
 1

Analysis of Block-aware Peer Adaptations in

Substream-based P2P

Chamil Kulatunga, Dmitri Botvich, Sasitharan Balasubramaniam, William Donnelly
Telecommunications Software and Systems Group, Waterford Institute of Technology

Cork Road, Waterford, Ireland

{ckulatunga, dbotvich, sasib, wdonnelly@tssg.org}

Abstract: Peer-to-Peer (P2P) video delivery using substreams

supports uplink heterogeneities of the peers and hence could

optimise sharing capabilities with minimum free-riding peers.

Therefore, substream-based applications such as PPLive and

CoolStreaming have been well accepted after successful

deployments in the public Internet. In this approach, a child peer

can find a parent peer for a substream independent of the other

parent peers that it receives the remaining substreams. In

general, there can be more than one substream between a parent

and a child. The block-aware adaptation algorithm in

CoolStreaming changes the parent peer for all such substreams

when a child peer experiences poor performance even on one of

its substreams from the parent. However, lagging of one

substream in such a scenario is likely while others are not

affected, when the parent receives its substreams through

multiple paths. We propose a fine-grained approach (changing

substream by substream) in peer adaptations to improve overlay

network performance. This approach will in turn, is designed also

to minimise the diversity of parents at the child peer by joining

with a well-performing another parent, which is expected to

curtail complexities in a network-assisted P2P framework.

Keywords: Video streaming, substream-based P2P, child-initiated

block-aware peer adaptation.

I. INTRODUCTION

In recent years, Peer-to-Peer (P2P) multimedia streaming

has gained increased popularity, due largely to its scalable

solution for video streaming to a very large number of

concurrent users. P2P file sharing was technically unbeaten

mainly due to its flexibilities of distributing different amounts

of data blocks (chunks) (i.e. due to its non-real-time

application requirements) [1], where a peer can reliably collect

the required set of blocks of a file from any number of peers

within a reasonable time frame, disregarding the order of the

blocks. However, this is not the case in P2P multimedia

streaming, where playback delay and its continuity become

vital Quality of Experience (QoE) factors. In the absence of the

flexibilities available with file sharing, using the same

approach for streaming video applications will face a number

of serious challenges [2] [3]. A number of solutions have been

developed to counter these challenges, such as applications

like PPLive, CoolStreaming, SopCast, Babelgum, which are

currently been deployed in the public Internet with a marginal

streaming quality (i.e. bandwidth in a range of 300 to 500 kbps

and playback delays of 10s to several minutes).

Many P2P streaming protocols use a hybrid push-pull

approach to avoid instabilities of a tree-based push overlay

structure owing to deep trees [4]. Pulling capability can be

implemented replicating the same stream into multiple trees so

that a peer can pull the stream from any tree which will

improve its overall performance. However, this approach leads

to unnecessary replication of data in the network and does not

support uplink heterogeneities. A solution to this problem is to

sub-divide the main stream into a set of substreams (also

known as substreamed P2P). In order to collect all the

substreams (i.e. an essential requirement without SVC or

MDC), a peer is required to join with multiple (but low-

bandwidth) trees. This hybrid push-pull technique has become

a victorious approach in deploying P2P video delivery over the

public Internet especially with asymmetrical residential peers

like ADSL to improve sharing capabilities minimising free-

riding peers.

A prominent example of substreamed P2P is

CoolStreaming. CoolStreaming [6] peer adaptations (i.e. the

process that a peer selects a new parent during the session

when a substream performance is degraded) are triggered by a

child, which we categorise as a child-initiated process. The

approach uses two inequalities (i.e. for testing the performance

between the child and the parent and between the parent and

the other partner peers). The only performance metric used by

a child during the selection process is recording and comparing

the latest received block at each substream. We categorise this

also as a block-aware approach. Peer adaptations in non-

substreamed P2P do not need to differentiate performances in

source-to-parent or parent-to-child paths, since the entire

session is received along a single path at a time. The only

solution is to change the parent irrespective of the location of

the tarnished performance. It also has no flexibility of

responding differently for peer dynamics (i.e. peer-churn) and

network dynamics (i.e. congestion). However, in substreamed

P2P, parent changes can be done independently from one

parent to another or from one substream to another (one child

may have multiple parents and one parent may deliver more

than one substreams to a child) and can respond flexibly.

