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Abstract

Drug delivery technologies are an important area within biomedicine. Targeted drug
delivery aims to reduce the undesired side effects of drug usage by directing or capturing
the active agents near a desired site within the body. This is particularly beneficial
in, for instance, cancer chemotherapy, where the side effects of general (systemic) drug
administration can be severe.

One approach to targeted drug delivery uses magnetic nanoparticles as the constituents
of carriers for the desired active agent. Once injected into the body, the behaviour of these
magnetic carriers can be influenced and controlled by magnetic fields. In implant assisted
magnetic drug targeting systems a magnetic implant, typically a stent, wire or spherical
seed can be used to target sites deep within the body as the implant acts as a focus for
the resulting magnetic force. This can be easily understood as the force depends on the
gradient of the magnetic field and the gradient near the implant is large.

In designing such a system many factors need to be considered including physical
factors such as the size and nature of the implants and carriers, and the fields required.
Moreover the range of applicability of these systems in terms of the regions of the vas-
culature system, from low blood velocity environments, such as capillary beds to higher
velocity arteries, must be considered. Furthermore, assessment criteria for these sys-
tems are needed. Mathematical modelling and simulation has a valuable role to play in
informing in vitro and in vivo experiments, leading to practical system design.

Specifically, the implant assisted magnetic drug targeting systems of Avilés, Ebner
and Ritter are considered within this work, and two dimensional mathematical modelling
is performed using the open source C++ finite volume library OpenFOAM. In the first
system treated, a large ferromagnetic particle is implanted into a capillary bed as a seed to
aid collection of single domain nanoparticles (radius 20-100 nm). The Langevin function is
used to calculate the magnetic moment of the particles, and the model is further adapted
to treat the agglomeration of particles known to occur in these systems. This agglomer-
ation can be attributed to interparticle interactions and here the magnetic dipole-dipole
and hydrodynamic interactions for two mutually interacting nanoparticles are modelled,
following Mikkelsen et al. who treated two particle interactions in microfluidic systems,
with low magnetic field (0.05 T). The resulting predicted performance is found to both in-
crease and decrease significantly depending on initial positions of the particles. Secondly,
a ferromagnetic, coiled wire stent is implanted in a large arterial vessel. The magnetic
dipole-dipole and hydrodynamic interactions for multiple (N < 20) particles are included.
Different initial positions are considered and the system performance is assessed. Inclusion
of these interactions yields predictions that are in closer agreement with the experimental
results of Avilés et al.. We conclude that the discrepancies between the non interact-
ing theoretical predictions and the corresponding experimental results can (as suggested
by Avilés et al.) be largely attributed to interparticle interactions and the consequent
agglomeration.



Contents

List of Figures v

List of Symbols vii

List of Acronyms xi

1 Introduction to Magnetic Drug Targeting 1
1.1 Magnetic Targeted Nanoparticles in Biomedicine . . . . . . . . . . . . . . . 1
1.2 Review of Mathematical Modelling of Magnetic Drug Targeting . . . . . . 4

2 Magnetic Fundamentals 11
2.1 Magnetic Properties of Ferromagnets . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Fundamental Quantities, ~H, ~B and ~M . . . . . . . . . . . . . . . . 11
2.1.2 Permeability and Susceptibility . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Hysteresis and Saturation Magnetisation . . . . . . . . . . . . . . . 15
2.1.4 Remanence and Coercivity . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Curie Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6 Hard and Soft Ferromagnetic Materials . . . . . . . . . . . . . . . . 17

2.2 Paramagnetism and the Langevin Function . . . . . . . . . . . . . . . . . . 17
2.3 Single Domain Ferromagnetic Particles and Superparamagnetism . . . . . . 18

2.3.1 Weiss Domain Theory of Ferromagnetism . . . . . . . . . . . . . . . 18
2.3.2 Magnetic Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2.1 Magnetocrystalline (Crystal Structure) Anisotropy . . . . 20
2.3.2.2 Shape Anisotropy . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Single Domain Particles . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Pseudo-Single Domain . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.5 Superparamagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.6 Hysteresis Properties of Different Size Particles . . . . . . . . . . . 23

2.4 Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Magnetic Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Other Applications of Magnetic Nanoparticles in Biomedicine . . . 24
2.5.1.1 Magnetic Resonance Imaging Contrast Agents for Moni-

toring Drug Delivery . . . . . . . . . . . . . . . . . . . . . 24
2.5.1.2 Magnetic Fluid Hyperthermia . . . . . . . . . . . . . . . . 25

3 The Basic Mathematical Model 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Physical Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 The Capillary Bed used in the Seed Model . . . . . . . . . . . . . . 26
3.2.2 The Single Vessel used in the Stent Model . . . . . . . . . . . . . . 28

3.3 Derivation of Particle Velocity . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Calculation of Blood Velocity . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Introduction to Navier-Stokes Equations . . . . . . . . . . . . . . . 30

i



CONTENTS

3.4.2 Navier-Stokes Equations in Dimensionless Form . . . . . . . . . . . 31
3.5 Derivation of Streamlines, Capture Cross Section and Collection Efficiency 33

4 Implementation in OpenFOAM 34
4.1 Introduction to OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Navier-Stokes Equations in OpenFOAM . . . . . . . . . . . . . . . . . . . 36
4.3 Calculation of Magnetic Force . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Calculation of Magnetic Scalar Potential . . . . . . . . . . . . . . . 38
4.3.1.1 2D models: Circular Implant and Polar Coordinates . . . 39
4.3.1.2 Background Source Field . . . . . . . . . . . . . . . . . . . 40
4.3.1.3 Analytic Solution of Magnetic Scalar Potential . . . . . . 40

5 Development of Model to Include Interactions and Results 44
5.1 Inclusion of the Langevin Function . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Inclusion of Interparticle Dipole-Dipole Interaction in the Model . . . . . . 48
5.3 Inclusion of Hydrodynamic Interaction in the Model . . . . . . . . . . . . . 50
5.4 Inclusion of Magnetic Dipole-Dipole and Hydrodynamic Interactions for

Two MDCPs — Seed Model . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Effect of Interactions on the Agglomeration of MDCPs . . . . . . . 52
5.4.2 Effect of Interactions on the Capture Cross Section of the System . 54

5.5 Inclusion of Magnetic Dipole-Dipole and Hydrodynamic Interactions for
Multiple MDCPs - Stent Model . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusions 67

A Scalar Potential Formulation 76
A.1 Calculation of Permeability of the Implant . . . . . . . . . . . . . . . . . . 76
A.2 Solution Using Total-Total Potential Formulation . . . . . . . . . . . . . . 77
A.3 Solution Using Total–Reduced Potential Formulation . . . . . . . . . . . . 79
A.4 Derivation of Magnetic Force Density . . . . . . . . . . . . . . . . . . . . . 80

B OpenFOAM Code for Seed Model 81
B.1 Applications (Solver) for Seed Implant . . . . . . . . . . . . . . . . . . . . 81

B.1.1 createFields.H file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.1.2 createFields-analytic.H file . . . . . . . . . . . . . . . . . . . . . . . 83
B.1.3 readtwoRegionDict.H file . . . . . . . . . . . . . . . . . . . . . . . . 87
B.1.4 interactionFoam.C file . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.2 Run (Case) for Seed Implant . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2.1 0 (initial conditions file) . . . . . . . . . . . . . . . . . . . . . . . . 97

B.2.1.1 epsilon file . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2.1.2 k file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.2.1.3 nuTilda file . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.2.1.4 p file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.2.1.5 phi file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.2.1.6 R file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ii



CONTENTS

B.2.1.7 T file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.2.1.8 U blood velocity file . . . . . . . . . . . . . . . . . . . . . 103

B.2.2 constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.2.2.1 Polymesh File (blockMeshDict) file . . . . . . . . . . . . . 104
B.2.2.2 physical properties file . . . . . . . . . . . . . . . . . . . . 106
B.2.2.3 transport properties file . . . . . . . . . . . . . . . . . . . 107
B.2.2.4 turbulence properties file . . . . . . . . . . . . . . . . . . . 107

B.2.3 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.2.3.1 controlDict file . . . . . . . . . . . . . . . . . . . . . . . . 108
B.2.3.2 fvSchemes file . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.2.3.3 fvSolution file . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2.3.4 sampleDict file . . . . . . . . . . . . . . . . . . . . . . . . 110
B.2.3.5 twoRegionDict file . . . . . . . . . . . . . . . . . . . . . . 111

C Mesh Generator for Stent Model 112
C.1 Mesh Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
C.2 BlockMeshDict.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
C.3 Vector.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D OpenFOAM Code for Stent Model 120
D.1 Applications (Solver) for Stent Implant . . . . . . . . . . . . . . . . . . . . 120

D.1.1 createFields.H file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
D.1.2 createFields-analytic.H file . . . . . . . . . . . . . . . . . . . . . . . 121
D.1.3 readtwoRegionDict.H file . . . . . . . . . . . . . . . . . . . . . . . . 124
D.1.4 stent.C file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

D.2 Run (Case) for Stent Implant . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.2.1 0 (initial conditions file) . . . . . . . . . . . . . . . . . . . . . . . . 136

D.2.1.1 epsilon file . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.2.1.2 k file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
D.2.1.3 nuTilda file . . . . . . . . . . . . . . . . . . . . . . . . . . 139
D.2.1.4 p file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
D.2.1.5 R file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
D.2.1.6 T file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
D.2.1.7 Blood velocity file, U . . . . . . . . . . . . . . . . . . . . . 145
D.2.1.8 Magnetic Field, H . . . . . . . . . . . . . . . . . . . . . . 146
D.2.1.9 Uniform Field in the Model . . . . . . . . . . . . . . . . . 148
D.2.1.10 Modification to the Magnetic Flux Density . . . . . . . . . 149
D.2.1.11 Magnetisation in Avilés Model . . . . . . . . . . . . . . . 150
D.2.1.12 Magnetic Moment in the Model . . . . . . . . . . . . . . . 152

D.2.2 constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
D.2.2.1 Polymesh File (blockMeshDict) file . . . . . . . . . . . . . 153
D.2.2.2 physical properties file . . . . . . . . . . . . . . . . . . . . 154
D.2.2.3 transport properties file . . . . . . . . . . . . . . . . . . . 155
D.2.2.4 turbulence properties file . . . . . . . . . . . . . . . . . . . 156

D.2.3 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.2.3.1 controlDict file . . . . . . . . . . . . . . . . . . . . . . . . 156
D.2.3.2 fvSchemes file . . . . . . . . . . . . . . . . . . . . . . . . . 157

iii



CONTENTS

D.2.3.3 fvSolution file . . . . . . . . . . . . . . . . . . . . . . . . . 158
D.2.3.4 sampleDict file . . . . . . . . . . . . . . . . . . . . . . . . 160
D.2.3.5 twoRegionDict file . . . . . . . . . . . . . . . . . . . . . . 161

E Publications 162

iv



List of Figures

1.1 Experimental and theoretical CE results of Avilés et al. (source: [8]). . . . 10

2.1 Schematic representation of the B-H curve of a ferromagnetic material [45]. 15
2.2 Schematic representation of the M -H curve of a typical ferromagnetic ma-

terial [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Spontaneous magnetisation, Ms, of a ferromagnet as a function of the tem-

perature, T , normalised to the Curie Temperature, Tc. The applied field is
assumed to be small, but finite, as it is in real measurements [2]. . . . . . . 19

3.1 Schematic diagram of the control volume representing a capillary bed. . . . 27
3.2 Schematic diagram of the control volume representing a vessel with stent. . 28

4.1 General problem of object (region 1 = implant) embedded in a space region
(region 2 = space) of constant permeability [76]. . . . . . . . . . . . . . . . 38

4.2 Interface conditions across the boundary of regions with different permeability.—
the normal component of ~B and the tangential component of ~H are con-
tinuous [76]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Streamlines indicating the trajectories of the single domain nanoparticles,
calculated using OpenFOAM, as they traverse the control volume for dif-
ferent magnitudes of the externally applied magnetic field, ~H0. . . . . . . . 47

5.2 Capture cross section, λc, plotted as a function of the applied magnetic
field strength calculated using the Langevin function and following Avilés
et al.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Distance of agglomeration point from the seed plotted against initial dis-
tance between the MDCPs, D, with (a) dipole-dipole magnetic interaction
only, (b) hydrodynamic interaction only, (c) both interactions and (d) no
interactions between the MDCPs. All other conditions are as the reference
case condition in table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 The trajectories of the MDCPs are presented with the magnetic dipole-
dipole interaction and no interactions. Initial position of MDCP 1 & 2
are (−20, λ∗c + 0.25) & (−20, λ∗c − 0.25). With the magnetic dipole-dipole
interaction both MDCPs are captured. . . . . . . . . . . . . . . . . . . . . 55

5.5 The trajectories of the MDCPs are presented with the magnetic dipole-
dipole interaction and no interactions. Initial position of MDCP 1 & 2
are (−20, λ∗c + 0.35) & (−20, λ∗c − 0.15). With the magnetic dipole-dipole
interaction, neither MDCP is captured. . . . . . . . . . . . . . . . . . . . . 56

5.6 The trajectories of the MDCPs are presented with the hydrodynamic in-
teraction and no interactions. Initial position of MDCP 1 & 2 are (−20,
λ∗c + 0.255) & (−20, λ∗c − 0.255). With the hydrodynamic interaction both
MDCPs are captured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

v



LIST OF FIGURES

5.7 The trajectories of the MDCPs are presented with the hydrodynamic in-
teraction and without any interaction. Initial position of MDCP 1 & 2 are
(−20, λ∗c + 0.644) & (−20, λ∗c + 0.134). With hydrodynamic interaction,
MDCP 2 is now captured. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 The trajectories of the MDCPs are presented with both interactions and
no interactions. Initial position of MDCP 1 & 2 are (−20, λ∗c + 0.32) &
(−20, λ∗c − 0.32). With both interactions both MDCPs captured. . . . . . 59

5.9 The collection efficiency (CE) of the system plotted as a function of the
blood velocity at the applied field µ0H0= 0.65 T. . . . . . . . . . . . . . . 65

5.10 The collection efficiency (CE) of the system plotted as a function of the
blood velocity at the applied field µ0H0= of 0.17 T. . . . . . . . . . . . . . 66

B.1 Structure of the OpenFOAM program . . . . . . . . . . . . . . . . . . . . 81

vi



List of Symbols

Roman Symbols

Ac Area of the electric current loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

~B Magnetic flux density or magnetic induction . . . . . . . . . . . . . . . . . . . . . . . . . 11

~Btotaln
Total magnetic flux density acting on MDCP n . . . . . . . . . . . . . . . . . . . . . . 49

Br Remanent magnetic induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C Curie constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Initial interparticle distance between MDCPs . . . . . . . . . . . . . . . . . . . . . . . . 52

~E Electric field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

~Fhydn
Force due to the hydrodynamic interaction which acts on MDCP n . . . 50

~Fi Inertial forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

~Fin
Inertial forces of MDCP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

~Fintn
Modified magnetic force of MDCP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

~Fm Magnetic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

~Fs Stokes drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

~Fsn
Stokes drag of MDCP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

f0 Frequency pre-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

fw The magnetic force density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

~H Magnetic field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Hc Coercive field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

~H0 Externally applied magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

h Distance between the centres of the stent wires. . . . . . . . . . . . . . . . . . . . . . . 28

i Current in the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Ka anisotropy constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

kB Boltzmann’s constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

L length of coiled stent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



LIST OF SYMBOLS

~M (Volume) Magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

~m Magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

~mn Total magnetic moment of MDCP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Mfm,p Magnetisation of the ferromagnetic material in the MDCP . . . . . . . . . . . 77

Mfm,p,s Saturation magnetisation of the ferromagnetic material in the MDCP 76

Mimplant Magnetisation of the implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Mimplant,s Saturation magnetisation of the implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Mr Remanent magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Ms Spontaneous magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Msat Saturation magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

NEu Euler numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Nl Number of loops in stent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

NRe Reynolds numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

n̂ The normal vector of the interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

na The number of atoms per unit volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

P Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

P0 Pressure at the outlet of the CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Rimplant Radius of the implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Rp Radius of the MDCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Rpi
Radius of the MDCP i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Rpn
Radius of the MDCP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Rvessel Radius of vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Rwire Radius of the wire (implant) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

~r Represents an arbitrary point in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

~rn Position of the MDCP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

T Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

TB Blocking temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Tc Curie temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



LIST OF SYMBOLS

t̂ The tangential vector of the interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

tr Relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

u0 Inlet (average) velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xfm,p Weight fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

V Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

VB Blocking volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Vp Volume of the MDCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Vpn
Volume of MDCP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

~vb Blood velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

~vp Velocity of the MDCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

~vpn
Velocity of MDCP n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Greek Symbols

αfm,p Demagnetising factor for a ferromagnetic material . . . . . . . . . . . . . . . . . . . . 76

αimplant Demagnetising factor for the implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

β Langevin argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

χ Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

χfm,p Volumetric magnetic susceptibility of the ferromagnetic material in the
MDCP with field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

χfm,p,0 Volumetric magnetic susceptibility of the ferromagnetic material in the
MDCP with zero field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

χimplant Volumetric magnetic susceptibility of the implant . . . . . . . . . . . . . . . . . . . . 77

χimplant,0 Volumetric magnetic susceptibility of the implant with zero field . . . . . 77

η Viscosity of the fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ηb Viscosity of the blood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ηeff Kinematic viscosity of the fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

λc Capture radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

λ∗c The resulting boundary of the reference capture cross section . . . . . . . . . 54

ix



LIST OF SYMBOLS

µ Permeability of the medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

µimplant Relative permeability of implant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

µ0 Permeability of free space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

µr Relative permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

µspace Relative permeability of space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ωfm,p Volume fraction of ferromagnetic material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

φ Magnetic scalar potential (Reduced–reduced) . . . . . . . . . . . . . . . . . . . . . . . . 30

ψ Magnetic scalar potential (Total–total) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ψs Stream function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ρ Density of the fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ρb Density of the blood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ρfm,p Density of the ferromagnetic material in the MDCPs . . . . . . . . . . . . . . . . . 46

ρpol,p Density of the polymer material in the MDCPs. . . . . . . . . . . . . . . . . . . . . . . 46

~τ Torque on a magnetic dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

τmax Maximum torque on a magnetic dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ϕ Magnetic field orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

x



List of Acronyms

CCM Computational Continuum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CCS Capture Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CE Collection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CFD Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CV Control Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

DE Diversion Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

FEM Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

FVM Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

HGMS High Gradient Magnetic Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IA-MDT Implant Assisted Magnetic Drug Targeting . . . . . . . . . . . . . . . . . . . . . . . 3

MD Multiple Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

MDCP Magnetic Drug Carrier Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

MDT Magnetic Drug Targeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

MFH Magnetic Fluid Hyperthermia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

MIS Magnetisable Intravascular Stent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

MRI Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

OpenFOAM Open Field Operation and Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

PSD Pseudo-Single Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

SD Single Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

SPM Superparamagnetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

SS Stainless Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

xi



Chapter 1

Introduction to Magnetic Drug

Targeting

1.1 Magnetic Targeted Nanoparticles in Biomedicine

In this introductory chapter, we present some general information concerning magnetic

drug targeting (MDT) and the motivation for this work. Also, a brief history of MDT and

related applications is given. This is followed by a chapter on the magnetic fundamentals

relevant to MDT. The third chapter deals with the fluid dynamics, specifically the Navier-

Stokes equations, and the basic MDT model which is considered. Next, we give some

general information about OpenFOAM (Open Field Operation and Manipulation) a finite

volume simulation C++ library, used in this work. The fifth chapter outlines the results of

the Ph.D. and the conclusions are presented in the last chapter. The analytical solution of

magnetic scalar potential, C++ finite volume library code for seed model, mesh generator,

C++ finite volume library code for the stent model and associated publications are given

in appendices A to E.

The notable properties of magnetic nanoparticles [24, 26, 27] have been exploited to

good effect in many applications, particularly in magnetic recording. These particles

can be used in many potential applications in biomedicine as a result of their particular

physical properties [14, 15, 60, 65]. To begin with, for biological applications nanoparticles

can be prepared with sizes comparable to a cell (10–100 µm), a virus (20–450 nm), a

protein (5–50 nm), or a gene (2 nm wide and 10–100 nm long). Furthermore, they can be

coated with biological molecules to facilitate biocompatibility in the body. In addition,

if the nanoparticles are magnetic they can be controlled by an external magnetic field.

This allows magnetic nanoparticles to transport therapeutic agents such as anticancer
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1. Introduction to MDT 1.1. Magnetic Targeted Nanoparticles

drugs, genes [71] or radionuclides [37, 72] to a targeted site in the body, such as a tumour.

Moreover, the magnetic nanoparticles can react to a time-varying magnetic field. Thus,

they can be heated and used as hyperthermic agents to deliver a toxic amount of thermal

energy to the targeted site of the body, such as a tumour [46]. To begin with, we discuss

the use of magnetic nanoparticles in three particular applications:

• magnetic drug targeting,

• magnetic resonance imaging (MRI) contrast enhancement [59, 74],

• hyperthermia treatments.

Targeted delivery and vascular treatment use the particles as carriers for the appropriate

therapeutic agents which are manipulated under the control of magnetic fields [49, 66]. In

contrast enhancement, the metastatic lymph nodes absorb the nanoparticles more than

inflamed nodes and this is detectable with MRI [59, 74]. Hyperthermic treatment involves

heating, via radio-frequency fields, within the range 41◦–46◦ C, damaging cells but also

significantly assisting radiotherapy of tumour cells [65].

Although, biomedical applications of magnetic nanoparticles have been proposed since

the 1950s [34, 38], recent advances in nanotechnology have meant that many of the tech-

nical problems associated with production and biocompatibility [50, 51, 52] are now being

solved. Significantly, in March 2005, the US Food and Drug Administration gave approval

to Advanced Magnetics [1] for the use of Combidex, an ultra small superparamagnetic

compound, for human injection as an MRI contrast agent. Similar progress in the other

applications has followed, with Magforce [53] (CEO Dr Andreas Jordan, see reference [46])

producing drug delivery compounds and systems.

The development of more effective drug treatment methodologies is an area of much

research. In most drug delivery systems much of any drug administered to patients does

not reach its target site. The aim of drug targeting is to decrease the amount of drug

delivered to healthy tissue, while maintaining the therapeutic action at the site. One such

approach is MDT. For instance, magnetic nanoparticles can be employed as carriers in a

cancer treatment, thereby avoiding the side effects of conventional chemotherapy [31, 77].

MDT typically uses an external magnetic field source to capture and retain magnetic drug

carrier particles (MDCPs) at a specific site after being injected into the body. Studies

2



1. Introduction to MDT 1.1. Magnetic Targeted Nanoparticles

have shown that MDT is a relatively safe and effective methodology for targeting drugs to

a specific site in the body [50, 51, 52]. However, there are some significant limitations of

MDT. One limitation associated with MDT is the gradient problem, that is the magnetic

force requires a magnetic field gradient ; thus it can be difficult using external magnets only

to target areas deep within the body, without targeting the surface more strongly [11, 36].

To overcome this problem several authors [5, 6, 8, 9, 10, 22, 41, 66, 68, 83] have proposed

implanting ferromagnetic materials such as wires, seeds and stents within the body. In

a homogeneous magnetic field these implants create strong localised gradients, and this

approach is known as implant assisted MDT (IA-MDT). This IA-MDT approach consists

of three components. First, it uses standard magnets that provide a long-range, low-

gradient magnetic field. Second, it uses an implant that creates a localised high-gradient

magnetic field when it is magnetised by a low-gradient magnetic field. Third, it uses

MDCPs designed to aggregate and/or collect only when and where they come across a

high-gradient magnetic field. Of the various IA-MDT implants suggested by Ebner, Ritter

and co-workers [5, 6, 7, 8, 9, 10, 22, 66, 68] firstly, we consider a seed as the implant with

single domain magnetic nanoparticles as MDCPs [28, 29] and secondly, we consider the

stent as the implant, with MDCPs containing magnetic single domain nanoparticles [30].

Stent technology is well advanced in Ireland with many companies such as Abbott,

Clearstream, Stryker, Cordis Corporation and Boston Scientific involved. Their success

in cardiovascular treatment is well known, with many people in Ireland having stents in

their bodies. Patients need only spend a day in hospital to have a stent fitted, compared

to more than a week following a bypass operation. In the USA, more than 500, 000 heart

stents are placed each year and in the UK, around 70, 000 patients receive heart stents

each year. In this work a magnetisable stent is chosen as one of the proposed implant.

Avilés et al. [8] compared the (non-interacting) particle model of this stent system

with in vitro experimental arrangement using a ferromagnetic stent made in the shape of

a coil. Their results indicated that at low fluid velocity more particles were collected than

predicted. Furthermore, they suggested that particle agglomeration (due to interparticle

interactions) might explain this. With this in mind, we have developed their mathemat-

ical model to include both dipole-dipole and hydrodynamic interactions between many

particles. These theoretical results are presented here and are compared with the in vitro
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experiments of Avilés et al.. We note that Mikkelsen et al. [21] have included both the

hydrodynamic and dipole-dipole interactions for the case of low magnetic fields by consid-

ering high gradient magnetic separation. Also, Mehasni et al. have considered the effect

of magnetic dipole-dipole interaction on the performance of high gradient magnetic sepa-

ration systems [57]. In this work, we calculate the effect of interactions of many particles

on the collection efficiency (CE) of the system allowing the agglomeration of particles.

Simulations are obtained using OpenFOAM a finite volume simulation C++ library.

1.2 Review of Mathematical Modelling of Magnetic

Drug Targeting

The work presented in this thesis concerns MDT. One of the basic requirements in drug

management is that sufficient quantities of the drug reach the desired site in the body.

Taking a systemic approach, in order to have a sufficient amount of drug at the intended

organ or disease site, large doses of drug have to be taken into the body. These high doses

can harm the non-target organs and cells of the body. To avoid this, methods are being

developed to target the desired site and to decrease the amount of drug at non-target sites.

In MDT, this can be achieved by attaching the drugs to magnetic nanoparticles to produce

MDCPs and controlling these by means of external magnetic fields. The traditional way

of applying magnetic fields to target drugs is to locate the permanent magnets directly

over the affected site in the body. The magnet creates a magnetic field and gradients that

are theoretically strong enough to collect MDCPs.

Specifically, the work presented here concerns the theoretical modelling of the be-

haviour of MDCPs in the cardiovascular system. Historically, the pioneering work of

Senyai et al. [73] showed that it should be possible to attract the particles within the

human body to specific locations with the use of external magnetic fields. Their model

considered the basic physical laws of the behaviour of one particle flowing in the presence

of an externally applied magnetic field gradient and undergoing Stokes drag. They con-

sidered a broad range of flow rates, from 0.05 cm/s to 10 cm/s that occur throughout the

human cardiovascular system. Predictions from this model were used to inform in vitro

and later in vivo experiments. Inherent in their model was the assumption of smooth
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vessel walls and the in vitro experiments used a continuous flow rate as opposed to the

pulsatile flow that is a dominant effect near the heart. The cellular constituents of the

blood were not considered, and the problems arising from junctions in the vessel network

were not considered. Grief and Richardson advanced the theoretical models of this hydro-

dynamic problem by incorporating the diffusive effects of particle interactions with the

red blood cells and the problem of junctions [36]. They performed numerical calculations

for a two dimensional network based on this model. Significantly their results suggested

limitations in the control of the particles which could be affected by the use of external

magnets. In particular, they suggest that it is not possible to target interior regions of

the body (deeper than 2 cm [66]) without targeting some of the surrounding regions of the

body more strongly. A related problem is that the blood velocity in large arteries is 50-100

times larger than the blood velocity in capillaries. Therefore a large external magnetic

field is required to collect the MDCPs in large arteries [66]. This magnetic force problem

has been addressed by Babincova et al. [11] who showed that increasing the strength of the

magnetic field is not the only way to increase the collection of MDCPs. The force acting

on a magnetic particle is directly proportional to both the strength and the gradient of

the magnetic field. A larger gradient of the magnetic field results in a greater force on

the MDCPs. One way to locally increase the gradient of the magnetic field is to place a

ferromagnetic implant in the region of the magnetic field and this approach is known as

implant assisted magnetic drug targeting (IA-MDT). Taking this approach, James Ritter

and co-workers at the University of South Carolina have proposed the use of a wire [66],

a seed [6] and a stent [7, 22, 68] as the implant.

In particular, Ritter et al. [66] studied, in FEMLAB simulations, a theoretical MDT

system using high gradient magnetic separation (HGMS) principles. In this, their original

model, they used a ferromagnetic wire placed inside the blood vessel as an implant. They

applied an external magnetic field to control the MDCPs in the system and to keep them at

the target site of the system. They defined collection (CE) and diversion (DE) efficiencies

to assess the system performance. In particular, the CE is defined as the percentage of

the MDCPs captured by the magnetised implant. In their system the changes in CE and

DE are studied as the following vary:

• the strength of the applied magnetic field (0.3–2.0 T),
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• the amount of ferromagnetic material (iron) in the MDCP (20–100 wt%),

• the size of the MDCPs (1–10 µm radius),

• average inlet velocity (0.1–0.8 m/s),

• the size of the wire (50–250 mm radius) ,

• the ratio (4–10) of the parent vessel radius to the wire radius (0.25–1.25 mm radius).

It was seen that the effect of the applied magnetic field direction on CE and DE was small.

Under the above conditions, 70% CEs and 30% DEs were achieved, and when the MDCPs

were allowed to agglomerate, 100% CEs were achieved. (The treatment of agglomeration

here amounted to viewing the agglomerated cluster as a larger particle with significant

porosity.) Ritter et al. conclude that their MDT system for collecting MDCPs at the

target site is promising. Their proposed system to divert MDCPs through the circulatory

system also shows promise but is in their view more limited. The Ritter et al. [66] study

suggested that MDT using HGMS principles had significant promise with many potential

applications.

Ritter’s group (Avilés et al. [6]) later developed an IA-MDT model which uses ferro-

magnetic particles with a seed as the implant for collecting MDCPs at the target site in

the body, specifically in a capillary bed near a tumour. Here, they used a capture cross

section approach, to assess the system performance. Capture cross section (CCS) is the

size of the capture radius expressed as a multiple of the seed (implant) radius, where the

capture radius is defined by the location of streamline at the entrance to the control vol-

ume (CV) of the last MDCP captured by the seed (implant) (see figure 3.1). In their 2D

mathematical model, the changes in CCS were studied in FEMLAB for different values

of:

• the magnetic field strength,

• MDCP radius,

• MDCP ferromagnetic material weight content,

• average blood velocity,
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• seed radius, number of seeds and seed separation.

Avilés et al. used different magnetic materials such as iron, stainless steel (SS) 409, mag-

netite, and SS 304 for the MDCP and seed. Increasing the magnetic field strength, MDCP

size, seed size, MDCP ferromagnetic material content, or MDCP or seed saturation mag-

netisation significantly increased the system performance while, as expected, increasing

the average blood velocity decreased the performance. The number of seeds and the seed

separation had relatively small changes in the system performance. The study of Avilés et

al. [6] indicates that using seeds as implants for IA-MDT has significant effect in targeting

drugs in capillary beds.

Ritter’s group (Chen et al. [22]) also developed a 2D mathematical model and, in

FEMLAB simulations, studied the collection of MDCPs by a magnetisable intravascular

stent (MIS) implant and used CE to assess the system performance. In their system the

changes in CE are studied as the following parameters vary over a wide range of realistic

conditions:

• the blood flow rate,

• magnetic field strength and direction,

• MDCP properties,

• stent design parameters such as MIS radius, wire radius, number of MIS loops, wire

loop spacing and MIS ferromagnetic material.

Chen et al. [22] show that MDT using an MIS has significant promise. Furthermore it is

worth noting that stent technology is already well established for the treatment of many

cardiovascular conditions.

More recently Ritter’s group (Avilés et al. [7]) studied IA-MDT in vitro using a coiled

ferromagnetic wire stent made from SS 430 or 304, and MDCPs which were made using

polystyrene and 20 wt% magnetite. They employed CE to assess the system performance.

In their system the changes in CE are studied as the following parameters vary:

• the fluid velocity,

• MDCP concentration,

7
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• magnetic field strength,

• stent material.

It was seen that all the above parameters are important for the quantity of the MDCPs

captured. This study confirms in vitro that MDT using an MIS is effective in attracting

and collecting MDCPs at the desired site.

Elsewhere, Furlani and Furlani [33] studied a mathematical model of IA-MDT. They

considered the dominant magnetic and fluidic forces on an MDCP and derived an ana-

lytic expression for predicting its trajectory in a microvessel. Also, their model allows

parametric analysis of magnetic targeting as a function of key variables:

• size of the carrier particle,

• the properties and volume fraction of the magnetic nanoparticles,

• the properties of the magnet, the microvessel and the blood properties.

Furthermore, their results show that magnetic targeting can be achieved using submicron

carrier particles when the tumour is within a few centimetres of the surface of the body.

A significant effect at the target site is that agglomeration of the particles can occur.

This is due to the interparticle magnetic dipole-dipole interaction, which becomes signif-

icant as the magnetic field brings the particles closer together, overcoming the designed

repulsion inherent in the ferrofluid state. This can lead to partial or total vessel occlu-

sion. Also, this leads to changes in the particle trajectories and should be incorporated

in the modelling [41]. Furthermore, past the target site de-agglomeration should occur

and has been observed [35] but this phenomenon had not been successfully modelled. A

primary motivation for the work in this thesis was to achieve realistic modelling of these

phenomena.

Recently, Mikkelsen et al. [21, 58] calculated the magnetic dipole-dipole and hydro-

dynamic interactions between magnetic beads under low magnetic fields (0.05 T) in mi-

crofluidic systems. Firstly, in their model, as a result of dipole-dipole interaction, magnetic

beads (which behave as small implants) increase the gradient of the magnetic field act-

ing on the other magnetic beads. Therefore the magnetic force acting on the magnetic

beads is also increased and they interact with each other. Also, the total magnetic force

8
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is increased because of the change in magnetisation. Secondly, the movement of each

magnetic beads affects the fluid flow which in turn affects the other beads, leading to a

hydrodynamic interaction. In conclusion, in their model, they highlighted the importance

of hydrodynamic interactions during the capturing of the magnetic beads. They showed

that the effect of hydrodynamic interactions on bead capturing cannot be ignored when

treating agglomeration, particularly for large particles

Specifically, in this work, we have developed the models of Ritter’s group, in particular

the stent model to incorporate dipole-dipole and hydrodynamic interactions between the

MDCPs. This is with a view to account for the recent results of Avilés et al. [8]. These

show higher CE than predicted with low fluid velocity (≤ 15 cm/s) and lower CE than

predicted for higher blood velocity (see figure 1.1). These they consider to be due to

interparticle interaction resulting in agglomeration and shearing force effects.

Finally, we note in terms of future work, the complexity of the problems leaves many

factors neglected in existing models. As outlined by Lübbe et al. [52]

Physiological as well as pharmacological parameters in magnetically
controlled drug targeting warrant further investigation. This is because
the efficacy of in vivo drug targeting with ferrofluids critically depends
on physiological parameters. To understand this new form of pharmaco-
logical application as well as the mechanism of action of the concentrated
drug in the tissue at the microcirculatory level one must consider not
only the ferrofluids’ parameters (particle size, surface characteristics of
the particle, concentration of the fluid, volume of the fluid, reversibility
and strength of the drug/ferrofluid binding, desorption characteristics),
but also access to the organism (infusion route/duration/rate of the in-
jection/infusion time), geometry and strength of the magnetic field, and
duration of the magnetic field application.
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(a) Experimental and theoretical CE is plotted as a function of fluid
velocity for 0.17 T and 0.65 T.

(b) Experimental and theoretical CE is plotted as a function of the
applied magnetic field for the fluid velocities of 2.1 cm/s, 4.2 cm/s and

21.2 cm/s.

Figure 1.1: Experimental and theoretical CE results of Avilés et al.
(source: [8]).
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Chapter 2

Magnetic Fundamentals

A major aspect of this work involves the calculation and prediction of the behaviour

of magnetic nanoparticles in the presence of magnetic fields. In order to perform these

calculations it is beneficial to discuss some basics of magnetism and the relevant magnetic

quantities. In this chapter, the different forms of magnetism are discussed and classified;

in particular we consider ferromagnetism, paramagnetism and superparamagnetism with

a view to understanding the nature of magnetic nanoparticles and their applications.

2.1 Magnetic Properties of Ferromagnets

2.1.1 Fundamental Quantities, ~H, ~B and ~M

In this section we clarify the terms magnetic field, magnetic flux density (or magnetic

induction) and magnetisation. We begin by stating that any region of space which exhibits

an influence on a magnet, for instance a compass needle, can be said to possess a magnetic

field. The source of this magnetic field can be understood ultimately to be due to the

presence of electric currents. In the case of electromagnets, the currents are clearly those

circulating in the coils. In the case of magnetic materials, the source is attributed to

uncompensated orbital or spin motion of the electrons within the atoms, which in the

case of ferromagnets orient collectively through exchange.

As first observed by Oersted in 1819, a magnetic field can be created by current

carrying conductor [62]. Oersted discovered that the direction of the current carried on a

wire can determine a compass needle’s direction.

We next distinguish between the quantities magnetic field strength, ~H, and the mag-

netic flux density, ~B, also termed magnetic induction. The magnetic field strength cre-

ated by an electric current can be calculated from the Biot-Savart law or from Ampère’s

law [4, 45]. In the SI unit system the strength of magnetic field, H is measured in amperes
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per metre (A/m) which indicates the relation of this quantity to the electric current1.

On the other hand, magnetic flux density, ~B, is the response of the medium to the

magnetic field. It can be understood as the density of magnetic lines of force, or magnetic

flux lines, passing through a particular area. The movement of a compass needle (a

magnetic dipole) is clearly due to the applied torque on the compass needle. The strength

of this torque is in turn determined by the strength of the magnetic induction, ~B. Thus

we note that ~B, not ~H, plays the role of the physical observable in magnetism, in the

same way that the electric field strength, ~E, does in electrostatics. In the SI unit system

~B is measured in webers per metre squared (Wb/m2) and is equivalent to a magnetic

induction of one tesla (T).

In free space the relation between magnetic field and magnetic flux density is simple

and magnetic flux density is proportional to magnetic field strength,

~B = µ0
~H, (2.1)

where µ0 is the permeability of free space and has value µ0 = 4π × 10−7H/m. On the

other hand, for different media, magnetic flux density is not in general a linear function

of magnetic field. However they can still be related in terms of the permeability of the

medium, µ, through,

~B = µ ~H, (2.2)

where µ is in general not a constant and furthermore can be multivalued, as is the case

with hysteresis.

Magnetisation relates to the contribution of the magnetic material to the magnetic flux

density, ~B, when a field is applied to the material. Magnetisation depends on the mag-

netic characteristic of the material. One expects larger magnetisation for ferromagnets

than paramagnets or diamagnets. Magnetisation results from two sources: orbital motion

of electrons around the nucleus and the spinning of electrons on their own axes. Both the

electron and spin motions contribute the magnetic dipole moment of the atom although

in most magnetic materials, the magnetic moment is due to spin motion. The magnetisa-

tion, and the related quantity magnetic dipole moment, are useful in understanding the

1 Throughout this work the magnitude of a vector quantity, ~v, is represented by v.
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response of these materials to the field. The magnetic dipole moment is defined here for

the simplest magnetic field creator circuit which is a circular loop of conductor carrying

an electric current as,

m = i Ac, (2.3)

where Ac is the area of the electric current loop and i is the current in the circuit.

Magnetic flux density, ~B, results in a torque on the moment which can lead to the

moment aligning with the magnetic flux density. Hence, the magnetic moment, ~m, can be

defined as a vector relating the aligning torque on the magnetic dipole. The relationship

is given by [45]

~τ = ~m× ~B, (2.4)

where ~τ is the torque on a magnetic dipole and som can be determined from the maximum

torque, τmax, through

m =
τmax

B
, (2.5)

and the unit of magnetic moment is ampere metres-squared (Am2).

Furthermore, the (volume) magnetisation, ~M , is defined as the sum of the magnetic

dipole moment per unit volume of a solid via,

~M =
~m

V
. (2.6)

where V is the sample volume and ~M is measured in ampere per metre (A/m). Finally

the relationship between the fundamental quantities ~H, ~M and ~B for a linear material

can be written as

~B = µ0

(
~H + ~M

)
, (2.7)

where ~B is in tesla (T) and ~H and ~M are in amperes per metre (A/m). The reader

should note the existence of other unit system such as the CGS and the Imperial unit

systems [13]. Furthermore we note the fundamental equations can differ, depending on

the unit system.
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2.1.2 Permeability and Susceptibility

Permeability is an important distinguishing property of ferromagnets. It is the indication

of the magnetic induction, ~B, arising due to an applied magnetic field, ~H. Whilst the

permeability of a vacuum is constant, in general for magnetic material permeability is

not constant but depends on the value of magnetic flux density, ~B, for each ~H value

as indicated by the hysteresis loop in figure 2.1. Consistent with (2.2) the magnetic

permeability is defined through [45]

~B = µ ~H. (2.8)

A related concept, the relative permeability, denoted by µr, also used in the SI unit system

is defined as

µr =
µ

µ0

. (2.9)

Magnetic susceptibility denoted by χ, is closely related to the relative permeability through

χ = µr − 1 (2.10)

and to M and H through

M = χH. (2.11)

The magnetic susceptibility of a material can be positive or negative (unlike the analo-

gous electric susceptibilities). The major types of magnetic material are classified as dia-

magnetic, paramagnetic or ferromagnetic according to their magnetic susceptibilities [23]

where:

diamagnetic materials have small and negative susceptibilities because of the opposing

nature of the magnetisation, ~M , with respect to applied field, ~H,

paramagnetic materials have small and positive susceptibilities because of their weak

magnetisation, ~M , in the applied field, ~H, both of which are in the same direction,

ferromagnetic material whose magnetic susceptibilities are positive and large due to

their strong magnetisation, ~M .

