed may be varied using two data bytes, data byte 0 and

data byte 1, as shown in Fig. 4.1. Therefore, a decision had to be made whether to send

each data byte through its own pipe, or to send both data bytes through one pipe. As the

SDL program will have to manipulate both data bytes mutually to display the speed, it

was decided that both would be sent using one pipe. Prior to writing the speed value to

the pipe, both bytes were combined to represent a single decimal value.

Due to the fact that both data bytes are in hex format, the decimal equivalent of each

data byte was obtained, and then added to give an overall decimal value. When

obtaining the decimal equivalent, the value of data byte 1 was seen as the least

 114

significant bit (LSB) while the value of data byte 0 was seen as the most significant bit

(MSB). The following lines of code were used to accomplish this.

byte0 = ("%d", rx[i].data[0]);

byte1 = ("%d", rx[i].data[1]);

The code above, sets the value of byte 0 and byte 1 to be the decimal equivalent of the

hex numbers stored in the 2D array, rx[i].data[0] and rx[i].data[1] respectively. With the

decimal equivalent of each byte, the following line of code was used to establish their

combined value.

speed = byte0*pow(16,2) + byte1;

With the equivalent value calculated it is then stored in the variable, mes, which is

initialised as a string. This is accomplished using the line of code shown below.

sprintf(mes, "%d", speed);

With the CAN ID and speed variables populated, the rpm variable is the last to be

populated.

4.2.3.5 Populating the rpm Variable

As the rpm value is only one data byte of the CAN message, less manipulation is

required in comparison to the speed value. Firstly, the decimal value of data byte 2 had

to be obtained. This was achieved using the following line of code.

byte2 = ("%d", rx[i].data[2]);

With the value of data byte 2 obtained, the rpm variable was populated by using the

following line of code.

sprintf(rpm, "%d", byte2);

 115

4.2.3.6 Writing the Populated Variables to their Named Pipes

Once all three variables had been populated, they were copied to their equivalent

Named Pipes. This was accomplished using the same methodologies as explained

earlier (IPC section). The code used to write the CAN ID to the pipes is shown below.

fp1 = open(IDFIFO_FILE, O_WRONLY);

write(fp2, id, 10);

close(fp2);

printf("id = %s\n", id);

The code above is similar to that utilised in the IPC section. The only difference being

that after each variable is written to it’s pipe it is then displayed to the user, using a

“printf”; this was used for testing purposes, as will be described later in the testing

section.

4.2.4 Testing the CAN with Named Pipes Code

To test the CAN code (receive_pipes), the read pipes program (rdpipes_test) was edited

such that it would open the three Named Pipes, IDFIFO, SPEEDFIFO and RPMFIFO

and display the information contained in them to the user.

CANalyzer was used to transmit CAN messages to the BF548, while the receive

program (receive_pipes) ran in the virtual console, and the read pipes program

(rdpipes_can) ran in PuTTY. The messages transmitted using CANalyzer are shown in

Fig. 4.4.

Fig. 4.4 Test Messages sent using CANalyzer

 116

These messages were then received by the receive program (receive_pipes). Fig. 4.5

displays the values of the variables copied to the Named Pipes. These values were then

checked against the values received in the read pipes program (rdpipes_can) to prove

that the communications were successful.

Fig. 4.5 Messages received and Wrote into Named Pipes

Fig. 4.6 Read Pipes Program Displays Sent Data

Comparing the values copied to the Named Pipes (Fig. 4.5) to those read from the

Named Pipes (Fig. 4.6) it can be seen that the IPC was successful. Therefore, all of the

values sent using CANalyzer had been received by the receive program (receive_pipes),

and then been successfully transmitted using Named Pipes to another process

(rdpipes_test). This confirms that the CAN code with Named Pipes executed as desired.

Next, the SDL program required editing such that it could read values from the Named

Pipes and display the desired information.

 117

4.3 SDL Implementation

To implement SDL, both the digital dash and bar chart code were merged. The CAN ID

was then used to select the display configuration, with the speed and rpm data affecting

the displayed speed and rpm on the LCD screen.

4.3.1 Merging the Digital Dash and Bar Chart Code

As stated earlier, it was decided that the CAN ID would be used to change the

configuration of display. If the CAN ID was equal to zero, then the digital dash

configuration would be displayed. If the CAN ID was not equal to zero, then the bar

chart configuration would be displayed, with the error messages being dependent on the

actual value of the CAN ID. A flow chart of the selection process is shown in Fig. 4.7.

Fig. 4.7 CAN ID used to select Display Configuration

To implement the flow chart shown above in the SDL code an “if” statement was used

as shown below.

if(id == 0)

 {

 // Use Dials

}

else if(id != 0)

 {

 // Use bar chart

}

 118

The code shown simply states that if the value of the CAN ID is equal to 0, then use the

dial configuration, otherwise if the value of the CAN ID is not equal to 0, use the bar

chart configuration. To test the merged code, the SDL had to be able to communicate

with the CAN network, through the Named Pipes IDFIFO, SPEEDFIFO and

RPMFIFO.

4.3.2 Opening and Reading Named Pipes in SDL

To open and read from the three Named Pipes in SDL, the same methodology as used in

the original read program (rdpipes_test) was implemented. Firstly the Named Pipes

were defined in the SDL code, these definitions had to be exactly the same as those

defined in the CAN code. After defining the Named Pipes, the code will then open each

pipe in turn and read their contents. The CAN ID code is shown below.

fp1 = open(IDFIFO_FILE, O_RDONLY);

read(fp1, readbuf1, 10);

close(fp1);

The section of code opens a Named Pipe and sets its permissions to be read only before

reading its contents. The read values are stored it in the variable readbuf. The Named

Pipe is then closed.

The SDL code now had the ability to read from the Named Pipes, containing the desired

data from the CAN network. This data must then be manipulated by the SDL code prior

to displaying it on the LCD screen.

4.3.3 Manipulating the Received Data

The data from each pipe had to be manipulated in some way before it was represented

on the display. The CAN ID was used to select the configuration, and/or the error

message displayed. Bytes 0 and 1 of the CAN message data were used to vary the speed

displayed and byte 2 was used to vary the rpm displayed. A broad outline of the system

is shown in Fig. 4.8.

 119

Fig. 4.8 Communications between both Processes

The data in each pipe was in string format, which must be converted into an integer

prior to manipulation. Also, depending on the data’s application, further manipulation

may be needed. The error, speed and rpm manipulation will be explained in the

following sections.

4.3.3.1 Manipulating the CAN ID

The CAN ID was used to select the display configuration, and the error message

displayed, if one is received. The configuration displayed, e.g. dash or bar chart, was

selected from the value of the CAN ID as stated earlier. To select which configuration

was displayed, the value of the CAN ID must be converted to an integer. This is

accomplished using the following line of code.

id = atoi(readbuf1);

As the CAN ID was also used to select the error message displayed for the bar chart

configuration, its manipulation was not complete. Each error message was saved as a

different background in the form errX.PNG, where the value of X is a decimal number.

The value of the CAN ID is then used to set the decimal number X. For example, if the

CAN ID was 4 then the displayed background would be the file err4.PNG. To

accomplish this, the following line of code is used.

 120

sprintf(bground, "err%d.PNG", id);

The code prints the string errX.PNG, where the value of X is set by the CAN ID, into

the variable bground. The variable bground was then used to display the background

inside the bar chart function. This was achieved using the following lines of code.

background = IMG_Load(bground);

apply_surface(0, 0, background, screen);

This method will not affect the digital dash configuration if the CAN ID is equal to

zero, as the digital dash does not use a background; it prints a new dial for each

increment of a dial. Hence the variable bground is only ever used in the bar chart

configuration. Lastly the value of the CAN ID is printed to the screen for testing

purposes, as will be explained later.

4.3.3.2 Manipulating the Speed Data

The speed was displayed in two different forms; a dial form and a bar chart form, each

of which has their own scale. Therefore each display required a different method to set

the appropriate scale.

4.3.3.2.1 Setting the Scale for each Configuration

As the speed displayed on either configuration must be the same at all times, the scale

used in one configuration had to be consistent with the other. This was achieved by

choosing a denominator to divide the data received into each speed increment for one

configuration; this denominator was then used in every other calculation. This led to full

consistency in speed when changing from one configuration to the next.

