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Abstract

Context inference is necessary in ubiquitous computing to provide information about
contextual information which is not directly measurable from sensors or obtained from
other information sources. Server based, central inference would not scale due to the ex-
pected amount of context requests. Mobile, distributed context inference faces problems
because of the high computational complexity of inference mechanisms. Bayesian infer-
ence techniques are particularly well suited, as they allow for more flexible modelling of
situations than propositional logic, are always decidable as opposed to higher order logics,
are intelligible to humans as opposed to neural networks and allow for uncertain or missing
information. As inference in them however is NP-hard, methods have to be introduced
to fit them to the requirements of ubiquitous computing and mobile, resource constrained
devices.

To this end, this work proposes to divide Bayesian networks for context inference
into modules, called Bayeslets. Bayeslets can be composed among each other to fulfil
an inference request via interface nodes about which additional assumptions are made:
Considering input nodes as observed, more efficient inference methods can possibly be
applied and by defining explicit output nodes for connection, a relevancy based dynamic
composition of Bayeslets can be realised, so the evaluated number of Bayeslets always
stays at a minimum. The inference time of Bayeslets can be further reduced by adapting
edges and value ranges to the user’s personal requirements and the current situation. The
application of these concepts is shown in general examples of high level context used in
the user’s smart space, in his work environment, as well as in road traffic. Experimental
results show that this process results in a significant reduction of the inference load. The
Bayeslets for location and human motion related activity are of particular importance for
context awareness and therefore considered and evaluated in detail.

The set of tools proposed in this thesis allows to apply a fully Bayesian approach to
context inference, fulfilling the requirements of ubiquitous computing and mobile, resource
constrained devices.
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Chapter 1

Introduction and Motivation

Twelve years ago in 1999, right after school in Germany, I acquired my first mobile phone.
And I am a techie and have always been so at school. Always longing for the newest
technical innovation. Only a couple of years later at university, you had to justify yourself
for not being able to present a mobile phone number at which one can always reach you.
The first years at work and you noticed the sensation that being always reachable by phone
can be a burden. Anyway, the boom of mobile communications went on. First location
aware services were being used, Java applications came up. Network bandwidth is getting
cheaper, along with MEMS based sensors and GPS receivers. In 2007 Apple’s iPhone
prepares the ground for the smart phone generation with data flat rates, many internal
sensors and almost unlimited access to information from the internet. For all mobile
operating systems, application stores sprout and grow day by day. Technically, we are not
so far away from the vision of pervasive, context aware computing – what is missing today
is the collaboration, the exchange of sensor information and any standardised semantics
for service developers. Let’s see, if the next twelve years can overcome those last barriers!

1.1 Context Aware Services and Context Inference

Mark Weiser, the ‘creator’ of Ubiquitous Computing, had envisioned in 1995 that “in the
21st century the technology revolution [would] move into the everyday, the small and the
invisible” [47]. Computing is meant to support in all situations of life, critical or not,
easing people’s tasks with as little need of interaction as possible. Abowd and Schilit in
[1] identified the following important components for this computing paradigm:

• Scalable Interfaces,

• Ubiquitous software services,

• Ubiquitous information,

• Support for Automated Capture and Access,

• Context-aware computing and technology

The latter is responsible that “the right service for the right person at the right time and
the right place” [39] is always executed; for instance that your mobile phone automatically
shows the directions to the closest supermarket on your way home from work when the
smart home’s refrigerator senses the need for fresh milk.

Context has to be used in service selection (filtering, ranking, etc.), service management
(configuration, deployment, handover, etc.), during service execution, and for proactive
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service invocation. It allows for choosing among all world wide available services the one
that fits best to your preferences, your profile and your current situation. It encompasses
all factors that are relevant for a decision you would make or which the ubiquitous com-
puting system should make for you.

The context for a service execution thereby not only depends on yourself. Next to the
user’s personal context, it obviously also includes the service context and the environment
[43]. The environmental context includes for instance temperature, time, the noise level
in the room, and current interactions with others, the service context can encompass e.g.
the screen resolution, the colour mode, the requirements with respect to bandwidth or
other contextual scope. Your user context can depend on many different attributes, for
example:

• your location,

• your movement,

• your availability,

• your schedule and plans,

• your mood,

• your activity,

• your currently used services.

In these examples, as well as in Figure 1.1, we can see that some context information
can be sensed directly with a sensor, like temperature with a thermometer or location
with a GPS receiver. Other information is inherently available in computers, like screen
resolution, the currently used services or also your schedule, if you use software tools to
manage it.

The most challenging information is the one that cannot be sensed directly nor is
available via other direct information sources, like your mood, your availability or your
current activity. It has to be inferred from other information that is available, like the
schedule, the location, knowledge about your preferences and accelerations of your body
that can be sensed.

Such inference offers a lot of challenges to date. Mechanisms to cope with them have to
be efficient enough, so millions of users can use them at the same time, the results have to
be available in the shortest delays on the mobile, often resource constrained devices, and
the information usable for inference constantly varies. The approaches furthermore have
to deal with uncertainty of information coming from sensors that can be inaccurate or
erroneous, and the fact that the same sensed information may lead to different outcomes
for different persons. While a particular football result may lead to very good mood of
some persons, others will feel exactly opposite about it, whilst others remain unaffected.
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Available
Networks

Location

Time

Used Services
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Personal
Preferences

Context

Low Level Context: 
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Low Level Context: 
User Interaction Required

High Level Context:
Inferred Based on Low Level Context

Interactions

Safety/Danger

Availability

Forecast /
Intentions
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Activity

Figure 1.1: Many different factors (not exhaustively enumerated in this figure) can describe a situation
and therefore form the context of a service in a ubiquitous computing environment. These factors, called
context information, contain measurable information and things that the human user specifies like his
preferences, schedules or agendas. Other context information can only be deduced, like emotions, activities
or availability. This process, called context inference, takes into account the available context information
and infers the high level context.

1.2 Scenarios

After this more theoretical explication of ubiquitous computing and context awareness,
this section will give a very practical insight.

There are many different situations in which context inference is useful for next gen-
eration mobile services, ranging from Driver Assistance (DA) systems with cooperative
collision avoidance over Ambient Assisted Living (AAL) for elderly people in their homes
to consumer market services, including cooperative games or context aware messaging and
networking services.

Three scenarios from different areas of daily life which are to be used in the following
chapters for practical examples will be described and analysed regarding their usage of
context awareness in the following sections.

1.2.1 An Intelligent, Context Aware Office Environment

A classical prototype environment realising Weiser’s vision of ubiquitous computing is
the office environment, where already many useful sensors (in smartphones, PDAs, RFID
systems and many more) gather context information and mobile devices are interacted
with every day.

1.2.1.1 Description

When Patrick enters his office building, a shared display in the foyer, as can be seen in
Figure 1.2, welcomes him with a personalised message and informs him of the day ahead
as he was recognised while passing the door. He realises that it is going to be a busy day.
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Figure 1.2: Personalised, context aware screen in the foyer of the office building with welcome message.

Entering his room, the light and climate controls adapt automatically to Patrick’s
favourite settings he has also defined for his smart home. As the weather is fine and
warm, the windows are opened automatically to let in the fresh morning air.

Also the call redirection application is activated. This service has the following options:
if a person is not in his office, a call should be redirected to the land line phone closest to
him or her, whereas, while travelling or not at work, the target phone would be the mobile
phone. In certain cases which are learnt and personalised from past behaviour, incoming
calls are forwarded to a voice box or converted to text messages that can be accessed in
more appropriate moments, like in [32]. This morning, Patrick is not in any situation
in which he must not be disturbed. So all calls to Patrick are redirected from his smart
phone to his office phone.

To prepare for the long day, Patrick goes to the kitchen to grab a coffee. On his way
back he meets Michael in the corridor. Immediately they start an intense conversation
about a research idea, Patrick had the last evening. As the building’s smart space recog-
nises this it converts one of the electronic poster frames next to them to a white board
they can use for some sketches.

But Patrick has to hurry up. He has a meeting scheduled with his boss to discuss
important financial and organisational issues for his research group. An incoming phone
call from his yoga friend Katie is routed to his voice mail, as he is busy and the urgency
level of the call was indicated by Katie to be rather low.

Right after the meeting, Patrick downloads the minutes of the meeting that have been
taken automatically, as the importance of the decisions in the meeting is high, but Patrick
tends to forget organisational issues. The intelligent meeting minutes service records
presentations given via a projector, the contents of whiteboards, and converts speech to
text. Together with the meeting agenda the key words are recognised and the minutes are
structured.

After that, Patrick heads for lunch with his colleagues. As he usually wants to glance
at the menu of the canteen and the weather report for the rest of the day, the wall display
in the foyer now shows Patrick this information as he is walking by (see Figure 1.3).

Back in the office Patrick has, for the only time during the whole day, a longer period
without scheduled meetings. He engrosses his mind in a seminal paper important for
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Figure 1.3: Context aware screen in the foyer of the office building when showing lunch information.

his research. Patrick’s state is recognised and the smart space deduces based on his
previous behaviour that he does not want to be disturbed. The call redirection service is
set up accordingly and the only messages allowed to come through are those related to
emergencies or the research group reunion scheduled for later this afternoon.

After two hours of fruitful work, it is exactly such a notification that stops Patrick’s
reflections. An alarm pops up at his screen, telling him that Stefano is entering the
building. Patrick had invited Stefano, a fellow researcher from a different department of
the same institute, to present his recent work in Patrick’s group meeting.

Stefano is guided to the right meeting room, where Patrick is already waiting for him.
When the first group members have entered the meeting room, also Michael is notified at
his office PC. As he is very busy, he could not afford waiting in the meeting room. But as
most meeting participants are already present, Michael also heads there – just in time to
get the last free chair.

The meeting starts and after some introductory words by Patrick, Stefano is the first to
present his work. He walks to the front of the room and given the agenda and behaviour, it
is recognised that he is about to start the activity “presenting” and starts interaction with
the wall display. He is shown a context-aware selection of suitable documents – related
by last-use and association with the calendar entry – and hits the icon for the slides he
prepared. The presentation is started and also logged into the automated meeting minutes.

Still impressed by Stefano’s research results, Patrick accesses the presentation from
the online meeting minutes and wants to print it. The respective service locates the most
suitable printer on his way back to his office, sends the print job, and guides him there
automatically.

1.2.1.2 Analysis

This scenario contains a number of context aware services which use context for service
selection, in service execution or for a proactive service start. Some of them are continu-
ously running in the background, like a daemon service, others are started explicitly. The
following services are used:

• Foyer Wall Screen: Daemon

• Light and Climate Control: Daemon
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• Call Redirection Application: Daemon

• Ubiquitous Whiteboard Service: Daemon

• Automatic meeting minutes

• Activity Monitoring: Daemon

• Guest Arrival Notification: Daemon

• Room Status Monitor: Daemon

• Projector Application: Daemon

• Printing Assistance

The context information used by these services is manifold. Among others time, loca-
tion, intent, weather, availability, the caller, the schedule, interactions, meeting agendas,
sound, available documents, motion, room status, high level activities and proximity are
necessary to realize them.

For example in the call redirection application, running as a daemon service always in
the background, activity is the most relevant context information. It depends on prefer-
ences, time, calendar entries, location, movements/status (like standing, walking, sitting
and others) and the available as well as the currently used services.

The printing sub-scenario illustrates among others context aware service selection,
based on features of the available printing services, but also on your current indoor position
and proximity (including maps with the walking restrictions for people like walls).

Summarizing, ten services use at least 15 different contextual aspects from which many
are used several times. Many of the mentioned contextual aspects again depend on other,
lower level context and have to be inferred, like the motions from measurable accelerations,
weather from temperature, humidity and sun intensity, proximity, the room status or the
high level activities.

The daemon services need to monitor their related context and have to be reevaluated
upon every context change.

1.2.2 A Context Aware Day out with Friends

The next scenario describes a day of four friends meeting in a city and spending an after-
noon together while interacting with their intelligent ubiquitous computing environment,
full of helpful services.

Susanna, Joan and Steve are old friends who live in or close to Dublin. They have
not seen for a while and have decided to spend an afternoon together in the city. While
Susanna and Joan have booked a guided tour in the National Art Gallery, Steve is still
busy in the afternoon and will meet them after the tour.

1.2.2.1 Description

Joan and Susanna live outside the city and arrive at more or less the same time at the
train station. Their buddy finder application informs them, so they can meet immediately.
As there had been delays in the train network, they are quite late for the guided tour.
Already in the train, Susanna’s trip agent, keeping track of her agenda, had identified that
she is late and had proposed that she went to the Art Gallery by taxi rather than by bus.
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Figure 1.4: Augmented Reality museum guide in the Guggenheim Museum, Bilbao [27].

After Susanna’s confirmation, the service had reserved the taxi and notified Joan. Having
arrived, Susanna and Joan are guided immediately to their taxi.

The taxi’s passenger comfort service is responsible for adjusting the seats, so that
they are as comfortable as possible given their height and size. The taxi driver is al-
ready informed about the meeting venue, the price is agreed and paid by a secure online
transaction and Joan and Susanna finally arrive on time.

Joan’s friend Peter who lives in the city is already waiting there. Peter talks to Susanna
for a while. This is recognised along with the fact that they have not met before. Susanna
takes her smart phone from her pocket and sees the proactive prompt that just needs her
confirmation: exchange electronic contacts with Peter.

The guided tour is an amazing experience. The visitors are given goggles equipped
with wireless sensors. They connect to their smartphones enabling them to follow the
guide’s explanations in an augmented reality with supporting information displayed for
the exhibits they are currently looking at, like in Figure 1.4.

When the tour ends, Steve is already waiting for them. They decide to go shopping a
bit before having dinner together. They consult their social restaurant finder application.
It proposes a restaurant for dinner, taking into account the location, but also weather and
of course the participants’ preferences regarding food and dinner time.

Having agreed on a restaurant in the city centre, Peter decides to stop by his home and
to follow them later by public transport. His public transport navigation service selects
the most convenient train for him to reach the restaurant and interacts with the transport
management system to acquire a ticket. Finally in the train he falls asleep, as he is tired
after the long tour, but his context aware alarm has recognised it and wakes him up just
in time before he reaches the station where he has to get off.

Steve, Susanna and Joan are doing some window shopping as their navigation service
has proposed them the route to the restaurant passing the pedestrian area and their
favourite shops. Only when Steve receives an advertisement by the book shop next door
that the book he is looking for is available, he enters and gets it. So they finally reach
their restaurant after a nice walk with interesting chats and meet up with Peter again.

Having enjoyed a wonderful dinner, Steve offers to take Susanna and Joan to the
train station. The car’s navigation system guides them automatically and the built-in
cooperative adaptive cruise control (CACC) [103, 46] makes for a smooth journey in the
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heavy traffic. Steve is tired after the long day and he does not know the way very well.
CACC exchanges messages with other cars via vehicle-to-vehicle (V2V) communications,
among others regarding their position, direction, and speed, in order to avoid critical
situations.

With this support, all of them have had a safe and comfortable way home.

1.2.2.2 Analysis

This scenario includes a wide range of services that use context in different ways. These
services are:

• Trip Agent: Daemon

• Car Adaptation

• Buddy Finder: Daemon

• Contact Detail Exchange: Daemon

• Augmented Reality Headsets

• Social Restaurant Finder

• Public Transport Navigation Service

• Context Aware Alarm: Daemon

• Context Aware Advertisement: Daemon

• Navigation Service

• Cooperative Adaptive Cruise Control: Daemon

If we contemplate some of these services more in detail, first the car adaptation system
is of interest. It starts proactively when the passengers enter and runs then only once
without further monitoring further context. It incorporates the persons’ preferences and
context during its execution. The relevant context information is height, size and also
weight of the passenger, given the same information of all other passengers. Obviously
also the precise location of the passenger is needed, even within the car. Finally the user’s
intention to enter the car – resulting from location, movement, future calendar entries and
the taxi booking – is responsible for starting the service.

The restaurant finder service furthermore includes weather and temperature informa-
tion next to personal preferences, available time and availability of tables in the restaurant.

Finally the context aware navigation service or the context aware alarm have to be
aware of the current time, the user’s target, upcoming calendar entries as well as the map
of the relevant area. Monitoring the current activity (walking-direction, but also sleeping)
and precise location, it calculates the best route to the target, respectively initiates the
alarm.

Similarly to the previous scenario, the used context is the own outdoor and indoor
position and those of all friends, the own and the others’ schedules, the trip destination and
time along with the available means of transport and their schedules, if applicable. Height,
weight and sitting preferences, current interactions with other people (and consequently
their activity), the direction somebody is oriented towards, preferences regarding time
and style of dinner and those of the other friends, as well as the own shopping list are
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also incorporated. For CACC, position, direction and speed of other cars are taken into
account along with the own one, but also weather, pavement condition, traffic density etc.
can be important.

1.2.3 Smart Homes and Ambient Assisted Living

How the improvements of context aware ubiquitous computing can also improve life at
home is shown in the following scenarios.

William, aged 78, lives alone in his own house. He is managing his activities of daily
living sufficiently well, in particular with the help of his smart home that eases many tasks,
see Figure 1.5. In his smart home he accepts some monitoring of his daily routine, which
allows for further independent living as opposed to moving into a nursing home.

Positioning / Navigation

Lighting
Reminders
Multimedia
Refrigerator

Context Information

Internet Connection

Context Aware Services

Figure 1.5: A context aware environment combining a smart home and outdoor services, adapted from
[6].

1.2.3.1 Description

William wakes up in the morning. While still lying in bed, his Voice Prompt Reminder
application has stated twice in the last 15 minutes that he is overdue for taking his med-
ication. He knows that it is very important to take his medication regularly and so gets
up to take it.

Unluckily, William has lost one of his slippers under the bed. He gets on the ground
to search under the bed. The smart home’s monitoring system knows it is William who is
lying on the floor, but using the available sensor data such as motion sensors on William’s
body, the system recognises that he has not fallen to the ground, but is lying on the
ground intentionally with 85 % certainty. His daughter living in the same town will be
only notified if the certainty threshold for a fall goes above 30 %. As he gets up again and
moves normally, no alarm is sent to his family or caregiving service.

After breakfast, the next reminder tells William that he had intended to go to the
supermarket and to collect his clothes from the laundry. William takes his mobile interac-
tion device and confirms that he is going to do that now. The device proposes the shortest
and safest route combining both targets.

When William enters the supermarket, he is shown his shopping list. It was mainly
populated automatically by the refrigerator that notices and logs which products have been
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put in and taken out. The intelligent shopping list starts to interact with the supermarket’s
smart space and William is guided automatically to the products he is looking for. Having
collected his clothes he returns home.

Now William starts preparing his lunch. A cookbook service proposes him a suitable
recipe, taking into account his diet, his lunch preferences and also the available ingredi-
ents. With the accompanying guidelines, the dish is easily prepared and delicious. When
William takes the pan from the oven, the latter is deactivated automatically, to avoid
unnecessary energy consumption as well as possible hazards.

In the afternoon, William is reminded to do his daily gymnastics to maintain his
health. His sports plan is adapted thereby automatically to the number of calories he has
consumed and the amount of exercise he has had already during the day, monitored by his
movement sensors. As William had already gone to the supermarket, he is proposed only
twenty minutes, mainly focussed on stretching and balance exercises. If William did not
fulfil his sports program for a couple of days or his motion patterns show abnormalities,
his daughter would be notified.

Before going to bed, William wants to see a film on TV. He sits down in his armchair
and takes out his mobile interaction device. This device infers from both, the current
situation and the pointing direction of the device, that it should switch to the TV remote
control mode, while adapting the light settings to the movie profile.

1.2.3.2 Analysis

In this scenario the following context aware services are used:

• Voice Prompt Reminder: Daemon

• Home Monitoring System: Daemon

• Fall Alarm: Daemon

• Route Planer

• Smart Refrigerator: Daemon

• Intelligent Shopping List

• Supermarket Indoor Navigation Service

• Cookbook service

• Automatic Oven Deactivator: Daemon

• Sports Planer: Daemon

• Movement Logger: Daemon

• Health Monitoring and Notification System: Daemon

• Context Aware Remote Control: Daemon

• Context Aware Light Management: Daemon
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Most of these services are continuously running in the background as daemons. The
smart home itself can have built-in servers, cables and a permanent power connection; –
therefore it is not a resource constrained device. The mobile interaction device however
that can even serve as remote control for all devices in the living room, has to infer some
values itself, in particular when it is taken outside the smart home. Then limited energy,
network bandwidth and computing power need to be considered.

The applications take into account time, the current activity, task lists, the room
status, movement of persons, location, the contents of fridge and cupboards, available
recipes, position of goods, the status of electrical devices, consumed calories, diets, the
history of physical activities, health benchmarks and personal history, available devices,
light, direction of the interaction device and ambient sound.

Also, here we can observe that some services use context to get started, others during
execution, as well as context aware selection of such services, when multiple instances of
the same service type exist. These different usages entail different monitoring schemes for
the respective context.

Also here we can notice that much information has to be inferred from multiple sources
of lower level information.

1.2.4 Summary

The scenarios shown in the last sections show how context can be used in the future. Many
different services are running continuously and in parallel on mobile, resource constrained
devices using context information which is not directly measurable.

This thesis will propose to use Bayesian methods to infer the necessary context informa-
tion from the available measurements considering the specific requirements of ubiquitous
computing.

1.3 Objective and Research Questions

Over the last 15 years, Bayesian Networks (BN) have evolved as a major tool in a wide
area of scientific disciplines requiring sound statistical analysis, automated reasoning or ex-
ploitation of knowledge hidden in noisy data. These range from medical research, genetics,
insurance analysis, and fault handling to automation and intelligent user interaction sys-
tems. BNs combine techniques from graphical models with those from Bayesian analysis
to provide a formal framework where complex systems and uncertainty can be represented
and analysed. As such, they are also a candidate for context inference.

Although the concepts of context aware services and also Bayesian networks as means
for inference have been known for more than fifteen years, context aware services (CAS)
are still not part of daily life. One reason is the availability of sensors that has only
recently begun to increase due to sinking hardware costs. Only few common standards
are agreed, which delays large scale deployment. In the author’s opinion, a major problem
however is also context inference. Existing algorithms are tightly coupled to specific
sensors and context aspects, application developers cannot simply add inference rules,
and all-encompassing approaches would not scale and not be tractable for mobile devices.

This work proposes Bayesian techniques as the main building block for context in-
ference systems, with context attributes represented as random variables in causal BNs
representing inference rules. This work proposes a way to fit such methods into context
management systems that is computationally tractable for resource limited mobile de-
vices and scales for large numbers of users. An important factor for this is the reflection
that only the necessary information must be involved in computations. Therefore this



12 1.4. Thesis Outline

work proposes ways to dynamically adapt inference to the current situation and the user’s
personal preferences.

The most crucial challenges this research faces can be summarised in the following
questions:

1. How can context inference with BNs be made tractable for resource limited mobile
devices?

2. How can BN inference rules be adapted to the changing mobile environments?

3. How can a ubiquitous computing system personalise context inference?

4. How can context inference with BNs be integrated in a standard context management
system?

5. How should a system learn and adapt to changing needs or preferences causing a
different situation estimation?

6. How can this system of inference rules be designed to be extensible and pluggable,
so always the relevant information is evaluated, only?

7. How can the most important influence factors of context be recognised most effi-
ciently?

8. How can different inference requirements for different contextual aspects be fulfilled
and how can different inference methods interoperate?

9. Are Bayesian methods equally suitable for low level and high level context inference?

10. What are the advantages of the methodology proposed in this work?

1.4 Thesis Outline

To answer these questions, after a thorough analysis of the research which already exists
in chapter 2–4, chapter 5 will present the overall concept proposed in this work. As can
be seen in Figure 1.6 its is applicable to low level as well as to high level context inference
and determines the relevant aspects of the situation which form the service context.

Chapter 2 will explain the definitions and theory underlying this work. It gives an
overview over Ubiquitous computing and context awareness, as a key to a context aware
system is sensing, identifying and using context information and making it accessible
to all context consumers, i.e. services. Current methods for inference are presented,
encompassing approaches based on logics, data mining, artificial neural networks, and
probabilistic methods. In this thesis it will be argued that the latter are most promising
for our domain, in particular Bayesian methods that build on conditional probabilities.
Therefore a specific focus of this chapter is the theory of Bayesian and in particular causal
networks, an interpretation of BNs that eases modelling the dependencies between different
sensors and inference targets.

Since one major problem of today’s context aware frameworks is scalability, chapter
3 illuminates the target user domain, based on assumptions and observations about the
number of service users, their service usage and context dependence of services. This
chapter will show that today’s all-encompassing, often central approaches would not be
able to handle such a load. From these requirements, a viable approach can be extracted,
like decentralisation of inference, which entails the need for modularity and privacy control.
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Figure 1.6: This thesis covers a Bayesian context inference approach applicable to both, lower and high
level context describing the user himself, and his environment. It furthermore proposes means to identify
and relate context aspects to that part of the situation which is relevant for a service execution. The orange
elements in the figure indicate main topics of this work, i.e. activity, location, proximity, availability and
the connections of context aspects.

Chapter 4 presents the specific state of the art that this work affects. The inference
of high level context can involve numerous aspects of lower level context. As it could be
seen in the scenarios, the two central ones that influence most high level context are (i)
human motion related activity and (ii) location. The state of the art in recognising both
is presented here along with existing research about structuring and modularising BNs
and inference in such networks. Although promising approaches exist, they would not be
sufficient to realise scalable and adaptive high level context inference.

The necessary improvements over the state of the art are presented in chapter 5. A first
section explains how the proposed techniques are employed for context inference. Then
another section proposes Bayesian approaches for human motion activity and position
recognition that can be integrated with a Bayesian context inference architecture, is scal-
able and resource efficient. Once the reader has seen how lower level context is inferred,
the next step is the identification of those contextual aspects that are most relevant for
a given inference goal. The fourth section of this chapter will present an approach for
modular context inference which reduces inference costs compared to normal BN infer-
ence. Subsequently, ways to automatically assemble inference modules and to infer across
different modules are explained.

To prove that the concepts are viable, all components were implemented in a Java based
framework. In chapter 6 the application of the presented concepts will be demonstrated
and evaluated, referring back to the analysis of the current situation from chapter 3.
Chapter 7 finally closes this work with a summary and conclusions.



14 1.4. Thesis Outline



Chapter 2

Fundamentals of Context
Inference

This chapter presents the fundamentals of this work. It includes basic definitions and
research on ubiquitous computing that are necessary for this work, as well as the proba-
bilistic theory and techniques for the Bayesian methods used herein for context inference.

2.1 Context in Ubiquitous Computing

“Ubiquitous Computing” is said to be invented by Mark Weiser who coined the term
in 1988 while working for the Xerox Palo Alto Research Center. He envisioned a world
with hundreds of different sized computers and sensors per room, wireless access to a
global information network and seamless integration of computing into daily life with
intuitive user interfaces [47]. In this work it will be used synonymously with “Pervasive
Computing”.

One of the keys to realising ubiquitous computing is context awareness. The following
sections shall present the basics of context awareness and context management.

2.1.1 Definitions

As a first step to this, some important definitions from the literature are discussed which
will be used in the remainder of this work.

A widely used definition of context is the one given by Dey in [9]:

Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.

This definition has been developed further by Strang and Linnhoff-Popien in [40]. They
propose the definitions 1 – 6 distinguishing clearer between “situation” and “context”,
specifying “relevancy” and introducing an interesting concept, the “aspect”. The present
thesis follows this set of definitions.

Definition 1 Context Information:
A context information is any information which can be used to characterize the state of
an entity concerning a specific aspect.
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Definition 2 Entity :
An entity is a person a place or in general an object.

Definition 3 Aspect :
An aspect is a classification, symbol or value-range, whose subsets are a superset of all
reachable states.

Definition 4 Situation:
A situation is the set of all known context information.

Definition 5 Context :
A context is the set of all context information characterizing the entities relevant for a
specific task in their relevant aspects.

Definition 6 Relevancy :
An entity is relevant for a specific task, if its state is characterized by at least concerning
one relevant aspect. An aspect is relevant if the state with respect to this aspect is accessed
during a specific task or the state has any kind of influence on the task.

If a service execution framework supports context aware services it hence needs the
functionality to give the service access to context, i.e. the relevant context information.
The provider of such functionality is called Context Management System (CMS). Following
the argumentation of the author et al. in [118], it can be defined as follows:

Definition 7 Context Management System:
A CMS is a distributed middleware that provides users and services access to context
information upon request and/or subscription, if the requester has been granted the re-
spective access rights. It is based on an efficient, semantically defined context model,
manages context sources and a history of context. Furthermore it models, manages and
exploits quality of context and provides facilities for reasoning and context inference.

The literature uses again many different definitions and understandings of reasoning
and context inference. This work distinguishes them in the following way:

Definition 8 Context Inference:
Context Inference creates new context information from available information. It thereby
copes with imperfection and uncertainty of information and the derivation of higher level
context.

Definition 9 Reasoning :
Reasoning is a wide set of methods enabling the relation of context information, definition
of procedures, rule and case based decisions for context information, as well as context
inference.

This distinction follows to some extent Perttunen, Riekki and Lassila in [132] who call
“activity and context recognition” what this work names “context inference”. They, how-
ever, do not see this as part of “reasoning”, in contrast to Bikakis et al. in [110] or Bettini
et al. in [109].

Definition 10 Context Inference Rule:
Context inference rules (CIR) are models used by machine learning algorithms to produce
new context information in the process of context inference.
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Furthermore, the concept of ontologies is important for context awareness. Gruber in
[17] has defined an ontology to be a “specification of a conceptualisation”. Uschold in [45]
is more concrete: “An ontology may take a variety of forms, but necessarily it will include a
vocabulary of terms and some specification of their meaning. This includes definitions and
an indication of how concepts are inter-related which collectively impose a structure on
the domain and constrain the possible interpretations of terms”. The following definition
specifies the latter:

Definition 11 Context Ontology :
A context ontology is an ontology defining the basic meta vocabulary for context usage.
Moreover it specifies, not necessarily exhaustively, the usable context and its interrelations.

2.1.2 Context Models

The representation of context and the models for it have been one of the first context
related research fields. They are not only related to the nature of the context information,
but also to the needs of context consumers and tightly coupled with the inference that
builds on them [121, 132].

Strang distinguishes in [41] six different categories of context models. Key-value mod-
els, markup scheme models, graphical models, object oriented models, logic based models
and ontological models are rated according to the requirements of distributed composition,
partial validation, richness and quality of information, incompleteness and ambiguity, level
of formality, and applicability to existing environments.

Most of these models however are relatively equivalent – ontological models can be rep-
resented as sets of keys and values, graphical models always can be described in ontologies,
ontologies are based on logics. The key for their usefulness is rather the nature of the meta
information, as the meta information is used in reasoning and inference. While inheritance
relations are of high importance for structural reasoning, the likelihood of a value and the
probability distribution of the random variable are crucial for Bayesian methods.

Perttunen, Riekki and Lassila in [132] have imposed the requirements of unique identi-
fiers, validation, expressiveness, uncertainty and incomplete information, simplicity, reuse
and expandability, and generality.

In particular they conclude that finding the trade-off between efficiency, expressiveness,
soundness, and completeness has not been studied so far, that the problem of relevance
is left for the applications using context and that benefit of modelling uncertainty and
vagueness has not been evaluated beyond the capability of representing, i.e. that no
application has shown its utilisation to date. Stating this, they neglect however that the
representation of uncertainty and vagueness is not only of use for context end consumers,
but also for context inference.

The model underlying this work is the “Aspect, Scale, Context Information (ASCi)
Model” defined by Strang, Linnhoff-Popien and the author in [42] building on the context
(Definition 5) and in particular aspect definitions given above in Definition 3.

Context information (see Figure 2.1) always belongs to a specific scale or “type”,
these scales and types in turn are specific to uniquely one contextual aspect. Context
information is related to at least one entity and specified further by meta information.
Meta information represents the quality of context (cf. [8]) and contains at least the
timestamp of its creation and every further possibly necessary information.

Like that it can represent all relations necessary for reasoning and in some meta in-
formation also the likelihood or the type’s probability distribution necessary for Bayesian
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Figure 2.1: Context Information Model following the ASCi Model defined in [42].

context inference methods. Context information can be represented graphically, as RDF1

triples, in OWL2 or DAML+OIL3, as well as with relational models in a database.

2.1.3 Context Management Systems

Research activities worldwide have produced first prototype CMSs, most offering a basic
but not generally applicable interface for context inference. A collection of such frameworks
has been surveyed by the author et al. in [118]:

One of the first context management systems capable of handling generic context in-
formation was developed for the needs of the Cooltown project by HP labs in 2002. The
Cooltown context management system attempted to resolve problems regarding the con-
text representation, while it combined and exploited context information by introducing
a uniform web presence model for people, places and things [26]. Cooltown envisioned a
world where “humans are mobile, devices and services are federated and context-aware
and everything has a web presence”. Various prototypes have been developed based on
this perception, the most important of which are: museum exhibits that interact with the
user, conference rooms that recognize users and automatically adapt to their presence,
and radios that play songs based on the preferences of users in the proximity. However
the provided context management system did not handle issues regarding context history,
inference of context data, quality of context, context privacy and security.

Owl [12] is a context-aware system aiming to gather, maintain and supply context
information to clients, while protecting people’s privacy through the use of a role-based
access control mechanism. Apart from the provision of basic context related functionalities,
the Owl project performs an initial research on more complex issues such as history of
context, access rights, quality, extensibility and scalability of context information [19].

Another project that provided an architecture for the provision of mobile context-aware
services is SOCAM (Service-Oriented Context-Aware Middleware), presented by Gu et al.
in [18] (2004). This architecture models context information around four main context
concepts: person, location, activity and computational entity (e.g. device, network, ap-
plication, service, etc.). The SOCAM context model is specified in OWL and addresses

1Resource Description Framework, see http://www.w3.org/RDF/
2http://www.w3.org/TR/owl-features/
3http://www.daml.org/2001/03/daml+oil-index.html

http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/
http://www.daml.org/2001/03/daml+oil-index.html
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context sharing, reasoning and knowledge reusing, while providing a service oriented mid-
dleware infrastructure for indoor applications, where a central server retrieves context data
from distributed context providers and delivers them to its clients after proper processing.

The DYNAMOS project from 2007 [36] aims at providing mobile users with context-
aware services, focusing on proactively notifying them about services they are possibly
interested in. The main context information used is the user’s personal profile, which is
a combination of its personal information, preferences and schedule, including the user’s
activities and a personal calendar. This information is stored and can be shared with
other users, rendering the sharing of services possible based on privacy criteria set by
the users themselves. Context management functionality is provided by the Contory [35]
middleware from 2006 which is specifically designed for resource-constrained devices, such
as smart phones.

The CroCo (Ontology-Based, Cross-Application Context Management) [33] context
management service (from 2008) aims to support domain independent applications by
handling arbitrary context data, provided by context providers and requested by con-
sumers via a service interface. This is achieved by adapting an extensible context ontol-
ogy allowing the integration of external ontologies describing contextual aspects relevant
for various domains. Among others, the basic design principles of the CroCo architec-
ture include consistency maintenance of the distributed data and reasoning about context
information.

For the needs of the IST DAIDALOS (2005) and IST DAIDALOS II4 (2008) European
research projects, the CDDBMS (Context Distributed Database Management System) [34]
has been designed and developed. The CDDBMS is a distributed heterogeneous multi-
database system that is built to face the requirements of network operators and context
marketplaces, while being scalable and lightweight resembling a web-server schema. It
also provides basic interfaces to context inference, query extension mechanisms and free-
text based query handling, context access control mechanisms and for managing context
history.

Persist Context Management System

Reasoning

Context Source 
Manager

Context 
Brokerinfer

Core Context DB
• User Context
•Preferences

Sensors User Interaction Monitoring

Context 
History

Management Context History DB
•User History

PSS / 3rd Party Context Aware Service
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Figure 2.2: The PERSIST CMS: It consists of five architecture blocks. The Context Broker is the core
interface to any consumer, the Context Source Manager is the only access point for all context sources and
sensors. Both components store their information in the Context Database via the Context DB Manager,
the central information unit. The Context History Management provides the necessary, pre-processed
information e.g. for learning inference rules, the Reasoning finally is the place where inference algorithms
are stored and processed whenever necessary.
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The ICT PERSIST5 project has advanced the DAIDALOS CMS with a focus on con-
text management for personal smart spaces, resulting in the architecture shown in Figure
2.2. In particular it already uses quality of context information to some extent, provides
a context history database for finding repetitive patterns and a distributed management
system for consistent access to context described by Roussaki et al. in [134]. It pro-
vides basic reasoning and context inference capabilities, like the estimation of proximity,
Bayesian high level context location and physical activity [120].

The Persist CMS serves as prototype for the context management in the present re-
search. With the focus on integrated and better scalable context inference facilities, less
effort has been put in distributed management and history management, however.

2.2 Context Inference

As defined in Definition 8, context inference generates new knowledge from existing in-
formation. It therefore evaluates models which relate this existing information (low level
context) and the desired target information (the high level context). This leads to a clas-
sical classification problem, i.e. checking which “class” (i.e. which state of the high level
context) best fits the combination of low level information. The models for the classifier
can either be set manually or learnt from recorded data, are usually specific to one infer-
ence or classification approach, and impose requirements on the modelling of the low level
(input) context information.

Methods used for inference should be efficient, sound and complete according to Pert-
tunen et al. in [132] and cope with imperfection of data [110]. Angermann et al. [107]
specified the requirements further, suggesting means for fusion of several input sources
and handling of possibly contradicting measurements, expressive modelling of situations,
and adaptation to the needs of large scale pervasive systems, i.e. distributed processing,
personalisation and adaptability to the system’s dynamics.

Different authors (e.g. [121, 109, 110, 132, 129]) have identified different categories
for inference approaches. Harmonising these works, methods for context inference can
be grouped into (i) logical approaches with many different subforms, (ii) neural network
based inference, (iii) kernel machines, (iv) instance based approaches and (v) probabilistic
context inference. The next paragraphs will give a short overview of the approaches, their
utilisation in the literature, and their advantages and drawbacks.

2.2.1 Logic Based Approaches

Context inference with logic based approaches is the process of deduction of knowledge
from the knowledge base. It is by far the most frequently applied approach for reasoning
in today’s context aware systems [110]. There are many different logical languages with
different operators, properties and inference options. The remainder of this section shall
give a short overview.

Propositional Logic is the basic form of logic. It consists of atomic sentences consist-
ing only of a single proposition symbol, and complex sentences using one of five logical
connectives. The connectives are negation (¬), conjunction (∧), disjunction (∨), impli-
cation (→), and biconditional (↔) [66]. It can be shown that sets of two connectives,
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(¬,∧), (¬,∨), (¬,→), are sufficient to represent all other connectives. These sets are
called functionally complete.

First Order Logic extends propositional logic. While the latter models the world as
boolean composition of facts, first order logic assumes that the world also contains further
elements, such as objects, relations and functions [66]. It allows for quantors and multiple
instances of facts.

As a real superset of propositional logic, it increases expressiveness, but sacrifices
decidability. I.e. for general first order logic there is no algorithm that can decide whether
arbitrary formulas are logically valid. This is a serious restriction for classification.

Description Logics (DLs) are proper subsets of First Order Logic where some expres-
siveness has been sacrificed in order to make the problem decidable. They provide formal
languages for constructing and combining category definitions and efficient algorithms for
subsumption and consistency tests as well as classification [66].

Higher Order Logic extends first order logic by seeing relations and functions as ob-
jects in themselves and in this way allows assertions about all relations. It is a proper
superset of first order logic [66]. With their extended semantics they are more expressive,
but their model-theoretic properties are less well-behaved than those of first-order logic,
complicating classification even more.

Temporal Logic assumes that facts hold true at particular moments or intervals in
time which are ordered [66]. It introduces new connectives with regards to propositional
logic, Until, Release, Next, Future, Globally, Exist, and All. It can be used to represent
statements that hold only for certain time intervals [133].

Inference with logics is possible in many different ways. Particularly widespread is
the classification with Decision Trees building on propositional logic. The leaves of the
tree represent the classes, the branches to these leaves contain nodes, called “features”.
For context inference, the different values of the target high level context represent the
classes i.e. the leaves, the values of the features, every feature represents one of the low
level context types. Their values decide which branch to follow, starting at the root of the
decision tree, see Figure 2.3.

A data set allows learning of different decision trees. The goal thereby is to build a
minimal tree using those features as close to the tree’s root as possible which discriminate
the different classes best. Different methods and parameters are defined in order to identify
the quality of discrimination [129]. A big problem is that learnt decision trees from too
sparse data sets might over-fit data. The performance of decision trees decreases if the
instance space is not orthogonal to the axis of one variable and parallel to all other axes
conforming hyperrectangles [129].

Inference in first order logic can be grouped into three families: forward chaining,
backward chaining, and theory proving systems, see [66] for details.

In context inference, literature uses logical inference in particular in combination with
ontologies that represent context models and information. Ontology based context infer-
ence uses for example First-Order Logic and Temporal Reasoning in CONON [138]), but
mainly Description Logics [132]. For instance [115, 126] provide deductive reasoning to
extract previously described knowledge from large knowledge bases. Those approaches
build the vast majority of all context inference systems to date, but in fact they cannot



22 2.2. Context Inference

Figure 2.3: An example of a decision tree from [237] with three features and two classes. It classifies cats
and dogs based on the input data given by the training set shown on the right.

create new high-level context like users’ activity or situation: there are large problems in
describing causal (but not strictly deterministic) relations between concepts, and mainly
they cannot cope with uncertain or missing information. Logic subsets that are more
expressive with regards to knowledge description on the other hand lead to non-decidable
problems for reasoners. Scalability with ontological, description logic based inference more-
over seems questionable [132]. Kleek and Shrobe in [127] give an approximate number.
They collected about 300 MB of RDF represented data for one person in three weeks.
Processing and storing such large amounts of data will become practically infeasible in
decent response times. Inference complexity is NP complete, as it can be reduced to the
boolean satisfiability problem (SAT-Problem) [81].

Fuzzy Logic is a logical formalism trying to incorporate uncertainty about a proposi-
tion. Beyond true or false, propositions can have any continuous value between 0 and 1
so that the propositions become fuzzy sets. “Fuzzy sets are an instrument of modelling
inexact predicates appearing in natural languages” [131]. The function, assigning a value
to a proposition is called membership function, where 0 represents “no membership at all”,
hence false, and 1 true. The available operators are conjunction, disjunction, negation and
modification.

Fuzzy logic however does not take into account the correlations or anticorrelations of
propositions [66]. For instance the membership of a proposition and its own negation can
be evaluated to a value that is not 0.

2.2.2 Neural Networks

Artificial Neural Networks are supposed to simulate a brain’s information processing ca-
pacity. They are composed of nodes, representing neurons, and directed, weighted links
[125]. Every node is associated an activation function which fires, if the sum of the weights
of its inputs exceeds a threshold, see Figure 2.4.
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Figure 2.4: Model of a neuron for an artificial neural network taken from [237]. It receives the input
signals xi weighted by the synaptic weights wij and applies an activation function to the input signals
considering a threshold θi. The output signal yi of the neuron can be the input of other neurons of the
network.

There are two main categories of neural network structures [66]:

1. acyclic or feed-forward networks

2. cyclic or recurrent networks

Feed forward networks represent a function of its current input without an internal
state. A recurrent network feeds its outputs back into its own inputs, thereby realising an
internal state or memory. Feed forward networks can have several layers, designed such
that each neuron receives input only from neurons in the immediately underlying layer.

In 1958, Frank Rosenblant developed a single layer feed-forward neural network, called
Perceptron. Well-known algorithms are based on the notion of perceptrons. A perceptron
assigns each input an output following a learning process of error correction in order to
determine the correct weights. Using the lower level context information as input signals
with given weights wij , the neuron computes

∑
xjwij and compares the sum with threshold

θi [129]. If the sum is above threshold, output is 1, else it is -1.
Both, single-layered and multi-layered perceptron neural networks are used in classifi-

cation. They can represent complex non-linear functions with many parameters and can
be learnt from noisy data. A single layer perceptron does not have any hidden variable, can
represent only linear separable functions and a simple weight update rule can be used to
fit the data exactly. Multilayer feed-forward neural networks can represent any function,
given enough neurons.

Comparison of decision trees and neural networks [129] has shown that neural networks
usually perform as well as decision trees, but hardly better. The main disadvantage of
neural networks is the difficult and time consuming way to train them, as well as the fact
that they cannot be set manually or interpreted – they can only be seen and used as a
“black box”. In addition, the layered structure of the network has to be defined by human
users for learning. As such they are not an ideal solution for context inference.