14
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2.1.3 Hysteresis and Saturation Magnetisation

The magnetic properties of ferromagnetic materials are commonly represented by a B-H

curve which is a plot of magnetic flux density, B, against magnetic field, H or by a M -H

curve which is a plot of magnetisation, M , against magnetic field, H. In most cases, these

curves involve hysteresis loops. Typical hysteresis loops are shown in figures 2.1 and 2.2

for ferromagnetic materials. The relationship between H and B is highly nonlinear and

multivalued due to the presence of hysteresis and the hysteresis loop.

The hysteresis loop can be understood by first considering an unmagnetised sample.

Thus in figures 2.1 and 2.2, it can be seen that initially the sample is not magnetised so

that M and B are both zero for H = 0. In figure 2.2, as the magnetic field is increased the

magnetisation increases and ultimately it reaches saturation. The magnetisation upper

limit of a ferromagnetic material is called saturation magnetisation [70]. We note, that in

figure 2.1 a saturation induction does not exist because B continues to increase with H

owing to the non-zero permeability of free space.

Flux Density (B)

Field Intensity (H)

Hc

Br

Figure 2.1: Schematic representation of the B-H curve of a ferromag-
netic material [45].
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M

H

−Hc

Hc

Ms

Mr

Initial M–H curve

Figure 2.2: Schematic representation of the M -H curve of a typical
ferromagnetic material [2].

2.1.4 Remanence and Coercivity

Ferromagnets can be magnetised in the presence of an applied magnetic field and once

they are magnetised they can retain their magnetisation even if the applied magnetic

field is removed. This magnetic property of ferromagnetic materials is called retentivity

and distinguishes ferromagnets from paramagnets, as paramagnets do not retain their

magnetisation after the applied field is removed.

Returning to figure 2.2, having reached saturation, if the magnetic field strength is now

reduced the magnetisation decreases as indicated. Eventually when the magnetic field is

reduced to zero, the term remanence is used to describe the remaining magnetisation

and it is shown as Mr in figure 2.2. In the B-H curve if the magnetic field is removed

after a certain time, the remaining magnetic induction is called the remanent magnetic

induction, Br as in figure 2.1 [45] and Br = µ0Mr.

In order to reduce the magnetisation, M , and (zero field) magnetic induction B to

zero, a reverse magnetic field of strength, called coercive field, Hc, should be applied to

the ferromagnetic sample. This characteristic property of ferromagnetic material is known

as coercivity.
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2.1.5 Curie Temperature

Thermal properties of magnetic materials were first studied by Pierre Curie (1859–1906),

who demonstrated that there is a temperature dependent relationship between magneti-

sation ~M and applied magnetic field ~H [45], leading to the Curie law for susceptibility,

χ =
C

T
, (2.12)

where T is the temperature in Kelvin and C is the Curie constant. Curie also considered

the effect of temperature of the magnetisation which a ferrmoagnetic sample exhibits

in the absence of a field , termed the spontaneous magnetisation. He observed that

the spontaneous magnetisation, Ms, decreases rapidly as the temperature approaches a

critical value, known as the Curie temperature, Tc. At this point, thermal agitation

energy overcomes the exchange forces, the spontaneous magnetisation disappears and the

material loses its large magnetisation. Above the Curie temperature, ferromagnets behave

essentially like paramagnetic materials [55]. Thus, at this critical point the permeability

of the material drops suddenly and both coercivity and remanence become zero (see

figure 2.3).

2.1.6 Hard and Soft Ferromagnetic Materials

The ferromagnetic materials are classified, according to their coercivity, as hard and soft

magnetic materials, where the coercivity of soft magnetic materials is smaller than the

coercivity of hard magnetic materials. The hysteresis loops of the hard magnetic materials

are wider than the hysteresis of the soft magnetic materials. Therefore, more energy is

required to magnetise the hard magnetic materials.

2.2 Paramagnetism and the Langevin Function

The theory of paramagnetism is simpler than that of ferromagnetism. Paramagnetic ma-

terials contain atoms each with a permanent magnetic dipole moment [56]. The simplest

theory assumes a collection of such moments which do not interact with each other [45].

In the absence of an applied magnetic field, paramagnets do not retain any magnetisation
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and the orientation of individual magnetic moments point in random directions. When

a magnetic field, ~H is applied there is partial alignment of the moments with the field.

This is due to the thermal energy which is large enough to cause random disruption of the

alignment of magnetic moments. In thermal equilibrium the average alignment of the mo-

ments was considered by Langevin leading to the Langevin function for the magnetisation

given by [24],
M

nam
= coth

(
µ0mH

kBT

)
−

(
kBT

µ0mH

)
, (2.13)

where na is the number of atoms per unit volume, m is the magnetic moment per atom

and kB is Boltzmann’s constant. This is consistent with the Curie law which indicates

that it is more difficult to align a dipole at higher temperatures [42].

2.3 Single Domain Ferromagnetic Particles and

Superparamagnetism

2.3.1 Weiss Domain Theory of Ferromagnetism

We have seen that the hysteresis curves in figures 2.1 and 2.2 can be described by the

terms coercive field/coercivity and spontaneous magnetisation/saturation magnetisation

for minor/major loops. The saturation magnetisation is a distinguishing property of a

ferromagnetic material. It differs as the temperature of the material sample changes.

Spontaneous magnetisation, Ms, of a ferromagnet is drawn as a function of the temper-

ature T in figure 2.3 where the temperature of the sample is normalised by the Curie

temperature Tc. It is seen that all ferromagnetic materials behave like a paramagnetic

material beyond the Curie temperature. Beyond this point the curve does not reduce to

zero but reduces accordingly to the Curie law for paramagnets. Thus any theory which

attempts explain ferromagnetism must explain both the existence of the hysteresis loop,

and the reduction of this loop with increasing temperature with its disappearance above

the Curie temperature. It was Weiss in 1907 who first explained both hysteresis and

temperature dependence of the magnetisation in one theory. In his model, he assumed

that there is an internal energy to align the dipoles of the atoms within regions called

domains and that this allows an explanation for both the constant magnetisation below
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the Curie temperature and the hysteresis loop [2].
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Figure 2.3: Spontaneous magnetisation, Ms, of a ferromagnet as a
function of the temperature, T , normalised to the Curie Temperature,
Tc. The applied field is assumed to be small, but finite, as it is in real

measurements [2].

Weiss wished to explain the unusual field dependence in figure 2.2. In his model, he

assumed that ferromagnets are made up of many domains and each domain is magnetised

to the saturation value as in figure 2.3 but these domains have different magnetisation

direction. Thus, the value of the magnetisation is determined by the average of the

magnetisation over these domains. It may be zero or non zero according to the direction

of the domains. If the magnitude of the applied magnetic field is large enough to rotate

all the domains in the direction of applied field then the average magnetisation becomes

the saturation magnetisation, Msat. This explains the unusual field dependence of the

hysteresis loop in figure 2.2.

The existence of domains has been demonstrated by experimental work [2] and the

origin of the molecular field is now known as an approximation to coupling forces between

spins, termed exchange. Finally we note, whilst Weiss’s initial assumption was to allow

random orientation of the domains, observation in many materials show the existence of a

domain ordering or structure, which can be explained through micromagnetics [2, 19, 81].
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2.3.2 Magnetic Anisotropy

The term anisotropy is used to describe situations where properties are dependent on

direction. Thus, magnetic anisotropy is used when the magnetic properties of materials

depend on the direction. A magnetically anisotropic material’s moment tends align to an

easy axis which refers to the energetically favourable direction of the moment in the ma-

terial. Magnetic anisotropy affects the shape of hysteresis loops and changes the values of

coercivity and remanence. Hence, magnetic anisotropy is an important practical property

in designing a magnetic material. There are different types of anisotropy depending on

the crystal structure, shape of grains and applied or residual stresses.

2.3.2.1 Magnetocrystalline (Crystal Structure) Anisotropy

Magnetocrystalline anisotropy which is the most common anisotropy is caused by the spin

magnetic moment and crystal lattice (spin-orbit coupling) interaction [2]. Crystals can

be magnetised in some directions more easily than other directions.

Magnetocrystalline anisotropy energy is the energy which moves the magnetic moment

in a single crystal from the direction of the hard axis. Although the magnetocrystalline

energy has very small magnitude compared to the exchange energy, it is of importance

in determining the direction of magnetisation. Both exchange energy and magnetocrys-

talline energy try to align all spins parallel to crystallographic direction, where specifically

exchange energy tries to align all the spins parallel to each other and magnetocrystalline

energy tries to align them in a definite crystallographic direction.

The anisotropy in hexagonal crystals which is referred as an uniaxial anisotropy is

defined by the angle between the direction of the magnetisation and the easy axis. In

most hexagonal crystals, the minimum magnetisation lies in the crystalline c-axis which

is the easy axis. There are also some hexagonal crystals whose c-axis is in the hard

axis where aligning the magnetisation along the c-axis is extremely difficult. Hexagonal

crystals usually cannot easily reach their saturation where other (say cubic) crystals can.

This is a key feature of hexagonal crystals.

Ferromagnets can shrink or expand in the direction of magnetisation whilst being

magnetised, a phenomenon known as magnetostriction. Equally, by changing the shape

of a ferromagnet, the value of magnetisation and dimensions of the domains can vary.
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This form of anisotropy is also called stress anisotropy.

2.3.2.2 Shape Anisotropy

Another type of anisotropy considered is due to the shape of a mineral grain which is, in

turn, due to magnetostatic properties. A magnetised material produces magnetic charges

or poles at the surface. This surface charge distribution is another source of magnetic

field. It is called the demagnetising field and acts in opposition to the magnetising field.

For instance, consider a long thin needle shaped grain; the demagnetising field is weaker

along the long axis than along the short axes. This produces an easy axis of magnetisation

along the long axis.

Shape anisotropy is the most important form of anisotropy for smaller particles (<

20µm) whereas it is less important than magnetocrystalline anisotropy for larger particles.

Shape anisotropy is not important if the saturation magnetisation is low.

2.3.3 Single Domain Particles

We recall Weiss’s theory that ferromagnets are composed of domains. Within this theory

each domain’s magnetisation reaches saturation but the direction of magnetisation differs

from domain to domain. In an unmagnetised sample, all of these domains produce a net

total magnetisation vector which is almost zero. In this model, the applied magnetic field

can either alter the domain direction or through domain wall motion can increase the

size of the domains in the direction of applied field. Both of these tend to increase the

magnetisation.

Some magnetic properties of ferromagnets, like coercivity and remanence vary with

grain size and the magnetic behaviour of ferromagnets can be subdivided on the basis of

grain size into four ranges as:

• multiple domain (MD),

• single domain (SD), including superparamagnetic (SPM),

• pseudo-single domain (PSD).
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A multiple domain (MD) sample contains many domains. The reason for this is that it

reduces the magnetostatic energy associated with the surface charges. However, the do-

mains must be separated by domain walls, that is small regions in which the moments have

different directions. To be maintained, these walls also require energy, determined by the

exchange and magnetocrystalline energies. Thus, for given sample size, balancing these

energies a critical number of domain is reached. As predicted by Frenkel and Dorfman [32],

if the size of the grain is reduced, a critical point is reached beyond which it can no longer

provide a wall. It then contains a single domain that is uniformly magnetised [12]. The

critical size for grains varies depending on the saturation magnetisation and the shape of

grain (For magnetite, the critical size is about 80 nm). The magnetisation of an SD grain

can be changed only by rotating the magnetisation, which can be energetically difficult

process. Hence, single domain grains have high coercivity and remanence and thus they

are magnetically hard materials. On the other hand, changing the magnetisation of a MD

grain can be done by translating the domain wall, which requires a lower field. Hence

some multiple domain grains can have lower coercivity and remanence, and these result in

magnetically soft materials. Materials have their maximum coercivity within their single

domain range, and coercivity decreases as the larger grain sizes subdivide into domains.

2.3.4 Pseudo-Single Domain

Typically SD and MD particles have different magnetic properties. Nevertheless, some

MD particles have high remanence like SD particles and low coercivity like MD particles.

This magnetic behaviour is called Pseudo-Single Domain (PSD). (For magnetite, this

behaviour occurs in the size range between 0.1–20.0µm in natural samples).

2.3.5 Superparamagnetism

As the grain size continues to decrease within the SD range, another critical point is

reached where remanence and coercivity reduce to zero. The particle becomes super-

paramagnetic (SPM) at this critical point [12]. A SD particle with the volume, V , has

a uniform magnetisation along its easy axis. If V is small enough or the temperature is

high enough, thermal energy, kB T , is sufficient to overcome the anisotropy energy. The
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average of magnetic moment vector of a SPM particle in zero field and at T > 0 K is zero.

However, in the presence of an applied field, there is a net alignment of magnetic mo-

ments. The resulting behaviour thus resembles paramagnetism. However, the much larger

moments involved mean that superparamagnetism offers a much higher initial suscepti-

bility value than simple paramagnetism. Néel’s treatment of this phenomenon resulted in

an equation for a characteristic relaxation time, tr. This was subsequently developed by

Brown and others [18, 27] and can be expressed as,

1

tr
= f0 exp

(
−Ka V

kB T

)
(2.14)

where f0 is the frequency pre-factor, (typically 109s−1), Ka is the anisotropy constant, V

is the particle volume. From this expression it is possible to define a blocking temperature,

TB (at constant volume), or blocking volume VB, (at constant temperature) at which the

magnetisation goes from an unstable (SPM) condition to a stable condition. Furthermore,

from (2.14), taking the standard benchmark for superparamagnetism to be zero remanence

after 100 s we can obtain the approximate condition for superparamagnetism to be KaV <

25kB T .

2.3.6 Hysteresis Properties of Different Size Particles

The shape of a hysteresis loop is determined by the domain state. Hysteresis loops of SD

particles are wider than loops for MD materials because of the higher coercivity and re-

manence in SD material. Thus, the hysteresis loop parameters are useful in distinguishing

domain state.

For SD particles, remanent magnetisation, Mr, can be calculated and depends on the

type of anisotropy. On the other hand for MD or PSD particles, experimental results are

used for the hysteresis loop because of the difficulty of theoretical prediction and thus

calculation of Mr and Hc ratios.

For SPM particles, the shape of the hysteresis loop is extremely thin because of the

very low remanence and coercivity. In the presence of an applied field, SPM particles

have a steep initial rise in magnetisation followed by a gradual increase to saturation as

described by the Langevin function. We note that SPM and MD particles can have the
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similar hysteresis properties (low hysteresis) at room temperature, but cooling the sample

down to very low temperatures can help distinguish between samples.

2.4 Nanoparticles

A nanoparticle is a particle whose size is of the order of nanometres. Strictly, it can be

defined as a particle with at least one dimension is in nanometre range which is smaller

than 200 nm. In practice, their sizes range from 10 nm to 1000 nm.

The properties of materials can change significantly as the size of the sample reduces.

In particular on the nanoscale, the increased surface area to volume ratio is significant.

This can alter the optical, electrical, or magnetic properties and also affect the mechanical

properties, such as flexibility or elasticity in materials.

2.5 Magnetic Nanoparticles

Magnetic nanoparticles are magnetic systems whose dimensions are on the nanometre

range. They show many new features such as slow relaxation at low temperatures accom-

panied by hysteretic magnetisation with high coercivity. Also nanoparticles become SPM

beyond the blocking temperatures.

2.5.1 Other Applications of Magnetic Nanoparticles in

Biomedicine

Magnetic nanoparticles can be used in numerous fields, including MDT which is the

subject of this thesis but also in magnetic resonance imaging (MRI) and magnetic fluid

hyperthermia (MFH) treatment [65].

2.5.1.1 Magnetic Resonance Imaging Contrast Agents for Monitoring Drug

Delivery

Magnetic resonance imaging (MRI) can provide detailed images of the structure and

functioning of the body. MRI produces images of all organs and this is useful in analysis

and during the course of therapy [59, 74]. In contrast enhancement, human injections
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of agents, such as Combidex, work as the metastatic lymph nodes absorb the particles

more than inflamed nodes and this is detectable with MRI [59]. MRI is mainly used for

imaging the brain and cancer cells.

MRI can be used in conjunction with MDT where real time imaging can monitor the

in vivo distribution of the nanoparticles. The contrast agents should have the same in

vivo localisation as the beneficial nanoparticles because of their similar size and charge.

Research is continuing in imaging the in vivo distribution of the contrast agents by MRI

to optimise the size and surface properties for targeting tumours.

2.5.1.2 Magnetic Fluid Hyperthermia

Magnetic Fluid Hyperthermia (MFH) is a promising cancer treatment that uses mag-

netic nanoparticles to heat the cancerous tissue to appropriate temperatures. This can

be achieved by localising the magnetic nanoparticles in the cancerous tissue through ap-

plying an external magnetic field to the desired tissue. The temperature rise in the tissue

during MFH depends on the structure of the particles, quantity of the particles and, the

amplitude and frequency of the magnetic field. MFH can be performed in conjunction

with radiotherapy.
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Chapter 3

The Basic Mathematical Model

3.1 Introduction

In this work, we develop a number of related IA-MDT models and we begin with outlining

the basic mathematical model used. This model is based on that of Ritter et al. [66], and

the presentation here reflects this.

Since different types implants (e.g. seeds, stents) are suitable for different regions of

the vascular system (e.g. capillary beds, arteries), we need to consider these different

physical domains. The physical domains used in this work and accompanying boundary

and initial conditions are discussed in section 3.2. In this basic mathematical model,

we consider no interactions; in effect we simply treat the dynamics of a single MDCP.

The forces governing its dynamics are discussed in section 3.3. The outline of the model

concludes with the performance metrics of MDCP capture.

3.2 Physical Domains

In this work, we use two different 2D models, which are the seed model of Avilés et al. [6]

(see figure 3.1) and the stent model of Avilés et al. [8] (see figure. 3.2). In these models we

consider the effect of these magnetisable implants placed in the blood flow as indicated

in figures 3.1 and 3.2. In the 2D model both these can be represented ultimately in terms

of a circular implant.

3.2.1 The Capillary Bed used in the Seed Model

A capillary bed is a dense network of tiny blood vessels. A simple and effective approach

to modelling the flow here is to treat the region as homogeneous. Embedded in this region

is a spherical seed and the boundaries of the regions are assumed to be far from the seed.
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Figure 3.1: Schematic diagram of the control volume, CV, used in
determining the capture radius, λc, of the magnetic nanoparticles.

By considering a slice through the centre of the seed, this domain can effectively

reduce to 2D. We point out that this in fact corresponds to flow in a rectangular box with

a cylindrical wire, both of infinite extent.

In this context the natural velocity profile is uniform, thus, a uniform inlet velocity

profile is assumed at the inlet control volume (CV) in Cartesian coordinate this can be

expressed as

~vb =

u0

0

 , (3.1)

where ~vb is the blood velocity, u0 is the inlet blood velocity. Non-slip boundary conditions

are applied at the seed-blood interface. In addition, symmetry boundary conditions are

applied at the upper and lower CV boundaries to maintain the constant flow profile.

Atmospheric pressure is assumed at the outlet of the CV to satisfy the boundary condition

on pressure.
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Figure 3.2: Schematic diagram of the control volume, CV, used for
developing the 2D model of the stent-base IA-MDT system.

3.2.2 The Single Vessel used in the Stent Model

The stent model is based on a ferromagnetic coiled wire stent placed next to the walls

of cylindrical vessel (tube). In order to reduce this 3D geometry to 2D, a slice is taken

through the centre of the vessel. Thus, the coiled stent is modelled as a series of circular

cross sections of infinitely long wires with radii of Rwire located at the upper and lower

boundaries of the walls offset from each other and with centres separated by a distance,

h.

For the single vessel used in the stent model, a parabolic velocity profile is assumed

at the inlet CV such that

~vb =

1.5u0

(
1−

(
y

Rvessel

)2
)

0

 , (3.2)

where u0 is the average inlet blood velocity and Rvessel is the vessel radius. Non-slip

boundary conditions (~vb = 0) are applied at the stent-blood interface and at the upper

and lower CV boundaries. Atmospheric pressure is assumed at the outlet of the CV to

satisfy the boundary condition on pressure.
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3.3 Derivation of Particle Velocity

In this section, we derive the total velocity of a MDCP resulting from the forces which

act on it. The force balance on a MDCP can be written as

~Fs + ~Fm = ~Fi (3.3)

where ~Fs, ~Fm and ~Fi are the Stokes drag, magnetic and inertial forces, respectively.

Firstly, the Stokes drag is given by

~Fs = 6π ηbRp (~vb − ~vp), (3.4)

where ηb is the viscosity of the blood, Rp the radius of the MDCP, and ~vb and ~vp are

the velocities of the blood and the MDCP respectively. The blood velocity, ~vb, is deter-

mined by solving the appropriate Navier-Stokes equations as in section 3.4. Secondly, the

magnetic force is determined by

~Fm = (~m · ∇) ~B, (3.5)

where ~B is the magnetic flux density due to the externally applied magnetic field, ~H0,

and the presence of the circular implant (seed and stent), and ~m is the magnetic moment

of the MDCP.

Neglecting the inertial forces, the MDCPs are under the influence of Stokes drag and

magnetic force as given in (3.4) and (3.5) respectively so that

6π ηbRp (~vb − ~vp) + (~m · ∇) ~B = 0. (3.6)

The velocity of a MDCP, ~vp, can be obtained from (3.6). Hence, we obtain

~vp = ~vb +
1

6π ηbRp

(~m · ∇) ~B. (3.7)

where, ~B is the total magnetic flux density acting on the MDCPs. The magnetic flux
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density, ~B is given by

~B = µ0
~H, (3.8)

and in the space around the circular implant ~H is given by,

~H = ~H0 −∇φ. (3.9)

where φ is the magnetic scalar potential. In this work, an analytic solution of magnetic

scalar potential is derived and this derivation is outlined in section 4.3.1.

Considering field orientation, given by ϕ, as in figures 3.1 & 3.2, the magnitude of the

total magnetic field strength can be written in Cartesian coordinates as

H =

√(
H0 cosϕ− ∂φ

∂x

)2

+

(
H0 sinϕ− ∂φ

∂y

)2

. (3.10)

3.4 Calculation of Blood Velocity

In this section, calculation of the blood velocity is shown following Avilés et al. [6, 8].

The blood is treated as an incompressible, Newtonian, isothermal, single-phase fluid with

velocity, ~vb, and pressure P for steady state flow. The Navier-Stokes equations consist of

the continuity equation

∇ · ~vb = 0, (3.11)

and

ρb[(~vb · ∇~vb)] = −∇P + ηb∇2~vb, (3.12)

where ρb is the density of the blood.

3.4.1 Introduction to Navier-Stokes Equations

The Navier-Stokes equations are the fundamental partial differential equations that de-

scribe the flow of fluids. Before outlining the Navier-Stokes equations, we define some

fundamental concepts and then express the Navier-Stokes equations for 2D fluid flow

using the Cartesian coordinate system.

30



3. The Basic Mathematical Model 3.4. Calculation of Blood Velocity

• Viscosity Viscosity is the measure of the resistance of a liquid to flow. If a fluid is

flowing over a surface, the molecules next to the surface have zero speed. As we get

further away from the surface, the speed of the molecules increases. The friction of

the liquid is due to the difference in speed of the molecules. Viscosity determines

the amount of friction and thus the amount of energy absorbed by the flow.

• Laminar Flow Laminar flow (streamline flow) occurs when a fluid flows in parallel

layers. Fluid elements or particles appear to slide over each other in layers. Although

there is molecular agitation and diffusion, there is no large scale mixing between the

layers.

• Incompressible Flow Incompressible flows are those for which the density of fluid

is constant on particle paths. For an incompressible flow the divergence of fluid

velocity is zero.

3.4.2 Navier-Stokes Equations in Dimensionless Form

Here we begin with the form of the Navier-Stokes equations as given in the wire implant

model of Ritter et al. [66], and show how this can be rewritten in the form used in the

subsequent seed and stent models [6, 8]. The Cartesian coordinate system is used with

the following assumptions: isothermal behaviour, incompressible Newtonian fluid, and

single phase flow. After dimensionless analysis, the Navier-Stokes equations are obtained

with the following dimensionless variables,

x̃ =
x

Rwire

, ỹ =
y

Rwire

, ṽb,x =
vb,x

u0

, ṽb,y =
vb,y

u0

, P̃ =
P

P0

. (3.13)

where ~vb is the blood velocity, u0 is the average inlet velocity, ~̃vb is the scaled blood

velocity, Rwire is the radius of the wire implant, P is the blood pressure, P0 is the blood

pressure at the outlet of the CV and P̃ is the scaled blood pressure. By using these

variables, the continuity and 2D Navier-Stokes equations are written as [66],

∂ṽb,x

∂x̃
+
∂ṽb,y

∂ỹ
= 0 (3.14)
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and

− 2NEu

NRe

(
∂2ṽb,x

∂x̃2
+
∂2ṽb,x

∂ỹ2

)
+NEu

(
ṽb,x

∂ṽb,x

∂x̃
+ ṽb,y

∂ṽb,x

∂ỹ

)
+
∂P̃

∂x̃
= 0 (3.15)

− 2NEu

NRe

(
∂2ṽb,y

∂x̃2
+
∂2ṽb,y

∂ỹ2

)
+NEu

(
ṽb,x

∂ṽb,y

∂x̃
+ ṽb,y

∂ṽb,y

∂ỹ

)
+
∂P̃

∂ỹ
= 0 (3.16)

where NEu and NRe are Euler and Reynolds numbers defined by

NEu =
ρbu

2
0

P0

, NRe =
2ρbu0Rwire

ηb

. (3.17)

At the outlet of the vessel, the blood pressure boundary condition is

P̃ = 1. (3.18)

Also, a non-slip boundary condition ~̃vb = 0 is applied to every interface in contact with

the bloodstream. Equations (3.14), (3.15) and (3.16) can be rewritten in vector notation

and dropping the tildas we obtain the form of Avilés et al. [6, 8] given below

∇ · ~vb = 0, (3.19)

and

− 2NEu

NRe

∇2~vb +NEu(~vb · ∇~vb) +∇P = 0. (3.20)

On rearranging the above equations we obtain

∇ · ~vb = 0, (3.21)

and

NEu(~vb · ∇~vb) = −∇P +
2NEu

NRe

∇2~vb. (3.22)

This is the form of the Navier-Stokes equations used in the seed and stent models.
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3.5 Derivation of Streamlines, Capture Cross Sec-

tion and Collection Efficiency

Finally, the MDCP trajectories are obtained from evaluating the streamline function

∂ψs

∂y
= −vp,x, (3.23)

∂ψs

∂x
= vp,y, (3.24)

where ψs is the stream function, and vp,x and vp,y are the components of ~vp from (3.7).

The system performance of this model is calculated in terms of the capture cross section

(CCS), λc, defined as

λc =
yc

Rimplant

, (3.25)

where Rimplant is the radius of the implant and yc is the capture radius of the ferromagnetic

implant. The capture radius, yc, is defined by the location of the streamline at the entrance

to the CV of the last MDCP captured to the implant (see figure 3.1).

The system performance of the stent-based mathematical model is calculated in terms

of collection efficiency, CE, defined as

CE =
2Rvessel − y1 + y2

2Rvessel

100 %, (3.26)

where Rvessel is the radius of the vessel and y1 and y2 are defined by the location of the

streamline at the entrance to the CV of the last MDCPs captured to the stent wires (see

figure 3.2).
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Chapter 4

Implementation in OpenFOAM

In this chapter, we outline the open-source, finite volume library OpenFOAM. Open-

FOAM stands for Open Field Operations And Manipulation and in section 4.1, general

information is given followed by the treatment of Navier-Stokes equations in OpenFOAM.

Finally the calculation of magnetic flux density, ~B, is implemented using an analytic so-

lution for the magnetic scalar potential, the derivation of which is presented.

4.1 Introduction to OpenFOAM

OpenFOAM is a C++ toolbox consisting of pre-written numerical solvers for Computa-

tional Continuum Mechanics (CCM) and Computational Fluid Dynamics (CFD) problems

and an extensible class library to allow development of new models. CFD is a branch of

CCM and covers compressible, incompressible, multiphase and free surface flows as well as

flows involving further physics such as chemical reactions and electromagnetic effects [82].

These can be combined to create solvers and utilities, or additional functionality can be

introduced through new libraries or new modules. The library provides Finite Volume and

Finite Element methods in operator form and with polyhedral mesh support. Structural

analysis is treated by the Finite Element Method (FEM), while fluid flow is handled using

the Finite Volume Method (FVM).

OpenFOAM allows the user to employ third party pre- and post-processing utilities,

such as paraFOAM, for visualisation of solution data and meshes. OpenFOAM itself

provides an efficient solution framework, including geometry handling, mesh generation,

solution, post processing and data analysis while implementing a large number of numer-

ical and physical models. While OpenFOAM has its own mesh generator, it also allows

the importing of a wide range of mesh converters from a number of leading commercial

packages [44].

OpenFOAM is produced by the UK company, OpenCFD Ltd. and is released open
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source under General Public License. OpenFOAM software source code is freely available

and it permits users to study, change, and improve the code through the user’s own

modification. Its development began in the late 1980s at Imperial College, London, in

efforts to find a more powerful and flexible general simulation platform than Fortran.

Since then it has used the latest advanced features of the C++ language, and it has been

re-written several times. OpenFOAM is designed to make it as easy as possible to develop

reliable and efficient CCM codes, by making the syntax of the code closer to standard

mathematical notation.

OpenFOAM has been pioneering in a number of ways. Readable descriptions of partial

differential equations make it an understandable programming language for physical sim-

ulations and it is the first major general-purpose CFD package to use polyhedral cells [64].

It is also the most capable general purpose CFD package which is released under an open-

source licence. OpenFOAM is designed for CCM problems but it is easy to generate

multi-physics simulations as well. Standard Solvers have been developed for problems in

a number of areas including [64]:

• Basic CFD

• Incompressible flows

• Compressible flows

• Multiphase flows

• Combustion

• Heat transfer

• Electromagnetic

• Solid dynamics

• Finance

One of the key features of OpenFOAM is that solver applications can be created easily.

OpenFOAM uses syntax that closely resembles the standard mathematical descriptions
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of differential equations. For example, the equation [63]

∂ρ~v

∂t
+∇ ·K~v −∇2η~v = −∇P (4.1)

is represented by the code block

solve (

fvm::ddt(rho,v)

=

+ fvm::div(K,v)

- fvm::laplacian(eta,v)

=

- fvc::grad(P)

);

where ρ is the density, η is the viscosity, P is the pressure and ~v is the velocity of fluid.

(Elsewhere in OpenFOAM, ρ, η, P and K are defined as scalar quantities and v as a

vector quantity.)

Since 1980 considerable effort has been directed towards development of OpenFOAM

as a scientific numerical modelling package [16, 17, 39, 40, 43, 47, 48, 54, 67, 69, 78, 79, 80].

In these publications, OpenFOAM is compared with other CFD packages. OpenFOAM

results are almost identical to those of the CFX-5 CFD code and show the same trend

as the results using the Fluent CFD code. OpenFOAM also gives similar results as

the CALC-PMB in-house CFD code that was developed specifically for water turbine

applications [61].

4.2 Navier-Stokes Equations in OpenFOAM

In OpenFOAM different types of flows can be described by systems of linked partial

differential equations of the form

∂ρ~Q

∂t
+∇ · (ρ~v ⊗ ~Q)−∇ · ρD∇ ~Q = Sp

~Q+ Sq, (4.2)
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where ~Q is any tensor valued property of the flow. These equations involve time deriva-

tives, ∂(ρ~Q)/∂t, convective terms, ∇ · (ρ~v ⊗ ~Q), diffusive terms, ∇ · ρD∇ ~Q and source

terms, Sp
~Q and Sq. A simple example is that of incompressible flow as described by the

Navier-Stokes equations. Navier-Stokes equations representing incompressible flow can

be written by substituting ~Q = 1 in (4.2) to get continuity equation

∇ · ~v = 0, (4.3)

and by substituting ~Q = ~v in (4.2) we get

∂~v

∂t
+∇ · (~v ⊗ ~v)−∇ · 2ηeff

~D = −1

ρ
∇P, (4.4)

where

~D =
1

2
+ (∇~v +∇~vT ), (4.5)

where ηeff is the kinematic viscosity.

In OpenFOAM to solve (3.11) and (3.12), we use the SimpleFOAM solver which is

a steady state solver for incompressible, laminar and turbulent flow of Newtonian flu-

ids. Before solving our equations we explain the SimpleFOAM solver which is specifically

designed for solving the system,

∇ · ~v = 0, (4.6)

− ηeff∇2~v +∇ · (~v ⊗ ~v) +∇P = 0. (4.7)

where ηeff is the kinematic viscosity of the fluid. The Navier-Stokes equations as formu-

lated in (3.11) and (3.12) can be readily solved by the SimpleFOAM solver upon specifying

the value of η/ρ for ηeff. For calculating the blood velocity in SimpleFOAM, ηeff is specified

as ηb/ρb
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4.3 Calculation of Magnetic Force

In this section, we outline the derivation of magnetic scalar potential and its implemen-

tation in OpenFOAM. The magnetic force acting on a MDCP is determined by

~Fm = (~m · ∇) ~B, (4.8)

where ~B is the magnetic flux density due to the externally applied magnetic field, ~H0, and

the presence of the implant, and ~m is the magnetic moment of the particle. The magnetic

flux density, ~B, relates to the total magnetic field, ~H, via

~B = µ ~H, (4.9)

where µ is the permeability of the medium as

µ = µrµ0, (4.10)

and ~H is given by,

~H = ~H0 −∇φ. (4.11)

where φ is the magnetic scalar potential1.

4.3.1 Calculation of Magnetic Scalar Potential

We consider the general problem of determining the magnetic scalar potential over mul-

tiple regions where within each region the permeability is constant (see figure 4.1). This

is resolved using the Biot-Savart law [76], which requires the normal component of ~B and

the tangential component of ~H to be continuous across the interface (see figure 4.2). That

is

n̂ · ~B1 = n̂ · ~B2, (4.12)

and

t̂ · ~H1 = t̂ · ~H2, (4.13)

1Technically, φ is actually the reduced magnetic scalar potential rather than the total magnetic scalar
potential. The reason for our use of the reduced magnetic scalar potential is discussed in appendix A.
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Region 1

∇

2
φ1 = µ1∇ ·

~H0

µ1 = constant

Region 2

∇

2
φ2 = µ2∇ ·

~H0

µ2 = constant

Figure 4.1: General problem of object (region 1 = implant) embedded
in a space region (region 2 = space) of constant permeability [76].

where n̂ is the normal vector and t̂ is the tangential vector of the interface.

To distinguish between the two regions, we use the notation listed below,

j Region index — implant j = 1, space j = 2 (subscript is dropped when region

independent),

φj Magnetic scalar potential in region j,

~Hj Resulting magnetic field due to external magnet and implant in region j,

aj and bj are the constants to be determined in region j.

4.3.1.1 2D models: Circular Implant and Polar Coordinates

All the implants considered whether spherical seeds, cylindrical wires or coiled stents can

be described in two dimensions in terms of circular implants as discussed in section 3.2.

Considering the resulting (or in the case of a stent, any one of the resulting) circular

implants the physical domain is more naturally represented in terms of polar coordinates

(r, θ) with origin coincident with the implant centre. In polar coordinates the problem of

determining the magnetic scalar potential reduces to a standard separation of variables

problem as outlined in the following sections.

In polar coordinates the differential operator is

∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ. (4.14)
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Hence

∇ · ~v =
∂vr

∂r
+
vr

r
+

1

r

∂vθ

∂θ
, (4.15)

and

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (4.16)

4.3.1.2 Background Source Field

In order to simplify the derivation of magnetic force, we consider the background source

field magnitude of H0 parallel to the x-axis. Hence, we have ~H0 = H0êx.

4.3.1.3 Analytic Solution of Magnetic Scalar Potential

The magnetic field, the magnetic flux density and the magnetic scalar potential in region

1 (implant) are related by

~H1 = ~H0 −∇φ1, ~B1 = µ1
~H1, ∇2φ1 = µ1∇ · ~H0. (4.17)

and in region 2 (space)

~H2 = ~H0 −∇φ2, ~B2 = µ2
~H2, ∇2φ2 = µ2∇ · ~H0. (4.18)

The normal component of the magnetic flux density and the tangential component of

magnetic field are both assumed to be continuous across the implant-space interface.

These are linked through the interface conditions (figure 4.2)

n̂ · ~B1 = n̂ · ~B2 =⇒ µ1
∂φ1

∂r
= µ2

∂φ2

∂r
+ (µ1 − µ2) ~H0 · n̂, (4.19)

and

t̂ · ~H1 = t̂ · ~H2 =⇒ ∂φ1

∂θ
=
∂φ2

∂θ
, (4.20)

and satisfy the boundary condition

~H1 bounded, (4.21)
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n̂

t̂

Region 2Region 1

t̂ · ~H1 =
∂φ1

∂θ

∂φ2

∂θ
= t̂ · ~H2

n̂ ·
~B1 = µ1

(

∂φ1

∂r
− n̂ ·

~H0

)

µ2

(

∂φ2

∂r
− n̂ ·

~H0

)

= n̂ ·
~B2

Figure 4.2: Interface conditions across the boundary of regions with
different permeability.— the normal component of ~B and the tangential

component of ~H are continuous [76]).

and

~H2 → ~H0 as r →∞ =⇒ φ2 → 0 as r →∞. (4.22)

Here, we need the finite version of this condition ~H2 → ~H0 as r → r∞ and ~H1 bounded.

The Poisson equations for the scalar potentials both have solution

φj =
(
ajr + bjr

−1
)
cos θ, (4.23)

for some undetermined coefficients aj and bj. Hence, for region 1 (implant) we have

φ1 =
(
a1r + b1r

−1
)
cos θ, (4.24)

and for region 2 (space)

φ2 =
(
a2r + b2r

−1
)
cos θ. (4.25)

Far from the implant, the magnetic scalar potential should tend towards zero and applying

the boundary conditions we have

lim
r→r∞

φ2 = 0 =⇒ then lim
r→r∞

(a2r + b2r
−1) cos θ = 0, (4.26)

and a2 = 0. Furthermore the solution in both regions must be bounded, hence b1 = 0.
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Using the interface condition (4.12), we rewrite (4.19) at r = 1,

− µ1(a1 − b1) cos θ + µ1H0 cos θ = −µ2(a2 − b2) cos θ + µ2H0 cos θ, (4.27)

and on applying a2 = 0 and b1 = 0, this reduces to

− µ1a1 + µ1H0 = µ2b2 + µ2H0. (4.28)

The interface condition (4.13) implies that

∂φ1

∂θ
=
∂φ2

∂θ
=⇒ (a1 + b1) cos θ = (a2 + b2) cos θ, (4.29)

and on applying a2 = 0 and b1 = 0, the condition a1 = b2 is obtained. Equation (4.28)

can now be expressed in terms of a1 only as follows

− µ1a1 + µ1H0 = µ2a1 + µ2H0, (4.30)

and so

a1 = b2 =

(
µ1 − µ2

µ1 + µ2

)
H0. (4.31)

Hence, the scalar potential for regions 1 (implant) is

φ1 = a1 r cos θ =

(
µ1 − µ2

µ1 + µ2

)
H0 r cos θ, (4.32)

and for region 2 (space) is

φ2 = b2 r
−1 cos θ =

(
µ1 − µ2

µ1 + µ2

)
H0 r

−1 cos θ. (4.33)

We can rewrite these potentials in Cartesian coordinates as follows:

φ1 =

(
µ1 − µ2

µ1 + µ2

)
H0 x, (4.34)

and

φ2 =

(
µ1 − µ2

µ1 + µ2

)
H0

x

x2 + y2
. (4.35)
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4. Implementation in OpenFOAM 4.3. Calculation of Magnetic Force

This result is readily generalised to treat applied fields with an arbitrary field direction,

ϕ, to obtain for the scalar potential in the region outside the implant

φ = H0R
2
implant

µimplant − 1

µimplant + 1

x cosϕ+ y sinϕ

x2 + y2
, (4.36)

where Rimplant is the radius of the implant (seed, stent wire), x and y are the coordinates

measured from the centre of the implant and µimplant is the relative permeability of the

ferromagnetic implant.

In the stent model, the overall magnetic scalar potential in the space due to the stent is

calculated through the sum of the individual magnetic scalar potentials of each stent wires.

This analytic solution of magnetic scalar potential is implemented in OpenFOAM directly

and the magnetic field is calculated through the numerical gradient of the magnetic scalar

potential.
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Chapter 5

Development of Model to Include

Interactions and Results

In this work, we try to develop more realistic models of IA-MDT. Firstly when single

domain magnetic nanoparticles (radius in the range 20-100 nm) are used as the MDCPs,

the Langevin function is used to describe the magnetisation of the MDCPs. The results

of our simulations for the seed model indicate that use of the Langevin function predicts

greater collection efficiency (CE) than might be otherwise expected. The results of this

work have been presented in the Journal of Magnetism and Magnetic Materials [28].