The denominator chosen for the bar chart configuration was such that for every 30

increments/decrements of the speed value read from the Named Pipe, one bar would be

added to/subtracted from the current speed. For example, if the data sent through the

SPEEDFIFO pipe was 0, the bar chart would display 0 mph, when the data in

 121

SPEEDFIFO increased to 30 (0x1E) then 1 bar (1.67 mph) would be displayed on the

bar chart.

With the denominator chosen for the bar chart, the value for the dial had to be

calculated using the chosen denominator. As 6 bars represent 10mph on the bar chart,

each bar represents 1.67mph. Each step of the dial represents 1mph, therefore the dial

will vary more than the bar chart and hence the dials denominator will be different to

that of the bars. To calculate the dial denominator the following equation (4.1) was

used.

Speed Dial Denominator =
1.67
30 = 18

(4.1)

These denominator values were then tested to prove their viability. It was decided that

the maximum speed to be displayed would be 145mph. Using this as an example, it can

be shown that both denominators equate to a consistent speed for each configuration.

The values of byte 0 and 1 of the CAN message were calculated for the maximum

speed, 145mph, which is the equivalent of 87 bars, using the following equation.

Bar Chart Denominator * Max. Num. of Bars = Max. Speed CAN message

(4.2)

30 * 87 = 2610

Therefore, to display the maximum speed byte 0 and 1 would have to be equal or

greater than 2610 (0x0A32). Using this value with the speed dial denominator, the

speed to be displayed on the dials was calculated as shown.

Speed Displayed =
DivisorDialSpeed

MessageCANSpeedMax.

(4.3)

Speed Displayed =
18

2610

Speed Displayed = 145

 122

As can be seen from above, the displayed speed is consistent for both the bar chart and

dial configuration. These values were then used in the code to the display the speed.

4.3.3.2.2 Manipulating the Speed Data for use with the Bar Chart

When manipulating the speed data received for use on the bar chart, the value of

denominator was set to 30 and was implemented by the use of the following lines of

code.

z = atoi(readbuf2);

t = ceil(z/30);

The variable z contains the integer value read from the Named Pipe. The variable t

contains the value, in bars, of the received speed. The function ceil outputs smallest

integral value not less than the input, e.g. the ceil of 2.8 is equal to 3, basically it rounds

the input to the nearest whole number. The value of the variable t is then used to vary

the speed on the bar chart.

Due to the CAN messages being simulated for the testing of the project, a fail safe was

also introduced to the code. The reason for this fail safe was due to the fact that when

testing the system, the tester can simulate a speed message up to 65535 (0xFFFF).

Therefore, the maximum speed would far extend the maximum displayable value on the

screen and hence cause system errors. To eradicate this problem the following code was

used. The code sets t equal to 87 (maximum speed in bars) if the received data exceeds

the maximum value.

if (t > 87)

 {

 t = 87;

 }

 123

4.3.3.2.3 Manipulating the Speed data for use with the Speed Dial

When manipulating the speed data received, the value of denominator was set to 18 as

explained earlier. To accomplish this, the following line of code was used.

mph_value = ceil(z/18);

In the code above, the variable mph_value is the value, in mph, of the received speed.

This value is calculated using the ceil function, as explained earlier. The value of

mph_value is then used to vary the speed. A fail safe was also used for the speed dial,

this fail safe is accomplished using the similar code as above. Lastly the value of the

value of the speed is printed to the virtual console for testing purposes. To implement

this, the line of code below was used.

printf("mph_value = %d\n",mph_value);

4.3.3.2.4 Variable Consistency when changing between Configurations

If the speed dial has operated from the start and is now displaying a speed of 80mph,

then the variable last_mph, which is used in varying the speed for the dial, will be equal

to 80. However, the variable i, which is used in varying the speed for the bar chart, will

be equal to zero, as it has never operated. Thus if an error was introduced, causing the

bar chart to be displayed, the bar chart would show an initial speed of 0mph rather than

the current speed which is 80mph. To overcome this problem the following line of code

was added, such that it will run every time the speed dial has updated, i.e. last_mph

equals mph_value.

i = ((last_mph*18)/30);

This sets the variable i equal to the value of the variable last_mph multiplied by 18, all

of which is then divided by 30. This will set i to the corresponding value, in bars, of the

current speed in mph. Using 80mph as an example it can be seen that the value of i is

now correct.

 124

i =
30

80*18 = 48

(4.4)

The resultant value of i is 48 bars and as each bar is equal to 1.67mph, the value of i in

mph can be found as follows.

i (mph) = 48 * 1.67 = 80mph

(4.5)

Also when the bar chart was running, the following line of code was added, such that it

will run every time the bar chart has updated speed, i.e. i equals t. With the addition of

the code below, the two speed variables were now consistent no matter which display

was used.

last_mph = ((i*30)/18);

4.3.3.3 Manipulating the rpm data

As the rpm data is only one byte of the CAN message its manipulation was not as

complex as that used for the speed data. Also the rpm data was only ever used while

using the dial configuration; therefore only one scale is required. When manipulating

the rpm data, it first had to be converted to an integer using the same line of code as

before.

rpm_value = atoi(readbuf3);

This sets the variable rpm_value to the integer value of the string contained in readbuf3.

As rpm dial changes in increments of 20rpm, the received data had to be manipulated to

match these increments. This was accomplished using the line of code below.

rpm_value = rpm_value * 20;

 125

This code sets the value contained in rpm_value to be twenty times its original. This

value is then used to display the desired revs on the rpm dial. Lastly the value of the

rpm is printed to the virtual console for testing purposes using following line of code

below.

printf("rpm_value = %d\n\n",rpm_value);

4.3.3.3.5 Variable Consistency when changing between Configurations

When the bar chart configuration is running on the screen, the rpm data is not used as it

is not displayed. This leads to the variable last_rpm, which stores the value of the last

rpm displayed and is used in displaying the next rpm, not being set to the latest value of

the rpm data. If the dash configuration was then displayed it would lead to the initial

value of the rpm displayed being inconsistent with the actual value. To overcome this

problem the following line of code was added, which is executed when the bar chart

code has run to completion for each new message.

last_rpm = rpm_value;

The sole purpose of the line above is to keep the variable last_rpm up to date with the

actual value of rpm data received when the dial configuration is not in use. If the dial

configuration is being used, then this line will neither run, nor be required, due to the

fact that rpm data will be used, and hence the variable will be up to date.

4.4 Testing the Final System

In adding the Named Pipes to both the CAN and SDL programs, these two processes

could now communicate with each other. Also, with the data received in the SDL code

being manipulated as desired, the system was now complete and is shown in Fig. 4.9.

When testing the final system, CANalyzer was used to simulate the CAN messages

transmitted from the CAN nodes on the network.

 126

Fig. 4.9 Final System

4.4.1 Initial Testing

During the initial testing, the dials displayed the correct data for each CAN message.

When an error was introduced, the display changed to the bar chart and it too displayed

the correct data for each CAN message. However, when the CAN ID was set to zero,

hence the display changed back to the dials from the bar chart configuration, a visual

error occurred on the LCD screen, as shown in Fig. 4.10.

Fig. 4.10 Error displayed during Initial Testing

This error was due to the bar chart using the full LCD screen while running i.e. the

background is the same size as the actual LCD screen. When the dials were running,

 127

each dial only uses a section of the screen. Due to the fact that the screen was initialised

to be black, this error was never observed before. To explain this error in more detail,

coloured blocks are used as shown below, where black represents the initial screen,

white represents the dials and red represents the bar chart.

(i) The screen is initialised to be fully black.

Fig. 4.11 Initialised Screen

(ii) The dials are applied to the top left and right corners of the screen. As the

background of each dial is black, this lead to no visuals errors on the screen

Fig. 4.12 Applying the Dials to the Screen

(iii) The bar chart uses the full screen, so hence the screen is now fully covered by

the bar chart’s background.

Fig. 4.13 Applying the Bar Chart to the Screen

 128

(iv) When changing back to the dials from the bar chart, the dials are again placed

in the top left and right corners. However, nothing is applied to the rest of the

screen, so whatever is currently displayed will stay on the screen and hence the

error shown in Fig. 4.10.