In this paper, we analyse and evaluate CoolStreaming peer

adaptation algorithm, and propose a new algorithm that

extends from CoolStreaming to capture the above mentioned

criterions and flexibilities. The original CoolStreaming forces a

child to change all the substreams from a parent even though

only one substream is under-performing. However, in our

proposed algorithm, we avoid changing all substreams where

only the under-performing substream is required to find a new

 2

parent. We also propose removing one substream at a time by

the child peer (i.e. a fine-grained conservative approach), if the

identified congestion is in the uplink of the parent (i.e.

expecting an improvement of congestion due to the granted

space like in congestion control mechanisms).

The proposed solution also aims to minimise the diversity

of parents (i.e. the number of parents that a child is required to

acquire all the substreams) at a child peer without degrading

the performance, which is expected to minimise overhead in a

network-assisted P2P framework. This is achieved by joining

with a well-performing another parent before seeking a new

parent. We believe that since CoolStreaming will change all

substreams when one of the substream is underperforming, this

could lead to instabilities of the P2P network.

The rest of the paper is organised as follows: Section II

provides related works. Section III details the child-initiated

block-aware peer adaptation algorithm and discusses the

capabilities and complications. The proposed fine-grained

algorithm is presented in Section IV. Section V provides the

simulation results and Section VI concludes the paper.

II. RELATED WORKS

P2P protocols like NICE [7] and ESM [8] use a tree-based

approach for video streaming, which were first proposed as an

alternative to solve infrastructure requirement of native IP

multicast in group communications. This approach was

initially thought to be the most suitable for streaming video

when compared with mesh-based approaches [9], which was

successfully used for file deliveries. The tree based approach

supported low latency and low per-block overhead for long-

lived streaming applications. However, many peers in a single

tree topology were leaf-nodes, which did not contribute for

data forwarding (only acted as data consumers). A peer-churn

by an upper level node of the tree, in turn simultaneously

affected a large number of nodes (i.e. especially when the tree

depth is large) mounting instabilities of the overlay network. In

order to minimise the above mentioned problems, the single

tree-based streaming delivery approach has been extended to

support multiple trees. AnySee [10] supports replication-based

multi-tree approach. However, it does not support uplink

heterogeneities. SplitStream [11], ChunckySpread [12] and

mTreebone [13] principally introduced the substreaming

approach without putting much attention on block-based video

deliveries and the peer adaptation algorithm.

The substreamed approach has been practically deployed

in the Internet by PPLive [14] and CoolStreaming [6]. It has

been followed by recent works of P2P streaming as a solution

to address the network dynamics and mutual contributions

successfully [15]. CoolStreaming is the one which has

published its peer adaptation algorithm. Zhenjiang Li et al.

[18] has recently analysed the substream scheduling problem

using max-flow model. It is important to further extend

research works on performance optimisation of push-pull

based substreaming algorithms for video delivery in the public

Internet and in particular analyse the peer adaptation

algorithms in detail.

III. CHILD-INITIATED BLOCK-AWARE PEER

ADAPTATIONS

In substreamed P2P, the source divides the main video

stream into equal video blocks (e.g. with a one second play

time) and delivers into N number of substreams. These blocks

are assigned to substreams in revolving fashion. The receivers

are required to collect all the substreams from at most N

number of parent peers and reorder them according to the

block number so that it can be played back with minimal

disruption. In the event that any block misses the playback

point, the video is discontinued. A substream can lag due to a

peer-churn or slow data-rate (due to congestion) in the last hop

or above. In such a case the child peer can change the parent

peer after exceeding a threshold specified in number of blocks.

In such a peer driven adaptation algorithm, a peer needs to

know the block-maps (i.e. the list of latest received block

number of each substream) of its own (C), its parent peers (Pi)

and other partner peers (Qi) those it can select to join. To

maintain the scalability of the protocol, a peer will only

exchange block-maps between a selected number of partner

peers (among them at most N could become parents). They

periodically exchange updated block-maps using a gossip

algorithm [6]. There can also be other peers (besides Pis and

Qis) which are members (Mis) of the session without having

any interaction with an identified child peer (peer C in Figure

1).