Secondly, with a view to modelling experimentally observed agglomeration in IA-

MTD [6, 8, 9, 66], we adapt and extend the current approaches to model two mutually

interacting MDCPs with larger field strength and a seed implant. The effect of the dipole-

dipole and hydrodynamic interactions between two MDCPs on the calculated magnetic

force in the IA-MDT system of Avilés et al. [6] is considered. In these simulations,

depending on the initial configuration of the MDCPs, both increases and decreases of up

to 7% in absolute terms, can be observed in the CCS of the model. The results of this

work have been presented in the second paper accepted by the Journal of Magnetism and

Magnetic Materials [29].

We extend these approaches to model dipole-dipole and hydrodynamic interactions

for multiple MDCPs in further implant arrangements. In particular we model the stent

arrangement proposed and studied in Avilés et al. [8, 9], where multiple particle agglom-

eration can be expected to contribute significantly to increase in the capture of MDCPs

(containing single domain nanoparticles) reported therein. The results of this model show

closer agreement with the experimental results of Avilés et al.. The results of this work

are to be presented in a third paper [30].

In order to check the validity of the research programme in vitro experiments were
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5. Development of Model 5.1. Inclusion of the Langevin Function

performed with Dr Adriele Prina-Mello of CRANN Research Centre, Trinity College

Dublin [25]. In these the predicted and real trajectories of the MDCPs can be compared.

In this chapter we investigate the behaviour of MDCPs under the influence of Stokes

drag, the force due to hydrodynamic interaction and a magnetic force that incorporates

the mutual magnetic dipole-dipole interaction [21] whilst ignoring other effects such as

inertia and gravity. First, we calculate the magnetic moment of magnetic MDCPs from

the Langevin function as indicated in section 5.1. Next, we include the effect of the

mutual magnetic dipole-dipole interaction in the magnetic force equation (3.5) and we

also calculate the effect of hydrodynamic interaction and the Stokes drag as described in

sections 5.2 and 5.3, respectively.

5.1 Inclusion of the Langevin Function

5.1.1 Theory

Using the seed model of Avilés et al. [6], we consider single domain magnetic nanopar-

ticles as the MDCPs. Furthermore, in the stent model of Avilés et al. [8] the MDCPs

are microparticles containing single domain magnetic nanoparticles. In the original seed

model of Avilés et al. [6], the carriers were microparticles and in order to calculate the

magnetic moment of each carrier, the axis of the moment ~m of each carrier was taken

to lie along that of ~B, and the magnetisation was taken to increase with applied field,

after accounting for demagnetising as given by (A.7). In contrast, a nanoparticle of di-

ameter < 100 nm is typically a superparamagnetic single domain. As a result of thermal

agitation, the magnetic moment of such a particle does not, in general, align with the

external field. However, the average projection of the moment in the direction of ~B can

be calculated from the Langevin function [20, 26, 36, 75, 83]

L (β) = coth (β)− 1

β
, (5.1)

with Langevin argument

β =
ωfm,p VpMfm,p,sB

kT
, (5.2)
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5. Development of Model 5.1. Inclusion of the Langevin Function

where ωfm,p is the volume fraction of ferromagnetic material in the MDCP, Vp is the

MDCP volume, Mfm,p,s the (volume) saturation magnetisation, B is the magnitude of ~B,

k is Boltzmann’s constant and T is the absolute temperature, so that magnetic moment,

~m, can be written as

~m = ωfm,p VpMfm,p,s L (β)
~B

B
. (5.3)

The volume fraction of ferromagnetic material, ωfm,p, in the MDCP is related to its weight

fraction, xfm,p, through [66]

ωfm,p =
xfm,p

xfm,p + (1− xfm,p)ρfm,p/ρpol,p

, (5.4)

where ρfm,p and ρpol,p are the densities of the ferromagnetic material and polymer material

respectively in the MDCPs.

Neglecting the inertial forces, the MDCPs are under the influence of Stokes drag and

magnetic force as in (3.6)

6π ηbRp (~vb − ~vp) + (~m · ∇) ~B = 0. (5.5)

The velocity of a MDCP, ~vp, can be written as in (3.7)

~vp = ~vb +
1

6π ηbRp

(~m · ∇) ~B. (5.6)

5.1.2 Results

Avilés, Ebner and Ritter [6] suggested a 2D model which uses large ferromagnetic parti-

cles as seeds to aid collection of multiple domain particles (radius ≈ 200 nm). Here, single

domain magnetic nanoparticles (radius in the range 20–100 nm) are considered and the

Langevin function is used to describe the magnetisation. In our simulations iron nanopar-

ticles with radius, Rp = 50 nm, containing 40wt% iron (xfm,p = 0.4) were taken as the

MDCPs and SS 409 as the seed material with seed radius Rseed = 1µm.

As described in section 5.1.1, the magnetic moment of the individual nanoparticles is

taken as the average value given by the Langevin function. The streamline functions for

the capture of nanoparticles are presented in figure 5.1 under the influence of homogeneous
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5. Development of Model 5.1. Inclusion of the Langevin Function

magnetic field µ0H0 oriented parallel to the flow (ϕ = 0) with magnitudes of 0.0 to 0.6 T.

The relevant blood flow properties and the properties of the ferromagnetic material that

are used in the MDCPs and for the seeds are given in table 5.1.

(a) µ0H0 = 0.0 T (b) µ0H0 = 0.2 T

(c) µ0H0 = 0.4 T (d) µ0H0 = 0.6 T

Figure 5.1: Streamlines indicating the trajectories of the single domain
nanoparticles, calculated using OpenFOAM, as they traverse the control
volume for different magnitudes of the externally applied magnetic field,

~H0.

The resulting CCS, λc, is calculated and presented in figure 5.2 for 50 nm nanoparticles,

as a function of the magnetic field strength µ0H0 with magnitudes of 0.0 to 0.8 T. The

simulations indicate that through the use of the Langevin function greater CE is predicted

than the approach taken by Avilés et al.. Beyond 0.7 T, the MDCP magnetisation is

saturated and both models agree as expected.
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λ
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Figure 5.2: Capture cross section, λc, plotted as a function of the ap-
plied magnetic field strength, µ0H0, calculated using ( ) the Langevin
function as appropriate for single domain nanoparticles and ( ) follow-

ing Avilés et al. for multiple domain particles.

Property Value SI Unit Property Value SI Unit
ρb 1040.0 kg/m3 χseed,0 1 000 –
ηb 0.002 kg/ms Mseed,s 1 397 000 A/m
u0 0.001 m/s Mfm,p,s 1 735 000 A/m
µ0H0 0.0–0.8 kg/s2A Rseed 1.0× 10−6 m
xfm,p 0.4 – Rp 50× 10−9 m
ρfm,p 7 850 kg/m3 ρpol,p 950 kg/m3

χfm,p,0 1 000 –

Table 5.1: Values of the system and material parameters used in the
simulation for seed model.

5.2 Inclusion of Interparticle Dipole-Dipole Inter-

action in the Model

Of interest here is the dipole-dipole interaction between a number of identical magnetic

particles. Magnetic dipole-dipole interaction refers to direct interaction between the mag-

netic dipoles. While dipole-dipole interaction is ubiquitous in magnetic systems, it is

relatively weak in comparison to exchange interaction. However, for superparamagnetic

nanoparticles exchange interaction between the nanoparticles can be ignored, leaving

dipole-dipole interaction as the primary magnetic interaction.

Magnetic dipoles exert a force on each other, which can be included in the magnetic

force equation by considering (i) the modified magnetic flux density and (ii) the modifica-
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5. Development of Model 5.2. Inclusion of Dipole-Dipole Interaction

tion in the magnetic moment resulting from this modified flux density. With regard to the

magnetic dipole-dipole interaction between N MDCPs, each MDCP is taken as spherical

with radius, Rp, and sufficiently small to have homogeneous magnetic flux throughout the

MDCP. Hence, in order to include the magnetic effect on MDCP n of the other (N − 1)

MDCPs, the magnetic force can be written as

~Fintn = (~mn · ∇) ~Btotaln (5.7)

where ~mn is the total magnetic moment of MDCP n, and it can be written for MDCP n

as,

~mn = ωfm,p Vpn
Mfm,p,s L (β)

~Btotaln

Btotaln

, (5.8)

where Vpn
is the volume of MDCP n, Mfm,p,s the (volume) saturation magnetisation of

the ferromagnetic particles in the MDCPs, L (β) is the Langevin function, ωfm,p is the

volume fraction of ferromagnetic material in the MDCPs and ~Btotaln is the total magnetic

flux acting on MDCP n. ~Btotaln is taken as

~Btotaln = ~B + d ~B1 + ....+ d ~B(n−1) + d ~B(n+1)....+ d ~BN (5.9)

where d ~Bn is the modification of the resulting magnetic flux density due to MDCP n at

~r. The modification to the magnetic flux density is thus

d ~Bn(~r) =
1

3

(
µ0Mfm,p,s

L(β)

B

)
R3

pn

|~r − ~rn|3

3
(
~B(~rn) · (~r − ~rn)

)
|~r − ~rn|2

(~r − ~rn)− ~B(~rn)


(5.10)

where ~r represents an arbitrary point in space, ~rn is the position of the MDCP n and

~B(~rn) is the flux density at ~rn. The value of ~B required to calculate the magnetic force

is calculated from the scalar magnetic potential due to the implant, which satisfies the

Laplace equation over two con-joined regions: inside and outside the implant as outlined

previously in section 4.3.

The velocity of MDCP n can be obtained by summing the Stokes drag and the modified

magnetic force, as given in equations (5.13), and (5.7) respectively with inertial forces,
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5. Development of Model 5.3. Inclusion of Hydrodynamic Interaction

~Fin , as

~Fsn + ~Fintn = ~Fin . (5.11)

For MDCP n, ignoring the inertial forces, ~Fin , we rewrite (5.11) as

6π ηbRpn
(~vb − ~vpn

) + (~mn · ∇) ~Btotaln = 0. (5.12)

Hence, we can obtain ~vpn
by solving (5.12) numerically in each time step.

5.3 Inclusion of Hydrodynamic Interaction in the

Model

The Stokes drag for MDCP n is

~Fsn = 6π ηbRpn
(~vb − ~vpn

), (5.13)

where ηb is the viscosity of the blood, Rpn
is the radius of the MDCP n, and ~vb and ~vpn

are

the velocities of the blood and MDCP n, respectively. Once more, the blood velocity, ~vb,

is determined by solving the appropriate Navier-Stokes equations as in section 3.4. The

motion of a MDCP through a viscous fluid creates a disturbance to the fluid flow, which

will be felt by all other MDCPs. As a result, these MDCPs experience a force which is

said to result from hydrodynamic interaction with the original MDCP. By considering N

MDCPs, the force due to the hydrodynamic interaction, ~Fhydn
, which acts on MDCP n

due to presence of other (N − 1) MDCPs, can be written as [58],

~Fhydn
=

N∑
(i=1

i6=n)

ξni ·
(
~vb − ~vpi

)
(5.14)

where ξni is the modification due to the hydrodynamic interaction given by

ξni = −6π ηbRpn

3Rpi

4 |~rn − ~ri|

(
1 +

(~rn − ~ri)⊗ (~rn − ~ri)

|~rn − ~ri|2

)
(5.15)
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where Rpi
is the radius of the MDCP i, 1 is the unit tensor, ⊗ is the vector tensor

product (outer product), ~rn and ~ri are the positions of MDCP n and MDCP i, respectively.

Initially MDCPs have the same radius but after agglomeration, MDCPs of different radii

are possible, as each agglomeration is viewed as a new MDCP of increased radius.

The velocity of MDCP n can be obtained by summing the Stokes drag, the force due

to hydrodynamic interaction and the modified magnetic force, as given in (5.13), (5.14)

and (5.7) respectively with inertial forces, ~Fin , as

~Fsn + ~Fhydn
+ ~Fintn = ~Fin . (5.16)

For MDCP n, ignoring the inertial forces, ~Fin , we rewrite (5.16) as

6π ηbRpn
(~vb − ~vpn

) +
N∑

(i=1
i6=n)

ξni ·
(
~vb − ~vpi

)
+ (~mn · ∇) ~Btotaln = 0. (5.17)

Hence, we can obtain ~vpn
by solving (5.17) numerically in each time step.

5.4 Inclusion of Magnetic Dipole-Dipole and Hy-

drodynamic Interactions for Two MDCPs

— Seed Model

The strength of forces due to dipole-dipole and hydrodynamic interactions depends on

many factors including:

• the magnitude of the applied external magnetic field,

• the initial distance between the MDCPs,

• the relative position of the MDCPs to each other,

• the size of the MDCPs,

• the size of the magnetic implant.
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5. Development of Model 5.4. Inclusion of Interactions for Two MDCPs

Moreover, the strength of the forces due to hydrodynamic interaction depends on the ve-

locities of MDCPs relative to the blood velocity [21]. For two MDCPs we focus on varying

the initial distance between the MDCPs and present the results in terms of agglomeration

and the altered capture cross section of the system.

In these simulations stainless steel (SS) 409 is taken as the seed material with a

seed radius of 1 µm. Results are presented by generating streamlines for two identical

iron nanoparticles with radius Rp=50 nm, containing 40 wt% iron, under the influence

of homogeneous magnetic field oriented parallel to the flow (ϕ = 0) with magnitude

µ0H0 = 0.7 T. The relevant blood flow properties and the properties of the ferromagnetic

material, used in the MDCPs and for the seeds, are given in table 5.1.

In order to describe the effect of the interactions we consider two different simulation

configurations. The first configuration is intended to illustrate the dependence of the

agglomeration point on the interparticle distance for MDCPs that originate within the

reference capture cross section (CCS) area. Agglomeration is taken to occur where the

(surface-to-surface) interparticle distance reaches zero. The second simulation configura-

tion is intended to examine the effects of interactions on the trajectories of MDCPs near

the boundary of the reference CCS and the resulting changes in the CCS. The boundary

of the reference CCS, λ∗c, is the trajectory of the last MDCP, which would be captured

by the seed in the non-interacting case. In these two MDCP simulations, the behaviour

of the MDCPs after agglomeration is not considered. The MDCPs are taken to have the

same initial x-coordinate with an initial interparticle distance, D. Initial interparticle

distance is defined as the distance between the surfaces of the MDCPs. These initial

conditions serve to illustrate the effect of the interparticle distance on behaviour. The

coordinates and nanoparticle dimensions used are scaled in terms of Rseed and hence the

scaled nanoparticle radius is 0.05.

5.4.1 Effect of Interactions on the Agglomeration of MDCPs

Of interest is the relationship between initial interparticle distance, D, and the resulting

position of the agglomeration point as measured from the surface of the seed. This

relationship is shown in figure 5.3 with
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5. Development of Model 5.4. Inclusion of Interactions for Two MDCPs

• dipole-dipole magnetic interaction only,

• hydrodynamic interaction only,

• both interactions

• no interactions.

As expected, in all cases, the distance between the agglomeration point and centre of

the seed is seen to decrease as D increases. In these simulations, two MDCPs, labelled

MDCP 1 and MDCP 2, are placed at scaled positions (−20, D/2 +Rp/Rseed) and (−20,

−D/2− Rp/Rseed) for a range of values of D. The inset shows the initial position of the

MDCPs and their trajectories for all cases for a typical value of D (D = 0.40).

On comparing the agglomeration point for the MDCPs with only magnetic dipole-

dipole interaction to that for the MDCPs with no interaction, we find that the MDCPs

with magnetic interaction agglomerate earlier for all initial MDCP distances up to D=1

(see figure 5.3). Also in figure 5.3, with the inclusion of hydrodynamic interaction only,

the two MDCPs are seen to repel each other due to their velocities relative to the blood,

inhibiting agglomeration. It is worth noting that the relative velocities are solely due to

the magnetic velocities resulting from the presence of the seed gradient. In the inset it

is seen that in the case with (only) hydrodynamic interaction the MDCPs agglomerate

after the agglomeration point expected without any interactions. With the study of the

combined effect of magnetic dipole-dipole and hydrodynamic interactions, we observe

that, as expected, at short range the magnetic effects dominate, and at longer range

the hydrodynamic are dominant. This is consistent with the forces being dependent on

|~r1 − ~r2|−3 and |~r1 − ~r2|−1 respectively. From figure 5.3 a critical value of D can be

observed at the intersection of the curves with both interactions and no interactions at

D ≈ 0.56. Below this critical value of D, the two MDCPs are seen to agglomerate

before the agglomeration point expected without interactions. For initial distances larger

than this critical value of D, (repulsive) hydrodynamic forces dominate and the MDCPs

agglomerate after the agglomeration point expected without interactions (i.e. closer to

the seed).
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Figure 5.3: Distance of agglomeration point from the seed plotted
against initial distance between the MDCPs, D, with (a) dipole-dipole
magnetic interaction only, (b) hydrodynamic interaction only, (c) both
interactions and (d) no interactions between the MDCPs. All other

conditions are as the reference case condition in table 5.1.

5.4.2 Effect of Interactions on the Capture Cross Section of

the System

In figures 5.4 - 5.8 trajectories are presented and the effect of the inclusion of interactions

on the CCS of the system is studied. The trajectories of two MDCPs are calculated again

with

• dipole-dipole magnetic interaction only,

• hydrodynamic interaction only,

• both interactions.

In all three interaction cases, the trajectories of MDCPs without any interactions and

the resulting boundary of the reference CCS, λ∗c are used as reference points. Thus, two
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5. Development of Model 5.4. Inclusion of Interactions for Two MDCPs

different trajectories are generated for each MDCP in each figure.

MDCPs are placed equidistant and symmetric about λ∗c, corresponding to the initial

position (−20, λ∗c) where λ∗c is 4.47. This critical value λ∗c depends on the model param-

eters used (see table 5.1). In each of first three cases, a maximum value of D, whereby

two MDCPs are still captured by the seed is determined. For each interaction case, the

separate effect on λc for this maximum value of D is calculated and compared.

In the case with (only) magnetic dipole-dipole interaction, we find that the maximum

value of D for which both MDCPs are now captured is 0.40. In figure 5.4, the trajectories

for this case are presented. Thus, for this specific initial arrangement, the calculated

capture radius can be said to increase by 0.25 Rseed corresponding to a ≈ 6% absolute

increase in λc.
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Figure 5.4: The trajectories of the MDCPs are presented with the
magnetic dipole-dipole interaction and no interactions. Initial position
of MDCP 1 & 2 are (−20, λ∗c + 0.25) & (−20, λ∗c − 0.25). With the

magnetic dipole-dipole interaction both MDCPs are captured.
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To explore further the effect of magnetic dipole-dipole interaction on the CCS of the

system, the initial position of both MDCPs is translated vertically whilst maintaining

a fixed interparticle distance of D = 0.40. In the first case, by moving the MDCPs

downwards, as expected both MDCPs continue to be captured by the seed, and thus the

CCS of system is unchanged. In the second case by moving both MDCPs upwards the

following is observed. As might be expected, the upper MDCP (MDCP 1) is no longer

captured by the seed. By further moving the two MDCPs upwards we next observe that

the initial position at which the lower MDCP (MDCP 2) ceases to be captured by the

seed is now lower than for the non-interacting case. Thus, MDCP 1 has caused the non

capture of MDCP 2. Figure 5.5 illustrates this undesirable effect on the capture radius

of the system where it is decreased by 0.16 Rseed, which corresponds to a ≈ 4% absolute

decrease in λc.
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Figure 5.5: The trajectories of the MDCPs are presented with the
magnetic dipole-dipole interaction and no interactions. Initial position
of MDCP 1 & 2 are (−20, λ∗c + 0.35) & (−20, λ∗c − 0.15). With the

magnetic dipole-dipole interaction, neither MDCP is captured.
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In the case with (only) hydrodynamic interaction, we find that the maximum value

of D for which both MDCPs are now captured is 0.41 which is slightly larger than in

the case with (only) magnetic dipole-dipole interaction. Here, the upper MDCP (MDCP

1) repels the lower MDCP (MDCP 2) and the lower MDCP attracts the upper MDCP

due to their velocities relative to the velocity of blood. In figure 5.6, the trajectories for

this case are presented. Thus, for this specific initial arrangement, the calculated capture

radius can be said to increase by 0.255 Rseed corresponding to a ≈ 6% absolute increase

in λc.
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Figure 5.6: The trajectories of the MDCPs are presented with the
hydrodynamic interaction and no interactions. Initial position of MDCP
1 & 2 are (−20, λ∗c +0.255) & (−20, λ∗c−0.255). With the hydrodynamic

interaction both MDCPs are captured.

To explore further the effect of hydrodynamic interaction on the CCS of the system,

the initial position of both MDCPs is translated vertically whilst maintaining a fixed

interparticle distance of D = 0.41. In the first case, by moving the MDCPs downwards,

as expected both MDCPs continue to be captured by the seed, and thus the CCS of
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5. Development of Model 5.4. Inclusion of Interactions for Two MDCPs

system is unchanged. In the second case, by moving both MDCPs upwards, the upper

MDCP (MDCP 1) is no longer captured by the seed as expected. By further moving the

two MDCPs upwards, the initial position at which the lower MDCP (MDCP 2) ceases to

be captured by the seed is still higher than for the non-interacting case. Thus, MDCP 1

has caused the capture of MDCP 2 by pushing it towards the seed. Figure 5.7 illustrates

this positive effect on the capture radius of the system where it is increased by 0.134 Rseed,

which corresponds to a ≈ 3% absolute increase in λc. For this specific case, if the value

of D is decreased to 0.40 as in the case with (only) magnetic dipole-dipole interaction,

the capture radius of the system increases by 0.138 Rseed. It should be noted that for

hydrodynamic interaction, that the direction of velocity of MDCPs relative to the fluid is

an important factor.
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Figure 5.7: The trajectories of the MDCPs are presented with the
hydrodynamic interaction and without any interaction. Initial position
of MDCP 1 & 2 are (−20, λ∗c + 0.644) & (−20, λ∗c + 0.134). With

hydrodynamic interaction, MDCP 2 is now captured.
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With the inclusion of both interactions, we find that the maximum value of D for

which both MDCPs are now captured is 0.54. In figure 5.8, the trajectories for this case

are presented. For this initial arrangement, the calculated capture radius can be said to

increase by 0.32 Rseed corresponding to a ≈ 7% absolute increase in λc. In this case, the

magnetic dipole-dipole and hydrodynamic interactions both have a positive effect on the

CCS of the system.
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Figure 5.8: The trajectories of the MDCPs are presented with both
interactions and no interactions. Initial position of MDCP 1 & 2 are
(−20, λ∗c+0.32) & (−20, λ∗c−0.32). With both interactions both MDCPs

captured.

To study the combined effect of both interactions, we include the hydrodynamic inter-

action to the case with (only) magnetic dipole-dipole interaction. Thus, the simulations

are repeated with a fixed interparticle distance of D = 0.40 and the CCS of the system is

calculated. In the first case, by moving the MDCPs downwards, both MDCPs continue to

be captured by the seed, and thus the CCS of system is unchanged. In the second case by

moving both MDCPs upwards the following is observed. Again, the upper MDCP (MDCP
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1) is no longer captured by the seed. By further moving the two MDCPs upwards we

next observe that the initial position at which the lower MDCP (MDCP 2) ceases to be

captured by the seed is the same as the non-interacting case. When the value of D is 0.40,

we find that inclusion of both interactions does not affect the CCS of the system as the ef-

fects of magnetic dipole-dipole interaction and hydrodynamic interaction on CCS balance

each other. Thus, inclusion of hydrodynamic interaction has caused the increase of the

capture radius by 0.16 Rseed, relative to the case with magnetic dipole-dipole interaction

only. Similarly, inclusion of magnetic dipole-dipole interaction has caused the decrease of

the capture radius by 0.138 Rseed, relative to the case with hydrodynamic interaction only

when the value of D is 0.40. These apparent imbalances we attribute to the inherent the

nonlinearity and cross dependence of the two interactions. Furthermore, for this specific

case, if we decrease the value of D, the magnetic dipole-dipole interaction becomes dom-

inant and if we increase the value of D, the hydrodynamic interaction dominates again

consistent with the |~r1−~r2|−3 and |~r1−~r2|−1 dependence. Specifically, in our model with

inclusion of both interactions, the effect of magnetic dipole-dipole interaction on the CCS

of the system is larger than the effect of the hydrodynamic interaction when the value of

D is less than 0.40.

The effect of the dipole-dipole and hydrodynamic interactions between two nanopar-

ticles on the calculated magnetic force in the IA-MDT seed model of Aviles et al. is

considered. In these simulations, depending on the initial configuration of the nanoparti-

cles, both increases and decreases can be observed in the CCS of the modified model. It

is observed that, both dipole-dipole and hydrodynamic interactions should be considered

to calculate the CCS of the IA-MTD system due to comparable size of both interactions.

Inclusion of both interactions was seen to alter the CCS of the system by up to 7% in

absolute terms. We note that the relative positions of the MDCPs and the velocities of

MDCPs relative to blood flow are important factors during the calculation of the effect of

hydrodynamic interaction on the capture radius of the system. Also, we note that if two

MDCPs can agglomerate and start moving together it might be expected that their al-

tered hydrodynamic volume would reduce the effective Stokes drag allowing both MDCPs

to be more easily captured by the seed and thus leading to an additional CCS increase.
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5. Development of Model 5.5. Inclusion of Interactions for Multiple MDCPs

5.5 Inclusion of Magnetic Dipole-Dipole and Hy-

drodynamic Interactions for Multiple MDCPs

— Stent Model

In this part of the work, we include the effect of both magnetic dipole-dipole and hy-

drodynamic interactions for multiple MDCPs in the stent based mathematical model of

Avilés et al. [8]. We focus on varying the initial positions of N (N < 20) MDCPs at the

entrance of the CV and present the results in terms of the CE of the system considering

the agglomeration of MDCPs.

Of interest is the relationship between the velocity of the blood and the field strength

on the CE of the system. This relationship is shown in figures 5.9 and 5.10 with

• both dipole-dipole magnetic and hydrodynamic interactions,

• experimental results,

• no interactions.

The experimental results presented are those of Avilés et al. [8]. In our simulations,

with larger field and lower blood velocity, MDCPs agglomerated to create a cluster of

larger volume. In the experiment of Avilés et al. [8] stainless steel (SS) 430 is taken as the

wire material for the stent with a 62.5µm radius. The stent is prepared by looping a length

of wire (L) into a 2 cm long coil having a 0.5 mm radius containing 10 loops (Nl) with

0.2 cm between each loop. This stent is placed in a tube with radius of 0.5 mm. In order

to effectively model this system, the 3D geometry of the stent and tube is reduced to 2-D

slice through the centre of the tube (See figure 3.2). The coiled stent was modelled as a

series of circular cross sections of an infinite wire with radius of Rwire located at the upper

and lower boundaries of the walls. At each wall the wires are separated by a distance,

h, between their centres, and the upper and lower sections are offset by h/2 as shown

in figure 3.2. It should be noted that physically this corresponds to a 2-D description of

flow with a parabolic profile in a rectangular box with transverse cylindrical wires, all of

infinite extent.
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5. Development of Model 5.5. Inclusion of Interactions for Multiple MDCPs

Results are presented by calculating the CEs for identical MDCPs with initial radius

Rp = 0.435µm containing 25wt% magnetite, under the influence of homogeneous mag-

netic field oriented perpendicularly to the flow (ϕ = π/2) with magnitudes of 0.17 T to

0.65 T. In the model the magnetisation of the individual MDCPs is taken as the average

value given by the Langevin function due to the single domain magnetic nanoparticles

inside them. The relevant fluid flow properties and the properties of the ferromagnetic

material, used in the MDCP and for the stent wire, are given in table 5.2.

In this 2D model, the behaviour of the MDCPs after agglomeration is also considered.

We assume that the MDCPs create a cluster during their agglomeration as a result of

both interactions. The volume of the cluster is calculated by summing the volume of the

MDCPs agglomerated and the radius of the cluster is calculated using the general volume

formulation (4/3π r3)[3]. Whilst this assumption does not account fully for the resulting

hydrodynamic volume, the effect of this assumption should not significantly affect our

results.

The rationale for the simulations is as follows. Given infinite computing power, one

might consider randomly distributing, in the form of a cloud, a very large number (>

10, 000) of MDCPs and allow interactions between all of these. With finite computing

resources, one is forced to reduce this. We do this in two ways. Firstly, by limiting

the regions of initial positions that we consider and secondly by limiting the number

of MDCPs that we allow to mutually interact. Thus we consider only those parts of

the simulation which are likely to contribute to any alteration in the CE. For instance,

in those parts of the capture cross section closest to the vessel walls, one can expect

no improvement in the CE. In fact it is only where the initial positions are close to

the border between the collection and no collection region, that is around λ∗c, that we

start to see altered trajectories due to interactions. Secondly, the mutual interparticle

interaction would not be expected to have infinite extent. One can postulate a number P

of MDCPs in the model where the predicted difference in performance between modelling

P and P+1 becomes arbitrarily small/insignificant. We point out that the computational

effort required to model interactions scales with N2, where N is the number of MDCPs

interacting. Simulations were performed for increasing N , and the results indicate that

there is no significant change to the system performance metrics beyond twenty MDCPs.
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5. Development of Model 5.5. Inclusion of Interactions for Multiple MDCPs

We consider a particular, arbitrarily distributed cloud of N MDCPs. This cloud is to

be placed with its centre on the line of the reference CCS. We associate a scaling distance

with this cloud and increase this distance until for a given field and fluid velocity, this cloud

still results in all MDCPs agglomerating into a single cluster within the simulation. Such

a scaled cloud is then obtained for each field considered using the lowest (non-zero) fluid

velocity considered. In our simulations we choose this reference velocity (u0 = 2.1 cm/s)

as this was the lowest considered in the experiments of Avilés et al.. This scaled cloud is

then used as the starting point for simulations.

Thus, in order to describe the effect of the both interactions we consider two different

simulation configurations, similar to those used previously for the inclusion of interactions

for two MDCPs. The first configuration is intended to illustrate the agglomeration of

the MDCPs within the reference CCS area. In this configuration all of the MDCPs are

captured, as expected and the resulting CE of the system for this situation is unaltered.

The second simulation configuration is intended to examine the effects of interactions

on the CE of the system near the boundary of the reference capture cross section. The

boundary of the reference CCS, λ∗c is the trajectory of the last MDCP, which would be

captured by the stent wires in the non-interacting case. For this, we place the cloud centre

on the λ∗c for a given velocity and record changes in CE through following the MDCP

trajectories in the normal way. We then translate this cloud up and down, and again

record changes in CE. This approach is repeated for each increased fluid velocity, using,

for a given field, the same scaled cloud.

For the configurations outlined above, we keep the the applied field constant (µ0H0 =

0.17 T) and we increase the blood velocity up to u0 = 42.4 cm/s. The resulting CEs for

these simulations are shown in figure 5.10.

Secondly, using the same methodology we obtain a reference cloud with the applied

field µ0H0 = 0.65 T and low fluid velocity (u0 = 2.1 cm/s). Again, we increase the blood

velocity up to u0 = 42.4 cm/s for fixed field µ0H0 = 0.65 T. The resulting CEs are given

in figure 5.9.

In figures 5.9 and 5.10, the results of the model with the interactions show closer

agreement with experimental results of Avilés et al. with low fluid velocity. This is due

to the interaction and agglomeration of MDCPs in our model. With low fluid velocity

63



5. Development of Model 5.5. Inclusion of Interactions for Multiple MDCPs

Properties Symbol Units Values Data type

MDCPs Properties
Polymer material - - P(S/V-COOH)Mag Physical
Radius Rp µm 0.435 Physical
Saturation magnetisation Mp,s kA/m 22.4 Measured

MDCPs Magnetic Material Properties
Material - - Magnetite Physical
Weight content xfm,p wt% 25 Physical
Volume content ωfm,p - 6.4 Measured
Saturation magnetisation Mfm,p,s kA/m 351.9 Measured
Magnetic moment mfm,p Am2 2.03× 10−19 Measured
Radius Rfm,p nm 5.18 Calculated

Physical Properties
Temperature T K 300 Physical
Boltzmann’s constant kB J/K 1.38× 10−23 Physical
Permeability of vacuum µ0 Tm/A 4π × 10−7 Physical

Applied Field Properties
Magnitude µ0H0 T 0.0–0.7 Physical
Angle of field direction ϕ - π/2 Physical

Stent Properties
Material - - SS 430 Physical
Wire radius Rwire µm 62.5 Physical
Loop separation h mm 2 Physical
Number of loops Nl - 10 Physical
Coil length L cm 2 Physical
Saturation magnetisation Mimplant,s kA/m 1261 Measured
Magnetic susceptibility χimplant,0 - 1000 Physical

Blood & Vessel Properties
Velocity u0 cm/s 2.1, 4.2, 10.6, Physical

21.2, 42.4
Volume Vblood ml 10 Physical
Density ρb kg/m3 1000 Physical
Viscosity ηb kg/ms 1.0× 10−3 Physical
Vessel radius Rvessel mm 0.5 Physical

Table 5.2: Values of system and material parameters used in the stent
based simulation.
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Figure 5.9: The collection efficiency (CE) of the system plotted as a
function of the blood velocity at the applied field µ0H0= 0.65 T.

(≤ 10 cm/s) and higher applied field (µ0H0= 0.65 T) MDCPs create a larger volume of

cluster more easily than with the lower applied field (µ0H0= 0.17 T). When we increase

the fluid velocity the likelihood of the agglomeration of the MDCPs starts to decrease.

For higher fluid velocity the CE of the IA-MDT system gives smaller results than the

results of Avilés model without interactions. This is due to the effect of interactions on

the velocity of MDCPs and so the trajectories of the MDCPs.
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Figure 5.10: The collection efficiency (CE) of the system plotted as a
function of the blood velocity at the applied field µ0H0= of 0.17 T.
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Chapter 6

Conclusions

Firstly, the model of Avilés, Ebner and Ritter is considered for collecting single domain

MDCPs. The Langevin function is used to calculate the expected value of the nanoparticle

magnetisation. Magnetic flux density is calculated analytically by using the separation of

variable solution and the the blood velocity is obtained from the Navier-Stokes equations

using the finite volume library OpenFOAM. The simulations indicate that use of the

Langevin function predicts greater collection efficiency than might be otherwise expected.

Secondly, the effect of the dipole-dipole and hydrodynamic interactions between two

nanoparticles on the calculated magnetic force in the IA-MTD system of Avilés et al. is

considered. In these simulations, depending on the initial configuration of the nanopar-

ticles, both increases and decreases can be observed in the capture cross section of the

modified model. It is observed that both dipole-dipole and hydrodynamic interactions

should be considered to calculate the capture cross section of the IA-MTD system due

to comparable size of both interactions. Inclusion of both interactions was seen to alter

the capture cross section of the system by up to 7% in absolute terms. We note that

the relative positions of the particles and the relative velocities of particles to blood flow

are important factors during the calculation of the effect of interactions on the capture

radius of the system. Also, we note that if two particles can agglomerate and start moving

together it might be expected that their altered hydrodynamic volume would reduce the

effective Stokes drag allowing both particles to be more easily captured by the seed and

thus leading to an additional capture cross section increase.

Finally, we have presented an interaction model applied to IA-MTD. This model con-

sidered the agglomeration of particles known to occur in such systems [5, 8, 9]. We include

the effects of both the dipole-dipole and hydrodynamic interactions for multiple particles

in stent implant arrangements. The resulting collection efficiencies from this model are

in closer agreement with the experimental results of Avilés et al..
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[51] Lübbe, A. S., Bergemann, C., Brock, J., and McClure, D. G. (1999). Physiological

aspects in magnetic drug-targeting. J. Magn. Magn. Mater., 194, 149–155.
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Appendix A

Scalar Potential Formulation

When implementating the basic model we initially calculated the magnetic scalar poten-
tial using a numerical solver for the Laplace equation. However, this approach was not
satisfactory due to the time needed for convergence. Numerical difficulties when calculat-
ing the scalar potential are not unusal ?? and one approach to address these difficulties
is to make use of the total scalar potential in addition to the reduced scalar potential.
During the investigation of this, it was realised that an analytic expression for the scalar
potential was obtainable using separation of variables. Calculation of scalar potential is
done in three different ways and these derivations are based on the formulations:

• Using total scalar potential in both regions, which we term the total-total scalar
potential formulation.

• Using reduced scalar potential in both regions, termed the reduced-reduced scalar
potential formulation. In general, this formulation has convergence problems when
used in a numerical scheme. This formulation has also non-uniqueness difficulties
when determining the potential in the region containing the source (space).

• Using total scalar potential in the source free region (implant) and the reduced
scalar potential in region with the source (space), labelled the total-reduced scalar
potential formulation.

We note the analytic solution does not depend on the total/reduced scalar potential
formulation used in the derivation.

Firstly, in section A.1 the permeability of the implant required for the scalar poten-
tial formulations is considered. Reduced-reduced scalar potential has been presented in
section 4.3.1. Here, the total-total and total-reduced scalar potentials are presented. In
the last section, the magnetic force density is derived.

A.1 Calculation of Permeability of the Implant

In order to calculate the magnetic field arising from placing an implant (wire, seed, stent)
within a space region of constant permeability, the permeability of the implant is required.
This can be obtained from the relationship between the (relative) permeability and sus-
ceptibility of a material given by µr = 1 + χ. In this section, we obtain the permeability
of the implant, from the expressions for susceptibility in Ritter et al. [66]. Ritter et al.
represented the demagnetising factor, αfm,p, for a ferromagnetic material in the MDCP
as,

αfm,p = min

(
χfm,p,o

3 + χfm,p,0

,
Mfm,p,s

3H0

)
(A.1)

where χfm,p,0 is the (volumetric) magnetic susceptibilities of the ferromagnetic material
in the MDCP with zero field (H0 = 0) and Mfm,p,s saturation magnetisation of the fer-
romagnetic material in the MDCP. From the first part of (A.1), Ritter et al. calculated
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A.2. Total Potential Formulation

the magnetic susceptibility of the material, χfm,p, and using the second part of (A.1), the
induced magnetisation of the ferromagnetic material in the MDCP, Mfm,p, is calculated.
Rearranging the first and second parts of (A.1), the (volumetric) magnetic susceptibility
of the material, χfm,p, and and the induced magnetisation of the ferromagnetic material
are obtained as below,

χfm,p = 3
αfm,p

1− αfm,p

(A.2)

Mfm,p = 3αfm,pH0. (A.3)

Using the same methodology, we derive the the susceptibility and the permeability of the
implant. In Ritter et al. [66], the demagnetising factor of the implant, αimplant, is given
as,

αimplant = min

(
χimplant,o

2 + χimplant,o

,
Mimplant,s

2H0

)
(A.4)

where χimplant,o is the volumetric magnetic susceptibility of the implant (wire, seed, stent)
with zero field and Mimplant,s is the saturation magnetisation of the implant. The factor 3
appears for the sphere and the factor 2 for the cylinder. Therefore the magnetic suscep-
tibility, χimplant, and the induced magnetisation of the implant, Mimplant, in the 2D case
are written as,

χimplant = 2
αimplant

1− αimplant

(A.5)

Mimplant = 2αimplantH0. (A.6)

For calculating the relative permeability of implant, µimplant, we use the formula µimplant =
1 + χimplant and for the relative permeability of space, µspace, we use µspace = 1 since the
susceptibility of free space is zero.

We note that in the models of Ritter et al. [66] and Avilés et al. [6] the same approach
is taken for the implant and for the MDCPs and so

~m = ωfm,p VpMfm,p

~B

B
(A.7)

where, ωfm,p is the volume fraction of ferromagnetic material as in (5.4).