2.2.3 Kernel Machines

Kernel machines are techniques to cluster data in a relatively efficient model learning pro-
cess, able to use complex, non-linear functions as discriminator between different classes.
They find hyperplanes that linearly separate classes with a maximum margin, after ap-
plying a kernel function to the dimensions as in Figure 2.5. As such hyperplanes can be
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defined by the vectors defining them, the support vectors, Kernel Machines are also called
Support Vector Machines (SVMs).

Figure 2.5: Support vector machines try to find the maximum margin hyperplane that separates the
different classes in a recorded data set. Support vector points lie on its margin and are shown as well.
Figure taken from [237].

As the final solution is a linear combination of the support vector points, there is no
need for a large number of training instances [66]. If the data set contains misclassified
instances, a soft margin that accepts missclassifications of the training instances can be
used [129].

SVMs are a supervised machine classification technique, resolving binary classification
problems only. If more than two classes have to be distinguished, a hierarchical model has
to be established that divide the problem into several binary decisions. The selection of
the appropriate kernel function is not trivial, and also the usage of discrete and nominal
(i.e. unsorted) values is problematic [129].

Given that the models cannot be set manually and benefit from large data sets to
reach its ideal prediction accuracy [129] and that low level context information is in our
case usually discrete and nominal, SVMs cannot be seen as a feasible solution for context
inference.

2.2.4 Instance Based Approaches

Instance based models represent a classification constructed directly from the training
data. Next to kernel methods which form a distance-weighted combination of all the
instances [66], k-Nearest-Neighbour(kNN) models [113] are the most important represen-
tatives of this category of inference approaches.

The underlying idea is that the class of a data instance is the same as the class of data
in close proximity. This classifier considers every low level information as a dimension
of a n-dimensional space where every data instance (that corresponds to a set of low
level information) is a point within this n-dimensional space. kNN considers the relative
distance between instances. Distances can be defined in different ways, depending on the
nature of the low level information, e.g. Euclidean, Minkowsky, Manhattan, Chebychev,
or Hamming distance [129, 66].
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For inference, the data point representing the measured low level information is as-
signed the class label most frequent among the k nearest instances around the input data
point (see Figure 2.6).

Figure 2.6: An example of application of the k-Nearest-Neighbour algorithm with two dimensions, hence
two low level context information given in [237]. The classifier decides if the class is dog or cat given the
input data represented as a black point. Using the Euclidean distance and for a value of k = 4, the class
and therefore the inference result is dog.

Instance-based learning algorithms require less computation time during the training
phase than other algorithms, such as decision trees or Bayesian Networks, but more com-
putation time (depending on the size of the dataset) during the classification process [129]
which is not appropriate for context inference. Also their storage requirements and their
sensitivity to the choice of the relative distance and parameters [129] are critical. Fast clas-
sification is crucial to minimise response time in ubiquitous computing, context attributes
are too heterogeneous for overall valid parameters and too numerous and dynamic for
explicit definition of all parameters.

2.2.5 Probabilistic Approaches

An important category for classification in general and context inference in particular
is the application of probability theory. The uncertainty inherent in measurements and
propositions about situations is represented by probabilities that are encoding degrees of
belief in the proposition with values between 0 and 1. The propositions can depend on each
other, which is modelled as conditional probabilities. Most approaches using probabilities
for classification apply Bayesian Networks, which represent and efficiently exploit the
conditional independence of propositions. They were named after Bayes’ theorem which
is the key to their evaluation.

There are three (binary) discriminators which define eight general categories of prob-
abilistic classifiers:
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1. Independent or dependent propositions: A “Näıve Bayes” approach assumes mutual
independence of all propositions given the target proposition. This is a simplifica-
tion that is used by some approaches to save complexity in modelling, learning and
evaluation.

2. Static or dynamic inference: Probabilistic approaches can include or neglect the
temporal domain of a classification domain. I.e. they take into account only the
current status of the propositions or also their history.

3. Exact or approximate inference: In some cases the calculation of the posterior prob-
ability is too time consuming or also too complex, so the posterior probability is
only estimated given the known probabilities.

For classification, a model of the probabilities and dependencies of the relevant propo-
sitions (hence for context inference of lower and high level context) is used, classification
calculates then the most probable state of the target proposition, the high level context.
This model can be learnt from existing data, but also set manually by human experts as
they can be interpreted easily. Also combinations of learnt and set probability models are
possible.

For probabilistic inference, tools like SMILE (Structural Modeling, Inference and
Learning Engine) [116], the Weka [137] framework and its extension Weka-Parallel [111]
provide a large set of different approaches, all allowing for deductive and inductive rea-
soning, which can be used for standard classifications.

For specialised classification and inference there are to date many applications of
Bayesian techniques, in particular for activity recognition. An example is Korpipää’s
work in [214] in which Bayesian networks are used for the determination of activities of
daily life in a smart home environment, mainly based on sound sensor data.

For generic context inference there are also some applications in the literature. For
instance Gu et al. use it in [124] to infer the probabilities of RDF statements; Beamon in
[108] combines BNs with first order logic as a general and flexible reasoning approach in
her hierarchical hybrid context reasoning engine (HyCoRE).

Probabilistic inference comes closest to the requirements presented at the beginning of
this section on page 20, as it can deal with imperfection of data, can fuse several possibly
contradicting input sources and its modelling of situations is expressive and can be adapted
by experts.

Therefore, probabilistic Bayesian approaches have been chosen for context inference
in this work. They lack however adaptation to ubiquitous computing, like distributed
processing, personalisation and efficient evaluation even in large scale environments. The
research at hand shall address these deficits. Section 2.3 will therefore explain the funda-
mentals, the concepts and the different existing Bayesian techniques in detail.

2.2.6 Further Approaches

Beyond the five main categories presented above, a few further approaches have been
proposed in literature.

For instance Krause et al. in [78] use a collection of density based database techniques
(e.g. k-means) and probabilistic models (e.g. Bayesian Networks and Hidden Markov
Models) to learn and to identify context, however in a completely unsupervised way,
which makes the data unrequestable and therefore unusable in cooperative ubiquitous
computing.
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Another kind is Case Based Reasoning, used for instance by Kofod-Petersen et al. in
[128]. Case based reasoning is a form of analogical reasoning where for an inference request
with no available solution an analogous problem is searched (Retrieve-Phase), its solution
is reused (Reuse Phase), revised to fit the problem better (Revise phase) and stored for
later use (Retain Phase) [106]. Thereby, Kofod-Petersen classifies current situations based
on existing ones in the user’s case base. Finding the most appropriate existing case however
is difficult and the revision to the current phase is error-prone and requires strong user
involvement.

Also the Dempster Shafer Theory [135] is used sporadically, e.g. by Wu in [139].
This mathematical theory is designed to represent the belief in a proposition rather than
the probability of a proposition. It is often used for sensor fusion where the belief in a
hypothesis is made up by the combination of the probabilities and beliefs in the subsets
of the hypothesis [109].

Finally, some approaches use multimodal reasoning where different reasoning and in-
ference mechanisms are incorporated for the same or different kinds of context, for instance
Dargie in [114], Krause in [78] or the Persist Framework in [120].

Multimodal reasoning is desirable for the heterogeneous ubiquitous computing and
shall be enabled by the concepts proposed in this thesis. The remaining approaches pre-
sented in this section do not support features which are important for ubiquitous comput-
ing and which would not be realisable with probabilistic techniques.

2.3 Bayesian Techniques

As seen in the last section, probabilistic methods and in particular Bayesian methods fit
best the general requirements for classification and context inference. This section shall
give a general, theoretical introduction into Bayesian techniques, ranging from terminology
and semantics over learning the respective models to inference in them, both in a static
and a temporal way.

2.3.1 Basics of Probability Theory

There are many debates about foundations and meanings of probabilities. In particular
there are the frequentist, the objectivist and the subjectivist views. Details about them
and their distinction are described by Russell and Norvig in [66]. This work adopts the
subjectivist view.

Terminology:
From the subjectivist point of view, probabilities, noted as P , represent a degree of

belief in propositions, statements about the reality. A mathematical, formal theory of
them has been developed by Kolmogorov in the 1930s [68].

A basic concept is the random experiment. A random experiment is a process with
an observable outcome, it can be natural or set up deliberately. The sample space Ω is
the set of all possible outcomes which is assumed to be finite or countably infinite. An
experiment has a random outcome if the result of the experiment cannot be predicted with
absolute certainty. An event ωi ∈ Ω is a collection of possible outcomes of an experiment,
the elements of this collection are elementary (also called atomic) events. An event is said
to occur as a result of an experiment if it contains the actual outcome of that random
experiment [51].

Based on random experiments, Random Variables (RVs) are defined.
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Definition 12 Random Variable:
A random variable X is a function on the sample space Ω:

X : Ω→ R ,

of a random experiment with a defined probability P over Ω.

The probability distribution P(X), written in bold face, is defined as:

P(X) = {(xi, P (X = xi)|xi ∈ X(Ω)} ,

where X = xi ⇔ {ω ∈ Ω : X(ω) = xi}.

Analogously to P (X = xi), P (X ∈ I) can be defined with the probability P over Ω:
X ∈ I ⇔ {ω ∈ Ω : X(ω) ∈ I}.
X(Ω) is called the value range of X (alternatively also called domain or state space).

Definition 12 holds for both, continuous and discrete, finite value ranges which rep-
resent finite subsets of R. If X has a discrete value range, it is called a discrete random
variable. A special case of a random variable with discrete value range is constituted by
boolean random variables which have only the values true and false: X(Ω) = {0, 1} with
0 = false and 1 = true.

In the case of discrete RVs the probability distribution can be represented as a vector
of the probabilities for all values in its value range, or, more frequently as a probability
table. The probability distribution of a continuous RV is represented as a probability
density function (PDF).

With the notation, this work follows Russell and Norvig in [66]:
Random variables shall be represented with capitalised names, e.g. X, sets of RVs are
denoted in bold face like X.

Values shall always be represented with a lower case initial letter, e.g. xi. A shorthand
notation used throughout this work is the following: P (X = xi) = P (xi). X = xi can
be called an instantiation of X. An instantiation of the set of RVs X is a combination of
values Xi = xiji∀Xi ∈ X, denoted as x.

The probability of a set of events or values of RVs is also defined. It is written
equivalently in the notations P (X = xi ∩ Y = yj) = P (X = xi ∧ Y = yj) = P (X =
xi, Y = yj). Analogously, the probability distribution of combinations of RVs, the so
called joint probability distribution (JPD), is written as P(X = xi ∩ Y = yj) = P(X =
xi∧Y = yj) = P(X = xi, Y = yj). With this notation P(X) is the probability distribution
of a set of RVs X and P (X = x) = P (x) is the probability of the instantiation x of X.

A JPD of discrete RVs is represented by a table assigning probabilities to every in-
stantiation of the cross product of all involved value ranges. A conditional probability
distribution (CPD) of X and Y encodes P (X = xi|Y = yi)∀i, j and is denoted P(X|Y ).
For discrete RVs, the CPD is represented in a conditional probability table (CPT).

Random variables whose values are observed are called evidence. It is distinguished
between soft evidence which specifies a probability distribution for the evidence, and hard
evidence. The latter can be seen as a probability distribution in which one value e has
P (e) = 1 or as a direct instantiation of the evidence node E with E = e. Both views are
equivalent. If not further specified evidence will refer to hard evidence.

The probability distribution of X in the absence of other information is called prior
probability distribution or short prior. The probability distribution of X with given evi-
dence E, P(X|E), is called the posterior (probability distribution).
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Calculating with probabilities:
Calculating with probability is based on Kolmogorov’s axioms [66]. A first fundamental

rule for Bayesian techniques based on these axioms is the determination of a conditional
probability with unconditional probabilities. It is defined by the product rule of the events
x and y:

P (x ∧ y) = P (x|y)P (y) = P (y|x)P (x) (2.1)

Bayes’s theorem uses this rule and transforms it to calculate P (x|y) based on P (y|x).
It can be generalised to the probability distribution of random variables as [66]:

P(Y |X) =
P(X|Y )P(Y )

P(X)
(2.2)

Note that this notation does not express a division by a vector or a matrix. It is a

shortcut for the matrix P(Y |X) with entries P (yj |xi) =
P (xi|yj)P (yj)

P (xi)
,∀i, j, P (xi) 6= 0.

An important technique for calculating the probability of an event or the probability
distribution of a random variable is called marginalisation or summing out. It calculates
the wanted probabilities by summing the probabilities given z, for all elements z of the
value range of another random variable Z.

P(X) =
∑
z

P(X,Z = z) =
∑
z

P(X, z) (2.3)

A variant is called conditioning. It transforms the joint probabilities in equation (2.3)
with the help of the product rule in equation (2.1) to:

P(X) =
∑
z

P(X|z)P (z) (2.4)

The chain rule is another application of the product rule. It holds for events just like for
complete random variables, which is useful for decomposing joint probability distributions:

P(X1, ..., Xn) =

n∏
i=2

P(Xi|Xi−1, ...X1) ·P(X1) (2.5)

A further useful technique depends also on the product rule. If equation (2.1) is applied

to a random variable X resolved to calculate P(X|y) = P(X,y)
P (y) one can easily see that the

factor 1/P (y), P (y) 6= 0 does not change for all possible values of X. It can therefore be
considered a normalisation factor which eases some calculations.

The notion of independence helps to ease many calculations, as it reduces the size of
the domain representation [66]. Two events x and y are independent, iff:

P (x|y) = P (x) (2.6)

The same holds for RVs X and Y [66]:

P(X|Y ) = P(X) (2.7)
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More simplifications are possible with the notion of conditional independence. Two
RVs X and Y are conditionally independent given a third variable Z, iff:

P(X,Y |Z) = P(X|Z)P(Y |Z) (2.8)

This is equivalent with P(X|Y, Z) = P(X|Z). One can say that Z separates X and Y
[66].

With these concepts and rules, the “language” used in probability theory is more
expressive than propositional logic [66]. It is a real superset, because all elements of
propositional logic can also be represented with the language of probabilities, and in
addition more degrees of belief than true or false can be assigned.

2.3.2 Bayesian Networks

HighlevelActivityMotionActivityIMU_Data

BlogCalendarLocationLocationSensors

Time

AvailabilitySituation

PersonsInVicinity

NoiseLevelAmbientMicrophone

Figure 2.7: Structure of an example Bayesian Network for a grossly simplified call redirection service
like the one presented in section 1.2.1. Availability is influenced by the T ime of the day and the currently
performed HighlevelActivity, which in turn is influenced by the person’s Location and MotionActivity,
as well as his or her Calendar and the current time. This high-level activity becomes manifest in a Blog
and influences together with the PersonsInV icinity the Situation of the environment that is reflected
in the ambient NoiseLevel also. LocationSensors, IMU Data and AmbientMicrophone are the sensors
measuring and therefore caused by Location, MotionActivity and NoiseLevel respectively. As they carry
evidence they are shown in boldface.

Bayesian Networks (BNs) are graphical models that represent the dependencies among
random variables and give a concise specification of the full joint probability distribution.
They are also known under the terms belief network, probabilistic network or knowledge
map.

Definition 13 Bayesian Network :
A BN is a triplet (V,E,P) with a set of RVs V = {A1, A2, . . . , An}, a cycle free set of
directed dependencies E ⊆ V×V between these RVs and a joint probability distribution

P(V ) = P(A1 ∩A2 ∩ · · · ∩An) =
n∏
i=1

P (Ai|Pa(Ai)) , (2.9)

where the set Pa(Aj) = {Ai|Ai ∈ V ∧ (Ai, Aj) ∈ E} can be interpreted as the parents of
Aj .
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Such a graph takes advantage of the fact that with its explicit dependencies, a BN
exploits the conditional independence to represent a JPD more compactly than with a full
specifications of all probabilities among the events of all random variables in the network.
Every RV is represented by a node or vertex in the graph, every dependency (Ai, Aj) by
a directed edge from node Ai to node Aj . The set of children of Aj , Ch(Aj), of Aj is
defined analogously to Pa(Aj).

A particular view on BNs are Causal Networks [63], where dependencies are interpreted
as causal influence. Hence, an edge (Ai, Aj) is drawn from the cause Ai to the consequence
Aj . Russell and Norvig in [66] show that this view leads to a more sparse representation of
the JPD. Moreover, it makes understanding of such a network very intuitive, in particular
with a graphical representation of the BN. A BN can be drawn as a directed acyclic graph
(DAG) like the one in Figure 2.7.

With the structure (RVs and their dependencies) and the CPDs these networks con-
tain the information known about a specific domain represented by the BN. They are a
knowledge representation and maintenance format. The observation that RV Aj = aj,y
sets P (Aj = aj,y) = 1 and P (Aj = aj,x) = 0,∀x 6= y. In the case of discrete RVs, this
can be interpreted as “selecting a column” of the conditional probability tables of all child
nodes, and removing the node itself from the BN.

Introducing soft evidence in a RV can be represented equivalently by adding a boolean
child node to the observed node [50]. The CPT of the child node has to represent the
same relations as the soft observations, as represented in Figure 2.8. Hard evidence in the
child node is then equivalent to soft evidence in the actually observed node.

Z

… …

… …

Z

… …

… …
SoftEvidence

0.1z2

0.2z1

0.7z0

P

0.3

0.7

Z=z0

0.90.8noEvidence

0.10.2evidence

Z=z2Z=z1

0.1z2

0.2z1

0.7z0

P

=

Figure 2.8: Simulation of soft evidence by hard evidence: Node Z on the left side is assigned soft evidence
with a belief of 70 % in the value z0. A table next to a node represents its probability distribution with
its values in the first column; a conditional probability distribution has the values it is conditioned on in
the first row. On the right side, node Z has the same belief by propagation of the belief of its special child
node, called SoftEvidence. This node represents a binary RV with value range {evidence, noEvidence}
and the conditional probabilities that encode the degree of evidence. If the node SoftEvidence is assigned
hard evidence in the value evidence, node Z has the same (posterior) probability distribution as on the
left side with soft evidence.

Note that this work focuses mainly on BNs with discrete random variables. Where
necessary and possible, the value range of continuous random variables was discretised so
that this assumption holds. For details how hybrid Bayesian networks can be represented
using both, discrete and continuous RVs, see [66].

An important concept for BNs is d-separation with the ”d” standing for dependence.
It helps to reduce the network to relevant parts of it for given observations and a specific
target RV whose state is queried. If two variables are d-separated relative to a set of
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variables Z, then they are independent conditional on Z in all probability distributions of
its BN.

Xi Yj

M

Xi Yj

M

Xi Yj

M

(a) chain (b) fork (c) collider

Figure 2.9: Different dependency constellations for three random variables. The d-separation of nodes
depends on the direction of the arcs between them.

A set Z is said to d-separate node set X from node set Y, iff Z blocks every path from
a node in X to a node in Y [63]. A path is a sequence of consecutive edges including
at least two nodes. A path is called blocked or d-separated if a node on the path blocks
the dependency. This is the case if the path p and the set of observed nodes Z are in a
constellation in which

• p contains a chain Xi → M → Yj (see Figure 2.9 a) or a fork Xi ← M → Yj (see
Figure 2.9 b), Xi ∈ X and Yj ∈ Y, such that the middle node M ∈ Z, or

• p contains an inverted fork (or collider) Xi → M ← Xj (see Figure 2.9 c), Xi ∈ X
and Yj ∈ Y, such that the middle node M /∈ Z and such that no descendant of M
is in Z.

A construct applying d-separation is the Markov Blanket introduced by Pearl in [62]:
Markov blanket MB(X) of random variable X denotes a set of nodes that d-separates X
from the rest of the network V \ (X ∪MB(X)). The minimal Markov blanket is called
Markov Boundary .

Assuming evidence in all nodes of the network but X, this concept implies that X is
conditionally independent of all other nodes in the network, given its parents, children,
and children’s parents – these constitute its Markov boundary [66]. Under such conditions,
the Markov boundary of a node is the only knowledge needed to infer the state of that
node [62]. The values of the parents and children of a node evidently give information
about that node. Its children’s parents have to be included, because they can be used to
explain away the node in question.

For the node HighlevelActivity the Markov Blanket is shown yellow in Figure 2.10 as-
suming that at least Situation, MotionActivity and Location carry evidence, so information
from LocationSensors, IMU Data and NoiseLevel is blocked.

A well known algorithm for determining a node’s Markov boundary is the Bayes Ball
algorithm developed by Shachter in [67]. Its run-time is linear in the size of the BN and
visits each node only once, determining irrelevant sets and requisite information among
the random variable. It simulates a ball passed from the queried node(s) to all neighbours
and the ball is passed on, bounced back or blocked by the node, depending on the node’s
observational status and the relation to the node the ball is coming from. The exact rules
are given in Figure 2.11. A node is in the Markov boundary, iff it has been visited by the
ball.

Obviously the Markov boundary depends on the evidence in the BN. Soft evidence
however has to be treated differently from hard evidence. The behaviour can be under-
stood easily with the help of the equivalent construction shown in Figure 2.8, hard evidence
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HighlevelActivityMotionActivityIMU_Data

BlogCalendarLocationLocationSensors

Time

AvailabilitySituation

PersonsInVicinity

NoiseLevelAmbientMicrophone

Figure 2.10: The Markov boundary (yellow) of the node HighlevelActivity in the example BN from
Figure 2.7 when at least Situation, MotionActivity and Location carry evidence. It contains the node’s
parents, children and the parents of the children without the node itself.

X

X X

X

Figure 2.11: Rules of Shachter’s Bayes Ball algorithm. Gray random variables carry evidence, white
ones do not. The arrow to the left of the random variable determines if the ball is coming from a child
or parent node, the right arrows (if any) and their direction show if the ball is passed on to parents or
children.

in a child node. If the soft evidence is added to a node in the fork or chain constellation,
it is not blocking the path, in the case of a collider constellation it blocks the path and
therefore d-separates random variables that are connected by (only) this path.

Bayesian Networks can be grouped into equivalence classes, classes whose members all
have equivalent network structures.

Definition 14 Equivalent Bayesian networks:
Two BN structures are said to be equivalent if the set of independence relationships that
can be represented with one of those structures is identical to the set of independence
relationships that can be represented with the other [52].

This means in particular that all networks are equivalent if and only if they have the same
undirected structure and the same collider (see Figure 2.9) structures, as has been shown
by Verma and Paul in [69].

There are means to simplify inference in Bayesian Networks by making additional
assumptions. Such is the Näıve Bayes model. It says that a single cause directly influences
a number of effects which in turn are all conditionally independent from each other given
the cause. This results in a simple BN structure with an easy to compute JPD:

P(Cause,Effect1, ...,Effectn) = P(Cause)
n∏
i=1

P(Effecti|Cause) (2.10)
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Even if the assumption does not hold in reality, it yields good results in many situations
at very low inference costs. For instance it is often used for spam detection in e-mail.

Other means of simplification, such as Noisy OR, can be found in the literature, for
instance [66].

2.3.3 Probabilistic Inference

This section shall present the complexity of the inference problem in general. After that,
the different approaches to probabilistic inference are introduced, ranging from exact in-
ference over approximating the posterior probability to real-time inference, working under
time constraints.

Probabilistic Inference in BNs or belief updating [85] means calculating P(X|E) of a
set X of RVs given evidence E. There are many different ways for inference, all building
on Bayes’ theorem from equation (2.2).

Note that a further inference task is belief revision, also known as Maximum A Pos-
teriori (MAP) explanation or most probable explanation (MPE). Its task is to find the
most probable instantiation of some random variables, given the observed evidence. The
algorithms used for belief revision are however often the same as for belief update, with
only small modifications [85].

2.3.3.1 Inference Complexity

Inference complexity depends to a large extent on the structure of the DAG. Literature
distinguishes (next to trivial serial structures) three structure types that are shown in
Figure 2.12: BNs are called tree structured, when for each node in the DAG there is
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Figure 2.12: Examples of (i) a DAG of a tree structured BN, (ii) a DAG of a singly connected BN, and
(iii) a DAG of a multiply connected BN taken from [96].

exactly one parent, except the root which has no parent node. For an m-ary tree and
q values in the value range of each RV, 2q2 + mq + 2q multiplications per update are
necessary [96]. This is hence an upper bound for trees with at most m children per node
and at most q values the value range of any node. As m is always smaller than the number
N of RVs in the network, inference complexity is O(N), if we assume an upper bound for
q. As q is not directly related to N it does not have to grow with the number of nodes in
the network.

In singly connected BNs (or also polytrees), where at most one undirected path exists
between any two nodes in the DAG, or multiply connected BNs, the most general type, in
which more than one undirected path exists between at least one pair of nodes, however,
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belief updating is a NP-hard problem in the number of nodes N , as Cooper has shown in
[82] by polynomially reducing the known NP-complete 3SAT problem [81] to probabilistic
inference.

Literature often claimed that there were time efficient solutions for inference in singly
connected BNs. With O(N · qe) (N being the number of RVs, q the maximum cardinality
of value ranges, and e the upper boundary for the number of parents of any RV) it was
linear in the size of the networks, i.e. the number of entries in the CPD tables, with a
bounded number of parents in the network, the complexity would also be linear in the
number of nodes [89, 66]. Wu and Butz however showed in 2005 [96] that the community’s
opinion was inconsistent. Polynomially reducing a variant of 3SAT, 3SATV, which is also
NP-complete, into a decision problem for Bayesian Networks, it can be shown that the
BNs resulting from a polynomial transformation of the 3SATV problem are always singly
connected. Hence also inference in singly connected BNs has to be NP-hard. Linear
complexity can only be assumed if q and e are bounded. But as e depends on N (it can
be up to N − 1), then O(N · qe) “can not be simply considered as linear (or polynomial)”
[96].

In 1993, Dagum and Luby proved in [83] that even approximation of inference in its
general case is intractable. Absolute and relative approximation could be shown to be NP-
hard. Although they are not NP-complete, Dagum proves that the existence of a efficient
solution would imply NP ⊆ P and therefore NP = P , which is widely disbelieved [83].

Finally, also belief revision, in exact and approximated inference has been shown to be
NP-hard, see [85] for details.

2.3.3.2 Exact Inference Approaches

Inference is simple if all nodes in the Markov boundary of the requested node carry evi-
dence. The usage of Bayes’ theorem will provide the result without significant computa-
tional burden. For the general case, many methods have been proposed, see for instance
the comprehensive overview in [85]. In total, seven different concepts with many variants
have been proposed which can be seen in Figure 2.13.

A first general approach is called Variable Elimination. It eliminates not queried
variables by summing them out, taking care that factors in the probability calculation
are calculated as few as possible. I.e. factors that are used several times are calculated a
first time and the result is stored for further use. Marginalisation is performed only for
such portions that really depend on the marginalised variable [66]. Therefore an optimal
elimination ordering should be used – finding it however is NP-hard [85].

Symbolic probabilistic inference applies techniques to solve inference as a combinato-
rial factoring problem given a set of probabilistic distributions, the differential approach
transforms a BN into a multivariate polynomial and computes partial derivatives for all
variables. Queries are constant in time then, the construction of the model however is
NP-hard [85].

Arc reversal was introduced by Shachter in [91]. Its idea is to use Bayes’ Theorem
and a series of other operators as often as necessary to reverse edges in the BN, until the
evidence node is a direct parent of the queried node.

The polytree algorithm was published by Pearl in [89] and works, as the name suggests,
only for singly connected networks. It is however fundamental for the class of Conditioning
algorithms. Conditioning turns multiply connected BNs into singly connected ones by
instantiation of variables that cause the multiple connections and applies the polytree
algorithm then. The results are weighted then with the prior probability of the instantiated
value. Finding the minimal set of nodes to be instantiated however is NP-hard.
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Figure 2.13: Different Approaches for Probabilistic Inference. This tree shows the categorisation of
inference classes introduced by Guo and Hsu in [85].

A widely used Clustering algorithm was invented by Lauritzen and Spiegelhalter [88],
known today under Probability Propagation in Trees of Clusters (PPTC). For the linear
time complexity of inference in tree-structured BNs, arbitrarily structured BNs are trans-
formed into trees of super-nodes, the so called clusters. Inference is performed in this tree,
before the queried node is marginalized from it. As this method is the most used one in
general [66] and in this work, it shall be described more in detail:

Probability Propagation in Trees of Clusters:
PPTC takes advantage of proven fast inference algorithms in tree-like structured BNs.

It therefore transforms the possibly multiply connected network into a tree of supernodes,
so called cliques or clusters [86], in which the message passing algorithm can be used for
propagation of probabilities.
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Figure 2.14: Example of a moralised and triangulated BN. The example BN on the left side is first
moralised: all parents of a node are connected – represented by the red dashed lines – before the directions
are removed. Then the undirected graph is triangulated, i.e. all non-adjacent nodes in cycles are connected
– which is represented with the blue dashed and dotted lines.
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To form these trees of clusters, also called Join Trees, Junction Trees, or short J-Trees,
the DAG of the original BN has to be moralised (linking all parent nodes of a node, see
the red dashed lines in Figure 2.14 b, and removing the directions from the edges) and
triangulated.

A graph is triangulated, iff every cycle of length four or greater contains an edge that
connects two non-adjacent nodes in the cycle [86], see the blue dashed/dotted lines in
Figure 2.14 b) for instance. To this end, edges are added to the moralised graph until
the condition is fulfilled. This process is not deterministic and depends on the arbitrary
node ordering. An optimal triangulation is one that minimises the sum of the value range
sizes of the clusters of the triangulated graph (and hence implicitly the number of added
connections). Finding an optimal triangulation is NP-complete [80]. In practice, however,
greedy, polynomial-time heuristics can be used which produce high-quality triangulations
in real-world settings like the one presented in [86].

Clusters are the maximal and complete undirected subgraphs in the triangulated graph
(see Figure 2.15) that represent original nodes with their related nodes. Complete means
that every pair of distinct nodes is connected by an edge. Maximal means that the clique
is not properly contained in a larger, complete subgraph [86]. They are assigned the
potential6 of the contained nodes. A Sepset (also called separator) is representing an
edge in this supernode tree and assigned with the potential of the intersection of the two
clusters linked by it.

ADEABD ACE

DEF EGH

CEGAEAD CE

DE EG

Figure 2.15: Junction Tree of the example BN of Figure 2.14 a. The triangles from Figure 2.14 b
are grouped into clusters and connected to their neighbours via sepsets that carry the potential of the
intersection of the adjacent clusters.

The probability propagation algorithm in such a junction tree can follow the efficient
concepts of inference in tree structured BNs. The one used for PPTC is called message
passing and works by passing and receiving messages between its clusters via the sepsets.
Each cluster collects evidence from its neighbours only once, and once it has done that it
sends out its own evidence when its neighbours request it. The end result of this is that
the network gets propagated and consistent in a definitely finite number of steps [86].

To finally obtain the queried posterior probability, the probability distribution of the
cluster has to be marginalised for the queried RV and normalised. Hence, once a junction
tree has been set up and propagated, no complex calculations of probability are needed
for inference, but only a summation over a clique.

This approach works efficiently for sparse networks, but has problems with dense net-
works, as its complexity is exponential in the size of the largest clique [85]. Further details
on the implementation can be found in tutorial [86].

6A potential Φ over a set of variables X is defined a function that maps each instantiation x into a
non-negative real number [88] with defined multiplication and marginalisation. A probability distribution
is a special case of a potential whose elements add up to 1.
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2.3.3.3 Concepts for Approximate Inference

To overcome computational hurdles imposed by the high complexity, an approach is to
approximate the inference. There are in general two different classes of inference approx-
imation Zε with boundary ε of P(X|E) [83].

• Relative Approximation, if Zε ∈
[
P(X|E))

(1+ε) ; P(X|E)) · (1 + ε)
]

• Absolute Approximation, if Zε ∈ [P(X|E) + ε; P(X|E)− ε]

A large range of approximation algorithms has been invented in the literature, see
[84] for a detailed overview. Figure 2.13 shows four different categories for approximated
inference approaches:

Search based methods rely on the assumption that only a fraction of the joint probability
space contains a majority of the probability mass. Hence they search for high probability
instantiations and obtain approximations from them [85].

Loopy Belief Propagation finally is the application of Pearl’s polytree algorithm [89] to
multiply connected BNs. This family can perform well in situations like error-correcting
codes, but can fail to converge or can give poor results in other cases [85].

Model simplification algorithms contain different approaches to simplify the network
(nodes, dependencies and value ranges) until exact inference becomes computationally
feasible [85].

In particular Wellman’s and Liu’s approach from [95] is worth mentioning. It is an
approach reducing the cardinality of the random variables’ value ranges to reduce inference
time. Reducing the granularity of value ranges, they trade accuracy against computational
efficiency. Assuming an ordered value range, they always cluster adjacent values to a
superstate.

In order to reduce complexity moreover, the state space abstraction model ignores
possibly newly introduced conditional dependencies given a superstate and conditional
probabilities depending on the superstate are approximated by a uniform distribution of
the merged initial states. This approach is only viable for discrete, ordered value ranges.

Stochastic simulation algorithms, the largest group for approximate inference, generate
random samples or instantiations of the network according to its CPD and answer the
query according to the sample set. The bigger the sample set, the more accurate, but also
the more time consuming is the approximated inference.

A subgroup of stochastic simulation algorithms is called importance sampling. The
CPDs are approximated by samples which are independent from each other. The main
differences between algorithms in this group are the ways how they initialise and update
the importance function and generation and weighting of the samples. In particular for-
ward and backward sampling select the samples differently. For forward sampling, samples
are created following the direction of the edges. These algorithms are not very well suited
for BNs with unlikely evidence, as it takes long until they are sampled [85]. Backward
sampling has advantages there, as it allows for generating samples from evidence nodes
also against the direction of the edges. An improvement is the usage of an (optionally con-
tinuously updated) importance function that determines the distribution of the samples.

In Markov Chain Monte Carlo (MCMC) methods in contrast, samples are dependent.
They perform well if there are no extreme probabilities [85] which prevent convergence.
MCMC sets the evidence as specified in the query and then sets randomly values for
the non-evidence nodes. Based on this initialisation it samples a randomly chosen non-
evidence node by calculating its values based on the previous set values for the nodes in
its Markov boundary [66]. This process is repeated iteratively.
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This sampling process settles into a dynamic equilibrium in which the long-run fraction
of time spent in each state is exactly proportional to its posterior probability and therefore
returns consistent estimates for posterior probabilities. The proof is sketched in [66].

2.3.3.4 Real-Time Inference Concepts

In real-time computing systems there is a time constraint on computations. Once the
deadline has passed, the utility of the result degrades massively. Real-time inference
methods are designed to have an inference result within the time constraints. This is
realised with two general approaches:

• Anytime Algorithms refine a first, imprecise calculation iteratively and therefore have
always a return value for the requester.

• Multiple Methods Approaches use different methods for the same task in parallel.

Multiple methods approaches benefit from the fact that different approaches can be
differently appropriate for the given task. With multiple solutions for a task, a trade-off
can be made between solution quality and time [85]. Anytime algorithms in contrast have
the advantage that they can be always interrupted and have a solution ready which is
iteratively refined the longer the algorithm runs.

An example of an anytime algorithm is also Wellman’s approach for “State Space
Abstractions” [95]. They start with only one superstate per RV and refine by doubling
the number of states.

2.3.4 Learning Bayesian Networks from Data

The last section has shown how posterior probabilities can be inferred in Bayesian net-
works. The latter can be constructed by human domain experts – but also learnt from
previously collected evidence. In particular it is interesting that it can be reduced to
another problem of inference in Bayesian networks [66].

Generally, learning of Bayesian networks can be divided into learning of the BN pa-
rameters (the conditional probability distributions that define the network quantitatively)
and learning of the structure, i.e. the links between the RVs. The methods applicable to
it depend on the nature of the data set which can be complete or incomplete. Structure
learning for incomplete data encompasses also the most complicated case where hidden
variables can be identified and learnt.

The following sections shall give an overview about the general problem and process of
learning, parameter learning from complete and incomplete data sets as well as structure
learning. The methods described here can also be applied to learning dynamic BNs (see
section 2.3.5) [66], but we will focus here on methods for static Bayesian networks with
discrete (and finite) random variables.

2.3.4.1 Statistical Learning

The key concepts for learning are hypotheses about the network structure, denoted by the
(not directly observable) RV H and data, from the history of evidence. Data d are N
instantiations of the observed RVs with d = {di}, 1 ≤ i ≤ N , where di is one instantiation
of all observed random variables.

Bayesian learning calculates the probability of each hypothesis given the data and
infers based on all hypotheses weighted by their probability [66]. Assuming that the
hypothesis alone determines a probability distribution P(Xi), that the observations are
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independently and identically distributed and that the observations are conditionally inde-
pendent given H, P(Xi|d) depends only on the hypothesis prior P(hi) and the likelihood
of the data under each hypothesis P (d|hi), as shown in the following equation:

P(Xi|d) =
∑
i

P(Xi|d, hi)P (hi|d)

=
∑
i

P(Xi|hi)P (hi|d) = α
∑
i

P(Xi|hi)P (d|hi)P (hi)

= α
∑
i

P(Xi|hi)P (hi)
∏
j

P (dj |hi) (2.11)

for a normalisation vector α.

This full Bayesian approach however is often impractical since it is computationally too
expensive [75, 76], as the number of hypotheses is more than exponential in the number
of nodes of the BN. This makes the full Bayesian approach intractable.

In this case approximate solutions to Bayesian learning are used. Two general ap-
proaches are Model Selection and Selective Model Averaging. The former approach rates
some of all hypotheses and uses the best found, as if it were the correct model. The latter
approach selects a manageable number of good models and pretends they would represent
all hypothesis, i.e. be exhaustive [76].

One type of model selection uses the following approximation: it tries to select the
most probable solution as the single one based on the observations that “the true hy-
pothesis eventually dominates the Bayesian prediction” [66]. Using the hypothesis hi with
arg maxhi P (hi|d) is the MAP approach. The approximation yields then

P(Xi|d) ≈ P(Xi|hMAP) . (2.12)

A variant of MAP is called minimum description length (MDL). It attempts to minimise
the size of the hypothesis and the data encoding. Applying the binary logarithm to
hMAP which tries to maximise P (d|hi)P (hi) one sees that this is equivalent to minimis-
ing − log2 P (d|hi) − log2 P (hi), i.e. the length of the binary representation of data and
hypothesis [66].

Another commonly used simplification to MAP is the maximum likelihood (ML) es-
timator [76]. It is based on the additional assumption that the hypotheses’ priors are
uniformly distributed. MAP reduces hence to finding the hypothesis hi that maximises
P (d|hi). This approach is a good approximation for large data sets, but has problems
with small data sets [66].

2.3.4.2 Learning Bayesian Network Parameters from Complete Data

Learning network parameters θi ∈ [0; 1] for some random variable Xi under the ML con-
dition is the easiest task of learning, consisting of three basic steps [66]:

1. Description of P (d|hθ) as a function of the parameters θi for all i necessary to
describe the BN.

2. Determination of the derivative of the log likelihood L(d|hθ) = logP (d|hθ) with
respect to each parameter.

3. Determination of the maximum of P (d|hθ) by setting the derivative L̇(d|hθ) = 0
and resolving for each parameter.
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This works quite efficiently for complete data, as the log likelihood allows for separating
the learning problem for the whole BN in distinct learning problems per parameter.

However this approach has shortcomings for small data sets, where possibly not all
less likely cases are observed. The full Bayesian approach to parameter learning instead
uses a hypothesis prior for the parameters and updates them based on the observations.
The prior probability distribution P(Θi) thereby has to be a continuous distribution,
computations with it have to be feasible efficiently and in a closed form. Candidates
for the prior and posterior probability distributions are in particular beta distributions
for binomial variables or the Dirichlet distribution Dir(Θi, ai,1, ..., ai,r) [66, 75, 71] for
multinomial variables with the following density:

Dir(Θi, ai,1, ..., ai,r) = α

r∏
k=1

θ
ai,k−1
k , (2.13)

where ai,k > 0, 1 ≤ k ≤ r are called hyperparameters, Θ = (θ1, ...θr) ∈ [0; 1]r and the

normalising constant α = Γ(ai)∏r
k=1 Γ(ai,k)

and ai =
∑r

k=1 ai,k. Γ denotes the well known

Gamma function [70] which satisfies ∀x > 0 : Γ(x+ 1) = xΓ(x) and Γ(1) = 1. For positive
integers Γ(x) = (x− 1)!.

Heckerman shows in [75] that prior distributions can be calculated as follows:

P (Xi = xi,k|d) =

∫
θi,kDir(Θi, ai,1 +N1, ..., ai,r +Nr)dΘi =

ai,k +Ni,k

ai +Ni
, (2.14)

with the number Ni,k of observations dn ∈ d containing Xi = xi,k and Ni =
∑

kNi,k.

For learning the conditional probabilities of Xi = xi,k the parameter Θi has to be
extended to represent all values θijk = P (xi,k|paj(Xi)) with the instantiation j of the
parents Pa(Xi) of Xi. Accordingly, the Dirichlet distribution depends on hyperparameters
aijk:

P(Xi = xi,k|Pa(Xi) = paj(Xi),d) = P(Xi = xi,k|paj(Xi),d) =
aijk +Nijk

aij +Nij
, (2.15)

with the number Nijk of observations of observations in d containing Xi = xi,k and the
instantiation j of its parents Pa(Xi) = paj(Xi), Nij =

∑
kNijk, and aij =

∑
k aijk.

For implementation the hyperparameters ai,k and aijk are chosen as small positive real
numbers in relation to the Ni and Nij respectively. They must not be 0 to avoid zero
probabilities which might not reflect the reality and are due to a too small data set d.

An idea for learning is to incorporate the parameters as continuous RVs in the Bayesian
network, as shown in Figure 2.16. For every evidence configuration dn ∈ d respective
nodes Xi,n can be added to a BN linking to the same parameter node Θi|Pa(Xi). Learning
a parameter θ is reduced then to inference in Bayesian networks and finding the posterior
probability distribution of Θ [66].

2.3.4.3 Learning Bayesian Network Parameters from Incomplete Data

A more challenging task is the learning of the BN parameters, if some (or all) cases (joint
measurements) in D have unobserved random variables. The approach described above
does not work if any Xi,n is unobserved, as the the corresponding parameter Θi|Pa(Xi) is
then not d-separated from the rest of the network and cannot be inferred individually any
more. The fact that a RV value is missing may be completely random or again dependent
in some way on the RV itself or other RVs in the scope.
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Figure 2.16: A Bayesian network that corresponds to a Bayesian learning process, incorporating the
nodes Θp1 , ...,ΘpNp for Xi’s parent nodes Xp1 , ..., XpNp and Θi|Pa(Xi) for Xi representing the parameters
for their probability distributions.

For missing data algorithms can be employed from the class of expectation maximiza-
tion (EM) introduced in [74]. EM uses probabilistic inference based on the known data to
complete the data set and re-estimates the RVs parameters then including the estimated
data (as if they were observed) until a local maximum is found.

If x are all the observed values in all evidence RVs and Z are all the hidden variables
in all the evidence, then the EM algorithm can be formulated as [66]:

θ(i+1) = arg max
θ

∑
z

P (Z = z|x, θ(i)) logP (x,Z = z|θ(i)) (2.16)

It consists of two steps:

1. In the E-step, the expected values of the hidden variable are computed. This step
is represented in Eq. (2.16) in the summation, which is the expectation of the log

likelihood logP (x,Z = z|θ(i)) of the “completed” data with respect to the posterior
over the hidden variables given data.

2. In the M-step those parameters are selected that maximise the expectation of the
log likelihood. This step is represented in Eq. (2.16) in the maximisation of the
E-step with respect to the parameters.

Computation of the E-step is often computationally intractable and requires the usage
of approximate approaches such as MCMC [66].

2.3.4.4 Structure Learning

In the last sections, methods were presented to learn probability distributions for given
structures of Bayesian networks, i.e. given variable names and dependencies. These can
be set up by human experts, but can also be learnt from the same data d (representing
the random variables Xi, 1 ≤ i ≤ n) as the parameters. The generic solution to this was
already sketched in section 2.3.4.1. This section shall briefly present the structure learning
approach by Cooper and Herskovits from [71] when all nodes are observed in the data,
before the process for structure learning with hidden nodes is sketched.
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The aim is to maximise the posterior probability of the network structure P (H|d)
which is equal to α · P (d|H) · P (H) where α is the normalising constant. Assuming
equally likely network structures we can maximise the Cooper Herskovits score [71]:

P (d|H) =

n∏
i=1

qi∏
j=1

Γ(aij)

Γ(aij +Nij)

ri∏
k=1

Γ(aijk +Nijk)

Γ(aijk)
, (2.17)

where qi is the number of parent configurations of node Xi (i.e. the product of the number
of values in the range of all parent nodes) and ri is the number of values in the range of
Xi. The data set is used to count the numbers Nijk for all 1 ≤ i ≤ n, 1 ≤ j ≤ qi
and 1 ≤ k ≤ ri which denote the number of times that joint measurement of random
variable Xi with value index k and its parent configuration j was observed in the data d.
Similarly, Nij =

∑ri
k=1Nijk. The values of aijk and aij =

∑ri
k=1 aijk are the parameters

of the Dirichlet prior distribution on the conditional probabilities for node Xi. There are
various fundamental approaches to assigning the priors in a practical manner [75].

