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Abstract

We re-interpret results on the classification of Toda chain solutions given by Sheffer
class orthogonal polynomials in terms of exponential Riordan arrays. We also examine
associated Hankel transforms.

1 Introduction

The restricted Toda chain equation [18, 28] is simply described by

u̇n = un(bn − bn−1), n = 1, 2, . . . ḃn = un+1 − un, n = 0, 1, . . . (1)

with u0 = 0, where the dot indicates differentiation with respect to t. In this note, we
shall show how solutions to this equation can be formulated in the context of exponential
Riordan arrays. The Riordan arrays we shall consider may be considered as parameterised (or
“time”-dependent) Riordan arrays. We have already considered such arrays in [2], wherein
links between Riordan arrays and orthogonal polynomials are considered.

The restricted Toda chain equations are closely related to orthogonal polynomials, since
the functions un and bn can be considered as the coefficients in the usual three-term recur-
rence satisfied by orthogonal polynomials:

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x), n = 1, 2, . . . (2)

with initial conditions P0(x) = 1 and P1(x) = x− b0.

2 Hermite polynomials and the Toda chain

We recall that the Hermite polynomials may be defined as

Hn(x) =

⌊n
2
⌋∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
.
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The generating function for Hn(x) is given by

e2xt−t2 =
∞∑
n=0

Hn(x)
tn

n!
.

The following result was proved in [2].

Proposition 1. The proper exponential Riordan array

L =
[
e2rx−x2

, x
]

has as first column the Hermite polynomials Hn(r). This array has a tri-diagonal production
array.

Proof. The first column of L has generating function e2rx−
x2

2 , from which the first assertion
follows. Standard Riordan array techniques show us that the production array of L is indeed
tri-diagonal, beginning 

2r 1 0 0 0 0 . . .
−2 2r 1 0 0 0 . . .
0 −4 2r 1 0 0 . . .
0 0 −6 2r 1 0 . . .
0 0 0 −8 2r 1 . . .
0 0 0 0 −10 2r . . .
...

...
...

...
...

...
. . .


.

We note that L starts

1 0 0 0 0 0 . . .
2r 1 0 0 0 0 . . .

2(2r2 − 1) 4r 1 0 0 0 . . .
4r(2r2 − 3) 6(2r2 − 1) 6r 1 0 0 . . .

4(4r3 − 12r2 + 3) 16r(2r2 − 3) 12(2r2 − 1) 8r 1 0 . . .
8r(4r4 − 20r2 + 15) 20(4r4 − 12r2 + 3) 40r(2r2 − 3) 20(2r2 − 1) 10r 1 . . .

...
...

...
...

...
...

. . .


.

Thus
L−1 =

[
e−2rx+x2

, x
]

is the coefficient array of a set of orthogonal polynomials which have as moments the Hermite
polynomials. These new orthogonal polynomials satisfy the three-term recurrence

Hn+1(x) = (x− 2r)Hn(x)− 2nHn−1(x),

with H0 = 1, H1 = x− 2r.
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Proposition 2. The exponential Riordan array[
e−2(z−t)x+x2

, x
]

is the coefficient array of a family of orthogonal polynomials Pn(x) with

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x),

where (un, bn) are a solution to the restricted Toda chain.

Proof. We easily determine that the inverse matrix[
e2(z−t)x−x2

, x
]

has production matrix

2(z − t) 1 0 0 0 0 . . .
−2 2(z − t) 1 0 0 0 . . .
0 −4 2(z − t) 1 0 0 . . .
0 0 −6 2(z − t) 1 0 . . .
0 0 0 −8 2(z − t) 1 . . .
0 0 0 0 −10 2(z − t) . . .
...

...
...

...
...

...
. . .


.

This verifies that Pn(x) is indeed a family of orthogonal polynomials, for which

un(t) = −2n, bn(t) = 2(z − t).