Fig. 4.14 Changing to the Dials from the Bar Chart

To overcome this error, a mask must be applied to the screen when changing to the dials

from the bar chart, such that the mask will cover the bar chart background. To do this an

image file was created to mask off the bar charts background, and was set to be

completely black. Hence when the mask is applied to the screen it will blacken out the

bar chart background, while leaving the area for the dials empty.

A variable lastid was created and set to the current value of the CAN ID before reading

the new value of the CAN ID from the pipes. The new and old CAN IDs were then

compared such that, if the last ID was not equal to 0 (use bar chart) and the new ID was

equal to 0 (use dials) then the screen had to be masked. To achieve this, the following

lines of code were used.

if((lastid != 0) && (id == 0))

 {

 //mask screen

 }

Due to no delay being introduced in the SDL code when placing the mask, the human

eye will not be able to see the mask being applied to the screen. Instead the end user

will see a clean transition from the bar chart to the dials as shown in Fig. 4.15, Fig. 4.16

and Fig. 4.17.

 129

(i) The full screen is used when running the bar chart

Fig. 4.15 Applying the Bar Chart to the Screen

(ii) When changing from the bar chart to the dials the mask is applied

Fig. 4.16 Applying the mask

(iii) Now when the dials are applied over the mask, no visual errors are seen on
the screen.

Fig. 4.17 Applying the Dials to the Screen with the Mask

4.4.2 Testing the Final System

With the error free SDL code, the system was again tested. To test the system, CAN

messages were sent using CANalyzer as shown in Fig. 4.18.

 130

Fig. 4.18 Messages sent using CANalyzer

These messages were then received and the desired information was placed into the

Named Pipes using the CAN program (receive_pipes). The received messages can be

seen in Fig. 4.19.

Fig. 4.19 Messages Received by the CAN program

The CAN program prints the values written into each pipe. These values are then used

to test if the data was successfully read from the pipes in the SDL program (dials_bar)

as shown in Fig. 4.20.

Fig. 4.20 SDL program Reading Data from Pipes

 131

As can be seen from above, the SDL program has successfully read the data from the

pipes. The manipulated data was then displayed on the LCD screen; this data was then

used to confirm that the right values are displayed on the screen. Fig. 4.21 shows the

display for the first message as shown in Fig. 4.20.

Fig. 4.21 Output on the LCD Screen for Message 1

From Fig. 4.20, the CAN ID is equal to zero, hence the dial configuration was used, also

it can be seen that displayed speed and rpm should be 56mph and 2000rpm respectively.

Fig. 4.21 shows that all these conditions have being displayed successfully on the

screen.

The following was displayed on the screen for the second message. As shown in Fig.

4.20, it can be seen that the CAN ID is equal to 1; hence an error has occurred and the

bar chart configuration should be used. Also the speed should be 99mph and the

background used should be the tyre pressure warning (error 1). Fig. 4.22 shows that all

these conditions have been displayed successfully on the LCD screen.

Fig. 4.22 Output on the LCD Screen for Message 2

 132

The following was displayed on the screen for the third message. As shown in the third

message in Fig. 4.20, it can be seen that the CAN ID is equal to 15; hence another error

has occurred so the bar chart configuration will be again used. The speed should be

145mph and the background used should be the ABS warning (error 15). Fig. 4.23

shows that all these conditions have been displayed successfully.

Fig. 4.23 Output on the LCD Screen for Message 3

After transmitting many different CAN messages from CANalyzer it was confirmed

that the final system was functioning as desired. A flow chart of the finished system is

shown in Fig. 4.24.

 133

Fig. 4.24 Flow Chart of End System

4.5 Stress Testing the End System

One of the design criteria used was that the speedometer should be capable of

displaying a speed variation of 0 to 60 mph in six seconds. This constraint was used as

most vehicles cannot achieve this standard. When stress testing the final system, CAN

messages were transmitted with different time periods to:

 134

(i) Test if the system could achieve the initial goals.

(ii) Test the system for any limitations.

4.5.1 Testing System for Initial Goals

As mentioned previously, the system was designed such that it could achieve the

display of 0 to 60mph in six seconds. It was decided that each CAN message would

increment the speed by 1mph, therefore to go from 0 to 60mph, 60 CAN messages

would be needed. To calculate the desired period for each CAN message to achieve 0 to

60mph in six seconds, in the following equation (4.6) was used.

100ms0.1s
60
6

speed
timeperiod ====

(4.6)

Using the calculated period for each message, the system was then tested for successful

operation. The period of each message was set to 100ms in CANalyzer, as shown in

Fig. 4.25.

Fig. 4.25 Setting the Period of each CAN Message to 100ms in CANalyzer

With the period of each CAN message set to 100ms, with a variation of 1 mph per

message, the speed was varied from 0 to 20mph and back down again repetitively using

the CAN messages. If the system was capable of displaying these variations in speed,

 135

this would hence prove that the system was capable of a 0 to 60mph change in 6

seconds. The sent messages are shown in Fig. 4.26, with a time period of 100ms.

Fig. 4.26 Messages when Stress Testing the End System

Each CAN message also increments/decrements the rpm (data byte 2) as well as the

speed (data byte 0 and 1). As the speed and rpm dials are edited using the same “do-

while” loop, hence if both were changing, the loop’s iteration time would be longer than

if only one was changing.

During this testing no errors were received on the virtual console or no glitches were

observed on the actual LCD display. Hence this proved that the final system can operate

correctly with a period of 100ms for each CAN message and therefore can display a

variation in speed of 0 to 60mph in 6 seconds.

 136

4.5.2 Testing the System for Limitations

As nearly all road vehicles can not achieve 0 to 60mph in 3 seconds, with the exception

of a very small number of high end sports cars, the system was then tested for correct

functionality at this data rate. The equation (4.7) was used to calculate the period of

each message for a variation of 0 to 60mph in 3 seconds.

50ms0.05s
60
3

speed
timeperiod ====

(4.7)

The period of each message was then set to 50 ms in CANalyzer.

Fig. 4.27 Setting the Period of each CAN Message to 50ms in CANalyzer

The same message sets that had been sent previously were used again, this time with

each messages period being 50ms, as seen in Fig. 4.26. While testing the final system

using a period of 50ms and the messages shown in Fig. 4.26, with both the dials and bar

chart configurations, errors were received on the virtual console and glitches were

observed on the actual display. The error received on the virtual console is shown in

Fig. 4.28.

Fig. 4.28 Received Error using a Message Period of 50ms

 137

Despite the message shown in Fig. 4.28 identifying that the error was caused by the

receiving CAN0 port’s FIFO (Named Pipe) being overrun, it was believed that this error

was due to the screen not updating at a fast enough rate. This theory was established due

to the fact that the Named Pipes used in this project were set to be blocking, i.e. a

process can not write new data into the Named Pipe until the previous data had been

read from the Named Pipe by a different process. It was believed that the display code

(dials_bar) was not capable of updating the screen and reading the new data from the

Named Pipe at a fast enough rate such that the CAN code (receive_pipes) is not waiting

to write new information into the Named Pipe. If this was the case then the CAN code

would get an overrun error as it trying to write information into the Named Pipe but it is

still blocked. To test this theory, the Named Pipes in this project were changed to be

non-blocking by editing the CAN code (receive_pipes), the CAN ID section is shown

below.

fp1 = open(SPEEDFIFO_FILE, O_WRONLY | O_NONBLOCK);

write(fp1, mes, 100);

close(fp1);

With the Named Pipes set to be non-blocking, the CAN code could overwrite the data

contained in the Named Pipe if it was not read by the display code. When the system

was re-tested using the non-block Named Pipes, the error was not received in the virtual

console, however glitches were still seen on the display. These glitches were caused by

the screen not being able to keep up with the volume of CAN messages being received.

This showed the display code was responsible for the error message received earlier.

From the stress testing it can be seen that the system is not functioning correctly when

the CAN messages were sent with a period of 50ms, hence the final system does contain

some limitations. However it is believed that these limitations could be

reduced/eradicated by tweaking the current SDL code or by enabling a different

sampling system for the CAN messages.

 138

4.6 Summary

This chapter reviewed the methods used and choices made when implementing the

proposed system. In this chapter the system implementation was outlined from the

design to the final system. The main points covered in this chapter were:

• The implementation of the CAN code, including the capabilities of writing to

Named Pipes which were used to pass the received data to the graphical display

process.