Figure 1. An overlay network with 4 substreams

In Figure 1, we assume that P1, P2, Q1, Q2 and Q3 are the

partners of child peer C and at present it receives the

substreams 0 and 1 from parent P1 and substreams 2 and 3

from parent P2. If the current parent peer is needed to be

changed, it will find a better parent (if the received block-maps

of Q1, Q2 or Q3 is better that P1 or P2, will connect to Q1, Q2 or

Q3) to receive the substreams.

A. CoolStreaming Peer Adaptations

According to the peer adaptation approach used in

CoolStreaming, a child peer will use two inequalities (given in

the equations 1 and 2 [6]) to identify a requirement to change a

parent for a substream j (j = 0 .. N-1). Satisfaction of either one

of the inequalities will lead to a change in the parent.

)1(}:|max{| ,, CPjCi THNiBB <≤−

)2(},:max{ ,, PPjQi THBPartnersQNiB <−∈≤

Gossip Domain of C

 P1

 P2

 C

 Q2
 Q3

 M1

 S

0

1

2

3
 Q1

 3

Figure 2. Parent change triggering situations at a child peer

XiB , is the latest received block for substream i at node X,

where X could be either a child node C, parents P, or partners

Q. THC is the threshold of the maximum deviation of latest

received blocks allowed between the substream j at the parent

and any substream at child node C. THp is the threshold of the

maximum deviation of blocks allowed between the substream j

at the parent and any substream at any partners.

These two tests are carried out periodically for all the

parents at a child peer. The significant factor here is that if any

substream (when receiving more than one substream from a

parent) lags, CoolStreaming algorithm changes the parent for

all the substreams originated from the same parent. This

process will lead to finding a new parent peer, which also

satisfies the inequality (1).

B. Analysis of Triggering Events

In order to analyse the algorithm, we consider three

distinguished generic substream lagging situations (Figure 2),

which could trigger a peer adaptation at a child peer. In the

first case (a), both substreams from parent P1 lag behind others.

In the second case (b), only one substream (i.e. substream 1)

from parent P1 lags (this is possible since parent peer P1 may

receive two substreams from two different routes; 0 through

M1 and 1 through P2 in Figure 1). In the third case (c), all the

substreams are below the playback point.

Substreamed P2P is also a candidate transport mechanism

that is compatible with recently accepted (by the IETF) multi-

path TCP (MP-TCP) [5], which paves a path for resource

pooling in the Future Internet. MP-TCP load balances a session

in transport layer through the available interfaces in a multi-

home environment. Since the content layering is inherited in

substreamed P2P it can effectively be used over multi-path

congestion control mechanisms. In such a scenario a parent

peer may have performance differences between substreams

even thought they are receiving from the same upstream peer.

Therefore decedent child peers need to identify this situation in

the peer adaptation algorithm, which will be in case (b).

The factors that may affect the conditions in Figure 2 may

result from peer-churns or congestion bottlenecks in the core

or access networks in the Internet. However, according to

common analysis in P2P overlay networks, congestion is only

considered in the uplink or downlink of a peer. We use the

same assumptions in this analysis. We also assume that a peer-

churn of an immediate parent can explicitly be identified by

the child (may be using ping). Therefore peer-churn of such a

parent (either P1 or P2 for child peer C in Figure 1) has not

been considered under the triggering events discussed in the

following paragraphs.

Each situation for peer adaptation (in Figure 2) results in

several events shown in Table I, due to differing peer-churns

or congestion in divided end-to-end overlay path; source-to-

parent (multiple hops) and parent-to-child (last hop). In the

table, L represents Low and H represents High in terms of the

maximum available block at each substream. There can’t be H

at a child while having L at the parent since child can only

acquire the data available at the parents. Theoretically, it is

also not possible to have a situation where the parent’s

condition is H and child having L while another substream

between the same pair of peers staying at H. We assume all the

substreams between two peers follow the same path (if MP-

TCP is used at a child, it is known to the peer and can remedy

this situation) and experience the same congestion.