A.2 Solution Using Total-Total Potential Formula-

tion

The associated total-total magnetic scalar potential, ψ0, satisfies

~H0 = −∇ψ0 hence (H0, 0) = (−∂xψ0,−∂yψ0). (A.8)

Integrating (A.8) we obtain the scalar potential as,

ψ0(x, y) = −H0 x. (A.9)
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A.2. Total Potential Formulation

In cylindrical polar coordinates the scalar potential can be written as

ψ0(r, θ) = −H0 r cos θ (A.10)

where θ is the angle from the positive x-axis, as in figure 3.1. In region 1 (implant) the
magnetic field, the magnetic flux density and the total–total magnetic scalar potential are
related by [76] to

~H1 = −∇ψ1, ~B1 = µ1
~H1, ∇2ψ1 = 0 (A.11)

and in region 2 (space)

~H2 = −∇ψ2, ~B2 = µ2
~H2, ∇2ψ2 = 0. (A.12)

The normal component of ~B and the tangential component of ~H are continuous across
the boundary of regions with different permeability. Eqs. (A.11) and (A.12) are linked
with the interface conditions

~n · ~B1 = ~n · ~B2 µ1
∂ψ1

∂r
= µ2

∂ψ2

∂r
(A.13)

and

t̂ · ~H1 = t̂ · ~H2
∂ψ1

∂θ
=
∂ψ2

∂θ
(A.14)

and satisfy the boundary conditions

~H2 → ~H0 as r → r∞ (A.15)

and ~H1 is bounded. Poisson equation (A.13)(c) and (A.14)(c) have solution

ψj =
(
ajr + bjr

−1
)
cos θ (A.16)

for some undetermined coefficients aj and bj. Hence, for each region we have

ψ1 =
(
a1r + b1r

−1
)
cos θ (A.17)

and
ψ2 =

(
a2r + b2r

−1
)
cos θ. (A.18)

Firstly, the solution in both regions must be bounded, hence

b1 = 0. (A.19a)

Applying the boundary condition at r = r∞

lim
r→r∞

ψ2 = ψ0 =⇒ a2r∞ + b2r
−1
∞ = −H0r∞ =⇒ a2 = −H0 − b2/r

2
∞. (A.19b)

Alternatively, as r∞ →∞ we obtain condition

a2 = lim
r∞→∞

(
−H0 − b2/r

2
∞

)
= −H0
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Using interface condition (A.13), we have at r = 1

µ1
∂ψ1

∂r
= µ2

∂ψ2

∂r
=⇒ µ1 (a1 − b1) cos θ = µ2 (a2 − b2) cos θ

=⇒ µ1a1 = µ2 (a2 − b2) (A.19c)

and applying interface condition (A.14), we have

∂ψ1

∂θ
=
∂ψ2

∂θ
=⇒ (a1 + b1) cos θ = (a2 + b2) cos θ

=⇒ a1 = a2 + b2. (A.19d)

The solution to the system of (A.19a) to (A.19d) for a1, a2, b1, and b2 is written in terms
of a2 as

a2 = −H0

[
r2
∞(µ1 + µ2)

−(µ1 − µ2) + r2
∞(µ1 + µ2)

]
= −H0

[
1− 1

r2
∞

(
µ1 − µ2

µ1 + µ2

)]−1

(A.20a)

and a1 =
2µ2

µ1 + µ2

a2, b1 = 0, b2 = −µ1 − µ2

µ1 + µ2

a2. (A.20b)

If we take the limit as µ1 → µ2 we expect ψ1 = ψ2 = ψ0 and consequently ~H1 = ~H2 = ~H0.
Thus, in this limit we find

lim
µ1→µ2

a2 = −H0, lim
µ1→µ2

a1 = −H0, lim
µ1→µ2

b2 = 0. (A.21)

A.3 Solution Using Total–Reduced Potential For-

mulation

Calculation of magnetic scalar potential is presented using total–reduced potential for-
mulation. In region 1 (implant) the magnetic field, the magnetic flux density and the
total–reduced scalar potentials are related by

ψ1 =
(
a1r + b1r

−1
)
cos θ (A.22)

and
φ2 =

(
a2r + b2r

−1
)
cos θ. (A.23)

Applying these conditions we obtain

a1 =
2µ2a2 − 2µ2H0

µ1 + µ2

, b1 = 0, (A.24)

and

a2 = − b2
r2
∞

= −H0

[
1− 1

r2
∞

µ1 + µ2

µ1 − µ2

]−1

, b2 =
−(µ1 − µ2)a2 + (µ1 − µ2)H0

µ1 + µ2

(A.25)

80



A.4. Derivation of Magnetic Force Density

A.4 Derivation of Magnetic Force Density

In this section, in order to compare the results of magnetic flux density, ~B, generated
by OpenFOAM with the results of the Ritter et al. [66], a simple term magnetic force
density, fw, is derived. fw is given as [6, 66]

fw =
∣∣∣µ0∇( ~H · ~H)

∣∣∣ =
∣∣µ0∇H2

∣∣ (A.26)

where H is the magnitude of the total magnetic field from H = B/µ.
Here, fw is derived through the magnetic scalar potential formulation. We consider

~H = ~H0 −∇φ (A.27)

and we have
φj = (ajr + bjr

−1) cos θ. (A.28)

For derivation of ~H, we take the gradient of the above equation and ~H can be written for
region j as

~Hj(r, θ) = −∇φj = (−aj + bj.r
−2) cos θ, (aj + bj.r

−2) sin θ + ~H0. (A.29)

The resulting fw is

fw =
8bj

√
(ajr2 + bj)− 4(aj −H0)r2 cos2 θ + (−2ajr4 − 2bjr2 + r4)H0

r5
(A.30)

The results of fw generated by OpenFOAM is in agreement with the results of Ritter et
al..
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Appendix B

OpenFOAM Code for Seed Model

In this chapter, we present the structure of the OpenFOAM program (see figure B.1) and
C++ code which was generated for the calculation of the dipole-dipole and hydrodynamic
interactions for two MDCPs with a seed implant.

Figure B.1: Structure of the OpenFOAM program

B.1 Applications (Solver) for Seed Implant

B.1.1 createFields.H file

82



B.1. Applications (Solver) for Seed Implant

/*—————————————————————————*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |

——————————————————————————-

The OpenFOAM (Open Field Operation and Manipulation) CFD Toolbox can simulate
anything from complex fluid flows involving chemical reactions, turbulence and 10

heat transfer, to solid dynamics, electromagnetics and the pricing of financial
options. OpenFOAM is produced by OpenCFD Ltd and is freely available and open source,
licensed under the GNU General Public Licence.

The core technology of OpenFOAM is a flexible set of efficient C++ modules.
These are used to build a wealth of: solvers, to simulate specific problems
in engineering mechanics; utilities, to perform pre- and post-processing tasks
ranging from simple data manipulations to visualisation and mesh processing;
libraries, to create toolboxes that are accessible to the solvers/utilities,
such as libraries of physical models. 20

OpenFOAM is supplied with numerous pre-configured solvers, utilities and libraries
and so can be used like any typical simulation package. However, it is open, not
only in terms of source code, but also in its structure and hierarchical design,
so that its solvers, utilities and libraries are fully extensible.

OpenFOAM uses finite volume numerics to solve systems of partial differential
equations ascribed on any 3D unstructured mesh of polyhedral cells. The fluid
flow solvers are developed within a robust, implicit, pressure-velocity,
iterative solution framework, although alternative techniques are applied 30

to other continuum mechanics solvers. Domain decomposition parallelism is
fundamental to the design of OpenFOAM and integrated at a low level so that solvers
can generally be developed without the need for any parallel-specific coding.

This file is part of OpenFOAM.OpenFOAM is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

You should have received a copy of the GNU General Public License along with OpenFOAM; 40

if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA

File Name: createFields.H
Author: mardinogluyahoo.com
*/
Info << "Reading field p\n" << endl;
volScalarField p(

IOobject(
"p", 50

runTime.timeName(),
mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh
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B.1. Applications (Solver) for Seed Implant

);
Info << "Reading field U\n" << endl;
volVectorField U(

IOobject( 60

"U",
runTime.timeName(),
mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh
);

# include "createPhi.H"
70

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("SIMPLE"), pRefCell, pRefValue);

singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<turbulenceModel> turbulence(
turbulenceModel::New(U, phi, laminarTransport)
);

B.1.2 createFields-analytic.H file

/**
* File Name: createFields analytic.H
* Author: mardinogluyahoo.com

*/
Info<< "region: Reading field T\n" << endl;
volScalarField T(

IOobject(
"T",
runTime.timeName(),
mesh, 10

IOobject::MUST READ,
IOobject::NO WRITE

),
mesh

);
Info<< "region:Reading physicalProperties\n" << endl;
IOdictionary physicalProperties(

IOobject(
"physicalProperties",
runTime.constant(), 20

mesh,
IOobject::MUST READ,
IOobject::NO WRITE

)
);

Info<< "Reading parameter - correct_beta dimensions" << endl;
dimensionedScalar correct beta (physicalProperties.lookup("correct_beta"));
Info<< "Correct_beta dimensions is" << correct beta <<endl <<endl;
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B.1. Applications (Solver) for Seed Implant

Info<< "Reading parameter - correct f_i_r dimensions" << endl; 30

dimensionedScalar correct fi r (physicalProperties.lookup("correct_r"));
Info<< "Correct f_i_r dimensions is" << correct fi r <<endl <<endl;

Info<< "Reading parameter - correct_H in OpenFOAM dimensions" << endl;
dimensionedScalar correct H open (physicalProperties.lookup("correct_H_open"));
Info<< "Correct_H_open dimensions is" << correct H open <<endl <<endl;

Info<< "Reading parameter - correct_fw in OpenFOAM dimensions" << endl;
dimensionedScalar correct fi open (physicalProperties.lookup("correct_fi_open"));
Info<< "Correct_fi_open dimensions is" << correct fi open <<endl <<endl; 40

Info<< "Reading parameter - magnetic permabailty of free space (mu_0)" << endl;
dimensionedScalar mu 0 (physicalProperties.lookup("mu_0"));
Info<< "Magnetic permabailty of free space (mu_0) is " << mu 0 <<endl;

Info<< "Reading parameter - H_m field angle (theta)" << endl;
dimensionedScalar theta (physicalProperties.lookup("theta"));
Info<< "H_m field angle (theta) is " << theta << endl << endl;

Info<< "Reading parameter - H_m field magnitude (H_0)" << endl; 50

dimensionedScalar H 0 (physicalProperties.lookup("H_0"));
Info <<"H_m field magnitude (H_0) is " <<H 0 <<endl <<endl;

Info <<"\nCalculation - (mu_0 H_0) is " <<mu 0*H 0 << endl << endl;

Info<< "\nReading parameter -magnetic susceptibility of implant at H_0=0" << endl;
dimensionedScalar chi i 0 (physicalProperties.lookup("chi_i_0"));
Info<< "Magnetic susceptibility of implant at H_0=0" <<chi i 0 <<endl;

Info<< "Reading parameter - saturation magnetization of the implant (M_i_s)" << endl; 60

dimensionedScalar M i s (physicalProperties.lookup("M_i_s"));
Info<< "Saturation magnetization of the implant (M_i_s) is ="<<M i s<<endl;

Info<< "Calculating parameter - demagnetizing factor of the implant (alpha_i)" <<endl;
dimensionedScalar alpha i = Foam::min(chi i 0/(2.0+chi i 0), M i s/(2.0*H 0));
Info<< "Demagnetizing factor (implant_alpha_i) is = " << alpha i <<endl;

Info<< "Calculating parameter - susceptibility of implant (chi_i)" <<endl;
dimensionedScalar chi i = 2*(alpha i/(1.0−alpha i));
Info<< "susceptibility of implant(implant_chi_i) is = " <<chi i <<endl; 70

Info<<"Calculating parameter- - implant_mu" << endl;
scalar implant mu = 1.0+chi i.value();
Info <<"implant_mu is = " <<implant mu <<endl <<endl;

Info<< "Calculating parameter - Magnetization of the implant (M_i)" << endl;
dimensionedScalar M i = 2*alpha i*H 0;
Info<< "Magnetization of the implant (M_i) is =" <<M i <<endl <<endl;

Info<< "Reading parameter -Magnetic susceptility of Material at H_0=0<< endl; 80

dimensionedScalar chi_fm_p_0 (physicalProperties.lookup("chi fm p 0"));
Info<< "Magnetic susceptility of Material at H 0=0 is " <<chi_fm_p_0<< endl;

Info<< "Reading parameter − saturation magnetization of the material in MDCP"<< endl;
dimensionedScalar M_fm_p_s (physicalProperties.lookup("M fm p s"));
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Info<< "Saturation magnetization of the material in MDCP is " <<M_fm_p_s<<endl;

Info<< "Calculating parameter − demagnetizing factor (alpha fm p)" <<endl;
dimensionedScalar alpha_fm_p = Foam::min(chi_fm_p_0/(3.0+chi_fm_p_0), M_fm_p_s/(3.0*H_0));
Info<< "Demagnetizing factor (alpha fm p) is " <<alpha_fm_p <<endl <<endl; 90

Info<< "Calculating parameter − susceptibility of material (chi fm p)" <<endl;
dimensionedScalar chi_fm_p = 3*(alpha_fm_p/(1.0-alpha_fm_p));
Info<< "Demagnetizing factor (material chi fm p) is " <<chi_fm_p <<endl <<endl;

Info<< "Calculating parameter − Magnetization of the material (M fm p)" << endl;
dimensionedScalar M_fm_p = 3*alpha_fm_p*H_0;
Info<< "Magnetization of the material (M fm p) is =" <<M_fm_p <<endl <<endl;

Info<< "Reading parameter − Magnetic susceptility of Medium (chi m)" << endl; 100

dimensionedScalar chi_m (physicalProperties.lookup("chi m"));
Info<< "Magnetic susceptility of Medium is " <<chi_m << endl << endl;

Info<< "Reading parameter − density of the fer. material in the MDCP" << endl;
dimensionedScalar rho_fm_p (physicalProperties.lookup("rho fm p"));
Info<< "Density of the ferromagnetic material in the MDCP is " <<rho_fm_p<< endl;

Info<< "Reading parameter − density of the polymer and/or drug in the MDCP" << endl;
dimensionedScalar rho_pol_p (physicalProperties.lookup("rho pol p"));
Info<< "Density of the polymer and/or drug in the MDCP is "<<rho_pol_p<< endl; 110

Info<< "Reading parameter − mass fraction of the fer. material in the MDCP" << endl;
dimensionedScalar x_fm_p (physicalProperties.lookup("x fm p"));
Info<< "Mass fraction of the ferromagnetic material in the MDCP is " <<x_fm_p<< endl;

Info<< "Calculating parameter − MDCP density (rho p)" << endl;
dimensionedScalar rho_p = 1/((x_fm_p/rho_fm_p)+((1-x_fm_p)/rho_pol_p));
Info<< "MDCP density (rho p) is " <<rho_p <<endl <<endl;

Info<< "Calculating parameter −volume fraction of the fer. in the MDCP" << endl; 120

dimensionedScalar omega_fm_p = rho_p*(x_fm_p/rho_fm_p);
Info<< "Volume fraction of the ferromagnetic in the MDCP is ="<<omega_fm_p<<endl;

Info<< "Reading parameter − radius of implant (R i)" << endl;
dimensionedScalar R_i (physicalProperties.lookup("R i"));
Info<< "Radius of implant (R i) is " <<R_i << endl << endl;

Info<< "Reading parameter − radius of MDCP (R p)" << endl;
dimensionedScalar R_p (physicalProperties.lookup("R p"));
Info<< "Radius of MDCP (R p) is " <<R_p << endl << endl; 130

Info<< "Calculating parameter − volume of MDCP (volume p)" << endl;
dimensionedScalar volume_p=4.0/3.0 * mathematicalConstant::pi * R_p * R_p* R_p;
Info<< "Radius of MDCP (volume p) is " <<volume_p<< endl;

Info<< "Reading parameter − parent blood vessel radius (R pv)" << endl;
dimensionedScalar R_pv (physicalProperties.lookup("R pv"));
Info<< "Parent blood vessel radius (R pv) is " <<R_pv << endl;

Info<< "Calculating parameter − Ratio of Rpv/Rw (Rpv Rw)" << endl; 140

dimensionedScalar Rpv_Rw = R_pv/R_i;
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Info<< "Ratio of Rpv/Rw (Rpv Rw) is "<<Rpv_Rw<<endl;

Info<< "Reading parameter − blood viscosity (eta beta)" <<endl;
dimensionedScalar eta_beta (physicalProperties.lookup("eta beta"));
Info<< "Blood viscosity (eta beta) is " <<eta_beta<< endl;

Info<< "Reading parameter − blood density (rho beta)" <<endl;
dimensionedScalar rho_beta (physicalProperties.lookup("rho beta"));
Info<< "Blood density (rho beta) is " <<rho_beta<< endl; 150

Info<< "Reading parameter − Porosity of a cluster of MDCP (epsilon p)" <<endl;
dimensionedScalar epsilon_p (physicalProperties.lookup("epsilon p"));
Info<< "Porosity of a cluster of MDCP (epsilon p) is " <<epsilon_p<< endl;

Info<< "Reading parameter − radius of MDCP for Cregg (R p Cregg)" << endl;
dimensionedScalar R_p_Cregg (physicalProperties.lookup("R p Cregg"));
Info<< "Radius of MDCP for Cregg (R p Cregg) is " <<R_p_Cregg<< endl;

Info<< "Calculating parameter − volume of MDCP for Cregg (volume p Cregg)" << endl; 160

dimensionedScalar volume_p_Cregg=4.0/3.0 * mathematicalConstant::pi * pow(R_p_Cregg,3);
Info<< "Radius of MDCP for Cregg (volume p Cregg) is " <<volume_p_Cregg<< endl;

Info<< "Reading parameter − average inlet velocity (u 0)" <<endl;
dimensionedScalar u_0 (physicalProperties.lookup("u 0"));
Info<< "Average inlet velocity (u 0) is " <<u_0 << endl;

Info<< "Calculating parameter −Magnetic velocity" << endl;
dimensionedScalar velocity_m = (2.0/9.0)*(R_p*R_p/R_i)*(mu_0/eta_beta)

*(1-epsilon_p)*omega_fm_p* M_fm_p* M_i; 170

Info<< "Magnetic velocity (velocity m) is =" <<velocity_m <<endl <<endl;

Info<< "Calculating parameter −Magnetic velocity for Cregg" << endl;
dimensionedScalar velocity_m_Cregg = (2.0/9.0)*(R_p_Cregg*R_p_Cregg/R_i)

*(mu_0/eta_beta)*(1-epsilon_p*omega_fm_p* M_fm_p_s* M_i;
Info<< "Magnetic velocity for Cregg is =" <<velocity_m_Cregg <<endl;

vector H_0_vector = vector(H_0.value()*cos(convertToRad*theta).value(),
H_0.value()*sin(convertToRad*theta).value(), 0.0);

180

Info <<"\n\n@ Creating fields for space region.\n" << endl;

volVectorField space_H_0(
IOobject("H 0",
runTime.constant(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE),
mesh,
dimensionedVector("0", dimless, H_0_vector) 190

);
space_H_0.write();

volVectorField space_H_0_cal (
IOobject("H 0 cal",
runTime.constant(),
mesh, IOobject::NO_READ,
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IOobject::AUTO_WRITE),
-fvc::grad(T_0)

); 200

space_H_0_cal.write();

B.1.3 readtwoRegionDict.H file

/**
* File Name: readtwoRegionDict.H
* Author: mardinogluyahoo.com

*/
Info <<"\n\n@ Reading twoRegionDict\n" << endl;
IOdictionary twoRegionDict

(IOobject
(
"twoRegionDict",
runTime.system(), 10

runTime,
IOobject::MUST READ,
IOobject::NO WRITE)
);

Info<<"Reading parameter - - space_mu" << endl;
scalar space mu = readScalar(twoRegionDict.lookup("space_mu"));
Info <<"Space_mu = " <<space mu <<endl;

Info<<"Reading parameter - - distance between center and point on X axis " << endl;
scalar shift x = readScalar(twoRegionDict.lookup("shift_x")); 20

Info <<"Distance between center and point on X axis = " <<shift x<<endl;

Info<<"Reading parameter - - distance between center and point on Y axis" << endl;
scalar shift y = readScalar(twoRegionDict.lookup("shift_y"));
Info <<"Distance between center and point on Y axis = " <<shift y<<endl;

Info<<"Reading parameter - - position of particle one on X axis " << endl;
scalar x 1 original = readScalar(twoRegionDict.lookup("x_1_original"));
Info <<"Position of particle one on X axis= " <<x 1 original<<endl;

30

Info<<"Reading parameter - - position of particle one on Y axis " << endl;
scalar y 1 original = readScalar(twoRegionDict.lookup("y_1_original"));
Info <<"Position of particle one on Y axis= " <<y 1 original<<endl;

Info<<"Reading parameter - - position of particle two(reference) on X axis " << endl;
scalar x 2 = readScalar(twoRegionDict.lookup("x_2"));
Info <<"Position of particle two on X axis= " <<x 2<<endl;

Info<<"Reading parameter - - position of particle two(reference) on Y axis " << endl;
scalar y 2 = readScalar(twoRegionDict.lookup("y_2")); 40

Info <<"Position of particle one on Y axis= " <<y 2<<endl;
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B.1.4 interactionFoam.C file

/**
* File Name: interactionFoam.C
* Author: mardinogluyahoo.com

*/
#include "fvCFD.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/turbulenceModel/turbulenceModel.H"
#include "typeInfo.H"
#include "OFstream.H"
#include "IOmanip.H" 10

#include "mathematicalConstants.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[ ])
{
const scalar convertToRad = mathematicalConstant::pi/180.0;

# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H" 20

# include "createFields_analytic.H"
# include "initContinuityErrs.H"
# include "readtwoRegionDict.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nEvaluating analytical solution for Aviles Case" << endl;
volVectorField centres1 = T.mesh().C();
volScalarField magCentres1 = mag(centres1);
volScalarField radius1 = sqrt((centres1.component(vector::X)*centres1.component(vector::X))

+(centres1.component(vector::Y)*centres1.component(vector::Y)));
30

scalar const a2 = (−H 0.value()*(1/(1−((implant mu−space mu)/(space mu+implant mu))*(0.000001))));
// 0.000000001 will be changed according to the blockmesh file.
scalar const b2 = −((implant mu−space mu)/(space mu+implant mu))*const a2 ;

volScalarField theta1 = acos((centres1 & vector(1,0,0))/magCentres1);
volScalarField Totalscalar space(

IOobject(
"T_an_total",
runTime.timeName(),
mesh, 40

IOobject::NO READ,
IOobject::AUTO WRITE),
(const a2*centres1.component(vector::X)+(const b2*centres1.component(vector::X)/
(radius1*radius1)))
);

volVectorField H space an total hand(
IOobject ( "H_an_total_hand",
runTime.timeName(),
mesh,
IOobject::NO READ, 50

IOobject::AUTO WRITE),
correct H open*(((−const a2+(const b2*(centres1.component(vector::X)*
centres1.component(vector::X)−centres1.component(vector::Y)*
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centres1.component(vector::Y))/(radius1*radius1*radius1*radius1)))
*vector(1,0,0))+((2*const b2*centres1.component(vector::X)*
centres1.component(vector::Y)/(radius1*radius1*radius1*radius1))*
vector(0,1,0)))
);

volScalarField mag H space an total hand(
IOobject ( "H_mag_an_total_hand", 60

runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
mag(H space an total hand)
);

volVectorField f i space total analytical(
IOobject ( "f_i_vector_analytical",
runTime.timeName(),
mesh, 70

IOobject::NO READ,
IOobject::AUTO WRITE),
(correct fi open*(3.0/(2.0*R i.value()))*(1.0/4.0)*alpha fm p*mu 0*
const b2)* ((4.0*((centres1.component(vector::X)*
(const a2*centres1.component(vector::X)*centres1.component(vector::X)−
3.0*const a2*centres1.component(vector::Y)*centres1.component(vector::Y)−
const b2))/(radius1*radius1*radius1*radius1*radius1*radius1))*
vector(1,0,0))+(4.0*((centres1.component(vector::Y)*(3.0*const a2*
centres1.component(vector::X)*centres1.component(vector::X)−const a2*
centres1.component(vector::Y)*centres1.component(vector::Y)−const b2))/ 80

(radius1*radius1*radius1*radius1*radius1*radius1))*vector(0,1,0)))
);

Info << "\n Calculating the magnitude of f_i_analytical in space region" << endl;
volScalarField mag f i space total analytical(

IOobject(
"f_i_mag_analytical",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE), 90

mag(f i space total analytical)
);

Info << "\n Calculating the velocity of particle by using the analytical fw" << endl;
volVectorField velocity particle analytical(

IOobject ( "velocity_p_an",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
velocity m*f i space total analytical*R i*(1/(M i*mu 0*H 0*u 0))*(4/(3*alpha fm p)) 100

);
volScalarField mag velocity particle analytical(

IOobject(
"mag_velocity_p_an",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
mag(velocity particle analytical)
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); 110

Info <<"\nCALCULATING THE VELOCITY OF PARTICLE WITH LANGEVIN FUNCTIONS"<< endl;
Info<< "\nCalculating parameter - beta for the Langevin Function" <<endl;
volScalarField beta Cregg(

IOobject(
"beta_Cregg",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
correct beta*(omega fm p*volume p Cregg*M fm p s*mag(mu 0*H space an total hand)) 120

/(1.38e−23 * 309.5)
);

Info<< "\nCalculating parameter - Langevin Factor for the Langevin Function" <<endl;
volScalarField Langevin Cregg(

IOobject(
"Langevin_Cregg",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE), 130

(1.0/Foam::tanh(beta Cregg) − 1.0/beta Cregg)
);

Info << "\nCalculating the velocity of particle by using hand calculation for H " << endl;
volVectorField velocity particle an Cregg(

IOobject ( "velocity_p_an_Cregg",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
velocity m Cregg*Langevin Cregg*f i space total analytical*R i* 140

(1/(M i*mu 0*H 0*u 0))*(4/(3*alpha fm p))
);

volScalarField mag velocity particle an Cregg(
IOobject(
"mag_velocity_p_an_Cregg",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
mag(velocity particle an Cregg) 150

);
volVectorField magmoment Cregg(

IOobject ( "magmoment_Cregg",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(omega fm p*volume p Cregg*M fm p s*Langevin Cregg*(mu 0*H space an total hand)
/(mu 0*mag H space an total hand))
); 160

Info<< "\n\nwrite. . . . .END" << endl;
Info<< "PART1\n" << endl;
// ************************************************************************* //

ofstream myfile;
myfile.open("Pjinteraction.txt");
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// For Blood velocity

Info<< "\nStarting time loop\n" << endl;
for (runTime++; !runTime.end(); runTime++) 170

{
Info<< "Time = " << runTime.timeName() << nl << endl;

# include "readSIMPLEControls.H"
p.storePrevIter();
// Pressure-velocity SIMPLE corrector
{

// Momentum predictor
tmp<fvVectorMatrix> UEqn
(

fvm::div(phi, U) 180

+ turbulence−>divR(U)
);
UEqn().relax();
solve(UEqn() == −fvc::grad(p));
p.boundaryField().updateCoeffs();
volScalarField AU = UEqn().A();
U = UEqn().H()/AU;
UEqn.clear();
phi = fvc::interpolate(U) & mesh.Sf();
adjustPhi(phi, U, p); 190

// Non-orthogonal pressure corrector loop
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{

fvScalarMatrix pEqn
(

fvm::laplacian(1.0/AU, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (nonOrth == nNonOrthCorr) 200

{
phi −= pEqn.flux();

}
}

# include "continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();

// Momentum corrector
U −= fvc::grad(p)/AU;
U.correctBoundaryConditions(); 210

}
turbulence−>correct();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

// For particle Tracking
// For position of the particle see tworegionDict file.

scalar distance=mag(y 2−y 1 original); //distance between the particles 220

scalar distance original=mag(y 2−y 1 original); //distance between the particles
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scalar x 1=x 1 original;
scalar y 1=y 1 original;

scalar x 2 original=x 2;
scalar y 2 original=y 2;

if (runTime.time().value() > 3.0){
for (runTime++; !runTime.end(); runTime++)
{ 230

Info<< "Time = " << runTime.timeName() << nl << endl;

// Info << “\n’Evaluating solution for magnetic interaction on Mikkelsen’s paper” << endl;
// In this part the effect of dipole interaction is calcualted
#include "Time.H"
#include "IOstreams.H"
// save the output of the file
myfile<<runTime.timeName()<<"\t "<<x 1<<"\t "<<y 1<<"\t "<<x 2<<"\t "<<y 2<<"\t "

<<x 1 original<<"\t "<<y 1 original<<"\t "<<x 2 original<<"\t "<<y 2 original
<<"\t "<<distance<<"\t "<<distance original<<"\n"; 240

vector probePoint one original(x 1 original,y 1 original,0);
label probeCell one original = mesh.findCell(probePoint one original);
volTensorField gradU = fvc::grad(U);
vector cellCentre one original = mesh.C()[probeCell one original];
vector U one original int = U[probeCell one original]+((probePoint one original

−cellCentre one original)&gradU[probeCell one original]);

vector probePoint one(x 1,y 1,0);
label probeCell one = mesh.findCell(probePoint one); 250

vector cellCentre one = mesh.C()[probeCell one];
vector U one int = U[probeCell one] + ((probePoint one

−cellCentre one) & gradU[probeCell one]);

vector probePoint two original(x 2 original,y 2 original,0);
label probeCell two original = mesh.findCell(probePoint two original);
vector cellCentre two original = mesh.C()[probeCell two original];
vector U two original int = U[probeCell two original]+((probePoint two original

−cellCentre two original)&gradU[probeCell two original]);
260

vector probePoint two(x 2,y 2,0);
label probeCell two = mesh.findCell(probePoint two);
vector cellCentre two = mesh.C()[probeCell two];
vector U two int=U[probeCell two]+((probePoint two−cellCentre two)&gradU[probeCell two]);

volTensorField gradU cregg = fvc::grad(velocity particle an Cregg);
vector U cregg one original int=velocity particle an Cregg[probeCell one original]

+((probePoint one original−cellCentre one original)&gradU cregg[probeCell one original]);

vector U cregg one int = velocity particle an Cregg[probeCell one]+((probePoint one−cellCentre one) 270

&gradU cregg[probeCell one]);

vector U cregg two original int=velocity particle an Cregg[probeCell two original]
+((probePoint two original−cellCentre two original)&gradU cregg[probeCell two original]);

vector U cregg two int=velocity particle an Cregg[probeCell two]+((probePoint two−cellCentre two)
& gradU cregg[probeCell two]);
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volTensorField gradH=fvc::grad(H space an total hand);
280

vector H r1 vector int=H space an total hand[probeCell one]+((probePoint one−cellCentre one)&
gradH[probeCell one]);

vector H r2 vector int=H space an total hand[probeCell two]+((probePoint two−cellCentre two)&
gradH[probeCell two]);

//Info<<“Creating vector- - r vectors for each particle ” << endl;
vector r 1 vector = vector(x 1,y 1,0);
vector r 1 original vector = vector(x 1 original,y 1 original,0);
vector r 2 vector = vector(x 2,y 2,0);
vector r 2 original vector = vector(x 2 original,y 2 original,0); 290

//Info<<“Calculating- - distance between the center of particles” << endl;
Info <<"Parameter - - (r_1_vector)= " << (r 1 vector) <<endl;
Info <<"Parameter - - (r_2_vector)= " << (r 2 vector) <<endl;
distance=mag(r 2 vector−r 1 vector);
distance original=mag(r 2 original vector−r 1 original vector);
Info <<"Parameter -DISTANCE BETWEEN THE PARTICLES >> 0.1 = " <<distance <<endl;

//Info<<“Creating vector- - r position vectors for all space region ” << endl;
volVectorField r positions= T.mesh().C(); 300

//Info<<“Creating vector field- - r 1 constant field for particle 1 position ” << endl;
volVectorField r 1 constant field(

IOobject("r_1",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
mesh,
dimensionedVector("0", dimless, r 1 vector) 310

);
//Info<<“Creating vector field- - B r 1 constant field for particle one magnetic Flux ” << endl;
volVectorField B r 1 constant field(

IOobject("B_r_1",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
mesh,
dimensionedVector("0", dimless, (mu 0.value()*H r1 vector int)) 320

);
//Info<<“Creating vector field- - r 2 constant field for particle 2 position ” << endl;
volVectorField r 2 constant field(

IOobject("r_2",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
mesh,
dimensionedVector("0", dimless, r 2 vector) 330

);
//Info<<“Creating vector field- - B r 2 constant field for particle 2 magnetic Flux ” << endl;
volVectorField B r 2 constant field(
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IOobject("B_r_2",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
mesh,
dimensionedVector("0", dimless, (mu 0.value()*H r2 vector int)) 340

);
//Info << “\n’Evaluating solution for particle one because of particle 2; called (dB 2)” << endl;
volVectorField F int term11(

IOobject ( "F_int_1_dB2",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(1.0/3.0)*((mu 0*M fm p s*Langevin Cregg/(mu 0*mag H space an total hand))*
pow(R p Cregg,3)/pow(mag(r 1 vector−r 2 vector),3)*((3.0*(B r 2 constant field& 350

(r positions−r 2 constant field))*(r positions−r 2 constant field)/
pow(mag(r positions−r 2 constant field),2)) −(B r 2 constant field)))*pow((1.0/R i),3)
);

volScalarField beta Cregg par one(
IOobject(
"beta_Cregg_one",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE), 360

correct beta*(omega fm p*volume p Cregg*M fm p s*(mag(mu 0*H space an total hand)
+mag(F int term11)))/(1.38e−23 * 309.5)
);

Info<< "\nCalculating parameter - Langevin Factor for the Langevin Function" <<endl;
volScalarField Langevin Cregg par one(

IOobject(
"Langevin_Cregg_one",
runTime.timeName(),
mesh,
IOobject::NO READ, 370

IOobject::AUTO WRITE),
(1.0/Foam::tanh(beta Cregg par one) − 1.0/beta Cregg par one)
);

volVectorField magmoment Cregg par one(
IOobject ( "magmoment_Cregg_one",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(omega fm p*volume p Cregg*M fm p s*Langevin Cregg par one* 380

((mu 0*H space an total hand)+F int term11))/((mu 0*mag H space an total hand)+
mag(F int term11))
);

volVectorField F int par one new(
IOobject ( "F_int_1_new",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
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(fvc::grad((magmoment Cregg par one)&(mu 0*H space an total hand+F int term11))) 390

);
//vector probePoint one(x 1,y 1,0);
//label probeCell one = mesh.findCell(probePoint one);
volTensorField gradF int one = fvc::grad(F int par one new);
//vector cellCentre one = mesh.C()[probeCell one];
vector F int par one vector new=F int par one new[probeCell one]+

((probePoint one−cellCentre one)&gradF int one[probeCell one]);
//Info << “\n’Evaluating solution for particle two because of particle 1; called (dB 1)” << endl;
volVectorField F int term21(

IOobject ( "F_int_2_dB1", 400

runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(0.33333)*((mu 0*M fm p s*Langevin Cregg/(mu 0*mag H space an total hand))*
pow(R p Cregg,3)/pow(mag(r 2 vector−r 1 vector),3)*((3.0*(B r 1 constant field&
(r positions−r 1 constant field))*(r positions−r 1 constant field)/
pow(mag(r positions−r 1 constant field),2))−(B r 1 constant field)))*pow((1.0/R i),3)
);

volScalarField beta Cregg par two( 410

IOobject(
"beta_Cregg_two",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
correct beta*(omega fm p*volume p Cregg*M fm p s*(mag(mu 0*H space an total hand)
+mag(F int term21)))/(1.38e−23 * 309.5)
);

Info<< "\nCalculating parameter - Langevin Factor for the Langevin Function" <<endl; 420

volScalarField Langevin Cregg par two(
IOobject(
"Langevin_Cregg_two",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(1.0/Foam::tanh(beta Cregg par two) − 1.0/beta Cregg par two)
);

volVectorField magmoment Cregg par two( 430

IOobject ( "magmoment_Cregg_two",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(omega fm p*volume p Cregg*M fm p s*Langevin Cregg par one*
((mu 0*H space an total hand)+F int term21))/((mu 0*mag H space an total hand)
+mag(F int term21))
);

volVectorField F int par two new( 440

IOobject ( "F_int_2_new",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
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(fvc::grad((magmoment Cregg par two)&(mu 0*H space an total hand+F int term21)))
);

//vector probePoint two(x 2,y 2,0);
//label probeCell two = mesh.findCell(probePoint two);
volTensorField gradF int two = fvc::grad(F int par two new); 450

//vector cellCentre two = mesh.C()[probeCell two];
vector F int par two vector new = F int par two new[probeCell two]+

((probePoint two − cellCentre two)&gradF int two[probeCell two]);
//Info <<“Calculating magnetic velocities with interaction for particle one and two ” << endl;
dimensionedVector velocity int par one new=(F int par one vector new*(1.0/(6.0*R i.value()

*mathematicalConstant::pi*eta beta*R p Cregg.value()*u 0)));
dimensionedVector velocity int par two new=(F int par two vector new*(1.0/(6.0*R i.value()

*mathematicalConstant::pi*eta beta*R p Cregg.value()*u 0)));

// 0.005 was the time step 460

// 0.0025 was the time step
// 0.00125 is the time step
// 0.000625 was the time step

vector particle1 ccs original=vector(x 1 original,y 1 original,0)+0.001*
(U cregg one original int+U one original int); //with the seed effect

vector particle2 ccs original=vector(x 2 original,y 2 original,0)+0.001*
(U cregg two original int+U two original int); //with the seed effect

vector particle1 ccs=vector(x 1,y 1,0)+0.001*(velocity int par one new.value()+U one int);
vector particle2 ccs=vector(x 2,y 2,0)+0.001*(velocity int par two new.value()+U two int); 470

// Calculates the new positions of the particles(Creating streamlines)
x 1 original=particle1 ccs original.x();
y 1 original=particle1 ccs original.y();
x 2 original=particle2 ccs original.x();
y 2 original=particle2 ccs original.y();

x 1=particle1 ccs.x();
y 1=particle1 ccs.y();
x 2=particle2 ccs.x();
y 2=particle2 ccs.y(); 480

runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}

}
}

myfile.close();
Info<< "End\n" << endl; 490

return(0);
}
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B.2 Run (Case) for Seed Implant

B.2.1 0 (initial conditions file)

B.2.1.1 epsilon file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/
FoamFile
{

version 2.0; 10

format ascii;
root "";
case "";
instance "";
local "";

class volScalarField;
object epsilon;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

dimensions [0 2 −3 0 0 0 0];
internalField uniform 14.855;
boundaryField
{

inlet
{

type fixedValue;
value uniform 14.855;

}
outlet 30

{
type zeroGradient;

}
top
{

type zeroGradient;
}
bottom
{

type zeroGradient; 40

}
seed 0
{

type zeroGradient;
}
defaultFaces
{

type empty;
}
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} 50

// ************************************************************************* //

B.2.1.2 k file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volScalarField;
object k; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 −2 0 0 0 0];
internalField uniform 0.375;
boundaryField
{

inlet
{

type fixedValue;
value uniform 0.375; 20

}
outlet
{

type zeroGradient;
}
top
{

type zeroGradient;
}
bottom 30

{
type zeroGradient;

}
seed 0
{

type zeroGradient;
}
defaultFaces
{

type empty; 40

}
}
// ************************************************************************* //
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B.2.1.3 nuTilda file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volScalarField;
object nuTilda; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 −1 0 0 0 0];
internalField uniform 0;
boundaryField
{

inlet
{

type fixedValue;
value uniform 0; 20

}
outlet
{

type zeroGradient;
}
top
{

type zeroGradient;
}
bottom 30

{
type zeroGradient;

}
seed 0
{

type zeroGradient;
}
defaultFaces
{

type empty; 40

}
}
// ************************************************************************* //

B.2.1.4 p file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
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instance "";
local "";
class volScalarField;
object p; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 −2 0 0 0 0];
internalField uniform 0;
boundaryField
{

inlet
{

type zeroGradient;
} 20

outlet
{

type fixedValue;
value uniform 0;

}
top
{

type zeroGradient;
}
bottom 30

{
type zeroGradient;

}
seed 0
{

type zeroGradient;
}
defaultFaces
{

type empty; 40

}
}
// ************************************************************************* //

B.2.1.5 phi file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class surfaceScalarField;
object phi; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 3 −1 0 0 0 0];
internalField uniform 0;
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boundaryField
{

inlet
{

type calculated;
value uniform 90; 20

}
outlet
{

type calculated;
value uniform 90;

}
top
{

type calculated;
value uniform 90; 30

}
bottom
{

type calculated;
value uniform 90;

}
seed 0
{

type calculated;
value uniform 90; 40

}
defaultFaces
{

type empty;
}

}
// ************************************************************************* //

B.2.1.6 R file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volTensorField;
object R; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 −2 0 0 0 0];
internalField uniform (0 0 0 0 0 0 0 0 0);
boundaryField
{

inlet
{
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type fixedValue;
value uniform (0 0 0 0 0 0 0 0 0); 20

}
outlet
{

type zeroGradient;
}
top
{

type zeroGradient;
}
bottom 30

{
type zeroGradient;

}
seed 0
{

type zeroGradient;
}
defaultFaces
{

type empty; 40

}
}
// ************************************************************************* //

B.2.1.7 T file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volScalarField;
object T; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 0 0 1 0 0 0];
internalField uniform 0;
boundaryField
{

inlet
{

type fixedValue;
value uniform 0.0; 20

}
outlet
{

type fixedValue;
value uniform 0.0;

}

103



B.2. Run (Case) for Seed Implant

top
{

type fixedValue;
value uniform 0.0; 30

}
bottom
{

type fixedValue;
value uniform 0.0;

}
seed 0
{

type fixedGradient;
gradient uniform 0.0; 40

}
defaultFaces
{

type empty;
}

}
// ************************************************************************* //

B.2.1.8 U blood velocity file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volVectorField;
object U; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 1 −1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{

inlet
{

type fixedValue;
value uniform (1 0 0); 20

}
outlet
{

type zeroGradient;
}
top
{

type fixedValue;
value uniform (0 0 0);

} 30
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bottom
{

type fixedValue;
value uniform (0 0 0);

}
seed 0
{

type fixedValue;
value uniform (0 0 0);

} 40

defaultFaces
{

type empty;
}

}
// ************************************************************************* //

B.2.2 constant

B.2.2.1 Polymesh File (blockMeshDict) file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object blockMeshDict; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
convertToMeters 1.0;
vertices
40 (

(−20.000000 −21.000000 0.000000)
(−20.000000 −1.414214 0.000000)
(−20.000000 1.414214 0.000000)
(−20.000000 21.000000 0.000000)
( −1.414214 −21.000000 0.000000) 20