• The implementation of the graphical display process in SDL, this included the

capabilities of reading from Named Pipes in order to receive the data from the

CAN network.

• The testing of the final system and the eradication of any errors that may have

being present.

• The stress testing of the final system and any comments made on the outcomes

of this testing.

 139

5 Conclusion

 140

5.1 Introduction

This chapter summarises the research and methodologies carried out for this thesis. It

outlines the results and conclusions that have been drawn from the project and offers

suggestions on how to possibly further the research.

• Chapter 2 outlined the researched literature used in the design of this project.

This chapter described the selection of a processing system, along with the OS

to run on top of the selected processor. The display technologies and IPC used in

the project were also outlined. Finally the CAN protocol was investigated.

• Chapter 3 described the configuration and design of the final system. The first

part of the chapter described the configuring of the development host, coLinux,

and the configuration and compilation of the OS and bootloader, uClinux and U-

Boot respectively. The second part of the chapter outlined the system synthesis.

This included the design of the CAN process, video processes and IPCs.

• Chapter 4 documented the implementation and testing of the final system. This

included the development of communications between the CAN network and

video processes using Named Pipes as the IPC. The testing and elimination of

any errors encountered was also outlined. Finally the system was stress tested to

observe any limitations.

5.2 Conclusions

With the advances in electronics digital dashboards are now becoming available for use

in the automotive industry. The main difference between analog dashboard and digital

dashboard configurations is that the latter may easily be reconfigured. In the digital type

of configuration information can be displayed either numerically or via a digital

representation of an analog dial.

The criterion was to create a flexible digital display for use in an automotive setting

using open source hardware and software. The hardware used was an off the shelf

development board, in this case the Analog Devices Blackfin BF548. This was

combined with open source software, which included an OS, uClinux, and graphical

libraries, SDL. The system received its data from a CAN network, which was simulated

using the automotive industry standard tool “CANalyzer”.

 141

To develop and compile the OS and application software, a Linux derivative, coLinux,

was used. CoLinux was selected for use in the project as it is the first Linux release to

run natively on a Windows machine. This offered many benefits, principally among

them being that only one PC was needed for all software development in Linux, while

still operating on the Windows OS. The configuration of coLinux included configuring

the network for communications between both OS and the Ethernet. The appropriate

toolchains for the compilation of uClinux, U-Boot and application code were also

installed. Lastly the “PATH” was set in coLinux to point to the proper library and linker

files when compiling any program code.

Both uClinux and U-Boot were compiled under coLinux. In the project, U-Boot was

first compiled to boot using the UART. After successfully porting this version of U-

Boot to the BF548, a second version was compiled. This version was compiled to boot

from flash memory. Using the UART U-Boot which was ported to the development

board, the flash U-Boot was saved in the BF548 flash memory. This version of U-Boot

now runs on power up. Lastly, an Ethernet connection was established in U-Boot such

that it can download the kernel on boot up. The fully configured Development Host and

Environment are shown in Fig. 5.1. For uClinux, this involved configuring a kernel to

be executable for the BF548, as well as to include all desired functionality.

 142

Fig. 5.1 System Configuration Overview

Due to BF548 being the latest generation of Blackfin development boards, some of the

functionality had not been fully tested in the uClinux kernel. For example, the CAN

drivers had to be edited such that the uClinux kernel would support the CAN network.

These problems were eliminated through the combination of the review of pertinent

literature, consultation with the relevant bodies and software debugging. After

correcting the errors contained in the drivers, initial testing of the CAN network

revealed that the CAN timings were also incorrect. To correct this, new CAN variable

values were calculated, with the CAN header file been edited to include these new

calculated values. After all problems in relation to the CAN network were rectified,

application code was developed in ANSI C for the CAN process. The implemented

 143

code was used to receive data from the CAN network, parse the desired information

from the received CAN data and transmit it to the SDL process.

The graphical representation of the CAN data was implemented using SDL program

code. When implementing the video process, two programmes were initially developed.

The first implemented a digital representation of a standard analog display, which

included a speedometer and a tachometer. The second implemented a digital bar chart

configuration which also displayed any error messages. After testing the two initial

programs, these were then integrated to make one video process. With the output

display configuration depending on the information received from the CAN network.

To allow communications between the CAN process and the video process, Inter

Process Communications were used, with the IPC chosen for this project being Named

Pipes. The design of the Named Pipes was achieved by writing programme code to read

and write between two processes. After fully testing this code, the same methodologies

were use to transmit information between the SDL and video processes. A basic block

diagram of the final system is shown in Fig. 5.2.

Fig. 5.2 Final System

In conclusion, it is believed that the devised system, should; (i) facilitate a significant

reduction in the design cycle time and manufacturing costs of such systems, (ii)

significantly add to the body of research and development reported to date in this field.

 144

An actual implementation of this system could lead to a standardised LCD display

installed in every vehicle. Style variations between models can be easily maintained by

simply changing the images used in the video process (SDL code). Due to the open

source nature of the project, it is also believed, that its implementation would lead to

reduction in manufacturing costs and time.

5.3 Recommendations for further Research and Development

While stress testing the final system, glitches were observed on the LCD screen when

transmitting CAN data with a small time period. After some investigation into the errors

it was discovered that these glitches were due to the video process not being able to

respond fast enough to the incoming data. A recommendation to improve the response

time of the video process could be to use a graphic accelerator.

A graphic accelerator can be achieved in two ways on the BF548. The first option

would be to use the open GL libraries in conjunction with the current SDL code. The

second option would be to implement DirectFB on the BF548. The video code could

then be re-written to run on DirectFB or the current SDL code can run on top of

DirectFB. Either option should improve the response time of the current SDL code.

 145

References

[1] V. A. W. Hillier, “Fundamentals of Automotive Electronics”, 2nd revision,

Stanley Thornes Publishing, ISBN 0748726950, 1996, pp. 323-332.

[2] William B. Ribbens, “Understanding Automotive Electronics”, 6th edition,

Elsvier Science, ISBN 0-7680-1221-X, 2003, pp. 342-347.

[3] Eric Adams, “Cars That See in the Dark”, Popular Science, Vol. 268 No. 6,

2006, pp. 24-25.

[4] The Microsoft Corporation, “Windows Automotive Data Sheet”, 2007, pp. 1-2.

[5] Jim Turley, “Embedded Systems Survey: Operating System up for Grabs”,

www.embedded.com, 2005.

[6] Cogent Computer Systems Inc., “Cogent CSB337 Hardware Reference

Manual”, 2005, pp. 4-10.

[7] Analog Devices Inc, “ADSP-BF548 Data Sheet”, 2007, pp. 1, 6-7, 13-14, 111.

[8] Analog Devices Inc, ADSP-BF548 EZ-KIT Lite Evaluation System Manual”,

2007, pp. 13-14, 49-50, 95-98.

[9] Atmel Inc, “AT91SAM9263 Data Sheet”, 2007, pp. 1, 21-27, 41-46, 48.

[10] Atmel Inc, “AT91SAM9263 Application notes”, 2007, pp. 8 -10.

[11] Atmel Inc, “AT91SAM9263 Users Guide”, 2007, pp. 5-6, 12-15.

[12] Cirrus Logic Inc, “EDB915 Data Sheet”, 2005, pp. 1, 6-8, 12.

[13] Cirrus Logic Inc, “EDB915 Product Bulletin”, 2005, pp. 1.

 146

[14] H. Minorikawa, et al, “Current Status and Future Trends of Electronic

Packaging in Automotive Applications”, Society of Automotive Engineers

Technical Paper, Series 901134, 1990.

[15] C. Szydlowski, “Tradeoffs between Stand-Alone and Integrated CAN

Peripherals”, Society of Automotive Engineers Technical Paper Series 941655,

1994.

[16] Epson Inc, “Epson S1D13706 Data Sheet”, 2001, pp. 1-2.

[17] Infineon Inc, “Infineon SAK82C900 Data Sheet”, 2001, pp. 5-10.

[18] The Blackfin uClinux Project Documentation, http://docs.blackfin.uclinux.org,

2008

[19] The coLinux Project, www.colinux.org, 2007

[20] Dan Aloni, “Cooperative Linux”, Proceedings of the Linux Symposium, 2004

[21] The uClinux Project, www.uclinux.org, 2008.