It is immediate that these satisfy Eq. (1).
We now note that the moments of this polynomial family (first column of the inverse matrix)
mn satisfy the following relation:

mn =
[xn]

n!
e2(z−t)x−x2

=
1

e−t2+2tz

dn

dtn
e−t2+2tz. (3)

3 Charlier polynomials and the Toda chain

Proposition 3. The exponential Riordan array[
exe

t

, ln(1 + x)
]

is the coefficient array of a family of orthogonal polynomials Pn(x) with

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x),

where (un, bn) are a solution to the restricted Toda chain.
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Proof. We determine that the inverse matrix[
ee

t+x−et , ex − 1
]

has production matrix

et 1 0 0 0 0 . . .
et et + 1 1 0 0 0 . . .
0 2et et + 2 1 0 0 . . .
0 0 3et et + 3 1 0 . . .
0 0 0 4et et + 4 1 . . .
0 0 0 0 5et et + 5 . . .
...

...
...

...
...

...
. . .


.

This verifies that Pn(x) is indeed a family of orthogonal polynomials, for which

un(t) = net, bn(t) = n+ et.

It is easy now to verify that with these values, (un, bn) satisfy the Toda chain equations Eq.
(1).

The moments mn of this family of orthogonal polynomials may be expressed as:

mn =
[xn]

n!
ee

t+x−et =
1

eet−1

dn

dtn
ee

t−1. (4)

4 Laguerre polynomials and the Toda chain

Proposition 4. The exponential Riordan array[(
1− x

1 + t

)α

,
x

1− x
1+t

]
is the coefficient array of a family of orthogonal polynomials Pn(x) with

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x),

where (un, bn) are a solution to the restricted Toda chain.

Proof. The inverse matrix [(
1 + t+ x

1 + t

)α

,
(1 + t)x

1 + t+ x

]
has production matrix

α
1+t

1 0 0 0 0 . . .
−α

(1+t)2
α−2
1+t

1 0 0 0 . . .

0 2(1−α)
(1+t)2

α−4
1+t

1 0 0 . . .

0 0 3(2−α)
(1+t)2

α−6
1+t

1 0 . . .

0 0 0 4(3−α)
(1+t)2

α−8
1+t

1 . . .

0 0 0 0 4(3−α)
(1+t)2

α−10
1+t

. . .
...

...
...

...
...

...
. . .


.
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This verifies that Pn(x) is indeed a family of orthogonal polynomials, for which

un(t) =
n(n− α− 1)

1 + t
, bn(t) =

α− 2n

1 + t
.

It is easy now to verify that with these values, (un, bn) satisfy the Toda chain equations Eq.
(1).

For this family of orthogonal polynomials, the moments mn may be expressed as:

mn =
[xn]

n!

(
1 +

x

1 + t

)α

=
1

(1 + t)α
dn

dtn
(1 + t)α =

(α)n
(1 + t)n

. (5)

5 Meixner polynomials and the Toda chain

Proposition 5. The exponential Riordan array[
1√

1− 2x tanh(t)− x2sech(t)2
, ln

(√
1 + xe−tsech(t)

1− xetsech(t)

)]

is the coefficient array of a family of orthogonal polynomials Pn(x) with

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x),

where (un, bn) are a solution to the restricted Toda chain.

Proof. The inverse matrix [
sech(x+ t)

sech(t)
, sinh(x)

sech(x+ t)

sech(t)

]
has production matrix

− tanh(t) 1 0 0 0 0 . . .
−sech2(t) −3 tanh(t) 1 0 0 0 . . .

0 −4 sech2(t) −5 tanh(t) 1 0 0 . . .
0 0 −9 sech2(t) −7 tanh(t) 1 0 . . .
0 0 0 −16 sech2(t) −9 tanh(t) 1 . . .
0 0 0 0 −25 sech2(t) −11 tanh(t) . . .
...

...
...

...
...

...
. . .


.

This verifies that Pn(x) is indeed a family of orthogonal polynomials, for which

un(t) = −n2sech2(t), bn(t) = −(2n+ 1) tanh(t).

It is easy now to verify that with these values, (un, bn) satisfy the Toda chain equations Eq.
(1).
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We may describe the moments mn of this family of polynomials by

mn =
[xn]

n!

sech(x+ t)

sech(t)
=

1

sech(t)

dn

dtn
sech(t). (6)

The Hankel transform of mn is then given by

hn = (−1)(
n+1
2 )sech(t)n(n+1)

n∏
k=0

(k!)2.
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