A network with n nodes has about 3
n2−n

2 possible network structures (directed cycles
are not excluded by this number). I.e. when n = 10, there are more than 2 · 1021 possible
structures and the number is growing faster than exponentially. Since these numbers are
far too large for realistic n to assess with Eq. (2.17), suboptimal approaches have to be
resorted to, i.e. model selection or selective model averaging as shown in section 2.3.4.1.

An often used heuristic algorithm for finding an optimal network structure (hence
model selection) is the K2 approach presented by Cooper and Herskovits in [71]. It
uses greedy hill climbing to search the network space employing random restarts to avoid
getting stuck in local maxima. The modularity of Eq.(2.17) is used to shorten calculations:
A typical greedy hill climbing search will make one arc change (addition, removal or
reversal) per step and as a result not all product terms need to be recomputed. To avoid
recalculation of terms they can be cached node by node for all explored combinations of
their parent nodes.

The appropriateness of every network structure is evaluated then by a score function
and only the higher scoring structure is followed. The value of P (d|H) indicates how
well the network hypothesis H encodes the dependencies between the RVs; often the best
network will be many orders of magnitude better in score than the second best [75]. To
reduce computational burden, Cooper and Herskovits in [71] use the log likelihood of
P (d|H) which transforms the multiplications into additions which are less costly.

Learning of structures with missing data contains in particular the case of hidden
variables where there are some RVs which are never observed. When trying to learn hidden
variables, structural EM introduced in [74] or combinations of data imputation and EM
such as described in [79] can be applied. Hidden variables can be learnt automatically
by identifying areas in the network that could benefit from a new hidden variable [73];
recent work has developed algorithms with improved convergence using the information
bottleneck principle [72]. To date however there is no approach efficient enough to be
practical in most real-world applications [71].

Again, the main idea of structural EM is to use a current model to evaluate new
structures. Iteratively the current model helps to find either better scoring parameters or
a better scoring structure.
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2.3.5 Dynamic Bayesian Networks

A dynamic Bayesian network (DBN) is a Bayesian network that represents sequences
of variables. These sequences are often time-series [61], for example in speech recogni-
tion. Such sequences can be considered as a series of time slices, each containing random
variables and their dependencies. For convenience it is assumed that the same subset
of variables is observable in each time slice, although this is not strictly necessary [66].
The observable RVs are called evidence variables and denoted as Ei, the unobserved ones
are called state variables and denoted Xi. Sets of variables are denoted in bold, i.e. for
instance the set of evidence variables is E, the state variables X.

To indicate the current snapshot of a random variable, the number of the time slice is
added as an index. X at time t for instance is denoted Xt, if the random variable already
has an index, the time index is added after a comma. Hence the RV Xi at time t is Xi,t.
A sequence of a variables X from time slice a to b is denoted Xa:b = {Xa, Xa+1, ..., Xb}.

To allow handling of DBNs, three assumptions are made [66]

1. Changes are caused by a stationary process, i.e. the possible transitions do not
change over time.

2. The current state depends on a finite history of previous states only. This is called
the Markov assumption.

3. Observations in evidence random variables depend only on the current state.

The first two assumptions define a class of processes called Markov chains or Markov
processes. The maximal length of the state history incorporated is defining the order of
the Markov process. In a Markov process of order n the following equation holds:

P(Xt|X0:t−1) = P(Xt|Xt−n:t−1) (2.18)

Markov processes of higher order however can be equivalently represented by first order
Markov processes, by simply enlarging the time slice by the random variables from previous
time slices [66]. Therefore we can reduce Eq. (2.18) to the transition model :

P(Xt|X0:t−1) = P(Xt|Xt−1) (2.19)

With the third assumption then the observation model or sensor model can be defined:

P(Et|X0:t,E1:t−1) = P(Et|Xt) (2.20)

Next to transition and observation model, a third parameter defines a DBN: the prior
probability P(X0) for the state variables at time 0. Like that it defines the full joint
probability distribution of a DBN:

P(X0:t,E1:t) = P(X0)
t∏
i=1

P(Xi|Xi−1)P(Ei|Xi) (2.21)

An example of a DBN is shown in Figure 2.17 with three state variables and two evidence
variables.

A Hidden Markov Model (HMM) can be considered as the simplest dynamic Bayesian
network. In contrast to a DBN it allows only one state variable while DBNs do not have
any structural limitations. In a regular Markov model, the state is directly visible to the
observer, and therefore the state transition probabilities are the only parameters. In a
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Figure 2.17: An example dynamic Bayesian network with three state variables X1, X2, X3 and two
evidence variables E1, E2.
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time
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Figure 2.18: Example Hidden Markov Model with only one evidence random variable E.

hidden Markov model, the state is not directly visible, but observations dependent on the
state are available [65], the evidence variables. The most simple version of a HMM is given
in Figure 2.18. It is a first order HMM with only one evidence node E.

In the case when the HMM λ consists of discrete random variables it can be represented
with matrices as:

λ ∼ (A,B, π) (2.22)

• The state transition matrix A describing the transition model: A = {aij} where
aij = P (xj,t+1|xi,t), 1 ≤ i, j ≤ N , and the value range of X is x1, ..., xN .

• The observation matrix B representing the observation model in state j, B = {bjk},
where bjk = P (ek,t|xj,t) 1 ≤ j ≤ N, 1 ≤ k ≤M .

• The initial state distribution π = {πi} where πi = P (xi,0), 1 ≤ i ≤ N is the prior
probability.

Every DBN can be transformed into a HMM, by grouping all state variables of the
DBN into one supernode in a HMM and joining all value ranges, i.e. building the cross
product. This means that HMM and DBNs are structurally equivalent. DBNs however,
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using the properties of Bayesian networks, can represent the probability distribution of
the state variables more efficiently. This is shown in [66] in an impressive example: if
20 boolean state variables were joint to a super state variable, its CPT would contain
220 single probabilities. Assuming that these state variables in the DBN have all three
parents, the number of probabilities to be specified is only 20× 24 = 320.

2.3.6 Probabilistic Reasoning over Time

Reasoning in DBNs can provide different insight. The classical task is the estimation of the
current step given evidence from the beginning until the current state. It is classification
or context inference taking into account the history of the state, hence the calculation of
P(Xt|E1:t). This process is called filtering .

The easiest approach to calculate this, is to use the standard approaches described in
section 2.3.3, as DBNs are a subclass of Bayesian networks. To do so, one has to construct
the full BN repesentation of the DBN by replicating the time slices from 0 to t. This
technique is called unrolling [66]. A näıve application of it however is dependent on all
variables E1:t – and therefore linearly increasing with t, which becomes intractable very
soon.

Besides filtering, one could also predict future states, smooth, i.e. calculate a past state
based on all available evidence up to the current state, or find the MPE for a sequence of
given evidence. This all can be reached with methods very similar to filtering, which is
why the remainder of this section focusses only on filtering.

Filters or Recursive Bayesian Estimation Techniques, also known as the Forward algo-
rithm [66, 65], represent a less näıve class of inference algorithms, using the assumptions
presented in section 2.3.5. Inference of a set of state variables X at time t+ 1 given hard
evidence E = e from time 1 to t+ 1 is calculated as follows:

P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1) (2.23)

=
P(et+1|Xt+1, e1:t) ·P(Xt+1|e1:t)

P (et+1|e1:t)
(by Bayes’ theorem in Eq. (2.2))

= α P(et+1|Xt+1, e1:t) ·P(Xt+1|e1:t)

= α P(et+1|Xt+1) ·P(Xt+1|e1:t) (by Sensor Model in Eq. (2.20))

= α P(et+1|Xt+1)
∑
xt

P(Xt+1|e1:t,xt)P (xt|e1:t) (Conditioning, Eq. (2.4))

= α P(et+1|Xt+1)
∑
xt

P(Xt+1|xt)P (xt|e1:t) (Markov Property)

α = 1
P (et+1|e1:t) is a normalising factor. As can be seen, the calculation depends on two

stages:

• Prediction stage: The transition model is used to predict the state probability dis-
tribution function from one measurement to the next.

P(Xt+1|e1:t) =
∑
xt

P(Xt+1|xt)P (xt|e1:t) (2.24)

• Update stage: The latest measurement is used to modify the prediction PDF with
the observation model.

P(Xt+1|e1:t+1) = αP(et+1|Xt+1) ·P(Xt+1|e1:t) (2.25)
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With this recursive approach, constant time and space requirements per update step
can be achieved [66]. It represents hence an improvement over näıve unrolling, by making
posterior probability updates from time t to t + 1 independent of the complete history,
whereas the resulting posterior still incorporates the information of the complete history.
This is essentially realised by summing out the state variables of the previous time step –
hence it is a form of variable elimination presented above.

Analysing the formulae, Khider observes in [58] the following:

• The prediction uses the transition model and the given previous PDF P(Xt|e1:t) at
time t to expect a PDF for the current state.

• At time step t+ 1, a measurement et+1 becomes available and is used to update the
prediction. The arrived measurement gives an indication regarding the correctness
of our prediction.

• A closer look at the update equation shows that the update equation is the prediction
equation multiplied by the likelihood P (et+1|Xt+1) and a constant. The likelihood
is calculated from the observation model. So update is the prediction weighted with
the received measurement at time t+ 1.

• In the Bayesian process the prediction and the update are repeated as time evolves.
So prediction keeps going until a measurement is received. When a measurement is
received an update happens and then prediction continues.

Also for Bayesian Filters, exact and approximated estimation approaches have to be
distinguished, i.e. optimal and sub-optimal estimators for discrete and continuous value
ranges. Important filters are presented in the following subsections.

2.3.6.1 Grid Based Filter

A Grid Based Filter provides an optimal recursion of the filtered probability distribution
P(Xt|E1:t), if the state space is discrete and consists of a finite number of states. It relies
on discrete, piecewise constant representations of the probability distributions [53].

It can apply directly the probability distributions of equations (2.24) and (2.25) and
finds the most likely value of the target node X given evidence e by calculating:

arg max
xi,t

P (xi,t|et) (2.26)

A key advantage of the grid based filter is that it can cope with arbitrary distributions
over the discrete state space. The disadvantage of grid-based approaches is their compu-
tational complexity, which makes them applicable to low dimensional estimation problems
only, such as estimating one of seven motion related activities of a person (cf. section 5.3).

If the underlying model is a Hidden Markov Model, there are efficient ways to calculate
the posterior based on matrix operations. The transition and observation model can then
be represented as matrices A and B as shown in Eq. (2.22).

With these matrices, the posterior can be calculated as a series of matrix operations
and Eq. (2.25) can be represented as:

P(Xt+1|e1:t+1) = αBATP(Xt|e1:t) (2.27)

Grid based methods can also be used for approximate filtering in cases where the state
space is continuous. Approximate grid based methods therefore quantise the state space
into n cells in order to be able to approximate the posterior density with a standard Grid
based approach.
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2.3.6.2 Kalman Filter

The Kalman filter [57] is the most widely used variant of optimal Bayesian Filters, named
after its inventor Rudolf E. Kalman. It postulates two conditions: The transition model
and the observation model are linear and all state and evidence variables are normally
distributed. Despite these strong assumptions, Kalman filters have been applied with great
success to various estimation problems [66].

The Kalman filter calculates the probability distribution over X by unimodal Gaussian
distributions, represented by their mean and variance, see Figure 2.19. While the mean
gives the expected state the variance represents the uncertainty in the estimate in the one
dimensional case.

In the multivariate case a Gaussian is represented by a mean vector µ and a covariance
matrix Σ: P(X0) ∼ N(µ0,Σ0). Gaussians remain closed under Bayesian prediction and
update [66], i.e. also the results of a filter step is a Gaussian.

x Position

z =2.51

P(x )0

P(x )1

P(x |z )11

Figure 2.19: Example for Kalman Filtering from [66]. A prior given by µ0 = 0 and σ0 = 1, transition
noise σx = 2, sensor noise σz = 1 and a first observation z1 = 2.5. P(X1) is predicted from P(X0) and
updated then to P(X1|z1) ∼ N(2.08, 0.83).

The big advantage of this property of Gaussians is that the representation of the prob-
ability distribution hence stays constant, while in general “filtering with continuous or
hybrid (discrete and continuous) networks generates state distributions whose representa-
tion grows without bound over time” [66].

Transition and sensor models can be transformed due to the linearity of the model
linearly with additive Gaussian noise to:

P(Xt+1|Xt) ∼ N(FXt,Σx) (2.28)

P(Zt|Xt) ∼ N(HXt,Σz) (2.29)

F and Σx are matrices describing the transition model and transition noise covariance,
H and Σz for the observation model analogously. The outcome of prediction and update
can be shown to be [66]:

µt+1 = Fµt + Kt+1(Zt+1 −HFµt) (2.30)

Σt+1 = (I−Kt+1H)(FΣtF
T + Σx) , (2.31)
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where I is the identity matrix and the Kalman gain matrix, Kt+1, is defined by:

Kt+1 = (FΣtF
T + Σx)HT (H(FΣtF

T + Σx)HT + Σz)
−1 (2.32)

An Extended Kalman Filter (EKF) generalises the standard Kalman filter by lineari-
sation so that it can be applied for non-linear systems also. The Gaussianity condition of
the system’s noise however remains as a restriction for the EKF.

To overcome the non-linearities, an EKF continually updates a linearisation around
the previous state estimate, starting with an initial guess. In other words, it only considers
a linear Taylor approximation [48] of the system function at the previous state estimate
and that of the observation function at the corresponding predicted position.

This approach gives a simple and efficient algorithm to handle a non-linear model.
However, convergence to a reasonable estimate may not be obtained if the initial guess is
poor or if the disturbances are so large that the linearisation is inadequate to describe the
system [58].

2.3.6.3 Particle Filter

If the DBN is not restricted in any case (i.e. transition and observation models need not
be linear, the variables need not be normal distributed and the random variables are not
all discrete, for example), an approximate solution must be found to solve the prediction
equation. Generalising Eq. (2.24) to continuous variables yields:

P(Xt+1|e1:t) =

∫
P(Xt+1|xt)P (xt|e1:t)dxt (2.33)

As the integral cannot be numerically solved in the general case, the Particle Filter [49]
approach uses a MCMC method as explained in section 2.3.3. It can be shown that the
solution of a particle filter coincides with the exact solution as the number of particles
NS →∞ [66].

It represents probability densities over the states from Xt by a set of random sam-
ples, called particles, distributed according to the probability distribution. This random
sampling is called Monte Carlo sampling. The continuous probability distribution is rep-
resented by NS particles. Each of these particles has an associated weight as shown in
Figure 2.20.
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Figure 2.20: Representation of a continuous probability density function with particles from [58]. Samples
(i.e. particles) in areas with a higher probability are given higher weight, which is represented by the size
of the dots below the x axis.

The posterior probability distribution can then be estimated by:

P(Xt+1|e1:t+1) ≈
NS∑
i=1

wit+1δ(Xt+1 − xi,t+1) , (2.34)
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with the number of particles NS , the sampled states xi,t+1 at time t+ 1 and the weights
wit+1 of the sampled states, where 1 ≤ i ≤ NS [49]. The weights can be defined by:

wit+1 = αwit
P (et+1|xi,t+1)P (xi,t+1|xi,t)

q(xi,t+1|xi,t, e1:t+1)
, (2.35)

where α is a normalisation constant and q is the proposal function, the so called Importance
Density [49].

There are different approaches to particle filters. The general particle filtering is re-
alised in a Sequential Importance Sampling (SIS) algorithm which is extended for re-
sampling (i.e. creating a new population of samples after an estimation) by Sampling
Importance Resampling (SIR) filters, Auxiliary SIR (ASIR) filters or Regularised (RPF)
particle filters [49]. In all these approaches the transition model is used as importance
density to draw samples representing an approximation of the posterior, which is then
identical to the prediction step, and the likelihood is used to weight the particles (update
stage). Inverse to these methods, a Likelihood Particle Filter (LPF) uses an importance
density based on the likelihood and the prior for weighting the particles. In the case when
the likelihood is much tighter than the prior (more accurate than the prior), and since
the importance density is an approximation of the prior, then using the likelihood for the
importance density is expected to improve performance [49].

The implementation of a SIR particle filter follows the following steps [66]:

1. A population of NS particles is created by sampling from the prior P(X0).

2. Prediction is calculated for each particle using the transition model P(Xt+1|xt).

3. Each particle is weighted by the likelihood it assigns to the new evidence P (et+1|xt+1).

4. The population is resampled to generate a new population of NS particles. Each new
particle is selected from the current population. The probability that a particular
particle is selected is proportional to its weight.

5. Prediction is started over again with the new population at step (2).

The computational burden of particle filters depends on the number of particles chosen
and processed. From experience [190], it is computationally more demanding than Kalman
filters to reach comparable solution quality. On the other hand its big advantage is the
general applicability to all probability distributions, transition and noise models.

2.4 Summary

This section has provided the fundamentals for this research. It has given the definitions
for the terminology used in the remainder of this thesis and explained the decision for
Bayesian techniques as basis for context inference being capable to handle uncertain and
missing data and having a human understandable format.

Bayesian techniques provide a big variety of useful methods for context aware systems.
Learning of Bayesian Networks provides the tool kit for generating inference rules, static
and dynamic Bayesian networks and their subforms allow for different kinds of inference
optimised for different situation models.

Their big disadvantage is the inference complexity. Being NP-hard in the general case,
there are only inference algorithms with exponential complexity. This poses a significant
problem for context inference based on the available context information, especially on
resource constrained mobile devices.



Chapter 3

Usage Analysis of Context Aware
Mass Market Services

Since one major problem of today’s context aware frameworks which this thesis shall
address is scalability, a first necessary step is to illuminate the target user domain with
its need and the resulting requirements for context inference.

To this end, in section 3.1 the user base for context aware services and the number
of services that are going to be used in the future will be quantified. In order to fully
understand context aware services, it is also necessary to consider the behaviour of context.
Section 3.2 will shed some light into the dynamics of different contextual aspects.

The insight gained in these sections will be used to extract requirements for context
inference in section 3.3.

3.1 Quantifying Context Usage

The objective of this section is to analyse how much context is going to be used in ubiqui-
tous computing in the future, once it will have superseded the current paradigm of mobile
computing according to the vision of Satyanarayanan [37]. To give a realistic assumption
of future context usage, our assumptions are based on current usage of mobile communica-
tion and internet. The rough timeframe for this prediction shall be the next 15 to 20 years
– a time horizon that seems realistic for a market penetration of ubiquitous computing.

3.1.1 Smartphones and Mobile Networks

By the end of 2010, roughly 5.3 billion users were subscribed to mobile cellular telecommu-
nications according to the analysis of global Information and Communication Technology
(ICT) trends by the International Telecommunication Union (ITU) [24], which represents
today about 76 % of the world population. With roughly the same or only slightly lower
growth rates as today, this number would reach 8 billion subscribers in the next fifteen to
twenty years [44].

Given that access to mobile networks is nowadays already available to 90 % of the world
population and 80 % of the population living in rural areas [24], a modest increase to 95 %
in the next 15 years can be assumed. The growth rates of mobile cellular subscriptions
were higher than 8 % during the last six years [22] supported in particular by huge growth
in developing countries.

Also the number of mobile broadband internet subscriptions is increasing continuously,
from 0.1 % in 2003 to globally 13.6 % by the end of 2010 [22], amounting now to just below
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Figure 3.1: Global ICT developments, 2000-2010* [22].

one billion mobile broadband subscribers [24]. In the developed world, already more than
50 % of all mobile telecommunication users have a mobile broadband subscription [23].

As the number of mobile broadband subscriptions has already overtaken the number of
fixed broadband subscriptions, its growth will probably rather follow the trend of mobile
telephony than of internet usage in general.

Having reached a status slightly higher than mobile telephony in 2000, this work as-
sumes that more than 90 % of the world population will have mobile broadband internet
access in the timeframe we set above, i.e. between 2025 and 2030.

Smartphones and always available data networks are the key factors for ubiquitous
computing, because with their processing power and capabilities for sensing, transmitting
and receiving information they allow for ubiquitous software services, ubiquitous informa-
tion, as well as context-aware computing and technology which were realised as key factors
for Ubiquitous Computing by Abowd and Schilit in [1].

Taking into account the global population size of about 8 billion by then and that
ubiquitous computing will follow mobile computing when the precondition of network
access is given, it can be concluded that the global system for ubiquitous computing has
to be capable to support about 7 billion users.

All these users will use mobile, context aware services on their mobile smartphones,
as well as in other everyday environments like their households, their cars or workplaces.
Nowadays, all of these environments are already increasingly equipped with sensors and
therefore able to take into account the current context for specific applications.

Smartphones and laptops today incorporate about 10 different information sources
(sensors, antennas, etc.) for temperature, accelerations, turn rates, sound, direction, po-
sition via GPS, RFID, Bluetooth, Wi-Fi and other antennas allowing for fingerprinting,
as well as light and face-proximity via cameras. All the acquired information describe the
context of the device’s user and are used today already in many services, like the “apps”
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Figure 3.2: Examples for sensors in a car, available at ALPS Electric Co., Ltd. [2].

for mobile operating systems such as Apple’s iOS. These apps can serve as an example
how context aware services would be used in ubiquitous computing.

In the year 2010, 160 million users worldwide downloaded about seven billion iOS apps
alone [4], which means about 44 apps per user. From this large number, it is still realistic
to assume that four to five apps are used on a daily basis and continuously, and others
only from time to time, which is also in agreement with the numbers of services used in
the scenarios above, in particular the “Context Aware Day out with Friends” scenario in
section 1.2.2 on page 6.

3.1.2 Vehicles

The second important environment for context aware services which must not be neglected
are the currently existing 1.5 billion cars [21]. As can be seen in the scenario from section
1.2.2 on page 6, cars can use their own sensors and information from remote vehicles to
control their cruise, to avoid collisions, to safe energy, but also for instance to provide
information and multimedia services to their passengers. With more and more widely
used services like remote heat control, unlocking via a mobile phone and similar, the car
is becoming an extension of a user’s smart space.

Already today’s over 200 sensors (see the examples in Figure 3.2), about 50 micropro-
cessors [29], and different wireless network interfaces (e.g. for car-to-car communication,
for opening or for emergency calls) give them access to a broad range of information re-
garding their current context. While some of these services (e.g. CACC) are only active
while the car is in motion, others have to be continuously enabled, for instance like a
remote opening service that unlocks the car only if the entitled person is close to it, a car
alarm, or air conditioning which starts when the driver heads towards his car.
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Figure 3.3: Examples for sensors in a smart building, from [5].

3.1.3 Smart Buildings

Smart buildings like they were presented in the scenarios from sections 1.2.1 on page 3
and in particular 1.2.3 on page 9 represent another environment adapting the ubiquitous
computing paradigm.

In the currently 1.8 billion worldwide households [24], gradually many new context
aware services will emerge, ranging from multimedia services to kitchen equipment and
from lighting to presence monitoring. Nowadays there are already centrally controllable
sensors detecting the building’s context, such as electronic water and electricity meters,
as shown in Figure 3.3, as well as sensors for carbon dioxide, temperature, light levels,
weather conditions, electricity usage, noise levels and occupancy [28].

In addition, office buildings and public buildings are equipped with context aware
services or inventory, for instance a lift can be controlled using the building’s context. As
there are less personal appliances in such buildings (like coffee machines, washing machines
or multimedia devices), but more technical equipment (like elevators, escalators, automatic
doors) than in households, it is fair to assume that both, households and office or public
buildings will have plenty of context aware services to offer.

Real estate is much slower to take up advances in technology than mobile devices or
vehicles, assuming an average durability of buildings of sixty years. In our time horizon of
roughly twenty years only a third of all buildings will adopt ubiquitous technology. Taking
into account that only 0.5 billion households (or roughly 30 %) have broadband internet
connection today, growing slowly with about 1 % annually [24], we only consider these to
be in fast technology adapting areas.

In twenty years’ time, hence 50 % of all households will be in regions where ubiquitous
technology already has entered buildings and only a third of all buildings will be sufficiently
new to have recent technology built in. This amounts to 0.3 billion households. Taking
into account also office and public buildings as well as retro-fitting of buildings, the number
of smart buildings and households can be approximated with 0.5 billion in 2030.
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Number Relevant Relevant
(in billions) Services Users Context Attributes

Humans 7 5 1 35

Vehicles 1.5 2 1 3

Buildings 0.5 5 5 12.5

Rounded Sum
(in billions) 50

Table 3.1: Calculation of the number of context attributes continuously monitored in a worldwide ubiq-
uitous computing environment around 2030.

3.1.4 Summarised Context Usage

In the last sections we have identified context usage in three domains. This section will
summarise the findings per environment and come up with a figure for context usage in
total, as well as a figure of context usage per user of ubiquitous computing. Thereby only
continuously running daemon services are taken into account, as they impose a higher
burden for the ubiquitous infrastructure.

From what we have in the scenarios, most context aware services would depend on
two or three contextual aspects, which are often a purposeful action, a status, or a target
of one or several persons – high level context information. As relevant contextual aspects
overlap however between different context aware applications, the remainder of this section
assumes only one high level context attribute per service.

In section 3.1.1 it was already argued that four to five apps would be used on a daily
basis and others from time to time. So we assumed here five services per user.

For personal vehicles, usually the time it is not used is significantly larger than the
time it is used for driving. Therefore the number of continuously running services is only
assumed to be two – for instance an alarm and an automatic opening service as described
above which react to the context of the car owner.

Taking into account the scenarios in sections 1.2.1 on page 3 and 1.2.3 on page 9, it
is realistic to assume at least five continuously running services for both households and
office or other public buildings. More services are used on a on-demand basis. The smart
buildings thereby do not only observe the context of a single person, like the smartphone
or car owner, but multiple persons living in the household or working in the building.
The average number of relevant users for a smart building is estimated to be five, as
households in the most relevant regions usually contain on average four or less persons,
but office and public buildings far more. The share of such buildings in the total number
of smart buildings however is much smaller than the one of households which is why its
influence only raises the average to five.

Following the grossly simplified prediction above, the calculation from Table 3.1 shows
that in total fifty billion high level context attributes have to be continuously monitored
worldwide by a ubiquitous computing system for its seven billion users. This means about
seven high level context attributes per user.

3.2 The Dynamics of Context

The aim of this section is to see, how often context changes and hence how often context
has to be inferred.
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3.2.1 Activity Switches during a Working Day

As an example of a high level context aspect, the activity of a person is analysed. The
reported change frequency of activities thereby also depends on its observation method.

There is an internationally used standard for activity classification for the “time use”
surveys of many national bureaus of statistics. The revised standard for European time
use surveys has been agreed upon in 2008 in [14] and represents “a minimum common
denominator for coding the harmonised European Time Use surveys”.

This hierarchical system defines three levels of activities with ten top level activities:

• Personal Care

• Employment

• Study

• Household and Family Care

• Voluntary Work and Meetings

• Social Life and Entertainment

• Sports and Outdoor Activities

• Hobbies and Computing

• Mass Media

• Travel and Unspecified Time Use

The ten top level activities are subdivided into 33 second level activities and 108 third
level activities. These are to be further detailed as needed. This classification of mutually
exclusive activities is also appropriate for use with Bayesian networks.

In a time use study in ten European countries with objects aged between 20 and 74
[13], people spend on average more than 45 % for Personal Care (including sleeping), more
than 28 % for Employment, Household and Family Care and Study, both at home or not.
While 5 % are spent travelling, 22 % are available for free time spent in the remaining five
categories.

It is obvious that changes happen less frequently at the top level than at lower levels.
But also changes between lower level activities of different top level activities are not so
frequent. This can be explained as there is a clear temporal division between top level
activities – for Personal Care and Employment caused already by the spatial separation
of work and home and the need for sleep.

To investigate deeper into changes of lower level activities, this work analyses the
Employment activity field.

Gloria Marks in [31] reports a study conducted with managers, financial analysts and
software developers at high-tech companies. With a shadowing technique it was found
that employees switch their activity, depending on their profession, on average every three
to four minutes, i.e. fifteen to twenty activity switches per hour.

Similarly O’Conaill in [30] determines only external interruptions of two mobile profes-
sionals for whom communication formed a central part of their job. Both “were shadowed
with a video camera for a full working week.” She has registered eight interruptions per
hour, hence nine different activities per hour. The difference to Marks’ experiment is
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probably explained by the fact that the latter also observed internal interruptions which
amount to about 50 % [31].

In a self-reporting experiment observing two scientists, this work has analysed the
number of activity switches during a working day also. Although it is less exact than a
shadowing approach, it rather focusses on important activity switches. They reported on
79.4 hours with 331 activities during nine working days in total. As expected, with the
different methodology this approach yields a significantly lower number of activities with
only 4.2 activities per hour.

3.2.2 Change Frequency of Lower Level Context

Important for the frequency with which high level context like activity changes is the lower
level context it depends on. For that reason location changes shall be considered in the
following paragraphs.

The principal mode by which people move is walking, one of the slowest but most
frequent change of position. It is agreed to be healthy to take about 10, 000 steps a day.
This number is usually reached by healthy adults and even elderly still take between 4, 000
and 8, 000 steps [3]. “Consistent evidence supports that 30 minutes of at least moderate-
intensity walking is equivalent to ∼ 3, 000 steps” [16]. This means a little bit less than
two steps or roughly 1.5 meters movement per second.

Location changes can also be considered at a higher level, for instance the changes of
locations in terms of rooms during a working day. A self-reporting experiment has found
that the author visits about twenty different locations a day, counting the way to work, to
the canteen or to the supermarket as only one location each. During the day the author
changed more than 80 times between the rooms and locations, i.e. during the 16 hours
awake this means five different locations per hour or one change every twelve minutes.

The frequency relevant for location updates depends on the precision necessary for the
applications using it and the moving speed of the tracked object. Current sensors for lo-
cation include among others receivers for the Global Positioning System (GPS) outdoors,
Ultra Wideband (UWB) systems or Wi-Fi/mobile-radio fingerprinting systems for indoor
positioning or Inertial Navigation Systems (INS). All systems have different update fre-
quencies, ranging from 1 Hz (e.g. GPS or Wi-Fi signal strength measurements) over 10 Hz
(maximum mode for UWB sensors) up to over 100 Hz for some INSs.

Although obviously very high update rates for low level context exist, this work as-
sumes that a reasonable update frequency lies around 1 Hz. It coincides roughly with the
frequency of a step or the delay of human reaction time of roughly 1 s.

3.2.3 Context Inference Frequency

In the last sections it was shown that high level context like activity usually changes every
few minutes. The frequency with which it has to be inferred however depends mainly on
the change rate of its influencing low level context. Significant changes in low level context
can happen as often as once a second, for instance with a step out of a door.

There are two general ways for context inference for the continuously monitored seven
high level context attributes:

(1) Inference upon change of low level context:
Every time one of the impacting low level context changes, high level context is
re-inferred. Similar to the well known “butterfly effect” [20], all low level context
can have impact on your high level context. This can result in very high update
rates: in the subsections of section 3.1, it was shown that hundreds of sensors are
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constantly tracking changes in a user’s domain, be it his smartphone, his home, his
office or his car. Assuming only 1 Hz as the rate of all (un-synchronsied) sensors,
this could result in hundreds of inferences per second.

(2) Inference with fixed delay:
In the previous section, 1 Hz was assumed to be an acceptable delay for context
inference in many cases, as it coincides with human reaction time. (Depending on the
actual application, the acceptable delay can also be significantly longer or shorter.)
Hence a plausible approach would be to infer once per second taking into account all
current context. In order not to exceed the one second delay, all context information
would have to be transferred to the inferring CPU and calculated there within this
second – practically impossible for hundreds of sensors, possibly large distances and
network interfaces overloaded by the seven billion assumed users worldwide.

Both approaches are obviously inappropriate for the continuously monitored context
attributes and the immense number of future ubiquitous computing users, both for cen-
tralised approaches as for a distributed inference architecture.

3.3 Requirements for Context Inference

The abstract target of context inference is always to infer consistently and correctly new
information from the existing one in the shortest possible response time. The main chal-
lenge to realise this are the large dimensions of context inference in ubiquitous computing.
It affords solutions for scalability, both in terms of users and in terms of low level context,
such as sensors, incorporated in high level context inference.

Given the situation presented in the scenarios and detailed in the last sections, the fol-
lowing requirements are therefore considered necessary. They are fundamental for adaptive
and tractable Bayesian context inference.

1. Decentralised, modular inference:
Realistically central servers cannot perform context inference for billions of users
taking into account hundreds of sensors per user. Inference has to be performed
within the user’s smart space. Information coming from remote devices or smart
environments should be preprocessed at their origin as far as possible. Therefore
inference has to be modular, encapsulating context from different environments and
enabling to plug the different modules together for final inference.

2. Reduction to relevant input:
To shorten inference time, the amount of low level context taken into account has to
be reduced to a minimum. Only situational information relevant for the respective
high level context must be taken into account. Modules that are not relevant can be
neglected.

3. Demand driven inference:
The approaches presented above show a very frequent need for re-inferring context.
While continuous context inference has to be offered for situations and context at-
tributes which absolutely require it, it has to be reduced to the minimum possible.
Only when there is a service requesting high level context, it should be inferred.
If not requested explicitly, context should not be inferred continuously when not
necessary.
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4. Support for different characteristics of context:
Different context aspects change with different frequencies, usually lower level con-
text more frequently. Higher level and less frequently changing context should be
inferred independently from low level context. Similarly, not all context will be
stemming from Bayesian inference approaches, but should still be incorporated in
high level context inference, as far as possible. This can be realised with different
inference modules.

5. Access control and privacy:
As context has to be computed partly locally and is requested from remote devices
and even other users, access control mechanisms have to be embedded to protect the
information owner’s privacy and to only disclose the context to which the owner has
granted access.

6. Adaptability:
The requirements above require that less influential information is neglected. But
as soon as previously omitted information becomes relevant to the system it should
be considered. Thus, a characteristic that is essential due to the dynamic nature of
context-aware computing systems is the adaptability to changes. The nature of the
changes could be inclusion of new sensors for already considered context aspects or
even new aspects. The realisation thereby has to be efficient in time and computer
memory in order to guarantee timely continuation.
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Chapter 4

State of the Art for Tractable
Context Inference

As has been seen in the section 2.2, from page 20 onwards, a lot of work has already been
done on context inference. A particular focus of this work is the computational tractability
of context inference. Therefore this chapter shall illuminate the state of the art for those
fields that are most relevant for tractable Bayesian context inference .

For the inference of high level context numerous aspects of lower level context can be
involved, e.g. such related to the user’s behaviour, information about the current status
of the ubiquitous system, as well as the user’s interaction with others. Therefore not only
general approaches for scalability (in section 4.1) and modular Bayesian techniques for
context inference (in section 4.4) are presented, but also the existing work for two lower
level context aspects of outstanding importance, location (section 4.2) and human motion
related activity (section 4.3).

4.1 Scalability of Context Aware Systems

Different areas have to be scalable to enable large scale context aware computing, in
particular context management and service management. According to Neuman in [260],
scalability has three dimensions:

• the numerical dimension: the number of users, context sources and services,

• the geographical dimension: the distance between the farthest interacting nodes,

• the administrative dimension: the number of administrative organisations involved
– hence a measure of the heterogeneity.

Management of context aware service in large scales has been dealt with, e.g., by
Barratt et al. in [247], by Kerry in [256], Storz in [269] and in particular by Buchholz in
[249]. They all exploit the characteristics of grid services, a semantic extension to web
services, to reach global scalability. Buchholz proposes an integration layer to deal with
the above three dimensions of scalability and distributes the context aware services with
existing content delivery networks.

Context Provisioning or context management also has to be scalable in all three di-
mensions mentioned above. Buchholz has given a classification of different approaches and
related it to geographical scalability as can be seen in Figure 4.1. The context manage-
ment systems presented above in section 2.1.3 on page 18 all follow infrastructure based
service-centric approaches. They provide homogeneous interfaces for context storage and
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Figure 4.1: Classification of context provision approaches after Buchholz in [249].

retrieval from sensors. Dey’s Context Toolkit [10] was one of the first context management
frameworks to encapsulate sensors in so called widgets that provide a unified interface for
context aware services to decouple context sources from the framework. With this ap-
proach Dey et al. reduced the heterogeneity and address the administrative dimension of
scalability.

A loosely coupled system is a prerequisite to scalable context provisioning. In addition,
the infrastructure has to be distributed, also. This has developed more and more in the
CMS prototypes presented in section 2.1.3, for instance SOCAM, CroCo, CDDBMS, the
Persist CMS or the federation of multiple context brokers with an asynchronous event-
based publish-subscribe paradigm by the C-Cast project in [25]. The concept of personal
smart spaces is an approach to both, geographical and numerical scalability in which
local sources of information are associated with a local smart space. The number of
local information is smaller and easier to handle with this approach. All smart spaces
interchange information and route context requests among each other, to reach consistency
and completion of all requests.

The numerical dimension of scalability in context provisioning implies scalability of
context creation, hence in particular reasoning and inference. As reasoning usually involves
significant computational resources, and an acceptable response time of a few seconds at
most must not be exceeded, it is necessary to provide measures that ensure that large
numbers of reasoning requests can be handled without significant delay. Different ways
for scalable semantic (description logics based) reasoning have been proposed, for instance
in [268], [248], and [259]. These approaches relate more to large reasoning domains than
to large numbers of reasoning requests – which makes sense for semantic reasoning, as
relations being found do not change too frequently.

Scalable approaches to context inference, however, must be realised by a combination
of minimising the number of relevant requests by context management and fast inference
including only the relevant and necessary information. No general approach for this has
been found in the current literature. This work will propose an approach for that goal in
chapter 5.

4.2 Positioning and Location Management

Context inference is almost unthinkable without the inclusion of location information.
While its importance is explained later in section 5.2.1, this section shall give an overview
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over the research undertaken so far to provide exact information about the current location
in all environments and to manage such data.

4.2.1 Positioning

Positioning is the detection of the current location of an entity. The manifold approaches
depend among others on the environment. In particular methods which work very well
in outdoor environments are often not applicable indoors, where the infrastructure and
therefore the available information is different. Moreover, the positioning requirements
are often different outdoors and indoors. Therefore the following subsections shall present
the general approaches for positioning outdoors and indoors.

4.2.1.1 Outdoor Positioning

Outdoor positioning today is dominated by Global Navigation Satellite Systems (GNSS),
of which to date GPS is fully operational and the GLONASS, Compass and Galileo systems
in development. In areas of adequate visibility of GNSS satellites, the use of dedicated
portable navigation devices or cell phones and PDAs equipped with GPS receivers has
increased dramatically over the last few years providing personal navigation in vehicles
and also pedestrian navigation in cities and recreational environments.

A GNSS allows receivers to determine their location (longitude, latitude, and altitude)
using time signals transmitted by radio from multiple satellites. Receivers calculate from
the received signals the time, longitude, latitude and altitude by trilateration, assuming a
line of sight connection to the satellites.

The precision of a GNSS systems varies usually between a few meters and a few hun-
dred meters, depending e.g. on the visibility of the satellites and possible multipath effects.
This precision is usually sufficient for outdoor purposes, e.g. car navigation. With such
receptive positioning [178], where the mobile device computes its own location from ubiq-
uitously distributed signals, the mobile device is independent from servers, which calculate
the position in the complementary transmissive positioning, from active communication
causing costs, and has immediate privacy.

As the high infrastructure efforts are already spent and running cost come from a
different budget, GNSS receivers are cheap, small and relatively energy efficient, coming
with own CPU for the positioning, GNSS is the perfect choice for outdoor positioning.
The CPU is not burdened with extra calculations, no running expenses are generated and
the obtrusiveness of a mobile device is not impacted.

4.2.1.2 Indoor Positioning Systems

Positioning in indoor environments is problematic for two reasons: firstly, the difficulty of
GNSS reception results in much greater deficiencies in accuracy and availability. Secondly,
the desired accuracy for meaningful location dependent services is often much higher than
outdoors – the difference of one meter (about one step) can make the difference if a user is
in one room or another. The accuracy indoors quite always depends on the requirements
of pedestrians, while outdoors positioning is often used in car traffic. The differing mean
velocities imply the different accuracy requirements.

Indoor positioning methods can be based on infrastructure or rely on additional sensors
worn by the user. An overview over current methods has been given by the author et al.
in [151]:
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Infrastructure systems fall into two categories: dedicated wireless arrangement (for
example the Cricket system [181] or Ubisense [182]), or adaptation/usage of existing com-
munications infrastructure like Wireless LANs [195, 167, 184, 183].

In order to achieve truly ubiquitous personal positioning and navigation indoors and to
maintain tractability, a successful approach needs to be as autonomous as possible, requir-
ing a minimal amount of additional standardisation and dedicated infrastructure, whilst
building on the rapid advances in portable data processing and sensors. Additionally,
transmissive techniques will always remain questionable in terms of privacy considera-
tions.

The aim has to be hence to use the existing infrastructure which is advantageous
in terms of costs and therefore also general applicability. In particular in buildings in
which people require personal navigation, such as office buildings, airports, or large public
buildings, there now exists a dense installation of Wi-Fi infrastructure, often operated by
different operators, for example in airports, public buildings, and company premises, which
eases fingerprinting, as more access points are available. In an approach using existing
infrastructure, moreover the position can be calculated locally on the mobile device just
like for GNSS receivers.

Two general approaches realising these requirements shall be presented in more detail.
On the one hand WLAN positioning exploiting the existing infrastructure, and on the
other hand inertial pedestrian navigation which adds user worn sensors to the location
determination. In both cases, no extra infrastructure is required and the location is
calculated on the user’s own mobile device.

WLAN Positioning
There are two primary methods for location determination from Wireless LAN [161, 160]

based around Received Signal Strength Indicators (RSSI).

This first method is based on propagation models using estimated degradation of signal
strength over distance in space from the known location of access points and their transmit
power. Typically the indoor environment is modelled as established by the COST 231
standards [147]. The calculated distances are then usually used to estimate a location
through trilateration [167].

The other method is empirical and known as Location Fingerprinting, Wi-Fi Finger-
printing, or WLAN Fingerprinting. It stores pre-recorded calibration data in order to
generate a radio frequency map of a building. The location of a mobile station can be
estimated like that by correlating its RSSI measurements with the radio frequency map
constructed and stored. This method is widespread today and has been used for instance
in [196, 195, 194, 142].

Location fingerprinting algorithms can be classified into two main categories: deter-
ministic and probabilistic. Deterministic algorithms are using a set of constant location
fingerprints, which includes mean vectors and standard deviation vectors of RSSI. Prob-
abilistic algorithms model the location calibration points with RSSI probability distribu-
tions.

The advantages of this approach are the following: The wireless infrastructure infor-
mation, such as the exact location of the access points, is not required. Only the reference
location of the RSSI samples collected during the map construction is needed. Further-
more, fingerprinting can operate using only one active access point, although it will likely
produce worse results over large areas. It typically results however in higher accuracy over
methods based on propagation models [194, 142].
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However, fingerprinting requires time to train and results are dependent on the time
of training as obstructions created by differing numbers of people affect the calibration
sample data. Hence, the main drawback of this method is the generation and maintenance
of the radio frequency map which can be time-consuming and expensive when performed
over wide areas.

Inertial Navigation for Pedestrians
The use of inertial sensors is becoming widespread for pedestrian navigation, especially

for indoor applications. Basically two approaches can be distinguished:

• The pedometer-approach employs an accelerometer for detecting individual steps
whilst the stride length and stride direction are themselves estimated using additional
sensors, such as GNSS or a priori information. Given a detected step, its length and
its direction, a person’s position can be determined by dead-reckoning [152, 171, 146].
Other methods have been studied in [170].

Figure 4.2: A foot mounted inertial platform for pedestrian navigation used at DLR.

• The latest approaches are based on full six degree of freedom (6DOF) inertial nav-
igation. A foot-mounted 6DOF strapdown inertial platform comprising triads of
accelerometers and gyroscopes, see Figure 4.2 for an example, is used to dead-reckon
via a conventional strapdown navigation algorithm. An EKF (cf. section 2.3.6.2)
runs in parallel to the strapdown algorithm. Rest phases of the foot detected in the
accelerometer signals trigger (virtual) zero-velocity measurements which are used to
update the filter, so called Zero Update (ZUPT) measurements. With the regular
ZUPT measurements the drift errors which accumulate in the strapdown solution
can be estimated and corrected [150, 153, 143, 156]. It was shown in [150] that
this pedestrian dead-reckoning (PDR) approach can achieve very good performance
even with today’s low-cost micro-electro-mechanical (MEMS) sensors, because the
ZUPTs are so frequent that errors build up only slowly during each step the pedes-
trian makes.