( −1.414214 −1.414214 0.000000)
( −1.414214 1.414214 0.000000)
( −1.414214 21.000000 0.000000)
( −0.707107 −0.707107 0.000000)
( −0.707107 0.707107 0.000000)
( 0.707107 −0.707107 0.000000)
( 0.707107 0.707107 0.000000)
( 1.414214 −21.000000 0.000000)
( 1.414214 −1.414214 0.000000)
( 1.414214 1.414214 0.000000) 30

( 1.414214 21.000000 0.000000)
( 20.000000 −21.000000 0.000000)
( 20.000000 −1.414214 0.000000)
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( 20.000000 1.414214 0.000000)
( 20.000000 21.000000 0.000000)
(−20.000000 −21.000000 1.000000)
(−20.000000 −1.414214 1.000000)
(−20.000000 1.414214 1.000000)
(−20.000000 21.000000 1.000000)
( −1.414214 −21.000000 1.000000) 40

( −1.414214 −1.414214 1.000000)
( −1.414214 1.414214 1.000000)
( −1.414214 21.000000 1.000000)
( −0.707107 −0.707107 1.000000)
( −0.707107 0.707107 1.000000)
( 0.707107 −0.707107 1.000000)
( 0.707107 0.707107 1.000000)
( 1.414214 −21.000000 1.000000)
( 1.414214 −1.414214 1.000000)
( 1.414214 1.414214 1.000000) 50

( 1.414214 21.000000 1.000000)
( 20.000000 −21.000000 1.000000)
( 20.000000 −1.414214 1.000000)
( 20.000000 1.414214 1.000000)
( 20.000000 21.000000 1.000000)

);
edges
(

arc 5 13 ( −0.000000 −2.000000 0.000000)
arc 13 14 ( 2.000000 −0.000000 0.000000) 60

arc 14 6 ( 0.000000 2.000000 0.000000)
arc 6 5 ( −2.000000 0.000000 0.000000)
arc 8 10 ( −0.000000 −1.000000 0.000000)
arc 10 11 ( 1.000000 −0.000000 0.000000)
arc 11 9 ( 0.000000 1.000000 0.000000)
arc 9 8 ( −1.000000 0.000000 0.000000)
arc 25 33 ( −0.000000 −2.000000 1.000000)
arc 33 34 ( 2.000000 −0.000000 1.000000)
arc 34 26 ( 0.000000 2.000000 1.000000)
arc 26 25 ( −2.000000 0.000000 1.000000) 70

arc 28 30 ( −0.000000 −1.000000 1.000000)
arc 30 31 ( 1.000000 −0.000000 1.000000)
arc 31 29 ( 0.000000 1.000000 1.000000)
arc 29 28 ( −1.000000 0.000000 1.000000)

);
blocks
(

hex ( 0 4 5 1 20 24 25 21) (32 32 1) simpleGrading (1.000000 1.000000 1)
hex ( 1 5 6 2 21 25 26 22) (32 16 1) simpleGrading (1.000000 1.000000 1)
hex ( 2 6 7 3 22 26 27 23) (32 32 1) simpleGrading (1.000000 1.000000 1) 80

hex ( 4 12 13 5 24 32 33 25) (16 32 1) simpleGrading (1.000000 1.000000 1)
hex ( 5 13 10 8 25 33 30 28) (16 16 1) simpleGrading (1.000000 1.000000 1)
hex (10 13 14 11 30 33 34 31) (16 16 1) simpleGrading (1.000000 1.000000 1)
hex (11 14 6 9 31 34 26 29) (16 16 1) simpleGrading (1.000000 1.000000 1)
hex ( 9 6 5 8 29 26 25 28) (16 16 1) simpleGrading (1.000000 1.000000 1)
hex ( 6 14 15 7 26 34 35 27) (16 32 1) simpleGrading (1.000000 1.000000 1)
hex (12 16 17 13 32 36 37 33) (32 32 1) simpleGrading (1.000000 1.000000 1)
hex (13 17 18 14 33 37 38 34) (32 16 1) simpleGrading (1.000000 1.000000 1)
hex (14 18 19 15 34 38 39 35) (32 32 1) simpleGrading (1.000000 1.000000 1)
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); 90

patches
(
);

B.2.2.2 physical properties file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object physicalProperties; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// kg m s K ml A cd
theta theta [ 0 0 0 0 0 0 0] 0.0; // H m field angle (in degrees)
//H 0 H 0 [ 0 -1 0 0 0 1 0] 1591549.4302045;// magnitude of H m field for mu 0*H 0=2.0T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 1432394.4871841;// magnitude of H m field for mu 0*H 0=1.8T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 1273239.5441636;// magnitude of H m field for mu 0*H 0=1.6T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 1114084.6011432;// magnitude of H m field for mu 0*H 0=1.4T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 954929.6581227; // magnitude of H m field for mu 0*H 0=1.2T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 795774.7151023; // magnitude of H m field for mu 0*H 0=1.0T 20

//H 0 H 0 [ 0 -1 0 0 0 1 0] 636619.7720818; // magnitude of H m field for mu 0*H 0=0.8T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 596830.935; // magnitude of H m field for mu 0*H 0=0.75T
H 0 H 0 [ 0 −1 0 0 0 1 0] 557042.2000000; // magnitude of H m field for mu 0*H 0=0.7
//H 0 H 0 [ 0 -1 0 0 0 1 0] 517253.564; // magnitude of H m field for mu 0*H 0=0.65T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 477464.8290614; // magnitude of H m field for mu 0*H 0=0.6T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 437676.092; // magnitude of H m field for mu 0*H 0=0.55T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 397887.3575511; // magnitude of H m field for mu 0*H 0=0.5T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 358098.62; // magnitude of H m field for mu 0*H 0=0.45T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 318309.8860409; // magnitude of H m field for mu 0*H 0=0.4T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 278521.13501; // magnitude of H m field for mu 0*H 0=0.35T 30

//H 0 H 0 [ 0 -1 0 0 0 1 0] 238732.4; // magnitude of H m field for mu 0*H 0=0.3T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 198943.6780305; // magnitude of H m field for mu 0*H 0=0.25T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 159154.9430205; // magnitude of H m field for mu 0*H 0=0.2T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 119366.2072653; // magnitude of H m field for mu 0*H 0=0.15T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 79577.4715102; // magnitude of H m field for mu 0*H 0=0.1T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 39788.73501; // magnitude of H m field for mu 0*H 0=0.05T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 19894.36750; // magnitude of H m field for mu 0*H 0=0.025T
//H 0 H 0 [ 0 -1 0 0 0 1 0] 0.0; // magnitude of H m field for mu 0*H 0=0.0T
mu 0 mu 0 [ 1 1 −2 0 0 −2 0] 0.000001256637062;// magnetic permabailty of free space
R i R i [ 0 1 0 0 0 0 0] 1000.0e−09; // implant radius 40

chi fm p 0 chi fm p 0 [ 0 0 0 0 0 0 0] 1000; // magnetic susceptility of material at H 0=0
chi i 0 chi i 0 [ 0 0 0 0 0 0 0] 1000; // magnetic susceptility of implant at H 0=0
chi m chi m [ 0 0 0 0 0 0 0] 0; // magnetic susceptility of medium
M i s M i s [ 0 −1 0 0 0 1 0] 1397000;//Saturation magnetization of the implant
M fm p s M fm p s [ 0 −1 0 0 0 1 0] 1735000;//Saturation magnetization of the mat. in MDCP
rho beta rho beta [ 1 −3 0 0 0 0 0] 1040; // blood density
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rho fm p rho fm p [ 1 −3 0 0 0 0 0] 7850; // density of in MDCP
rho pol p rho pol p [ 1 −3 0 0 0 0 0] 950;
x fm p x fm p [ 0 0 0 0 0 0 0] 0.4; // mass fraction of material in MDCP
R p R p [ 0 1 0 0 0 0 0] 50.0e−9; // MDCP radius 50

R pv R pv [ 0 1 0 0 0 0 0] 0.000021;// parent blood vessel radius
u 0 u 0 [ 0 1 −1 0 0 0 0] 0.001; // average inlet velocity
eta beta eta beta [ 1 −1 −1 0 0 0 0] 0.002; // blood viscosity (Pa s)
epsilon p epsilon p[ 0 0 0 0 0 0 0] 0; // porosity of the material!!!!
R p Cregg R p Cregg [ 0 1 0 0 0 0 0] 50.0e−9; // MDCP radius

B.2.2.3 transport properties file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object transportProperties; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
transportModel Newtonian;
nu nu [0 2 −1 0 0 0 0] 1.9231e−06;
// ************************************************************************* //

B.2.2.4 turbulence properties file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object turbulenceProperties; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
turbulenceModel laminar;
turbulence off;
laminarCoeffs
{
}
kEpsilonCoeffs
{

Cmu Cmu [0 0 0 0 0 0 0] 0.09; 20

C1 C1 [0 0 0 0 0 0 0] 1.44;
C2 C2 [0 0 0 0 0 0 0] 1.92;

108



B.2. Run (Case) for Seed Implant

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

B.2.3 system

B.2.3.1 controlDict file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object controlDict; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
startFrom startTime;
startTime 0;
stopAt endTime;
endTime 100.0;
deltaT 0.001;
writeControl timeStep;
writeInterval 1500;
purgeWrite 0; 20

writeFormat ascii;
writePrecision 6;
writeCompression compressed;
timeFormat general;
timePrecision 6;
runTimeModifiable yes;
// ************************************************************************* //

B.2.3.2 fvSchemes file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object fvSchemes; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
ddtSchemes
{
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default Euler;
}
gradSchemes
{

default Gauss linear;
grad(p) Gauss linear; 20

grad(U) Gauss linear;
}
divSchemes
{

default none;
div(phi,U) Gauss upwind;
div(phi,k) Gauss upwind;
div(phi,epsilon) Gauss upwind;
div(phi,R) Gauss upwind;
div(R) Gauss linear; 30

div(phi,nuTilda) Gauss upwind;
div((nuEff*dev(grad(U).T()))) Gauss linear;

}
laplacianSchemes
{

default none;
laplacian(nuEff,U) Gauss linear corrected;

// laplacian(1|A(U),p) Gauss linear corrected;
laplacian(1|A(U),p) Gauss linear limited 1;
laplacian(DkEff,k) Gauss linear corrected; 40

laplacian(DepsilonEff,epsilon) Gauss linear corrected;
laplacian(DREff,R) Gauss linear corrected;
laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;

}
interpolationSchemes
{

default linear;
interpolate(U) linear;

}
snGradSchemes 50

{
default corrected;

}
fluxRequired
{

default no;
p;

}

B.2.3.3 fvSolution file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
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local "";
class dictionary;
object fvSolution; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
solvers
{

p ICCG 1e−06 0.01;
U BICCG 1e−05 0.1;
k BICCG 1e−05 0.1;
epsilon BICCG 1e−05 0.1;
R BICCG 1e−05 0.1;
nuTilda BICCG 1e−05 0.1; 20

}
SIMPLE
{

nNonOrthogonalCorrectors 0;
pRefCell 0;
pRefValue 0;

}
relaxationFactors
{ 30

p 0.3;
U 0.7;
k 0.7;
epsilon 0.7;
R 0.7;
nuTilda 0.7;

}
// ************************************************************************* //

B.2.3.4 sampleDict file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object sampleDict; 10

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
interpolationScheme cellPoint;
writeFormat raw;
sampleSets
(

uniform
{

name leftPatch;
axis y; 20
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start (0 0.5 0.25);
end (0 2 0.25);
nPoints 100;

}
);
fields
(

sigmaxx
);

30

// ************************************************************************* //

B.2.3.5 twoRegionDict file

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object twoRegiondict; 10

}
// ************************************************************************* //
space mu 1.0;
shift x 0.0; // distance between center and point on X axis
shift y 0.0; // distance between center and point on Y axis
x 1 original −19.999; // position of particle 1 on X axis
y 1 original 4.16; // position of particle 1 on Y axis
x 2 −19.999; //position of the particle 2 on X axis
y 2 −4.14; //position of the particle 2 on Y axis
// ************************************************************************* // 20
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Appendix C

Mesh Generator for Stent Model

In this chapter, a mesh generator to create a 2D stent model is presented.

C.1 Mesh Generator

#!/usr/bin/python
DOC = """Build a mesh comparable to that used in Ritter’s 2007a paper.
Mesh consists of a rectangular domain containing n circular seeds, The North and South
boundaries are symmetry boundaries and blood flow is from West (inflow) to East (outflow)
boundary."""
from vector import *
import blockMeshDict, os
# default parameter settings
origin = Vector(0, 0, 0) # location of origin
convertToMeters = 1.0 10

grading = 8
n = 10
R s = 1
delta = 30
a = 0.979898987

import sys
if len(sys.argv)==1: # no parameters => in interactive/help mode
print sys.argv[0], "\t - \t", DOC
print "Enter parameter data . . . " 20

convertToMeters = (raw input("\tConvertToMeters factor (%s) : " %
(convertToMeters) )).strip() or convertToMeters

grading = (raw input("\tMesh grading (%s) : " % (grading) )).strip() or grading
R s = (raw input("\tSeed radius (%s) : " % (R s) )).strip() or R s
n = (raw input("\tNumber of seeds (%s) : " % (n) )).strip() or n
delta = (raw input("\tDistance between (%s) : " % (delta) )).strip() or delta
# a = max(1.0, delta*0.2)
a = (raw input("\tWidth of annulus around seed (%s) : " % (a) )).strip() or a
os.system("./build_cv %s %s %s %s %s %s > blockMeshDict" %

(convertToMeters, grading, R s, n, delta, a)) 30

sys.exit(0)

if len(sys.argv)==7 or len(sys.argv)==10 :
convertToMeters = float(sys.argv[1])
grading = int(sys.argv[2])
R w = float(sys.argv[3])
n = int(sys.argv[4])
delta = float(sys.argv[5])
a = float(sys.argv[6])
if len(sys.argv)==10: # also moving origin (for adil meshes which are wire centered) 40

origin = Vector(float(sys.argv[7]), float(sys.argv[8]), float(sys.argv[9]))
else:

print "// Argument count was ", len(sys.argv)
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print "// Argument list ", sys.argv
print "// Using default settings"

DEBUG=0

print "// Parameters :"
print "// \t convertToMeters (convertToMeters) : ", convertToMeters 50

print "// \t grading (grading) : ", grading
print "// \t Radius of seed (R_s) : ", R s
print "// \t Number of seeds (n) : ", n
print "// \t Width between seeds (delta) : ", delta
print "// \t Width of annulus around seed (a) : ", a
print "// \t Mesh origin (origin) : ", origin
print "// "
# START
#t = 1.0/sqrt(2.0)

60

ty=1.0/sqrt(2.0) #ty=0.707
tx=1.0/sqrt(2.0) #tx=0.707
W = Vector(0, 0)
vertices = [ ]

# west edge
x = −19 − (n−1)*(2+delta) − 1
y = 8.0−(1+a)*ty
y 1 = −y

70

vertices.append( Vector(x, −8.0) )
vertices.append( Vector(x, −8.0+2*(1+a)*ty) )
vertices.append( Vector(x, 0) )
vertices.append( Vector(x, +8.0−2*(1+a)*ty) )
vertices.append( Vector(x, +8.0) )

# seed
for seed in range(n,0,−1):

x = −(2+delta)*(seed−1) # centre of wire x
y = 8.0−(1+a)*ty # centre of wire y 80

x 1 =−(2+delta)*(seed−1)+16.0 # centre of wire 2 x
y 1 = −y # centre of wire 2 y
vertices.append( Vector(x−(1+a)*tx, −8.0) )
vertices.append( Vector(x−(1+a)*tx, −8.0+2*(1+a)*ty) )
vertices.append( Vector(x−(1+a)*tx, 0) )
vertices.append( Vector(x−(1+a)*tx, +8.0−2*(1+a)*ty) )
vertices.append( Vector(x−(1+a)*tx, +8.0) )
vertices.append( Vector(x−1*tx, y−1*ty) )
vertices.append( Vector(x−1*tx, y+1*ty) )
vertices.append( Vector(x+1*tx, y−1*ty) ) 90

vertices.append( Vector(x+1*tx, y+1*ty) )
vertices.append( Vector(x+(1+a)*tx, −8.0) )
vertices.append( Vector(x+(1+a)*tx, −8.0+2*(1+a)*ty) )
vertices.append( Vector(x+(1+a)*tx, 0) )
vertices.append( Vector(x+(1+a)*tx, +8.0−2*(1+a)*ty) )
vertices.append( Vector(x+(1+a)*tx, +8.0) )
vertices.append( Vector(x 1−(1+a)*tx, −8.0) )
vertices.append( Vector(x 1−(1+a)*tx, −8.0+2*(1+a)*ty) )
vertices.append( Vector(x 1−(1+a)*tx, 0) )
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vertices.append( Vector(x 1−(1+a)*tx, +8.0−2*(1+a)*ty) ) 100

vertices.append( Vector(x 1−(1+a)*tx, +8.0) )
vertices.append( Vector(x 1−1*tx, y 1−1*ty) )
vertices.append( Vector(x 1−1*tx, y 1+1*ty) )
vertices.append( Vector(x 1+1*tx, y 1−1*ty) )
vertices.append( Vector(x 1+1*tx, y 1+1*ty) )
vertices.append( Vector(x 1+(1+a)*tx, −8.0) )
vertices.append( Vector(x 1+(1+a)*tx, −8.0+2*(1+a)*ty) )
vertices.append( Vector(x 1+(1+a)*tx, 0) )
vertices.append( Vector(x 1+(1+a)*tx, +8.0−2*(1+a)*ty) )
vertices.append( Vector(x 1+(1+a)*tx, +8.0) ) 110

x = 20
vertices.append( Vector(x, 0) )
vertices.append( Vector(x, +8.0−2*(1+a)*ty) )
vertices.append( Vector(x, +8.0) )
vertices.append( Vector(x, −8.0) )
vertices.append( Vector(x, −8.0+2*(1+a)*ty) )

# scale lengths by R s
for k in range(len(vertices)): vertices[k] = vertices[k].scale(R s) 120

# move points relative to origin
for k in range(len(vertices)): vertices[k] = vertices[k] − origin

V = len(vertices)

# EDGES
edges = [ ]
for seed in range(n,0,−1):

C = Vector(−(2+delta)*(seed−1),y) # centre of wire 130

k = (n−seed)*28
A = k+ 8; B = k+17; edges.append ( [A,B, (vertices[A]−C).rotate(45) + C] )
A = k+17; B = k+18; edges.append ( [A,B, (vertices[A]−C).rotate(45) + C] )
A = k+ 9; B = k+ 8; edges.append ( [A,B, (vertices[A]−C).rotate(45) + C] )
A = k+10; B = k+12; edges.append ( [A,B, (vertices[A]−C).rotate(45) + C] )
A = k+12; B = k+13; edges.append ( [A,B, (vertices[A]−C).rotate(45) + C] )
A = k+13; B = k+11; edges.append ( [A,B, (vertices[A]−C).rotate(45) + C] )
A = k+11; B = k+10; edges.append ( [A,B, (vertices[A]−C).rotate(45) + C] )
C 1 = Vector(16.0−(2+delta)*(seed−1),y 1) # centre of wire 2
A 1 = k+28; B 1 = k+29; edges.append ( [A 1,B 1, (vertices[A 1]−C 1).rotate(45) + C 1] ) 140

A 1 = k+29; B 1 = k+20; edges.append ( [A 1,B 1, (vertices[A 1]−C 1).rotate(45) + C 1] )
A 1 = k+20; B 1 = k+19; edges.append ( [A 1,B 1, (vertices[A 1]−C 1).rotate(45) + C 1] )
A 1 = k+24; B 1 = k+26; edges.append ( [A 1,B 1, (vertices[A 1]−C 1).rotate(45) + C 1] )
A 1 = k+26; B 1 = k+27; edges.append ( [A 1,B 1, (vertices[A 1]−C 1).rotate(45) + C 1] )
A 1 = k+27; B 1 = k+25; edges.append ( [A 1,B 1, (vertices[A 1]−C 1).rotate(45) + C 1] )
A 1 = k+25; B 1 = k+24; edges.append ( [A 1,B 1, (vertices[A 1]−C 1).rotate(45) + C 1] )

gA = 1
gB = 2 # x block 0. . . and 2. .
gC = 2 # y block 0. . . and 2. . . 150

blocks = [ ]
blocks.append( [ 0, 5, 6, 1, gA, gB] )
blocks.append( [ 1, 6, 7, 2, gA, gA] )
blocks.append( [ 2, 7, 8, 3, gA, gA] )
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blocks.append( [ 3, 8, 9, 4, gA, gB] )

for seed in range(0,n):
k = 0+seed*28 160

# seed column
blocks.append( [ k+ 5, k+14, k+15, k+ 6, gB, gB] )
blocks.append( [ k+ 6, k+15, k+16, k+ 7, gB, gA] )
blocks.append( [ k+ 7, k+16, k+17, k+ 8, gB, gA] )
blocks.append( [ k+ 8, k+17, k+12, k+10, gB, gB] )
blocks.append( [ k+12, k+17, k+18, k+13, gB, gB] )
blocks.append( [ k+13, k+18, k+ 9, k+11, gB, gB] )
blocks.append( [ k+11, k+ 9, k+ 8, k+10, gB, gB] )
blocks.append( [ k+14, k+19, k+20, k+15, gA, gB] )
blocks.append( [ k+15, k+20, k+21, k+16, gA, gA] ) 170

blocks.append( [ k+16, k+21, k+22, k+17, gA, gA] )
blocks.append( [ k+17, k+22, k+23, k+18, gA, gB] )
blocks.append( [ k+19, k+28, k+26, k+24, gB, gB] )
blocks.append( [ k+26, k+28, k+29, k+27, gB, gB] )
blocks.append( [ k+27, k+29, k+20, k+25, gB, gB] )
blocks.append( [ k+25, k+20, k+19, k+24, gB, gB] )
blocks.append( [ k+20, k+29, k+30, k+21, gB, gA] )
blocks.append( [ k+21, k+30, k+31, k+22, gB, gA] )
blocks.append( [ k+22, k+31, k+32, k+23, gB, gB] )

180

if seed<n−1:
blocks.append( [ k+28, k+33, k+34, k+29, gA, gB] )
blocks.append( [ k+29, k+34, k+35, k+30, gA, gA] )
blocks.append( [ k+30, k+35, k+36, k+31, gA, gA] )
blocks.append( [ k+31, k+36, k+37, k+32, gA, gB] )

# right hand side column

k = 0 + (n−1)*28
blocks.append( [ k+28, k+36, k+37, k+29, gA, gB] ) 190

blocks.append( [ k+29, k+37, k+33, k+30, gA, gA] )
blocks.append( [ k+30, k+33, k+34, k+31, gA, gA] )
blocks.append( [ k+31, k+34, k+35, k+32, gA, gB] )

# PATCHES

patches = [ ]

patches.append( ["patch", "inlet", [0, 1, 2, 3, 4]] )
200

k = 5+n*28
patches.append( ["patch", "outlet", [k+3,k+4,k,k+1,k+2]] )

tmp = [4]
for seed in range(0,n):

tmp.append( 9+28*seed)
tmp.append(18+28*seed)
tmp.append(23+28*seed)
tmp.append(32+28*seed)

tmp.append(35+28*(n−1)) 210
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patches.append( ["wall", "top", tmp] )

tmp = [0]
for seed in range(0,n):

tmp.append( 5+28*seed)
tmp.append(14+28*seed)
tmp.append(19+28*seed)
tmp.append(28+28*seed)

tmp.append(36+28*(n−1)) 220

patches.append( ["wall", "bottom", tmp] )

for seed in range(0,n):
k = 10 + seed*28
patches.append( ["wall", ("seedtop_%d" % seed), [k, k+2, k+3, k+1, k]] )
k 1=24 + seed*28
patches.append( ["wall", ("seedbot_%d" % seed), [k 1, k 1+2, k 1+3, k 1+1, k 1]] )

###################################################################### 230

# publish data to blockMeshDict.routines
######################################################################

blockMeshDict.convertToMeters = convertToMeters
blockMeshDict.grading = grading

blockMeshDict.vertices = vertices
blockMeshDict.edges = edges
blockMeshDict.blocks = blocks
blockMeshDict.patches = patches 240

blockMeshDict.printHeader()
blockMeshDict.printVertices()
blockMeshDict.printEdges()
blockMeshDict.printBlocks()
blockMeshDict.printPatches()

C.2 BlockMeshDict.py

# blockMeshdict.py
# python utility library to generate blockMeshDict

from vector import *
from math import *
back offset = Vector(0, 0, 0)
front offset = Vector(0, 0, 1)
front patch = [ ]
back patch = [ ]

10

def printHeader():
global convertToMeters
print r

"""/*---------------------------------------------------------------------------*\
| ========= | |
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| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/ 20

FoamFile
{

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary; 30

object blockMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
convertToMeters %s;
""" % (convertToMeters)
def printVertices():

global vertices
print "vertices\n%d (" % (2*len(vertices))
for vertex in vertices: print "\t%s" % (vertex + back offset)
for vertex in vertices: print "\t%s" % (vertex + front offset) 40

print ");\n"
def buildEdge(edge, d, zOffset):

start, end, point = edge
return "\tarc %2d %2d %s" % (start+d, end+d, point+zOffset)

def printEdges():
global edges, vertices
V = len(vertices)
print "edges\n("
for edge in edges: print buildEdge (edge, 0, back offset)
for edge in edges: print buildEdge (edge, V, front offset) 50

print ");\n"
def buildBlock(face):

global vertices
V = len(vertices)
# grading values
gx, gy = 1, 1
front patch.append("4(%s %s %s %s)" % (face[3], face[2], face[1], face[0]))
back patch.append("4(%s %s %s %s)" % (face[0]+V, face[1]+V, face[2]+V, face[3]+V))
if grading>=2 and len(face)>4: gx, gy = face[4:6]
sx, sy = 1, 1 60

if grading>=2 and len(face)>6: sx, sy = face[6:]
return ("\thex (%2d %2d %2d %2d %2d %2d %2d %2d) (%d %d 1) simpleGrading (%f %f 1)" %

(face[0], face[1], face[2], face[3],
face[0]+V, face[1]+V, face[2]+V, face[3]+V, gx*grading, gy*grading, sx, sy))

def printBlocks():
global blocks, vertices
print "blocks\n("
for block in blocks: print buildBlock(block)
print ");\n"

def buildPatch (patch): 70

global vertices
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V = len(vertices)
(type, name, corners) = patch
result = "\t%s %s\n\t(\n" % (type, name)
for f in range(len(corners)−1):
result += "\t\t4(%2d %2d %2d %2d)\n" % (corners[f], corners[f+1], corners[f+1]

+V, corners[f]+V)
result += "\t)"
return result

def printPatches(): 80

print "patches\n("
for patch in patches: print buildPatch(patch)
print "\tempty front\n\t("
for p in front patch: print "\t\t%s" %p
print "\t)"
print "\tempty back\n\t("
for p in back patch: print "\t\t%s" %p
print "\t)"
print ");\n"

C.3 Vector.py

from math import *
class Vector:

def init (self,x,y,z=0):
self.x = x
self.y = y
self.z = z

def add (self,other):
return Vector (self.x+other.x, self.y+other.y, self.z+other.z)

def sub (self,other):
return Vector (self.x−other.x, self.y−other.y, self.z−other.z) 10

def mask (self,other):
return Vector (self.x*other.x, self.y*other.y, self.z*other.z)

def dot(self,other):
return (self.x*other.x + self.y*other.y + self.z+other.z)

def norm (self):
return sqrt(self.x*self.x + self.y*self.y + self.z*self.z)

def scale (self, factor):
return Vector (factor*self.x, factor*self.y, factor*self.z)

def unit (self):
f = 1/self.norm() 20

return Vector (f*self.x, f*self.y, f*self.z)
def translate (self, other):

return self+other
def rotate (self, angle, inRad=0):

if not inRad: angle = angle * pi/180.0
return Vector(

self.x*cos(angle)−self.y*sin(angle),
self.x*sin(angle)+self.y*cos(angle),
self.z)

def str (self): 30

return "(% 10.6f % 10.6f % 10.6f)" % (self.x,self.y,self.z)
if name == ’__main__’:
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print "Testing norm"
a = Vector(3,4,0)
b = Vector(0,0,0)
print "Vector a=%s has norm %d " % (a, a.norm())
print "Vector b=%s has norm %d " % (b, b.norm())

print "Testing operations"
a = Vector(3,4,1) 40

b = Vector(−5,2,50)
print "%s+%s = %s " % (a,b, a+b)
print "%s-%s = %s " % (a,b, a−b)
print "%s.%s = %s " % (a,b, a.dot(b))
print "%s.%s = %s (test %s) " % (a,a, a.dot(a), a.norm()**2)

print "Testing transformations"
a = Vector(1,0,1)
print a
a = a.rotate(90) 50

print a
a = a.rotate(90)
print a
a = a.rotate(90)
print a
a = a.rotate(90)
print a
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Appendix D

OpenFOAM Code for Stent Model

In this chapter, we present the OpenFOAM C++ code which was generated for the
calculation of the dipole-dipole and hydrodynamic interactions for multiple MDCPs with
stent implant. In this stent model, the agglomeration of the MDCPs is considered.

D.1 Applications (Solver) for Stent Implant

D.1.1 createFields.H file

/*—————————————————————————*\
File Name: createFields.H
Author: mardinogluyahoo.com
*/
Info << "Reading field p\n" << endl;
volScalarField p(

IOobject(
"p",
runTime.timeName(),
mesh, 10

IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh
);

Info << "Reading field U\n" << endl;
volVectorField U(

IOobject(
"U",
runTime.timeName(), 20

mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh
);

# include "createPhi.H"

label pRefCell = 0;
scalar pRefValue = 0.0; 30

setRefCell(p, mesh.solutionDict().subDict("SIMPLE"), pRefCell, pRefValue);

singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<turbulenceModel> turbulence(
turbulenceModel::New(U, phi, laminarTransport)
);
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D.1.2 createFields-analytic.H file

/**
* File Name: createFields analytic.H
* Author: mardinogluyahoo.com
* Description:

*/
Info<< "region: Reading field T\n" << endl;
volScalarField T(

IOobject(
"T",
runTime.timeName(), 10

mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh

);
volVectorField H(

IOobject(
"H",
runTime.timeName(), 20

mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh

);
volVectorField space H 0(

IOobject(
"space_H_0",
runTime.timeName(), 30

mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh
);

volVectorField M aviles(
IOobject(

"M_aviles",
runTime.timeName(), 40

mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh
);

volVectorField moment Cregg(
IOobject(

"moment_Cregg",
runTime.timeName(), 50

mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE
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),
mesh
);

volVectorField modif B(
IOobject(

"modif_B",
runTime.timeName(), 60

mesh,
IOobject::MUST READ,
IOobject::AUTO WRITE

),
mesh
);

Info<< "region:Reading physicalProperties\n" << endl;
IOdictionary physicalProperties(

IOobject(
"physicalProperties", 70

runTime.constant(),
mesh,
IOobject::MUST READ,
IOobject::NO WRITE

)
);

Info<< "Reading parameter - magnetic permabailty of free space"<<endl;
dimensionedScalar mu 0 (physicalProperties.lookup("mu_0"));
Info<< "Magnetic permeabailty of free space (mu_0) is " << mu 0<<endl;

80

Info<< "Reading parameter - H_m field angle (theta)" << endl;
dimensionedScalar theta (physicalProperties.lookup("theta"));
Info<< "H_m field angle (theta) is " << theta << endl << endl;

Info<< "Reading parameter - B applied field magnitude (B_0)" << endl;
dimensionedScalar B 0 (physicalProperties.lookup("B_0"));
Info <<"B applied field magnitude (B_0) is " <<B 0 <<endl <<endl;

Info<< "Calculating parameter - H_m field magnitude (H_0)" <<endl;
dimensionedScalar H 0 = B 0/mu 0; 90

Info<< "H_m field magnitude (H_0) is = " << H 0 <<endl <<endl;

Info<< "\nReading parameter -Magnetic susceptibility of implant at H_0=0"<<endl;
dimensionedScalar chi i 0 (physicalProperties.lookup("chi_i_0"));
Info<< "Magnetic susceptibility of implant at H_0=0 (chi_i_0) is "<<chi i 0<<endl;

Info<< "Reading parameter - saturation magnetization of the implant"<<endl;
dimensionedScalar M i s (physicalProperties.lookup("M_i_s"));
Info<< "Saturation magnetization of the implant (M_i_s) is =" <<M i s<<endl;

100

Info<< "Calculating parameter - demagnetizing factor of the implant"<<endl;
dimensionedScalar alpha i = Foam::min(chi i 0/(2.0+chi i 0), M i s/(2.0*H 0));
Info<< "Demagnetizing factor (implant_alpha_i) is = "<< alpha i<<endl;

Info<< "Calculating parameter - susceptibility of implant (chi_i)"<<endl;
dimensionedScalar chi i = 2*(alpha i/(1.0−alpha i));
Info<< "Susceptibility of implant(implant_chi_i) is = "<<chi i<<endl;

Info<<"Calculating parameter- - implant_mu"<<endl;
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scalar implant mu = 1.0+chi i.value(); 110

Info <<"Implant_mu is = " <<implant mu<<endl;

Info<< "Calculating parameter - Magnetization of the implant (M_i)"<<endl;
dimensionedScalar M i = 2*alpha i*H 0;
Info<< "Magnetization of the implant (M_i) is ="<<M i<<endl;

Info<< "Reading parameter - saturation magnetization of the material in MDCP"<<endl;
dimensionedScalar M fm p s (physicalProperties.lookup("M_fm_p_s"));
Info<< "Saturation magnetization of the material in MDCP is " <<M fm p s<<endl;

120

Info<< "Reading parameter - volumetric magnetic susceptility of Medium"<<endl;
dimensionedScalar chi m (physicalProperties.lookup("chi_m"));
Info<< "Magnetic susceptility of Mediumis " <<chi m << endl << endl;

Info<< "Reading parameter-density of the ferromagnetic material in the MDCP"<<endl;
dimensionedScalar rho fm p (physicalProperties.lookup("rho_fm_p"));
Info<< "Density of the ferromagnetic material in the MDCP is " <<rho fm p<<endl;

Info<< "Reading parameter-density of the polymer and/or drug in the MDCP"<<endl;
dimensionedScalar rho pol p (physicalProperties.lookup("rho_pol_p")); 130

Info<< "Density of the polymer and/or drug in the MDCP is "<<rho pol p<<endl;

Info<< "Reading parameter-mass fraction of the fer. material in the MDCP"<<endl;
dimensionedScalar x fm p (physicalProperties.lookup("x_fm_p"));
Info<< "Mass fraction of the fer. material in the MDCP is "<<x fm p<< endl;

Info<< "Reading parameter-magnetic moment of the single domain particles"<<endl;
dimensionedScalar moment fm p s (physicalProperties.lookup("moment_fm_p_s"));
Info<< "Magnetic moment of the single domain particle is " <<moment fm p s<<endl;

140

Info<< "Reading parameter - Boltzmann constant (k_B)"<<endl;
dimensionedScalar k B (physicalProperties.lookup("k_B"));
Info<< "Boltzmann constant is " <<k B<< endl;

Info<< "Reading parameter - Temperature (T)" << endl;
dimensionedScalar T L (physicalProperties.lookup("T_L"));
Info<< "Temperature (T_L ) is " <<T L << endl;

Info<< "Reading parameter-volume fraction of the fer. material in the MDCP"<<endl;
dimensionedScalar w fm p (physicalProperties.lookup("w_fm_p")); 150

Info<< "Volume fraction of the fer. material in the MDCP is "<<w fm p<<endl;

Info<< "Calculating parameter -volume fraction of the fer. in the MDCP"<<endl;
dimensionedScalar omega fm p = (w fm p);
Info<< "Volume fraction of the fer. in the MDCP is ="<<omega fm p<<endl;

Info<< "Reading parameter - radius of implant" << endl;
dimensionedScalar R i (physicalProperties.lookup("R_i"));
Info<< "Radius of implant is "<<R i<< endl;

160

Info<< "Reading parameter - radius of implant (R_i_scale)"<<endl;
dimensionedScalar R i scale (physicalProperties.lookup("R_i_scale"));
Info<< "Radius of implant is " <<R i scale<< endl;

Info<< "Reading parameter - radius of MDCP (R_p)"<<endl;
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dimensionedScalar R p (physicalProperties.lookup("R_p"));
Info<< "Radius of MDCP is " <<R p<< endl;

Info<< "Calculating parameter - volume of MDCP (volume_p)"<<endl;
dimensionedScalar volume p=4.0/3.0*mathematicalConstant::pi*R p*R p*R p; 170

Info<< "Radius of MDCP is " <<volume p<< endl;

Info<< "Reading parameter - parent blood vessel radius (R_pv)"<<endl;
dimensionedScalar R pv (physicalProperties.lookup("R_pv"));
Info<< "Parent blood vessel radius is " <<R pv<< endl;

Info<< "Reading parameter - blood viscosity" <<endl;
dimensionedScalar eta beta (physicalProperties.lookup("eta_beta"));
Info<< "Blood viscosity (eta_beta) is " <<eta beta<< endl;

180

Info<< "Reading parameter - blood density" <<endl;
dimensionedScalar rho beta (physicalProperties.lookup("rho_beta"));
Info<< "Blood density is " <<rho beta<< endl;

Info<< "Reading parameter - Porosity of a cluster of MDCP" <<endl;
dimensionedScalar epsilon p (physicalProperties.lookup("epsilon_p"));
Info<< "Porosity of a cluster of MDCP is " <<epsilon p<<endl;

Info<< "Reading parameter - average inlet velocity (u_0)"<<endl;
dimensionedScalar u 0 (physicalProperties.lookup("u_0")); 190

Info<< "Parameter - average inlet velocity (u_0) is "<<u 0<<endl;

Info<< "Calculating parameter -Magnetic velocity (velocity_m))"<<endl;
dimensionedScalar velocity m = (2.0/9.0)*(R p*R p/R pv)*(mu 0/eta beta)

*(1−epsilon p)*omega fm p* M i* M fm p s;
Info<< "Magnetic velocity is ="<<velocity m<<endl;

vector H 0 vector = vector(H 0.value()*cos(convertToRad*theta).value(),
H 0.value()*sin(convertToRad*theta).value(), 0.0);

Info<< " End of createDields_analytic" <<endl; 200

D.1.3 readtwoRegionDict.H file

// file: readtwoRegionDict.H
//
// Read info from twoRegionDict
//*************************************************************
//*************************************************************

Info <<"\n\n@ Reading twoRegionDict\n" << endl;

IOdictionary twoRegionDict
(IOobject 10

(
"twoRegionDict",
runTime.system(),
runTime,
IOobject::MUST READ,
IOobject::NO WRITE)
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);

Info<<"Reading parameter - - space_mu" << endl;
scalar space mu = readScalar(twoRegionDict.lookup("space_mu")); 20

Info <<"Parameter - - space_mu = " <<space mu <<endl;

Info<<"Reading parameter - - distance between center and point on X axis " << endl;
scalar shift x = readScalar(twoRegionDict.lookup("shift_x"));
Info <<"Parameter - - distance between center and point on X axis = " <<shift x<<endl;

Info<<"Reading parameter - - distance between center and point on Y axis" << endl;
scalar shift y = readScalar(twoRegionDict.lookup("shift_y"));
Info <<"Parameter - - distance between center and point on Y axis = " <<shift y<<endl;

30

Info<<"Reading parameter - - position of particle one on X axis " << endl;
scalar x 1 original = readScalar(twoRegionDict.lookup("x_1_original"));
Info <<"Parameter - - position of particle one on X axis= " <<x 1 original<<endl;

Info<<"Reading parameter - - position of particle one on Y axis " << endl;
scalar y 1 original = readScalar(twoRegionDict.lookup("y_1_original"));
Info <<"Parameter - - position of particle one on Y axis= " <<y 1 original<<endl;

Info<<"Reading parameter - - position of particle two(reference) on X axis " << endl;
scalar x 2 original= readScalar(twoRegionDict.lookup("x_2_original")); 40

Info <<"Parameter - - position of particle two on X axis= " <<x 2 original<<endl;

Info<<"Reading parameter - - position of particle two(reference) on Y axis " << endl;
scalar y 2 original = readScalar(twoRegionDict.lookup("y_2_original"));
Info <<"Parameter - - position of particle one on Y axis= " <<y 2 original<<endl;

D.1.4 stent.C file

/**
* File Name: hydstent.C
* Author: mardinogluyahoo.com
* Here magnetic and hydrodynamic interaction effect is calculated by
* considering the agglomeration of multiple particles

*/
#include "fvCFD.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/turbulenceModel/turbulenceModel.H"
#include "typeInfo.H" 10

#include "OFstream.H"
#include "IOmanip.H"
#include "mathematicalConstants.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[ ])
{
const scalar convertToRad = mathematicalConstant::pi/180.0;

# include "setRootCase.H"
# include "createTime.H" 20

# include "createMesh.H"
# include "createFields.H"
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# include "createFields_analytic.H"
# include "initContinuityErrs.H"
# include "readtwoRegionDict.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nEVALUATING ANALYTICAL SOLUTION. . ." << endl;
/**
* Scalar potential and the resulting magnetic field is calculated analytically.
* We consider 20 wires in the space region. 30