[22] David McCullough, “uClinux for Linux Programmers”, The Linux Journal,

Volume 2004, Issue 123, 2004, www.linuxjournal.com.

[23] Wang Minting et al, “Research and Implementation of a uClinux-based

Embedded Browser”, IEEE Asia-Pacific Services Computing Conference, 2007.

[24] Zongqing Lu et al, “An Embedded System with uClinux based on FPGA”, IEEE

Pacific-Asia Workshop on Computational Intelligence and Industrial

Application, 2008.

[25] Gregory E. Nutt, “uClinux, File Mapping and Shared Libraries”,

www.cadenux.com, 2007.

 147

[26] Curt Brune, “Introduction to Das U-Boot, the universal open source

bootloader”, Linux Devices Article, www.linuxdevices.com/articles, 2004.

[27] The “Das U-Boot” Project, “DENX U−Boot and Linux Guide”, www.denx.de,

2008

[28] Andreas Hundt, “DirectFB Overview (v0.2)”, 2004, pp. 1.

[29] Andreas Hundt, “DirectFB Overview (v0.2)”, 2004, pp. 4-5.

[30] Andreas Hundt, “DirectFB Overview (v0.2)”, 2004, pp. 5-9.

[31] Takanari Hayama et al, “DirectFB Internals – Things You Need to Know to

Write Your DirectFBgfxdriver”, Technology Consulting Company IGEL

Co.,LTD., 2008.

[32] Pablo Cesar, “What is Multimedia? Multimedia APIs”, Multimedia

Programming Lecturing Notes, Helsinki University of Technology.

[33] Denis Oliver Kropp, “Graphics Subsystem in an Embedded World – Integrating

DirectFB into a UHAPI platform”, Phillips Semiconductors Inc., 2006, pp.5.

[34] John R. Hall, “Programming Linux Games”, Loki Software Inc, 2001, pp. 69.

[35] Koray Balci, “Xface: MPEG-4 Based Open Source Toolkit for 3D Facial

Animation”, Proceedings of the Working Conference on Advanced Visual

Interfaces, 2004

[36] Pablo Cesar et al, “Open Graphical Framework for Interactive TV”, IEEE Fifth

International Symposium on Multimedia Software Engineering (ISMSE), 2003.

[37] The SDL Project, www.libsdl.com, 2008.

 148

[38] Ernest Pazera et al, “Focus on SDL”, Prima Tech. Publishing, 2002, ISBN 978-

1592000302, pp.165-193.

[39] Ernest Pazera et al, “Focus on SDL”, Prima Tech. Publishing, 2002, ISBN 978-

1592000302, pp.87, 137-165.

[40] Bob Pendleton, “Why Use SDL?”, Game Programmer Article,

www.gameprogrammers.com, 2002.

[41] Pablo Cesar et al, “A Graphics Architecture for High-End Interactive Television

Terminals”, ACM Transactions on Multimedia Computing, Communications

and Applications, Vol. 2, No. 4, 2006, pp. 343 – 357.

[42] Chris Crowley, “Operating Systems: A Design-Orientated Approach”, Irwin

Books, 1997, ISBN 0-256-15151-2, pp. 231-232.

[43] Chris Crowley, “Operating Systems: A Design-Orientated Approach”, Irwin

Books, 1997, ISBN 0-256-15151-2, pp. 526-527.

[44] Chris Crowley, “Operating Systems: A Design-Orientated Approach”, Irwin

Books, 1997, ISBN 0-256-15151-2, pp. 298-305.

[45] Chris Crowley, “Operating Systems: A Design-Orientated Approach”, Irwin

Books, 1997, ISBN 0-256-15151-2, pp. 59-63.

[46] Chris Crowley, “Operating Systems: A Design-Orientated Approach”, Irwin

Books, 1997, ISBN 0-256-15151-2, pp. 308-311.

[47] Chris Crowley, “Operating Systems: A Design-Orientated Approach”, Irwin

Books, 1997, ISBN 0-256-15151-2, pp. 291-298.

[48] Daniel Pierre Bovet et al, “Understanding the Linux Kernel”, Edition: 3,

O'Reilly, 2005, ISBN 0596005652, pp. 476-498.

 149

[49] Sven Goldt et al, “The Linux Programmer’s Guide”, Version 0.4, 1995, pp. 46-

47.

[50] Sven Goldt et al, “The Linux Programmer’s Guide”, Version 0.4, 1995, pp. 62.

[51] Sven Goldt et al, “The Linux Programmer’s Guide”, Version 0.4, 1995, pp. 32-

33.

[52] Sven Goldt et al, “The Linux Programmer’s Guide”, Version 0.4, 1995, pp. 27-

29.

[53] T. K. Tan et al, “Energy Macromodeling of Embedded Operating Systems”,

ACM Transactions on Embedded Computing Systems, Volume 4 , Issue 1,

2005, pp. 235.

[54] William Stallings, “Operating Systems Internal and Design Principles”, 6th

Edition, Pearson Education, 2009, ISBN: 978-0-13-603337-0, pp. 219-224.

[55] William Stallings, “Operating Systems Internal and Design Principles”, 6th

Edition, Pearson Education, 2009, ISBN: 978-0-13-603337-0, pp. 286.

[56] William Stallings, “Operating Systems Internal and Design Principles”, 6th

Edition, Pearson Education, 2009, ISBN: 978-0-13-603337-0, pp. 263-295.

[57] J.A. Williams et al, “FIFO Communication Models In Operating Systems For

Reconfigurable Computing”, Field-Programmable Custom Computing

Machines (FCCM), 2005.

[58] The Blackfin uClinux forum, http://blackfin.uclinux.org/gf/project/uclinux-

dist/forum/, 2008.

[59] Farsi, M. et al, “An overview of Controller Area Network”, Computing &

Control Engineering Journal, 1999, pp. 113-120.

 150

[60] Navet, N., “Controller area network [automotive applications]”, Potentials,

IEEE, 1998, pp. 12-14.

[61] Konrad Etschberger et al, “Controller Area Network: Basics, Protocols, Chips

and Applications”, IXXAT Press, 2001, ISBN 9783000073762, pp. 43-47.

[62] Konrad Etschberger et al, “Controller Area Network: Basics, Protocols, Chips

and Applications”, IXXAT Press, 2001, ISBN 9783000073762, pp. 47-62.

[63] Siemens Microcontrollers Inc., “Controller Area Network”, 1998.

[64] Olaf Pfeiffer et al, “Embedded Networking with CAN and CANopen”, RTC

Books, 2003, ISBN 9780929392783, pp. 205-230.

[65] Bosch, “CAN Specifications Version 2”, Robert Bosch GmbH, 1991, pp. 8.

[66] Bosch, “CAN Specifications Version 2”, Robert Bosch GmbH, 1991, pp. 11-14.

[67] Bosch, “CAN Specifications Version 2”, Robert Bosch GmbH, 1991, pp. 16-18

[68] Florian Hartwich et al, “The Configuration of the CAN Bit Timing”, 6th

International CAN Conference, 1999

[69] P. Richards Microchip Inc., “Understanding Microchip’s CAN Module Bit

Timing”, 2001, pp. 1-2.

[70] P. Richards Microchip Inc., “Understanding Microchip’s CAN Module Bit

Timing”, 2001, pp. 4-8.