The benefit of combining foot-mounted inertial sensors with non-linear map-matching
techniques or additional non-linear or non-Gaussian sensors typically used in an indoor
scenario with particle filtering techniques (cf. section 2.3.6.3) has been presented in [168]
and [192]. Comparable results were shown for a 2.5 D environment in [193]. The benefit
of integrating a pair of platforms that are mounted on each of the pedestrians’ feet re-
spectively has been studied in [169]. In these sensor fusion approaches foot displacement
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and heading change values from the foot’s PDR filter are computed at each step and are
exploited as measurements within a higher-level main fusion filter.

4.2.2 Location Management

Next to the detection of an entity’s location, also the representation, sharing and reasoning
about is is important to allow for a maximum benefit. There is a lot of related work on
these topics. The basic issue is the representation in a location model, as efficient models
and architectures are a necessary prerequisite for efficient customisation, adaptation and
inference [173].

Domnitcheva identifies as the major challenges for location modelling: scalability, pri-
vacy (e.g. blurring the current location by probabilities, like in [141]) and spatial aware-
ness. In [148], she gives a comprehensive overview of the developed models. She classifies
them in particular into geometric (using absolute coordinates) and symbolic models (using
names, in particular also addresses). While the high resolution of geometric models often
overburdens resource limited devices, symbolic models often suffer from an unknown, not
shared terminology and difficulties to relate locations to each other. Hybrid models (also
called semi-symbolic or combined models) try to overcome these issues but bear a high
computational complexity themselves.

Pure location based services like Whrrl1, Google Latitude2 or Plazes3 use geometric
location models. Hence they are to date restricted to coordinates or addresses on a map.
These services however do not have the need to reason about locations. Links between
absolute and symbolic locations are established by Geocoding (symbolic to absolute) or
Reverse Geocoding (absolute to symbolic location). Reverse geocoding hence plays an
important role for translating precisely inferred absolute location to symbolic location
for context reasoning. Only recently a higher number of reverse geocoding providers
has come up, e.g. with the reverse geocoding API of Google4, or the Nominatim5 tool
for OpenStreetMap6. These services however are not directly applicable to produce the
symbolic location necessary for context reasoning, as they neglect uncertainty information
inherent to inference of absolute location.

An important factor for reverse geocoding services is the efficiency of processing re-
quests. Therefore they are often based on Geographic Information Systems (GIS). Efficient
location management is one of the targets of a GIS. They capture, store, analyse, manage,
and present data that are linked to location [154]. GIS therefore merge approaches from
cartography, statistical analysis, and database technology. Particular remarkably are here
efficient store and search structures, like the R-Tree [158].

Research on reasoning with locations has produced large practical and theoretical
works, mainly known as spatial reasoning or location reasoning. Varzi explains in [189] that
spatial reasoning involves theory on parthood relations (mereology), qualititative spatial
relations like continuity and contiguity (topology) and the theory on relations between an
entity and the spatial region it occupies. Myers’ location reasoning theory [174] extends
such considerations also to reasoning about movements. She defines deductive rules which
can be classified as a subset of description logics, with which facts about location can be

1http://whrrl.com/
2http://www.google.com/latitude
3http://plazes.com/
4http://code.google.com/apis/maps/documentation/geocoding/
5http://wiki.openstreetmap.org/wiki/Nominatim
6http://www.openstreetmap.org/

http://whrrl.com/
http://www.google.com/latitude
http://plazes.com/
http://code.google.com/apis/maps/documentation/geocoding/
http://wiki.openstreetmap.org/wiki/Nominatim
http://www.openstreetmap.org/
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added or retracted, “initiated by either operators (in the case of a planner) or sensors
(in the case of a situated reactive system)” [174]. Practical work in the same direction,
symbolic locations semantically related in some kind of knowledge base, has been published
among others by Guggenmos in [157] with a server based location management system
managing several ontologies for fixed semantic annotations, by Hu and Lee in [159] who
store locations and exits in maps usable in mobile environments, or by Kolomvatsos in
[166] who has a system for semi automatic instantiation of a location ontology, based on
annotated data. They all perform semantic reasoning that is able to reveal parthood,
inheritance, transitivity and similar relations between locations.

Approaches with hybrid location models contain among other those of Becker [145] and
Narayanan who formalises in [175] the translation of geometric, raw locations into states
of spatial realms, i.e. symbolic location. Malkani’s work in [173] proposes the integration
of service discovery with positioning systems. In his approach a server translates locations
of different positioning systems into each other. The server contains a hierarchical location
model and manages the presence of mobile devices in leaves of the respective location tree.
Pfeifer’s Redundant Positioning Architecture [178, 177, 180, 179] and Zündt’s Distributed
Community-Based Location Service Architecture [197] in addition focus on the exchange
of location information between different autonomous domains.

Most context frameworks have decided for an ontology based context modelling ap-
proach like [38], [42], or [18]. Locations are therefore only represented as symbolic names,
reasoning is limited here depending on the semantics encoded in the ontologies and does
not allow for general high level context inference. Projects like IST Daidalos7 and ICT Per-
sist8 used symbolic locations for machine learning techniques, but had to neglect relations
between location names or a close link to highly precise location estimation techniques.
Krause et al. in [78] recognise high level activity patterns from a couple of sensors. For
location they use GPS coordinates and locations of Wi-Fi Access Points in range. They
cluster coordinates that are closer to each other than 50 m using the k-Means algorithm
based on the Euclidean distance and choose along fixed rules between both sensors. Every
cluster is used as a hypothesis in the estimator later on. Their semi-unsupervised approach
is computationally very costly and completely neglects symbolic locations. It is not usable
for location queries, not aware of borders between locations and not usable for untrained
context inference.

4.2.3 Discussion

The current state of the art in positioning yields very good results, even in indoor envi-
ronments. There is however room for improvement with regards to the scalability of the
approaches. Receptive approaches which do not afford network communication nor extra
investments in the infrastructure, such as Wi-Fi fingerprinting, can use the existing Wi-Fi
infrastructure. To obtain best results there, Wi-Fi fingerprinting requires time intensive
training. To reduce this complexity, its results can be fused with body worn sensors.
This however increases in the presented approaches the computational complexity with
the resource intensive particle filtering approaches.

The concepts for location management seem quite mature. They allow for heteroge-
neous sources, different formats and exchange across different autonomous domains. The

7http://www.ist-daidalos.org/
8http://www.ict-persist.eu

http://www.ist-daidalos.org/
http://www.ict-persist.eu
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existing approaches however largely neglect the process of providing the location infor-
mation to manage. As precise positioning techniques exist, this reduces to the respective
provision of symbolic location information maintaining the uncertainty information of the
positioning process.

While reasoning about locations and their interdependencies exist with the current
approaches, research on the generic inclusion of location information in high level context
inference is missing.

4.3 Activity Recognition

The current activity of a user has a similar importance for context awareness as his or
her location. This research topic has been one of the hottest in the field of ubiquitous
computing in the recent years. To be useful for generic context inference, the approaches
have to work in real-time without significant training effort and under all environmental
circumstances, while keeping the computational cost at the necessary minimum. A prereq-
uisite for the user acceptance of a activity recognition system moreover is its affordability
and its unobtrusiveness.

A synopsis of the current work in activity recognition with a special focus on human
motion related activities, following the overviews by the author and Vera Nadales in [209]
and [237], shall be given in the remainder of this section. First the different recognised
activities shall be illuminated, before the sensors and the recognition techniques are pre-
sented and discussed regarding their relevancy to the demands placed in the previous
paragraph.

4.3.1 Activities to Recognise

The recognition of a user’s current activity is relevant for health care and ambient assisted
living, as well as for entertainment applications and video games, mobile context adver-
tising or work monitoring, as has been shown in the scenarios presented in section 1.2 on
page 3.

The relevant activities thereby refer partly to human motion related activities and
partly to higher level activities, often called activities of daily life (ADL). ADLs are more
difficult to recognise as they consist often of different steps and depend stronger on envi-
ronmental settings. Motion related activities however are more often necessary, they are
also important input for the recognition of ADLs.

Most of the related work on activity recognition to date is focussed on inferring human
motion and posture related activities [229, 212, 198, 223, 215, 227, 236, 216, 224, 217, 238]
rather than high level activities like in [232, 130, 214, 206].

There are a number of motion related activities studied in the literature [212]:

• Transit activities like walking, walking upstairs and downstairs or running.

• Abrupt activities like jumping or falling.

• Sports activities such as jogging, cycling, rowing, callisthenics or martial arts moves.

• Actions such as open door or close door.

• Postures like standing, sitting or lying.
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4.3.2 Used Information Sources

The information sources used for activity recognition are an important factor for the
usability of the system. Multiple kinds of sensor modules have been employed in the
literature. Their selection depends on the available infrastructure, the activities under
investigation and also the applied recognition technique. Huynh in [212] includes a detailed
review of the sensors used. It contains among others:

• Accelerometers [229, 212, 198, 223, 215, 227, 200, 242, 220, 243, 201, 202, 236, 204,
216, 224, 217].

• Gyroscopes [231].

• Force sensitive resistors [227, 232].

• Foam pressure sensors to measure respiration rate [203].

• Digital Compasses [212].

• Physiological sensors such as oximetry sensors [226], skin conductivity [239] and
heart rate sensors [227, 223, 215].

• Temperature, humidity and barometric sensors [212].

• Light sensors [220, 227, 212, 201].

• RFID tag readers [232] and RFID tags placed on objects.

• Microphones [212, 220, 201, 214] for both, the user’s voice and environment specific
noise.

• Video with feature recognition [221].

• Fiber optical sensors to measure posture [207].

• Stretch sensor, as it was used in [208] in a jacket.

Accelerometers in various forms are the most common sensor used in the related work
of activity recognition. They are used at different parts of the human body, as orthogonal
combination of two or three accelerometers for different dimensions, and also in combina-
tion with other inertial sensors in Inertial Measurement Units (IMU).

A reason for their widespread use is its close relation to motions and the fact that
the most investigated activities are related to human motion. As accelerometers and
IMUs can be built with cheaper and cheaper Microelectromechanical systems (MEMS),
the cost factor and the availability in mobile devices like laptop computers, smartphones
and cameras are further comforting factors.

The majority of the considered related work has used accelerometers spread across
multiple locations of the human body [199, 200, 198, 223, 227, 220, 243, 201, 231, 236,
224, 217], as shown in Figure 4.3. The work of Choudhury in [205] has demonstrated
that under certain conditions, using multi-modal sensors at one single location of the
body can offset the information lost from other parts of the body. Also the research in
[232, 202, 215, 212, 229] uses several sensors in one single location.

Also further information like maps, GPS information, bus schedules, people’s habits
or the use of objects are partly used to improve the results (e.g. [229, 232, 235]).
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Figure 4.3: Distribution of sensor boards (marked in red) with accelerometers across the human body
in the work of Bao [199]. Five accelerometers are placed and secured on the left arm and thigh, the right
wrist and ankle and the right side of the person’s hip.

4.3.3 Recognition Techniques

The evaluation of the collected sensor data is a typical classification problem which can be
solved with the methods outlined in section 2.2 on page 20. The choice of the classification
technique depends thereby usually on the available data and the requirements towards
outcome and training phase.

The considered related work covers a large range of the classification techniques pre-
sented in section 2.2. For instance decision trees are used in [200, 202, 201], kNN classifi-
cation in [220, 201, 200, 227], SVMs in [221, 202], neural networks in [216, 221, 227, 229].
Other examples of classifiers used in the related work are probabilistic techniques in
[231, 201, 243, 220, 200, 221] and, in particular, particle filters in [230] or [228].

A crucial difference between the classification techniques is the effort necessary for
training them. Training a classifier can be unsupervised or supervised, be based completely
on machine learning algorithms, consider human imposed restrictions, or completely be
human defined.

Unsupervised training identifies repetitive patterns in a so called training set, e.g.
groups of data with little difference in specific measurement data [212]. They have been
used among others in [219] and [225]. A classifier trained completely unsupervised however
cannot assign semantic information to the identified clusters and is therefore inappropriate
for most applications of context awareness.

Semi-supervised approaches (used e.g. in [212, 234, 233]) are methods that can be
applied when parts of the available data are labelled, while for other parts no labels exist.
Supervised learning requires a completely labelled data set. As in these approaches the
labels define the identified clusters, they are more appropriate for activity recognition.
The main disadvantage is the effort to label the data.
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4.3.4 Discussion

The comparison of the different inference approaches is difficult. The classifiers are trained
on different data sets, the data sets and the evaluation are performed under different
environmental conditions (see the work of Stephen Intille on their relevancy in [213]) and
the evaluation results are reported in different measures.

Activity recognition can be evaluated under the following conditions:

• Laboratory conditions: In these, the best recognition results will be achieved, but
they are less reliable under real conditions.

• Semi-naturalistic conditions: Naturalistic conditions are simulated. For example,
[221] prepared an artificial living room in a lab to collect the required data. Examples
of related work on activity recognition under semi-naturalistic conditions are [198,
227, 200].

• Naturalistic conditions: In this case the information is collected during a normal day
of a person, under real conditions. Very few of the related work collected data under
naturalistic conditions [215, 236], as in particular the verification is more difficult
and would have to resort to person or video based shadowing techniques.

The same distinction holds for the acquisition of the test data, the more natural the data
set for training the classifier is, the better it will perform under naturalistic evaluation.

Also measures of the quality of activity recognition systems, their accuracy, differ. An
overall accuracy value (like in [198, 227, 221, 242, 231, 204] is not meaningful with regards
to the quality of the recognition of every single activity and the weighting of the different
activities. Expressing the accuracy with precision and recall values for every activity like in
[218] is therefore more expressive. Some works (like [200]) provide even the full confusion
matrix from which precision, recall and other measures can be computed.

Moreover, the referred evaluation results depend on the evaluation methods. Evalu-
ating a system based on the data of the person whose data was used to train the system
like Bao’s work in [200], only reports on the ideal performance. To make these results
transferable, every user has to train the system before it can be used – which is a lengthy
and troublesome process with regards to labelling the training data.

A selection of related research with apparently good results is shown in Table 4.1,
together with the specification of how the data set was acquired, which sensors they use
and where they place it.

The best and most stable recognition accuracies for human motion are reached when
sensors are distributed over different positions on the body, which makes such recognition
systems however more obtrusive and less practically usable.

For the recognition of activities of daily life, the best performing system from [221]
relies on video analysis, which is not viable for ubiquitous computing. Also the other
approaches work reasonably well, the overall recognition accuracy however is too low to
be completely reliable. Moreover the system and the sensor placement needs to be tailored
to the specific high level activities to be identified.

Therefore it makes sense to separate the recognition of human motion and higher level
activities. Once there is an unobtrusive and very reliable system for the recognition of
motion related activities, its results can be used for any type of high level activity inference.
Current research on this topic however has not been identified.

Classifier training of those works which have given insight in their publications can be
improved. All approaches have used standardised training libraries like the Weka toolkit
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[137]. Specifying limitation and imposing human knowledge like causality could further
improve the results and has an impact on the recognition time.

Concluding, research should focus on a highly reliable system for the recognition of
human motions, comprising only one sensor module. To achieve general applicability
without extra training and optimal evaluation time, neither the selection of training data
nor the optimisation of the training process must be neglected.

4.4 Modular Bayesian Networks

Bayesian networks have been identified as a suitable means for context inference in section
2.2 on page 25 and their theoretical background has been presented in section 2.3 from
page 27 onwards. The problem to be solved for its applicability for context inference is the
computational complexity of the probabilistic inference in them. As a core requirement,
section 3.3 on page 58 therefore has identified the need to break BNs down into smaller
BN modules.

Several proposals to divide large BNs into such BN modules exist in the literature.
Along with a possibly reduced inference time, the break-up eases storage, re-usability and
specification of networks. The remainder of this section shall present some of the proposed
approaches along with the respective inference methods, before their applicability for
context inference is discussed.

4.4.1 Approaches and their Inference Methods

Already in the early 1990s, a first approach for sectioning Bayesian networks has been
proposed. Throughout the last two decades more ways have been proposed tailored to
specific application needs and with dedicated inference approaches.

The following section shall report on the most relevant work in this area and analyse
its applicability for tractable context inference.

4.4.1.1 Multiply Sectioned Bayesian Networks

The first published approach to splitting Bayesian Networks has been published by Xiang
in 1993 [273]. The core assumption of his Multiply Sectioned Bayesian Networks (MSBN)
is that within close temporal proximity, always the same parts of a large BN receive
evidence and are queried. As frequent propagation of evidence in a large BN is inefficient,
the MSBN concept focusses on modifications of only parts of the BN.

To this end, the division of a BN into localisation preserving partitions, Bayesian
subnets are introduced. Different partitions can share variables which d-separate them.
For every random variable there has to be at least one partition which contains the node
with all its parents.

Partitions in MSBNs have to form a tree structure, the partition tree. The shared
variables of subnets have to be in all subnets on the path between them in the partition
tree. The partition tree is constructed based on the known, completely specified BN
which is partitioned exploiting the known d-separation properties. Similar to a junction
tree in PPTC (see page 37 and [86]), this partition tree contains d-sepsets containing
the d-separating d-sepnodes of two adjacent subnets. The JPD of a d-sepset is the only
information necessary to be exchanged between different Bayesian subnets. Hence, d-
sepsets act as interfaces between pairs of subnets.

A first step to the construction of the partition tree is the construction of junction
trees of the identified partitions. The set of subnets of the MSBN is then moralised
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and triangulated into a set of morali-triangulated graphs, a process using the knowledge
about the complete network. As a next step the now existing junction forest of cliques is
inter-linked by the d-sepsets.

An example of a linked junction forest of cliques is shown in Figure 4.4. The subnet
junction trees are called Γ1, Γ2and Γ3, links are represented by bold lines, while the rest
of the edges represent separators between cliques belonging to the same junction trees.

Figure 4.4: Example junction forest [273].

Initialisation of belief potentials and inference between different subnets roughly follows
the process of PPTC.

The above assumptions and construction rules allow for independence of the subnets,
therefore also for partly independent modification and evaluation [272]. In particular, the
subnets can run their inference processes asynchronously in parallel. This option increases
the performance of the system and reduces security risks as only resulting probabilities of
networks have to be passed by remote communication and not whole networks that may
reveal personal information.

All in all, MSBNs provide an effective and exact approach for distributed inference
but also impose a set of constraints. In particular the partition tree organisation prevents
subnets from communicating arbitrarily with another agent, which would constitute a
serious limitation for context inference.

4.4.1.2 Network Fragments

Laskey and Mahoney introduced the concept of Network Fragments in 1997 for the domain
of military situation assessment, i.e. for determining who the actors are, where they are
located, what they are doing, and what they are likely to do in the future [258]. To
this end, a fixed model (with variables and causal relations assumed to be the same for
every user or situation) is not appropriate, as relevant variables and their probabilistic
relationships vary.

A network fragment organises RVs and their conditional probabilities. Fragments are
objects which can be organised in hierarchies of related objects, share structure and be-
haviour. They distinguish between input (parents only outside the fragment) and resident
variables (parents only inside the fragment). Influence combination methods define the
probability distribution of the random variables from probability information contained
in multiple fragments which however also have a default distribution. A (possibly empty)
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subset of the input variables are the hypothesis variables which represent human imposed
knowledge.

Bayesian networks are assembled from the available network fragments for a specific
situation. Network fragments are maintained and managed in a knowledge base, keep-
ing track also of the object hierarchy and immediately propagating modifications to the
related network fragments. The defined model construction process retrieves fragment
classes from a knowledge base, creates fragment instances and combines them into the
model workspace. The authors propose that search algorithms could involve computing or
approximating bounds on the influence of a variable to decide whether the computation
involved in extending the model is justified by the potential improvement in accuracy.
D-separated variables would consequently be excluded.

The work in [258] controls the combination of fragments based on data association
(deciding if a fragment’s evidence is of a relevant domain), hypothesis management (gen-
erating and pruning hypotheses about domain entities and their interrelationships), and
pattern replication (need for multiple copies of a network for temporal reasoning).

Figure 4.5 shows an example of several network fragments to be combined. Random
variable D is a hypothesis variable, variables depicted with grey circles are input variables,
and variables depicted with white circles are resident variables. The combination of the
fragments shown on the left side produces the combined BN shown on the right.
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Figure 4.5: Networks fragments to be combined (left) and combination result (right).

Three methods to combine network fragments are proposed:

• Simple-Combination: This method is applicable if the combined network fragments
contain only one resident variable which is not shared between network fragments.
Their distribution is then defined purely by its parents within the own network
fragment.

• Default-Combination: In the case the above assumptions do not hold, the default
probability distribution is overridden by the resident variable’s influence combination
method.

• Partial influence combination: If a resident variable to be combined cannot access
the information of all of its parents, partial influence models, e.g. independence of
causal influence (ICI) models are used. The most widely used concept therefore is
the noisy-OR [89, 66] operator.

Evaluation of Bayesian networks based on network fragments follows then a stan-
dard approach supporting the custom combination method. In the cases of Default-
Combination and partial influence combination, inference yields only approximate results
belonging to the class of anytime model construction, see section 2.3.3.3 on page 38. Dis-
tributed inference as necessary for resource constrained and mobile devices is not intended.
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4.4.1.3 Object Oriented Bayesian Networks

Object Oriented Bayesian Networks (OOBN) is a proposal of Koller and Pfeffer [257] from
1997. They use concepts from object oriented programming for the specification process of
BNs. An OOBN consists of a single situation object that is using several Object Oriented
Network Fragments that define its probabilistic properties. OONFs are DAGs using the
value attributes and having the the input variables as interface.

Also Bangsø defined an OOBN-Framework in 2000 [245]. Both frameworks are based
on MSBNs (see section 4.4.1.1) and have roughly the same expressiveness using different
vocabulary and slightly different structural implications which is why both approaches can
be described in this section. Bangsø’s framework goes a bit further however, providing
means for top-down modelling and time slice representation [244] and also dedicated,
enhanced inference methods [251, 246].

The core idea for OOBNs is the object oriented point of view and similar to Laskey’s
and Mahoney’s idea with network fragments (see section 4.4.1.2): a model separated into
several elements can be combined in different situation specific constellations without
multiple definition of elements.

Each BN module is an object in OOBN and as such an instance of a class. Objects
that instantiate the same class have the same attributes and structure. BN objects are
seen as functions from input to output RVs, providing a probability distribution for the
output RVs. They distinguish three different types of RVs: input variables are basic or
structured variables, output variables and encapsulated variables so called value attributes,
which are objects themselves. Figure 4.6 shows an example of an OOBN structure.

I
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1
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2

O
1

I
2

Input RVs

Encapsulated

RVs

Output RV

Figure 4.6: Subsets structured example object [245].

The marginal differences are that in Bangsø’s approach input nodes can refer to nodes
outside the object, while this is not possible in Koller’s approach. Besides, in the latter all
output nodes have to be used. Bangsø’s approach allows for more flexibility, for instance
by using prior probability distribution for uninstantiated input variables.

For inference in OOBNs, Koller presents the approach to transform the OOBN into
a MSBN. Bangsø in addition considers the construction of a regular BN to allow for a
greater variety of inference approaches or to directly construct a junction tree from the
OOBN instance tree maintaining the structure of the OOBN and using then the PPTC
algorithm.

To allow for frequent structure changes in highly dynamic domains, Bangsø introduces
an incremental triangulation method [250] with which only modified parts of a junction tree
have to be re-built. This method is based on the Maximal Prime Subgraph Decomposition
(MPSD) [261].

A MPSD is derived from a junction tree by aggregating those pairs of cliques where
the nodes in the common separator were not all interconnected in the moral graph. The
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work of Olesen and Madsen in [261] has shown that only those parts of the BN are affected
by structural changes, for which the MPSD has changed. Applying this technique a new
junction tree can be compiled faster for a new situation, allowing then again to apply the
PPTC algorithm for inference.

4.4.1.4 Pavlin’s and de Oude’s Modular Bayesian Networks

In parallel with the first publications of concepts of the research at hand, also Pavlin and
de Oude have started publishing interesting concepts for modular Bayesian networks for
information fusion, among others in [267, 265, 262, 264, 263]. An implementation of their
concept of modular Bayesian networks is given in the Distributed Perception Networks.
They represent a subkind of MSBNs (see section 4.4.1.1), sacrificing some of the modelling
capabilities in exchange of the improved support for dynamically changing environments.
For complex structures of modules, building junction trees for inference would be very
time consuming and involve a lot of synchronisation in a distributed system. As significant
delays are not acceptable in highly dynamic and therefore fast changing environments, it
is advantageous to use simpler structures.

In comparison to MSBNs, restrictions are in particular imposed on the number of
nodes shared between modules. Furthermore, the extra-modular parents of a node are
considered independent and uniformly distributed. This is a severe restriction unless it is
known that there will be either hard or soft evidence added to it. Modules are arranged in
trees. If the modules would build an undirected cycle (i.e. violate the tree structure), they
are artificially d-separated at one of the connecting nodes by assuming evidence in it. Also
this is only possible without loss of exactness, if such nodes are known to be observed.

Although the authors target a highly dynamic system, all BN modules need knowledge
about the whole BN. This is used first to distribute the local outcome posteriors to all
connected modules and second to check the global I-mapness in the modular BN after the
addition of a new module, i.e. whether the new joint modular BN still correctly represents
to conditional independences of its full joint probability distribution.

The basic assumptions together with specific assembly rules presented in [265] allow
for distributed inference in the modular BN. The focus of inference thereby only concen-
trates on diagnostic reasoning which avoids message passing in both directions, but limits
inference to only the root hypothesis of the complete modular BN.

The distributed inference is possible, if there are no multiple connections between
the BN modules, i.e. if they form a cluster tree. Via the factor graph [59] and the
partition graph used for MSBNs [271], possibly existing cycles are detected and resolved
by clustering the loop causing node with other nodes, or by instantiation of nodes that
are assumed to be observed – a step which requires knowledge about the whole system
and which is not possible in a distributed way, however.

If the modules form a tree, all modules can be inferred locally and independently from
other modules, given their Markov boundary which always coincides with its interface
nodes [265]. Every local, modular BN has therefore always the same structure and the
corresponding junction tree can be computed prior to operation, saving time later on.

The assumptions of Pavlin’s and de Oude’s work do not hold in the general case of
context awareness. Neither is it clear in general, for which information evidence will be
available, nor should a local module have to know which other Bayeslets are using its
information. Heterogeneity of data and therefore an integration of dynamic probabilistic
information or modules not including Bayesian networks is not addressed in de Oude’s
and Pavlin’s work.
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As the preconditions for this approach, as for de Oude’s and Pavlin’s work in general,
do not always hold for context aware computing, their approach may serve as an example
in real conditions, but has to be adopted for the requirements in this thesis.

4.4.1.5 Hwang’s Modular Bayesian Networks for Landmark detection

Hwang and Cho in their research [253, 254, 255] collect all information locally available
from mobile smartphones, in order to detect high level context, labelled not very consis-
tently by the authors as landmarks, such as Emotion and status, Everyday life, Event, and
School life. To cope with real-world irregularities, like varying levels of attention and emo-
tions, inaccuracy of sensors, and uncertain causal factors [255], Hwang and Cho use static
Bayesian networks, however not causal networks, designed mainly with boolean random
variables instead of multi-valued discrete RVs.

They show in [254] that the resulting monolithic BN with 115 nodes and 298 parent
edges cannot be evaluated with PPTC [88] on a smartphone with MS Pocket PC 2003
with 44 MB RAM. To reduce the computational demands of inference, they manually
divide the monolithic BN into modules determined by the landmarks. The K2 learning
algorithm [71] for the monolithic BN is adapted to order nodes not only topologically, but
also based on mutual information [105]. Like this it can find a close-to-optimal distribution
of nodes across the predefined BN modules. All the observed evidence is regarded to be
independent from each other.

Hwang and Cho use this approach successfully to reduce the computational demands
[254]. However they do not use the more sparse, hence more efficient representation of
causal networks [66]. This approach still requires much human involvement, for determin-
ing the different modules, but also for clustering location coordinates and to discretise the
measurements into time slots.

The inference approach of Hwang and Cho from [253] is a two stage approach, where
every module first infers the contained landmarks given the available hard evidence. A
model simplification is that hard evidence is used in more than one module without mod-
elling the implicit dependency. In a second stage, the outcome of landmarks in other
modules that are connected as parents is introduced as soft evidence with a technique
they call “virtual linking”.

The authors do not disclose in detail how this method works. The way how they
apply the soft evidence and the assumptions made regarding the network structure (e.g.
trees or polytrees) however determines, whether their approach infers exact posteriors
or only approximations. From the available publications with some foreshadowed model
simplifications an approximative solution can be assumed. In any case only deductive
reasoning is possible, reversal of the inference direction is not.

In Hwang’s and Cho’s approach, only local information is taken into account, and
together with the human involvement this makes clear that the approach is a fairly static
one, not appropriate for context inference in a very dynamic environment. Ubiquitous
computing however is very dynamic where nodes cannot be assumed to be always observed,
not all other modules are known and information is distributed among different devices.

4.4.1.6 Hierarchical and Hybrid Bayesian Networks

An interesting approach is the work of Tu et al. in [270]. It proposes an architecture for
identifying terrorist threats with Bayesian techniques. As intelligence agencies however
are usually spread across different locations, a distributed model is proposed. It can
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incorporate not only static Bayesian networks, but also HMMs (see section 2.3.5) in a
two-layered approach, as represented by Figure 4.7.

Figure 4.7: Example of a Hierarchical and Hybrid Bayesian Network consisting of two HMMs Λ1 and Λ2

on the lower layer and a static Bayesian network on the top layer [270].

The HMMs situated on the lower layer represent sub-models that are populated by
domain experts with evidence. On the top layer a static BN represents the overall situation,
in the given example at a “higher level agency” which is entitled to take decisions. It
incorporates the available (hard) evidence as well as the outcome of the HMMs in their
representation nodes by soft evidence and evaluates this BN to infer the current level of
threat.

This model allows only for inference in one direction from the lower to the top layer
and does not consider efficiency augmentation by distributing the inference of the static
BN. It represents a static model of a situation, designed by a domain expert and only
manually changeable. Inference between different modules in one layer is not foreseen,
just as little as more than two hierarchy layers for complexity reasons (in modelling and
inference) [270]. Hence, although the idea is promising, in this form it is not applicable to
the conditions of ubiquitous, context aware computing.

4.4.2 Discussion

The inference approaches in split Bayesian networks can be grouped into three categories:

1. Different modules are composed to a common structure for inference.

2. A complete BN is used to set up a separated inference structure in which independent
and separate inference is possible.

3. Other approaches realise completely independent and distributed inference.

Examples for the first category with a common inference structure are the network
fragments of Laskey and Mahoney [258] or also Paskin’s and Guestrin’s approach to mod-
ular Bayesian networks in [266]. Also OOBNs offer this option with which then standard
PPTC for inference is possible. With this approach a BN can be adapted to the needs of a
specific situation and under certain conditions reduced in size. Only in this case, inference
duration is reduced. Therefore, in general no significant inference improvement can be
obtained. Moreover, as the combination of all knowledge on one computer is necessary



80 4.4. Modular Bayesian Networks

for inference, privacy is not protected by this approach. Hence this category does not
represent an appropriate choice for context inference on resource constrained devices.

The second category is used in Xiang’s MSBNs [271, 273, 272], and consequently also
in the OOBN approaches and Pavlin’s and de Oude’s modular BNs which build upon MS-
BNs, but also by Hwang in [254]. Inference duration is improved by building a common
secondary inference structure of the different modules (like a junction tree) in which differ-
ent modules can be evaluated in parallel. However it does not make the different modules
independent from each other and the system has to have knowledge about all existing
connections between the modules. The dynamics of a system determine the usefulness of
such approaches, as the construction of the secondary structure is more expensive than for
normal BNs. As Ubiquitous Computing environments are highly dynamic and the large
scale does not permit overall knowledge about all possible inference connection, neither
this category is suitable for Bayesian context inference.

The requirements of large scale, highly dynamic environments are fulfilled in general
by the third category, which however restricts the inference approaches to provide ap-
proximations of the searched posterior probabilities. The inference approaches of Hwang’s
modular BNs or the hierarchical and hybrid BNs could realise this, but are not ideal im-
plementations of this idea. Both approaches only allow for static modelling and do not
optimise the network and dependency design which is necessary to optimise inference time.
Both approaches use knowledge of the overall BN to distribute information into different
modules in the design phase. Dynamic construction of networks of BN modules is not
considered.

Only Tu’s work [270] allows for the integration of different inference approaches. This
however would be a requirement for context inference in ubiquitous computing systems
where a plethora of different inference methods will exist.

The aim of the present research hence is to find a viable combination of the advan-
tages of all existing systems. It has to allow for tailoring a BN to situation-specific needs
like network fragments and OOBNs by a comprehensive knowledge base of BN modules,
well-defined interfaces, as well as efficient dynamic selection and combination of relevant
modules for completely independent inference. The privacy protection facilities of the dis-
tributed inference approaches has to be maintained, and the inclusion of different inference
methods has to be offered.



Chapter 5

From Bayesian Inference to
Context Inference

This work proposes Bayesian techniques for context inference. Their theoretical bases have
been presented in section 2.3, existing work for context inference and extensions to the
Bayesian theory improving its tractability in chapter 4. The following chapter presents
the concept for the adaptation of Bayesian techniques to cope with the requirements
of tractable and personalised context inference in ubiquitous computing on mobile and
resource constrained devices.

Therefore the first section will show how to integrate Bayesian context inference with
context management systems in order to reduce resource consumption. Then, in sections
5.2 and 5.3 the inference of lower level context is described with the examples of location
and human motion patterns. These are input to high level context inference in a fully
Bayesian, hierarchical inference architecture.

Once the reader has seen how lower level context is inferred, the next step is the
identification of those contextual aspects that are most relevant for a given inference goal.
Therefore section 5.4 will present an approach for tractable context inference with modular
Bayesian networks, show how modular inference structures are minimised, assembled, and
efficiently evaluated.

5.1 Applying Bayesian Techniques in Context Inference

The requirements presented in section 3.3 on page 58 have two-fold consequences: first,
they require a model of context inference rules (see Definition 10) which is modular, allows
for heterogeneity and is efficient to be inferred upon. Second, the context management
system has to support creation, selection and assembly of the inference rules, as well as to
control the inference requests in order to allow for short response times, which is critical
given the NP-hardness of probabilistic inference as shown in 2.3.3 on page 34.

While the exact properties of the modular, locally evaluated Bayesian context inference
rules will be described in section 5.4 from page 129 onwards, this section deals with the
implications of context inference to a context management system (CMS). Requirement
(5), “Access control and privacy” for inferred context, is neglected, as with local and
modular inference it is not related specifically to context inference any more and can be
treated like general access control to context information, such as in [11].

This sections deals in particular with the life cycle of context inference modules and
triggering of inference in a context management system, adopting the ideas presented by
the author et al. in [118].
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5.1.1 Creation, Storage and Access of Context Inference Rules

One challenge for CMSs is the handling of context inference rules. When and how they are
created, stored and accessed are important parameters to guarantee short response times
of a CMS. The focus lies on Bayesian Networks as inference rules, although in general all
classification models can be used, as long as there is a suitable evaluation algorithm and
the results are compatible with those of Bayesian context inference rules.

5.1.1.1 Rule Creation

This work promotes the usage of Bayesian networks as context inference rules. If the BNs
are modelled correctly, context inference can be performed by probabilistic inference as
described in section 2.2.5 on page 25. Different from e.g. Gu and Zhang in [124], this work
models context types (e.g. PhysicalActivity) as random variables.

The different values a context type can adopt (e.g. running) define the RV’s value
range. Modelling has to take care that the value ranges are always exhaustive and that the
values are mutually exclusive. A set of standardised but extensible ontologies as they were
proposed by Strang, Linnhoff-Popien and the author in [42] will assist rule creation among
different domains. Exhaustiveness can always be guaranteed by an additional other state.

The random variables defining the Bayesian context inference rule shall be connected
in causal ordering, allowing therefore to represent the domain as sparse and efficient as
possible [66].

Rule Creation can be triggered either on demand, i.e. when inference has been re-
quested but there is no existing inference rule for the requested context type, or by using
independent mechanisms, e.g. a nightly running batch mode. There are different ap-
proaches for the creation of Bayesian networks for context inference:

• “manual” creation by a domain expert,

• adaptation of predefined templates for an individual, optionally by the user himself,

• service providers can share context inference rules for context specific to their service,

• automatic learning from the history of context with the techniques described in
section 2.3.4 on page 39.

The information used for automatic learning of Bayesian networks, the context history,
is an important factor for learning. Usual learning methods like the one described in [71]
learn relations among all elements of a complete context history. Hence, for learning a rule
about a high level context attribute, values about this attribute have to be known and
present in the history together with other context information before the relations found
between the different context attributes can be modelled in a rule. This implies that
the high level context originally has to come from human interactions with the context
history. To enable data collection among different users, a common understanding of
existing context attributes has to exist, which encompasses the existence of a common
context ontology (cf. Definition 11 on page 17) defining the existing context types.

Moreover, algorithms for learning BNs from incomplete data sets (algorithms from the
class of (structural) expectation maximization (EM) introduced in [74], cf. section 2.3.4.3)
will not be able to give semantically meaningful names to newly identified context nodes.
Hence, they cannot fully overcome the need for human interaction for context definition
and labelling, as context attributes without semantically defined name cannot be queried
by external services.
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Because of the large amount of information logged in the context history, it is necessary
to restrict the scope of learning as far as possible, e.g. by incorporating knowledge from
other already existing rules from different users, by individualising templates created by
human experts, or by limitations specified by domain experts or the user.

Limiting the amount of involved context types, imposing known causal dependencies
and specifying conditional independencies constrain the search space of structure learning
and help to find a structure ideally representing the past evidence.

Just like for inference rule creation, the update of existing rules can also be based on
regular processes or by incremental incorporation of new knowledge. The decision has to
take into account the system’s response time, but also the quality and up-to-dateness of
the responses.

A CMS has to provide all rule creation and update processes to fulfil requirement (6)
from section 3.3. On-demand rule creation adds significant delay on a response, given that
learning (even if only coarse grained) takes some seconds, but is necessary as delay may
still be better than giving no response at all. It can remain for the requester to decide if it
continues after some seconds or disregards the answers and proceeds immediately without
that information. Incremental rule updating keeps all existing rules always up to date at
the cost of permanent computation load in the background.

Incremental rule updating however would only update a BN’s parameter and not its
structure. New rules or new structures cannot be provided incrementally, which however
would be necessary for context awareness. So even if they are hardly flexible, resource
intensive and not need-oriented, regular batch processes for learning rules will be necessary
to discover new rules. To reduce the computational burden, these processes have to run
at typical low-usage times of the systems, for instance during the night.

5.1.1.2 Rule Storage and Access

Context inference rules (CIR) have been postulated to be modular and to refer to local
data only in requirement (1) of section 3.3. Local storage of CIRs bears the following
advantages:

• individualisation to the device user’s preferences,

• individualisation to the locally available information,

• reduced network traffic for remote information,

• easier privacy protection.

Rules can be stored and managed by the local CMS or be dynamically integrated as
third party services in a CIR service registry upon availability. The latter approach is
more generic, but reduces control over execution and update of the context management
system, in particular updating and learning upon request.

Hence the approach in this thesis manages Bayesian inference rules inside the context
management system. The resulting integration of CIRs in a CMS with its life cycle is
shown in Figure 5.1.

When a user owns several mobile devices, synchronisation mechanisms for distributed
context management systems have to be used to maintain a complete and consistent state
on all devices. The smart space concept can solve this by installing proxies to remote
inference rules, just like for access other users’ context [134]. When a locally evaluated
Bayesian network refers to a random variable for which there is no local evidence, it
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Figure 5.1: Lifecycle of context inference rules in a context management system.

requests inference rules or proxies in the local CIR storage system and requests the remote
evidence via the respective proxy connection. If access is granted, the remote evidence
can be incorporated.

5.1.2 Inference Scheduling

Once a solution about the maintenance of the inference rules has been found, it has to
be assured that the inference process itself can run as fast as possible. Therefore it has
to be scheduled efficiently: inferred context information has to be sufficiently current, but
unnecessary inference, hence resource consumption, has to be avoided.

5.1.2.1 Triggering Probabilistic Inference

Context inference should never be directly called by a consumer. It should be transparent,
whether requested information has to be inferred at all or whether it is provided by a
context source. Consequently the CMS is receiving all requests in the context broker and
forwards them to the context inference system if necessary, i.e. if no appropriate and up
to date information is available in the CMS.

The easiest way to always have the current information stored in the database implies
permanent evaluation of the inference rules, but this results in unnecessary evaluations
and many storage processes which will not have been used before they are overwritten.

The other extreme is to initiate inference only on request, as shown in Figure 5.2.
This is problematic, as response time increases and, more important, it would eliminate
the option for context consumers to register for changes in specific high level context.
Hence, preferences, proactive service invocation rules or other inference rules could not be
based on inferred high level context. In the scenarios of the introduction chapter on pp. 3
et seqq., it can however be seen that this is the way how daemon services running in the
background incorporate context in order to proactively start actions when appropriate.
To enable such context subscription, continuous inference based on the update of the
requested rules input nodes has to be offered.

In order to avoid unnecessary evaluation, a hybrid solution will perform best. It
should stick to on-demand inference as the default case, but enable subscriptions with a
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Figure 5.2: Message Sequence Chart: context inference on demand.

bypass: No rule should be evaluated that was not explicitly requested. When a consumer
subscribes for a context attribute which has to be inferred, the respective rule should
be evaluated and the CMS internally subscribes this rule as a consumer of all its input
context. This process is shown in the message sequence chart of Figure 5.3. Like this,
inference is triggered on necessity, i.e. depending on its input information, instead of a
only temporally regular basis.
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Process
Request Input

Receive Event

notify Store outcome

Figure 5.3: Message Sequence Chart: continuous context inference.

5.1.2.2 Update Frequency

The compromise solution could still cause (too) frequent inference, e.g. because of a high
frequency of an input context source. Inference frequency finference for an inference rule
that depends on the update frequency of its input information inputi, finputi

can be

defined as follows:

max
i

(finputi
) ≤ finference ≤

∑
i

finputi
(5.1)



86 5.1. Applying Bayesian Techniques in Context Inference

If there is one input information coming from a sensor with frequent measurements
(e.g. an IMU provides measurements in the order of 100 Hz) this would cause so frequent
rule evaluation that storage and inference would be only allowed to take few milliseconds.
If the relevancy of this inference is not too high, this would be a waste of resources. In
contrast, there are also cases of inference, e.g. the estimation of hazardous situations in
CACC , where the prediction should never neglect input from its sensors.

The latter case however shall be neglected. It is unlikely that sensors would store
data with update rates higher than 300 Hz in a CMS for cost and resource consumption
reasons. It can be assumed that safety critical applications like CACC bring along their
own sensors where they can directly access the raw measurements. Information that
would be shared in a context management system would already be preprocessed and
represent more meaningful and less volatile information, for instance cornering instead of
the respective accelerations and turn rates.

Hence, in order to avoid too frequent inference, a CMS can forward context requests
to the inference engine only when the quality of the available information is not sufficient.
Measures for the quality are among others the uncertainty and the recentness of the
information. If the context attribute hence has just been inferred and there is a state that
has a significantly higher probability than other states, then also a reoccurring change of
the input context would not trigger inference anew. With an appropriate threshold for
up-to-dateness, always up-to-date context information can be guaranteed.

Taking into account that the necessary update frequency depends on the type of the
context information and its use case, CMS cannot use always the same threshold for rating
information as up-to-date or outdated. Expert knowledge or human made ontologies
will have to provide this information and be combined with a CMS-immanent minimal
boundary between two inference calls. A reasonable boundary would be 1 Hz, as argued
in section 3.2 on page 57 – the approximate frequency of a human step.

5.1.3 Summary

This section has shown how to use modular Bayesian networks as context inference rules.
Rules can be provided to a CMS manually by the smart space owner or by external entities.
The CMS manages forwarding of context requests to the rule evaluation engine upon need.

Automatic learning methods can assist the rule creation, but need human involvement
in terms of labelling data and restricting the search space for structure learning. Automatic
creation and updating of inference rules needs both, resource intensive batch algorithms
which can incorporate new knowledge into the BN structure, and light-weight incremen-
tal algorithms which can react faster on changed behaviour and adapt the parameters
accordingly.

