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Abstract: Peer-to-Peer (P2P) video delivery using substreams 

supports uplink heterogeneities of the peers and hence could 

optimise sharing capabilities with minimum free-riding peers. 

Therefore, substream-based applications such as PPLive and 

CoolStreaming have been well accepted after successful 

deployments in the public Internet. In this approach, a child peer 

can find a parent peer for a substream independent of the other 

parent peers that it receives the remaining substreams. In 

general, there can be more than one substream between a parent 

and a child. The block-aware adaptation algorithm in 

CoolStreaming changes the parent peer for all such substreams 

when a child peer experiences poor performance even on one of 

its substreams from the parent.  However, lagging of one 

substream in such a scenario is likely while others are not 

affected, when the parent receives its substreams through 

multiple paths. We propose a fine-grained approach (changing 

substream by substream) in peer adaptations to improve overlay 

network performance. This approach will in turn, is designed also 

to minimise the diversity of parents at the child peer by joining 

with a well-performing another parent, which is expected to 

curtail complexities in a network-assisted P2P framework. 

 
Keywords: Video streaming, substream-based P2P, child-initiated 

block-aware peer adaptation.  

I. INTRODUCTION 

In recent years, Peer-to-Peer (P2P) multimedia streaming 

has gained increased popularity, due largely to its scalable 

solution for video streaming to a very large number of 

concurrent users. P2P file sharing was technically unbeaten 

mainly due to its flexibilities of distributing different amounts 

of data blocks (chunks) (i.e. due to its non-real-time 

application requirements) [1], where a peer can reliably collect 

the required set of blocks of a file from any number of peers 

within a reasonable time frame, disregarding the order of the 

blocks. However, this is not the case in P2P multimedia 

streaming, where playback delay and its continuity become 

vital Quality of Experience (QoE) factors. In the absence of the 

flexibilities available with file sharing, using the same 

approach for streaming video applications will face a number 

of serious challenges [2] [3]. A number of solutions have been 

developed to counter these challenges, such as applications 

like PPLive, CoolStreaming, SopCast, Babelgum, which are 

currently been deployed in the public Internet with a marginal 

streaming quality (i.e. bandwidth in a range of 300 to 500 kbps 

and playback delays of 10s to several minutes). 

Many P2P streaming protocols use a hybrid push-pull 

approach to avoid instabilities of a tree-based push overlay 

structure owing to deep trees [4]. Pulling capability can be 

implemented replicating the same stream into multiple trees so 

that a peer can pull the stream from any tree which will 

improve its overall performance. However, this approach leads 

to unnecessary replication of data in the network and does not 

support uplink heterogeneities. A solution to this problem is to 

sub-divide the main stream into a set of substreams (also 

known as substreamed P2P). In order to collect all the 

substreams (i.e. an essential requirement without SVC or 

MDC), a peer is required to join with multiple (but low-

bandwidth) trees. This hybrid push-pull technique has become 

a victorious approach in deploying P2P video delivery over the 

public Internet especially with asymmetrical residential peers 

like ADSL to improve sharing capabilities minimising free-

riding peers.  

A prominent example of substreamed P2P is 

CoolStreaming. CoolStreaming [6] peer adaptations (i.e. the 

process that a peer selects a new parent during the session 

when a substream performance is degraded) are triggered by a 

child, which we categorise as a child-initiated process. The 

approach uses two inequalities (i.e. for testing the performance 

between the child and the parent and between the parent and 

the other partner peers). The only performance metric used by 

a child during the selection process is recording and comparing 

the latest received block at each substream. We categorise this 

also as a block-aware approach. Peer adaptations in non-

substreamed P2P do not need to differentiate performances in 

source-to-parent or parent-to-child paths, since the entire 

session is received along a single path at a time. The only 

solution is to change the parent irrespective of the location of 

the tarnished performance. It also has no flexibility of 

responding differently for peer dynamics (i.e. peer-churn) and 

network dynamics (i.e. congestion). However, in substreamed 

P2P, parent changes can be done independently from one 

parent to another or from one substream to another (one child 

may have multiple parents and one parent may deliver more 

than one substreams to a child) and can respond flexibly. 