*
**/

#define Nseed 10
// For reseting the value of any vectorfield

volVectorField Zero
(

IOobject
(
"Zero", 40

runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::NO WRITE

),
mesh
,dimensionedVector("0", dimless, vector(0,0,0))
);

// H 0 is calculated for the space region
space H 0=dimensionedVector("0", dimless, H 0 vector); 50

volVectorField H space total=space H 0;

scalar const a2 = (−H 0.value());
scalar const b2 = −((implant mu−space mu)/(space mu+implant mu))*const a2 ;

volVectorField centres org = T.mesh().C();
volScalarField mag centres org = mag(centres org);

for(int i=0; i<2*Nseed; i++){ 60

//Info << “ Calculating the i th seed = ” <<i<<endl;
int i x=1−i;
int i y=−pow(−1,i);

//Info << “ Parameter i x= ” << i x <<endl;
//Info << “ Parameter i y= ” << i y <<endl;

volVectorField centres(
IOobject ( "Centres_seeds",
runTime.timeName(),
mesh, 70

IOobject::NO READ,
IOobject::AUTO WRITE),
(centres org.component(vector::X)−(i x*shift x))*vector(1,0,0)+(centres org.component(vector::Y)−
(i y*shift y))*vector(0,1,0)+(centres org.component(vector::Z))*vector(0,0,1)
);

volScalarField mag centres = mag(centres);
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volScalarField radius = sqrt((centres.component(vector::X)*centres.component(vector::X))
+(centres.component(vector::Y)*centres.component(vector::Y))); 80

volScalarField theta = acos((centres & vector(1,0,0))/mag centres);

T=(const a2*centres.component(vector::Y)+(const b2*centres.component(vector::Y)/(radius*radius)));

volVectorField H space ninty(
IOobject ( "H_ninty",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE), 90

(((2*const b2*centres.component(vector::X)*centres.component(vector::Y)/
(radius*radius*radius*radius))*vector(1,0,0))+((−const a2−(const b2*
(centres.component(vector::X)*centres.component(vector::X)−centres.component(vector::Y)*
centres.component(vector::Y)) /(radius*radius*radius*radius)))*vector(0,1,0)))
);

H space total=H space total+H space ninty;
}
// Total magnetic field in the space is calculated for the stent

H=H space total; 100

/**
* beta Aviles, Langevin Aviles, M aviles, fw langevin, velocity particle an Cregg,
* magmoment Cregg, F Cregg and F Cregg velocity are created to check
* the accuracy of the code and formulas. Magnetic velocity is calculated by two different formula.
*

**/
volScalarField beta Aviles(

IOobject
(
"beta_Aviles", 110

runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),

(moment fm p s*mu 0*mag(H))/(k B*T L)
);

//Langevin Factor is calculated for the langevin function
volScalarField Langevin Aviles(

IOobject
( 120

"Langevin_Aviles",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),

(1.0/Foam::tanh(beta Aviles)) − (1.0/beta Aviles)
);

//Total magnetisation due to the stent is calculated
M aviles=(M fm p s*Langevin Aviles*H)/mag(H);

130

volVectorField fw langevin(
IOobject ( "fw_langevin",
runTime.timeName(),
mesh,
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IOobject::NO READ,
IOobject::AUTO WRITE),
(1.0/(2.0*R i scale))*mu 0*fvc::grad((M aviles&H))
);

//Velocity of particle due to the stent is calculated
volVectorField velocity particle an Cregg( 140

IOobject ( "velocity_p_an_Cregg",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(2.0/9.0)*R p*R p*mu 0*omega fm p*(1.0/(eta beta*u 0*R i scale))*fvc::grad((M aviles&H))
);

// Magnetic moment of the particle due to the stent is calculated
volVectorField magmoment Cregg(
IOobject ( "magmoment_Cregg", 150

runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(omega fm p*volume p*M fm p s*Langevin Aviles*(mu 0*H)/(mu 0*mag(H)))
);

//Magnetic force due to stent is calculated
volVectorField F Cregg(
IOobject ( "F_Cregg",
runTime.timeName(), 160

mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(1.0/(R i scale))*(fvc::grad((magmoment Cregg)&(mu 0*H)))
);

/**
* Velocity due to the magnetic force is calculated
* F Cregg velocity is compared with velocity particle an Cregg and they generate same results.
* 170

**/
volVectorField F Cregg velocity(
IOobject ( "F_Cregg_velocity",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
F Cregg*(1.0/(6.0*mathematicalConstant::pi*eta beta*R p*u 0))
);

180

Info <<"\n# Maximum U in Space \n " <<setw(4)
<<" " <<setw(9) <<setprecision(4) <<min(mag(U))
<<" \n" <<setw(9) <<setprecision(4) <<max(mag(U))
<< "\n";

Info <<"\n# beta,Langevin,velocity of particle for Cregg\n " <<setw(4)
<<" " <<setw(9) <<setprecision(4) <<min(mag(velocity particle an Cregg))
<<" " <<setw(9) <<setprecision(4) <<max(mag(velocity particle an Cregg))
<< "";

190
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Info <<"\n# mu_0*H general\n " <<setw(4)
<<" " <<setw(9) <<setprecision(4) <<min(mag(mu 0*H))
<<" " <<setw(9) <<setprecision(4) <<max(mag(mu 0*H))
<< "";

Info <<"\n# fw_langevin \n " <<setw(4)
<<" " <<setw(9) <<setprecision(4) <<min(mag(fw langevin))
<<" " <<setw(9) <<setprecision(4) <<max(mag(fw langevin))
<< "";

200

Info <<"\n# magmoment_Cregg\n " <<setw(4)
<<" " <<setw(9) <<setprecision(4) <<min(mag(magmoment Cregg))
<<" " <<setw(9) <<setprecision(4) <<max(mag(magmoment Cregg))
<< "";

Info <<"\n# F_Cregg\n " <<setw(4)
<<" " <<setw(9) <<setprecision(4) <<min(mag(F Cregg))
<<" " <<setw(9) <<setprecision(4) <<max(mag(F Cregg))
<< "";

Info <<"\n# F_Cregg_velocity\n " <<setw(4) 210

<<" " <<setw(9) <<setprecision(4) <<min(mag(F Cregg velocity))
<<" " <<setw(9) <<setprecision(4) <<max(mag(F Cregg velocity))
<< "";

Info<< "\n# ANALYTICAL SOLUTION. . . .END" << endl;

ofstream myfile;
ofstream langfile;
myfile.open("stentinter.txt");
langfile.open("stentintlang.txt"); 220

/**
* Blood Velocity is calculated by solving the Navier-Stokes equation
*

**/
Info<< "\nStarting time loop\n" << endl;

for (runTime++; !runTime.end(); runTime++)
{
Info<< "Time = " << runTime.timeName() << nl << endl;

# include "readSIMPLEControls.H" 230

p.storePrevIter();
// Pressure-velocity SIMPLE corrector
{

// Momentum predictor
tmp<fvVectorMatrix> UEqn
(

fvm::div(phi, U)
+ turbulence−>divR(U)

);
UEqn().relax(); 240

solve(UEqn() == −fvc::grad(p));
p.boundaryField().updateCoeffs();
volScalarField AU = UEqn().A();
U = UEqn().H()/AU;
UEqn.clear();
phi = fvc::interpolate(U) & mesh.Sf();
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adjustPhi(phi, U, p);
// Non-orthogonal pressure corrector loop
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{ 250

fvScalarMatrix pEqn
(

fvm::laplacian(1.0/AU, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (nonOrth == nNonOrthCorr)
{

phi −= pEqn.flux();
} 260

}
# include "continuityErrs.H"

//Explicitly relax pressure for momentum corrector
p.relax();
//Momentum corrector
U −= fvc::grad(p)/AU;
U.correctBoundaryConditions();

}
turbulence−>correct();
runTime.write(); 270

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

/**
* Here we will calculate the dipole-dipole and hydrodynamic interactions effect.
* We define the number of particles and define the arrays for storing the datas

**/

#define Npar 20 280

//Store the initial and current positions of particles.
vector r n[Npar];
//Store the new positions of particles.
vector r n new[Npar];
//Store the temp positions of particles (used for swaping the positions of particles).
vector r n temp[Npar];
//Store the distance between the particles.
vector r np[Npar][Npar];
//Store the velocity of particles due to the stant and dipole dipole interaction effect.
vector velocity dip int[Npar]; 290

//Store the velocity of particles due to the hydrodynamic interaction.
vector velocity hyd int[Npar];
//Store the velocity of particles due to the blood.
vector U velocity blood[Npar];
//Store the forces due to hydrodynamic interaction.
vector F hyd[Npar];
//Store the radius of each particles.
scalar Radius Particle[Npar];
//Move the particles out of the space region.
vector particle out=vector(19.8, 0, 0); 300

/**
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* We define the initial positions of particles.
**/
for(int k=0; k<Npar; k++){

r n[k].x()=(((k+1)%5)*x 2 original)+x 1 original;
r n[k].y()=((k/5)*y 2 original)+y 1 original;
r n[k].z()=0;

// Save the initial positions of particles.
myfile<<r n[k].x()<<"\t "<<r n[k].y()<<"\t "<<r n[k].z()<<"\n"; 310

// Initial velocity hyd int is set to zero.
velocity hyd int[k]=vector(0,0,0);

// Initial particles have same radius.
Radius Particle[k]=R p.value();
Info <<"Radius initials[" << k << "]="<<Radius Particle[k]<<endl;
}
myfile.close();

if (runTime.time().value() > 3.0){
for (runTime++; !runTime.end(); runTime++) 320

{
Info<< "Time = " << runTime.timeName() << nl << endl;

#include "Time.H"
#include "IOstreams.H"

/**
* Agglomeration of particles is considered.
* Once the particles agglomerate, the position of the particle 1 will be the
* (r 1+r 2)/2 and particle 2 will be out of the space.
* Radius of particle 1 will be recalculated. 330

* Radius of particle 2 will be very very small˜zero
**/
double pow(double base, double exponent);
for(int i=0; i<Npar; i++){

for(int j=0; j<Npar; j++){
r np[i][j]=r n[i]−r n[j];

Info <<"Distance between particles between [" << i << "] and [" << j <<"]="
<< mag(r np[i][j])<<"\t COMPARE WITH \t"<< ((Radius Particle[i]+
Radius Particle[j])/R i scale.value())<<endl;

if (mag(r np[i][j])>0 && mag(r np[i][j])<=((Radius Particle[i]+Radius Particle[j])/R i scale.value())){ 340

r n[i]=(r n[i]+r n[j])/2.0;
r n[j]=particle out;

if (r n[i].x()>19.0){
r n[i]=particle out;
}
Info <<"r_n["<< i <<"]="<<r n[i]<<endl;
Info <<"r_n["<< j <<"]="<<r n[j]<<endl;
if (Radius Particle[i]>=(R p.value())){

scalar times i=pow((Radius Particle[i]/R p.value()),3); 350

scalar times j=pow((Radius Particle[j]/R p.value()),3);
scalar times new=times i+times j;
Info <<"times_i="<<times i<<endl;
Info <<"times_j="<<times j<<endl;
Info <<"times_new="<<times new<<endl;
Radius Particle[i]=pow(times new,(1.0/3.0))*R p.value();
Radius Particle[j]=Radius Particle[j]*0.00000001;
Info <<"Radius_Particle["<< i <<"]="<<Radius Particle[i]<<endl;
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Info <<"Radius_Particle["<< j <<"]="<<Radius Particle[j]<<endl;
} 360

}
}

}
//Output the new radius of the particles

for(int i=0; i<Npar; i++){
Info <<"Current position r_n[" << i << "]=" <<r n[i]<<endl;
Info <<"Radius_Particle[" << i << "]="<<Radius Particle[i]<<endl;
}

//Info<< “\nCalculating the magnetic dipole-dipole interaction\n” << endl; 370

volVectorField r positions= T.mesh().C();

scalar hyd constant=(6.0*mathematicalConstant::pi*eta beta.value());
scalar N count 1=0;

for(int i=0; i<Npar; i++){

//save the current positions of each particles
langfile<<runTime.timeName()<<"\t "<<r n[0].x()<<"\t "<<r n[0].y()<<"\t "<<
r n[1].x()<<"\t "<<r n[1].y()<<"\t "<<r n[2].x()<<"\t "<<r n[2].y()<<"\t "<< 380

r n[3].x()<<"\t "<<r n[3].y()<<"\t "<<r n[4].x()<<"\t "<<r n[4].y()<<"\t "<<
r n[5].x()<<"\t "<<r n[5].y()<<"\t "<<r n[6].x()<<"\t "<<r n[6].y()<<"\t "<<
r n[7].x()<<"\t "<<r n[7].y()<<"\t "<<r n[8].x()<<"\t "<<r n[8].y()<<"\t "<<
r n[9].x()<<"\t "<<r n[9].y()<<"\t "<<"\n";

//Calculates the values of each particles
vector r p vector=vector(r n[i].x(),r n[i].y(),0);

// if the particle is in the space region we calculate the values for it.
if (r p vector.x()<19.0){

//Finds the blood velocity of each particles 390

vector probePoint(r p vector);
label probeCell = mesh.findCell(probePoint);
volTensorField gradU = fvc::grad(U);
vector cellCentre = mesh.C()[probeCell];
U velocity blood[i]= U[probeCell] + ((probePoint− cellCentre) & gradU[probeCell]);

// Finds the applied magnetic field on each particles due to the stent
// vector probePoint(r p vector);
// label probeCell = mesh.findCell(probePoint);

volTensorField gradH = fvc::grad(H); 400

// vector cellCentre = mesh.C()[probeCell];
vector H part space = H[probeCell] + ((probePoint− cellCentre) & gradH[probeCell]);

// Creates a constant vectorfield by using the position of particle
volVectorField r p vector field(
IOobject("r_p_field",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::NO WRITE), 410

mesh,
dimensionedVector("0", dimless, r p vector)
);
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// Creates a constant vectorfield by using the applied field on particle
volVectorField B r p vector field(
IOobject("B_r_p",
runTime.timeName(),
mesh,
IOobject::NO READ, 420

IOobject::NO WRITE),
mesh,
dimensionedVector("0", dimless, (mu 0.value()*H part space))
);

// Calculates the dipole interaction effect of each particle
volVectorField F int p total=Zero;
for(int j=0; j<Npar; j++){
vector r n vector=vector(r n[j].x(),r n[j].y(),0);

430

if((mag(r n vector−r p vector))>((Radius Particle[i]+Radius Particle[j])/
R i scale.value()) && r n vector.x()<19){

//Note that(Radius Particle[i]+Radius Particle[j])is the distance between the particles
vector probePoint n(r n vector);
label probeCell n = mesh.findCell(probePoint n);
//volTensorField gradH n = fvc::grad(H);
vector cellCentre n = mesh.C()[probeCell n];
vector H part space n = H[probeCell n] + ((probePoint n− cellCentre n) & gradH[probeCell n]);

// Creates a constant vectorfield by using the position of particle 440

volVectorField r n vector field(
IOobject("r_n_field",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::NO WRITE),
mesh,
dimensionedVector("0", dimless, r n vector)
);

450

// Creates a constant vectorfield by using the appleid field on the particle
volVectorField B r n vector field(
IOobject("B_r_n",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::NO WRITE),
mesh,
dimensionedVector("0", dimless, (mu 0.value()*H part space n))
); 460

// Calculate the forces acting on the particle due to the other particles
volVectorField F int p n(
IOobject ( "F_int_p",
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(1.0/3.0)*((mu 0*M fm p s*Langevin Aviles/(mu 0*mag(H)))*pow(Radius Particle[j],3)/
pow(mag(r p vector−r n vector),3)*((3.0*(B r n vector field&(r positions−r n vector field))* 470
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(r positions−r n vector field)/pow(mag(r positions−r n vector field),2))−
(B r n vector field)))*pow((1.0/R i),3)
);

// Calculate the total forces acting on the particle due to the other particles
F int p total=F int p total+F int p n;
}

else{
F int p total=Zero;
} 480

}

// Calculates the modification to the B due to the other particles
modif B=F int p total;

volScalarField beta Cregg p(
IOobject(
"beta_Cregg_p",
runTime.timeName(),
mesh, 490

IOobject::NO READ,
IOobject::AUTO WRITE),
(moment fm p s*(mag((mu 0*H)+modif B)))/(k B*T L)
);

// Calculates the Langevin factor for each particle by using the modified B
volScalarField Langevin Aviles p(
IOobject(
"Langevin_Aviles_p",
runTime.timeName(), 500

mesh,
IOobject::NO READ,
IOobject::NO WRITE),
(1.0/Foam::tanh(beta Cregg p) − 1.0/beta Cregg p)
);

// Calculates the magnetic moment for each particle
volVectorField magmoment Cregg p(
IOobject ( "magmoment_Cregg_p",
runTime.timeName(), 510

mesh,
IOobject::NO READ,
IOobject::AUTO WRITE),
(omega fm p*(4.0/3.0*mathematicalConstant::pi*Radius Particle[i]*
Radius Particle[i]*Radius Particle[i]) *M fm p s*Langevin Aviles p*
((mu 0*H)+modif B))/mag((mu 0*H)+modif B)
);

// Fix the boundaries of the magnetic moment for each particle
moment Cregg=magmoment Cregg p; 520

// Calculates the modified magnetic forces for each particle due to the stent and other particles
volVectorField F int overall p(
IOobject ( "F_int_1_new",
runTime.timeName(),
mesh,

135



D.1. Applications (Solver) for Stent Implant

IOobject::NO READ,
IOobject::NO WRITE),
(1.0/(R i scale))*(fvc::grad((moment Cregg)&(mu 0*H+modif B)))
); 530

//vector probePoint p(x p,y p,0);
//label probeCell one = mesh.findCell(probePoint p);
volTensorField gradF int overall p= fvc::grad(F int overall p);
//vector cellCentre one = mesh.C()[probeCell one];
vector F int overall p vector= F int overall p[probeCell]+((probePoint−cellCentre)&

gradF int overall p[probeCell]);

// Calculate the magnetic velocity of particles due to the stent and other particles
velocity dip int[i]=(F int overall p vector*(1.0/(hyd constant*Radius Particle[i]*u 0.value()))); 540

}

else{
// if the particle is outside the space region we set the velocity to zero. .

velocity dip int[i]=vector(0,0,0);
}

}

// Outputs the velocity of particles (Just for check)
for(int i=0; i<Npar; i++){ 550

Info <<"Velocity_dipole[" << i << "]=" <<velocity dip int[i]<<endl;
}

// Calculate the hydrodynamic interactions
for(int k=0; k<10; k++){
vector F hyd temp=vector(0,0,0);

for(int i=0; i<Npar; i++){
if (r n[i].x()<19.0){

for(int j=0; j<Npar; j++){
if((mag(r np[i][j]))>((Radius Particle[i]+Radius Particle[j])/R i scale.value()) && r n[j].x()<19){ 560

vector normalized=(r np[i][j])/mag(r np[i][j]);
tensor hyd force=(hyd constant*Radius Particle[i])*3.0*Radius Particle[j]*((1.0)/

(4.0*mag(r np[i][j])*R i.value())) *(tensor(1,0,0,0,1,0,0,0,1) +(normalized*normalized));
F hyd temp=F hyd temp+(hyd force & velocity hyd int[j]);

}
}
F hyd[i]=F hyd temp;
F hyd temp=vector(0,0,0);
} 570

else{
F hyd[i]=vector(0,0,0);
}
}
for(int i=0; i<Npar; i++){
velocity hyd int[i]=((hyd constant*Radius Particle[i]*velocity dip int[i])+F hyd[i])/

(hyd constant*Radius Particle[i]);
}

}
580

// Calculate the new positions of the particles
for(int i=0; i<Npar; i++){
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Info <<"Velocity_hyd+dip[" << i << "]=" <<velocity hyd int[i]<<endl;
r n temp[i]=r n[i];

if(r n[i].x()<19){
r n new[i]=r n[i]+0.1*(U velocity blood[i]+velocity hyd int[i]);
}

else{ 590

// Particles dont move if thy are outside the space region
r n new[i]=r n[i];
}

}

// Update the positions of the particles
for(int j=0; j<Npar; j++){

for(int i=0; i<2*Nseed; i++){
int i x=i+1;
int i y=−pow(−1,i); 600

vector seed centre=vector((32.0−(16.0*i x)), (6.7*i y), 0);
// Info<< “seed centre ” <<i<<seed centre << endl;

if(mag(r n new[j]−seed centre)<=1.0 && r n new[j].x()< 19){
r n[j]=r n temp[j];
N count 1=N count 1+1;
break;

}
else{

r n[j]=r n new[j];
} 610

}
}
Info<< "N_captured = " << N count 1 << endl;

runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}

} 620

}
langfile.close();
Info<< "End\n" << endl;

return(0);
}

D.2 Run (Case) for Stent Implant

D.2.1 0 (initial conditions file)

D.2.1.1 epsilon file

/*—————————————————————————*\
| ========= | |
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| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/
FoamFile
{

version 2.0; 10

format ascii;
root "";
case "";
instance "";
local "";
class volScalarField;
object epsilon;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 −3 0 0 0 0]; 20

internalField uniform 14.855;
boundaryField
{

inlet
{

type fixedValue;
value uniform 14.855;

}
outlet
{ 30

type zeroGradient;
}
top
{

type zeroGradient;
}
bottom
{

type zeroGradient;
} 40

seedtop 0
{

type zeroGradient;
}
seedbot 0
{

type zeroGradient;
}
. . . .
. . . . 50

. . . .

. . . .
seedtop 9
{

type zeroGradient;
}
seedbot 9
{
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type zeroGradient;
} 60

front
{

type empty;
}
back
{

type empty;
}

}
// ************************************************************************* // 70

D.2.1.2 k file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/
FoamFile
{

version 2.0; 10

format ascii;
root "";
case "";
instance "";
local "";

class volScalarField;
object k;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

dimensions [0 2 −2 0 0 0 0];
internalField uniform 0.375;
boundaryField
{

inlet
{

type fixedValue;
value uniform 0.375;

}
outlet 30

{
type zeroGradient;

}
top
{

type zeroGradient;
}
bottom
{
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type zeroGradient; 40

}
seedtop 0
{

type zeroGradient;
}
seedbot 0
{

type zeroGradient;
}
. . . . 50

. . . .

. . . .

. . . .
seedtop 9
{

type zeroGradient;
}
seedbot 9
{

type zeroGradient; 60

}
front
{

type empty;
}
back
{

type empty;
}

} 70

// ************************************************************************* //

D.2.1.3 nuTilda file

/*——————————–*- C++ -*———————————-*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volScalarField;
object nuTilda;

}
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

dimensions [0 2 −1 0 0 0 0];
internalField uniform 0;
boundaryField
{

inlet
{

type fixedValue;
value uniform 0;

}
outlet 30

{
type zeroGradient;

}
top
{

type zeroGradient;
}
bottom
{

type zeroGradient; 40

}
seedtop 0
{

type zeroGradient;
}
seedbot 0
{

type zeroGradient;
}
. . . . 50

. . . .

. . . .

. . . .
seedtop 9
{

type zeroGradient;
}
seedbot 9
{

type zeroGradient; 60

}
front
{

type empty;
}
back
{

type empty;
}

} 70

// ************************************************************************* //
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D.2.1.4 p file

/*——————————–*- C++ -*———————————-*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volScalarField;
object p;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

dimensions [0 2 −2 0 0 0 0];
internalField uniform 0;
boundaryField
{

inlet
{

type zeroGradient;
}
outlet
{ 30

type fixedValue;
value uniform 0;

}
top
{

type zeroGradient;
}
bottom
{

type zeroGradient; 40

}
seedtop 0
{

type zeroGradient;
}
seedbot 0
{

type zeroGradient;
}
. . . . 50

. . . .

. . . .

. . . .
seedtop 9
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{
type zeroGradient;

}
seedbot 9
{

type zeroGradient; 60

}
front
{

type empty;
}
back
{

type empty;
}

} 70

// ************************************************************************* //

D.2.1.5 R file

/*——————————–*- C++ -*———————————-*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;

root "";
case "";
instance "";
local "";

class volTensorField;
object R; 20

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 −2 0 0 0 0];
internalField uniform (0 0 0 0 0 0 0 0 0);
boundaryField
{

inlet
{

type fixedValue;
value uniform (0 0 0 0 0 0 0 0 0); 30

}
outlet
{

type zeroGradient;
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}
top
{

type zeroGradient;
}
bottom 40

{
type zeroGradient;

}
seedtop 0
{

type zeroGradient;
}
seedbot 0
{

type zeroGradient; 50

}
. . . .
. . . .
. . . .
. . . .
seedtop 9
{

type zeroGradient;
}
seedbot 9 60

{
type zeroGradient;

}
front
{

type empty;
}
back
{

type empty; 70

}
}
// ************************************************************************* //

D.2.1.6 T file

/*——————————–*- C++ -*———————————-*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;

144



D.2. Run (Case) for Stent Implant

root "";
case "";
instance "";
local "";

class volScalarField;
object T; 20

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 0 0 1 0 0 0];
internalField uniform 0;
boundaryField
{

inlet
{

type zeroGradient;
} 30

outlet
{

type zeroGradient;
}
top
{

type zeroGradient;
}
bottom
{ 40

type zeroGradient;
}
seedtop 0
{

type fixedGradient;
gradient uniform 0;

}
seedbot 0
{

type fixedGradient; 50

gradient uniform 0;
}
. . . .
. . . .
. . . .
. . . .
seedtop 9
{

type fixedGradient;
gradient uniform 0; 60

}
seedbot 9
{

type fixedGradient;
gradient uniform 0;

}
front
{
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type empty;
} 70

back
{

type empty;
}

}

D.2.1.7 Blood velocity file, U

/*——————————–*- C++ -*———————————-*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volVectorField;
object U;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

dimensions [0 1 −1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{

inlet
{

type parabolicVelocity;
maxValue 1.5;
n (1 0 0);
y (0 1 0); 30

value nonuniform List<vector>
96
(
(0.0217952 0 0)
(0.0649072 0 0)
(0.0649072 0 0)
.
.
.
(0.0649072 0 0) 40

(0.0649072 0 0)
(0.0217952 0 0)
);
}
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outlet
{

type zeroGradient;
}
top
{ 50

type fixedValue;
value uniform (0 0 0);

}
bottom
{

type fixedValue;
value uniform (0 0 0);

}
seedtop 0
{ 60

type fixedValue;
value uniform (0 0 0);

}
seedbot 0
{

type fixedValue;
value uniform (0 0 0);

}
. . . .
. . . . 70

. . . .

. . . .
seedtop 9
{

type fixedValue;
value uniform (0 0 0);

}
seedbot 9
{

type fixedValue; 80

value uniform (0 0 0);
}
front
{

type empty;
}
back
{

type empty;
} 90

}

D.2.1.8 Magnetic Field, H

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
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| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volVectorField;
object H;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

dimensions [0 −1 0 0 0 1 0];
internalField uniform (0 0 0);
boundaryField
{

inlet
{

type zeroGradient;
}
outlet
{ 30

type zeroGradient;
}
top
{

type zeroGradient;
}
bottom
{

type zeroGradient;
} 40

seedtop 0
{

type fixedGradient;
gradient uniform (0 0 0);
}
seedbot 0
{

type fixedGradient;
gradient uniform (0 0 0);
} 50

. . . .

. . . .

. . . .

. . . .
seedtop 9
{

type fixedGradient;
gradient uniform (0 0 0);
}
seedbot 9 60
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{
type fixedGradient;

gradient uniform (0 0 0);
}

defaultFaces
{

type empty;
}

} 70

D.2.1.9 Uniform Field in the Model

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volVectorField;
object space H 0;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

dimensions [0 −1 0 0 0 1 0];
internalField uniform (0 0 0);
boundaryField
{

inlet
{

type zeroGradient;
}
outlet
{ 30

type zeroGradient;
}
top
{

type zeroGradient;
}
bottom
{

type zeroGradient;
} 40

seedtop 0
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{
type fixedGradient;

gradient uniform (0 0 0);
}
seedbot 0
{

type fixedGradient;
gradient uniform (0 0 0);
} 50

. . . .

. . . .

. . . .

. . . .
seedtop 9
{

type fixedGradient;
gradient uniform (0 0 0);
}
seedbot 9 60

{
type fixedGradient;

gradient uniform (0 0 0);
}

defaultFaces
{

type empty;
}

} 70

D.2.1.10 Modification to the Magnetic Flux Density

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class volVectorField;
object modif B;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

dimensions [ 1 0 −2 0 0 −1 0];
internalField uniform (0 0 0);
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boundaryField
{

inlet
{

type zeroGradient;
}
outlet
{ 30

type zeroGradient;
}
top
{

type zeroGradient;
}
bottom
{

type zeroGradient;
} 40

seedtop 0
{

type fixedGradient;
gradient uniform (0 0 0);
}
seedbot 0
{

type fixedGradient;
gradient uniform (0 0 0);
} 50

. . . .

. . . .

. . . .

. . . .
seedtop 9
{

type fixedGradient;
gradient uniform (0 0 0);
}
seedbot 9 60

{
type fixedGradient;

gradient uniform (0 0 0);
}

defaultFaces
{

type empty;
}

} 70

D.2.1.11 Magnetisation in Avilés Model

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
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| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/
FoamFile
{

version 2.0; 10

format ascii;
root "";
case "";
instance "";
local "";
class volVectorField;
object M aviles;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 −1 0 0 0 1 0]; 20

internalField uniform (0 0 0);
boundaryField
{

inlet
{

type zeroGradient;
}
outlet
{

type zeroGradient; 30

}

top
{

type zeroGradient;
}
bottom
{

type zeroGradient;
} 40

seedtop 0
{

type fixedGradient;
gradient uniform (0 0 0);
}
seedbot 0
{

type fixedGradient;
gradient uniform (0 0 0);
} 50

. . . .

. . . .

. . . .

. . . .
seedtop 9
{

type fixedGradient;
gradient uniform (0 0 0);
}
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seedbot 9 60

{
type fixedGradient;

gradient uniform (0 0 0);
}

defaultFaces
{

type empty;
}

} 70

D.2.1.12 Magnetic Moment in the Model

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";

class volVectorField;
object moment Cregg;

} 20

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions [0 2 0 0 0 1 0];
internalField uniform (0 0 0);
boundaryField
{

inlet
{

type zeroGradient;
}
outlet 30

{
type zeroGradient;

}
top
{

type zeroGradient;
}
bottom
{

type zeroGradient; 40
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}
seedtop 0
{

type fixedGradient;
gradient uniform (0 0 0);
}
seedbot 0
{

type fixedGradient;
gradient uniform (0 0 0); 50

}
. . . .
. . . .
. . . .
. . . .
seedtop 9
{

type fixedGradient;
gradient uniform (0 0 0);
} 60

seedbot 9
{

type fixedGradient;
gradient uniform (0 0 0);
}

defaultFaces
{

type empty;
} 70

}

D.2.2 constant

D.2.2.1 Polymesh File (blockMeshDict) file

// Parameters :
// convertToMeters (convertToMeters) : 1.0
// grading (grading) : 16
// Radius of seed (R s) : 1
// Number of seeds (n) : 10
// Width between seeds (delta) : 30.0
// Width of annulus around seed (a) : 0.838477631
//
/*—————————————————————————*\
| ========= | | 10

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{
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version 2.0;
format ascii; 20

root "";
case "";
instance "";
local "";
class dictionary;
object blockMeshDict;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Please see the mesh generator in Appendix C.

30

convertToMeters 1.0;

vertices
580 (
);
edges
(
);
blocks
( 40

);
patches
(
);

D.2.2.2 physical properties file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;

root "";
case "";

instance "";
local "";

class dictionary; 20

object physicalProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// kg m s K ml A cd //
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theta theta [ 0 0 0 0 0 0 0]90.0; // H m field angle (in degrees)
B 0 B 0 [ 1 0 −2 0 0 −1 0]0.65; // magnitude of applied B
mu 0 mu 0 [ 1 1 −2 0 0 −2 0]12.56637062e−07; // magnetic permabailty of free space
R i R i [ 0 1 0 0 0 0 0]62.5e−06; // implant radius
R i scale R i scale [ 0 0 0 0 0 0 0]62.5e−06; // implant radius
chi i 0 chi i 0 [ 0 0 0 0 0 0 0]1000; // magnetic susceptility of implant at H 0=0 30

chi m chi m [ 0 0 0 0 0 0 0]0; // magnetic susceptility of medium
M i s M i s [ 0 −1 0 0 0 1 0]1261000; // Saturation magnetization of implant
M fm p s M fm p s [ 0 −1 0 0 0 1 0]351900; // Saturation magnetization of mat. in MDCP
moment fm p s moment fm p s [ 0 2 0 0 0 1 0]2.03e−19; // magnetic moment of the mat. in MDCP
rho beta rho beta [ 1 −3 0 0 0 0 0]1000; // blood density
rho fm p rho fm p [ 1 −3 0 0 0 0 0]5050; // density of in MDCP
rho pol p rho pol p [ 1 −3 0 0 0 0 0]950;
x fm p x fm p [ 0 0 0 0 0 0 0]0.25; // mass fraction of fer. mat. in MDCP
w fm p w fm p [ 0 0 0 0 0 0 0]0.064; // volime fraction of fer. mat. in MDCP
R p R p [ 0 1 0 0 0 0 0]435.0e−9; // MDCP radius 40

R pv R pv [ 0 1 0 0 0 0 0]0.5e−3; // blood vessel radius
u 0 u 0 [ 0 1 −1 0 0 0 0]0.021; // average inlet velocity
eta beta eta beta [ 1 −1 −1 0 0 0 0]0.001; // blood viscosity (Pa s)
epsilon p epsilon p [ 0 0 0 0 0 0 0]0;
k B k B [ 1 2 −2 −1 0 0 0]1.38e−23; //porosity of the material
T L T L [ 0 0 0 1 0 0 0]300.0;

D.2.2.3 transport properties file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/
FoamFile
{

version 2.0; 10

format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object transportProperties;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
transportModel Newtonian; 20

nu nu [0 2 −1 0 0 0 0] 1e−06;
CrossPowerLawCoeffs
{

nu0 nu0 [0 2 −1 0 0 0 0] 1e−06;
nuInf nuInf [0 2 −1 0 0 0 0] 1e−06;
m m [0 0 1 0 0 0 0] 1;
n n [0 0 0 0 0 0 0] 1;

}
BirdCarreauCoeffs
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{ 30

nu0 nu0 [0 2 −1 0 0 0 0] 1e−06;
nuInf nuInf [0 2 −1 0 0 0 0] 1e−06;
k k [0 0 1 0 0 0 0] 0;
n n [0 0 0 0 0 0 0] 1;

}
// ************************************************************************* //

D.2.2.4 turbulence properties file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/
FoamFile
{

version 2.0; 10

format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object turbulenceProperties;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
turbulenceModel laminar; 20

turbulence off;
laminarCoeffs
{
}

D.2.3 system

D.2.3.1 controlDict file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
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case "";
instance "";
local "";
class dictionary;
object controlDict;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

startFrom startTime;
startTime 3;
stopAt endTime;
endTime 60;
deltaT 0.001;
writeControl timeStep;
writeInterval 1500;
purgeWrite 0;
writeFormat ascii;
writePrecision 6; 30

writeCompression uncompressed;
timeFormat general;
timePrecision 6;
runTimeModifiable yes;
libs ("libmyBCs.so");
// ************************************************************************* //

D.2.3.2 fvSchemes file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object fvSchemes;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

ddtSchemes
{

default steadyState;
}
gradSchemes
{

default Gauss linear;

158



D.2. Run (Case) for Stent Implant

grad(p) Gauss linear;
grad(U) Gauss linear; 30

}
divSchemes
{

default none;
div(phi,U) Gauss upwind;
div(phi,k) Gauss upwind;
div(phi,epsilon) Gauss upwind;
div(phi,R) Gauss upwind;
div(R) Gauss linear;
div(phi,nuTilda) Gauss upwind; 40

div((nuEff*dev(grad(U).T()))) Gauss linear;
}
laplacianSchemes
{

default none;
laplacian(nuEff,U) Gauss linear corrected;
laplacian((1|A(U)),p) Gauss linear corrected;
laplacian(DkEff,k) Gauss linear corrected;
laplacian(DepsilonEff,epsilon) Gauss linear corrected;
laplacian(DREff,R) Gauss linear corrected; 50

laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;
}
interpolationSchemes
{

default linear;
interpolate(U) linear;

}
snGradSchemes
{

default corrected; 60

}
fluxRequired
{

default no;
p;

}
// ************************************************************************* //

D.2.3.3 fvSolution file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;
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root "";
case "";
instance "";
local "";
class dictionary;
object fvSolution;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 20

solvers
{

p PCG
{

preconditioner DIC;
tolerance 1e−06;
relTol 0.01;

};
U PBiCG
{ 30

preconditioner DILU;
tolerance 1e−05;
relTol 0.1;

};
k PBiCG
{

preconditioner DILU;
tolerance 1e−05;
relTol 0.1;

}; 40

epsilon PBiCG
{

preconditioner DILU;
tolerance 1e−05;
relTol 0.1;

};
R PBiCG
{

preconditioner DILU;
tolerance 1e−05; 50

relTol 0.1;
};
nuTilda PBiCG
{

preconditioner DILU;
tolerance 1e−05;
relTol 0.1;

};
}

60

SIMPLE
{

nNonOrthogonalCorrectors 1;
}

relaxationFactors
{

p 0.3;
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U 0.7;
k 0.7; 70

epsilon 0.7;
R 0.7;
nuTilda 0.7;

}
// ************************************************************************* //

D.2.3.4 sampleDict file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/

FoamFile
{ 10

version 2.0;
format ascii;

root "";
case "";
instance "";
local "";

class dictionary;
object sampleDict; 20

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

interpolationScheme cellPoint;

writeFormat raw;

sampleSets 30

(
uniform
{

name leftPatch;
axis y;
start (0 0.5 0.25);
end (0 2 0.25);
nPoints 100;

}
); 40

fields
(

sigmaxx
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);

D.2.3.5 twoRegionDict file

/*—————————————————————————*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*—————————————————————————*/
FoamFile
{

version 2.0; 10

format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object twoRegiondict;

}
// ************************************************************************* //
space mu 1.0; 20

shift x 6.0; // half of the distance between the center of seeds on X
shift y 6.7; // Position of the center of seed on Y
x 1 original −307.90; // position of particle 1 on X axis
y 1 original 5.75; // position of particle 1 on Y axis
x 2 original 0.15; //position of the particle 2 on X axis
y 2 original 0.20; //position of the particle 2 on Y axis
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Appendix E

Publications

To date this work has resulted in two peer reviewed journal papers and a third paper (in
collabration with CRANN, Trinity College Dublin) is under review with the Journal of
Magnetism and Magnetic Materials (JMMM), and three international conference poster
presentations, details of which are given below:

• P. J. Cregg, K. Murphy and A. Mardinoglu, Calculation of nanoparticle capture
efficiency in magnetic drug targeting, Journal of Magnetism and Magnetic Materials,
320, 3272–3275, 2008. (Page 166)

• P. J. Cregg, K. Murphy and A. Mardinoglu, Inclusion of magnetic dipole-dipole and
hydrodynamic interactions in implant assisted magnetic drug targeting, Journal of
Magnetism and Magnetic Materials, 321, 3893–3898, 2009. (Page 170)

• P. J. Cregg, K. Murphy, A. Mardinoglu and Adriele Prina-Mello, Many particle
magnetic dipole-dipole and hydrodynamic interactions in magnetisable stent assisted
magnetic drug targeting, Submitted to Journal of Magnetism and Magnetic Mate-
rials. (Page 176)

• P. J. Cregg, K. Murphy and A. Mardinoglu, Inclusion of interparticle interactions
in the modelling of magnetic drug targeting, 6th International Scientific and Clin-
ical Applications of Magnetic Carriers, May 17th – 20th, 2006, Krems, Austria.
(Page 163)

• P. J. Cregg, K. Murphy and A. Mardinoglu, Calculation of dipole interactions in
magnetic drug targeting, 7International Scientific and Clinical Applications of Mag-
netic Carriers, May 21st – 24th, 2008, Vancouver, Canada. (Page 164)

• P. J. Cregg, K. Murphy and A. Mardinoglu, Inclusion of magnetic dipole-dipole
interaction in implant assisted magnetic drug targeting, Joint European Magnetic
Symposia (JEMS08), September 14th – 19th, 2008, Dublin, Ireland. (Page 165)
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Inclusion of Interparticle Interactions in the

Modelling of Magnetic Drug Targeting

P. J. Cregg*, Kieran Murphy & Adil Mardinoglu

Materials Characterisation & Processing Group, Waterford Institute of Technology, Waterford, Ireland.
E-mail: pjcregg@wit.ie, Phone:+353–51–302631, Fax:+353–51–302666

Abstract

The magnetic targeted drug delivery system of Ritter and co-workers, which uses ferromagnetic implants
and high gradient magnetic separation principles to target within the body, is considered. In that model,
collection (CE) and diversion efficiencies (DE) are defined and used to evaluate system performance. There,
microparticles were considered and the benefit of particle agglomeration on CEs was assessed by considering
the larger agglomerated particles. Berry has pointed out the biomedical advantages of nanoparticles
(<50 nm). Here, we follow the model of Ritter et al. but consider nanoparticles and use the Langevin
function to describe the average magnetic moment of each superparamagnetic nanoparticle. We consider
the case of interparticle exchange interaction and model this in the limit of high exchange by appropriate
Langevin functions. With these changes, the simulations of Ritter et al. are then followed using OpenFOAM.