[71] The Source Forge Project, http://sourceforge.net/project/showfiles.php?

group_id =98788&package_id=108058, 2007

[72] M. Tim Jones, "Virtualization with coLinux”, IBM Corporation,

www.IBM.com, 2007

 151

[73] Rachel Willmer, “Installing coLinux on Windows XP”,

http://www.willmer.com, 2007

[74] The Blackfin uClinux Project Toolchain Download, http://blackfin.uclinux.org

/gf/ project/toolchain/frs, 2008

[75] The Blackfin uClinux Project U-Boot Download, http://blackfin.uclinux.org/

gf/project/u-boot/frs, 2008

[76] The Blackfin uClinux Project uClinux Download, http://blackfin.uclinux.org/

gf/project/uclinux-dist/frs, 2008

 152

Appendix A – Write to Pipes Program

wrpipes_test.c

// The headers 1

#include <stdio.h> 2

#include <stdlib.h> 3

#include <sys/types.h> 4

#include <sys/stat.h> 5

#include <sys/time.h> 6

#include <sys/ioctl.h> 7

#include <fcntl.h> 8

#include <unistd.h> 9

#include <string.h> 10

 11

//define pipe 12

#define RFIFO_FILE "RECFIFO" 13

 14

int main () 15

{ 16

 int fp, i; 17

 //char mes[21]; 18

 19

// create pipe 20

mknod(RFIFO_FILE, S_IFIFO|0666, 0); 21

 22

 23

// open and write to pipe 24

 char mes[] = "Hello World\n"; 25

 fp = open(RFIFO_FILE, O_WRONLY); 26

 write(fp, mes, 16); 27

 close(fp); 28

 153

 29

 printf("%c", mes[40]); 30

 31

 32

return 0; 33

 34

} 35

 154

Appendix B – Read from Pipes Program

rdpipes_test.c

// The headers 1

#include <stdio.h> 2

#include <stdlib.h> 3

#include <sys/types.h> 4

#include <sys/stat.h> 5

#include <sys/time.h> 6

#include <sys/ioctl.h> 7

#include <fcntl.h> 8

#include <unistd.h> 9

#include <string.h> 10

 11

// define pipe 12

#define RFIFO_FILE "RECFIFO" 13

 14

int main () 15

{ 16

 int fp1; 17

 char readbuf1[16]; 18

 19

 // open and read pipe 20

 fp1 = open(RFIFO_FILE, O_RDONLY); 21

 read(fp1, readbuf1, 16); 22

 close(fp1); 23

 printf("%s",readbuf1); 24

 25

return 0; 26

}27

 155

Appendix C – CAN Program

receive_pipes.c

//The headers 1

#include <stdio.h> 2

#include <stdlib.h> 3

#include <sys/types.h> 4

#include <sys/stat.h> 5

#include <sys/time.h> 6

#include <sys/ioctl.h> 7

#include <fcntl.h> 8

#include <unistd.h> 9

#include <string.h> 10

#include <math.h> 11

 12

#include </uClinux-dist-2008R1-RC8/linux-2.6.x/drivers/char/can4linux/can4linux.h> 13