In this paper, we analyse and evaluate CoolStreaming peer 

adaptation algorithm, and propose a new algorithm that 

extends from CoolStreaming to capture the above mentioned 

criterions and flexibilities. The original CoolStreaming forces a 

child to change all the substreams from a parent even though 

only one substream is under-performing. However, in our 

proposed algorithm, we avoid changing all substreams where 

only the under-performing substream is required to find a new 
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parent. We also propose removing one substream at a time by 

the child peer (i.e. a fine-grained conservative approach), if the 

identified congestion is in the uplink of the parent (i.e. 

expecting an improvement of congestion due to the granted 

space like in congestion control mechanisms).  

The proposed solution also aims to minimise the diversity 

of parents (i.e. the number of parents that a child is required to 

acquire all the substreams) at a child peer without degrading 

the performance, which is expected to minimise overhead in a 

network-assisted P2P framework. This is achieved by joining 

with a well-performing another parent before seeking a new 

parent. We believe that since CoolStreaming will change all 

substreams when one of the substream is underperforming, this 

could lead to instabilities of the P2P network.  

The rest of the paper is organised as follows: Section II 

provides related works. Section III details the child-initiated 

block-aware peer adaptation algorithm and discusses the 

capabilities and complications. The proposed fine-grained 

algorithm is presented in Section IV. Section V provides the 

simulation results and Section VI concludes the paper. 

II. RELATED WORKS 

P2P protocols like NICE [7] and ESM [8] use a tree-based 

approach for video streaming, which were first proposed as an 

alternative to solve infrastructure requirement of native IP 

multicast in group communications. This approach was 

initially thought to be the most suitable for streaming video 

when compared with mesh-based approaches [9], which was 

successfully used for file deliveries. The tree based approach 

supported low latency and low per-block overhead for long-

lived streaming applications. However, many peers in a single 

tree topology were leaf-nodes, which did not contribute for 

data forwarding (only acted as data consumers). A peer-churn 

by an upper level node of the tree, in turn simultaneously 

affected a large number of nodes (i.e. especially when the tree 

depth is large) mounting instabilities of the overlay network. In 

order to minimise the above mentioned problems, the single 

tree-based streaming delivery approach has been extended to 

support multiple trees. AnySee [10] supports replication-based 

multi-tree approach. However, it does not support uplink 

heterogeneities. SplitStream [11], ChunckySpread [12] and 

mTreebone [13] principally introduced the substreaming 

approach without putting much attention on block-based video 

deliveries and the peer adaptation algorithm. 

The substreamed approach has been practically deployed 

in the Internet by PPLive [14] and CoolStreaming [6]. It has 

been followed by recent works of P2P streaming as a solution 

to address the network dynamics and mutual contributions 

successfully [15]. CoolStreaming is the one which has 

published its peer adaptation algorithm. Zhenjiang Li et al. 

[18] has recently analysed the substream scheduling problem 

using max-flow model. It is important to further extend 

research works on performance optimisation of push-pull 

based substreaming algorithms for video delivery in the public 

Internet and in particular analyse the peer adaptation 

algorithms in detail. 

III. CHILD-INITIATED BLOCK-AWARE PEER 

ADAPTATIONS 

In substreamed P2P, the source divides the main video 

stream into equal video blocks (e.g. with a one second play 

time) and delivers into N number of substreams. These blocks 

are assigned to substreams in revolving fashion. The receivers 

are required to collect all the substreams from at most N 

number of parent peers and reorder them according to the 

block number so that it can be played back with minimal 

disruption. In the event that any block misses the playback 

point, the video is discontinued. A substream can lag due to a 

peer-churn or slow data-rate (due to congestion) in the last hop 

or above. In such a case the child peer can change the parent 

peer after exceeding a threshold specified in number of blocks. 

In such a peer driven adaptation algorithm, a peer needs to 

know the block-maps (i.e. the list of latest received block 

number of each substream) of its own (C), its parent peers (Pi) 

and other partner peers (Qi) those it can select to join. To 

maintain the scalability of the protocol, a peer will only 

exchange block-maps between a selected number of partner 

peers (among them at most N could become parents). They 

periodically exchange updated block-maps using a gossip 

algorithm [6]. There can also be other peers (besides Pis and 

Qis) which are members (Mis) of the session without having 

any interaction with an identified child peer (peer C in Figure 

1). 