There can be two events between parent peer P1 and the

child peer C under the situation (a). The reason for case I to

happen is when the parent P1 receives delayed substreams from

the source (i.e. due to either a peer-churn or congestion from

source to parent). Solution for I is to change both substreams

away from the current parent peer as quickly possible. The

reason for case II could be due to congestion in the uplink at

parent P1. In our proposed solution, we would change one

substream at a time rather than all used in CoolStreaming. This

would, therefore, allow space for other substreams to grow.

TABLE I. Permutations for different triggering situations

Substream → 0 1 2 3

Event ↓ C P1 C P1 C P2 C P2
Congestion

I L L L L Source-Parent
(a)

II L H L H Parent-Child

(b) III H H L L

Source-Parent

IV L H L H H L H L Parent-Child
(c)

V L L L L L L L L Source-Parent

L-Low, H-High

The occurrence of case III is certainly due to poor

performance above the parent P1 since substream 0 does not

show any performance degradation. According to Figure 1, this

 3 7 11 15 19 23 27

 2 6 10 14 18 22 26

 1 5 9

 0 4 8 12 16 20 24 28 32

Block Number

Substream Number

0

1

2

3

Playback Point

 3 7 11

 2 6 10 14

 1 5 9

 0 4

Block Number

Substream Number

0

1

2

3

Playback Point

(b)

 3 7 11 15 19 23 27

 2 6 10 14 18 22 26

 1 5 9

 0 4 8

Block Number

Substream Number

0

1

2

3

Playback Point

(a) (c)

P2

P1

B0, C = 8

B1, C = 9

B2, C = 26

B3, C = 27

 4

can happen due to congestion between peers P1 and P2 or peer

Q1 leaving the overlay network. Therefore, only the lagged

substream should be changed immediately. In CoolStreaming,

the child unnecessarily changes the parent for both substreams

due to the lagged substream 1.

The reason for case IV should be congestion in the

downlink of child peer C or simultaneously in uplinks of both

parents P1 and P2. We will follow the conservative approach by

removing one substream from each parent. If this does not

improve the performance, then the congestion in child peer’s

downlink maybe the factor resulting in poor performance. Case

V arises when all substreams to the parents are delayed, in

which case all substreams should be switched to new parents.

IV. FINE-GRAINED SUBSTREAM CHANGE

This section describes the steps for the proposed fine-

grained approach, which considers changing substreams more

conservatively. Performance of each substream is tested

independent of other substreams, even though they originated

from the same parent.

A. Conservative Algorithm

The first step of the algorithm is to identify the most

lagged substream (j) for a parent (l) among Nl number of

substreams received from the selected parent (Nl ≤ N). The

algorithm will then test for inequality (3), and determines if the

deviation from the most progressed substream (among all the

N number of substreams of the session) has exceeded the

defined threshed (THC).

)3(}1...0:|max{| ,, CCjCi THNiBB >−=−

If this condition is satisfied, then the child identifies the

location of the problem (in source-parent or parent-child paths)

using the bit-maps received. The maximum block of substream

j at the child is compared with the maximum block of the

substream at the current parent using inequality (4).

)4(,, CCjPj THBB >−

If this condition (4) is satisfied, this means the parent’s

quality performance is good and the congestion is between the

parent and the child. This will lead to a change of one

substream, which has the least performance at the parent (if

there is more than one substream from that parent). However,

when selecting a new parent, the selection does not necessarily

ensure that it is better parent than the existing one, where the

selection will find a parent which satisfies the inequality (4).

The sole objective is to change the path from the current

parent. If the inequality (4) is not satisfied, this means there is

no performance issue along the path from the existing parent to

the child. The selected substream may have already received

substantial delay at the parent. Therefore, it checks the

comparative performance of the current parent with the other

partners according to the inequality (5).

)5(}:|max{| ,, PQjPj THPartnersQBB >∈−

In contrast to the previous parent selection, in this case the

substream changes the current parent only if a better partner is

found. Otherwise it will continue with the current parent. Then

the test (4) should be applied independently for all the

remaining substreams of the selected parent and change the

parent, if required.