Inference rules should be stored and used only locally in the own smart space. The
frequency of inference has to be controlled by the CMS, allowing for context subscrip-
tions, but using on-demand context inference whenever possible. Inference frequency for
subscribed context should be limited by both, update frequency of low level input context
and a context attribute dependent minimum update distance.
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5.2 Handling Location Information in Context Inference

The probably most important and most used context information is location. An impor-
tant criterion for the practical usefulness of the approach proposed in this thesis is its
applicability to location – absolute location, the outcome of precise positioning, as well
as symbolic locations which are of high importance for inference or extraction of repeated
patterns in a user’s behaviour. Hence this section designs inference modules for location
inference which can be used upon need for high level context inference.

After discussing the relevancy of location for context aware systems in section 5.2.1, an
example for inferring precise position with Bayesian methods is given in section 5.2.2. In
section 5.2.3 a way to transfer absolute to symbolic location maintaining the uncertainty
information is presented, before section 5.2.4 shows how to model this information in static
Bayesian networks for context inference.

A derivation of absolute location is proximity, a further important factor for the infer-
ence of high level context. Section 5.2.5 presents a concept for its inference from absolute
location and its integration in Bayesian networks for context inference.

5.2.1 Importance

Albrecht Schmidt titled his paper [185] back in 1999: “There is more to context than
location” – the existence of this title already indicates the outstanding role of location
which has not changed in the last twelve years. Hardly any area has received as much
attention as positioning (outdoors and indoors) and location based services.

Location based services are the first and most important instance of context aware
services and the first ones that have reached a significant penetration of the market with
application for mobile phones, inclusion in social networks and in particular navigation
devices. A lot of research work has lead to appropriate algorithms and architectures, such
as [177], which has made this success happen.

Location is also used in all example scenarios of section 1.2 in the introduction. The
three scenarios presented in total 35 context aware services, of which 29 are impacted
directly by the user’s location. This is understandable, as human users are physical entities
and as such always have a location. This location defines the set of possible interactions,
of available services and environmental conditions – hence the user’s situation.

The next generation of context aware services, including more and more information
and sensor measurements [185], will undoubtedly still rely on location as one of the most
important sources of context. In terms of context modelling, location is one of many
attributes of an entity’s context [19], describing in the terms of Strang [42] one aspect of
context.

Fundamental for location dependent context aware services is precise positioning. In
particular in indoor environments a deviation of only one metre (about the length of a
step) can be decisive. It determines if a user is on one side of a wall or on the other.

Pervasive usage of location sensors requires efficient economising on resources. As such,
information updates should only be considered when they are significant, i.e. the new
location has a different semantic meaning than the last one. In the introductory scenarios
it can be observed that, with 17 out of 29, a narrow majority of the context aware services
are not depending on absolute position, but on symbolic location like rooms, train stations
or public places.

Therefore, precise location of a user not only has to be translated into discrete, semantic
positions, but also has to be available in different levels of detail. Only with very high
precisions (e.g. different rooms in a building) demands of certain applications can be
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fulfilled, but in order to save resources, less details should be taken into account in areas
less relevant for inference.

5.2.2 Fusion of Location Information

This work does not focus on location estimation, but shows a viable approach to integrate
it into high level context inference. Therefore a slim inference module is presented here that
shows how to infer precise position and can be integrated in high level context inference.

As an example an indoor environment is discussed where no satellite navigation is
possible and other location sources have to be fused for inference of precise position. The
proposed approach uses Wi-Fi fingerprinting and an INS as information sources, neglecting
other infrastructure based information like maps. The description follows the work of the
author et al. from 2008, see [151].

The goal is to obtain and process all the sensor data locally, and without any need of
registration with the local infrastructure. WLAN fingerprinting based on the signal power
(e.g. [176]) shall be used for the long-term stability of the approach, against the drift of
the inertial system. The only information needed at the local device will therefore be a
fingerprinting database for the current building, which can be maintained and distributed
by an entity independent of the local wireless infrastructure domain. As few calibration
locations as possible should be used, relying between these on the short-term accuracy of
foot mounted inertial dead-reckoning (for instance ZUPT based techniques, [150]).

This approach is novel by relying on the INS with ZUPT for improving Wi-Fi fin-
gerprinting, neglecting the building layout and using an efficent, hierarchical, close to
optimal Bayesian inference approach. Furthermore, in this work a magnetometer is used
for estimating the orientation of the user.

The work of Woodman et al. [193] uses very coarse WLAN positioning to reduce
the initial ambiguities of map aided inertial navigation. The work in [186] describes how
fingerprinting can be simplified by using an INS (not foot mounted) during calibration
and how actual performance is enhanced during positioning. An approach using a foot
mounted INS will perform better in situations where WLAN positioning is not available for
any significant length of time during which a standard INS approach (no foot mounting;
no ZUPT) would drift too far. This also applies to the work of Evennou in [149] in which
no true 6DOF ZUPT based inertial processing was performed, but only stride estimation
(angular change and stride detection). Furthermore, the particle filter used in [149] relies
on a known building layout.

The remainder of this section will first present the approach in general, describe the in-
formation sources Wi-Fi fingerprinting and Step Detection with an INS, before it presents
the filter for the fusion of both information sources.

5.2.2.1 Location Estimation Approach

Prerequisite for an inference module for location is its autonomous evaluation, indepen-
dence from infrastructure, and therefore also computational efficiency, in order not to
overburden resource constrained mobile devices. Techniques where the location is par-
tially or fully computed in the infrastructure will always remain questionable in terms
of privacy considerations. Suitable (approximate) Bayesian sensor fusion algorithms pro-
vide a close-to-optimal estimate of the position that can be efficiently implemented on the
end-user’s device.

The approach presented here requires no processing outside of the local device and
minimal a-priori fingerprinting effort. A hierarchical Bayesian filtering approach using
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cascaded extended Kalman filters (see section 2.3.6.2) to achieve a real-time implementa-
tion is employed. A schema for this approach is given in Figure 5.4.
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Figure 5.4: This figure shows the complete system with two layers of processing: a lower one for the
WLAN position estimate and the step computation which are then fused in an upper EKF.

This hierarchical approach has got a separate Bayesian filter for the inertial system
which estimates individual steps of the user; these estimates are then combined with the
estimate of the location from fingerprinting. Such decoupling allows the estimation filters
to run at their local sampling rates and reduces overall complexity without suffering from
significant loss of final estimation accuracy [169].

Using the (extended) Kalman Filters fulfils the requirement of resource efficiency in
terms of computation: while providing an (almost) optimal solution, the computation is
extremely fast, as it relies only on matrix operations.

The use of Wi-Fi fingerprinting fulfils the requirement of needing no association with
the actual access points and is in combination with the INS also relatively resource efficient
in terms of energy consumption. Scheduling of the WLAN receiver’s duty cycle can be
controlled by the INS: the user’s motion can be detected from the foot mounted sensors
which can trigger the WLAN module to scan the signal strengths of access points, when
the user starts moving, as only in this case the signal strengths are relevant.

5.2.2.2 Wi-Fi Fingerprinting

The method used for Wi-Fi fingerprinting in this work is a variant of location fingerprint-
ing using probabilistic algorithms (compare to section 4.2.1.2 in the description of the
state of the art), modelling the location calibration points with discrete RSSI probability
distributions (see Figure 6.2 on page 159 for an example). The system used has two phases
of operation, a calibration phase, and a location calculation phase, which can be initiated
after calibration.
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During the calibration phase a database of location fingerprints is established using
RSSI measurements at a number of calibration points, each referenced to a physical lo-
cation. The functional components of the system can be seen in Figure 5.5. The RSSI
Manager collects readings from the WLAN driver, and processes this information to es-
tablish a fingerprint, which is then stored into the fingerprint database. This process is
then repeated until calibration points have been set for the entire area of interest.

WLAN Driver

Fingerprint
Database

RF Fingerprint 
Constructor

Probabilistic 
Positioning Engine

RSSI
Manager

WLAN AP
Beacons

Figure 5.5: Functional components of a probabilistic Wi-Fi fingerprinting based indoor positioning sys-
tem.

The more calibration points are used, the greater is the accuracy of the system. How-
ever if calibration points are placed too close together, such that there is little difference
between RSSI variation of access points, i.e. they have very similar fingerprints, little
advantage is gained, and training time becomes infeasible for large areas. When finger-
printing is fused with an INS, the system needs less calibration points, as the accuracy
between them can be ensured by the INS.

In the positioning phase, continual scans from the wireless driver are processed by
the RSSI manager (see Figure 5.5). These readings are passed directly through to the
positioning engine, which calculates a distance to each calibration point, comparing each
one to the observed readings. The distance for each calibration point c is defined by the
following equation:

Dc =
∑
i

∑
j

|xir − xij|pij , (5.2)

where xir is the received RSSI (in dB) for the access point i, j are the sample RSSIs
defining the probability distribution for each access point, xij is the recorded RSSI stored
in the fingerprinting database, and pij is the probability of measuring the reading at the
given calibration point.

∑
j |xir − xij | pij is hence the expected distance to access point

i. Summing over all access points, then gives a distance calculation for each calibration
point denoted Dc. The results for all calibration points are collated, and the minimum
distance is taken as the location estimation.

To increase stability of the given location, a best-of-three approach is used to establish
the estimated location. If no dominant location is determined, the latest estimate is
returned as the current location.
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5.2.2.3 Step Detection

This work uses a foot mounted Inertial Navigation System and determines the wearer’s
position in a PDR approach with ZUPT (cf. section 4.2.1.2 in the state of the art descrip-
tion). In the following the details of the inertial PDR filter are addressed.

Algorithm Fundamentals:
A strapdown navigation algorithm [188] processes the vector of acceleration and turn

rate measurements zl = [al ωl]
T provided by the inertial sensors to compute position Rl,

velocity Vl, and attitude Ψl, i.e. the heading of the shoe wearer. In parallel an EKF is
used to estimate the errors of the strapdown calculations [155].

In this work, nine states are estimated by the filter: position errors δRl, velocity errors
δVl and attitude errors δΨl. A magnetometer is incorporated to align and stabilise the
heading as an additional measurement. Hence the inertial filter provides estimates of
position, velocity, and attitude in terms of a Gaussian PDF. In the subsequent processing
only position and heading are states of interest:

Xl =

(
Rl

Ψl

)
, (5.3)

where Ψl is the yaw angle derived from Ψl. From the posterior PDF of the inertial filter
the (marginalised) posterior P (Xl|zl, . . . , z0) can be derived straightforward.

Rest Phase Detection:
The reliable identification of the foot’s rest phases is crucial for the update of the

PDR filter. Different approaches have been proposed to trigger the ZUPT measurement
[150], [153]. This work basically follows these ideas and monitors the magnitude of the
acceleration vector, which is sensed by the accelerometer triad. If the signal remains
within a threshold interval around earth acceleration for a certain time interval ZUPTs
are triggered until the threshold condition is violated.

Step Sensor:
An extended Kalman filter is used to process the high rate inertial measurements, further

on called inertial filter. To exploit them in the upper layer fusion filter a (virtual) step
sensor is derived from the output of the inertial filter, which provides a measure of the
travelled distance and the change in heading for each step of the pedestrian, see Figure
5.6.

Each time a new ZUPT is triggered the expectation of the inertial filter X̂l is stored
in the variable X̂L. Introducing the step displacement variable ∆XL = XL −XL−1, the
displacement with respect to the coordinate system of the inertial filter can be written as:

∆X̂L = X̂L − X̂L−1

=

(
∆R̂L

∆Ψ̂L

)
. (5.4)

The displacement with respect to the last heading (before the step) is computed:

∆xk =

(
CT (Ψε)C

T (ΨL−1)∆r̂L
∆Ψ̂L

)
, (5.5)
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Figure 5.6: The INS is used to calculate an estimate of the pedestrian’s step in the form of a foot
displacement vector.

with the rotation matrix C(α) for a rotation by angle α:

C(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
. (5.6)

The average heading misalignment of the inertial sensor platform with respect to the
pedestrian’s heading is given by the angle Ψε, which has to be fixed initially.

5.2.2.4 Joint Sensor Data Fusion

As the next step, the WLAN fingerprinting measurements have to be fused with the
detected steps of the INS. This is done via the upper layer filter in Figure 5.5 in which
the pedestrians position Rk and heading Ψk at time k are tracked. The state vector can
thus be written as:

Xk =

(
Rk

Ψk

)
. (5.7)

To ease the incorporation of the step sensor only the change in position ∆Rk and heading
∆Ψk is considered for each step through the step measure

∆Xk =

(
∆Rk

∆Ψk

)
. (5.8)

As defined in section 2.3.6 on page 46 et seqq., the filter is defined by a transition model
that describes the evolution of the state variables and an observation model describing
the relation between the observed variables and the causing state variables. The next
paragraphs describe both models.

Transition Model:
The transition (or movement) model characterises the temporal evolution of Xk in order

to reflect the physical constraints that are imposed on the movement of a pedestrian.
In particular in an indoor environment this may include also any restrictions which are
imposed by the building layout. The benefit of this approach was shown for example in
[168] and [192]. For the reasons described above, the building layout is neglected however
in this approach. Hence formally, the new value xk of Xk is assumed to depend only on
the previous state xk−1, the current step measure ∆xk and a noise term ns:

xk = f(xk−1,∆xk,ns) , (5.9)
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where we have chosen that the new location value rk of Rk and heading ψk of Ψk depend
on the past state and on the step-measure through

rk = rk−1 + C(ψk−1)∆rk + ns,r , (5.10)

ψk = ψk−1 + ∆ψk + ns,Ψ , (5.11)

where C(ψk−1) is the rotation matrix given in Eq. (5.6).
The noise processes ns = [nTs,r, ns,Ψ]T and ns,r = [ns,x, ns,y]

T are zero-mean uncor-
related Gaussian noise processes of variance σ2

s,x, σ2
s,y, and σ2

s,Ψ respectively which are
adjusted to reflect the uncertainty of the step-measure.

Observation Model:
The position estimate obtained by Wi-Fi fingerprinting is used as an position measure-

ment zk, an instantiation of the random variables Zk, in the main integration filter and is
assumed to depend only on the current state xk and a noise term nw:

zk = h(xk,nw) . (5.12)

In particular we assume

zk = rk + nw , (5.13)

with nw = [nw,x, nw,y]
T being zero-mean uncorrelated Gaussian noise. The respective

variances σ2
w,x and σ2

w,y are adjusted to reflect the uncertainty of the Wi-Fi fingerprinting
based position estimate.

Filter Design:
Since the building layout or further sensors are not used, there is no need to incorporate

any further non-linear constraints than the one given by Eq. (5.10). But this relation is
rather moderate with respect to non-linearity and thus an extended Kalman filter [60] is
adequate to implement also the integration filter, in particular as all relevant noise sources
are Gaussian.

The implementation of the EKF follows strictly the process described in 2.3.6.2: Given
the initial mean x0 and the associated initial covariance Σ0 each filter iteration in the
prediction step recursively calculates the parameters of the Gaussian prior PDF, which
are mean

x̂−k = f(x̂k−1,∆xk,0) , (5.14)

and covariance

Σ−k = FΣk−1F
T + Σx , (5.15)

where the Jacobian matrix [49, 60] of the system dynamics is given by

F =
∂f(xk−1,∆xk,0)

∂xk−1

∣∣∣∣
xk−1=x̂k−1

=

 1 0 g1

0 1 g2

0 0 1

 . (5.16)

The terms g1 and g2 are the respective elements of the vector

g = C′(Ψk−1)∆rk , (5.17)
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where the derivative of the rotation matrix is

C′(Ψ) =
dC(Ψ)

dΨ
. (5.18)

In the subsequent update step the parameters of the Gaussian posterior PDF are computed
recursively at each iteration. The posterior mean is computed as follows:

x̂k = x̂−k + Kk

(
zk − h(x̂−k ,0)

)
. (5.19)

The posterior covariance and Kalman gain can be computed, as shown in Eq. (2.31), by:

Σk = (I−KkHk)Σ
−
k , (5.20)

Kk = Σ−k HT
k (HΣ−k HT

k + Σz)
−1 , (5.21)

with the Jacobian matrix of the observation model:

Hk =
∂h(x−k ,0)

∂x−k

∣∣∣∣
x−k =x̂−k

=

(
1 0 0
0 1 0

)
. (5.22)

The other covariance matrices, as defined in Eq. (2.29), are:

Σz = diag(
[
σ2
w,x σ2

w,y

]
) , (5.23)

Σx = diag(
[
σ2
s,x σ2

s,y σ2
s,Ψ

]
) . (5.24)

5.2.3 Discretisation of Absolute Location Information

The following section shall now present an approach to transfer the precise location infor-
mation from location estimation methods to formats more appropriate for context aware
systems.

Although there are services which need precise absolute location, proactive services
depending on location cannot depend on absolute location coordinates. If some service
is started only given a concrete location coordinate it is likely to be never executed, as
coordinates are too fine grained. Instead, regions have to be used which share common
semantics: symbolic location.

This fact not only holds for proactive service executing, but also for inference where
higher level information is to be inferred from location information, and for learning of
preferences or inference rules. If the information about location is too fine grained (in-
herently to coordinates), no common patterns can be found and learning and inference
quality would suffer, respectively.

Hence, a first step to making location information more usable in context aware systems
is the translation into symbolic location without losing precision, uncertainty information
and without significant computational load. This is shown in section 5.2.3.1. The second
step, shown in section 5.2.3.2, is the transformation of meta information from the location
estimation techniques to meta information usable for context inference.

5.2.3.1 Adding Semantics to Locations

The core of the transformation of coordinates to symbolic locations is the description of
relations between absolute and symbolic information: maps.
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Maps
Maps are representations of a portion of the earth’s surface, showing how things are

related to each other by distance, direction, and size. Digital maps are offered in either
vector or raster formats. A special kind of maps are floor plans – simple representations
of rooms, doors, etc. from a top view. Walls, doorways, windows and other features of
buildings are often drawn to scale and everything appears flat.

All these kinds of maps are used in the literature to improve the performance of
position estimation, e.g. in [168, 144, 193]. In particular walls, windows, doors, path
ways and corridors are used to match the estimated pedestrian movement and accordingly
improve the accuracy and stability of the position estimation process. The representation
of the vector floor plan as XML used in [162, 164] is shown in Figure 5.7. Additionally,
outdoor features from satellite raster maps (such as buildings locations, path ways, bushes,
walkable and non-walkable areas) are used to match the pedestrian movement outdoors
[190].

Representation of Maps in R-Trees
In Geographic Information System (GIS) research, methods have been developed to

efficiently capture, store, analyse, manage and present data with reference to geographic
location data. One outcome is the R-tree. This tree data structure is used for efficient
access to multi-dimensional spatial data, for instance maps.

An R-tree [158] is a depth-balanced tree data structure designed so that a spatial
search requires visiting only a small number of nodes. The R-tree splits the space of areas
to be stored, using hierarchically nested, and possibly overlapping rectangles. The “R” in
the R-tree stands for “rectangle”. If the item to be stored is not a rectangle parallel to
the coordinate system, a minimum bounding rectangles (MBR) (also called bounding box )
is stored.

An example R-tree is shown in Figure 5.8. Every node contains an array of x entries
with x ∈ [m;M ] ,m ∈

[
0; M2

]
. Each entry of a non-leaf node stores a pointer to a child

node and the bounding box of all entries within this child node (represented by its number
in the figure). Each entry of a leaf node stores an identifier of the actual data element
and its bounding box. The insertion algorithm ensures that nearby elements are inserted
in the same node, allowing for the efficient search.

R-trees are commonly used in position estimation frameworks to restrict the search
space to areas that are in the vicinity of the tracked user, and to discard outlier mea-
surements. This is important to save computation time and complexity. For example, a
Wi-Fi access point that is five kilometres away from the tracked user should not affect the
position estimation process.

In [191] for instance, RFIDs in the vicinity of a pedestrian are read during each time
step of a particle filter and used in the position estimation. Additional RFID measurements
received from RFID tags which are not in the vicinity of the pedestrian are ignored.

Maps are suitably represented with an R-tree by the storage of its elements in a spatial
order. Rooms, walls, doors can be found easily like that when they are relevant, i.e. in
the vicinity of the user. Knowledge about their type can be encoded in the elements’
identifier.

Combining Locations with Maps to Symbolic Location
Maps can be used to transform the outcome of location estimation into a symbolic

location. Current work integrates them already in the absolute location estimation process
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<walls>

<figureAdjustment>

<!-- 3 points from the floor plan assuming (0,0) is

the left bottom corner of the floor plan -->

<coordinateA><x>0.0</x><y>0.0</y><z>0.0</z></coordinateA>

<coordinateB><x>-52.0</x><y>20.80</y><z>0.0</z></coordinateB>

<coordinateC><x>0.0</x><y>20.80</y><z>0.0</z></coordinateC>

<!-- the cartesian real coordinates of the 3 above points-->

<coordinateAReal>

<x>0.0</x>

<y>0.0</y>

<z>0.0</z>

</coordinateAReal>

<coordinateBReal>

<x>-8.46788</x>

<y>-57.0808</y>

<z>0.0</z>

</coordinateBReal>

<coordinateCReal>

<x>19.1737</x>

<y>-10.46144</y>

<z>0.0</z>

</coordinateCReal>

</figureAdjustment>

<wall>

<wallName>wall1</wallName>

<!-- additional boarder when creating a bounding box for the wall-->

<additionalBoarderMeters>3</additionalBoarderMeters>

<coordinateA><x>0.0</x><y>0.0</y><z>0.0</z></coordinateA>

<coordinateB><x>-52.0</x><y>0.0</y><z>0.0</z></coordinateB>

</wall>

<wall>

[...]

</wall>

[...]

</walls>

Figure 5.7: Representation of a map with walls preventing crossing used in [168] for location estimation.
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Figure 5.8: Example of an R-tree for 2D rectangles.

to match the pedestrian movement to the map, for instance Krach and Robertson from
DLR in [168], Beauregard in [144], and Woodman in [193] apply this successfully with
particle filters (see section 2.3.6.3). The advantages are:

• Increased accuracy and stability of the estimator. Particles are prevented from
performing motion that is not consistent with the map, e.g. from crossing walls or
entering restricted areas.

• Support for noisy or erroneous measurements since it restricts the accessible areas.

• Support for coping with problems of physical sensors like bias and drift.

In more details, the work from DLR includes maps in the following way:
The Sequential Bayesian Positioning Estimator is based on particle filtering and combines
several noisy and heterogeneous sensors which provide information about the user’s po-
sition. Information sources used are GPS, foot mounted INS, electronic compass, RFIDs
and altimeter. Enhanced pedestrian motion models are used as prior models to enhance
the position estimation process [165]. Currently the position provided is an absolute po-
sition using the East, North, Up (ENU) earth based co-ordinate system. In the ENU
representation, the east represents the x axis, the north represents the y axis and the up
represents the z axis. No knowledge regarding the user’s symbolic location is estimated.

The work at DLR [168] uses a mixture between a Likelihood Particle Filter (LPF)
and a standard particle filter, cf. section 2.3.6.3. Including maps based on R-trees the
weighting process assigns low weight to particles which would cross walls since the last
step. Therefore all possible borders which are in the vicinity of the tracked user between
the last and the proposed position of the particle are retrieved from the R-tree and checked.
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Check
Accessibility

Check Symbolic Location

Weighting Particles

Importance Sampling

Query R-tree

Borders
Symb. Loc. Polygons

Yes

No

Weight All Symbolic Locations

P(xt+1|zt+1)

P(xt|zt)
t := t+1 

P(SymbolicLocation)

Insert symbolic locations
In R-Tree

Assign good weight

Assign low weight

Figure 5.9: Sequential Bayesian estimator of the work in [168] extended to estimate absolute and symbolic
location. The steps marked in yellow constitute the extension for symbolic location.

This last step is extended to efficiently compute the symbolic location, as shown in the
flow diagram of Figure 5.9. This work proposes to add also symbolic locations like rooms
(polygon shaped) to the R-tree (i.e. their bounding boxes). The particle filter is used as
before to sample and to weight the particles. However when querying the R-tree in the
weighting process for borders, also the symbolic locations in the vicinity of the particle
are retrieved. In this step, no extra computational cost arises.

As the R-tree however contains only the bounding boxes of the symbolic locations,
also wrong rooms might be returned, every time when a particle is situated within the
bounding box, but outside the area of the symbolic location, see Figure 5.10. To resolve
this problem, the proposed implementation directly checks with all results of the R-tree
query, if the particle’s location is really within the symbolic location. This process adds
computational costs, but still is comparably efficient, as only those symbolic locations have
to be checked whose bounding boxes are around the particle.

When the correct symbolic locations have been identified for every particle, a weighted
sum is calculated to find the estimated symbolic location. Their identifiers contain further
information about hierarchies and relations among them which can be exploited by the
requester. For instance it can contain – in addition to the room name – also the building
name, post code, country etc. Given a clearly defined hierarchy of such meta information,
it can be avoided that overlapping symbolic locations are returned.

The same process for the identification of the current room with R-tree and individual
verification of the results can also be used for all other methods for determining absolute
location, e.g. Kalman filters. Instead of combining the usage of the R-tree during location
estimation with the lookup of the current room, the R-Tree would be used then after the
determination of the most probable (MAP) absolute position and return the room of the
most probable absolute location.



5.2. Handling Location Information in Context Inference 99

hallway

roomC

roomF

x1

x2
x3

Figure 5.10: Locations x1 and x3 are situated within the bounding boxes of a roomC and roomF , but not
within the rooms themselves. Location x2 in contrast lies within the bounding boxes of both rooms, but
lies in reality only in roomC . The returned results of the R-tree query therefore have to be double-checked.

5.2.3.2 Transferring Meta-Knowledge into the Location Context Information

The approach presented above shows how the current symbolic location can be specified,
i.e. how from raw data context information can be gained. In order to fully specify context
information however, also the meta information has to be set, in the present case hence
the meta information has to be transferred from the absolute to the symbolic location.

The most important meta information are the acquisition time and the (un-)certainty
which is particularly relevant for Bayesian high level context inference. While the time
stamp of the information acquisition can be set easily when calculated in real-time, spec-
ifying the uncertainty is more challenging.

Both, the particle filter from the preceding section and the Kalman filter from section
5.2.2, are Bayesian estimators and their estimated posteriors come along with measures for
the uncertainty. These measures however differ from each other, as well as from a discrete
probability distribution representing the uncertainty in a discrete random variable which
shall represent the context attribute SymbolicLocation in high level context inference.

In the following the transfer of the uncertainty (meta) information shall be described
for particle filters and Kalman filters.

Particle Filter:
Including the transfer from absolute to symbolic location in the particle filter, as shown

above, has the advantage that not only the symbolic location of the MAP location is
found, but the symbolic location for every particle.

The necessary probability distribution over the found symbolic locations can also be
determined easily based on the weights of the particles. Let Xt denote the position, in
particular the latitude and longitude coordinates, estimated by a particle filter using at
time t the particles xi,t, 1 ≤ i ≤ NS with the number of particles NS . If there is a subset of
indices L ⊆ {1, ..., NS} where all particles with indices from this subset are at a symbolic
location sl, xl,t → sl ∀ l ∈ L, then the probability of the SymbolicLocation = sl can be
calculated as follows:

P (SymbolicLocation = sl) =
∑
l∈L

wlt , (5.25)

where wit is the weight of particle i at time t according to Eq. (2.34).
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Kalman Filter:
The solution for the Kalman Filter proposed in section 5.2.2 is not as straightforward.

The outcome of an update step of a Kalman filter at time k is a mean vector xk (Eq. 5.19)
of the estimated random variables Xk and a covariance matrix Σk (Eq. 5.20).

Hence the information of the posterior covariance matrix has to be transformed into
discrete probabilities for the relevant symbolic locations. As a first step therefore, the
relevant symbolic locations next to the MAP symbolic location have to be identified, with
the help of the covariance matrix.

The idea proposed in this work is that the variance of the variables represented in the
matrix defines the relevance. In case of 2D positions, these are latitude and longitude, as
represented in Rk above in Eq. (5.7). The variances σ2

Rik
for the components Rik of Rk

are found in the diagonal of the submatrix of Σk related to Rk.

hallway

roomA roomB roomC

roomE roomD

(r1,r2)
σR1 σR2

Figure 5.11: A floor plan of an office building, in which a Kalman filter has estimated the user’s current
position to be (r1, r2) with standard deviations σR1 , σR2 , lying in the hallway. The figure shows, dotted
in grey, the area of relevance A for the estimated position determined by (r1 − 2σR1) ≤ R1 ≤ (r1 + 2σR1)
and (r2− 2σR2) ≤ R2 ≤ (r2 + 2σR2). It contains roomA, roomB , roomD, roomE , hallway, but not roomC .

Knowing that P (µ − 2σ ≤ X ≤ µ + 2σ) ≈ 0.954 for normal distributed X with
mean µ and variance σ2, the multi dimensional 2σ environment of the position related
vector Rk is the relevance space. In the usual case of two dimensional positions shown in
Figure 5.11, this environment represents the area A with P (Rk ∈ A) > 0.9. The roughly
10 % remaining are neglected in order to restrict the relevance and hence to reduce the
computational complexity.

This area of relevance A is queried then in the R-tree and the relevant symbolic loca-
tions are found. As the second step, the probability for each symbolic location has to be
calculated. Every symbolic location sli has borders determining its area and the probabil-
ity P (SymbolicLocation = sli) is determined then by the cumulative probability density
F (Rk) in the area of sli.

Although in the multivariate case, there is no closed form for F (X) [66], there are a
number of algorithms that estimate it numerically which can be used, c.f. the work of Liu
in [172].

The result finally has to be normalised so that
∑

sli
P (SymbolicLocation = sli) = 1.
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5.2.4 Modelling of Symbolic Location in Bayesian Networks

The last section has shown how to translate absolute location into symbolic location given
a map. Modelling symbolic locations in Bayesian networks however is challenging for the
following reasons.

• Symbolic locations are not mutually exclusive.

• The number of possible symbolic locations is unlimited.

Careful modelling of the information available in the R-tree in agreement with the
requirements of the high level context inference rule can solve this problem. Such solutions
however are not appropriate for generic applicability and usage of the location and context
inference necessary in ubiquitous computing.

5.2.4.1 Generic, Modular Modelling of Symbolic Location Projections

A straightforward solution to make the applicability more general is to model all depen-
dencies in the Bayesian inference rule. This model is based on absolute location and its
sensors which are causally influenced by the absolute location.

Symbolic locations are projections of the continuous, multi dimensional absolute lo-
cations onto a discrete set of nominals, representing the different symbolic locations. As
the target models are Bayesian networks, the different nominals also have to be mutually
exclusive and their set has to be finite, in order to be able to represent it in an R-tree.

With these assumptions, symbolic location is a surjective function of the current loca-
tion vector x and the map m:

sl = SL(x,m) (5.26)

WiFi Fingerprinting

Last Location

AbsoluteLocation

GPS receiver

Maps

SymbolicLocation1

TimeOfDay

WorkDay

SymbolicLocation2 SymbolicLocationn…

Sensorm…

Figure 5.12: Generic model of absolute locations, symbolic locations and location sensors in a static
Bayesian network. It consists of the continuous variable AbsoluteLocation, different sensors Sensori
influenced by the symbolic location and a set of projections to the discrete RVs SymbolicLocationi, as
well as other external information which adds knowledge about the current absolute location, such as
T imeOfDay.

The representation of non-mutual exclusive, hence overlapping symbolic locations is
possible with a set of functions SLi each referring to different mappings. In terms
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of Bayesian random variables, these functions can be modelled like in section 5.2.2.4:
A symbolic location is represented by a random variable with the parents Map and
AbsoluteLocation, as shown in Figure 5.12. Different functions for overlapping symbolic
location are consequently modelled as different random variables.

The problem with this model is its computational complexity. AbsoluteLocation and
at least some of the sensors represent continuous variables. Moreover the number of pro-
jections to symbolic location which can possibly be relevant for some high level context is
if not unlimited then at least very high.

To come up with a tractable solution for resource constrained devices, this work pro-
poses a flexible and modular approach. As a first step, the dynamic inference of the
continuous RV AbsoluteLocation is to be decoupled from the further usage of symbolic
location, as shown in an example in section 5.2.2. The second step is the construction of
pluggable inference modules for each random variable SymbolicLocationi which can be
used by the designer of the high level context inference rule.

In such pluggable inference modules, the estimated absolute location is used to find,
with the help of an R-Tree query, the correct symbolic location – applying the process
described in section 5.2.3.

To maintain the dependency structure of figure 5.12, all RVs concerning symbolic
location used in parallel in an inference network have to be set to soft evidence, which has
the same d-separation properties like AbsoluteLocation with hard evidence in at least one
Sensori RV.

To represent the common dependency of all symbolic location RVs toAbsoluteLocation,
the respective soft evidence always has to be updated in parallel. The corresponding in-
ference engine can ensure this with the help of the context model (see section 2.1.2 on
page 18). Evidence in a random variable always represents a context information, the
random variable’s name specifies thereby the context type, for example WorkP laces. All
random variables concerning the symbolic location however have the same aspect from the
ASCi-Model, namely SymbolicLocation.

Hence when a context inference rule is to be evaluated which contains a RV of aspect
SymbolicLocation the following steps are executed:

1. The respective inference modules, specifying the correct context type are retrieved
from a repository.

2. The R-tree part of a retrieved inference module is used in the dynamic inference
module for absolute location, if a particle filter is used.

3. All modules are evaluated incorporating the current posterior of the dynamic location
estimation and produce a probability distribution for its output context type.

4. The outcomes of all modules are introduced as soft evidence into the respective
random variables of the context inference rule.

The inference modules for symbolic location thereby can be provided by a central server
in tiles concerning different regions, like today’s map tiles for online satellite map appli-
cations. In addition also personalised symbolic location modules are of importance, for
instance to specify the symbolic locations for daily routines atWork, atHome, atSports,
inTheCity which depend on the user himself. Building up personalised modules for a
user would not be difficult using a graphical map for location tagging. An R-tree can be
populated then from the tagged areas.
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5.2.4.2 Tree Structured Symbolic Location Projections

A special case of overlapping projections from absolute to symbolic location is where each
symbolic location is overlapped by a number of sub-locations which do not overlap with
other symbolic locations. These projections can be represented by a tree like the one
shown in 5.13.

DLR campus

TE01 TE02

garage meeting roomofficesecretariat

Level n-1

Level n

Level n+1

Level n+2

Figure 5.13: Part of a location hierarchy with the levels of districts (Level n), buildings (Level n+1),
and rooms (Level n+2).

This tree has the following property for a symbolic location sl with n sub-locations sli:

P (SymbolicLocation = sl) =
n∑
i=1

P (SymbolicLocation = sli) (5.27)

In other terms: the whole area of sl is completely partitioned in sublocations sli.

Modelling such projections in random variables would show the less fine grained, lower
level projections independent from the absolute location, as their behaviour can be con-
clusively determined by the more detailed projection. Such modelling however would be
too cost intensive, because the less fine grained RV does not add any new knowledge to
the network. This redundancy could be avoided by using always only the projection of
the highest level.

Higher level projections however contain many different sub-locations which often will
not be necessary. In terms of Figure 5.13, when a user is in building TE01, all rooms of
TE02 are irrelevant. Having modelled them in the BN means, however, that any parent
and child node causes the addition of conditional probabilities for the sub-location either
in the node itself or the child node.

The property from Eq. (5.27) allows a more intelligent solution. The value range of
the SymbolicLocation RV can be dynamically formed based on the current relevant sub-
locations. The evaluation of the R-tree based on the estimated absolute location gives the
highest level of detail necessary. The value range of SymbolicLocation then has to contain
all relevant sub-locations, but can collapse those sub-trees which have no relevance.

Based on the fact that the different levels represent larger areas between which human
users do not change too frequently, the CPTs of the nodes in the static BN can be reduced
considerably and do not have to be modified too frequently. Section 5.4.3 will be more
detailed with regards to the mathematical operations necessary for the adaptation of the
CPTs.
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5.2.5 Proximity Determination

A crucial factor for context-awareness which is based on location is proximity. The services
and people which are close to a user influence his options and actions. The determination
of proximity is challenging for the following reasons:

1. The determination of “near” and “far” is relative and changes depending on context.

2. A user has proximity relations to all other existing entities, i.e. services, actuators,
objects and persons.

3. The values of these relations constantly change.

4. The distance to other entities is usually not linear, as the line of sight is often
blocked.

The present research offers an approach to provide proximity information for a user to
a context aware system. The approach is based on the same concepts as the last sections,
precise absolute positioning, symbolic location using maps and R-trees and modular on-
demand inference.

What is “near” and “far”?
As mentioned above, these terms depend on the context of their application, in particular

on the service requiring this information. The service requesting proximity information
can specify a range of proximity, interpreted as a distance in metres to the user’s location.
Easier is the determination of “nearest”, which can be always solved without additional
information of services.

Like this, determination of proximity boils down to a calculation of distance and com-
paring to a fixed threshold.

There are proximity relations to all entities.
Calculating the distance to all entities would exceed the computational capabilities of

resource constrained devices in a reasonable response time. Consequently the entities
have to be further specified and limited. Again, the service requesting the information can
provide the most useful information, by specifying for instance doors, windows, printers
or friends of which the proximity is relevant.

To further limit the search space, the number has to be reduced more, whereby static
(like doors, windows, printers) and mobile entities have to be distinguished.

The R-tree of the current location helps to limit the search space for static objects,
assuming that all static objects are inserted as map elements. The defined proximity
distance allows to query then the R-tree for a circular area around the user’s location with
the proximity distance as radius.

This approach is not viable for dynamic objects, as the permanent insertion and dele-
tion of objects in the R-tree would destroy its performance. Dynamic objects however are
in particular persons, from which we can assume that they track their own position to
allow for instance proactive context aware services. In this case, they also have a symbolic
location. If persons are close enough to be relevant for proximity estimation, then a more
or less high level of symbolic location (compare Figure 5.13) will have the same values.
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Proximity is constantly changing.
Also the permanent calculation of changing distances would overburden mobile devices.

The subscription (compare section 5.1.2.1) hence has to be prohibited and can be queried
only then on demand, when other necessary conditions are already met. This logic again
has to be implemented by the service provider.

Proximity depends on the environment settings.
The problem of determining a proximity has now been reduced to distance calcula-

tions between the user’s location and the locations of a limited set of relevant entities.
Simply applying a straightforward Euclidean metric in 3D space will usually fail, since
non-linearities, such as walls, in the true practical proximity are not considered. A true
proximity metric should be proportional to something like the time taken to reach the
destination or the distance travelled.

In [140] a mobility model for pedestrians was introduced that applies a gas diffusion
algorithm to estimate a path between two points in a given floor plan layout. The algorithm
works by virtually emitting gas from the destination that propagates through the open
portions of a building layout and becomes absorbed by walls. Any point in the building
experiences a certain concentration of the gas that is proportional to the distance to the
emitter. Computation of the gas source is straightforward [163] and the results may be
cached in a database.

This work proposes to invert the gas diffusion approach to measure a number of dis-
tances from a given point. The user’s location is used as position of the gas emitter. To
calculate the distance, the shortest path to the destination is identified by following the
steepest gradient of gas density to the destination, known from the calculated density
matrix. In a map with well defined coordinate system, the calculation of the length of the
path is straightforward.

(a) (b)

Figure 5.14: The floor plan of the Arclabs building of TSSG, Waterford Institute of Technology, with
marked locations of a user and three different printers (left). On the right side, the proximity of the three
printers to the user is measured applying a gas diffusion model.

The result is shown in Figure 5.14. A service prints documents always on the printer
closest to the user. In an office building like the one shown in Figure 5.14 (a), three usable
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printers have been identified, one in the board room, one in the IT administration office,
and one in the printing room. As the user is currently situated also in the board room, the
printer there is recognised as the nearest one (the colour of the gas density is represented
darkest in Figure 5.14 (b)) and used. If black and white was not sufficient, the printers
in the IT administration office and the printer room would be the options. Although
the Euclidean distance to both printers is almost identical, the path to the printer in the
printer room is considerably longer. Hence the one in the IT administration office would
be used.

5.2.6 Discussion

A lot of research has been undertaken on location based services, on efficient access to
spatial information and on maintenance of location information. Often however usage of
location information in context aware environments has been neglected.

This work therefore has provided the complete chain from the fusion of different lo-
cation information to its conversion into symbolic location and the incorporation in high
level context inference, as well as the derivation of proximity from it.

The proposed method for absolute location estimation is using a Kalman filter. This is
the most efficient way in terms of computation and largely independent from infrastructure
data, which makes this approach particularly relevant for resource constrained mobile
devices.

Also the second widespread location estimation method, a particle filter, is used. Its
advantages include the more general applicability and the inclusion of maps which are
necessary for the determination of symbolic location. This leads to very good accuracy
results and a very efficient determination of symbolic location.

As already postulated in the requirements of section 3.3, a modular approach for the
composition of high level context inference rules ensures efficiency for the incorporation
of symbolic location information. Only the relevant information for an inference goal
is computed, while the independence relations of a Bayesian network encompassing all
location information is maintained.

The approach for calculating proximity information of a user relies on the proposed
methods for absolute and symbolic location. Due to some restrictions (no continuous
inference) and limitations of scope (by symbolic location and explicit requirements to ser-
vice providers) a tractable solution using a gas diffusion model and, again, maps can be
proposed. This method is not too resource efficient, but provides – in contrast to simpler
methods – a realistic estimation of distance which is fundamental to detecting proximity.
The efficiency shortcomings (for every new location a matrix for the gas diffusion, propor-
tional to the size of the area, has to be computed) are attenuated however by the proposed
restricted usage of this method.

The collective of the proposed methods for location information allow for the generic
and resource efficient applicability in ubiquitous computing, and for high level context
inference in particular.
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5.3 Recognition of Human Motion Related Activities

The last section has shown how to infer precise location with Bayesian approaches from
multiple sensors and how to integrate it in context inference as symbolic location. In some
situations when there is a single reliable sensor for absolute position, there is no need for
inference and even transformation to symbolic location might not be necessary when some
information source provides already symbolic location.

There are however also context aspects that cannot be measured directly by a sensor
and which always have to be inferred. One of them is the human physical activity: the
information, whether a person is sitting, standing, walking, running, jumping, falling
or lying.

This section shows how to infer this context information from acceleration and turn
rate measurements in real-time on resource constrained devices. From a big amount of
high frequent raw data, the presented approach produces less frequent, compact context
information that can be used by different context consumers. This specifies hence besides
location a second context inference module usable for high level context inference.

The remainder of this section first discusses the relevance of motion related context
information, then describes the available raw data and the features that are relevant for
the investigated activities, before different designs of the context inference rules, i.e. the
Bayesian classifier, are presented according to the publications of the author et al. in
[211, 237, 209, 210].

5.3.1 Importance

Next to location, one of the most important context attributes defining the user’s situation
is his physical activity. Its importance is not only visible in the large amount of research
performed in this area (cf. section 4.3), but also in the scenarios in the introduction from
page 3 onwards.

The variety of use cases where human motion related activity is necessary reflects the
fact that 15 of the 35 context aware services in section 1.2 depend on it. While such
situation is useful in situations at work (section 1.2.1) or in entertainment (section 1.2.2),
it is absolutely vital in other environments such as:

• Ambient Assisted Living:
Situations like the one described in section 1.2.3 are getting more and more frequent.
Thereby the elderlies’ health has number one priority. Prerequisite for noticing
deviation from normal life or accidents is continuous monitoring of the activity. Only
like that, falls or also degrading mobility can be detected and severe consequences
avoided.

• Safety Critical Missions:
Some jobs have immanent risks caused by the environment in which they are exe-
cuted, for example firemen, police in exertion or disaster relief experts. When such
helpers’ safety is endangered, their general demand for privacy is overridden and it
is useful to have a supervisor informed about the current status. Only with current
information about a helper’s situation and physical status in particular, measures to
ensure his safety can be taken.

• Pervasive Health:
Topics of pervasive health are more and more relevant. Governments and health
insurers have as high an interest in people’s health as people themselves. Gymna-
siums, but also video game consoles and social networks come up with applications
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for monitoring one’s health and in particular the degree of physical activity and
performance in sports. Based on the measured data, energy consumption can be
calculated or hints for further training are given in order to improve the personal
health.

In addition to its direct usage by services like those described above, it is also of
high importance for describing the user’s situation. Together with location, the physical
activity has big influence on high level context, like the activities of daily life as described
in section 3.2.1.

5.3.2 Human Motion and Measured Inertia

This section explains the raw data available for recognition of human motion related
activities, their preprocessing and their quantisation. After these steps, every state of the
preprocessed values, the so called features, adds value to the classification.

5.3.2.1 Hip Mounted Inertial Measurement Unit

This work uses a hip mounted inertial measurement unit (IMU) to infer motion related
activities. With the IMU, different sensor types (accelerometers and gyrometers), i.e.
multimodal sensors, are used at one place of the body, instead of distributing several
sensors of the same type across the body. According to Choudhury et al. in [205] “studies
have shown that the information gained from multimodal sensors can offset the information
lost when sensor readings are collected from a single location”.