 

Figure 1. An overlay network with 4 substreams 

In Figure 1, we assume that P1, P2, Q1, Q2 and Q3 are the 

partners of child peer C and at present it receives the 

substreams 0 and 1 from parent P1 and substreams 2 and 3 

from parent P2. If the current parent peer is needed to be 

changed, it will find a better parent (if the received block-maps 

of Q1, Q2 or Q3 is better that P1 or P2, will connect to Q1, Q2 or 

Q3) to receive the substreams. 

A. CoolStreaming Peer Adaptations 

According to the peer adaptation approach used in 

CoolStreaming, a child peer will use two inequalities (given in 

the equations 1 and 2 [6]) to identify a requirement to change a 

parent for a substream j (j = 0 .. N-1). Satisfaction of either one 

of the inequalities will lead to a change in the parent. 

)1(}:|max{| ,, CPjCi THNiBB <≤−
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Figure 2. Parent change triggering situations at a child peer 

XiB , is the latest received block for substream i at node X, 

where X could be either a child node C, parents P, or partners 

Q. THC is the threshold of the maximum deviation of latest 

received blocks allowed between the substream j at the parent 

and any substream at child node C. THp is the threshold of the 

maximum deviation of blocks allowed between the substream j 

at the parent and any substream at any partners. 

These two tests are carried out periodically for all the 

parents at a child peer. The significant factor here is that if any 

substream (when receiving more than one substream from a 

parent) lags, CoolStreaming algorithm changes the parent for 

all the substreams originated from the same parent. This 

process will lead to finding a new parent peer, which also 

satisfies the inequality (1). 

B. Analysis of Triggering Events 

In order to analyse the algorithm, we consider three 

distinguished generic substream lagging situations (Figure 2), 

which could trigger a peer adaptation at a child peer. In the 

first case (a), both substreams from parent P1 lag behind others.   

In the second case (b), only one substream (i.e. substream 1) 

from parent P1 lags (this is possible since parent peer P1 may 

receive two substreams from two different routes; 0 through 

M1 and 1 through P2 in Figure 1). In the third case (c), all the 

substreams are below the playback point. 

Substreamed P2P is also a candidate transport mechanism 

that is compatible with recently accepted (by the IETF) multi-

path TCP (MP-TCP) [5], which paves a path for resource 

pooling in the Future Internet. MP-TCP load balances a session 

in transport layer through the available interfaces in a multi-

home environment. Since the content layering is inherited in 

substreamed P2P it can effectively be used over multi-path 

congestion control mechanisms. In such a scenario a parent 

peer may have performance differences between substreams 

even thought they are receiving from the same upstream peer. 

Therefore decedent child peers need to identify this situation in 

the peer adaptation algorithm, which will be in case (b). 

The factors that may affect the conditions in Figure 2 may 

result from peer-churns or congestion bottlenecks in the core 

or access networks in the Internet. However, according to 

common analysis in P2P overlay networks, congestion is only 

considered in the uplink or downlink of a peer. We use the 

same assumptions in this analysis. We also assume that a peer-

churn of an immediate parent can explicitly be identified by 

the child (may be using ping). Therefore peer-churn of such a 

parent (either P1 or P2 for child peer C in Figure 1) has not 

been considered under the triggering events discussed in the 

following paragraphs. 

Each situation for peer adaptation (in Figure 2) results in 

several events shown in Table I, due to differing peer-churns 

or congestion in divided end-to-end overlay path; source-to-

parent (multiple hops) and parent-to-child (last hop). In the 

table, L represents Low and H represents High in terms of the 

maximum available block at each substream. There can’t be H 

at a child while having L at the parent since child can only 

acquire the data available at the parents. Theoretically, it is 

also not possible to have a situation where the parent’s 

condition is H and child having L while another substream 

between the same pair of peers staying at H. We assume all the 

substreams between two peers follow the same path (if MP-

TCP is used at a child, it is known to the peer and can remedy 

this situation) and experience the same congestion.  

There can be two events between parent peer P1 and the 

child peer C under the situation (a). The reason for case I to 

happen is when the parent P1 receives delayed substreams from 

the source (i.e. due to either a peer-churn or congestion from 

source to parent). Solution for I is to change both substreams 

away from the current parent peer as quickly possible. The 

reason for case II could be due to congestion in the uplink at 

parent P1. In our proposed solution, we would change one 

substream at a time rather than all used in CoolStreaming. This 

would, therefore, allow space for other substreams to grow. 