Keywords: Magnetic drug targeting; High gradient magnetic separation; Exchange interaction; Simulation.

Introduction

•Magnetic nanoparticles continue to offer much promise as carriers in drug targeting systems [1].

• That the force exerted on an individual particle is determined by the gradient of the field and not simply
the field is well known [1–6].

•As has been pointed out by several authors [2-6] this may inhibit the targeting, by means of external
magnets, of areas deep within the body.

•With this in mind, the implanting of ferromagnetic materials, such as wires, in blood vessels, in order to
create large localised gradients within the vessels, has been proposed by some authors [3–6].

• Berry [7] has suggested that magnetic nanoparticles <50 nm may have advantages as drug carriers.

•Here we follow the model of Ritter and co-workers [4–6] but investigate the CEs for superparamagnetic
nanoparticles.

•We note the significant beneficial role that agglomeration near the wire might play in increasing the
magnetic force and subsequent de-agglomeration [5].

•We take steps to model this for the mathematically simplest case of (short range) inter-particle exchange
interaction.

•As the particles are small and undergo significant thermal fluctuations, we use the Langevin function to
describe the magnetic moment of each particle.

•We also consider the limit of large exchange interaction, described by appropriate Langevin functions,
which is likely to occur between small nanoparticles in contact or near contact [8,9].

Figure 1: (a) Ferromagnetic wire placed asymmetrically at branch point in blood vessels. (b) The co-ordinate system of Ritter et

al. The values ξy,max and ξy,min are significant in defining the efficiencies CE and DE.

Stokes Drag and Magnetic Force

Collection Efficiency (CE) is determined following Ritter by considering the behaviour of the magnetic
nanoparticles under the influence of the two forces of Stokes drag and the magnetic force.

Fs = 6π ηb Rp (vb − vp)Stokes drag:

where ηb is the viscosity of the blood, Rp the radius of the particle, vb and vp, the velocities of the blood
and the particle respectively. The blood velocity, vb, is determined by solving the appropriate Navier-Stokes
equations.

Fm = (m · ∇) BMagnetic force:

where B is the resulting magnetic flux density (due to external H and the presence of the wire) and m is
the magnetic moment of the particle. Ritter et al. considered microparticles where the axis of the moment
m lay along that of B, and the magnetisation increased linearly with H until saturated. Whereas, nanopar-
ticles are saturated single domains, typically superparamagnetic and experience thermal agitation, so that
the magnetisation is given by the Langevin equation for magnetic fluids [2,10].

m = ωfm,p Vp Ms L (β)
B

|B|

where

L (β) = coth (β)−
1

β
and β =

µ0 ωfm,p Vp Ms H

kT

Here ωfm,p is volume fraction of ferromagnetic material in the particle, Vp is the particle volume, Ms the
saturation magnetisation. The two models for the magnetisation are given in Figure 2(a).
The B field is calculated from solving the Laplacian as indicated by Ritter, ensuring continuity of flux and
potential, across the wire–blood interface.

Collection Efficiency (CE)

Particles, which in equilibrium under the influence of these forces, are found to have the coordinates within
the region indicated by the min and max y points as in Figure 1(b) and as in the following equation

CE =
ξy,max − ξy,min

2ξpv
× 100%

are deemed to have been collected.

Inclusion of Exchange Interactions

Rancourt [8] refers to the role of inter-particle exchange bridges between nanoparticles. From the point of
view of altered magnetisation, this interaction can be treated as follows.
The Langevin equation is derived from the partition function Z. Recently one of the authors has considered
the Z of two identical particles interacting via exchange and has reduced Z from a quadruple integral to
an infinite sum of known functions (expressible in terms of the Langevin function), from which |m| can be
calculated. It is hoped to present this elsewhere in the very near future.
However, at this stage it is possible to consider in terms of simple Langevin functions the effect of very large
exchange interaction. For two identical particles not interacting, the appropriate reduced magnetisation is

MR,0(β) = 2L(β)

Whereas, two identical particles in the limit of very large exchange interaction (J → ∞) behave as one
moment with twice the magnitude viz.

MR,J→∞(β) = 2L(2β)

These are shown on Figure 2(b), as well as a three term approximation obtained by others, which shows
close agreement to the exact partition function integral value for βex = J(VpMs)

2/kT = 5.

Figure 2: (a) Magnetisation µ0Mfm,p per unit volume as calculated by Ritter, and by the Langevin function. (b) Reduced

magnetisation for two identical nanoparticles against Langevin parameter βz = µ0 Vp Ms H0/(kT ) for external field H0. —non

interacting, —limit of infinite exchange interaction, —finite exchange βex = 5.

Conclusions

• The per volume magnetisation predicted by the Langevin function for magnetic fluids is larger than that
of the microparticle model used by Ritter et al..

•Hence, the calculated collection efficiency in the modified model is increased for nanoparticles.
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Abstract

The magnetic targeted drug delivery system of Aviles, Ebner and Ritter [11], which uses SS 409 as the seed ferromagnetic
material and iron for the magnetic drug carrier particles, is considered. Agglomeration of the particles is known to occur is
such systems and here the effect of magnetic (dipole) interactions between the particles is included. Hydrodynamic and dipole
interactions were calculated previously by Mikkelson et al. [12] under low magnetic fields. Here, for higher magnetic fields, the
effect of the magnetic interactions between the two particles is calculated using a reference particle and particle tracking. The
calculations were performed with the open source software OpenFOAM. The system performance is assessed in terms capture
cross section [11]. In the simulations agglomeration is seen to occur leading to larger capture cross section.
Keywords: Magnetic drug targeting; High gradient magnetic separation; Dipole interaction; Simulation.

Introduction

•Magnetic nanoparticles continue to offer much promise as carriers in drug targeting systems [1].

• That the force exerted on an individual particle is determined by the gradient of the field and not simply
the field is well known [1–6].

•As has been pointed out by several authors [2–6] this may inhibit the targeting, by means of external
magnets, of areas deep within the body.

•With this in mind, the implanting of ferromagnetic materials, such as wires, seeds, in blood vessels, in
order to create large localised gradients within the vessels, has been proposed by some authors [3–6].

• Berry [7] has suggested that magnetic nanoparticles < 50 nm may have advantages as drug carriers.

•Here we follow the model of Ritter and co-workers [4–6,11] and investigate the Capture Cross Sections for
nanoparticles.

•We note the significant beneficial role that agglomeration near the seed might play in increasing the
magnetic force and subsequent de-agglomeration [5].

•As the particles are small and undergo significant thermal fluctuations, we use the Langevin function to
describe the magnetic moment of each particle.

• Previously Mikkelson et al. included the dipole interactions for the case of low magnetic fields [12]. Here
we adapt and extend their approach to model two interacting nanoparticles, with arbitrary field strength.

Figure 1: Schematic diagram of the control volume, CV, used in determining the capture radius, λc, of the magnetic nanoparti-

cles.

Stokes Drag, Magnetic Force and Magnetic (Dipole) Interaction Force

Capture Cross Section (CCS) is determined following Aviles et al. [11] by considering the behaviour of the
magnetic nanoparticles under the influence of Stokes drag and the magnetic forces.

Fs = 6π ηbRp (vb − vp)Stokes drag:

where ηb is the viscosity of the blood, Rp the radius of the particle, vb and vp, the velocities of the blood
and the particle respectively. The blood velocity, vb, is determined by solving the appropriate Navier-Stokes
equations.

Fm = (m · ∇) BMagnetic force:

where B is the resulting magnetic flux density (due to external H0 magnetic field and the presence of the
implant (seed)) and m is the magnetic moment of the particle. As a result of thermal agitation, the magnetic
moment of such a particle does not, in general, align with the external field. However, the average projection
of the moment in the direction of B can be calculated from the Langevin function [2,15,16].

L (β) = coth (β) −
1

β
, (1)

with Langevin argument

β =
ωfm,p VpMfm,p,sB

kT
, (2)

where ωfm,p is the volume fraction of ferromagnetic material in the particle, Vp is the particle volume,
Mfm,p,s the (volume) saturation magnetisation, B is the magnitude of B, k is Boltzmann’s constant and
T is the absolute temperature, so that m can be written as

m = ωfm,p VpMfm,p,sL (β)
B

B
. (3)

For calculation of B field, Laplace’s equation for the scalar potential is solved analytically by separation of
variables [13,14].
Magnetic (Dipole) Interaction Force:

Including the magnetic effect of particle 2 on particle 1, the magnetic force can be augmented to

Fint =
(

(m1 + dm1) · ∇
)

(B + dB2)

where dB2 is the modification of the resulting magnetic flux density due to particle 2 at r2. The nanopar-

ticles are taken as spherical with radius a and sufficiently small so that the magnetic flux can be taken as

homogeneous over the particle. The modification to the magnetic flux density is thus taken as

dB2(r) =
1

3

(

µ0Mfm,p,s
L(β)

B

)

a3

|r1 − r2|3

(

3
(

B(r2) · (r1 − r2)
)

|r1 − r2|2
(r1 − r2) − B(r2)

)

where r1 and r2 are the positions of the particles and dm1 is the change in the magnetic moment of the

particle 1, given by

dm1 =
1

3

(

µ0Mfm,p,s
L(β)

B

)2 a3

|r1 − r2|3

(

3
(

B(r2) · (r1 − r2)
)

|r1 − r2|2
(r1 − r2) − B(r2)

)

Capture Cross Section (CCS)

The particle trajectories are obtained from evaluating the streamline function

∂ψ

∂y
= −vp,x

and
∂ψ

∂x
= vp,y

where ψ is the stream function, and vp,x and vp,y are the components of particle velocity vp. The system

performance of this model is calculated in terms of the capture cross section, λc, defined as (see Fig.1)

λc =
yc

Rseed
,

where yc is the capture radius of the ferromagnetic seed. The capture radius, yc, is defined by the location

of the streamline at the entrance to the CV of the last magnetic drug carrier particle captured to the seed.

Figure 2: Figures 2a and 2b are the output of the OpenFOAM program and show the particle behaviour without dipole interac-

tions. Figures 2c and 2d show the effect of the dipole interaction. Iron (50 nm particle radius) for the magnetic carrier particles

and SS 409 (1000 nm seed radius) as the seed ferromagnetic materials is considered under high magnetic field.

Conclusions

• The effect of the dipole interaction between two nanoparticles on the calculated magnetic force in the

implant assisted magnetic drug targeting system of Aviles et al. is considered.

• Increased capture cross section in the modified model is observed in simulations.

• It should be possible to extend this approach to model dipole interactions in further implant arrangements

such as stents.
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Abstract

The magnetic targeted drug delivery system of Aviles, Ebner and Ritter [8], which uses SS 409 as the seed ferromagnetic
material and iron for the magnetic drug carrier particles, is considered. Here in order to model of agglomeration of particles is
known to occur is this system and the magnetic dipole-dipole interaction is included. Interactions were calculated previously by
Mikkelson et al. [9] under low magnetic fields (0.05 T) and dipole-dipole interaction of two particles by using a higher magnetic
field (0.7 T) is calculated in our submitted paper [11]. Here, dipole-dipole interaction of N multiple nanoparticles with a seed
implant using same magnetic field (0.7 T) is calculated by particle tracking. The calculations were performed with the open
source software OpenFOAM. Different initial positions are considered and the system performance is assessed in terms capture
cross section [8]. In the simulations agglomeration is seen to occur leading to larger and smaller capture cross section acording
to the positions of the particles.
Keywords: Magnetic drug targeting; High gradient magnetic separation; Dipole interaction; Simulation.

Introduction

•Magnetic nanoparticles continue to offer much promise as carriers in drug targeting systems [1].

• That the force exerted on an individual particle is determined by the gradient of the field and not simply
the field is well known [1–6].

•As has been pointed out by several authors [2–6] this may inhibit the targeting, by means of external
magnets, of areas deep within the body.

•With this in mind, the implanting of ferromagnetic materials, such as wires, seeds, in blood vessels, in
order to create large localised gradients within the vessels, has been proposed by some authors [3–6].

• Berry [7] has suggested that magnetic nanoparticles < 50 nm may have advantages as drug carriers.

•Here we follow the model of Ritter and co-workers [4–6,8] and investigate the Capture Cross Sections for
multiple nanoparticles.

•We note the significant beneficial role that agglomeration near the seed might play in increasing the
magnetic force and subsequent de-agglomeration [5].

•As the particles are small and undergo significant thermal fluctuations, we use the Langevin function to
describe the magnetic moment of each particle [10].

•Mikkelson et al. included the magnetic dipole-dipole interactions for the case of low magnetic fields [9].

• Previously in our recently submitted paper Cregg et al. [11] included the dipole interactions for two
particles. Here we extend our approach to model N interacting nanoparticles, beginning here with the
presentation of results for three nanoparticles with arbitrary initial positions.

Figure 1: Schematic diagram of the control volume, CV, used in determining the capture radius, λc, of the magnetic nanoparti-

cles.

Stokes Drag, Magnetic Force and Magnetic (Dipole-Dipole) Interaction Force

Capture Cross Section (CCS) is determined following Aviles et al. [8] by considering the behaviour of the
magnetic nanoparticles under the influence of Stokes drag and the magnetic forces.

Fs = 6π ηbRp (vb − vp)Stokes drag:

where ηb is the viscosity of the blood, Rp the radius of the particle, vb and vp, the velocities of the blood
and the particle respectively. The blood velocity, vb, is determined by solving the appropriate Navier-Stokes
equations.

Fm = (m · ∇) BtotalMagnetic force:

where Btotal is the total magnetic flux density (due to external H0 magnetic field, the presence of the implant
(seed) and the presence of the magnetic nanoparticles) and m is the magnetic moment of the particle. As
a result of thermal agitation, the magnetic moment of such a particle does not, in general, align with the
external field. However, the average projection of the moment in the direction of B can be calculated from
the Langevin function [2,12,13].

L (β) = coth (β) −
1

β
,

with Langevin argument

β =
ωfm,p VpMfm,p,sBtotal

kT
,

where ωfm,p is the volume fraction of ferromagnetic material in the particle, Vp is the particle volume, Mfm,p,s
the (volume) saturation magnetisation, Btotal is the magnitude of Btotal, k is Boltzmann’s constant and T
is the absolute temperature, so that the average projection of m the magnetic moment of a nonoparticle in
the direction of Btotal can be written as

m = ωfm,p VpMfm,p,sL (β)
Btotal

Btotal
.

For calculation of B field, Laplace’s equation for the scalar potential is solved analytically by separation of
variables [10].

Magnetic (Dipole-Dipole) Interaction Force:

Including the magnetic effect on particle n of the other N−1 particles, the magnetic force can be augmented

to

(Fint)n = (mn · ∇) (Btotal)n

where (Btotal)n is the total magnetic flux acting on particle n (for particle n, (Btotal)n is taken as

(Btotal)n = B + dB1 + .... + dB(n−1) + dB(n+1).... + dBN ) and dBn is the modification of the re-

sulting magnetic flux density due to particle n at r. The nanoparticles are taken as spherical with radius

a and sufficiently small so that the magnetic flux can be taken as homogeneous over the particle. The

modification to the magnetic flux density is thus taken as

dBn(r) =
1

3

(

µ0Mfm,p,s
L(β)

B

)

a3

|r − rn|3

(

3
(

B(rn) · (r − rn)
)

|r − rn|2
(r − rn) − B(rn)

)

where r represents an arbitrary point in space and rn is the position of the particle n. The reader should

note that it is the gradient of the flux density (including the above modification) which is required for the

calculation of the magnetic force.

Capture Cross Section (CCS)

The particle trajectories are obtained from evaluating the streamline function

∂ψ

∂y
= −vp,x

and
∂ψ

∂x
= vp,y

where ψ is the stream function, and vp,x and vp,y are the components of particle velocity vp. The system

performance of this model is calculated in terms of the capture cross section, λc, defined as (see Fig.1)

λc =
yc

Rseed
,

where yc is the capture radius of the ferromagnetic seed. The capture radius, yc, is defined by the location

of the streamline at the entrance to the CV of the last magnetic drug carrier particle captured to the seed.

Figure 2: Figures 2a and 2b are the output of the OpenFOAM program and show the particle behaviour without dipole interac-

tions. Figures 2c and 2d show the effect of the dipole interaction. Iron (50 nm particle radius) for the magnetic carrier particles

and SS 409 (1000 nm seed radius) as the seed ferromagnetic materials is considered under high magnetic field.

Conclusions

• The effect of the dipole interaction between N multiple nanoparticles on the calculated magnetic force in

the implant assisted magnetic drug targeting system of Aviles et al. is considered.

•Depending on the initial positions of the particles increased and decreased capture cross section in the

modified model is observed in simulations.

• It should be possible to extend this approach to model dipole-dipole interactions in further implant ar-

rangements such as stents.
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[4] J.A. Ritter, A.D. Ebner, K.D. Daniel, K.L. Stewart, J. Magn. Magn. Mater., 280 (2004) 184.

[5] M.O. Aviles, A.D. Ebner, H. Chen, A.J. Rosengart, M.D. Kaminski, J.A. Ritter, J. Magn. Magn. Mater., 293 (2005) 605.

[6] H. Chen, A.D. Ebner, M.D. Kaminski, A.J. Rosengart, J.A. Ritter, J. Magn. Magn. Mater., 293 (2005) 616.

[7] C.C. Berry, A.S.G. Curtis, J Phys D: Appl Phys., 36 (2003) R198.

[8] M.O. Aviles, A.D. Ebner, J.A. Ritter, J. Magn. Magn. Mater., 310 (2007) 131.

[9] C. Mikkelsen, M. F. Hansen, H. Bruus, J. Magn. Magn. Mater., 293 (2005) 578.

[10] P. J. Cregg, K. Murphy, A. Mardinoglu, Calculation of nanoparticle capture efficiency in magnetic drug targeting, J.

Magn. Magn. Mater., doi:10.1016/j.jmmm.2008.06.21.

[11] P. J. Cregg, K. Murphy, A. Mardinoglu, Inclusion of magnetic dipole-dipole interaction in implant assisted magnetic

drug targeting, Submitted to J. Magn. Magn. Mater., (2008).

[12] P. J. Cregg and L. Bessais, J. Magn. Magn. Mater., 202 (1999) 554.

[13] H. C. Bryant and D. A. Sergatskov and D. Lovato and N. L. Adolphi and R. S. Larson and E. R. Flynn, Phys. Med. Biol.,
52 (2007) 4009.

This work was funded by Enterprise Ireland under the Applied Research Enhancement (ARE) programme as part of the
South Eastern Applied Materials (SEAM) Research Centre.

Joint European Magnetic Symposia (JEMS08), September 14th – 19th, 2008, Dublin, Ireland.



Current Perspectives

Calculation of nanoparticle capture efficiency in magnetic drug targeting

P.J. Cregg �, Kieran Murphy, Adil Mardinoglu

SEAM Research Centre, Materials Characterisation and Processing Group, Waterford Institute of Technology, Waterford, Ireland

a r t i c l e i n f o

Article history:

Received 17 December 2007

Received in revised form

12 May 2008
Available online 24 June 2008

PACS:

47.63.mh

47.63.�b

87.85.gf

Keywords:

Magnetic drug targeting

High gradient magnetic separation (HGMS)

Magnetic nanoparticle

Simulation

Magnetic seed

a b s t r a c t

The implant assisted magnetic targeted drug delivery system of Avilés, Ebner and Ritter, which uses

high gradient magnetic separation (HGMS) is considered. In this 2D model large ferromagnetic particles

are implanted as seeds to aid collection of multiple domain nanoparticles (radius � 200 nm). Here, in

contrast, single domain magnetic nanoparticles (radius in 20–100 nm) are considered and the Langevin

function is used to describe the magnetization. Simulations based on this model were performed using

the open source Cþþ finite volume library OpenFOAM. The simulations indicate that use of the

Langevin function predicts greater collection efficiency than might be otherwise expected.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic nanoparticles continue to offer much promise as
carriers in drug targeting systems [1,2]. That the force exerted on
an individual particle is determined by the gradient of the field
and not simply the field is well known [1,3–8]. As has been
pointed out by several authors [3–8] this may inhibit the
targeting, solely by means of external permanent magnets, of
areas deep within the body. With this in mind, the implanting of
ferromagnetic materials, such as wires, seeds or stents, in blood
vessels has been proposed by some authors [4–7], in order to
create large localised gradients within the vessels. Berry [2] has
suggested that magnetic nanoparticles with radii of the order of
50 nm may have advantages as drug carriers, and here these are
taken as the carriers. For a related problem, Furlani and Furlani [9]
have developed a model for which it was possible to obtain an
analytical expression for the behaviour of multifunctional parti-
cles. In contrast, the approach taken here is largely numerical in
that while the magnetic field is obtained from an analytical
expression both the fluid flow and resulting particle trajectories
are obtained using OpenFOAM a finite volume simulation Cþþ
library.

2. Outline of model

Ebner, Ritter and co-workers [5,6,10] have proposed various
implant systems. Here, we consider the system which employs a
spherical ferromagnetic implant with radius of order 1mm, which
they term a seed [10]. We follow their 2D model which represents
a slice through the centre of the seed. It should be noted that
physically this corresponds to a 2D description of flow in a
rectangular box with a transverse cylindrical wire, both of infinite
extent.

The model treats the behaviour of magnetic particles under the
influence of Stokes drag and the magnetic force. Other forces such
as inertia and gravity are ignored. The Stokes drag is given by

~Fs ¼ 6pZbRpð~vb �~vpÞ, (1)

where Zb is the viscosity of the blood, Rp the radius of the particle,
and ~vb and ~vp are the velocities of the blood and the particle,
respectively. The blood velocity, ~vb, is determined by solving the
appropriate Navier–Stokes equations. The magnetic force is
determined by

~Fm ¼ ð~m � rÞ~B, (2)

where ~B is the magnetic flux density and ~m is the magnetic
moment of the particle. We follow Avilés et al. [10] and consider
the effect of a magnetisable seed placed in the blood flow as
indicated in Fig. 1. The resulting magnetisation of the seed, ~Mseed,
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is parallel to the externally applied magnetic field, ~H0, and can be
calculated from

~Mseed ¼ 2aseed
~H0, (3)

where aseed is the demagnetising factor for an infinitely long
cylinder in a perpendicular field taken as

aseed ¼ min
wseed;0

2þ wseed;0

;
Mseed;s

2H0

 !
, (4)

where wseed;0 and Mseed;s are the zero field susceptibility and
saturation magnetisation of the ferromagnetic seed, respectively,
and H0 is the magnitude of the external magnetic field. In the
model of Avilés et al. microparticles were considered, where the
axis of the moment ~m lay along that of ~B, and the magnetisation
increased with applied field, after accounting for demagnetising.
In contrast, a nanoparticle of diameter o100 nm is typically a
superparamagnetic single domain. As a result of thermal agita-
tion, the magnetic moment of such a particle does not, in general,
align with the external field. However, the average projection of
the moment in the direction of ~B can be calculated from the
Langevin function [3,8,11–13]

LðbÞ ¼ cothðbÞ �
1

b
, (5)

with Langevin argument

b ¼
ofm;pVpMfm;p;sB

kT
, (6)

where ofm;p is the volume fraction of ferromagnetic material in
the particle, Vp is the particle volume, Mfm;p;s the (volume)
saturation magnetisation, B is the magnitude of ~B, k is Boltz-
mann’s constant and T is the absolute temperature, so that ~m can
be written as

~m ¼ ofm;pVpMfm;p;sLðbÞ
~B

B
. (7)

The value of~B, required to calculate the magnetic force as given by
Eqs. (2) and (7) is calculated from solving the Laplace equation as
outlined in Section 4.

3. Blood flow—the Navier–Stokes equations

The blood is treated as an incompressible, Newtonian,
isothermal, single-phase fluid with velocity ~vb and pressure P at
steady state flow. We have the continuity equation

r �~vb ¼ 0, (8)

and the Navier–Stokes equation

rb½ð~vb � r~vbÞ� ¼ rP þ Zbr
2~vb, (9)

where rb is the density of the blood. To solve Eqs. (8) and (9) a
uniform inlet velocity profile is assumed at the inlet control
volume (CV) such that

~vb ¼
u0

0

� �
, (10)

where u0 is the inlet blood velocity. Non-slip boundary conditions
are applied at the seed-blood interface. In addition, symmetry
boundary conditions are applied at the upper and lower CV
boundaries to maintain the constant flow profile. Atmospheric
pressure is assumed at the outlet of the CV to satisfy the boundary
condition on pressure.

4. The magnetic force—the scalar magnetic potential

The second part of this model involves the scalar magnetic
potential, which satisfies the Laplace equation over two con-
joined regions: inside the seed and outside the seed. From the
scalar potential, we can obtain the magnetic flux density. Thus for
the two regions, within the seed and outside the seed we have
magnetic flux given by

~B ¼
m0ð

~Mseed þ
~H0 �rfÞ within the seed;

m0ð
~H0 �rfÞ outside the seed;

(
(11)

where m0 is the magnetic permeability of free space, and f
represents the reduced scalar magnetic potential. Here ~Mseed, the
induced magnetisation of the seed, is obtained through Eq. (3) and
~H0 can be written

~H0 ¼
H0 cos y
H0 sin y

 !
, (12)

where y is the angle from the positive x-axis, as in Fig. 1.
Laplace’s equation for the scalar potential is solved analytically

by separation of variables. Firstly, the normal component of the
magnetic flux and potential are both assumed to be continuous
across the seed–blood interface. Secondly, far away from the seed,
the scalar potential should tend towards zero. The required
analytical solution for the reduced scalar potential defined in the
region outside the seed is [14]

f ¼ H0R2
seed

mr � 1

mr þ 1

x cos yþ y sin y
x2 þ y2

, (13)

where Rseed is the radius of the seed implant, mr is the relative
permeability of the ferromagnetic seed (calculated through
ðmr � 1Þ=ðmr þ 1Þ ¼ aseed, from Eq. (4)), and the origin is taken as
the centre of the seed.

5. Velocity equations, streamlines and capture cross section

The nanoparticles are under the influence of Stokes drag and
magnetic force as given in Eqs. (1) and (2), respectively. The
velocity of a nanoparticle, ~vp, can be obtained by summing the
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Fig. 1. Schematic diagram of the control volume, CV, used in determining the

capture radius, lc, of the magnetic nanoparticles.

P.J. Cregg et al. / Journal of Magnetism and Magnetic Materials 320 (2008) 3272–3275 3273



forces acting upon it. Hence we obtain

~vp ¼ ~vb þ
1

2
vm

Rseed

Mseed;sH
rð~H � ~HÞ. (14)

Here ~H is the total magnetic field at the location of the magnetic
drug carrier particle. The field ~H relates to ~B via

~B ¼ m0
~H, (15)

and in the space around the seed is given by, from Eq. (11),

~H ¼ ~H0 �rf. (16)

Therefore, the magnitude of the total magnetic field is

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0 cos y�

qf
qx

� �2

þ H0 sin y�
qf
qy

� �2
s

, (17)

and vm, the magnitude of the magnetic velocity, is given by

vm ¼
2

9

R2
p

Rseed

m0

Zb

ofm;pMseed;sMfm;p;sLðbÞ. (18)

The volume fraction of ferromagnetic material ofm;p in the
magnetic drug carrier particle is related to its weight fraction
xfm;p through [5]

ofm;p ¼
xfm;p

xfm;p þ ð1� xfm;pÞrfm;p=rpol;p

, (19)

where rfm;p is the density of the ferromagnetic material in the
magnetic drug carrier particle and rpol;p is the density of the
polymer material in the magnetic drug carrier particle.

Finally, the particle trajectories are obtained from evaluating
the streamline function

qc
qy
¼ �vp;x, (20)

qc
qx
¼ vp;y, (21)

where c is the stream function, and vp;x and vp;y are the
components of ~vp from Eq. (14). The system performance of this
model is calculated in terms of the capture cross section, lc,

defined as

lc ¼
yc

Rseed
, (22)

where yc is the capture radius of the ferromagnetic seed. The
capture radius, yc, is defined by the location of the streamline at
the entrance to the CV of the last magnetic drug carrier particle
captured to the seed (Fig. 1). All calculations were performed
using the open-source software finite volume library OpenFOAM
[15].

6. Results and discussions

In this simulation iron was taken as the magnetic drug carrier
particle and SS 409 as the seed material with 1mm radius. The
streamline functions for the capture of nanoparticles are pre-
sented in Fig. 2 for particle radius Rp ¼ 50 nm, containing 40 wt%
iron (xfm;p ¼ 0:4), under the influence of homogenous magnetic
field m0H0 oriented perpendicularly to the flow (y ¼ p=2) with
magnitudes of 0.0–0.6 T. The resulting capture cross-section, lc, is

ARTICLE IN PRESS

Fig. 2. Streamlines indicating the trajectories of the single domain nanoparticles, calculated using OpenFOAM, as they traverse the control volume for different magnitudes

of the externally applied magnetic field, ~H0. (a) m0H0 ¼ 0:0 T; (b) m0H0 ¼ 0:2 T; (c) m0H0 ¼ 0:4 T; (d) m0H0 ¼ 0:6 T.

Fig. 3. Capture cross section, lc, plotted as a function of the applied magnetic field

strength, m0H0, calculated using (——) the Langevin function as appropriate for

single domain particles and (.....) without Langevin function as appropriate for

multiple domain particles.
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calculated and presented in Fig. 3 for 50 nm particles, as a function
of the magnetic field strength m0H0. In the model the magnetisa-
tion of the individual nanoparticles is taken as the average value
given by the Langevin function. The values of the capture cross-
section predicted through use of the Langevin function are
significantly larger (see Fig. 3) than would result from the large
particle approach taken by Avilés et al. Beyond a field of � 0:7 T,
for the material used in this simulation, the carrier particle
magnetisation is saturated for both models, leading to identical
results. The relevant blood flow properties and the properties of
the ferromagnetic material that are used in the magnetic drug
carrier particles and for the seeds are given in Table 1.

7. Conclusions

The model of Avilés, Ebner and Ritter has been considered for
collecting single domain magnetic drug carrier nanoparticles.
Here the Langevin function is used to calculate the expected value
of the nanoparticle magnetisation. Magnetic flux density ~B is
calculated analytically by using the separation of variable solution

and the blood velocity ~vb is obtained from the Navier–Stokes
equation using the finite volume library OpenFOAM. The simula-
tions indicate that use of the Langevin function predicts greater
collection efficiency than might be otherwise expected.
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Table 1
Values of system and material parameters used in the simulation

Property Value SI Unit

rb 1040.0 kg m�3

Zb 0.002 kg m�1 s�1

u0 0.001 m s�1

m0H0 0.0–0.8 kg s�2 A�1

xfm;p 0.4

rfm;p 7850 kg m�3

wseed;0 1000

Mseed;s 1397000 A m�1

Mfm;p;s 1735000 A m�1

Rseed 1:0� 10�6 m

Rp 50� 10�9 m

rpol;p 950 kg m�3
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a b s t r a c t

Mathematical modelling of the implant-assisted magnetic drug targeting system of Avil �es, Ebner and

Ritter is performed. In order to model the agglomeration of particles known to occur in this system, the

magnetic dipole–dipole and hydrodynamic interactions are included. Such interactions were calculated

previously by Mikkelsen et al. under low magnetic fields (�0.05 T) in microfluidic systems. Here, a

higher magnetic field (0.7 T) is considered and the effect of interactions on two nanoparticles with a

seed implant is calculated. The calculations were performed with the open-source software OpenFOAM.

Different initial positions are considered and the system performance is assessed in terms of capture

cross section. Inclusion of both interactions was seen to alter the capture cross section of the system by

up to 7% in absolute terms.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic nanoparticles continue to offer promise in biomedi-
cine [1,2]. Their use in magnetic drug targeting (MDT) however
is limited somewhat by the fact that the magnetic force depends
specifically on the gradient of the field [3]. To overcome this
problem several authors [4–12] have proposed implanting
ferromagnetic materials such as wires, seeds and stents within
the body. In a homogeneous magnetic field these implants create
strong localised gradients, and this approach is known as implant-
assisted MDT (IA-MDT). Of the various IA-MDT implants
suggested by Ebner, Ritter and co-workers [6–12] we consider
the micron sized spherical ferromagnetic implant, which they
term a seed [9,13], with magnetic nanoparticles (50 nm radius) as
the drug carriers. Considering miniaturised high-gradient mag-
netic separation, Mikkelsen et al. [14] have included both the
hydrodynamic and dipole–dipole interactions for the case of low
magnetic fields. Also, Mehasni et al. have considered the effect of
magnetic dipole–dipole interaction on the performance of high-
gradient magnetic separation systems [15]. Here, with a view to
modelling experimentally observed agglomeration in IA-MDT
[6,9–11], we adapt and extend these approaches to model two
mutually interacting nanoparticles with larger field strength and a
seed implant.

2. Outline of model

We consider the effect of a magnetisable seed placed in the
blood flow as indicated in Fig. 1. Following Avil�es et al. [9] we take
the 2D approximation of a slice through the seed centre, noting
that this corresponds to 2D flow in a rectangular box with a
cylindrical wire, both of infinite extent. We model the behaviour
of two magnetic nanoparticles under the influence of Stokes drag,
a force due to hydrodynamic interaction, and a magnetic force,
modified to incorporate the mutual magnetic dipole–dipole
interaction [14]. The Stokes drag for Particle 1 is

~F s1
¼ 6pZbRpð~vb �~vp1

Þ ð1Þ

where Zb is the viscosity of the blood, Rp the radius of the
nanoparticle, ~vb and ~vp1

the velocities of the blood and Particle 1,
respectively. A similar expression applies for Particle 2. The blood
velocity, ~vb, is determined by solving the appropriate
Navier–Stokes equations. The force due to the hydrodynamic
interaction that acts on Particle 1 due to presence of Particle 2, can
be written as [14],

~F hyd1
¼ �

9pZbR2
p

2j~r1 �~r2j
1þ
ð~r1 �~r2Þ � ð~r1 �~r2Þ

j~r1 �~r2j
2

� �
� ð~vb �~vp2

Þ ð2Þ

where 1 is the unit tensor, � the vector tensor product (outer
product), ~r1 and ~r2 the positions of Particle 1 and Particle 2,
respectively and ~vp2

the velocity of Particle 2. An equivalent
formula applies for Particle 2 due to the presence of Particle 1.
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In general the magnetic force acting on a magnetic moment is
determined by

~F m ¼ ð~m � rÞ~Btotal ð3Þ

where ~m is the magnetic moment and ~Btotal is the total magnetic
flux density. Two magnetic dipoles exert a force on each other,
which can be included in the magnetic force equation by
considering (i) the modified magnetic flux density and (ii) the
modification in the magnetic moment resulting from this
modified flux density. Thus for Particle 1 we can write

~F int1
¼ ð~m1 � rÞð~B þ d~B2Þ ð4Þ

where ~m1 is the total magnetic moment of Particle 1, ~B the
magnetic flux density due to the external field and the seed and
d~B2 the modification of the resulting magnetic flux density at
Particle 1 at ~r1 due to the presence of Particle 2 at ~r2. (An
equivalent formula applies for Particle 2 with ~m2 and ~B þ d~B1.)
The value of ~B required to calculate the magnetic force as given by
Eqs. (4) and (12), is calculated from the scalar magnetic potential
due to the seed, which satisfies the Laplace equation over two
con-joined regions: inside the seed and outside the seed. Thus for
outside the seed we have magnetic flux density given by

~B ¼ m0ð
~H0 �rfÞ ð5Þ

where m0 is the magnetic permeability of free space, and ~H0 is the
external magnetic field. Taking the seed centre as the origin, as in
Fig. 1, the reduced scalar potential, j in the region outside the
seed is given by [13,16]

f ¼ H0R2
seedaseed

xcosyþ ysiny
x2 þ y2

ð6Þ

where H0 is the magnitude of the applied field, Rseed radius of the
seed and aseed the demagnetising factor which for an infinitely
long cylinder in a perpendicular field can be taken as [9]

aseed ¼ min
wseed;0

2þ wseed;0

;
Mseed;s

2H0

 !
ð7Þ

where wseed,0 and Mseed,s are the zero field susceptibility and
saturation magnetisation of the seed, respectively, and ~H0 can be

written

~H0 ¼
H0cosy
H0siny

 !
ð8Þ

where y is the angle of the field from the positive x-axis in Fig. 1.
The average projection of ~m the magnetic moment of a

nanoparticle in the direction of ~Btotal (which for Particle 1 is
taken as ~B þ d~B2 and equivalently for Particle 2 would be ~B þ d~B1)
can be calculated from the Langevin function [3,11,13,17–19]

LðbÞ ¼ cothðbÞ �
1

b
ð9Þ

with argument

b ¼
opVpMp;sBtotal

kT
ð10Þ

where Vp is the nanoparticle volume, Btotal the magnitude of ~Btotal,
k Boltzmann’s constant, T the absolute temperature, Mp,s the
saturation magnetisation of the nanoparticle, and op the volume
fraction of ferromagnetic material in the nanoparticle which
relates to its weight fraction xp through [6]

op ¼
xp

xp þ ð1� xpÞðrp=rpol;pÞ
ð11Þ

where rp is the density of the ferromagnetic material and rpol,p is
the density of the polymer material in the nanoparticle. Thus ~m

(for either particle) can be written

~m ¼ opVpMp;sLðbÞ
~Btotal

Btotal
: ð12Þ

With regard to the magnetic interaction, each nanoparticle is
taken as spherical and sufficiently small so that its magnetic flux
can be taken as homogeneous over the particle. The dipole field of
Particle 2 then leads to a modification of the magnetic flux density
(at any point in space), taken as [14,20]

d~B2ð~rÞ ¼
1

3
m0Mp;s

LðopVpMp;sj
~Bð~r2ÞjÞ

j~Bð~r2Þj

 !
R3

p

j~r �~r2j
3

�
3ð~Bð~r2Þ � ð~r �~r2ÞÞ

j~r �~r2j
2

ð~r �~r2Þ �
~Bð~r2Þ

 !
ð13Þ

where ~r represents an arbitrary point in space and ~Bð~r2Þ is flux
density at~r2 due to the external field and seed. The reader should
note that it is the gradient of this field, d~B2, at~r1 (and equivalently
at~r2 for Particle 2) which is required for the calculation of Eq. (4).

3. Blood flow—the Navier–Stokes equations

The blood is treated as an incompressible, Newtonian,
isothermal, single-phase fluid with steady state flow [9]. Thus,
we have the continuity equation

r �~vb ¼ 0 ð14Þ

and the Navier–Stokes equation

rb½ð~vb � r~vbÞ� ¼ �rP þ Zbr
2~vb ð15Þ

where rb is the density of the blood and P is the pressure. To solve
Eqs. (14) and (15), a uniform inlet velocity profile is assumed at
the inlet control volume (CV) such that

~vb ¼
u0

0

� �
ð16Þ

Fig. 1. Schematic diagram of the control volume, used in determining the capture

cross section, lc, of the magnetic nanoparticles.
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where u0 is the inlet blood velocity. Non-slip boundary conditions
are applied at the seed-blood interface. In addition, symmetry
boundary conditions are applied at the upper and lower CV
boundaries to maintain the constant flow profile. Atmospheric
pressure is assumed at the outlet of the CV to satisfy the boundary
condition on pressure.

4. Velocity equations, streamlines and capture cross section

The velocity of a particle can be obtained by summing the
Stokes drag, the force due to hydrodynamic interaction and the
modified magnetic force, as given in Eqs. (1), (2) and (4),
respectively, while ignoring inertia. Hence, for Particle 1 we obtain

~vp1
¼ ~vb þ

~F int1
þ~F hyd1

6pZbRp
ð17Þ

Finally, the trajectories of each particle can be obtained from
evaluating the streamline functions [6,13]. The system perfor-
mance of this model is calculated in terms of capture cross
section, lc, defined as

lc ¼
yc

Rseed
ð18Þ

where yc is the capture radius of the ferromagnetic seed. The
capture radius, yc, is defined by the location of the streamline at
the entrance to the CV of the last magnetic drug carrier particle
captured to the seed (see Fig. 1). All calculations were performed
using the open-source software finite volume library OpenFOAM
[21].

5. Results and discussions

Clearly the strength of forces due to dipole–dipole and
hydrodynamic interactions depends on many factors including:
the magnitude of the applied external magnetic field, the initial
distance between the particles, relative position of the particles to
each other, the size of the ferromagnetic drug carrier particles and
of the ferromagnetic seed. Moreover, the strength of the forces
due to hydrodynamic interaction depends on the velocities of
particles relative to the blood velocity [14]. In this paper we focus
on varying the initial distance between the particles and present
the results in terms of agglomeration and the altered capture cross
section of the system.

In these simulations stainless steel (SS) 409 is taken as the seed
material with a seed radius of 1mm. Results are presented by
generating streamlines for two identical iron nanoparticles with
radius Rp ¼ 50 nm, containing 40 wt% iron (xp ¼ 0.4), under the
influence of homogeneous magnetic field oriented parallel to the
flow (y ¼ 0) with magnitude m0H0 ¼ 0.7 T. The relevant blood flow
properties and the properties of the ferromagnetic material, used
in the magnetic drug carrier particles and for the seeds, are given
in Table 1.