 14

#define STDDEV "can0" 15

#define COMMANDNAME "receive" 16

#define VERSION "1.2" 17

 18

#define RXBUFFERSIZE 100 19

 20

#define SPEEDFIFO_FILE "SPEEDFIFO" 21

#define IDFIFO_FILE "IDFIFO" 22

#define REVFIFO_FILE "REVFIFO" 23

 24

#ifndef TRUE 25

define TRUE 1 26

define FALSE 0 27

#endif 28

 156

 29

int sleeptime = 1000; /* standard sleep time */ 30

int debug = FALSE; 31

int baud = -1; /* dont change baud rate */ 32

int blocking = TRUE; /* open() mode */ 33

 34

/* --- */ 35

 36

void usage(char *s) 37

{ 38

static char *usage_text = "\ 39

 Open CAN device and display read messages\n\ 40

 Default device is /dev/can0. \n\ 41

Options:\n\ 42

-d - debug On\n\ 43

 swich on additional debugging\n\ 44

-b baudrate (Standard uses value of /proc/sys/Can/baud)\n\ 45

-n - non-blocking mode (default blocking)\n\ 46

-s sleep sleep in ms between read() calls in non-blocking mode\n\ 47

-V version\n\ 48

\n\ 49

"; 50

 fprintf(stderr, "usage: %s [options] [device]\n", s); 51

 fprintf(stderr, usage_text); 52

} 53

 54

 55

 56

/**57

* 58

* 59

* set_bitrate - sets the CAN bit rate 60

* 61

* 62

 157

* Changing these registers only possible in Reset mode. 63

* 64

* RETURN: 65

* 66

*/ 67

 68

int set_bitrate(69

 int fd, /* device descriptor */ 70

 int baud /* bit rate */ 71

) 72

{ 73

Config_par_t cfg; 74

volatile Command_par_t cmd; 75

 76

 77

 cmd.cmd = CMD_STOP; 78

 ioctl(fd, CAN_IOCTL_COMMAND, &cmd); 79

 80

 cfg.target = CONF_TIMING; 81

 cfg.val1 = baud; 82

 ioctl(fd, CAN_IOCTL_CONFIG, &cfg); 83

 84

 cmd.cmd = CMD_START; 85

 ioctl(fd, CAN_IOCTL_COMMAND, &cmd); 86

 return 0; 87

} 88

 89

 90

/**91

* 92

* 93

* main - 94

* 95

* 96

 158

*/ 97

 98

int main(int argc,char **argv) 99

{ 100

int fd; 101

int got; 102

int c; 103

char *pname; 104

extern char *optarg; 105

extern int optind; 106

 107

canmsg_t rx[RXBUFFERSIZE]; 108

char device[50]; 109

int messages_to_read = 1; 110

 111

 pname = *argv; 112

 113

 /* parse command line */ 114

 while ((c = getopt(argc, argv, "b:dhs:nV")) != EOF) { 115

 switch (c) { 116

 case 'b': 117

 baud = atoi(optarg); 118

 break; 119

 case 's': 120

 sleeptime = atoi(optarg); 121

 break; 122

 case 'd': 123

 debug = TRUE; 124

 break; 125

 case 'n': 126

 blocking = FALSE; 127

 messages_to_read = RXBUFFERSIZE; 128

 break; 129

 case 'V': 130

 159

 printf("%s %s\n", argv[0], " V " VERSION ", " __DATE__); 131

 exit(0); 132

 break; 133

 134

 /* not used, devicename is parameter */ 135

 case 'D': 136

 if (137

 /* path ist starting with '.' or '/', use it as it is */ 138

 optarg[0] == '.' 139

 || 140

 optarg[0] == '/' 141

) { 142

 sprintf(device, "%s", optarg); 143

 144

 } else { 145

 sprintf(device, "/dev/%s", optarg); 146

 } 147

 break; 148

 case 'h': 149

 default: usage(pname); exit(0); 150

 } 151

 } 152

 153

 /* look for additional arguments given on the command line */ 154

 if (argc - optind > 0) { 155

 /* at least one additional argument, the device name is given */ 156

 char *darg = argv[optind]; 157

 158

 if (159

 /* path ist starting with '.' or '/', use it as it is */ 160

 darg[0] == '.' 161

 || 162

 darg[0] == '/' 163

) { 164

 160

 sprintf(device, "%s", darg); 165

 } else { 166

 sprintf(device, "/dev/%s", darg); 167

 } 168

 } else { 169

 sprintf(device, "/dev/%s", STDDEV); 170

 } 171

 172

 if (debug == TRUE) { 173

 printf("%s %s\n", argv[0], " V " VERSION ", " __DATE__); 174

 printf("(c) 1996-2006 port GmbH\n"); 175

 printf(" using canmsg_t with %d bytes\n", sizeof(canmsg_t)); 176

 printf(" CAN device %s opened in %sblocking mode\n", 177

 device, blocking ? "" : "non-"); 178

 179

 } 180

 181

 sleeptime *= 1000; 182

 183

 if(blocking == TRUE) { 184

 /* fd = open(device, O_RDWR); */ 185

 fd = open(device, O_RDONLY); 186

 } else { 187

 fd = open(device, O_RDONLY | O_NONBLOCK); 188

 } 189

 if(fd < 0) { 190

 fprintf(stderr,"Error opening CAN device %s\n", device); 191

 perror("open"); 192

 exit(1); 193

 } 194

 if (baud > 0) { 195

 if (debug == TRUE) { 196

 printf("change Bit-Rate to %d Kbit/s\n", baud); 197

 } 198

 161

 set_bitrate(fd, baud); 199

 } 200

 201

 /* printf("waiting for msg at %s\n", device); */ 202

 203

 ////////////// Start Of Edit ///////////////// 204

 while(1) { 205

 got=read(fd, &rx, messages_to_read); 206

 int fp1, fp2, fp3; 207

 umask(0); 208

 mknod(SPEEDFIFO_FILE, S_IFIFO|0666, 0); 209

 mknod(IDFIFO_FILE, S_IFIFO|0666, 0); 210

 mknod(REVFIFO_FILE, S_IFIFO|0666, 0); 211

 char x[10]; 212

 char w[10]; 213

 char id[10]; 214

 char mes[10]; 215

 char y[10]; 216

 char rev[10]; 217

 int byte1, byte2, speed, byte3; 218

 219

 if(got > 0) { 220

 int i; 221

 int j; 222

 223

 for(i = 0; i < got; i++) { 224

 printf("Received with ret=%d: %12lu.%06lu id=%ld\n", 225

 got, 226

 rx[i].timestamp.tv_sec, 227

 rx[i].timestamp.tv_usec, 228

 rx[i].id); 229

 230

 sprintf(w, "%d", rx[i].id); 231

 strcpy(id, w); 232

 162

 233

 234

 printf("\tlen=%d msg=", rx[i].length); 235

 for(j = 0; j < rx[i].length; j++) { 236

 printf(" %02x", rx[i].data[j]); 237

 } 238

 239

 byte1 = ("%d", rx[i].data[0]); 240

 byte2 = ("%d", rx[i].data[1]); 241

 byte3 = ("%d", rx[i].data[2]); 242

 243

 speed = byte1*pow(16,2) + byte2; 244

 245

 sprintf(x, "%d", speed); 246

 strcpy(mes, x); 247

 248

 sprintf(y, "%d", byte3); 249

 strcpy(rev, y); 250

 251

 printf(" flags=0x%02x\n", rx[i].flags); 252

 fflush(stdout); 253

 } 254

 } else { 255

 printf("Received with ret=%d\n", got); 256

 fflush(stdout); 257

 } 258

 if(blocking == FALSE) { 259

 /* wait some time before doing the next read() */ 260

 usleep(sleeptime); 261

 } 262

 263

 fp1 = open(SPEEDFIFO_FILE, O_WRONLY); 264

 write(fp1, mes, 100); 265

 close(fp1); 266

 163

 printf("mes = %s\n", mes); 267

 268

 fp2 = open(IDFIFO_FILE, O_WRONLY); 269

 write(fp2, id, 100); 270

 close(fp2); 271

 printf("id = %s\n", id); 272

 273

 fp3 = open(REVFIFO_FILE, O_WRONLY); 274

 write(fp3, rev, 100); 275

 close(fp3); 276

 printf("rev = %s\n", rev); 277

 278

 } 279

 ////////// End Of Edit //////////////// 280

 281

 close(fd); 282

 return 0; 283

}284

 164

Appendix D – Video Program

dials_bar.c

//The headers 1

#include "SDL.h" 2

#include "SDL_image.h" 3

#include "stdlib.h" 4

#include "stdbool.h" 5

#include <stdio.h> 6

#include <stdlib.h> 7

#include <sys/types.h> 8

#include <sys/stat.h> 9

#include <sys/time.h> 10

#include <sys/ioctl.h> 11

#include <fcntl.h> 12

#include <unistd.h> 13

#include <string.h> 14

#include <math.h> 15

 16

#define SPEEDFIFO_FILE "SPEEDFIFO" 17

#define IDFIFO_FILE "IDFIFO" 18

#define REVFIFO_FILE "REVFIFO" 19

 20

char readbuf1[10]; 21

char readbuf2[10]; 22

char readbuf3[10]; 23

 24

//The attributes of the screen 25

const int SCREEN_WIDTH = 480; 26

const int SCREEN_HEIGHT = 272; 27

const int SCREEN_BPP = 16; 28

 165

 29

//The surfaces that will be used 30

SDL_Surface *message1 = NULL; 31

SDL_Surface *message2 = NULL; 32

SDL_Surface *message3 = NULL; 33

SDL_Surface *background = NULL; 34

SDL_Surface *mask = NULL; 35

SDL_Surface *screen = NULL; 36

 37

bool quit = false; 38

int fp1,fp2,id,fp3,z,t,m,j,i,k,s,lastid; 39

int del = 5; 40

int rpm_value; 41

int last_rpm = 0; 42

int mph_value; 43

int last_mph = 0; 44

int rpm_finished = 0; 45

int mph_finished = 0; 46

char rpm[25]; 47

char mph[25]; 48

char c[25]; 49

char d[25]; 50

char bground[50]; 51

char mk[25]= "images/mph/mask.PNG"; 52

 53

 54

 55

//The event structure 56

SDL_Event event; 57

 58

void apply_surface(int x, int y, SDL_Surface* source, SDL_Surface* destination) 59

{ 60

 //Make a temporary rectangle to hold the offsets 61

 SDL_Rect offset; 62

 166

 63

 //Give the offsets to the rectangle 64

 offset.x = x; 65

 offset.y = y; 66

 67

 //Blit the surface 68

 SDL_BlitSurface(source, NULL, destination, &offset); 69

} 70

 71

bool init() 72

{ 73

 //Initialize all SDL subsystems 74

 if(SDL_Init(SDL_INIT_EVERYTHING) == -1) 75

 { 76

 return false; 77

 } 78

 79

 //Set up the screen 80

 screen = SDL_SetVideoMode(SCREEN_WIDTH, SCREEN_HEIGHT, 81

SCREEN_BPP, SDL_SWSURFACE); 82

 83

 //If there was an error in setting up the screen 84

 if(screen == NULL) 85

 { 86

 return false; 87

 } 88

 89

 //If everything initialized fine 90

 return true; 91

} 92

 93

void quit_prog() 94

{ 95

 // SDL_FreeSurface(message1); 96

 167

 //Quit SDL 97

 SDL_Quit(); 98

 exit(0); 99

} 100

 101

void mask_screen() 102

{ 103

 mask = IMG_Load(mk); 104

 apply_surface(0, 0, mask, screen); 105

 SDL_FreeSurface(mask); 106

} 107

 108

int get_can(t, mph_value, id, lastid, rpm_value) 109

int *t, *mph_value, *id, *rpm_value, *lastid; 110

{ 111

 //////////// Speed Pipe ///////////// 112

 fp1 = open(SPEEDFIFO_FILE, O_RDONLY); 113

 read(fp1, readbuf1, 10); 114

 close(fp1); 115

 116

 z = atoi(readbuf1); 117

 *mph_value = ceil(z/18); 118

 printf("mph_value = %d\n",*mph_value); 119

 if (*mph_value > 145) 120

 { 121

 *mph_value = 145; 122

 } 123

 124

 *t = ceil(z/30); 125

 if (*t > 87) 126

 { 127

 *t = 87; 128

 } 129

 130

 168

 ////////// ID Pipe ///////////////// 131

 fp2 = open(IDFIFO_FILE, O_RDONLY); 132

 read(fp2, readbuf2, 10); 133

 close(fp2); 134

 *lastid = *id; 135

 *id = atoi(readbuf2); 136

 printf("id = %d\n",*id); 137

 sprintf(bground, "images/bar/err%d.PNG", *id); 138

 139

 140

 141

 ///////////// RPM Pipe /////////////////// 142

 fp3 = open(REVFIFO_FILE, O_RDONLY); 143

 read(fp3, readbuf3, 10); 144

 close(fp3); 145

 *rpm_value = atoi(readbuf3); 146

 147

 if (*rpm_value > 300) 148

 { 149

 *rpm_value = 300; 150

 } 151

 *rpm_value = *rpm_value * 20; 152

 printf("rpm_value = %d\n\n",*rpm_value); 153

} 154

 155

 156

int dials(rpm_value, last_rpm , mph_value, last_mph, rpm_finished, mph_finished) 157

int *rpm_value, *last_rpm, *mph_value, *last_mph, *rpm_finished, *mph_finished; 158