TABLE I. Permutations for different triggering situations 

Substream   → 0 1 2 3 

Event    ↓ C P1 C P1 C P2 C P2 
Congestion 

I L L L L Source-Parent 
(a) 

II L H L H Parent-Child 

(b) III H H L L 

 

Source-Parent 

IV L H L H H L H L Parent-Child 
(c) 

V L L L L L L L L Source-Parent 

L-Low, H-High 

The occurrence of case III is certainly due to poor 

performance above the parent P1 since substream 0 does not 

show any performance degradation. According to Figure 1, this 
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can happen due to congestion between peers P1 and P2 or peer 

Q1 leaving the overlay network. Therefore, only the lagged 

substream should be changed immediately. In CoolStreaming, 

the child unnecessarily changes the parent for both substreams 

due to the lagged substream 1. 

The reason for case IV should be congestion in the 

downlink of child peer C or simultaneously in uplinks of both 

parents P1 and P2. We will follow the conservative approach by 

removing one substream from each parent. If this does not 

improve the performance, then the congestion in child peer’s 

downlink maybe the factor resulting in poor performance. Case 

V arises when all substreams to the parents are delayed, in 

which case all substreams should be switched to new parents. 

IV. FINE-GRAINED SUBSTREAM CHANGE 

This section describes the steps for the proposed fine-

grained approach, which considers changing substreams more 

conservatively. Performance of each substream is tested 

independent of other substreams, even though they originated 

from the same parent. 

A. Conservative Algorithm 

The first step of the algorithm is to identify the most 

lagged substream (j) for a parent (l) among Nl number of 

substreams received from the selected parent (Nl ≤ N). The 

algorithm will then test for inequality (3), and determines if the 

deviation from the most progressed substream (among all the 

N number of substreams of the session) has exceeded the 

defined threshed (THC).  

)3(}1...0:|max{| ,, CCjCi THNiBB >−=−  

If this condition is satisfied, then the child identifies the 

location of the problem (in source-parent or parent-child paths) 

using the bit-maps received. The maximum block of substream 

j at the child is compared with the maximum block of the 

substream at the current parent using inequality (4).  

)4(,, CCjPj THBB >−  

If this condition (4) is satisfied, this means the parent’s 

quality performance is good and the congestion is between the 

parent and the child. This will lead to a change of one 

substream, which has the least performance at the parent (if 

there is more than one substream from that parent). However, 

when selecting a new parent, the selection does not necessarily 

ensure that it is better parent than the existing one, where the 

selection will find a parent which satisfies the inequality (4). 

The sole objective is to change the path from the current 

parent. If the inequality (4) is not satisfied, this means there is 

no performance issue along the path from the existing parent to 

the child. The selected substream may have already received 

substantial delay at the parent. Therefore, it checks the 

comparative performance of the current parent with the other 

partners according to the inequality (5). 

)5(}:|max{| ,, PQjPj THPartnersQBB >∈−  

In contrast to the previous parent selection, in this case the 

substream changes the current parent only if a better partner is 

found. Otherwise it will continue with the current parent. Then 

the test (4) should be applied independently for all the 

remaining substreams of the selected parent and change the 

parent, if required. 

Algorithm 1. Fine-grained Peer Adaptation Algorithm 

for l = 0 … number of parents (L)  

|        find the most lagged substream (j) among Nl ; 

|        if ( MAX | Bi,C – Bj,C | > THC : i = 0 … N-1)  

|         |       if ( Bj,P - Bj,C > THC )  

|         |       |       function-X ( ); 

|         |       else  

|         |       |      if (MAX | Bj,P - Bj,Q | > THP : Q All Partners) 

|         |       |       |       function-Y ( ); 

|         |       |       end  

|         |       end 

|        else 

|          |      if ( Bj,C - PLAYPOINT < THV ) 

|          |      |        if ( Bj,P - Bj,C > THC ) 

|          |      |        |        function-X ( ); 

|          |      |        else 

|          |      |        |        if (MAX | Bj,P - Bj,Q | > THP : Q All Partners) 

|          |      |        |        |       function-Y ( ); 

|          |      |        |        end 

|          |      |        end 

|          |      end 

|        end 

end  

function-X ( ) 

|        remove 1 substream having least Bm,P : m = 0 …Nl ; 