Algorithm 1. Fine-grained Peer Adaptation Algorithm

for l = 0 … number of parents (L)

| find the most lagged substream (j) among Nl ;

| if (MAX | Bi,C – Bj,C | > THC : i = 0 … N-1)

| | if (Bj,P - Bj,C > THC)

| | | function-X ();

| | else

| | | if (MAX | Bj,P - Bj,Q | > THP : Q All Partners)

| | | | function-Y ();

| | | end

| | end

| else

| | if (Bj,C - PLAYPOINT < THV)

| | | if (Bj,P - Bj,C > THC)

| | | | function-X ();

| | | else

| | | | if (MAX | Bj,P - Bj,Q | > THP : Q All Partners)

| | | | | function-Y ();

| | | | end

| | | end

| | end

| end

end

function-X ()

| remove 1 substream having least Bm,P : m = 0 …Nl ;

| if (L > 1)

| | find an existing parent having the most number of substreams;

| | check that its own substreams does not need a peer adapt;

| else

| | find a parent satisfying inequality (4);

| end

end

function-Y ()

| if (L > 1)

| | find an existing parent having the most number of substreams;

| | check that its own substreams does not need a peer adapt;

| else

| | change j to a new parent satisfying inequality (5);

| end

| test for other m values of the parent l

end

If test (3) is not satisfied, this means there is no much

deviation between the best and the worst substreams. This can

happen in two situations: all the substreams are good or all are

bad. If all the substreams are much ahead of the playback

point, we need to avoid any parent change. Therefore tests (4)

and (5) will be applied only when the most lagged substream is

 5

less than a threshold (THV) of the playback point. Then the

same procedure is applied similarly for the other parents.

Downlink congestion: If all the substreams lag THV

threshold, it could also be due to downlink congestion at the

child. Therefore, the child memorises this peer adaptation. If

the situation is not rectified after a certain number of attempts,

the child will extend the cool-down time (the time duration that

a child peer will not test for parent changes again) of peer

adaptation to minimise unnecessary events (alternatively the

child could also use multi-path transport).

If congestion is in the uplink of the parent peer,

CoolStreaming child finds a new parent for all the substreams

it receives from that parent. Also if there is more than one

child at this parent, it will end up loosing all the child peers

when triggering events come closely. This could add extra

overhead to the parent. Therefore, one approach to minimise

this is to synchronise triggering events under one parent and

ensure they don’t come too close to each other. However,

synchronisation of triggering events may not be required in the

fine-grained approach since it uses a conservative substream

changing process.

B. Minimising the Diversity of Parents

It has been widely accepted that next generation P2P is an

ISP-assisted network service. IETF is standardising a

framework for this purpose called Application Layer Traffic

Optimisations (ALTO) [16]. Here, a content provider needs to

register with the ALTO service (owned by an ISP) to avoid

throttling their P2P traffic. Through negotiations with the

ALTO server, a peer can select its parent peers. Hence an ISP

can enforce different policies like restricting traffic to its own

network or local geography.

Although the standardisation through IETF is attractive and

further increases the potential of P2P streaming, current

approaches such as that used in CoolStreaming does not aim to

minimise its complexities. For example, substreamed P2P may

introduce an extra load on the ALTO server when requesting

new parent peers for every single substream. Therefore, it

could be desirable to minimise the diversity of parents at a

child peer. This will improve self-organising capability in an

ALTO domain reducing cross traffic (that will cost ISPs

compared with local traffic) and also overhead at an ALTO

server.

The fine-grained approach that we have proposed in this

paper will minimise this effect, where we introduce a seeking

process for new parents for a substream among existing

parents. Therefore, when a substream is required to find a new

parent, it will first seek a parent, which already delivers a

substream to the child (that substream should not look to

change the parent). If there are more than one qualified

parents, then it will select the one delivering most number of

substreams. If no other qualified existing parent is found, it

will seek a parent from a larger partner list. Algorithm 1

presents the pseudo-code of the fine-grained algorithm

including the parent diversity minimisation extension.