{ 159

 do{ 160

 if(*rpm_finished != 1) 161

 { 162

 if(*rpm_value > *last_rpm) 163

 { 164

 169

 *last_rpm = *last_rpm + 20; 165

 } 166

 else if(*rpm_value < *last_rpm) 167

 { 168

 *last_rpm = *last_rpm - 20; 169

 } 170

 sprintf(rpm, "images/rpm/%d.png", *last_rpm); 171

 172

 message2 = IMG_Load(rpm); 173

 apply_surface(280, 0, message2, screen); 174

 if(SDL_Flip(screen) == -1) 175

 { 176

 return 1; 177

 } 178

 SDL_FreeSurface(message2); 179

 180

 if(*last_rpm == *rpm_value) 181

 { 182

 *rpm_finished = 1; 183

 } 184

 } 185

 if(*mph_finished != 1) 186

 { 187

 if(*mph_value < *last_mph) 188

 { 189

 *last_mph = *last_mph - 1; 190

 } 191

 else if (*mph_value > *last_mph) 192

 { 193

 *last_mph = *last_mph + 1; 194

 } 195

 sprintf(mph, "images/mph/%d.png", *last_mph); 196

 197

 message1 = IMG_Load(mph); 198

 170

 apply_surface(0, 0, message1, screen); 199

 if(SDL_Flip(screen) == -1) 200

 { 201

 return 1; 202

 } 203

 SDL_FreeSurface(message1); 204

 205

 if(*last_mph == *mph_value) 206

 { 207

 *mph_finished = 1; 208

 } 209

 } 210

 } 211

 while((*rpm_finished != 1) || (*mph_finished != 1)); 212

 } 213

 214

int green_up(i,t) 215

int *i,*t; 216

{ 217

s = *i; 218

 if (s <= *t) 219

 { 220

 for (s=*i;((s<42)&&(s<*t));s++) 221

 { 222

 background = IMG_Load(bground); 223

 message1 = IMG_Load("images/bar/green.PNG"); 224

 apply_surface(0, 0, background, screen); 225

 for (k=0;k<=s;k++) 226

 { 227

 apply_surface(j, 212, message1, screen); 228

 j=j+4; 229

 } 230

 if(SDL_Flip(screen) == -1) 231

 { 232

 171

 return 1; 233

 } 234

 SDL_Delay(del); 235

 SDL_FreeSurface(message1); 236

 SDL_FreeSurface(background); 237

 j = 56; 238

 } 239

 *i=s; 240

 } 241

} 242

 243

int yellow_up(i,t) 244

int *i,*t; 245

{ 246

s = *i; 247

 if (s <= *t) 248

 { 249

 for (s=*i;((s<60)&&(s<*t));s++) 250

 { 251

 background = IMG_Load(bground); 252

 message2 = IMG_Load("images/bar/yellow.PNG"); 253

 apply_surface(0, 0, background, screen); 254

 for (k=0;k<=s;k++) 255

 { 256

 apply_surface(j, 212, message2, screen); 257

 j=j+4; 258

 259

 } 260

 if(SDL_Flip(screen) == -1) 261

 { 262

 return 1; 263

 } 264

 SDL_Delay(del); 265

 SDL_FreeSurface(message2); 266

 172

 SDL_FreeSurface(background); 267

 j = 56; 268

 } 269

 *i=s; 270

 } 271

} 272

 273

 274

int red_up(i,t) 275

int *i,*t; 276

{ 277

s = *i; 278

 if (s <= *t) 279

 { 280

 for (s=*i;((s<88)&&(s<*t));s++) 281

 { 282

 background = IMG_Load(bground); 283

 message3 = IMG_Load("images/bar/red.PNG"); 284

 apply_surface(0, 0, background, screen); 285

 for (k=0;k<=s;k++) 286

 { 287

 apply_surface(j, 212, message3, screen); 288

 j=j+4; 289

 290

 } 291

 if(SDL_Flip(screen) == -1) 292

 { 293

 return 1; 294

 } 295

 SDL_Delay(del); 296

 SDL_FreeSurface(message3); 297

 SDL_FreeSurface(background); 298

 j = 56; 299

 } 300

 173

 *i=s; 301

 } 302

} 303

 304

int red_down(i,t) 305

int *i, *t; 306

{ 307

s = *i; 308

 if (s >= *t) 309

 { 310

 for (s=*i;((s>=60)&&(s>*t));s--) 311

 { 312

 background = IMG_Load(bground); 313

 message3 = IMG_Load("images/bar/red.PNG"); 314

 apply_surface(0, 0, background, screen); 315

 for (m=1;m<s;m++) 316

 { 317

 apply_surface(j, 212, message3, screen); 318

 j=j+4; 319

 320

 } 321

 if(SDL_Flip(screen) == -1) 322

 { 323

 return 1; 324

 } 325

 SDL_Delay(del); 326

 SDL_FreeSurface(message3); 327

 SDL_FreeSurface(background); 328

 j = 56; 329

 } 330

 *i=s; 331

 } 332

 333

 } 334

 174

 335

int yellow_down(i,t) 336

int *i, *t; 337

{ 338

s = *i; 339

 if (s >= *t) 340

 { 341

 for (s=*i;((s>=42)&&(s>*t));s--) 342

 { 343

 background = IMG_Load(bground); 344

 message2 = IMG_Load("images/bar/yellow.PNG"); 345

 apply_surface(0, 0, background, screen); 346

 for (m=1;m<s;m++) 347

 { 348

 apply_surface(j, 212, message2, screen); 349

 j=j+4; 350

 351

 } 352

 if(SDL_Flip(screen) == -1) 353

 { 354

 return 1; 355

 } 356

 SDL_Delay(del); 357

 SDL_FreeSurface(message2); 358

 SDL_FreeSurface(background); 359

 j = 56; 360

 } 361

 *i=s; 362

 } 363

 } 364

 365

int green_down(i,t) 366

int *i, *t; 367

{ 368

 175

 369

s = *i; 370

 if (s >= *t) 371

 { 372

 for (s=*i;((s>=0)&&(s>*t));s--) 373

 { 374

 background = IMG_Load(bground); 375

 message1 = IMG_Load("images/bar/green.PNG"); 376

 apply_surface(0, 0, background, screen); 377

 for (m=1;m<s;m++) 378

 { 379

 apply_surface(j, 212, message1, screen); 380

 j=j+4; 381

 } 382

 if(SDL_Flip(screen) == -1) 383

 { 384

 return 1; 385

 } 386

 SDL_Delay(del); 387

 SDL_FreeSurface(message1); 388

 SDL_FreeSurface(background); 389

 j = 56; 390

 } 391

 *i=s; 392

 } 393

 394

} 395

 396

int main(int argc, char* args[]) 397

{ 398

 //Make sure the program waits for a quit /////////////// 399

 bool quit = false; 400

 401

 ////////////Initialize ///////////////// 402

 176

 if(init() == false) 403

 { 404

 return 1; 405

 } 406

 407

 while(quit == false) 408

 { 409

 410

 /////mask screen when going from bar graph to dials////////// 411

 if((lastid != 0) && (id == 0)) 412

 { 413

 mask_screen(); 414

 } 415

 416

 ///// id = 0; no errors; use dials /////////////////////// 417

 if(id == 0) 418

 { 419

 dials(&rpm_value, &last_rpm ,&mph_value, &last_mph, &rpm_finished, 420

&mph_finished); 421

 422

 rpm_finished = 0; 423

 mph_finished = 0; 424

 i = ((last_mph*18)/30); 425

 } 426

 427

 ///// id != 0; errors; use bar graph and dispaly error /////////////////////// 428

 else if (id != 0) 429

 { 430

 do{ 431

 j=56; 432

 if ((i>=0) && (i<42) && (t>i)) 433

 { 434

 green_up(&i, &t); 435

 } 436

 177

 else if ((i>=0) && (i<42) && (t<i)) 437

 { 438

 green_down(&i, &t); 439

 } 440

 else if ((i>=42) && (i<60) && (t>i)) 441

 { 442

 yellow_up(&i, &t); 443

 } 444

 else if ((i>=42) && (i<60) && (t<i)) 445

 { 446

 yellow_down(&i, &t); 447

 } 448

 else if ((i>=60) && (i<88) && (t>i)) 449

 { 450

 red_up(&i, &t); 451

 } 452

 else if ((i>=60) && (i<88) && (t<i)) 453

 { 454

 red_down(&i, &t); 455

 } 456

 } 457

 while (t != i); 458

 last_mph = ((i*30)/18); 459

 last_rpm = rpm_value; 460

 } 461

 462

 /////////// Get Info from CAN ////////////////// 463

 get_can(&t,&mph_value, &id, &lastid, &rpm_value); 464

 465

 while(SDL_PollEvent(&event)) 466

 { 467

 //If the user has Xed out the window 468

 if(event.type == SDL_QUIT) 469

 { 470

 178

 //Quit the program 471

 quit_prog(); 472

 } 473

 } 474

 } 475

 476

 477

 return 0; 478