|        if (L > 1) 

|        | find an existing parent having the most number of substreams; 

|        | check that its own substreams does not need a peer adapt; 

|        else  

|        | find a parent satisfying inequality (4); 

|        end 

end 

function-Y  ( ) 

|        if (L > 1) 

|        | find an existing parent having the most number of substreams; 

|        | check that its own substreams does not need a peer adapt; 

|        else  

|        | change j to a new parent satisfying inequality (5); 

|        end 

|        test for other m values of the parent l 

end 
 

If test (3) is not satisfied, this means there is no much 

deviation between the best and the worst substreams. This can 

happen in two situations: all the substreams are good or all are 

bad. If all the substreams are much ahead of the playback 

point, we need to avoid any parent change. Therefore tests (4) 

and (5) will be applied only when the most lagged substream is 
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less than a threshold (THV) of the playback point. Then the 

same procedure is applied similarly for the other parents.  

Downlink congestion: If all the substreams lag THV 

threshold, it could also be due to downlink congestion at the 

child. Therefore, the child memorises this peer adaptation. If 

the situation is not rectified after a certain number of attempts, 

the child will extend the cool-down time (the time duration that 

a child peer will not test for parent changes again) of peer 

adaptation to minimise unnecessary events (alternatively the 

child could also use multi-path transport). 

If congestion is in the uplink of the parent peer, 

CoolStreaming child finds a new parent for all the substreams 

it receives from that parent. Also if there is more than one 

child at this parent, it will end up loosing all the child peers 

when triggering events come closely. This could add extra 

overhead to the parent. Therefore, one approach to minimise 

this is to synchronise triggering events under one parent and 

ensure they don’t come too close to each other. However, 

synchronisation of triggering events may not be required in the 

fine-grained approach since it uses a conservative substream 

changing process. 

B. Minimising the Diversity of Parents 

It has been widely accepted that next generation P2P is an 

ISP-assisted network service. IETF is standardising a 

framework for this purpose called Application Layer Traffic 

Optimisations (ALTO) [16]. Here, a content provider needs to 

register with the ALTO service (owned by an ISP) to avoid 

throttling their P2P traffic. Through negotiations with the 

ALTO server, a peer can select its parent peers. Hence an ISP 

can enforce different policies like restricting traffic to its own 

network or local geography.  

Although the standardisation through IETF is attractive and 

further increases the potential of P2P streaming, current 

approaches such as that used in CoolStreaming does not aim to 

minimise its complexities. For example, substreamed P2P may 

introduce an extra load on the ALTO server when requesting 

new parent peers for every single substream. Therefore, it 

could be desirable to minimise the diversity of parents at a 

child peer. This will improve self-organising capability in an 

ALTO domain reducing cross traffic (that will cost ISPs 

compared with local traffic) and also overhead at an ALTO 

server.  

The fine-grained approach that we have proposed in this 

paper will minimise this effect, where we introduce a seeking 

process for new parents for a substream among existing 

parents. Therefore, when a substream is required to find a new 

parent, it will first seek a parent, which already delivers a 

substream to the child (that substream should not look to 

change the parent).  If there are more than one qualified 

parents, then it will select the one delivering most number of 

substreams. If no other qualified existing parent is found, it 

will seek a parent from a larger partner list. Algorithm 1 

presents the pseudo-code of the fine-grained algorithm 

including the parent diversity minimisation extension.  

V. PERFORMANCE EVALUATIONS 

We have simulated the CoolStreaming peer adaptation 

algorithm and the proposed fine-grained extension for two 

approaches; (A) seeking a new parent from the partner list, and 

(B) seeking a parent among the existing parents that the child 

is receiving other substreams, using OMNet++ simulator [17]. 

These algorithms were evaluated under a generic traffic model 

and a network topology. The time scale of a long-lived session 

has been contracted proportionately only to evaluate the peer 

adaptation process. 

In all experiments, we used a traffic stream of 400kbps 

and it was divided into 4 substreams. The chunk size used for 

the substreams was 50 Kbytes, which is equivalent to a play 

time of 1s. The number of partners (those a peer was 

communicating) was limited to 5. Peer adaptation thresholds 

were chosen as; THC = 20, THP = 16 and THV = 0 in blocks. 

The cool-down time was 30s. 