The hip has proven to be the most suitable placement, at it is close to the centre of
gravity of the human body and is sensitive to any movement of the trunk and both legs.
Using only one sensor moreover is considerably less obtrusive, one of the main factors for
the success of ubiquitous computing. Placing the sensor at the hip, a MEMS based IMU
could also be integrated in the belt buckle.

The IMU used in this work, an xsens MTx as displayed in Figure 5.15 was set to provide
measurements with 100 Hz. It contains three orthogonal accelerometers, gyrometers for
yaw, pitch and roll and three orthogonal magnetometers. The latter however do not
add value to activity recognition and shall be neglected in the remainder of this section.
Further on, the IMU has an embedded temperature sensor for internal compensation and
an embedded processor capable of calculating the orientation of the sensor in real-time
which provides calibrated 3D linear acceleration, turn rate and magnetic field data [241].

Figure 5.15: xsens MTx sensor with frame representation from [241].

The orientation is calculated by the fusion of the sensor output signals using a Kalman
filter [231]. Figure 5.16 summarises the information used. The orientation is provided
between the sensor frame (shown in Figure 5.15) and the global frame (GF), an earth-
fixed reference frame defined in Cartesian coordinates.
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Figure 5.16: The xsens MTx sensor fusion scheme [231]. The fusion of the information of the 3D
accelerometers, gyroscopes and magnetometers yields the 3D orientation of the sensor.

(a) The ideal body frame has its origin in the centre of mass of
the human body while it is standing upright and does not
vary over time. In reality, the origin of the body frame is
defined by the sensor location which depends on the
individual user’s placing.

(b) Final approximation to the
body frame: The horizontal
plane allows access to all
necessary information.

Figure 5.17: Definition of the body frame at the sensor location.

Acceleration and angular velocity are most relevant in relation to the human body,
hover, which is why they are (approximatively) converted to the body frame (BF). In
contrast to the global frame, the body frame follows the movements of the user. The three
axes of the body frame are defined to intersect at the sensor location (see Figure 5.17 (a)),
the z axis is directed towards the head, while the other axes (x and y) form the plane
orthogonal to this vertical axis.

In order to obtain the rotation between the sensor frame and the vertical axis in the
body frame, the 3D orientation computed internally in the sensor module can be used
(see Figure 5.17 (b)). The exact heading of the human body cannot be estimated unless
magnetometers are used, in this work however the information used for inference does not
require the direction of the sensor frame. Determination of the horizontal plane allows for
the computation of all necessary information.

5.3.2.2 Sources of Information

Related work in biomechanics (e.g. [240]) and accelerometer based recognition of human
motion related activities (described in section 4.3) usually identifies the norm of the accel-
eration as the main source of information. This is however only a part of the information
characterising human motions. IMUs provide acceleration and angular velocity regard-
ing different reference frames, as well as angular information describing the axes of every
frame.
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Our approach clusters the 100 samples received per second into windows of different
length, ranging from 32 to 512 samples, i.e. from roughly a third of a second to five
seconds. This allows for the identification of very short movements (like a fall) up to
physical activities consisting of a repeated pattern (like running).

In these windows, the following sources of information are computed from the available
raw data. They serve as a basis for the identification of features in this work.

• |a|, the norm of the acceleration a, and |ω|, the norm of the angular velocity ω, in
the global frame defined as

|a| =
√
a2
x + a2

y + a2
z

|ω| =
√
ω2
x + ω2

y + ω2
z ,

(5.28)

where ai and ωi, i ∈ {x, y, z} is the acceleration and angular velocity respectively at
the i-axis.

•
∣∣aBFh ∣∣, horizontal acceleration in the body frame, and

∣∣ωBFh ∣∣, angular velocity in the
horizontal plane of the body frame,∣∣aBFh ∣∣ =

√
(aBFx )2 + (aBFy )2∣∣ωBFh ∣∣ =

√
(ωBFx )2 + (ωBFy )2 ,

(5.29)

where aBFi and ωBFi , i ∈ {x, y} is the acceleration or angular velocity, respectively,
at the i -axis of the body frame.

• aBFv , vertical acceleration in the body frame, and ωBFv , angular velocity of the vertical
axis in the body frame,

aBFv = aBFz

ωBFv = ωBFz ,
(5.30)

where aBFz and ωBFz are the acceleration and angular velocity along the z-axis of the
body frame.

• aGFv , vertical acceleration in the global frame,

aGFv = aGFz , (5.31)

where aGFz is the acceleration measured along the z-axis of the global frame.

Sources of information exploited for activity recognition are furthermore:

• in the temporal domain:

– Minimum, min, and maximum, max, values in a window and the range between
both.

– Mean x̄ and standard deviation σ(x) of a quantity x.

– Median and mean absolute deviation.

– The inter quartile range (IQR): the range between the 25-percentile and the
75-percentile, hence the range of the 25 % environment around the median.

– Root Mean Square (RMS): the square root of the arithmetic mean of the squares
of information in a window.
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– Integrated value using trapezoidal approximation.

– Mean crossings.

– Pearson correlation coefficient ρ between two signals.

• Frequency domain features:

– Main frequency component (MFC).

– Spectral entropy and relative spectral entropy.

– Energy Ê of the signal in a frequency band determined either by a low pass
filter (LPF) or a band pass filter (BPF).

5.3.2.3 Features of Human Motion Related Activity

In the terminology of classification, the low level information which helps to infer the
higher level context physical activity represents a set of features of the searched class. In
the present case, mathematically, features are functions, mapping the state space of the
measurements to a value in the real numbers.

f( ~E) ∈ R , (5.32)

~E = (ax, ay, az, ωx, ωy, ωz, ε1, ε2) , (5.33)

where ~E is the vector of measureed evidence, ai and ωi are the acceleration and turn rate
in direction i ∈ {x, y, z}, respectively. εj , j ∈ {1, 2} are the Euler angles for the conversion
between sensor frame and global frame which could also be replaced by quaternions or a
rotation matrix. The basic information obtainable from the IMU’s raw data presented in
section 5.3.2.2 are used to compute the features.

The objective is to identify features that allow for reliable inference of the motion
related activities, independent from the person and the dataset used to train the classifier
(i.e. to learn the Bayesian network). The set of features is meant to describe the complete
picture of human motions with a minimum number of efficiently computable features, in
order to allow efficient computation.

Therefore the criteria for selecting a feature have been the following:

• Justification of the influence with a bio-mechanical and physical explanation

• Discriminative power between the activities in question.

• Efficient computation.

• No redundancy with other features.

Based on the bio-mechanics of human motion and the available sources of information
from the IMU, 19 features have been selected that fulfil the criteria described above. The
following paragraphs will describe the selected features and show examples, how they
discriminate and cluster activities together with other selected features.
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Horizontal Acceleration in the Body Frame
Features 1 – 3 use the horizontal acceleration in the body frame, see Eq. (5.29).

f1( ~E) = max128

(∣∣aBFh [k]
∣∣) , 1 ≤ k ≤ 128 (5.34)

f2( ~E) =
∣∣aBFh ∣∣

128
=

1

128

128∑
k=1

∣∣aBFh [k]
∣∣ (5.35)

f3( ~E) = σ128

(∣∣aBFh ∣∣) =

√√√√ 1

128

128∑
k=1

(∣∣aBFh [k]
∣∣− ∣∣aBFh ∣∣

128

)2
(5.36)

The maximum horizontal acceleration max128

(∣∣aBFh ∣∣) helps distinguishing between static
and dynamic activities (see Figure 5.18) and has particularly high values for falling (when
the body hits the floor). The mean value, shown in Figure 5.22, helps to distinguish the
static activities (almost no horizontal acceleration for standing, the full gravity for lying,
and sitting in between them) and the standard deviation helps to distinguish the activities
jumping, falling and running, in particular in combination with feature 6.

Figure 5.18: Plot for max128

(∣∣aBF
h

∣∣), feature 1, and max128

(
aBF
v

)
, feature 4. The combination of both

allows to distinguish standing, sitting and lying as the body attitude information is contained in the body
frame. The distinction of falling and jumping is also possible as both activities reach their maximum
value in different signals once the body has hit the floor. Also walking, running and jumping can be
distinguished.

Vertical Acceleration in the Body Frame
The vertical acceleration in the body frame, the signal defined in Eq. (5.30), is used for

the features 4 – 7.

f4( ~E) = max128

(
aBFv [k]

)
, 1 ≤ k ≤ 128 (5.37)
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f5( ~E) = aBFv 128 =
1

128

128∑
k=1

aBFv [k] (5.38)

f6( ~E) = σ128

(
aBFv

)
=

√√√√ 1

128

128∑
k=1

(
aBFv [k]− aBFv 128

)2
(5.39)

f7( ~E) = RMS128

(
aBFv

)
=

√∑128
k=1 a

BF
v [k]

128
(5.40)

The maximum value max128

(
aBFv

)
helps to distinguish between jumping, falling and walk-

ing. The mean value distinguishes standing, sitting and lying, while the standard deviation
helps discriminating between all dynamic activities. The root mean square RMS128

(
aBFv

)
is a good discriminator for the static activities. It can be seen in Figure 5.19 where it
identifies reliably lying, other static activities and dynamic activities.

Figure 5.19: Plot of feature 18, ρ128
(
aBF
v , |a|

)
and feature 7, RMS128

(
aBF
v

)
. Feature 18 achieves high

values if the current motion acceleration in 3D is mainly contained in the vertical axis. Feature 7 is useful
for the distinction of lying from other activities.

Horizontal Angular Velocity in the Body Frame
Feature 8 is the only feature using angular velocity.

f8( ~E) = IQR128

(∣∣ωBFh ∣∣) (5.41)

While for other motions, accelerometers can offer sufficiently good discriminators, the
recognition of falling which is shorter than one second can be improved. A falling body
often suffers from a fast rotation which can be measured by the gyroscopes. It is used in
the interquartile ranges IQR128

(∣∣ωBFh ∣∣) which has a similar meaning as a σ-environment,
but relative to the median. As expected, particularly high values are reached for falling,
which can be seen in Figure 5.20.
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Vertical Acceleration in the Global Frame
Also from the vertical acceleration in the global frame, a single feature has been chosen:

f9( ~E) = aGFv 32 =
1

32

32∑
k=1

aGFv [k] (5.42)

Feature 9 uses the vertical acceleration in the global frame, signal (5.31). Only in the
global frame, free fall phases can be easily observed. As these are very short for standard
human motions, the shortest window with 32 samples has been chosen. Free fall phases are
seldom for falling, but part of every jump. Hence it is a good discriminator for jumping,
as can be seen in Figure 5.20 where jumping and falling are reliably recognised.

Figure 5.20: Plot of feature 9, aGF
v 32 and feature 8, IQR128

(∣∣ωBF
h

∣∣). Feature 8 is specially useful for
falling that implies a rotation of the body in its horizontal plane, feature 9 for jumping, as it detects short
phases of free fall.

Norm of the Acceleration
Features 10 – 17 are computed from the norm of the acceleration, the signal shown in

Eq. (5.28).

f10( ~E) = |a|32 =
1

32

32∑
k=1

|a[k]| (5.43)

f11( ~E) = |a|512 =
1

512

512∑
k=1

|a[k]| (5.44)

f12( ~E) = σ256 (|a|) =

√√√√ 1

256

256∑
k=1

(
|a[k]| − |a[k]|256

)2
(5.45)

f13( ~E) = IQR128 (|a|) (5.46)
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f14( ~E) = MFC128 (|a|) (5.47)

f15( ~E) = Ê128

(
2.85 Hz
LPF (|a|)

)
(5.48)

f16( ~E) = Ê64

(
4.5 Hz
BPF
1.6 Hz

(|a|)
)

(5.49)

f17( ~E) = Ê512

(
4.5 Hz
BPF
1.6 Hz

(|a|)
)

(5.50)

Mean values over different window lengths are relevant for short-term and longer,
repetitive activities. The standard deviation σ|a| helps distinguishing between static and
dynamic activities, while the interquartile range IQR|a| is relevant for the distinction
between jumping and falling. The interquartile range is the difference between the 25th
and the 75th percentile (where the 50th percentile is the median).

The main frequency component MFC128 (|a|), computed by a Fast Fourier Transform,
can identify walking and running and is in particular used to distinguish falling and
jumping from running. It is shown in combination with feature 15 in Figure 5.21.

Features 15 – 17 represent the energy of the norm of the acceleration in some particular
frequency bands computed by Finite Impulse Response filters, see [237] for details. While
the low pass filter below 2.85 Hz in feature 15 is helpful in distinguishing between walking
and jumping or running, the band pass filters between 1.6 Hz and 4.5 Hz in features 16 and
17 can help to distinguish between running and jumping for short and long time activities
respectively.

Correlation between Accelerations
The correlation coefficient ρ128

(
aBFv , |a|

)
(i.e. between the accelerations defined in Equa-

tions (5.28) and (5.30)) is used as feature 18.

f18( ~E) = ρ128

(
aBFv , |a|

)
=
aBFv · |a|128 − aBFv 128|a|128

σ128 (aBFv )σ128 (|a|)
(5.51)

It can be observed that the norm of the acceleration is mainly determined by the
vertical acceleration in the body frame while walking and running and also jumping.
This information is used to build a classifier for these dynamic activities with feature
18. Walking, running and jumping have very high values for this feature, while other
activities do not lead to consistent patterns. Figure 5.19 shows it in combination with
feature 7 where the distinction between static and dynamic activities is quite reliable.

Attitude of the Sensor
The attitude of the sensor, feature 19, takes into account the signals shown in Equations

(5.29) and (5.30).

f19( ~E) = att64

(∣∣aBFh ∣∣ , aBFv )
=
(

∆
∣∣aBFh ∣∣

64

)2
+
(

∆aBFv 64

)2
(5.52)

∆ refers here to the difference of the current value to the values during standing which
have been saved in the calibration phase.

While all features in the body frame refer to the attitude of the sensor to some extent,
feature 19 particularly exploits the attitude of the sensor. This feature gives information
about the attitude difference between the current activity and the known sensor attitude
for standing. As such, it is the main discriminator between standing and sitting – the most
difficult decision for activity recognition. The difficulty is further illustrated in Figure 5.22.
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Figure 5.21: Plot of the main frequency component of |a|, MFC128 (|a|), (Feature 14) and the energy of

|a| below 2.85 Hz, referenced as Ê128

(
2.85 Hz

LPF (|a|)
)

(Feature 15) for all the activities. The main frequency

component of |a| during walking is around 2 Hz, while it lies around 3 Hz during running. This feature
is very useful for distinguishing jumping and running, as even repeated jumping has a different frequency
as running. A distinction between walking and other dynamic activities such as jumping and running is
possible, as feature 15 measures clearly higher values, i.e. higher energy in its frequency band, for jumping
and running than for walking.

5.3.2.4 Feature Quantisation

The ranges of all features presented above are defined by continuous functions. To ease
inference on resource constrained devices, they are discretised – a typical approach for this
objective [66]. Along with the discretisation, the value range of each feature is meant to
be partitioned into a minimum of intervals which have different impact on the physical
activities to be inferred.

Automatic clustering processes can be used to quantise the features. Example clus-
tering algorithms would be for instance the density based k-Means algorithm based on
the Euclidean distance between observed values for a feature, which can be implemented
efficiently [77], or again the Expectation Maximisation, see section 2.3.4.

When such algorithms are used for one feature, i.e. one dimension only, they can rea-
sonably define the clusters and identify outliers, however without incorporating knowledge
about the activity. Physical activity as a nominal feature (i.e. the values do not have a
natural distance function defined between them) cannot be included guaranteeing good
results.

Therefore the feature quantisation process has been manually realised in this work
using histograms of the feature and an inspection of the caused activity discrimination in
combination with other features, as shown in Figure 5.23. The quantised feature is the
main frequency component of |a|, f14. The physical activities mainly influenced by this
feature are walking, running, jumping and falling. The histograms (Figure 5.23 a) and the
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(a)

(b)

Figure 5.22: This figure shows the problem to distinguish between (a) standing and (b) sitting with the

similarity of the behaviour for feature 19, att64
(∣∣aBF

h

∣∣ , aBF
v

)
and feature 2, |aBF

h |128. When the user is
sitting in such a position that the body attitude (at the placement of the sensor) is similar to standing,
both activities can be confused. Only incorporating a transition model between activities can improve the
inference of both activities.
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(a)

(b)

Figure 5.23: Example of the feature quantisation for the main frequency component of |a|, Feature 14.
It mainly is relevant for walking, running, jumping and falling. Four states can be identified with the help
of the histograms (a) and the plots of a pair of features (b).
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two-dimensional plot of the feature (Figure 5.23 b) suggest four intervals of these states, the
numerical values of which are determined with the help of the graphical representation.

5.3.3 Inference of Human Motion Related Activity

Inference has to decide which of the seven considered physical activities have effectively
caused the measured values of the 19 features. This is a general classification problem,
approached here with Bayesian techniques.

For convenience, this section abbreviates the human motion related activity or physical
activity from time to time by activity. When necessary, the distinction is made to high
level activities which can incorporate other information than inertia information.

Using the features identified in the preceding section as discrete random variables
Fi, 1 ≤ i ≤ 19, Bayesian techniques classify new measurements as the different states
of the random variable Activity using probabilistic inference mechanisms as described in
section 2.3.

Therefore the Bayesian network with the random variables described above has to be
learnt with the theory described in section 2.3.4. Basis for learning the Bayesian network
is the data set presented in the following subsection. After that, the learnt static Bayesian
network for both the full Bayesian and the näıve approach is explained and its extension
to a hidden Markov model for dynamic Bayesian inference is shown.

To support the dynamic Bayesian approach, a further state for the RV Activity is
introduced: transition. It reflects for instance getting up or sitting down – all transitions
between the seven defined activities. No extra feature has been learnt for transition.

5.3.3.1 Data Set

To provide data for learning the Bayesian network, a labelled data set has been recorded.
The objective is to create one Bayesian network which is usable for all persons, which is
realistic as the selected features do not depend to a large extent on the physical constitution
of the individuals. For labelling, this research has used the shadowing technique in which
a human observer tracks start and stop time of each physical activity. The time periods
between the end of the last activity and the start of the next one is automatically labelled
as transition.

A total of 16 people, 6 females and 10 males aged between 23 and 50 years of different
height, weight and constitution, participated in the acquisition of the test data set. They
were asked to execute a sequence of activities in the given order, to allow to cover all
activities and to ease labelling. Test candidates were asked to execute the tasks in their
personal style without a strict choreography. They even were encouraged to perform the
same activities differently and to perform these activities in any way that a human observer
could identify.

Data were recorded in indoor and outdoor environment under semi-naturalistic con-
ditions. The human observer was carrying a laptop computer to which the sensor was
connected. This person was responsible for the labelling with a dedicated graphical ap-
plication. The sensor was placed on the belt of the test candidate either on the right or
the left part of the body. The data set comprises all different sensor positions. In order
to check orientation performance of the sensor, test candidates performed their activities
also with different headings.
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Activity Duration (minutes)

sitting 55
standing 107
walking 70
running 15
jumping 7

falling 2
lying 25

transition 4

Table 5.1: Constitution of the data set per human motion related activity.

The final data set contains more than four hours and thirty minutes of physical activi-
ties together with the sensor measurements. Table 5.1 shows the exact amount of recorded
data per physical activity.

The features in the data set have been calculated with 4 Hz. The minimum duration of
one considered physical activity is around one second for the short time activities jumping
and falling which again consist of different phases. With four inferences per second of
the current activity, no significant phase of any activity has been missed. More frequent
inference should be neglected if this does not add significant value.

While it is desirable in theory to compute the features as often as possible, in order
to keep the values always up to date and in addition to have a large data set of features
for learning the Bayesian network, feature computation is a resource intensive process
which should be reduced to the necessary minimum. Furthermore it is sensible to compute
features only when an inference process uses them. Therefore 4 Hz have not been exceeded.
The study in [237] moreover has shown that no significant change of inference quality can
be achieved by increasing this frequency.

5.3.3.2 Static Bayesian Network

To infer the current motion related activities, static Bayesian networks can be used. The
observed features with their activity labels have been used to learn the conditional prob-
ability tables and priors of all random variables. The structure can either be defined as a
Näıve Bayes model, or can also be learnt, cf. section 2.3.4.4.

Näıve Bayes Structure:
The Näıve Bayes assumption presented in section 2.3.2 says that the random variable

Activity is the single cause influencing all feature random variables Fi, 1 ≤ i ≤ 19. Like
this, the structure is unambigously defined as shown in Figure 5.24.

While the BN structure is predefined, the conditional probability tables of the features
and the prior of Activity can be either set manually or learnt from the data set with
the techniques described in section 2.3.4 on page 39, in particular applying Eq. (2.15)
assuming a Dirichlet distribution of the random variables.

While the automatic learning approach was used for the CPTs in this work, the priors
have been set manually. The learnt priors would have reflected the relative frequencies of
the data set visible in Table 5.1 and therefore overrate rare activities like falling, jumping
and running. Even standing is overrepresented in the data set, as it is used for calibration
in our approach. The static classifier uses instead the prior table given in 5.2.
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Figure 5.24: Näıve Bayes approach for activity recognition. The activity the user is performing is the
cause of the observation of the features.

activityi sitting standing walking running jumping falling lying transition

P (Activity =
activityi) 0.195 0.2435 0.409 0.001 0.001 0.0005 0.14 0.01

Table 5.2: Prior probabilities of the node Activity used for inference in the static Bayesian networks.

The Näıve Bayes assumptions of the independence of the features eases also inference
of the current activity, i.e. the activity which maximises the following equation:

activity = arg max
i

(P (activityi|F1, F2, ..., F19)) (5.53)

Applying Bayes’ Theorem (Eq. (2.2)), the Näıve Bayes assumptions (Eq. (2.10)) and
neglecting constant terms which do not influence the outcome of a argmax expression, we
can simplify inference as follows:

activity = arg max
i

(P (activityi|F1, F2, ..., F19)) =

= arg max
i

(P (F1, F2, ..., F19|activityi)P (activityi))

= arg max
i

 19∏
j=1

P (Fj |activityi) · P (activityi)


(5.54)

Hence inference only has to infer the activity that maximises
∏19
j=1 P (Fj |activityi) ·

P (activityi) where P (Fj |activityi) are directly known from the evidence and P (activityi)
is the defined prior probability (see Table 5.2).

As all information necessary for inference is directly available in the BN model, no
specific inference algorithm like PPTC has to be used.

Learnt Bayesian Network Structure:
If the Näıve Bayes model is not assumed, also the network structure has to be learnt.

As the random variables however are all known and the data set is complete, the simpler
case of learning with complete data applies, as presented in section 2.3.4.2 on page 40.

This work has applied the K2 algorithm of Cooper and Herskovits [71] using a Log
score function to rate possible BN structures proposed by a Greedy Hill Climber with
random restarts. Still some measures are taken to reduce the search space among the
network structures:
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• The upper bound for the number of parents per node is set to 5: this feature is
directly offered by the K2 algorithm.

• The Näıve Bayes model is set as the starting point of the Greedy Hill Climber algo-
rithm, so every network candidate has to produce a better fit to the test data than
the Näıve Bayes model.

• The directions of the edges in the Näıve Bayes model must not be reversed, can only
be removed.

The learning process has shown that relations between the features are found. A hy-
pothesis for this result is illustrated in Figure 5.25: the inter-feature relations are probably
caused by unobserved nodes which are a common cause for some of the features. These
unobserved nodes could represent different parts of the body and/or signals which influ-
ence more than one feature. As these nodes however are unobserved, the consideration
of the dependencies of the features improves the score of the proposed network structures
in the K2 algorithm. I.e. they represent the data set better than the Näıve Bayes model
and therefore lead to better inference results.

Activity

Feet
Hip Trunk

Arms

Acceleration Attitude

Turn rate Hidden
Nodes

Features

Figure 5.25: Hypothesis for the unrestricted Bayesian network approach. Consideration of the depen-
dencies of the features is required because hidden nodes in the network due to the location of the sensor
and the origin of the features exist.

The result of the learning process is a BN structure which represents a local maximum
of the score function. As a random effect creates new network candidates, different learning
processes can yield different results.

The resulting BN can be further minimised taking into account that all features are ob-
served and only Activity is inferred. In this case, inference only has to include the Markov
boundary (see section 2.3.2) of Activity which consists of all children of Activity and their
parents which are not children of Activity. Note that with the imposed limitations for
structures, there are no parents of Activity.

Knowing that also the (non Activity) parents of the children are observed, all incoming
edges to them can be removed. Their parents have to be in the Markov boundary anyway
(all other nodes are already removed) and the edge does not impact the value of Activity.
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A network structure resulting from this learning and pruning process can be seen in
Figure 5.26.

In general BNs with unknown structure require complex inference algorithms, such as
PPTC (cf. section 2.3.3), which are not always suitable for real-time inference. But also
inference with the learnt Bayesian network structure can be simplified. This is possible,
as the required probability P (Activity|O) with O = {Fi, ..., F19} needs to be computed
of a single RV whose Markov boundary carries evidence in all its nodes (see section 2.3.2
for details). The present case can guarantee evidence in all feature RVs, as their value is
directly and locally calculated from the IMU, hence calculation is P (Activity|o).

Combining the inference formulation from Eq. (5.53) and the factorisation of the JPD
in BNs from Eq. (2.9) in the simplification process of Eq. (5.54), the following term has
to be calculated:

activity = arg max
i

(

19∏
j=1

P (Fj |pa(Fj)) · P (activityi)) (5.55)

As all features carry evidence, P (activityi, F1, F2, ..., F19) can be calculated immedi-
ately by multiplying the correspondent values of the features’ CPTs and priors for all
possible values of Activity. This method can be used for real-time activity recognition as
it consists only of a limited number of table look-ups and multiplications.

5.3.3.3 Dynamic Bayesian Network

Based on the static BNs presented above, the utility of dynamic BNs in comparison to
static ones is investigated by defining a dynamic BN on top. It defines and quantifies
discrete activity transitions and allows for evaluation with a grid based filter, see sections
2.3.5 and 2.3.6, pp. 44 et seqq., for the general theory.

In general, the last physical activity of a person influences his or her current activity.
For instance, if somebody is currently lying, the most probable activity he or she will be
performing immediately afterwards is getting up or still lying, but usually not falling and
certainly not running.

Hence the knowledge about likely and also impossible sequences can provide valuable
input for activity recognition. In terms of Bayesian networks, a new random variable
carrying soft evidence is included as parent of the current physical activity activityt at
time t.

From this observation, as well as from the theory on filtering in section 2.3.6 it is easily
understood that this extensions adds some complexity to inference. Section 6.2 on page
164 will evaluate, whether the qualitative improvement of recognition justifies the added
complexity.

Figure 5.27 shows the HMM defined for the recognition of physical activities. O
represents the set of all observed random variables Fi, 1 ≤ u ≤ 19 representing feature
fi. It is a first order HMM, hence the simplest DBN, but as all features are considered
observed and only Activity is a state variable it is a suitable model. Higher orders of
HMMs could model typical sequences like sitting, gettingup, standing which are however
neglected here.

This first-order HMM for activity recognition is (following the definition in section
2.3.5) characterised by:

λ ∼ (A,B, π) , (5.56)

where:
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(a) Structure of the learnt Bayesian network. All features are inside the Markov boundary of the
node Activity. F5 and F13 are not children of Activity
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(b) Pruned version of the learnt network structure. Edges to F5 (Eq. 5.38) and F13 (Eq. 5.46)
can be removed, as they carry evidence and are not direct children of Activity.

Figure 5.26: The static Bayesian network used for the inference of human motion related activities. The
pruned version (b) has less links and is therefore faster to compute while representing the same information.



5.3. Recognition of Human Motion Related Activities 125

Activity0 Activityt Activityt+1

Ot Ot+1

…
P(Activity0) P(Activityt|Activityt-1) P(Activityt+1|Activityt)

P(Ot|Activityt) P(Ot+1|Activityt+1)

Figure 5.27: Hidden Markov Model for the inference of human motion related activities.
P (Activityt|Activityt−1) has been manually configured by domain expert knowledge, P (Ot|activityi,t, λ)
are given by the underlying Bayesian network.

• Matrix A = {aij |aij = P (acticityj,t+1|activityi,t), 1 ≤ i, j ≤ N} is the state tran-
sition probability distribution or transition model . A has been defined by domain
experts and is shown in Table 5.3. In this case N = 8 for the seven investigated and
the transition activity.

• Matrix B = {bj |bj = P (Ot|activityj,t), 1 ≤ j ≤ N} is the observation symbol prob-
ability distribution in state j, defined by the measurement model in the underlying
Bayesian network.

• O are the observation symbols which represent the observable physical or calculated
output [65]. An observation symbol for a single point in time is in our case given
by a vector with values for all features f1, f2, ..., f19 computed from the raw sensor
data. The vector of features is common for all the hidden states and can be denoted
Ot = (f1,t, f2,t, ..., fM,t), where fi,t, 1 ≤ i ≤ 19 is the value of the feature i at time t.

• π = {πi} is the initial state distribution, where πi = P (activityi,0) is the prior prob-
ability, 1 ≤ i ≤ N (see Table 5.2). As however the system starts in the calibration
mode with the activity standing, evidence for standing is introduced in π.

sitting standing walking running jumping falling lying transit.

sitting 0.990902 0 0 0 0.000045 0.000045 0 0.009008

standing 0 0.566024 0.424518 0 0.004717 0.000024 0 0.004717

walking 0.033217 0.332171 0.498256 0.11626 0.003322 0.000166 0 0.016609

running 0 0 0.39984 0.439824 0.079968 0.0004 0 0.079968

jumping 0 0.36842 0.157894 0.263157 0.157894 0.000003 0 0.052631

falling 0.4 0 0 0 0 0.1 0.5 0

lying 0 0 0 0 0 0 0.818182 0.181818

transit. 0.666445 0.302929 0 0 0 0.000333 0 0.030293

Table 5.3: State transition probability matrix A. Each cell defines the transition probability
P (activityt+1|activityt) where the columns represent activityt+1 and the rows activityt.

The diagonal matrix B thereby can represent any Bayesian network. In particular,
this work uses a B1 representing the Näıve Bayes network and a B2 representing the BN
with the learnt structure.
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The posterior of Activity can be inferred in this HMM with a grid based filter as
described in section 2.3.6.1, as all involved random variables are discrete and finite. This
approach provides exact inference for the clustered feature RVs. (Note that one could still
call it approximate inference, as the features have been quantised.)

The estimation of P (Activityt+1|O1:t+1, λ) follows the general formulae for prediction
and update in Equations (2.24) and (2.25) on page 46. The set of state variables X, in the
case of the HMM for activity recognition, consists only of Activity, the observed evidence
ei is represented by an instantiation o of the observed RVs O.

Like this, the grid based filter can either calculate directly the prediction and update
cycles by multiplications of the values in the conditional probability tables, or apply the
matrix operations from Eq. (2.27):

P(Activityt+1|o1:t+1) = αBATP(Activityt|o1:t) (5.57)

Once the posterior probability distribution is estimated, the most probable activity
can be given by the state with the maximum probability, if necessary.

5.3.4 Discussion

This section has presented a Bayesian approach for unobtrusive and resource efficient
activity inference. The quality of its results will be evaluated in section 6.2 together with
the comparison between the näıve and full, the static and the dynamic classifier.

All features have been selected for their physical and bio-mechanical sensibility. Also
the modelling in Bayesian networks allows to interpret the results easily. With this ap-
proach, the same classifier will work also for persons whose data were not collected to
train the Bayesian networks.

On the one hand, this effect cannot be achieved with pure unsupervised learning tech-
niques. On the other hand, the automatic learning techniques from 2.3.4.2 ease the job
a lot for the domain expert who do not have to specify a large quantity of conditional
probabilities.

Using learning techniques for incomplete data sets could have identified hidden vari-
ables like those proposed in Figure 5.25, which would have resulted in a reduction of
dependencies and a slimmer Bayesian network. The author however abstained from this
option, as the fact that all nodes carry evidence but the queried Activity node, has re-
duced inference complexity enormously. The simplification in the BN structure could not
keep up with this computation time reduction.

Most probably, the proposed set of features can be reduced without decrease in the
inference quality. As can be seen in Table 5.4, every activity is covered by more than
one feature. This redundancy however was used to add stability and to complete the
characterization of the activities as opposed to pure recognition. A reason for this is
the Bayesian approach and the reuse of the activity inference results in other inference
modules. The higher the certainty of the activity inference approach, the better is the
inference of higher level context in modules including the physical activity.

Also the extension of the present activity recognition system is eased with the redun-
dancy in the features. As it characterises human motion, in general, it is expected that
further activities like climbing stairs or cycling could be incorporated easily. The manually
determined value ranges of the features will need respective adaptation, however.
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5.4 Bayeslets: Making Context Inference Tractable

The powerful methods for Bayesian networks are a good starting point for realising context
inference, although section 2.3.3.1 has shown that probabilistic inference is NP-hard and
therefore in general computationally intractable.

This problem cannot be overcome in general. Instead suitable models have to be found
that limit the computational requirements and minimise inference time. Section 3.3 has
imposed further requirements to such models, in order to limit inference time and remote
communication. This section now presents a method to realise the postulated modular
and adaptive context inference rules, reducing inference resources at the same time.

To limit the resources necessary for probabilistic inference in a NP-hard problem, the
single factors determining the complexity have to be limited. Section 2.3.3.1 has shown
that the complexity depends primarily on the network structure.

Complexity in m-ary trees is O(2q2 + mq + 2q) = O(N), as m < N depends on the
number of nodes N in the BN where q is the maximum cardinality of value ranges in the
BN. For singly connected BNs, the complexity is O(N · qe) = O(N · qN ), as the upper
boundary e for the number of parents of any node in the BN depends on N [96]. Finally,
for the general NP-hard case, where only exponential algorithms are known, the order is
exponential in the size S of the largest cluster of the junction tree [85], O(cS) = O(cq

N
)

for some constant c, because the size of the cluster depends on the cross product of the
value ranges in a cluster which consists at least of the node and its parents, hence depends
on N .

Therefore, to reduce inference time, the three factors N , e and q have to be reduced to
the minimum necessary. The latter thereby depends on the current situation and is user
specific. All these factors shall be addressed in the following sections.

Locally computable inference modules are a core to tractable context inference as has
been shown in the last sections for location (section 5.2) and human motion related ac-
tivity (section 5.3). However, as not all context information is inferable with local data
only (as it includes different users’ context for instance or information from a different
device) there must be ways to access remote information. To this end a concept to plug
and jointly infer context inference rules has been developed.

The remainder of this section shall first present methods to reduce all three complex-
ity factors nodes (section 5.4.1), arcs (section 5.4.2) and value ranges (section 5.4.3). All
approaches thereby are designed to fulfil the requirements of decentralised, modular in-
ference, and the adaptability to the current situation. Section 5.4.4 then shows how the
relevant inference modules for an inference target can be selected and composed automat-
ically. The inference in such a distributed, composed Bayeslet network is described finally
in section 5.4.5, before the presented overall concept is discussed in section 5.4.6

5.4.1 Reducing the Number of Nodes: Segmentation of Inference Rules

Bayesian networks representing the full knowledge of all known influence to a certain fact
can be immense. A very often cited example is the BN of the Computer-based Patient
Case Study (CPCS) described by Pradhan et al. in [64]. This multiply connected network
covering knowledge about internal medicine consists of 448 multi-valued nodes and 906
links. Real-time inference with fast response times is not possible with such a network.

Equally the situation of a user of a ubiquitous computing system can encompass a very
large range of human activities, sensor readings, system usage information, as well as such
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data relating to other people – all represented as random variables in a very large BN.
Obviously it is impossible to include all such RVs in a representation used in inference, as
the resulting BN would be too large to be processable.

The example network from Figure 5.28 for instance only includes certain context in-
formation relevant for the high level context HighlevelActivity and Availability consisting
already of 81 nodes and over 130 edges. And this is not even all information relevant for
it. The network would have to be extended to incorporate also information such as heart
rate and other bio sensor readings, past activity, and the status of projects being worked
on. Also similar aspects of the people in proximity and other important persons, such as
family or colleagues, play a role and would have to be modelled.

Therefore there has to be the possibility that for each user a different, personal and
individual version of each network has to be stored and used respectively.

5.4.1.1 Characteristics

A complete Bayesian network modelling all possible influence factors would be intractable,
as the size of the Bayesian network is an important factor for its computational complex-
ity; as discussed before, inference time grows exponentially with the number of nodes.
Therefore this work proposes to segment all this information into thematic groups called
Bayeslets. This word has been composed of “Bayes”, as Bayeslets represent knowledge in
the way of Bayesian networks, and “let” signalling (like in the term “Applet”) that they
are small, mobile and self-contained modules, executable wherever needed.

The advantages of this approach are manifold, proposing solutions to the requirements
of section 3.3.

1. Resource saving context inference:
Requirement (1) on page 58 postulates decentralised, modular inference, in order to
be able to infer high level context within the user’s smart space, while accessing in-
formation from remote devices with a minimum delay and network traffic. Bayeslets
represent such a modular approach, are small and therefore easy to store, and allow
for distributed evaluation of inference rules.

Not only the distribution to several computers speeds up inference, but already the
modularisation itself. Sequential inference of several modules is faster than inference
of one BN with all nodes. Inference time only increases linearly with the number
of Bayeslets instead of exponentially in a monolithic BN. If each one of n Bayeslets
consists of N random variables and general BN inference complexity is approximated
with O(aN ), then the combination of all Bayeslets is inferred in O(n × aN ), while
the monolithic approach in O(an×N ) = O

(
(aN )

n)
. More details on inference in

Bayeslets will be given in section 5.4.5. A practical evaluation of the impact of
reducing the number of nodes can be found in section 6.5.

2. Situation adaptive context inference:
Bayeslets add flexibility to a BN, as they are easily (un-)pluggable according to the
dynamically changing requirements of the environment and their relevancy to an
inference target. Like this, inference is situation adaptive. Only currently relevant
information is used for inference, in agreement with Requirement (2). More details
on situation adaptive composition of Bayeslets will be given in section 5.4.4.

3. Personalisable context inference:
As Bayeslets are small representation units that can be stored without further bur-
den on a mobile device, it costs no additional complexity, if every mobile device and



5.4. Bayeslets: Making Context Inference Tractable 131

H
ig

h 
Le

ve
l  

A
ct

iv
ity

Ta
sk

 L
is

t

C
al

en
da

r

Ti
m

e

C
lo

ck
D

ay
 o

f  
th

e 
W

ee
k

Se
as

on

A
ge

nd
a

R
eq

ue
st

s H
ea

di
ng

At
 H

om
e

Δ

 H
ea

di
ng

W
iF

i  Fi
ng

er
pr

in
tin

g

Δ

 La
tit

ud
e

Δ

 Lo
ng

itu
de

St
ep

 D
et

ec
to

r

La
st

 H
ea

di
ng

La
st

 L
at

itu
de

La
st

 L
on

gi
tu

de

La
tit

ud
e

Lo
ng

itu
de

G
P

S
 re

ce
iv

er

U
W

B 
Po

si
tio

ni
ng

M
ap

s R
oo

m

C
ou

nt
ry

A
va

ila
bi

lit
y

U
se

d 
Se

rv
ic

es

S
er

vi
ce

 C
on

te
xt

Ba
nd

w
id

th

Q
oS

W
ea

th
er

Te
m

pe
ra

tu
re

H
um

id
ity

R
ai

n 
Se

ns
or

1

A
ir 

P
re

ss
ur

e

Ba
ro

m
et

er
1

Fo
re

ca
st

R
ai

n 
Se

ns
or

2

R
ai

n 
Se

ns
or

3
Ba

ro
m

et
er

2
Th

er
m

om
et

erT
he

rm
om

et
er

n
Th

er
m

om
et

er
1

Ji
tte

r
Fa

ul
t R

at
e

P
ak

et

 Lo
ss

D
el

ay

64
(|

|,
)

B
F

B
F

h
v

at
t

a
a

12
8

|
|

B
F

ha

12
8
(|

|)
B
F

ha


12
8

m
ax

(|
|)

B
F

va

12
8

B
F

va

25
6
(|

|)
a



12
8
(

)
B
F

v
R
M
S

a

32
|
|

a

51
2

|
|

a
12
8
(|

|)
IQ
R

a

12
8
(|

|)
M
F
C

a

2.
85

12
8(

(|
|))

E
LP
F

a


4.
5

64
1.
6

(
(|

|)
)

E
B
P
F

a


4.
5

51
2

1.
6

(
(|

|))
E

B
P
F

a


M
ot

io
n 

A
ct

iv
ity

12
8
(|

|)
B
F

h
IQ
R



12
8

m
ax

(|
|)

B
F

ha

1
2
8
(

,|
|)

B
F

v
a

a


12
8
(

)
B
F

va


32
G
F

va

In
te

ra
ct

io
n  

S
itu

at
io

n
# 

Pe
rs

on
s

In
 V

ic
in

ity

N
oi

se
 L

ev
el

Am
bi

en
t M

ic
ro

ph
on

e

H
ig

h 
Le

ve
l 

A
ct

iv
ity

 o
f R

el
at

ed
Pe

rs
on

s

Bu
ild

in
g  

M
on

ito
rin

g
S

ys
te

m

Ta
lk

in
g

M
ic

ro
ph

on
e

Po
w

er
 L

ev
el

99
.9

9 
Pe

rc
en

til
e 

be
lo

w
 T

hr
es

ho
ld

Pr
ox

im
ity

Ph
on

e 
St

at
us

C
on

ve
rs

at
io

n

Si
gn

al
 C

or
re

la
tio

n

Ti
m

e 
of

 D
ay

B
lo

g

F
ig
u
re

5
.2
8
:

B
ay

es
ia

n
n
et

w
o
rk

fo
r

th
e

in
fe

re
n
ce

o
f

th
e

h
ig

h
le

v
el

co
n
te

x
t

H
ig

h
le

ve
lA

ct
iv

it
y

a
n
d

A
va

il
a

bi
li

ty
w

it
h

8
1

ra
n
d
o
m

va
ri

a
b
le

s.



132 5.4. Bayeslets: Making Context Inference Tractable

therefore its user would have their own, personalised version of that Bayeslet. Per-
sonalisation itself is context aware and relates to all factors of BNs, random variables,
their dependencies and their value ranges. This realises the adaptivity postulated
in Requirement (6). Details on adaptation to the current situation are shown in
particular for value ranges in section 5.4.3.

4. Coping with heterogeneous context inference mechanisms:
Support for different characteristics of context as in Requirement (4) can also be
realised with Bayeslets. Every Bayeslet can be evaluated with a different inference
algorithm which is most suitable for its information, as long as it provides a proba-
bility distribution specifying the belief in its result.

UserA
High level

Activity

AvailabilityAgenda

Interaction
SituationTime

Motion
Behaviour

EnvironmentLocation

UserB
High level

Activity

Availability
Agenda

Interaction
SituationTime

Motion
Behaviour

EnvironmentLocation

UserC
High level

Activity

AvailabilityAgenda

Interaction
SituationTime

Motion
Behaviour

EnvironmentLocation

Figure 5.29: Inference network based on Bayeslets. The main components from Figure 5.28 are grouped
into Bayeslets, shown in rectangles with rounded corners, which can be composed upon need.

Using Bayeslets as modular Bayesian networks, the BN shown in Figure 5.28 is grouped
into several subdomains shown in Figure 5.29. Thereby, only those Bayeslets which are
necessary for an inference request have to be connected, together with relevant information
of other users which can differ from situation to situation.

5.4.1.2 Bayeslet Design

In Figure 5.29 it can be seen that location and motion activity of a user, the local and
autonomous inference modules already explained in sections 5.2 and 5.3, are grouped
into separate Bayeslets. Equally, all information related to other users is represented in
different Bayeslets.
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There are some general guidelines on how and where to separate all available random
variables into Bayeslets, i.e. how to define the borders of domain knowledge.

1. Every sensor forms a separate Bayeslet together with the nodes influenced, as shown
for the smallest case in Figure 5.30. Both, the number and the selection of sensors
are not crucial for the inference target. It is desirable that sensors can be added or
removed, that no sensor is used if not necessary and that several sensors can be used
if it adds value. An example is shown in Figure 5.28 at the bottom right corner,
where there are several sensors for the detection of the weather. Using Bayeslets,
only currently relevant ones are selected and used for context inference.

Temperature

Thermometer1

Building_TE01

Figure 5.30: The most simple case of a Bayeslet describing a sensor and the quantity influencing it. In
the example shown, it is the thermometer measuring the temperature of building TE01.