V. PERFORMANCE EVALUATIONS

We have simulated the CoolStreaming peer adaptation

algorithm and the proposed fine-grained extension for two

approaches; (A) seeking a new parent from the partner list, and

(B) seeking a parent among the existing parents that the child

is receiving other substreams, using OMNet++ simulator [17].

These algorithms were evaluated under a generic traffic model

and a network topology. The time scale of a long-lived session

has been contracted proportionately only to evaluate the peer

adaptation process.

In all experiments, we used a traffic stream of 400kbps

and it was divided into 4 substreams. The chunk size used for

the substreams was 50 Kbytes, which is equivalent to a play

time of 1s. The number of partners (those a peer was

communicating) was limited to 5. Peer adaptation thresholds

were chosen as; THC = 20, THP = 16 and THV = 0 in blocks.

The cool-down time was 30s.

(a) Continuity Index

(b) Diversity of Parents

Figure 4. Performance with different number of peers

The uplink bandwidth at the server was 4 Mbps and at a

peer it was randomly and uniformly distributed from 100 kbps

to 1300 kbps in 100 kbps steps. This created a 400 kbps of

average overlay uplink capacity on a participating peer (which

 6

has been changed in the second set of experiments). Traffic

was not limited at any other location in the overlay network

than the uplinks. Background traffic was changed at uplinks

randomly in 20s intervals uniformly distributed between 0 to

600 kbps, and again in 100 kbps steps.

Peers joined randomly to a simple network topology. In

order to simulate a heterogeneous substreaming scenario at a

child peer, one third of the peers joined (i.e. at the start of their

session) only with one parent for all the substreams. Then the

subsequent one third of peers joined with totally different

parents for each substream. The remaining peers joined with

two parents with two substreams from each.

We measured QoE at a peer in terms of block continuity

index (i.e. the number of blocks received at the playback point

over total number of blocks it should receive). If one block

misses the playback pointer, it backed-off 12 blocks rather

continuing with the following block. We also monitored the

diversity of parents at a child peer.

We conducted all the experiments for a duration of 1000s.

Half of all the peers continuously connected to the overlay

network for the entire duration. Remaining half created peer-

churns by leaving the overlay for a duration between 0 and 20s

at a randomly selected time. We have monitored the

performance matrices at a child peer in 10s intervals and the

average values of all the peers are shown in the following

graphs.

We have first simulated algorithms with different number

of peers. According to Figure 3 (a), a significant improvement

of the continuity index can be seen with both proposed

evolutionary approaches against the CoolStreaming peer

adaptation algorithm (90% confidence intervals are shown in

the graph). Figure 3 (b) shows that the diversity of parents is

lesser in the evolutionary algorithm (A) with a number of

nodes less than 100. However, the diversity increases as the

number of nodes increases. Evolutionary algorithm (B) has

notably reduced the diversity of parents.

We have then simulated three algorithms under different

overlay network capacities. The average network capacity of

all the uplinks was selected as a proportion to the full stream

bandwidth requirement (i.e. in Figure 4, x-axis 2.00 indicates

that the average uplink capacity is 800 kbps, which has

network over-provisioned). The number of peers in these

experiments was 100. According to Figure 4 (a), there is a

consistent improvement of the continuity index using the two

evolutionary algorithms. The diversity of parents has also not

been affected much in evolutionary algorithm (A) but

drastically reduced in the evolutionary algorithm (B) as shown

in Figure 4 (b).

(a) Continuity Index

(b) Diversity of Parents

Figure 5. Performance with different overlay network capacities

Figure 5 shows the behaviour (from the start to the end of

a session) of the continuity index at 20 randomly selected

peers. According to the snapshot graphs and our observations,

the continuity index approaches 1.0 and becomes steady during

the entire session under the evolutionary approaches.

 7

Figure 6. Change of Continuity Index (at 20 selected peers)

VI. CONCLUSIONS

P2P networking paradigm has been recognised by the

IETF to re-design as a non-aggressive and ISP-friendly

network service for the Internet. At the same time, P2P

streaming will be used to solve future Internet bandwidth

demands by federating core network resource requirements.