In order to describe the effect of the interactions we consider
two different simulation configurations. The first configuration is
intended to illustrate the dependence of the agglomeration point
on the interparticle distance for particles that originate within the
reference capture cross-section area. Agglomeration is taken to
occur where the (surface-to-surface) interparticle distance
reaches zero. The second simulation configuration is intended to
examine the effects of interactions on the trajectories of particles
near the boundary of the reference capture cross section and the
resulting changes in the capture cross section. The boundary of
the reference capture cross section, l*c is the trajectory of the last

particle, which would be captured by the seed in the non-
interacting case. In all simulations, the behaviour of the particles
after agglomeration is not considered. Throughout, the particles
are taken to have the same initial x-coordinate with an initial
interparticle distance, D. Throughout, interparticle distance is
defined as the distance between the surfaces of the particles.
These initial conditions serve to illustrate the effect of the
interparticle distance on behaviour. The coordinates and nano-
particle dimensions used are scaled in terms of Rseed and hence
the scaled particle radius is 0.05.

5.1. Effect of interactions on the agglomeration of particles

Of interest is the relationship between initial interparticle
distance, D, and the resulting position of the agglomeration point
as measured from the surface of the seed. This relationship is
shown in Fig. 2 with (a) dipole–dipole magnetic interaction only,
(b) hydrodynamic interaction only, (c) both interactions and
(d) no interactions. As expected, in all cases, the distance between
the agglomeration point and centre of the seed is seen to decrease

Table 1
Values of system and material parameters used in the simulation.

Property Value SI
Unit

rb 1040 kg/m3

Zb 0.002 kg/ms

U0 0.001 m/s

m0H0 0.7 Tesla

(T)

xp 0.4 –

rp 7850 kg/m3

wseed,0 1000 –

Mseed,s 1397000 A/m

Mp,s 1735000 A/m

Rs 1.0�10�6 m

Rp 50�10�9 m

rpol,p 950 kg/m3

T 300 K

k 1.38�10�23 J/K
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Fig. 2. Distance of agglomeration point from the seed plotted against initial

distance between the particles, D, with (a) dipole–dipole magnetic interaction

only, (b) hydrodynamic interaction only, (c) both interactions and (d) no

interactions between the particles. All other conditions are the reference case

condition as in Table 1. Inset represents the trajectories as the particles move

towards to the seed.
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as D increases. In these simulations, two particles, labelled Particle
1 and Particle 2, are placed at scaled positions (�20, D/2+Rp/Rseed)
and (�20, �D/2�Rp/Rseed) for a range of values of D. (The initial
x-coordinate value corresponds to left border of the CV). The inset
indicates the initial position of the particles and their trajectories
for cases (a) to (d) for a typical value of D (D ¼ 0.40) as they
approach the seed.

On comparing the agglomeration point for the particles with
only magnetic dipole–dipole interaction to that for the particles
with no interaction, we find that the particles with magnetic
interaction agglomerate earlier for all initial particle distances up
to D�1 (see Fig. 2). Also in Fig. 2, with the inclusion of
hydrodynamic interaction only, the two particles are seen to
repel each other due to their velocities relative to the blood,
inhibiting agglomeration. It is worth noting that the relative
velocities are solely due to the magnetic velocities resulting from
the presence of the seed gradient. In the inset it is seen that in the
case with (only) hydrodynamic interaction the particles agglom-
erate after the agglomeration point expected without any
interactions.

With the study of the combined effect of magnetic dipole–
dipole and hydrodynamic interactions, we observe that, as
expected, at short range the magnetic effects dominate, and at
longer range the hydrodynamic are dominant. This is consistent
with the forces being dependent on j~r1 �~r2j

�3 and j~r1 �~r2j
�1,

respectively. From Fig. 2 a critical value of D can be observed at the
intersection of the curves with both interactions and no interac-
tions at D�0.56. Below this critical value of D, the two particles
are seen to agglomerate before the agglomeration point expected
without interactions. For initial distances larger than this critical
value of D, (repulsive) hydrodynamic forces dominate and the
particles agglomerate after the agglomeration point expected
without interactions (i.e. closer to the seed).

5.2. Effect of interactions on the capture cross section of the system

In Figs. 3–7 trajectories are presented and the effect of the
inclusion of interactions on the capture cross section of the
system is studied. The trajectories of two particles are calculated
again with (a) dipole–dipole magnetic interaction only,
(b) hydrodynamic interaction only, and (c) both interactions. In
all three cases the trajectories of particles without any
interactions and the resulting boundary of the reference capture
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Fig. 3. The trajectories of the particles are presented with the magnetic

dipole–dipole interaction and no interactions. Initial position of Particle 1 and 2

are (�20, l*c+0.25) and (�20, l*c�0.25). With the magnetic dipole–dipole

interaction both particles are captured.
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Fig. 5. The trajectories of the particles are presented with the hydrodynamic

interaction and no interactions. Initial position of Particle 1 and 2 are (�20,

l*c+0.255) and (�20, l*c�0.255). With the hydrodynamic interaction both

particles are captured.
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Fig. 6. The trajectories of the particles are presented with the hydrodynamic

interaction and without any interaction. Initial position of Particle 1 and 2 are

(�20, l*c+0.644) and (�20, l*c+0.134). With hydrodynamic interaction, Particle 2

is now captured.
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Fig. 4. The trajectories of the particles are presented with the magnetic

dipole–dipole interaction and no interactions. Initial position of Particle 1 and 2

are (�20, l*c+0.35) and (�20, l*c�0.15). With the magnetic dipole–dipole

interaction, neither particle is captured.
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cross section, l*c are used as the reference case. Thus, two
different trajectories are generated for each particle in each figure.

Particles are placed equidistant and symmetric about the l*c,
corresponding to the initial position (�20, l*c) where l*c is 4.47.
This critical value, l*c, depends on the model parameters used
(see Table 1). In each of three cases (a) to (c), a maximum value of
D, whereby two particles are still captured by the seed is
determined. For each interaction case, the separate effect on lc

for this maximum value of D is calculated and compared.

5.2.1. Magnetic dipole–dipole interaction

In the case with (only) magnetic dipole–dipole interaction,
we find that the maximum value of D for which both particles are
now captured is 0.40. In Fig. 3, the trajectories for this case are
presented. Thus, for this specific initial arrangement, the calcu-
lated capture radius can be said to increase by 0.25 Rseed

corresponding to a �6% (absolute) increase in lc.
To explore further the effect of magnetic dipole–dipole

interaction on the capture cross section of the system, the initial
position of both particles is translated vertically whilst maintain-
ing a fixed interparticle distance of D ¼ 0.40. In the first case, by
moving the particles downwards, as expected both particles
continue to be captured by the seed, and thus the capture cross
section of system is unchanged. In the second case by moving
both particles upwards the following is observed. As might be
expected, the upper particle (Particle 1) is no longer captured by
the seed. By further moving the two particles upwards we next
observe that the initial position at which the lower particle
(Particle 2) ceases to be captured by the seed is now lower than
for the non-interacting case. Thus, Particle 1 has caused the ‘‘non-
capture’’ of Particle 2. Fig. 4 illustrates this undesirable effect on
the capture radius of the system where it is decreased by 0.16
Rseed, which corresponds to a �4% (absolute) decrease in lc.

5.2.2. Hydrodynamic interaction

In the case with (only) hydrodynamic interaction, we find that
the maximum value of D for which both particles are now
captured is 0.41 which is slightly larger than in the case with
(only) magnetic dipole–dipole interaction. Here, the upper
particle (Particle 1) repels the lower particle (Particle 2) and the
lower particle attracts the upper particle due to their velocities
relative to the velocity of blood. In Fig. 5, the trajectories for this

case are presented. Thus, for this specific initial arrangement, the
calculated capture radius can be said to increase by 0.255 Rseed

corresponding to a �6% (absolute) increase in lc.
To explore further the effect of hydrodynamic interaction on

the capture cross section of the system, the initial position of both
particles is translated vertically whilst maintaining a fixed
interparticle distance of D ¼ 0.41. In the first case, by moving
the particles downwards, as expected both particles continue to
be captured by the seed, and thus the capture cross section of
system is unchanged. In the second case, by moving both particles
upwards, upper particle (Particle 1) is no longer captured by the
seed as expected. By further moving the two particles upwards,
the initial position at which the lower particle (Particle 2) ceases
to be captured by the seed is still higher than for the non-
interacting case. Thus, Particle 1 has caused the ‘‘capture’’ of
Particle 2 by pushing it towards the seed. Fig. 6 illustrates this
positive effect on the capture radius of the system where it is
increased by 0.134 Rseed, which corresponds to a �3% (absolute)
increase in lc. For this specific case, if the value of D is decreased
to 0.40 as in the case with (only) magnetic dipole–dipole
interaction, the capture radius of the system increases by 0.138
Rseed. It should be noted that for hydrodynamic interaction, that
the direction of velocity of particles relative to the fluid is an
important factor.

5.2.3. Magnetic dipole–dipole and hydrodynamic interactions

With the inclusion of both interactions, we find that the
maximum value of D for which both particles are now captured is
0.54. In Fig. 7, the trajectories for this case are presented. For this
initial arrangement, the calculated capture radius can be said to
increase by 0.32 Rseed corresponding to a �7% (absolute) increase
in lc. In this case, the magnetic dipole–dipole and hydrodynamic
interactions both have a positive effect on the capture cross
section of the system.

To study the combined effect of both interactions, we include
the hydrodynamic interaction to the case with (only) magnetic
dipole–dipole interaction. Thus, the simulations are repeated with
a fixed interparticle distance of D ¼ 0.40 and the capture cross
section of the system is calculated. In the first case, by moving the
particles downwards, both particles continue to be captured by
the seed, and thus the capture cross section of system is
unchanged. In the second case by moving both particles upwards
the following is observed. Again, the upper particle (Particle 1) is
no longer captured by the seed. By further moving the two
particles upwards we next observe that the initial position at
which the lower particle (Particle 2) ceases to be captured by the
seed is the same as the non-interacting case. When the value
of D is 0.40, we find that inclusion of both interactions does not
affect the capture cross section of the system as the effects
of magnetic dipole–dipole interaction and hydrodynamic interac-
tion on capture cross section balance each other. Thus, inclusion
of hydrodynamic interaction has caused the increase of the
capture radius by 0.16 Rseed, relative to the case with magnetic
dipole–dipole interaction only. Similarly, inclusion of magnetic
dipole–dipole interaction has caused the decrease of the capture
radius by 0.138 Rseed, relative to the case with hydrodynamic
interaction only when the value of D is 0.40. These apparent
imbalances we attribute to the inherent the nonlinearity and cross
dependence of the two interactions. Furthermore, for this specific
case, if we decrease the value of D, the magnetic dipole–dipole
interaction becomes dominant and if we increase the value of D,
the hydrodynamic interaction dominates again consistent with
the j~r1 �~r2j

�3 and j~r1 �~r2j
�1 dependence. Specifically, in our

model with inclusion of both interactions, the effect of magnetic
dipole–dipole interaction on the capture cross section of the
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system is larger than the effect of the hydrodynamic interaction
when the value of D is less than 0.40.

6. Conclusions

The effect of the dipole–dipole and hydrodynamic interactions
between two nanoparticles on the calculated magnetic force in
the implant-assisted magnetic drug targeting system of Avil�es et
al. is considered. In these simulations, depending on the initial
configuration of the nanoparticles, both increases and decreases
can be observed in the capture cross section of the modified
model. It is observed that, both dipole–dipole and hydrodynamic
interactions should be considered to calculate the capture cross
section of the IA-MDT system due to comparable size of both
interactions. Inclusion of both interactions was seen to alter the
capture cross section of the system by up to 7% in absolute terms.
We note that the relative positions of the particles and the relative
velocities of particles to blood flow are important factors during
the calculation of the effect of hydrodynamic interaction on the
capture radius of the system. Also, we note that if two particles
can agglomerate and start moving together it might be expected
that their altered hydrodynamic volume would reduce the
effective Stokes drag allowing both particles to be more easily
captured by the seed and thus leading to an additional capture
cross section increase.

We have presented an interaction model applied to IA-MDT.
This model should be capable of treating agglomeration of
particles known to occur in such systems [7,10,11]. It should be
possible to extend this approach to model dipole–dipole and
hydrodynamic interactions for multiple particles in further
implant arrangements. In particular we intent to model the stent
arrangement proposed and studied in Avil�es et al. [10,11], where
multiple particle agglomeration can be expected to contribute
significantly to increase in the capture of particles reported
therein.
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Abstract

The implant assisted magnetic targeted drug delivery system of Avilés, Ebner and

Ritter is considered both experimentally (in vitro) and theoretically. The results of a

2D mathematical model are compared with 3D experimental results for a magneti-

sable wire stent. In this experiment a ferromagnetic, coiled wire stent is implanted

to aid collection of particles which consist of single domain magnetic nanoparticles

(radius ≈ 10 nm). In order to model the agglomeration of particles known to occur

in this system, the magnetic dipole-dipole and hydrodynamic interactions for mul-

tiple, N , particles are included. Simulations based on this mathematical model were

performed using the open source C++ finite volume library OpenFOAM. Different

initial positions are considered and the system performance is assessed in terms of

collection efficiency. The results of this model show closer agreement with the mea-

sured in vitro experimental results and with presented literature. The implications

in Nanotechnology and Nanomedicine are based on the prediction of the particle
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efficiency, in conjunction with the magnetisable stent, for the targeted drug delivery.

Key words: magnetic drug targeting, high gradient magnetic separation (HGMS),

magnetic nanoparticles, simulation, dipole-dipole interaction, hydrodynamic

interaction, magnetisable stent.

PACS: 47.63.mh, 47.63.-b, 87.85.gf

1 Introduction

The development of more effective drug treatment methodologies is an area of

much research. In most drug delivery systems much of any drug administered

to patients does not reach its target site. The aim of the drug targeting is

to decrease the amount of drug delivered to healthy tissue, while maintaining

the therapeutic action at the desired site. One such approach is magnetic drug

targeting (MDT). For instance magnetic particles can be employed as carri-

ers in a cancer treatment, thereby avoiding the side effects of conventional

chemotherapy [1, 2]. MDT typically uses an external magnetic field source

to capture and retain magnetic drug carrier particles (MDCPs) at a specific

site after being injected into the body. Studies have shown that MDT is a

relatively safe and effective methodology for targeting drugs to a specific site

in the body [3–5]. However, there are some significant limitations of MDT.

One limitation associated with MDT is the gradient problem, that is the mag-

netic force requires a magnetic field gradient. Specifically it can be difficult

using external magnets only to target areas deep within the body, without

∗ Corresponding authors.

Email addresses: pjcregg@wit.ie (P.J. Cregg), prinamea@tcd.ie (Adriele

Prina-Mello).
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targeting the surface more strongly [6]. To overcome this problem several au-

thors [7–16] have proposed implanting ferromagnetic materials such as wires,

seeds and stents within the body. Of the various IA-MTD implants suggested

by Ebner, Ritter and co-workers [7–13, 16], we consider a magnetisable stent

as the implant, with MDCPs containing magnetic single domain nanoparti-

cles. Previously, by considering high gradient magnetic separation, Mikkelsen

et al. [17] have included both the hydrodynamic and dipole-dipole interactions

for the case of low magnetic fields. Also, Mehasni et al. have considered the ef-

fect of magnetic dipole-dipole interaction on the performance of high gradient

magnetic separation systems [18]. Some of the present authors have previously

considered the effect of the interactions for two MDCPs on the agglomeration

of the MDCPs [19]. Here, we calculate the effect of interactions of many par-

ticles on the collection efficiency of the system leading to the agglomeration

of particles. Avilés et al. [9] compared the (non interacting) particle model of

this stent system with in vitro experimental arrangement using a ferromag-

netic stent made in the shape of a coil. Their results indicated that at low

fluid velocity more particles were collected than predicted. Furthermore, they

suggested that particle agglomeration (due to interparticle interactions) might

explain this. With this in mind, we have further developed their mathematical

model to include both dipole-dipole and hydrodynamic interactions between

many MDCPs. These theoretical results are presented here and are compared

with the experimental results of Avilés et al. [9] and new in vitro experiments.

Simulations are performed using OpenFOAM a finite volume simulation C++

library.
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2 Experimental Setup

In this experiment ferromagnetic particles with diameter of 0.86µm containing

45.8 wt% magnetite are used as the MDCPs (Polysciences Europe GmbH).

Stainless steel (SS) 430 (California Fine Wire Co.) is taken as the wire material

for the stent with a 62.5 µm radius following Avilés et al. [9]. The stent is

prepared by looping a length of wire, L, into a 2 cm long coil having a 0.04 cm

radius containing 10 loops, Nl, with 0.2 cm between each loop. Between use,

each stent wire is cleaned by a 30 minute sonication in ethanol. A set of

15 identical coil stents are made and cleaned for the full MDT experimental

testing.

The stent is firmly positioned within a borosilicate glass capillary tube by

interference adhesion against the inner surface of the tube (radius of 0.04 cm).

Controlled thickness capillary tubing is used to maximise the contrast between

stent and glass curvature for real time video imaging and particle detection.

Furthermore, this is also eliminates any turbulence caused by the irregular

glass surface roughness. In this experiment we use a capillary glass tube

(0.04 cm radius) and particle size proportionally similar to Avilés et al. [9].

The experimental setup is shown in Fig. 1. It consists of a capillary glass tube

with a regularly spaced coil stent, an equally spaced pair of single NdFeB

permanent magnets (in opposition), connected by tygon tubing to a 2.5 ml

syringe where one end is connected to a high precision syringe pump to sup-

ply the suspension of MDCPs and the other end is connected to a collection

system for collection efficiency measurements. The setup also comprises an

4



Fig. 1. Schematic diagram of the in vitro experimental setup used to study a sten-

t-based IA-MDT system.

inverted microscope connected to a CCD camera for high resolution imaging

(QI Micropublisher, USA) and video acquisition. Magnetic field strength is

measured by a Hall probe gaussmeter (Lake shore, USA). The particle, pre-

and post- wash buffer solution where precisely injected by using 2.5 ml sy-

ringes connected to a high precision syringe pump system and software where

it is possible to control injection direction, volume injected, flow rate in rela-

tion to the fluid solution injected (Nemesys system, Cetoni Gmbh, Germany).

For each solution injected the total concentration is measured, pre- and post-

experiment, by flow cytometry technique (Accuri, C6 Flow Cytometer and

CFlow plus software, UK). Thus, each experiment had the same initial vol-

ume of solution.

Microscopy imaging is carried out using an Olympus microscope (Olympus,

Japan) connected to a QI micropublisher camera driven by ImagePro software

(Media Cybernetics, UK). Real-time streaming is carried out using Debut
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software (NCH Software, USA).

An homogeneous particle solution is prepared with the use of full cell culture

media (RPMI, Gibco, UK) with the addition of 5% bovine serum albumin

(BSA) to make up to a similar viscosity. The concentration of the MDCP

solution used here is 4 × 10
10

per litre, a lower concentration than that used

in the experiment of Avilés et al. [9]. There the concentration was 50 mg/litre

which corresponds to 11.2× 10
10

per litre. These concentarions are calculated

from the mass of one MDCP. In both concentration the particles agglomerated

and they create clusters. In this study, we use lower concentration of MDCP

due to the higher magnetite load single MDCP containing 45.8 wt% magnetite

whereas Avilés et al. [9] uses MDCP containing 25 wt% magnetite. To model

the behaviour of the MDCPs, we use smaller number of the MDCPs for lower

concentration to match the experimental setup of Avilés et al. [9].

Once the MDT system is set up, control runs are carried out, with and without

magnetic field to calibrate the system and monitor the particle trajectory and

agglomeration in the absence of the stent.

The coil stent is then inserted into the tube and two homogeneous magnetic

field strengths µ0H0 = 0.15 T and µ0H0 = 0.60 T are applied for different fluid

velocities ranging between 0.58 cm/s and 52.6 cm/s. Once the magnetic field

is applied the MDCPs were seen to agglomerate and create clusters. Different

flow rates where chosen similar to those Avilés et al. [9]. For µ0H0 = 0.15

T magnetic field strength 0.05, 0.1, 0.2, 0.4, 1.0 cm/s injection velocities and

for µ0H0 = 0.60 T magnetic field strength 0.2, 0.4, 1.0, 2.0, 4.5 cm/s injection

velocities were used.

The amount of the MDCPs collected by the stent is measured by the differ-
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ential between the MDCP concentration in the collection tube and the known

initial particle concentration. Both solutions are measured by flow cytometry

in triplicate counts.

After each particle solution injection the magnetic gradient was removed to de-

magnetise the superparamagnetic particles and to account for the mechanically-

bound particle residuals (always < 1% of the overall injected volume).

3 Outline of Model

In order to effectively model this system, the 3D geometry of the stent and

tube is reduced to 2D slice through the centre of the tube (See Fig. 2). Thus

the coiled stent is modelled as a series of circular cross sections of an infinite

wire with radius of Rwire located at the upper and lower boundaries of the

walls. At each wall the wires are separated by a distance, h, between their

centres, and the upper and lower sections are offset by h/2 as shown in Fig. 2.

It should be noted that physically this corresponds to a 2D description of flow

with a parabolic profile in a rectangular box with transverse cylindrical wires,

all of infinite extent. We model the behaviour of N (N < 25) MDCPs under

the influence of Stokes drag, a force due to hydrodynamic interaction, and

a magnetic force, modified to incorporate the mutual magnetic dipole-dipole

interaction. Other forces such as inertia and gravity are ignored. The Stokes

drag for MDCP n is

~Fsn = 6π ηf Rpn (~vf − ~vpn), (1)
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Fig. 2. Schematic of the control volume (CV) used for determining the magnetisable

stent collection efficiency (CE) through analysis of the corresponding MDCP tra-

jectories. The CV has dimensions of 2 cm and 0.05 cm and encompasses a ten-loop

stent within an expanded vessel. The MDCPs enter the CV from the left with a re-

duced average velocity defined by a parabolic profile and unexpanded average blood

vessel velocity.

where ηf is the viscosity of the fluid, Rpn is the radius of MDCP n, and ~vf and

~vpn are the velocities of the fluid and MDCP n respectively. The fluid veloc-

ity, ~vf , is determined by solving the appropriate Navier-Stokes equations. The

motion of a MDCP through a viscous fluid creates a disturbance to the fluid

flow, which will be felt by all other MDCPs. As a result, the other MDCPs

experience a force which is said to result from hydrodynamic interaction with

the original MDCP. By considering N MDCPs, the force due to the hydrody-

namic interaction, ~Fhydn
, which acts on MDCP n due to the presence of other
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(N − 1) MDCPs, can be written as,

~Fhydn
=

N
∑

(
i=1
i6=n)

ξni · (~vf − ~vpi
) (2)

where ξni is the modification due to the hydrodynamic interaction given by

ξni = −6π ηf Rpn

3 Rpi

4 |~rn − ~ri|

(

1 +
(~rn − ~ri)⊗ (~rn − ~ri)

|~rn − ~ri|2

)

(3)

where Rpi
is the radius of the MDCP i, 1 is the unit tensor, ⊗ is the vector

tensor product (outer product), ~rn and ~ri are the positions of MDCP n and

MDCP i, respectively. Initially all MDCPs are taken to have the same ra-

dius but after agglomeration, MDCPs of different radius are possible, as each

agglomeration is viewed as a new MDCP of increased radius.

In general the magnetic force acting on a magnetic moment is determined by

~Fm = (~m · ∇) ~Btotal, (4)

where ~m is the magnetic moment and ~Btotal is the total magnetic flux density.

Magnetic dipoles exert a force on each other, which can be included in the

magnetic force equation by considering (i) the modified magnetic flux density

and (ii) the modification in the magnetic moment resulting from this modified

flux density. With regard to the magnetic dipole-dipole interaction between

N number of MDCPs, each MDCP is taken as spherical with radius Rpn and

sufficiently small to have homogeneous magnetic flux throughout the MDCPs.

Hence, in order to include the magnetic effect on MDCP n of the other (N−1)

MDCPs, the modified magnetic force, ~Fmmn , can be written as

~Fmmn = (~mn · ∇) ~Btotaln (5)
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where ~mn is the total magnetic moment of MDCP n, ~Btotaln is the total mag-

netic flux acting on MDCP n. It can be taken as

~Btotaln = ~B +

N
∑

(
i=1
i6=n)

d ~Bi (6)

where ~B is the magnetic flux density due to the external field, d ~Bn is the

modification of the resulting magnetic flux density due to MDCP n at ~r. The

modification to the magnetic flux density is thus taken as

d ~Bn(~r) =
1

3

(

µ0 Mfm,p,s

L(β)

B

)

R3

pn

|~r − ~rn|3





3

(

~B(~rn) · (~r − ~rn)

)

|~r − ~rn|2
(~r − ~rn)− ~B(~rn)



(7)

where µ0 is the magnetic permeability of free space, ~r represents an arbitrary

point in space, ~B(~rn) is the flux density at ~rn and Mfm,p,s is the saturation

magnetisation of the ferromagnetic material in the MDCP. The value of ~B

required to calculate the magnetic force as given by Eqs. (5) and (16), is

calculated from the scalar magnetic potential due to the stent wires, which

satisfies the Laplace equation over two con-joined regions: inside and outside

the stent wires. Thus for outside the stent wires regions we have magnetic flux

given by [8–13, 16]

~B = µ0(
~H0 −∇φ) (8)

where ~H0 is the applied homogeneous magnetic field as in Fig. 2 and φ rep-

resents the reduced magnetic scalar potential which in the region outside the

stent wires is given by [19–21]

φ = H0 R2

wire αwire

x cos θ + y sin θ

x2 + y2
, (9)

10



where Rwire is the radius of the stent wire implant, αwire is the demagnetising

factor of the stent wire (given by Eq. (11)). The induced magnetisation of the

wire, ~Mwire, is taken to be parallel to the external magnetic field, ~H0, and can

be calculated from

~Mwire = 2αwire
~H0, (10)

where αwire is the demagnetising factor for an infinitely long cylinder in a

perpendicular field taken as

αwire = min

(

χwire,0

2 + χwire,0

,
Mwire,s

2H0

)

, (11)

where χwire,0 and Mwire,s are the zero field susceptibility and saturation mag-

netisation of the ferromagnetic wire respectively and ~H0 can be written

~H0 = ( H )
0
cos θH0 sin θ, (12)

where H0 is the magnitude of the applied field and θ is the direction of the

applied magnetic field with respect to the x-axis, as in Fig. 2.

It is assumed that the ferromagnetic material in each MDCP consists of smaller

single domain spherical nanoparticles. Thus, the average projection of ~m the

moment in the direction of ~Btotal can be calculated from the Langevin func-

tion [6, 15, 22–24]

L (β) = coth (β)−
1

β
, (13)

with Langevin argument

β =
mfm,p Btotal

kT
, (14)
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where Btotal is the magnitude of ~Btotal, k is Boltzmann’s constant, T is the

absolute temperature and mfm,p is the magnitude of the magnetic moment

of the magnetite in the MDCPs. The magnetic moment of each magnetite

nanoparticle within the MDCP, ~mfm,p, can be written as

~mfm,p = Vfm,p Mfm,p,s

~B

B
(15)

where Vfm,p is the spherical volume of a single domain magnetite nanoparticle

and Mfm,p,s is the (volume) saturation magnetisation of the magnetite inside

the MDCPs. Note that Mfm,p,s and mfm,p,s are fitting parameters in this

model, obtained by Avilés et al. through characterisation of the magnetic

fluid [9].

Thus, the magnetic moment of the MDCP, ~m, can be written as

~m = ωfm,p Vp Mfm,p,s L (β)

~B

B
(16)

where Vp is the MDCP volume and ωfm,p is the volume fraction of ferromag-

netic material in the MDCP, related to its weight fraction xfm,p through [16]

ωfm,p =
xfm,p

xfm,p + (1− xfm,p)ρfm,p/ρpol,p

, (17)

where ρfm,p is the density of the ferromagnetic material in the MDCP and

ρpol,p is the density of the polymer material in the MDCP. In this model the

value of ωfm,p is measured through the experiment.
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4 Fluid flow — the Navier-Stokes equations

The fluid is treated as an incompressible, Newtonian, isothermal, single-phase

fluid with velocity ~vf and pressure P at steady state flow. We have the conti-

nuity equation

∇ · ~vf = 0, (18)

and the Navier-Stokes equation

ρf [(~vf · ∇~vf )] = ∇P + ηf∇
2~vf , (19)

where ρf is the density of the fluid. To solve Eqs. (18) and (19), a parabolic

velocity profile is assumed at the inlet control volume (CV) such that

vf,x|x=0 = 1.5 u0

(

1−
(

y

Rvessel

)2
)

, (20)

vf,y|x=0 = 0 (21)

where u0 is the average inlet fluid velocity and Rvessel is the vessel (tube)

radius. Furthermore, non-slip boundary conditions (~vf = 0) are applied at the

wire-fluid interface and at the upper and lower CV boundaries. Atmospheric

pressure is assumed at the outlet of the CV to satisfy the boundary condition

on pressure.

5 Velocity equations, Streamlines and Capture Cross Section

The velocity of a MDCP n can be obtained by summing the Stokes drag, the

force due to hydrodynamic interaction and the modified magnetic force, as

13



given in Eqs. (1), (2) and (5) respectively with inertial forces, ~Fin , as

~Fsn + ~Fhydn
+ ~Fmmn = ~Fin . (22)

For MDCP n, by ignoring the inertial forces, ~Fin , we rewrite Eq. (22) as

6π ηf Rpn (~vf − ~vpn) +

N
∑

(
i=1
i6=n)

ξni · (~vf − ~vpi
) + (~mn · ∇)

(

~Btotal

)

n
= 0. (23)

Hence, we can obtain ~vpn by solving Eq. (23) numerically in each time step.

Finally, the trajectories of each MDCP can be obtained from evaluating the

streamline functions [6,13]. The system performance of this mathematical

model is calculated in terms of collection efficiency, CE, defined as

CE =
2 Rvessel − y1 + y2

2 Rvessel

100, (24)

where y1 and y2 are defined by the location of the streamline at the entrance

to the CV of the last MDCPs captured by the stent wires (Fig. 2). All cal-

culations were performed using the open-source software finite volume library

OpenFOAM [25].

6 Results and Discussions

In this paper, we include the effect of both magnetic dipole-dipole and hydro-

dynamic interactions for multiple MDCPs in the stent based mathematical

model of Avilés et al. [9]. We focus on varying the initial positions of N

(N < 25) MDCPs at the entrance of the CV and present the results in terms

of the CE of the system considering the agglomeration of MDCPs.
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Of interest is the effect of the velocity of the blood and the field strength

on the CE of the system. This is shown in Figs. 3–6 with both dipole-dipole

magnetic and hydrodynamic interactions, experimental results and without

any particle interactions.

In the 2D model, the behaviour of the MDCPs after agglomeration is also con-

sidered. It is seen that the MDCPs create a cluster during their agglomeration

as a result of both interactions. The volume of the cluster is calculated by sum-

ming the volume of the MDCPs agglomerated and the radius of the cluster

is calculated using the general volume formulation (4/3 π r3
) [26]. Whilst this

assumption does not account fully for the resulting hydrodynamic volume, the

effect of this assumption should not significantly affect our results.

6.1 Mathematical Model Explanation and Details

The rationale for the simulations is as follows. Given sufficient computing

power, one might consider randomly distributing, particle in the form of a

cluster, a very large number (> 10, 000) of MDCPs and allow interactions

between all of these. With limited computing resources, one is forced to reduce

this. We do this in two ways. Firstly, by limiting the regions of initial positions

that we consider and secondly by limiting the number of MDCPs that we allow

to mutually interact. Thus we consider only those parts of the simulation

which are likely to contribute to any alteration in the CE. For instance, in

those parts of the capture cross section closest to the vessel walls, one can

expect no improvement in the CE. In fact it is only where the initial positions

are close to the border between the collection and no collection region, that

is around the boundary of the reference capture cross section that we start
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to see altered trajectories due to interactions. The boundary of the reference

capture cross section (CCS), λ∗
c is the trajectory of the last MDCP, which

would be captured by the stent wires in the non-interacting case. Secondly,

the mutual interparticle interaction would not be expected to have infinite

extent. One can postulate a number N∗
of MDCPs in the model where the

predicted difference in performance between modelling N∗
and N∗

+1 becomes

arbitrarily small. We point out that the computational effort required to model

interactions scales with N2
, where N is the number of MDCPs interacting.

Simulations were performed for increasing N , and the results indicate that

there is no significant change to the system performance metrics beyond twenty

five MDCPs.

In light of these factors, we consider a particular, homogeneously distributed

cluster of N MDCPs. The MDCP concentration of the Avilés et al. system is

50 mg/l which corresponds to 11.2×10
10

MDCPs per litre and the MDCP con-

centration of our experimental setup is 4× 10
10

per litre. The effective initial

distance between the MDCPs in the CV is calculated using the concentration

of the MDCPs in the glass tube. Initial distance is taken as the cube root of

the MDCPs amount per litre ((dm)
3
) and we created a homogeneous rectan-

gular cluster of particles which mimic the experimental particle concentration

flowing through the stent during the video streaming.

In order to describe the effect of both interactions we consider two different

simulation configurations, similar to those used in a previous paper for the in-

clusion of interactions between the two MDCPs and between the MDCPs and

the fluid [19]. The first configuration is intended to illustrate the agglomera-

tion of the MDCPs within the reference CCS region. In this configuration all

of the MDCPs are captured, as expected and the resulting CE of the system
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for this situation is unaltered.

The second simulation configuration is intended to examine the effects of in-

teractions on the CE of the system near the λ∗
c . For this, we place the centre

of the particle cluster on the λ∗
c for a given velocity and record changes in CE

through following the MDCP trajectories in the normal way. We then shift the

particle cluster up and down, and again record changes in CE. This approach

is repeated for each increased fluid velocity, using, for a given field, the same

particle cluster.

6.2 Comparison of the Mathematical Model Results and Literature

Initially, the results of our mathematical model and the experimental result

of Avilés et al. are compared. Results are presented by calculating the CEs

for identical MDCPs with initial radius Rp = 0.435 µm containing 25 wt%

magnetite, under the influence of homogeneous magnetic field oriented per-

pendicularly to the flow (θ = π/2) with magnitudes of 0.17 T to 0.65 T . The

glass tube radius size is taken as 0.05 cm as in the experiment of Avilés et al..

In the model the magnetisation of the individual MDCPs is taken as the aver-

age value given by the Langevin function due to the single domain magnetic

nanoparticles within. The relevant fluid flow properties and the properties of

the ferromagnetic materials used in the MDCPs and for the stent wire, are

given in Table 1.

For the configurations outlined above, we keep the applied field constant

(µ0H0 = 0.17 T) and we increase the blood velocity from u0 = 2.1 cm/s to

u0 = 42.4 cm/s. The resulting CEs for these simulations are shown in Fig. 3.
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Secondly, using the same methodology we applied µ0H0 = 0.65 T and vary

the fluid velocity between u0 = 2.1 cm/s and u0 = 42.4 cm/s. The resulting

CEs are given in Fig. 4.
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Fig. 3. The collection efficiency (CE) of the system plotted as a function of the

blood velocity (2.1, 4.2, 10.6, 21.2, 42.4 cm/s) at the applied field µ0H0= 0.17 T.

In Figs. 3 and 4, the results of the mathematical model with the interactions

show closer agreement with experimental results of Avilés et al. with low fluid

velocity. This is due to the interaction and agglomeration of MDCPs in our

model. With low fluid velocity (≤ 10 cm/s) and higher applied field (µ0H0=

0.65 T) MDCPs create a larger volume of cluster more easily than with the

lower applied field (µ0H0= 0.17 T). When we increase the fluid velocity the

likelihood of the agglomeration of the MDCPs starts to decrease. For higher

fluid velocity the CE of the IA-MDT system predicts lower collection than

the results of Avilés model without interactions. This is due to the effect of
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Properties Symbol Units Values Data type

MDCPs Properties

Polymer material - - P(S/V-COOH)Mag Physical

Radius Rp µm 0.435, 0.43 Physical

Saturation magnetisation Mp,s kA/m 22.4 Measured

MDCPs Magnetic Material Properties

Material - - Magnetite Physical

Weight content xfm,p wt% 25, 45.8 Physical

Volume content ωfm,p - 6.4 Measured

Saturation magnetisation Mfm,p,s kA/m 351.9 Measured

Magnetic moment mfm,p Am2 2.03× 10−19 Measured

Radius Rfm,p nm 5.18 Calculated

Physical Properties

Number of Particles - particle/L 11.2× 1010, 4 × 10
10 Physical

Temperature T K 300 Physical

Boltzmann’s constant kB J/K 1.38× 10−23 Physical

Permeability of vacuum µ0 Tm/A 4π × 10−7 Physical

Applied Field Properties

Magnitude µ0H0 T 0.0–0.7 Physical

Angle of field direction θ - π/2 Physical

Stent Properties

Material - - SS 430 Physical

Wire radius Rwire µm 62.5 Physical

Loop separation h cm 0.2 Physical

Number of loops Nl - 10 Physical

Coil length L cm 2 Physical

Saturation magnetisation Mimplant,s kA/m 1261 Measured

Magnetic susceptibility χimplant,0 - 1000 Physical

Blood & Vessel Properties

Velocity u0 cm/s 2.1, 4.2, 10.6, 21.2, 42.4 Physical

u0 cm/s 0.58, 1.17, 2.34, 4.68, 11.7, 23.4, 52.6 Physical

Volume Vblood ml 10 Physical

Density ρb kg/m3 1000 Physical

Viscosity ηb kg/ms 1.0× 10−3 Physical

Vessel radius Rvessel cm 0.05, 0.04 Physical

Table 1

Experimental values of fluidic setup and material parameters used in the mathemat-

ical model of the stent based simulation. Bold values are used in our experiment.

Some material parameters are in agreement with Avilés and coworker study [9].
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Fig. 4. The collection efficiency (CE) of the system plotted as a function of the

blood velocity (2.1, 4.2, 10.6, 21.2, 42.4 cm/s) at the applied field µ0H0= 0.65 T.

hydrodynamic interactions on the velocity of MDCPs and so the trajectories

of the MDCPs.

6.3 Comparison of the Mathematical Model and Experimental Results

Next, we compare the results of the mathematical model and in vitro ex-

periments undertaken at CRANN TCD. Results are presented by calculating

the CEs for identical MDCPs with initial radius Rp = 0.43 µm containing

45.8 wt% magnetite, under the influence of homogeneous magnetic field ori-

ented perpendicularly to the flow (θ = π/2) with magnitudes of 0.15 T and

0.60 T . The glass tube radius size is 0.04 cm in our experiments. This was done

to achieve a better image contrast between the particle layers aggregating on

the stent during the experimental testing which is also increased by the smaller
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capillary diameter when compared to Avilés et al. [9] model.

In the model the magnetisation of the individual MDCPs is taken as the aver-

age value given by the Langevin function due to the single domain magnetic

nanoparticles within. The relevant fluid flow properties and the properties of

the ferromagnetic material used in the MDCP and for the stent wire, are given

in Table 1.
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Fig. 5. The collection efficiency (CE) of the system plotted as a function of the

blood velocity (0.58, 1.17, 2.34, 4.68, 11.7 cm/s) at the applied field µ0H0= 0.15 T.

For the configurations outlined above, we keep the applied field constant

(µ0H0 = 0.15 T) and we increase the blood velocity up to u0 = 11.7 cm/s.

The resulting CEs for these simulations are shown in Fig. 5. Secondly, we ap-

ply µ0H0 = 0.60 T and increase the fluid velocity up to u0 = 52.6 cm/s. The

resulting CEs are given in Fig. 6. In Figs. 5 and 6, the results of the model
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Fig. 6. The collection efficiency (CE) of the system plotted as a function of the

blood velocity (2.34, 4.68, 11.7, 23.4, 52.6 cm/s) at the applied field µ0H0= 0.60 T.

with the interactions show closer agreement with the measured experimen-

tal results. The results shown also highlight how a 0.01 cm reduction in the

capillary radius can affect the collection efficiency. This leads to speculation

over a higher efficacy of the MDCT technique at the level of peripheral circu-

latory capillary vessels. On the other hand, this increased CE efficiency also

increases the risk of vessels clotting and thrombolytic effect especially when

also accounting for the presence of the solid part of the blood [27].

Collection Efficiency is a key parameter for the modelling validation of the

experimental testing. Differences between Avilés et al. and our experimental

model (Cregg et al.) are shown in Table 2.
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Parameters Avilés et al. model Cregg et al. model

Vessel radius (cm) 0.05 0.04

Velocity Range (cm/s) 2.1–42.4 0.58–52.6

Magnetic Field (T) 0.17, 0.65 0.15, 0.60

Number of Repeats - 10

Table 2

Differences between Avilés et al. and Cregg et al. experimental model.

7 Conclusions

We have presented an interaction model applied to IA-MTD. This model con-

sidered the agglomeration of particles known to occur in such systems [8, 9, 11].

We include the effects of both the dipole-dipole and hydrodynamic interac-

tions for multiple particles in stent implant arrangements. The resulting col-

lection efficiencies derived from the mathematical model are in closer agree-

ment with our latest experimental results and those presented by Avilés et

al.. Furthermore, the mathematical model presented in this work represents a

useful analytical tool for the prediction of the efficacy of targeted drug delivery

by superparamagnetic particles. The implications in the Nanotechnology and

Nanomedicineresearcharea are based on the efficiency indelivering the drug

coatedparticles within the magnetisable stent length.
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