2. A Bayeslet only contains information about one user, the owner of the Bayeslet.
Information about other users is plugged in, when necessary. The big advantage
of this approach is that not all information of possibly relevant people has to be
modelled and inferred upon, but only of the currently relevant people. While at
home the family is most important and the status of line managers (depending on
the job) usually can be ignored, this role is probably inverse during working hours.

Furthermore the information letting infer other persons’ context is usually not orig-
inating from the same device than the information about yourself. Separating this
information avoids remote communication and facilitates local inference. Only re-
mote inference results have to be transmitted, and only if the respective Bayeslet is
used. Like this every user keeps control of his/her own information.

3. Unconnected parts of BNs can be separated into different Bayeslets. Obviously, if
there is no (undirected) path between two random variables of a Bayesian network,
they are independent and do not mutually impact on the inference of the other RV.

4. Parts of the overall information that would be d-separated by an evidence node in
a monolithic BN can be divided into Bayeslets. If there is a node (set) A directly
connected to a sensor or always available information, as it is specified for dynamic
Bayesian networks and also for inference of motion related activities, it can be re-
garded as always observed. If A d-separates two parts of the network, these can be
separated in different Bayeslets.

A Bayeslet hence never needs to contain other nodes than those included in the
Markov blanket (to be precise: the Markov boundary) of the currently inferred
random variable. This suggests the explicit determination of nodes that can be
inferred by a Bayeslet. The Markov boundary of these nodes define a hard border
for the Bayeslet.
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5. Very weak edges, i.e. such ones representing (almost) uniform distribution can be
skipped, if this enables a separation. Removing edges can disconnect graphs, if the
edge had been a bridge. A bridge is the only (undirected) connection between two
subgraphs. After the removal, both subgraphs are obviously independent. Removing
edges that have not been bridges, still can have influence on the d-separation of the
formerly connected nodes and therefore make up the conditions of point 4.

6. A maximum number of nodes per Bayeslet can be defined. In the previous chap-
ters we have seen Bayeslets for location or human motion activity. The latter in-
cludes about twenty random variables for one higher level RV and nineteen sensor
RVs. With thirty nodes, also a little bit more complex Bayeslets with more than
one related higher level RVs should be representable. Depending on the existing
connections and number of observed nodes, also this size can be assumed to be
computationally tractable on mobile devices.

Cuts should be made by removing a minimum number of edges, hence preferably
bridges, preferring weak links and such that enable d-separation. Furthermore, as-
suming evidence in nodes which are not in reality marked as evidence nodes, enables
d-separation and can be used to force a separation into several Bayeslets.

Weakness of edges thereby can be determined with different means, e.g. Mutual In-
formation of the linked random variables [105], or the deviation of the child’s CPD from
a uniform distribution.

In addition, it is fair to assume that human expert knowledge can be used to determine
the RVs that make up a Bayeslet. Expert knowledge can also be used to propose Bayeslets
which can be assembled to represent a problem domain such as high level activity. Expert
knowledge is usually restricted to domains and therefore most appropriate to limit the
representation of the domain to a core which is extensible by other Bayeslets.

In particular the combination of specifying network structures and learning the CPTs
with techniques like those presented in section 2.3.4 is easy, time efficient and therefore
realistic for practical use in ubiquitous computing. It has been applied e.g. for human
activity recognition, cf. section 5.3.3.2.

5.4.1.3 Specification of Bayeslets

The preceding sections have presented the concept of Bayeslets and supported features.
This section shall give an overview about how to specify a Bayeslet as a modular context
inference rule usable by a CMS as sketched in section 5.1.

The main parts of a Bayeslet are the following:

1. Owning Entity

2. Output Context Attributes

3. Inference Algorithm

4. Input Nodes

5. Meta Information

6. Context Inference Rule

Factors (1) to (5) thereby constitute the Bayeslet header containing the general infor-
mation necessary for the connection with other Bayeslets. The Bayeslet body contains the
actual inference rule, evaluated by the inference algorithm.
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Owning Entity:
The owning entity is the identifier of the Bayeslet’s owner in the ubiquitous computing

system. It is necessary, because a user might use different pseudonyms for different roles
in the ubiquitous system, like for instance proposed in [15] or [11]. Different roles can have
different inference rules depending on the purpose.

Output Context Attributes:
The output context attributes are the random variables inferable with a particular

Bayeslet. In terms of DBNs, it is a subset of the state variables which, together with their
Markov boundary, constitute the nodes contained in the Bayeslet.

A context attribute is defined by its name and the attribute’s aspect. With the output
attributes of a Bayeslet and the identifier of the owning entity, a Bayeslet can be identified.
Identification is not unique, but does not have to be, either. Also several Bayeslets inferring
the same output context (like sensors) can be plugged, if, as a result, inference quality can
be increased.

Inference Algorithm:
To cope with the heterogeneity of data, not only Bayesian inference is allowed. The

algorithm specified by this field needs to be available in the CMS and determines the
interpretation of the Context Inference Rule field, as different algorithms require different
inference models. Every type of classifier presented in section 2.2 can be specified here, in
particular static Bayesian inference and the different Bayesian filters.

Input Context Attributes:
The input nodes specify the observed nodes in the inference rule, in terms of DBNs the

evidence nodes. Only in these nodes other Bayeslets can be plugged. Only those Bayeslets
can be plugged which provide the respective context attribute as output context attribute.

Output and input context attribute constitute the interface of a Bayeslet. It is visible
in Figure 5.31 where input and output nodes are represented differently.

Thermometer2 

Building_TE02Humidity

Air Pressure

Forecast

Postcode_80687

Building_TE01Temperature

Thermometer1
Building_TE01

Weather

Temperature

Humidity

Air Pressure

Forecast

Postcode_80687

Temperature Thermometer2 

Building_TE02

(b)(a)

Temperature

Thermometer1

Weather

Figure 5.31: Connection of Bayeslets: the Bayeslet for the inference of the Weather is connected to
two Bayeslets determining the Temperature incorporating a Thermometer. Input nodes are represented
shaded in grey, output nodes have a double border.

Meta information:
A context inference system based on Bayeslets requires further information about the

Bayeslets to increase its efficiency, as will be shown in the following sections 5.4.3 and
5.4.4. Examples for such meta information are the type of the value ranges (numerical,
ordered, hierarchical, etc.), the expected posterior probability of the output nodes or the
costs caused, depending on size, inference duration and inference frequency.
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Context Inference Rule:
This field specifies the classifier evaluated by the inference algorithm, the actual inference

rule module. Its contents depend on the inference algorithm and the corresponding model.
For static discrete BNs it consists of the nodes with their states and the respective CPTs
which are implicitly defining the BN structure. For Kalman filters it would consist of the
normal distributions of the nodes and the matrices for transition and observation model.

For Bayeslets which are not evaluated locally, because they are related to remote
information or information of a different user, no context inference rule is specified in this
field, but a link to a remote access point providing the inference result.

Representation
Such Bayeslet specifications are exchanged between the different peers in the ubiquitous

computing system, as a kind of inference service descriptions. Therefore they need a slim
representation which is easily exchanged and fast interpreted.

XML is often used as an exchange format for service descriptions and could also be
used here, as long as not too much overhead is produced. Easiest would be an extension of
an available BN interchange format like PR-OWL [112], BNIF [54] or XMLBIF [55] with
the respective header.

For use in a large scale ubiquitous computing system, the respective representation
has to be standardised, this is however not the focus of the present research.

5.4.1.4 Summary

Bayeslets are the core building parts of an adaptive and tractable context inference ap-
proach for resource constrained devices. They are representing closed domains of knowl-
edge (encapsulation) that is usable alone, but also in conjunction with further Bayeslets
as shown in figure 5.29 (modularity).

The connection to further Bayeslets is enabled by predefined interfaces, specially tagged
random variables called input and output nodes respectively. Several Bayeslets can be
plugged into one input node. All pluggable Bayeslet candidates do not need to have the
same input nodes, not even the same type of classifier, but only the output node demanded
by this input node. This represents a kind of polymorphism.

Regarding input and output nodes as interface description for a class of Bayeslets,
together with encapsulation, modularity and polymorphism, one can see the Bayeslet
concept as an object oriented approach to probabilistic context inference.

The remainder of this work shall focus on Bayeslets representing discrete, static Bayesian
networks as context inference rules like the example in Figure 5.31.

5.4.2 Reducing the Number of Edges: Personalised Bayesian Networks

The reduction of the number of arcs is important to reduce inference complexity, as it
reduces the size of the CPTs which are the determining complexity factor for inference
with the PPTC algorithm [85].

The reduction of edges is challenging, as they represent the dependence assumptions
of the network. Every modification has a direct impact on the JPD of the BN. Hence
reduction must not remove arbitrary links where CPTs would get too large. Instead the
idea proposed here is to reduce the number of edges by personalisation of the network
structures.

There are two stages to optimise the edges: when learning a network structure and
when a structure already exists. In the following the usable approaches shall be sketched.
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5.4.2.1 Learning Personalised Network Structures

In this section it is assumed that the scope of learning a BN is limited to a certain set
of random variables constituting the Bayeslet and that the network is static. This eases
structure learning slightly, assuming like in the preceding section maximum Bayeslets sizes
between twenty and thirty nodes. This is still far too high to test all possible network
structures, but can cover a more significant part than with more than eighty nodes as in
Figure 5.28.

Using only individual usage history, only those dependencies will be learnt that hold
for the user himself instead of all possible dependencies. My mood for example will not
depend on the last Hurling results, whereas other persons are influenced strongly by them.

Structure learning algorithms also offer the option to limit the number of incoming
edges per RV, like the K2 algorithm of Cooper and Herskovits [71]. Also this approach
reduces the learning space. Its drawback is the possible loss in quality of the network, as
a broad range of structures are ignored. An advantage however is the reduced memory
consumption during learning and the shorter inference time, which in the end overcomes
the drawbacks, as we can also see in inference approximation (see section 2.3.3.3), where
minor result divergences are accepted in turn for gains in computational efficiency.

Together with the limitations for the considered nodes and incoming edges, further
knowledge can be included in structure learning:

• Causality between RVs (such as sensors readings being caused by a physical process)
can be imposed, i.e. the presence and direction of arcs.

• A weaker form of the above is causality ordering, where the direction of an edge can
be determined, in case a connection between two nodes exists. This limitation has
been used for the creation of the BN for inference of human motion related activity
in section 5.3.3.2.

• Arcs that are known to exist or to be missing between RVs can be specified, thus
imposing dependence or independence between nodes or groups of nodes.

• Complete sub-units of the network that are assumed to be known can be defined.

Already in the last section, it was assumed that domain experts would have influence
on the separation of Bayeslets. Using structure learning techniques they are not required
to define the complete network structure, but only to specify the limitations like the above.

The domain expert can also be the user of the system. It is expected that the users can
be shown graphical representations of their Bayeslets, in order to allow influence on the
inference results. Addition or modification of links gives important information to limit
the search space.

Together with the limitations of learning, a lower complexity class of the learnt BN
structure can be targeted, i.e. tree-structured BNs or at least singly connected BNs with
a fixed maximum number of parents per node.

There are two points where such structure learning modifications have to be included
in the process described in section 2.3.4.4.

The first one is the greedy hill climber used to generate network candidates. It gen-
erates new network candidates by adding or inverting arcs in the last scored network
candidate or by random restarts. It has to be ensured that the arcs specified by domain
experts must not be modified and random restarts do not start at an empty network
structure, but at the specified one.

The second point for modification is the scoring function rating the network struc-
ture candidates. They are already used to penalise the addition of arcs to avoid a fully
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meshed BN structure [66]. To favour cycle free BN structures, those arcs can be penalised
stronger which would introduce undirected cycles. For the detection of such arcs the same
mechanisms can be employed that are used already to avoid the introduction of directed
cycles.

5.4.2.2 Pruning Bayesian Network Structures

When a network structure is already learnt, the parameters, i.e. the conditional proba-
bilities given the existing parents can be learnt from individual data. These personalised
CPTs together with the specification of the Bayeslet can be used then to reduce the
number of edges.

There is information in the Bayeslet specification which helps to prune edges: the
knowledge about output nodes and input nodes. All (non-output) nodes of the Bayeslets
are in the output nodes’ Markov boundary, but not necessarily in the Markov boundary
of every single output node. The input nodes are all assumed to carry evidence.

AD

C

B

Figure 5.32: An example where a link between two nodes B and D in the Markov boundary of A can
be removed to reduce the size of the conditional probability tables.

As described already in section 5.3.3.2, this knowledge allows to prune dependencies
between nodes in the Markov boundary which do not have any influence on the requested
output node. An example for such a situation is shown in Figure 5.32. As long as the
Markov boundary is not changed,

• incoming edges of ancestors that carry evidence can be pruned.

• incoming edges to observed parents of siblings can be pruned.

In both cases, although also the origins of the pruned edges are within the Markov bound-
ary, such edges cannot transport more information. The evidence of both nodes defining
the edge to be pruned is already included via the links that have included them in the
Markov boundary and, as only incoming edges are pruned, no explaining away effect [66]
is omitted.

Furthermore, the information of the personalised conditional probability distributions
can be used to detect edges which do not add a lot of value and could therefore be removed.
Two possible approaches for determining the value of an edge are the degree of deviation
from a uniform distribution and the entropy of the represented conditional probability.

Deviation from Uniform Distribution:
A uniform distribution of the conditional probability P(X|Y ) represents no influence of

Y on X. The larger the difference ∆U hence, the more important is the edge. In order
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not to depend on the size of the value ranges of X and Y which are denoted qX and qY
respectively, the result is normalised.

∆U(P(X|Y )) =

qY∑
j=1

∑qX
i=1

∣∣∣P (xi|yj)− 1
qX

∣∣∣
qX

qY
=

1

qXqY

qY∑
j=1

qX∑
i=1

∣∣∣∣P (xi|yj)−
1

qX

∣∣∣∣ (5.58)

Conditional Entropy:
In information theory, the conditional entropy H(X|Y ) is a measure for the information

remaining in X when Y is known. This entropy H(X|Y ) = 0⇔ X is independent from Y .
It is defined as follows:

H(X|Y ) ≡ −
qY∑
j=1

P (yj)

qX∑
i=1

P (xi|yj) logP (xi|yj) = −
qY∑
j=1

qX∑
i=1

P (yj)P (xi|yj) logP (xi|yj)

(5.59)
Note that the conditional entropy is not normalised and increases with higher values for
qX and qY .

Both approaches can be used to reduce large conditional probability tables. The closer
to 0 both measures are, the less important is the link. Pruning the link to the parent with
the largest value range yields the largest performance gain.

5.4.3 Reducing the Number of Values: Dynamic Value Ranges

Once the size of the BN or Bayeslet under evaluation is limited and also the number of
parents is bound with the techniques described in the last sections, the number of values of
the random variables should be limited as well. Again, it is important to reduce inference
time while not loosing important information.

This section discusses the dynamic reduction of value ranges (VR) in already con-
structed, discrete Bayesian networks. The proposed methodology follows a bottom-up
approach where initially each variable begins with its complete VR which may contain a
high number of values. Subsequently, the number of values may be reduced (recursively
if necessary) by merging values.

The following paragraphs shall first describe the algorithm and the modification of the
conditional probabilities during reduction. Then different criteria are presented to select
the values to be reduced and the criterion when values should be merged or re-expanded.
The description follows the publication of the author et al. in [119].

5.4.3.1 Value Range Repartitioning Process

An example for the application of dynamic value ranges is the usage of symbolic location
information (see section 5.2) for high level context inference. While at work, the room in
which a user is located gives important information about his current high level activity.
The basement garage implies coming or leaving, the meeting room a conference, not to
mention kitchen or office. The number of rooms the user knows not only at work, but also
at home, at friends’ places and so forth is immense and not realistically usable.

For use in context inference hence, the VR of the random variable Room has to be
reduced to the currently relevant ones. Therefore those rooms that are currently not
relevant for not in reach can be merged into one value other of the RV Room. When the
user leaves his workplace and heads home, the value range has to be modified again - the



140 5.4. Bayeslets: Making Context Inference Tractable

values concerning travelling and home have to be expanded from the other state, while
the work values can be merged.

This process of grouping values into partitions of the full value range and dynamically
modifying the partitions upon need is called repartitioning. Repartitioning uses different
methods and criteria to minimise information loss and computational cost of the reparti-
tion process. The process for the dynamic reduction of the value ranges is shown in the
flow diagram of Figure 5.33.

State Selection

Stopping 
Criterion met? No

Yes

State Merging

Simplified VR

Triggering 
Criterion met?

Original VR

Simplified VR

Inference

No

Yes

BN Creation

Figure 5.33: Flow diagram of a system allowing for dynamic repartitioning of value ranges of random
variables.

State Selection selects values (also called states) to be merged with each other based
on the selected selection criteria. State selection continues to select values for merging
recursively until a stopping criterion is met. Merging includes node-internal changes (more
or less an addition of the likelihoods to be merged) and updates of the children where
the respective columns of the CPTs have to be merged. Once a VR is simplified, the
dynamic repartitioning system still has to monitor changing conditions like context or
current evidence, which might trigger a new repartitioning process for which the states
have to be separated again, starting at the original value ranges.

5.4.3.2 State Merging and Separation

Dynamic repartitioning implies modifications in the conditional probability tables of the
nodes. Merging a set of values causes the following changes:

1. Node Internal modifications:
Merging a set of values only impacts the conditional probabilities of the merged
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values, as the values of a RV are mutually exclusive and exhaustive. The conditional
probability of a new super-state vm = {vm0 ∪ vm1 ∪ ... ∪ vmr} of RV V given some
configuration of parents states Pa(V ) = paj(V ), is :

P (V = vm|paj) =
∑

vmi∈vm

P (vmi |paj) (5.60)

2. Update of Children’s CPTs:
After the modification in the value ranges of a node V , it is necessary to update the
CPTs of its child nodes where the new parent configuration pa′j contains the merged
state vm. Again, taking into account that all states of a RV are disjoint, the new
conditional probabilities of a child node Y ∈ Ch(V ) can be computed as:

P (Y = y|pa′j(Y )) =

∑
vmi∈vm

P (y, vmi , π̂)

∑
vmi∈vm

P (vmi , π̂)
= α

∑
vmi∈vm

P (y, vmi , π̂) , (5.61)

where π̂ = pa′j(Y ) \ vm and α is the normalising constant.

The term P (vmi , π̂) is the joint probability of a configuration π̂ with every single
state of V that was merged in the previous phase. The calculation of this term
depends on the relation between the parents of Y and could be costly. It is however
only normalising the new conditional probabilities to sum to one and therefore can
be calculated ex post from the sum of conditional probabilities for Y and is replaced
therefore by the normalising constant α.

P (y|vmi , π̂) does not add significant calculation costs as it represents the previous
conditional probabilities P (y|paj(Y )) of the original CPT.

Separation of states is more difficult. The (conditional) probability of a merged value
vm cannot be split into the respective probabilities for all vmi ∈ vm and could only be
approximated by a standard distribution, for instance the uniform distribution. As the
original status however is stored in the Bayeslet specification, a separation of states just
uses the original values for both, V and Ch(V ).

The Bayeslet implementation therefore always has to maintain a list of merged states
which is necessary for the separation, but also later on for evidence. If an original state
vmi receives hard evidence, this has to be applied for vm for inference.

5.4.3.3 Criteria for State Merging

As shown in the flow diagram from Figure 5.33, state merging is a recursive process
selecting the most suitable states to merge until a final state is reached. The applied rules
are called state selection criteria, the stopping point criterion decides whether the new set
of values must be combined further or if the repartitioning process should stop.

There are a number of possible selection criteria for the most appropriate values vi, 0 ≤
i ≤ n, in value range RV of node V , the most relevant ones shall be presented in the
following paragraphs:

Equal Number of States
The Equal Number of States (ENS) approach [98] divides the VR into subsets that take

each m adjacent values and then merges all states of each subset. This method however
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does not take into account the probabilistic information of the network. It could be useful
for ordered, hence in particular numerical value ranges as of a RV Temperature, in order
to reduce precision and therefore overhead.

Temperature Degrees

original 1 2 3 4 5 6 ...

ENS processed 1-2 3-4 5-6 ...

The quality of this merging depends largely on the probabilistic effects of the values to be
merged. If they cause different behaviour in a connected node, the loss of information by
merging would be quite high.

Tree Collapsing
If value ranges are not ordered, but define a tree of which the leaves are all possible

values, another general approach is applicable. If the sum of all probabilities of values of
the same branch are below a certain threshold, they can be merged to the branch’s root
node.

DLR campus

TE01 TE02

garage meeting roomofficesecretariat

Figure 5.34: Part of a location hierarchy with the levels of districts, buildings, and rooms.

This is in particular applicable for hierarchically organised locations as they were used
in section 5.2.4.2 where a building contains several rooms. If the complete building is not
relevant, all rooms can be merged and represented by the building name. With regards to
Figure 5.34, if the specified rooms on the lowest level are not relevant, they can be merged
to the value on the building level: TE01.

Entropy Minimisation Discretisation
Entropy Minimisation Discretisation (EMD) adapts the method of [99], using Fayyad’s

definition of class entropy Ent for any value range subset RV,i of RV :

Ent(RV,i) = −
∑

v∈RV,i

P (V = v) log(P (V = v)) (5.62)

Based on this, he defined the class information entropy induced by a binary partition.
Adapted to the partitioning of a value range RV into two subsets RV,1 and RV,2 it can be
defined as:

Ent(RV,1,RV,2) =
|RV,1|
|RV |

Ent(RV,1) +
|RV,2|
|RV |

Ent(RV,2) (5.63)

The optimal partition is determined selecting the subsets RV,1 and RV,2 with the minimal
Ent(RV,1,RV,2) amongst all the candidates. Merging all the states of each subset provides
a binary discretisation.



5.4. Bayeslets: Making Context Inference Tractable 143

Minimum Merged Probability
Minimum Merged Probability (MMP) tries to minimise the loss of entropy caused by

repartitioning and is based on the concepts presented by Clarke and Burton in [97] for
continuous random variables.

With the entropy, as already used in Eq. (5.59) above, it is possible to prove the
following: If the states vi and vi+1 selected to be merged are chosen in a way that the
merged probability, P (vi) + P (vi+1), i.e. the probability of the resulting super-state, is
minimised, the reduction of the entropy is minimised as well. Therefore the states with
the minimum merged probability will be selected.

As the maximum entropy occurs with the maximum number of values, the best trade-
off between maximum information and a manageable number of values is reached when the
change in the size k of the value range becomes greater than the change in the entropy of V .
This point is called the knee point of the entropy function over the number of values. With
these properties, it can be used as stopping criterion for the recursive merging process.

k

H
(V

k
)

Figure 5.35: The knee point of an entropy function [97].

This knee point is the point with the maximum height over the straight line connecting
(kmin, H(Vkmin

)) and (kmax, H(Vkmax)), see Figure 5.35. The maximum height of a point
on the function curve above this line is proportional to:

l(k) = kmax ·H(Vk) − k ·H(Vkmax), (5.64)

k being the current number of states, kmax = n the initial size of the value range and
H(Vk) the entropy of V with k states. Therefore, the stopping point is reached just before
the decrease in this score [97].

An advantage of this method is the possibility to allow not only merging of adjacent
values, but also of non-adjacent values. Processing only adjacent values is indispensable
for the case of numerical or certain categorical values. For other value ranges however,
selecting and processing the most suitable states regardless of their relative position within
the VR, would give a better repartitioning result.

States of Interest
Very often the information necessary for the services requesting inference is contained

in only few states of nodes of the network which shall be called states of interest. If
the ubiquitous computing system has this information, it can apply the repartitioning
methods only to the other nodes, in order to decrease the computational costs. The states
of interest are protected, to maintain the information requested explicitly.
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The states of interest can be fixed by expert knowledge at creation time of the Bayeslet
or be determined dynamically by the requesting services as in Figure 5.36. Two different
services require probabilistic information from an inference engine (included in a context
management system) indicating their different states of interest of some context attribute.
The inference engine can then generate two new Bayeslets from the original one. These
Bayeslets will have different VRs in order to provide the inferred information with maxi-
mum performance and minimum loss of accuracy in the range of interest of each service.

Service A

Inference Engine

Service B

States of Interest, Service A

States of Interest, Service B

Inferred Data

Inferred Data

Complete VRs

Simplified VRs B

Simplified VRs A

Figure 5.36: Model for dynamic value ranges where services can customise the inference process by
specifying states of interest. Two services A and B request inference of context attributes together with a
specification of their ranges of interest. The inference engine therefore simplifies the VRs for each service
according to its needs.

Protection Extension
The use of any of the discretisation methods provides reduced quality for inference, i.e.

increased variance with respect to the posterior inferred in the original system, even in
the set of protected values.

In order to increase the quality, not only specification of states of interest is necessary,
but also the extension of their protection to the most related values of other nodes. To
allow for that, the values of the related nodes, i.e. parents and children nodes, have to be
identified which are most relevant for the states of interest. This idea is realised by the
protection extension (PE) approach.

Therefore, inspired by Shannon’s mutual information[105], the following function is
defined: the partial mutual information between the states of interest and the states of
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the connected nodes represents a measure for the mutual relevance of states. For a set of
interest RV,i defining a super-state vm for the node V and one value of its parent X = x,
the partial mutual information is calculated as follows:

I(V = vm, X = x) =
∑

vmi∈vm

P (x, vmi)

∣∣∣∣log(
P (x, vmi)

P (x)P (vmi)
)

∣∣∣∣ (5.65)

The absolute value is used to maintain the non-negative characteristic of the function,
since the characteristic of H(X,Y ) is lost, as only a subset of the states of X and V

is considered. Hence, the term
∣∣∣log( p(x,y)

p(x)p(y))
∣∣∣ provides information about how dependent

the states are. P (x, vmi) weights the expression based on the joint probability of the two
states. Also other weighted measures could be adopted [100].

For the mutual information between a child’s state Y = y and a set of states of interest
of its parent’s state vm, the equation is:

I(Y = y, V = vm) =
∑

vmi∈vm

P (vmi , y)

∣∣∣∣log(
P (vmi , y)

P (vmi)P (y)
)

∣∣∣∣ (5.66)

Defining a boundary b, a minimum for the mutual information, the protected states can
be chosen automatically. If I > b the state is protected, otherwise not. If b is chosen
small, more states will be protected, which leads to higher precision in the inferences at
the cost of less reduction in the number of network states. For the remaining, unprotected
states, any of the previous repartitioning methods can be applied, in an extreme case, all
unprotected states could be merged into one super-state.

Summarising, if there are states of interest for some node, it is possible to calculate
this measure for each state of the nodes related and extend the protection to those with
the highest mutual information which in turn constitute a set of states of interest. If the
protection extension is applied recursively to all connected nodes, it could be extended to
all the Bayeslet or only a certain number of steps to save extensive calculations of partial
mutual information.

5.4.3.4 Triggering Value Range Operations

As explained in the example for symbolic location above, a specific partitioning of a RV’s
value range does not have to hold for all circumstances. Therefore methods to trigger
repartitioning during system run-time have to be provided, so the simplified value ranges
can be adapted permanently to the latest requirements.

Therefore merged states also have to be separated again. As has been seen above, in
order not to lose important information, the original state of the Bayeslet has to be stored.

The basic idea for a decision system that triggers repartitioning is the following: states
are merged to a super-state, if they are not very relevant. If the probability of a superstate
then exceeds a certain threshold probability, it is worthwhile detailing it by re-separating
it into its original states.

It has to be taken care, however, that repartitioning is not called too frequently and
that a single hard evidence in a super-state immediately causes repartitioning. Therefore
a filtered probability distribution Pf (V )t for the current VR of a node V at time t is
calculated which keeps track of the last posterior distributions.

Pf (V )t = a ·Pf (V )t−1 + (1− a) ·P(V |e), (5.67)
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where a ∈ [0; 1] is a constant, Pf (V )t−1 is the filtered probability after the last posterior
computation and P(V |e) is the posterior probability for V given evidence e. Pf (V )t in
the present case of discrete RVs is a vector of filtered probabilities Pf (V = v)t∀v.

This filter preserves the characteristics of a probability distribution. Therefore it can
not only be used as trigger for new repartitioning, but also in the state selection criteria
(see section 5.4.3.3) instead of prior probabilities.

A threshold probability b for merged states can be set in relation to the size of the
original VR. If Pf (V = vm) > b by inference based on new evidence, a new repartitioning
process is started.

5.4.4 Composition of Bayeslets

The application of the Bayeslet concept requires the introduction of an additional step
before the actual context inference process: the assembly of the to be evaluated BN from
single Bayeslets. In order to allow for efficient and precise Bayesian context inference
taking into account the available information at request time, the concept of Dynamic
Composition of Bayeslets is introduced by the author et al. in [122, 123]. As Bayeslets
only represent knowledge domains which may be influenced by each other, for context
inference, the related Bayeslets have to be selected and composed to represent all the
relevant knowledge. As this relevancy depends on the current situation and the requested
output node, composition has to be a dynamic process at run-time of the context aware
framework.

Prerequisite for such information based assembly is a database of the available Bayeslets
with the necessary information to compute costs and information gain. In this database
all local Bayeslets are stored. Information about remote Bayeslets gets into the database
by advertisements when remote smart spaces get in contact. The advertisements are not
fully fledged Bayeslets, but only stubs representing the Bayeslet header and an access
point for remote evaluation.

For joining two Bayeslets X and Y, mechanisms to find pluggable Bayeslet candidates
in the database are necessary. Plugging candidates are such Bayeslets where an input node
of X matches an output node of Y. Bayeslets with the same output node for different
users can be distinguished by their identifier. When requesting a different user’s Bayeslet
via the specified access point, his security agent can check if the requester is authorised to
obtain the information.

5.4.4.1 Dynamic Bayeslet Assembly Process

As described in section 5.4.1, the advantage of Bayeslets is the reduced size compared
to a complete BN. So the inference rule composed of Bayeslets has to be minimal, but
not neglecting important links. Moreover, assembly of Bayeslets poses challenges, as it
is recursive, because linked-in Bayeslets can allow or require input from other Bayeslets.
This bears two main risks:

• Loops: If a Bayeslet Network, i.e. the directed graph consisting of Bayeslets and their
directed connections, would result in having a loop, also the complete BN formed
by this graph could contain a directed loop, which is forbidden in BNs. Algorithms
for deadlock prevention or e.g. breadth-first search can be applied to exclude such
cases.

• Excessive Linking: if all available interface nodes in Bayeslets are linked and joint
with other Bayeslets, at least in a large scale pervasive computing framework this
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would result in a very large network, possibly until all Bayeslets in the knowledge
base are linked. So the same, complete inference BN that was referred to in section
5.4.1 would be recreated. Its evaluation and already the time for joining and waiting
for the output of the input’s evaluation could lead to unacceptable high delays.

Identification of
target Bayeslet

Inference
Request

Composing
Bayeslets

Context Inference

Calculation of
added Value

Value > Threshold

Inference
Result

Linkable
Bayeslets

exist?

Yes

No

Yes

No

Figure 5.37: The process of composing bayeslets to a complete inference rule.

To answer an inference request, the Bayeslet with the target (output) node is selected
and has to be assembled with Bayeslets linked into the input nodes. The selection of such
Bayeslets has to be performed in a new step, preceding the inference itself as shown in
Figure 5.37. Decision criterion has to be the costs added by joining the network weighted
against the information gain. Costs are mainly the evaluation costs of a Bayeslet depend-
ing on the size and the communication costs, the information gain is determined by the
expected impact on the posterior probability of the output node. Only those Bayeslets
exceeding a certain threshold of added value would be joined.

5.4.4.2 Composition Criteria

To decide whether to connect two (or more) Bayeslets, the utility of the additional infor-
mation has to be determined. In utility theory the term utility is defined by the value a
piece of information provides to the system. Evidently, this value strongly depends on the
usage of the information.

The utility of an additional piece of evidence y ∈ Y can be quantified by the difference
between the utility with the additional evidence and without the additional evidence. Here,
y refers to the evidence of a random variable (e.g. a measurement of an accelerometer)
which is not independent of another random variable X (e.g. the activity of the person).
Thus, the utility of evidence y shall be determined by its impact on X. This impact is
defined by:

U(X : y) = U(X|y)︸ ︷︷ ︸
Utility of X

given known y

− U(X)︸ ︷︷ ︸
Utility of X
not given y

(5.68)
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with U(X) : X → R as the utility function which maps a random variable X to a real
number. U(X|y) is the utility function that maps the random variable X given evidence
y to a real number. Since X is subject to uncertainty, equation 5.68 can be enhanced
to calculate the expected utility (EU) gain by summing over all states weighted by their
probability of occurrence:

EU(X : y) = EU(X|y) − EU(X) (5.69)

=
∑
x∈X

U(x|y)P (x|y)︸ ︷︷ ︸
Expected Utility of X

given known y

−
∑
x∈X

U(x)P (x)︸ ︷︷ ︸
Expected Utility of X

not given any y

Unfortunately, it is not possible to determine y unless the Bayeslets are connected. The
solution is to calculate the expected utility which can be gained from acquiring any y ∈ Y
instead. Therefore, one has to sum over the utility U(x|y) of all possible outcomes of y,
weighted not merely by P (x|y) but also by P (y), the prior probability of y:

EU(X : Y ) = EU(X|Y )− EU(X) =
∑
x∈X

∑
y∈Y

U(x|y)P (x|y)P (y)︸ ︷︷ ︸
Expected Utility of X

given unknown Y

−
∑
x∈X

U(x)P (x)︸ ︷︷ ︸
Expected Utility of X

not given any y

(5.70)

The equations above are defined in utility theory to rate the importance of a node
Y for X with a known direction of their dependency. Bayeslets however represent sets
of nodes calculating a posterior probability which is introduced as soft evidence to the
input node of another Bayeslet. The substitute structure of virtual evidence for soft
evidence allows the direct application of the concepts above however. As explained in
section 2.3.2 (in particular Figure 2.8 on page 31), the soft evidence is mapped to the
conditional probabilities of a virtual child node with hard evidence. The expected posterior
distribution of Bayeslets is static and therefore maintained in the meta information of
the Bayeslet specification. Hence we can always assume that the plugged-in Bayeslet is
represented by a child node Y of an input node YX in the Bayeslet with the queried output
node X.

To account for already acquired knowledge, e.g. from already connected Bayeslets, Eq.
(5.70) can be enhanced to consider contextual knowledge c:

EU(X : Y |c) =
∑
x∈X

∑
y∈Y

U(x|y, c)P (x|y, c)P (y, c)︸ ︷︷ ︸
Expected Utility of X

given unknown Y and known c

−
∑
x∈X

U(x|c)P (x|c)︸ ︷︷ ︸
Expected Utility of X

given known c

(5.71)

EU(X : Y |c) determines the utility which can be expected by the connection of a Bayeslet
represented by Y given already acquired context c to input node X.

With Eq. (5.71) an intelligent decision maker could control the connection of Bayeslets
as follows:

if (EU(X : Y |c) > 0) use Y (5.72)

else retain Y
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EU(X : Y |c) ≥ 0 as will be shown in the following paragraphs. This means that
additional evidence never decreases the utility and, thus, Bayeslets in most cases shall be
connected. Therefore also the costs have to be taken into account which can arise from e.g.
higher processing load, communication costs in case Bayeslets reside on remote entities or
monetary costs if evidence from a remote Bayeslet is provided by a commercial service,
e.g. a commercial weather service for highly accurate weather information.

To take into account costs that reduce the gross utility, Eq. (5.71) can be enhanced to
the so called Net Expected Utility (NetEU):

NetEU(X : Y |c) = EU(X : Y |c)− C(Y ) (5.73)

in case costs for all y ∈ Y are equal. If this is not the case, the NetEU(X : Y |c) is
calculated by:

NetEU(X : Y |c) =
∑
x∈X

∑
y∈Y

(U(x|y, c)− C(y))P (x|y, c)P (y, c)−
∑
x∈X

U(x|c)P (x|c)

(5.74)

In the following, two different kinds of utility functions are proposed which can be used
as criteria for the connection of Bayeslets similar to the concepts of information gathering
and dissemination by Röckl in [102].

Probability-based Utility Functions
Often the utility of a random variable increases the “better it is known”, i.e. the less the

inherent uncertainty is. Also humans regularly acquire new information from independent
sources if they are uncertain about the “true” state of an unknown process: If we are
uncertain about the weather tomorrow, we check the recent weather forecast.

A suitable utility function would decrease (for instance logarithmic), if the added
information decreases the certainty. The binary logarithm of the probability as used by
Shannon in [105] fulfils these requirements. In this case EU(X : Y ) of Eq. (5.70) is
equivalent to Shannon’s Mutual Information I(X : Y ):

EU(X : Y ) ≡ I(X : Y ) =
∑
x∈X

∑
y∈Y

log2P (x|y)P (x|y)P (y) −
∑
x∈X

log2P (x)P (x)

= −H(X|Y ) + H(X) [in bits] (5.75)

with H(X) being the entropy of the random variable X, H(X|Y ) being the conditional
entropy of X given Y , see Eq. (5.59).

In this case, EU(X : Y ) ≥ 0 because:

EU(X : Y ) = −
∑
x∈X

∑
y∈Y

P (x, y) log
P (x)

P (x|y)
(5.76)

≥(∗) − log
∑
x∈X

∑
y∈Y

P (x, y)
P (x)

P (x|y)

= − log
∑
x∈X

∑
y∈Y

P (x, y)
P (x)P (y)

P (x, y)

= − log
∑
x∈X

∑
y∈Y

P (x)P (y) = − log 1 = 0
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UtilityActions Output Node

Figure 5.38: A Decision Network with one decision node, one utility node and one standard node
representing a random variable.

As (− log) is a convex function [97], in the line in Eq. (5.76) marked (∗), the Jensen
inequality Ex[f(x)] ≥ f(Ex[x]) for convex functions f [101] has been used.

To compute the net expected utility, a measure for the costs has to be specified. It can
include memory consumption, communication, and CPU costs, depending on the needs of
the implementing system.

Regarding CPU costs, i.e. inference time, the following could be an adequate measure:

C(Y ) = H(Y )− H(Y )

naY + b
, (5.77)

with the entropy of Y , H(Y ), a ∈ R, b ≥ 1 constants and nY the size of the biggest cluster
in the junction tree [86] of the Bayeslet containing Y . C(Y ) has got the entropy of Y as an
upper bound, to stay comparable with the mutual information. If the maximum cluster
in the junction tree (which has large influence on the evaluation complexity, see [85]) is
very small, the denominator of the second summand naY + b ≈ 1 and the costs C(Y ) ≈ 0.

Decision-based Utility Functions
Although normally it is beneficial to head towards less uncertainty in the higher level

information, in decision support systems utility shall be based on the outcome of actions
instead of uncertainty reduction. Therefore the Bayeslet model can be extended by the
notion of action, known from decision theory. Formally, Savage defines an action as “a
function attaching a consequence to each state of the world” [104]:

a : X → X (5.78)

a(x) = xa, with x, xa ∈ X ,

with xa being the consequence of x after performing the action a.

To incorporate actions into Bayesian networks, the latter have been extended in deci-
sion theory to Decision Networks [66], also called influence diagrams [92, 62].

Decision networks introduce two new types of nodes, decision nodes and utility or value
nodes. The values of each decision variable are the possible actions, they are imposed from
the outside to meet some optimisation objective [62], utility nodes represent a utility or
cost function. Within a decision network, decision variables are depicted as rectangular
boxes and value functions as diamond-shaped boxes as shown in Figure 5.38.

A rational decision maker will choose the action which maximises the resulting utility.
Thus, the expected utility can be replaced by the maximum expected utility (MEU) [66]:

EU(X|Y ) ≡MEU(X|Y ) = arg max
a∈A

EU(X|Y, a) = arg max
a∈A

∑
x∈X

U(x|Y, a)P (x|Y ) (5.79)

If EU(X|Y ) is substituted by MEU(X|Y ) in Eq. (5.70), EU(X : Y ) is equivalent to
the so called Value of Information (VoI) in information value theory [56]:

EU(X : Y ) ≡ V oI(X : Y ) = MEU(X|Y )−MEU(X) (5.80)



5.4. Bayeslets: Making Context Inference Tractable 151

Intuitively understandable, additional evidence never decreases the V oI. V oI(X : Y ) ≥ 0
can also be shown by the following proof:

MEU(X|Y ) =
∑
y∈Y

P (y) MEU(X|y)

=
∑
y∈Y

P (y) arg max
a∈A

∑
x∈X

P (x|y)U(x|y, a)

≥ arg max
a∈A

∑
x∈X

∑
y∈Y

P (y)P (x|y)U(x|a)

= arg max
a∈A

∑
x∈X

P (x)U(x|a) = MEU(X)

Here, the conditional independence of the utility function U(x|y, a) = U(x|a) and the
Jensen inequality Ex[f(x)] ≥ f(Ex[x]) [101] have been used.

5.4.4.3 Summary

Both approaches fit the requirements of dynamic composition very well. They use the
expected evidence of a plugging candidate Bayeslet to measure the impact on either the
output node itself or on actions relevant to the output node. The information necessary
for this is static and therefore can be maintained in the Bayeslet specification and used
without computation and communication overhead.

For the V oI, the design of the utility function and its harmonisation with the cost
function for the composition is challenging and tedious, but adds flexibility to the system
in comparison to pure uncertainty reduction. It would be the task of a human domain
expert. A simplification is modelling the utility nodes as the reduction of uncertainty in
the target random variable of the Bayeslet, as shown in Figure 5.39.

Temperature

UtilityHigh UtilityModerate UtilityLow

CertaintyBayeslet Composition
Control

BCC

connectBayeslet

doNotConnect

connectBayeslet doNotConnect

max(UH, UM, UL) >= 0.9 max(UH, UM, UL) < 0.9

T P(T)

high 0.33

moderate 0.34

low 0.33

T high moderate low

Utility 1 0 0
T high moderate low

Utility 0 0 1

T high moderate low

0 1 0

Figure 5.39: A decision network structure which can decide if any Bayeslet pluggable into the output
node Temperature is to be connected. The utility is modelled to represent the expected certainty of the
output node. The Bayeslet is connected if the expected certainty is above a certain threshold set to 90 %
in this example.

In a two-layered structure of utility nodes, it can be decided if the certainty in the
output node is above a fixed threshold. The lower layer has one basic utility node for each
value of the output RV, representing the probability of this value. The upper layer checks
if the maximum of the probabilities of each value is above a certain threshold. The actions
connectBayeslet and doNotConnect are then taken based on this utility.



152 5.4. Bayeslets: Making Context Inference Tractable

5.4.5 Context Inference with Bayeslets

The overall concept for Bayeslets offers approaches to reduce the number of nodes and
the size of their probability tables regarding parents and value ranges. The performance
gain achieved with these measures however depends also on the inference process used for
evaluation.

This work has not focussed on finding a new inference algorithm for composed modules
of Bayesian network, but shall select the most appropriate approach for the requirements
of ubiquitous computing environments.

Therefore the next section summarises the requirements identified in the past sections,
before section 5.4.5.2 repeats the available options, selects the most appropriate ones
and presents adaptations as far as necessary. Bayeslets allow to evaluate an overall BN
separately and hence even to distribute inference across different devices in the pervasive
computing system.

5.4.5.1 Requirements for Bayeslet Inference

The inference approach selected for Bayeslets mainly has to fulfil the requirements (1)
and (4) of section 3.3 along with those imposed by the last sections limiting the inference
complexity. As such:

• inference has to be modular, so inference time is shorter.

• inference has to be performed locally to avoid remote communication of frequent
evidence.

• inference must be able to incorporate the outcomes of different inference mechanisms.

• inference must not depend on the high update rates of low level context.

• inference has to cope with the dynamic modification of the value ranges suggested
in section 5.4.3.

• inference needs to be flexible in using prior probabilities, stored evidence or Bayeslet
inference for input nodes.

Modular probabilistic inference will always decrease inference time due to the “divide
and conquer” principle – in terms of the PPTC approach presented above, the construction
of smaller junction trees, smaller CPTs and less nodes to be processed decreases inference
time.

In addition, modularity is useful, if Bayeslets can be evaluated separately on different
machines. Not only are different processors loaded in parallel, in addition this allows for
access control and encapsulation of private information.

Requirement (4) from section 3.3 demands “support for different characteristics of con-
text”, in particular with regards to change frequency, but also concerning the integration
of context information from non-Bayesian inference modules.

In section 2.2, probabilistic context inference was shown to satisfy the requirements
best. However it is easily understood that for different inference goals and different input
data, different inference approaches may be most suitable. Thereby it is the target that
all types of inferred context can be used – not only by end consumers of the inferred
information, but also by other inference algorithms. Therefore the necessary context meta
information has to be provided, in particular the uncertainty of an inference outcome.
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All probabilistic algorithms, static or dynamic, will inherently provide a posterior
probability distribution as uncertainty measure. Non-probabilistic inference algorithms
also have to provide a probability distribution over the inferred states in the context meta
information. If they did not, hard evidence would have to be assumed for the inferred
value, which however would undermine the advantages of reasoning under uncertainty and
might heavily falsify the results.