Substreamed P2P is an important concept to support

heterogeneous uplink bandwidths of residential peers and

hence to improve co-operative resource sharing at the same

time. Therefore, substreamed P2P concept needs to be

developed while attempting to improve user’s QoE.

In this paper we have proposed a fine-grained approach

for the child-initiated block-aware peer adaptation algorithm

that extends from the CoolStreaming application. The

proposed approach utilises inter-substream performance

parameters to differentiate source-to-parent and parent-to-child

congestion and hence conservatively respond to changes in

substream performance. The proposed solution also aims to

minimise the diversity of parents, which could be problematic

with the new network-assisted P2P standardisation initiative

proposed by the IETF. Simulation results have been evaluated

to compare the proposed solution with CoolStreaming, and the

results have shown considerable improvement in QoE. We also

claim that the new approach has minimised the diversity of

parents.

ACKNOWLEDGEMENT

This work was supported by the project “FutureComm:

Serving Society” funded by Higher Education Authority

(HEA) in Ireland under the PRTLI scheme.

REFERENCES

[1] V. Aggarwal, A. Feldmann and C. Scheideler, “Can ISPs and P2P users

Cooperate for improved Performance?", ACM CCR, July 2007

[2] J. Liu, S. Rao, B. Li and H. Zhang, “Opportunities and Challenges of

Peer-to-Peer Internet Video Broadcast”, Proceedings of the IEEE, January

2008

[3] H. Liu and G. Riley, “How Efficient Peer-to-Peer Video Streaming

Could Be?”, IEEE CCNC, January 2009

[4] X. Hei, Y. Liu, K. W. Ross, “IPTV over P2P Streaming Networks: the

Mesh-Pull Approach”, IEEE Communications Magazine, February 2008

[5] A. Ford, C. Raiciu, S. Barre and J. Iyengar, “Architectural Guidelines for

Multipath TCP Development”, IETF Internet Draft, February 2010

[6] X. Zhang, J. Liu, B. Li and T. Yum, “CoolStreaming/DONet: A Data-

driven Overlay Network for Efficient Live Media Streaming”, IEEE

INFOCOM, March 2005

[7] S. Banerjee, B Bhattacharjee and C. Kommareddy, “Scalable Application

Layer Multicast”, ACM SIGCOMM, August 2002

[8] Y. Chu, S. Rao, S. Seshan and H. Zhang, “A Case for End System

Multicast”, IEEE Journal on Selected Areas in Communication, October 2002

[9] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, F. Kaashoek, F. Dabek

and H. Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Protocol for

Internet Applications”, IEEE/ACM Transactions on Networking, February
2003

[10] X. Liao, H. Jin, Y. Liu, L. M. Ni and D. Deng, “AnySee: Peer-to-Peer

Live Streaming” , IEEE INFOCOM, April 2006

[11] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron and A.

Singh, “SplitStream: High-bandwidth Multicast in Cooperative

Environments”, ACM Symposium on Operating Systems Principles, October

2003

[12] V. Venkataraman, K. Yoshida and P. Francis, “Chunkyspread:

Heterogeneous Unstructured Tree-Based Peer-to-Peer Multicast”, IEEE ICNP,

November 2006

[13] F. Wang, Y. Xiong and J. Liu, “mTreebone: A Hybrid Tree/Mesh

Overlay for Application-Layer Live Video Multicast”, IEEE ICDCS, June

2007

[14] X. Hei, C. Liang, J. Liang, Y. Liu and K. Ross, “A Measurement Study

of a Large-Scale P2P IPTV System”, IEEE Transactions on Multimedia,

December 2007

[15] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar and Y. Wang, “Substream

Trading: Towards an open P2P live Streaming System”, IEEE ICNP, October

2008

[16] H. Xie, R. Yang, A. Krishnamurthy, Y. Liu and A. Silberschatz, “P4P:

Provider Portal for Applications”, ACM CCR, October 2008

[17] OMNet++ Simulator (http://www.omnetpp.org)

[18] Z. Li, D. H. K. Tsang and W. C. Lee, “Understanding Sub-stream

Scheduling in P2P Hybrid Live Streaming Systems”, IEEE INFOCOM, March

2010