 

(a) Continuity Index 

 

(b) Diversity of Parents 

Figure 4. Performance with different number of peers 

The uplink bandwidth at the server was 4 Mbps and at a 

peer it was randomly and uniformly distributed from 100 kbps 

to 1300 kbps in 100 kbps steps. This created a 400 kbps of 

average overlay uplink capacity on a participating peer (which 
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has been changed in the second set of experiments). Traffic 

was not limited at any other location in the overlay network 

than the uplinks. Background traffic was changed at uplinks 

randomly in 20s intervals uniformly distributed between 0 to 

600 kbps, and again in 100 kbps steps. 

Peers joined randomly to a simple network topology. In 

order to simulate a heterogeneous substreaming scenario at a 

child peer, one third of the peers joined (i.e. at the start of their 

session) only with one parent for all the substreams. Then the 

subsequent one third of peers joined with totally different 

parents for each substream. The remaining peers joined with 

two parents with two substreams from each. 

We measured QoE at a peer in terms of block continuity 

index (i.e. the number of blocks received at the playback point 

over total number of blocks it should receive). If one block 

misses the playback pointer, it backed-off 12 blocks rather 

continuing with the following block. We also monitored the 

diversity of parents at a child peer. 

We conducted all the experiments for a duration of 1000s. 

Half of all the peers continuously connected to the overlay 

network for the entire duration. Remaining half created peer-

churns by leaving the overlay for a duration between 0 and 20s 

at a randomly selected time. We have monitored the 

performance matrices at a child peer in 10s intervals and the 

average values of all the peers are shown in the following 

graphs. 

We have first simulated algorithms with different number 

of peers. According to Figure 3 (a), a significant improvement 

of the continuity index can be seen with both proposed 

evolutionary approaches against the CoolStreaming peer 

adaptation algorithm (90% confidence intervals are shown in 

the graph). Figure 3 (b) shows that the diversity of parents is 

lesser in the evolutionary algorithm (A) with a number of 

nodes less than 100. However, the diversity increases as the 

number of nodes increases. Evolutionary algorithm (B) has 

notably reduced the diversity of parents. 

We have then simulated three algorithms under different 

overlay network capacities. The average network capacity of 

all the uplinks was selected as a proportion to the full stream 

bandwidth requirement (i.e. in Figure 4, x-axis 2.00 indicates 

that the average uplink capacity is 800 kbps, which has 

network over-provisioned). The number of peers in these 

experiments was 100. According to Figure 4 (a), there is a 

consistent improvement of the continuity index using the two 

evolutionary algorithms. The diversity of parents has also not 

been affected much in evolutionary algorithm (A) but 

drastically reduced in the evolutionary algorithm (B) as shown 

in Figure 4 (b). 

 

 

(a) Continuity Index 

 

(b) Diversity of Parents 

Figure 5. Performance with different overlay network capacities 

Figure 5 shows the behaviour (from the start to the end of 

a session) of the continuity index at 20 randomly selected 

peers. According to the snapshot graphs and our observations, 

the continuity index approaches 1.0 and becomes steady during 

the entire session under the evolutionary approaches.   
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Figure 6. Change of Continuity Index (at 20 selected peers) 

VI. CONCLUSIONS 

P2P networking paradigm has been recognised by the 

IETF to re-design as a non-aggressive and ISP-friendly 

network service for the Internet. At the same time, P2P 

streaming will be used to solve future Internet bandwidth 

demands by federating core network resource requirements. 

Substreamed P2P is an important concept to support 

heterogeneous uplink bandwidths of residential peers and 

hence to improve co-operative resource sharing at the same 

time. Therefore, substreamed P2P concept needs to be 

developed while attempting to improve user’s QoE.  

In this paper we have proposed a fine-grained approach 

for the child-initiated block-aware peer adaptation algorithm 

that extends from the CoolStreaming application. The 

proposed approach utilises inter-substream performance 

parameters to differentiate source-to-parent and parent-to-child 

congestion and hence conservatively respond to changes in 

substream performance. The proposed solution also aims to 

minimise the diversity of parents, which could be problematic 

with the new network-assisted P2P standardisation initiative 

proposed by the IETF. Simulation results have been evaluated 

to compare the proposed solution with CoolStreaming, and the 

results have shown considerable improvement in QoE. We also 

claim that the new approach has minimised the diversity of 

parents.   
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