With regards to the change frequency of different context aspects, section 3.2 has given
insight. Change frequencies may range from hundreds of Hertz until only few per hour or
even less. This has direct impact on the choice of the most appropriate inference algorithm
and is closely related to the level of context information. Figure 5.40 shows an information
pyramid, distinguishing information by their frequency.
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Figure 5.40: Hierarchical context inference takes into account the different qualities of input data. Raw
data at high frequency and high-level information require different processing, but these inference methods
have to be compatible.

At the bottom of the pyramid in Figure 5.40, we have a large spectrum of different
raw data, which can come with frequencies up to several 100 Hz (as the IMU for activity
recognition). This magnitude is very high compared to the human step (frequencies around
1 Hz) which serves as our reference system. High frequent changes are also less meaningful
in many cases. For instance, acceleration data of a user’s foot would not usually be of direct
interest for a ubiquitous computing framework. Based on those information however, a
step can be calculated, which changes only with a frequency in the order of 1 Hz. A step
can already be of relevance for positioning systems or movement detectors (as could be seen
in section 5.2.2), but only the subsequent processing of the data, one layer above in the
pyramid, would be of direct use to all users of the ubiquitous computing framework: from
the step, one can calculate the current position based on an absolute starting position.

Furthermore computation of consequences and events with so high frequency is hardly
feasible in a computing framework, even storage and management would impose a large
burden on any CMS. Also the value range is often very fine grained or continuous where
tiny value changes do not have impact on higher level context, but complicate computation
based on it. Reconsidering the definition of context information presented in Def. 1 on
page 15, such raw information cannot be used to characterise the state of an entity – and
is hence not yet context information. However, it can be “refined” to context information
by context inference. Often, the most suitable inference algorithms for such low level
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information incorporates the dynamics of the to be inferred context information, making
use of the high update rates.

It can be observed that higher level context, like activity, the season or a mood, change
less frequently and can be described with less different states which differ then significantly
in their semantics. Where changes are less frequent, static inference approaches are often
equally well suited, but more efficient.

The combination of dynamic and static Bayesian inference methods like those pre-
sented in 2.3.3 and 2.3.6 are suitable candidates for inference on all levels of information.
They cope with different requirements of different data types, and share the same require-
ments for input information and produce equivalent output with a posterior probability
distribution.

Context Inference with Bayeslets has to consider these observations. It has to dis-
solve the computation of higher level context from the computation of lower level context
by separate evaluation of different Bayeslets. Like that, inference rule modules can be
evaluated with the most suitable inference algorithm regarding the characteristics of the
information contained in it. Compatibility with other modules is ensured by specifying
the optional input from other modules and provision of a posterior distribution over the
possible states of the target context type. Typically, dynamic Bayesian networks will be
used to model the inference of lower level context, static Bayesian networks for high level
context, where the DBN is largely independent from the high level context while the static
BN uses the posterior of the DBN as evidence.

To cope with the dynamic value ranges, inference has to maintain the filtered prob-
abilities Pf (Vi)t of the output nodes Vi at all times t and trigger repartitioning of the
network when necessary.

Just like the value ranges are partitioned before inference starts, also the Bayeslets
relevant for an inference target are selected and their combination is clear. Important
here is however, that inference can treat the Bayeslet’s input nodes always in the same
way, no matter if there is already recent evidence for the input node, if a Bayeslet for
inferring the node can be connected, or if the prior (conditional) probability of the input
node is used for inference.

5.4.5.2 Inference Approach in modular Bayesian networks

Literature has proposed many different approaches for probabilistic inference with struc-
tured Bayesian networks.

Many research groups investigate the usage of exact inference processes like [265], [90]
or [94] in Bayesian network. To be able to do so, they have to be able to make assump-
tions about the dependencies of the substructures, hence limit the possible connections
of inference modules. The substructures thereby are completely separated and mutually
have to wait for the outcomes of other modules.

Other approaches with exact inference do not assume complete separation of the mod-
ules, just like Bayeslets where different Bayeslets overlap with their input and output
nodes. An example for these approaches are MSBN [273] or [87]. For inference, still
common hyper structures are created for inference of the joint network.

A different approach, approximating only the actual inference outcome uses soft evi-
dence to connect inference modules, e.g. [253]. The evaluation outcome of a BN module is
introduced as soft evidence in specified nodes of a requesting BN module. The requesting
module thereby has to wait with its probability propagation for the output of the linked
module. This approach neglects the exact computation of the posterior probability and
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makes “backward” inference (influence from the requested to the linked BN module) im-
possible.

Restrictions on the connection types between Bayeslets and the mutual exclusive sepa-
ration of Bayeslets are not feasible in ubiquitous computing, where different parties provide
Bayeslets as inference rules and different Bayeslets (e.g. sensors) provide input to the same
random variable.

Also inference with a common hyper structure is not appropriate as this impedes
distributed local inference without further connections between Bayeslets.

The only viable approach is constituted by soft inference. This approach implies some
loss of inference precision and the proposed evaluation is only approximate inference. Soft
evidence, introduced as result of one Bayeslet into the input node of another one, does
not d-separate both Bayeslets, neither when the input node is ancestor nor sibling of the
queried output node.

The selection of an approximate inference approach is appropriate. By the structural
modifications of the Bayeslet proposed for the separation of Bayeslets, reduction of par-
ents and modifications of value ranges, every inference result is an approximation of the
posterior probability. With the requirements stated above hence, Bayeslet inference has
to be in the class of model simplification inference algorithms (see section 2.3.3.3).

The performance gain with this approach does not only stem from the possible dis-
tribution on different devices, but also from the fact that smaller networks are inferred
upon – the divide and conquer principle. Moreover it is the only approach allowing for
the inclusion of other inference algorithms.

Assuming static Bayesian networks, some measures can be taken to further optimise
inference in every single Bayeslet:

• All nodes which are not in the Markov boundary of the requested output node are
pruned.

• The network structure is analysed and the most appropriate inference approach is
selected. I.e. the inference algorithm with the lowest complexity is searched, e.g. in
tree structured network structures complex algorithms like PPTC do not have to be
applied.

• For multiply connected BN structures, the junction trees with their cluster proba-
bility tables can be computed once right after network creation and used then for
every posterior estimation, as they are static.

5.4.6 Discussion

Section 5.4 has described the proposed concept for the application of modular Bayesian in-
ference to context inference in ubiquitous computing. From the literature it has adopted
the idea of structuring large Bayesian networks to allow for efficient inference in them.
The proposed adaptation to context awareness realises also the personalisation and het-
erogeneity required for ubiquitous computing by means of Bayeslets.

The most effective way to reduce the number of parents in a BN is personalisation.
Not the same dependencies hold for all persons – so only a personalised Bayeslet can use
only the relevant dependencies. Everything that is not relevant for the user is neglected.

This reduces the size of the CPTs for inference, together with the proposed context
aware reduction of value ranges. The proposed novel approach adopts different mecha-
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nisms for discretisation of continuous random variables and transforms them to fit context
inference in discrete Bayesian networks.

The approach presented for the composition of Bayeslet is very innovative. It concre-
tises the rather vague concept of relevancy mentioned in most definitions of context and
allows the inference of actual context, whereas monolithic Bayesian networks would only
infer the general situation (cf. Definition 5 on page 16). For such composition of Bayeslets,
approaches from information and decision theory have been adapted to the Bayeslet con-
cept. Both approaches use slightly different points of view and can be used both in the
respective situations.

To infer high level context, the combination of different inference methods is proposed
here, each one fitting best the requirements of the represented model, in particular also a
combination of static and dynamic Bayesian methods.

The approach allowing best the integration of all requirements is to separately infer
each Bayeslet and to introduce the computed posterior probability as soft evidence in the
connected Bayeslet. This is an approximate inference approach belonging to the class of
model simplifications. A general shortcoming of this approach is the limitation of inference
in one direction, i.e. allowing deductive, but not inductive inference. The restriction of
Bayeslets to specify input and output nodes however already anticipates this reduction,
in order to allow for more effective and cycle free composition.

All in all, the Bayeslet concept imposes some limitations to monolithic Bayesian net-
works and its inference:

• Restricting the interface of a Bayeslet to only predefined input and output nodes is
reducing the flexibility of the use of Bayesian networks.

• Therefore the inference in a combined Bayeslet network is suffering an (if only mod-
erate) precision loss, as one can consider it as missing some edges, in comparison to
the monolithic approach with all possible dependencies modelled.

• The necessary assembly step takes time and adds complexity to the context man-
agement system.

• Also personalisation of the random variables, in particular the value range reduction,
adds further complexity to the CMS which has to permanently monitor conditions
and trigger the respective actions.

These limitations however are outweighed by the following advantages:

• Bayeslets represent enclosed and encapsulated knowledge domains that are, due to
their size, easily manageable and processable.

• Bayeslets allow for parallel evaluation and partial reevaluation.

• Bayeslets allow for personalisation of inference rules.

• Bayeslets give control of information access to the user.

• Bayeslets allow for efficient integration of information coming from different domains.

• Bayeslets can be learned automatically or be provided by external application de-
velopers. This enables the latter to adapt the system’s capabilities to their needs on
the fly.

The above limitations have to be accepted to allow the stronger advantages which
allow for tractable, adaptive context inference in ubiquitous computing environments.



Chapter 6

Application and Evaluation

This chapter demonstrates how the different concepts presented in chapter 5 are applied
to context inference in ubiquitous computing and evaluates their usefulness in example
scenarios. To this end, the structure follows the outline of chapter 5 as far as possible,
emphasising the main contributions of this thesis.

Section 6.1 refers to the concepts of section 5.2. It reports on the results of the efficient
fusion of Wi-Fi fingerprinting and a foot-mounted INS, as well as on the conversion of these
results to symbolic location used in high level context inference.

Section 6.2 presents the performance results of the different approaches for the recog-
nition of human motion related activities introduced in section 5.3. The näıve Bayes
model and the learnt structure model, as well as static and dynamic inference methods
are compared.

Sections 6.3 and 6.4 then give application examples for the main innovations of sec-
tion 5.4, dynamic value ranges for random variables in Bayeslets and situation specific
determination of relevancy for the composition of Bayeslets.

Finally, section 6.5 demonstrates the overall added value of the concepts from chapter
5. Context inference in an example scenario with current state of the art techniques
is compared to the approach proposed in this thesis with regards to computation and
communication demands.

6.1 Absolute and Symbolic Positioning

This section evaluates the approaches to determine absolute and symbolic location pre-
sented in section 5.2, pp. 87 et seqq.

6.1.1 Evaluation of Inertial and Wi-Fi Fingerprinting Location Fusion

In section 5.2.2, a process for the fusion of Wi-Fi fingerprinting and inertial measurements
with an extended Kalman filter for efficient location estimation has been proposed. It was
evaluated in the project IST Daidalos 2 in a building of the university of Aveiro, Portugal.
The results have been described by the author et al. in [151].

6.1.1.1 Test Environment

To test the fusion methodology presented in section 5.2.2, a building of the university of
Aveiro was chosen. It is equipped with eleven Wi-Fi access points on one floor as can be
seen (black crosses) in Figure 6.1 for public internet access, as well as for research purposes
in the labs. Detection of different offices and rooms was expected to be fairly easy by Wi-Fi
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fingerprinting as infrastructure (in particular walls) should produce a significantly different
fingerprint than in other rooms. Testing therefore concentrated on the circular corridor.

Figure 6.1: Floor plan of the test building with eleven access points (black crosses) and 17 reference
points (grey dots).

As ground truth, 17 reference points in the corridor have been defined and marked
on the floor of the building. Their location was measured in the building and transferred
to metres on a floor plan with a known scale. The test users followed precisely the path
defined by the reference points on a circular walk (four laps, taking about 280 s). Every
time a reference point was passed, a button was pressed to record the timestamp.

Fingerprinting calibration points were taken approximately every 2.5 m in the corridor,
with signal strength samples being taken once per second. Measurements were taken by
holding a laptop at a fixed height (approx. 1.2 m), with slight motion to build up a PDF
over a small region. A sample size of 60 was used for each calibration point. At each
point, a minimum of three access points are always recorded. An example of the output
for a single calibration point for three particular access points can be seen in Figure 6.2.
The calibration point was recorded on the electronic floor plan to designate the physical
location.

The implementation of the positioning system was realised in three separate subsys-
tems, the fingerprinting, the step estimation and the fusion system, which were installed on
two different laptops. They communicated in client-server mode as both sensor connections
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Figure 6.2: Example PDFs of one calibration point X for different access points A, B and C.

were implemented in C while the higher level extended Kalman filter was implemented in
Java, as well as a visualisation application.

Laptop 1, with a Windows OS (for driver reasons), implemented the INS connection,
the low level filter and the client part of the connection. Laptop 2, using Linux, hosted
the fingerprinting subsystem, the server part of the connection, the high level EKF and
the visualisation application. It was equipped with two wireless network cards for finger-
printing. One network card was used for scanning to ensure consistent results during the
training stage, and to allow channel hopping without disrupting network communications.
The second wireless card was used to send real-time location updates to other displays for
live presentation of data. To reduce network related delays, both laptops were connected
with an ethernet cable throughout the track.

Figure 6.3: Visualisation of the recorded track.
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The fused absolute position is passed from the Kalman filter to the visualisation ap-
plication. Its output can be seen in Figure 6.3. Raw INS output on Laptop 1, as well as
input (from fingerprinting and step estimator) and output of the sensor fusion on Laptop
2 have been logged with their timestamp in milliseconds. Together with the timestamps
logged while passing a reference point marked on the floor, these logs have been used for
the evaluation presented in the following subsection.

6.1.1.2 Accuracy of Positioning

Figure 6.4: Position error (in metres) distribution over the whole walking time.

With the efficient EKF, different location sources can be fused to provide more precise
absolute location. This section compares the accuracy of positioning with Wi-Fi finger-
printing alone and fused with the INS system in the environment presented above. Using
INS alone would lead to significant drift over time with increasing errors. Therefore it is
not a sensible standalone approach and not evaluated specifically.

To evaluate the logged data, the pedestrian’s position calculated with Wi-Fi and the
fused position were compared with the known, absolute position of the reference points
at the moment when it was visited. The measure for the accuracy was the Euclidean
distance (line of sight) of the calculated positions to the reference point in metres. Figure
6.4 shows those results for each of the 49 recorded points. Results for Wi-Fi fingerprinting
standalone are presented by the blue line, the fused position error is shown with the
green line. It is obvious that the fused result is influenced strongly by the fingerprinting
result, in particular with regards to the fingerprinting errors, when wrong sample points
were identified as current position and hence the error was particularly high. From both
techniques we calculated the arithmetic mean error for our test track:

• 3.18 m for standalone Wi-Fi fingerprinting,

• 1.65 m for the fusion of fingerprinting and INS.
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Figure 6.5: Cumulative probability distribution F of the position error in metres.

It can be seen that the fused result is more stable than the fingerprinting approach alone:
the INS is preventing big jumps that are possible with pure fingerprinting. Standalone
fingerprinting provides very good results when the reference points were very close to
correctly detected fingerprinting sample points. This is visible in Figure 6.5 where the
cumulative probability distribution is shown: fingerprinting provides more than 20 % of
errors below half a meter, but also 20 % of errors over four metres – which appear in the
fused results only with a frequency below 5 %. It can be seen that the majority of the
calculated errors of the fusion lie around one meter, i.e. about the length of a step.

6.1.2 Time Complexity of Symbolic Location Determination

Section 5.2.3 on page 94 proposes a way to extend the estimation of absolute location
to estimate also the symbolic location. This process is verified for a particle filter based
approach which already incorporates maps and does not add any requirements hence.

6.1.2.1 Evaluation Environment

The proposed approach has been verified in an environment for distributed indoor/outdoor
positioning with an existing data set which has already been used for evaluation of different
location estimation techniques, for instance in [164].

The environment can flexibly plug-in different types of sensors and information and
use different sequential Bayesian estimation techniques and movement models. For this
evaluation, both indoors and outdoors GPS signals have been used together with the
inertial measurements of an INS, measurements of an electronic compass and information
about the location of the 57 walls defining the ground floor of an office building in a
likelihood particle filter without movement model (see [164] for details).

A test user was equipped with the mentioned sensors and requested to walk along a
specified path, visible in Figure 6.6, passing through predetermined ground truth points.
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The ground truth of the walk recorded in the data set was measured with sub-centimetre
accuracy using a tachymeter, a Leica Smart Station (TPS 1200), employing optical dis-
tance and angular measurements based on differential GPS for initial positioning.
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Figure 6.6: Path of a test user in the evaluation data set used to demonstrate the extraction of soft
symbolic location during the location estimation process for highly precise absolute position.

The data recorded during this walk cover 588 second during which the test user enters
a building after having passed two ground truth points outdoors. In the building, he walks
three laps along the corridor of the ground floor of the office building entering the same
five offices on every lap. After the third lap, the test user leaves the building.

Whenever the user passed through one of the ground truth points, the estimated
position was compared to the true position. Errors between the true positions and the
estimated pedestrian positions have been evaluated based on the fusion of the selected
information in a particle filter with 2000 particles. In [164], it has been shown that the
position error in this approach amounts to 1.5 m on average.

To evaluate the estimation of symbolic location together with highly precise absolute
location in this environment, 23 symbolic locations have been defined as polygons in an
XML format. The symbolic locations describe the main areas inside and outside the
building (rooms, corridor, combinations of areas) which are all non overlapping in this
example.

The evaluation was run on a computer with Intel Core2 Quad Q6600 processor at
2.4 GHz with 2 GB RAM, employing the Java implementation of the test environment
under Windows XP Professional SP3. Walls and symbolic locations are thereby separated
into different R-Trees in order to accommodate for their different treatment.

6.1.2.2 Performance of Symbolic Location Estimation

As described in section 5.2.3.1 on page 94, an R-tree is used in the implementation to
constrain the number of currently relevant spatial objects. The 23 symbolic locations are
therefore inserted into the R-Tree. Averaged on 50 repetitions, the construction of the
R-Tree takes 2.05 ms (σ = 4.08). As the construction is a singular event preceding the
location estimation, it does not influence the overall estimation time.
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The R-Tree is used during the evaluation to determine the location of every particle.
Instead of checking every symbolic location whether it contains the particle, the following
approach can be taken:

1. Query the R-tree with the absolute position of the particle.

2. Check only the resulting symbolic locations.

The second step is necessary, as the R-Tree does not contain the polygons of the symbolic
location themselves, but their bounding boxes. As a consequence, the bounding boxes of
the rooms in Figure 6.6 overlap. In the example walk, on average n = 2.67 (σ = 1.19)
symbolic locations are returned for the coordinates of a particle by the R-tree in about
1.56 million requests. The request itself thereby takes r = 3.353 µs (σ = 8.283).

Checking if a coordinate is contained in a polygon using the Java standard function
(javax.swing.JComponent#contains) takes c = 0.691 µs (σ = 6.286), averaged over
about 4.17 million method calls. The additional time of the R-tree request hence is
justified if it is smaller than the time saved by the reduced number of relevant symbolic
locations. In the present example, the overall number of symbolic locations has to exceed
8, assuming the measured average times for c, n, r.

During the 588 s of the walk, the system makes 782 estimations of the absolute and
symbolic location, each taking on average 0.635 s for 2000 particles. The steps added to
produce a soft estimation of the symbolic location take on average 4.23 µs (σ = 15.03) per
particle. Summing the time of the 2000 particles, the time spent per location estimation
on the calculation of symbolic location takes 8.47 ms and hence only 1.33 % of the overall
estimation time.

6.1.3 Discussion

In both scenarios, the evaluation has shown that there are tractable location inference tech-
niques providing highly accurate results for absolute location and calculating the symbolic
location necessary for high level context inference without significant increase in resource
consumption.

The Kalman filter based location fusion approach for a foot-mounted INS has been
demonstrated to yield accurate results without high computational complexity in combi-
nation with a further absolute positioning method.

Without a further positioning method, INS and information from a map yield accurate
results as shown in [164]. The results above show that the same map can be used to
efficiently extract symbolic location information.

In a reasonably small environment like an office building the time complexity hardly
exceeds 1 % of the overall estimation time. Such dimensions of floor plans are not un-
realistic given the concepts of smart spaces. Not all worldwide available information are
managed in a single system, but only locally relevant information are offered by smart
spaces which makes the amounts of data easier to manage.

However also larger amounts of symbolic location information can be managed in
such systems. Maps, e.g. such from OpenStreetMap1, can be managed in efficient geo-
spatial databases, as for example shown in the Osmosis2 extension. The search complexity
increases with higher numbers of symbolic locations, but in the ideal case (no overlapping
bounding boxes for the queried position) only logarithmic to the base m, the minimum
number of entries per node [158].

1http://www.openstreetmap.org/
2http://wiki.openstreetmap.org/wiki/Osmosis

http://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Osmosis
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6.2 Human Motion Related Activity Recognition

This section evaluates the approach to recognise the human motion related activities
sitting, standing, walking, running, jumping, falling and lying according to the works of
the author et al. in [211, 237, 209, 210]. The four different classification methods presented
in section 5.3, pp. 107 et seqq., static and dynamic Bayesian inference based on a learnt
BN structure and Näıve Bayes structure, are compared in subsection 6.2.2 based on the
data set presented in section 5.3.3.1. Subsequently, in subsection 6.2.3 the computational
complexity of the presented system is evaluated.

6.2.1 Evaluation Settings

Base for the evaluation are the data set recorded with the xsens MTx IMU described in
section 5.3.3.1 and the Java implementation of the activity recognition system with the
four alternative estimators and a visualisation module shown in Figure 6.7.

Figure 6.7: Implementation of the activity recognition system. The orange xsens MTx IMU is worn at
the belt and connected to a mobile computer (in the red ellipse) which estimates the human motion related
activity and and visualises the result with the probability bar chart shown in the top right corner.

The implementation follows the information flow explained in Figure 6.8. The accel-
eration and turn rate data in 3D and the rotation matrix are the input to the recognition
algorithm which computes the basic signals. Using those signals, the features are cal-
culated. These (and the signals which are used directly as features without any further
computation, see section 5.3.2) are input to the static classifiers estimating the current
activity. In the case of dynamic inference, this estimate is used in the dynamic classifier.

The results have been evaluated with a four-fold cross validation. In this evaluation
approach, the data set is split into four parts of which always three are used to train the
classifier and the fourth is used to test the trained classifier. This technique avoids the
overlap of test and training sets. The average of the four tests gives the result.
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Figure 6.8: Information flow of the raw data to the finally recognised activity.

The results are measured in precision and recall rates, see [222]. The recall of class
i, Recalli, measures the rate of correct evaluations of a class i among all samples of that
class:

Recalli =
TPi

TPi + FNi
, (6.1)

while the precision of class i, Precisioni, measures the rate of correct evaluations of class
i among all evaluations to that class:

Precisioni =
TPi

TPi + FPi
. (6.2)

True Positives (TPi, elements of class i recognised as class i), True Negatives (TNi, not
elements of class i not recognised as class i), False Positives (FPi, not elements of class i
recognised as class i) and False Negatives (FNi, elements of class i not recognised as class
i) are used to compute these measures.

The first part of the evaluation compares the recognition results of two persons, Emil
and Sinja, with the labelled ground truth. The raw data of the IMU had been recorded,
but not used for training the classifier before the recognition algorithms had been applied.
The data rate of the recorded data is 100 Hz, the inference rate 4 Hz.

An error source, appearing in this comparison as well as in precision and recall, origi-
nates from the manual labelling of the test data which appears in particular at the tran-
sitions between activities.

The system’s accuracy for transitions (going up and down) is not evaluated in this
section. They have not been a recognition target for the system, but only used as additional
states to improve the dynamic inference.

The last part of the evaluation measures the execution time. To this end, feature
computation and inference were repeated 780 times. The evaluation platform was a PC
with Intel Core 2 Duo E8400 processor at 3.0 GHz with 2 GB RAM running Windows
XP.

6.2.2 Inference Results

This section presents the results of the inference system and compares the four approaches
for inference. First, sequences of activity recognitions are compared to the ground truth
to analyse difficulties of the estimators and to compare their behaviour in Figure 6.9,
6.10 and 6.11. Then the results of the recognition system in a four-fold cross validation
are given in terms of precision and recall in Figure 6.12. As a last step, the effect of a
recognition delay on the precision and recall values is analysed in Table 6.1.
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(a) Static estimator based on Näıve Bayes structure
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(b) Dynamic estimator based on Näıve Bayes structure
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(c) Estimator estimator based on learnt BN structure
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(d) Dynamic estimator based on learnt BN structure

Figure 6.9: Inference results for an example of the sequence standing, sitting and standing. The thin,
coloured line at the top of these figures depicts the ground truth, colours identify the current activity
according to the legend on the right. Below the ground truth, the estimated probabilities of every activity
are indicated with the coloured squares [209].
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(a) Static estimator based on Näıve Bayes structure
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(b) Dynamic estimator based on Näıve Bayes structure
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(c) Static estimator based on learnt BN structure
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(d) Dynamic estimator based on learnt BN structure

Figure 6.10: Inference results of the sequence walking, running, jumping, standing [209]. The thin,
coloured line at the top of the figures depicts the ground truth, colours identify the current activity. Below
the ground truth, the estimated probabilities of every activity are indicated with coloured squares.
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(a) Static estimator based on Näıve Bayes structure
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(b) Dynamic estimator based on Näıve Bayes structure
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(c) Static estimator based on learnt BN structure
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(d) Dynamic estimator based on learnt BN structure

Figure 6.11: Inference results of the sequence walking, falling, lying [209]. The thin, coloured line at the
top of the figures depicts the ground truth, colours identify the current activity. Below the ground truth,
the estimated probabilities of every activity are indicated with coloured squares.
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The evaluation of the activities standing, sitting and standing of Emil is shown in
Figure 6.9. The distinction between standing and sitting is based only on the attitude
of the sensor which depends again on the particular way the subject is sitting and is
therefore difficult to detect with the available features, compare section 5.3.2.3. It can be
seen however that the dynamic estimation with the transition model described in Table
5.3 on page 125 improves the result significantly.

The evaluation of an example of the sequence walking, running, jumping and standing
is shown in Figure 6.10. On the one hand, the distinction of running and jumping is
improved by the approaches based on the learnt BN structure, on the other hand, the
transition between walking and running is better recognised in the Näıve Bayes approaches
than by the static estimator based on the learnt BN structure. Both situations, distinction
of running and jumping as well as the transition between walking and running, are reliably
recognised by the dynamic estimator based on the learnt BN structure.

The sequence walking, falling and lying has been analysed in Figure 6.11. All four
approaches work well in general. It is visible however that the duration of falling (at
timestamp 166 s on the time axis) is constantly over-estimated, especially by the Näıve
Bayes estimators. This situation decreases the precision of falling and the recall of the
subsequent activity.

The overall recall and precision of the system for every single motion related activity are
shown in Figure 6.12. The advantage of the estimators based on the learnt BN structure
as opposed to the Näıve Bayes approach can be clearly identified.

Although the system has been able to recognise every activity at some point of its
duration, most activities are misclassified at their beginning, which affects their precision.
This recognition delay can be identified in all plots of Figures 6.9, 6.10 and 6.11. As
observed above, the over-estimation of the duration in addition reduces the recall. Partic-
ularly visible are these effects for short-time activities. For falling which lasts for about
three to five evidence samples (roughly one second), this has a strong impact and causes
the significantly lower numbers for both, precision and recall in Figure 6.12.

Also jumping is affected strongly by these effects because of its short duration, but
suffers moreover from its division in two phases, getting off and landing, with similarities
to running and falling, respectively.

The recognition delay is caused by the sliding windows containing data samples from
the previous activity. At an inference rate of 4 Hz, after an activity switch, only 25 samples
of a new activity are contained in the evaluated sliding window. The length of the window
therefore determines the importance of the last activity in the new classification. The
majority of the features presented in section 5.3.2 are mainly based on 128 samples (or
1.28 s). Therefore not until 0.64 s have passed, the majority of samples in a window belong
to the current activity.

Taking this into account, a recognition delay of two inference samples, i.e. 0.5 s, is
realistic. The recall and precision rates compensating this recognition delay are shown in
Table 6.1 for static and dynamic inference based on the learnt BN structure.

Obviously, the dynamic approach yields better recall rates. The dynamic approach also
improves precision (particularly for falling) in most of the activities except for jumping and
sitting. Taking into account the recognition delay, all activities achieve recall rates higher
than 93 %. The remaining errors are partly caused by the manually defined transition
model.
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Figure 6.12: Recall (a) and precision (b) for every activity with the four compared estimators [209]. The
approaches using the learnt BN structure outperform the Näıve Bayes classifiers.
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Static estimator based on learnt BN structure

Sitting Standing Walking Running Jumping Falling Lying

Recall 0.99 0.96 1 0.69 0.66 1 0.99

Precision 0.99 0.98 0.94 1 1 0.57 1

Dynamic estimator based on learnt BN structure

Sitting Standing Walking Running Jumping Falling Lying

Recall 1 0.98 1 0.93 0.93 1 0.98

Precision 0.97 1 0.98 1 0.93 0.8 1

Table 6.1: Precision and recall for static and dynamic inference in the Bayesian network with learnt
structure [209]. These results compensate a recognition delay of 0.5 s caused by the sliding windows and
the inference frequency.

6.2.3 Resource Consumption

All in all, the estimator using the learnt BN structure and the transition model with the
grid based filter yields the best results. It is, however, also the most complex estimator,
because the learnt network structure is stronger interlinked than the Näıve Bayes approach
and the transition model adds further inference complexity. This section investigates, if the
qualitative advantage justifies the higher inference complexity by comparing the resource
consumption of the different methods.

As described in section 6.2.1 the results shown here are averaged over 780 runs of the
Java implementation of the activity recognition system.

Table 6.2 compares the inference time of the different estimators. The average duration
of all feature computations is given as reference factor. Feature computation is fast,
because all 19 features have been selected also for their low computational complexity.
The execution time is specified by its mean, its median, minimum and maximum.

Operation mean
(ms)

median
(ms)

min
(ms)

max
(ms)

Feature computation 1.5 1.45 1.4 4.1

Static estimator, Näıve Bayes 0.34 0.32 0.29 2.17

Dynamic estimator, Näıve Bayes 0.36 0.34 0.3 3.26

Static estimator, learnt BN structure 7.2 7.2 3.9 27.7

Dynamic estimator, learnt BN structure 7.7 7.7 4.1 18

Table 6.2: Execution times of feature computation and inference process from 780 runs on an Intel Core
2 Duo microprocessor E8400 ,at 3.0 GHz with 2 GB RAM. Mean, median, the minimum and the maximum
specify the execution times for the feature computation and the four estimators based on Näıve Bayes and
the learnt Bayesian network. Computation times for all estimators usually stay below 10 ms and allow for
real-time activity recognition.

The computational advantage of Näıve Bayes approaches is significant. Inference only
takes from 0.3 ms to 0.4 ms. In contrast, the estimators based on the learnt Bayesian
network structure take between 7 ms and 8 ms, hence the twenty-fold. This is due to the
complexity of the network (the learnt BN structure has 59 edges, as opposed to the 19
edges in the Näıve Bayes structure, see Figure 5.26) and the resulting bigger CPTs.

Inference incorporating the transition model with the grid-based filter takes around
0.5 ms more than the static approach. Dealing with the HMM increases the inference
time, but the main computational cost in terms of execution time is determined by the
Bayesian network structure.
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This fact is stressed by the analysis of the memory consumption. Table 6.3 shows
that also the memory size of the learnt Bayesian network structure and the Näıve Bayes
structure differs significantly because of the different complexities of both networks.

BN Memory size

Näıve Bayes structure 33.3 KB

Learnt BN structure 3706.9 KB

Table 6.3: Memory size of the Bayesian networks after the training process (unrestricted Bayesian net-
work) and for the assumption of Näıve Bayes.

6.2.4 Discussion

The evaluation has shown that activities can be recognised in real-time. Classifying the
measurements with the grid based filter based on the learnt BN structure which has proven
best in section 6.2.2, the recognition time amounts in total to approximately 10 ms, which
allows for classification with 100 Hz, the selected sample rate of the used IMU.

Given that classification with 4 Hz yields excellent results, activity recognition in
real-time is even realisable on processors with less resources or running as a background
process. Even a reduction of inference frequency would still yield good results (compare
[237]) which should be easily achievable also on small mobile devices like smartphones.

The evaluation of precision and recall in Figure 6.12 has shown that the Näıve Bayes
approach has significant quality shortcomings which cannot be compensated by its very
fast inference time. Neither is the inference time advantage of the static estimator based on
the learnt BN structure sufficiently prominent to compensate the somewhat lower precision
and recall rates of the recognition.

In the four-fold cross validation, the results have proven to be stable and reliable for
users who have not been involved in the training process. Together with the short inference
time and the unobtrusiveness of the system with a small sensor module at a single location
of the body, this makes the proposed approach an ideal inference module for ubiquitous
computing.

6.3 Dynamic Value Ranges

A promising means to reduce the computational demands and therefore also response
time of context inference is the concept of dynamic value ranges (DVR). As presented
in section 5.4.3, it allows for the reduction of the value ranges of random variables in a
Bayeslet according to current requirements and relevancy.

Different criteria have been proposed to control the dynamic reduction and expansion
of the value ranges. These are compared in the following sections in an example use
case taken from the office scenario presented in section 1.2.1 on page 4. Then the added
value of this approach, i.e. the acceleration of inference, is weighted against its increased
management costs, following the publications by the author et al. in [119, 117].

6.3.1 Evaluation Settings

Both, the different criteria, as well as the overall utility of the proposed approach are
evaluated for an example application, namely the intelligent interactive wall display shown
in Figures 1.2 and 1.3 of section 1.2.1. It is situated in the entrance hall of an office building
where it shows all employees some information which is relevant for them personally at
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the moment when they are standing in front of it, taking into account also their privacy
when other people are around.

In particular, it can show a personalised welcome message, information about the
canteen menu, the weather forecast, or traffic information. To decide which information is
currently most relevant for the display user, his current “work activity” is requested from
the context management system. The wall display service has four different general states

1. When the user arrives, he is shown a welcome message, his schedule for the day and
the weather prospects (see Figure 1.2).

2. When the user passes by the screen on his way to have lunch, in particular the
different canteens’ menus are shown (see Figure 1.3).

3. When the user is going home, the traffic information for his way home and possible
alternative routes are shown.

4. In other cases, just the tasks and meetings for the current day are shown.

The context necessary for this type of application can be be inferred from information
available in office environments already today. The Bayesian network containing the de-
sired context information WorkActivity involves the current time, the location of the user
and his current computer usage. The computer usage can be measured by light weight
daemon services running on the user’s computers which monitor the currently used appli-
cation, the activity time and the last pressed keys. To infer the user’s current location,
even without a dedicated indoor positioning system, auxiliary information can be acquired
from available information. For example a proximity sensor inside the wall display (pos-
sibly based on RFID) detects which persons are in proximity. Also the status of the office
of a user gives useful information, e.g. if the light is switched on or sensors for ambient
noise can give hints about the presence of the user in his office.

These dependencies can be modelled with the five Bayeslets shown in Figure 6.13.
However, to be able to better analyse the utility of dynamic value ranges alone, this
section considers the monolithic Bayesian network composed of these five Bayeslets, as
it could have been designed by a domain expert aware of the available information and
sensors in the office building. The example Bayesian network contains hence:

• 17 nodes representing different types and levels of context information. All nodes
together initially have 133 different values.

• Seven nodes of them represent sensors or other low level information sources.

• The queried node is WorkActivity. It has 18 values representing different activities
which are usually pursued during a working day.

From the 18 values of WorkActivity, in particular arriving, goingToLunch and go-
ingHome are relevant for the wall display service. These constitute the states of interest
(see section 5.4.3.3 on page 144), which can be explicitly requested as shown in Figure
5.36. The remaining values of random variable WorkActivity are relevant for other services
(for instance Call Redirection or Activity Monitoring from the Intelligent Office Environ-
ment Scenario in section 1.2.1) and cannot be completely pruned, but their inclusion in
inference for the wall display service is not necessary.

The evaluation compares the following state selection criteria (proposed in section
5.4.3.3) to each other and to the reference inference method without reduction of value
ranges:
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Figure 6.13: Bayesian Network for the inference of 18 different work activities, represented by RV
WorkActivity, composed of five Bayeslets. A monolithic Bayeslet containing the nodes of all five Bayeslets
is used to evaluate the utility of dynamic value ranges in the wall display service of an intelligent office
environment, compare section 1.2.1.

• ENSN , Equal Number of States with N being the number of merged adjacent values.

• MMP , Minimum Merged Probability.

• PEN , Protection Extension with N being the minimum level of mutual information
between a state and its parent or child nodes of interest to be protected. In this
approach the above mentioned subset of interest of node WorkActivity was chosen
and protected. This protection is extended recursively to its parents and children
and from them to others along the network. All unprotected states are merged.

The Tree Collapsing criterion is not applied here, because its prerequisite, an hierarchi-
cally organised value range, is not met. The States of Interest have been omitted in the
analysis, as its core idea is realised in the Protection Extension criteria and it can be
approximated with high values of N in PEN . Entropy Minimisation Discretisation was
not selected, as its binary discretisation does not promise to provide good results and is
only an option for the merging of unprotected states in combination with the Protection
Extension criterion. The values for N in ENSN and PEN have been chosen after an
inspection of first results, to reach the best quality of a criterion.

Evaluations were conducted on a notebook with Intel Core 2 Duo T9600 processor at
2.8 GHz with 3 GB of RAM under Windows XP, using the author’s Java implementation
of the PPTC algorithm and the value range reduction algorithms. The Bayesian network
(together with the initial junction tree) are maintained on the object heap of the Java
Virtual Machine.

The evaluation results below are based on inference requests propagated through a
simplified context management system. The evaluation scenario assumes randomly chosen
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hard evidence in the seven nodes classified as input nodes in Figure 6.13. Fifteen realistic
configurations of evidence values for the input nodes have been chosen from the 290, 304
possibilities.

In the case of the reference inference with PPTC for the complete value ranges, the
evidence is introduced and propagated. For the different state selection criteria, first the
value ranges are partitioned according to the selected criteria, the junction tree is rebuilt
based on the reduced value ranges and used then to propagate the introduced evidence.

6.3.2 Error Introduced by the Value Range Reduction

To analyse the error introduced by the value range reduction, the posterior probabilities
of the output RV WorkActivity by inference in the original BN were compared with the
inference results of the BNs partitioned with a method m. Inference was based on 15
evidence cases, each specifying hard evidence for all input nodes.

The measure for the inference error of a value v of RV V is the mean absolute error :

MAE(v) =
1

N

N∑
i=1

|P (V = v|E = ei)− P (Vm = v|Em = ei)| , (6.3)

where N = 15 is the number of evidence cases ei considered. A RV Xm is derived from
RV X by partitioning its value range with method m. Analogously, a set of RVs Ym is
derived from set Y by partitioning every node in the set with method m.

In this measure, all considered evidence cases are weighted equally and the average
deviation from the posterior probability inferred with exact inference is calculated. For
example, if P (arriving|ei) = 0.90 and P (WorkActivitym = arriving|Em = ei) = 0.9029,
then MAE(arriving) = 0.0029 = 0.29%.

For those values vj of WorkActivity which have been merged by a method m to a
super-state v̂ =

⋃
vj , their conditional probability P (Vm = vj |Em = ei) is calculated

from P (Vm = v̂|Em = ei) according to the relations of the prior probabilities of the values
vj .

Table 6.4 shows the mean absolute errors of all values of WorkActivity for the con-
sidered evidence cases. It can be seen that the PE methods perform significantly better
than ENS4 and MMP for the protected states of interest specified by the service. Their
errors are increased for values out of the interest range, but still acceptable. There is only
a small difference between the stronger protection extension (PE0.01) and the weaker one.
Both approaches however imply in total larger value ranges than the remaining methods.

Figure 6.14 focusses on the three states of interest, arriving, goingToLunch and go-
ingHome, showing the mean posterior probabilities for the four different approaches to
DVRs and the posterior probabilities in the original BN without dynamic value ranges. It
is obvious that the best performance for the states of interest is provided by the protection
extension methods.

It can also be seen that apart from the protected states, the error increases immediately
for the PE methods, as all unprotected states are merged and the evaluated posterior
probabilities only reflect the prior probabilities. In certain evidence cases, the error hence
can be much higher. This error in the unprotected states however is irrelevant for the
quality of the PE methods, as they are not of interest for the requesting service.
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ENS4 MMP PE0.03 PE0.01

#states 42 64 74 89

ARV 2.75 3.38 0.62 0.29

GTL 5.99 5.85 1.09 0.89

GH 12.94 13.05 1.63 1.63

PRG 9.34 12.61 6.07 6.14

RDG 5.56 4.27 4.53 4.45

WRT 6.03 2.15 6.93 6.71

WLK 3.54 2.43 2.55 2.57

SLP 1.59 1.13 1.03 1.04

ENT 0.30 0.24 0.25 0.25

RLX 0.17 0.11 0.12 0.12

TLK 1.28 0.69 0.67 0.72

THK 0.34 0.88 0.89 0.88

LST 1.08 1.15 1.17 1.16

PRS 1.10 1.71 1.25 1.24

LNC 0.94 0.42 0.91 0.92

DRV 1.53 1.18 1.47 1.48

SPR 0.29 0.39 0.52 0.53

OTH 0.34 0.32 0.59 0.59

Table 6.4: Mean absolute error (in %) of the posterior probabilities for all state selection criteria and all
values (left column) of the output node WorkActivity in 15 cases assigning hard evidence to all input nodes
defined in Figure 6.13. The abbreviations ARV,GTL and GH stand for the values arriving, goingToLunch
and goingHome respectively. The second row gives the total number of values in the Bayesian network
after processing all value ranges with the four different state selection criteria.

6.3.3 Resource Consumption

The quality of a criterion is determined by the advantage in terms of reduced resource
consumption and the error introduced by the deviation from exact inference with complete
value ranges. The resource reduction which is important for light-weight mobile devices
refers to both, memory and CPU time.

The memory requirements are influenced by the need for additional data structures
for the dynamic value ranges (among others maintenance of the original value ranges) and
by the reduced sizes of the potentials of the clusters in PPTC. The exact consequences
have been evaluated by the author et al. in [119], for both the execution memory and
the permanent storage of a representation of the reduced value ranges. As the execution
memory for inference with PPTC however does not differ a lot, this thesis refrains from
detailing on the memory consumption.

The analysis presented in Figure 6.15 compares the duration of the complete context
inference process after a first inference request, assuming that the Bayeslet and its junction
tree are maintained already in the execution memory of the context management system.
A context inference engine following the process presented in section 5.4.3 first has to
reduce the value ranges and adapt the junction tree, second to introduce the available
evidence and third and last propagate the evidence to calculate the posterior probabilities,
i.e. the actual inference. These three steps of context inference together with the overall
execution time are shown in the figure for the four compared repartitioning methods and
for inference in the original Bayesian network, where the repartitioning step is left out.

The most obvious fact is the significant reduction of the core inference task, the propa-
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Figure 6.14: Mean inferred posterior probabilities of five values of the node WorkActivity for 15 defined
evidence cases. The PE methods yield results very close to those of the original network for the states
of interest arriving, goingToLunch and goingHome, while its error increases for the unprotected values
programming and reading. The partitioning methods ENS4 and MMP differ stronger from the original
values, but also follow the overall trend of the original posterior probabilities.

NoRep ENS4 MMP PE0.03 PE0.01

total no. values 133 42 64 74 89

inference time 2.43 0.23 0.39 0.41 0.58

Table 6.5: Probability propagation time in ms, in relation to the total number of values in the BN.

gation of probabilities through the BN. This step is most impacted by the complexity of a
BN, as it has to run through the complete potentials of the clusters. Therefore it benefits
most from the reduced value ranges. Table 6.5 shows that inference in the most reduced
BN (with ENS4) needs only a tenth of the time of inference in the full BN. And even the
most complex repartitioning method, PE0.01, needs less than a fourth of the time with
two thirds of the original values.

The tiny differences for evidence introduction to the advantage of DVRs are caused by
the smaller value ranges. This could however be avoided by a more efficient implemen-
tation. The biggest time factor for inference with DVRs however is the reduction of the
value ranges itself. While repartitioning for ENS4 and MMP with around 1 ms is still
short enough to have an overall inference time below the overall inference time without
DVRs, repartitioning with the PE method takes around 6 ms. The increased effort how-
ever yields the good inference results for the protected states with only minimum error,
as has been seen in Table 6.4 and Figure 6.14.

As the repartitioning step does not have to be run every time but only once, the
advantage of using repartitioning from the second inference request onwards is obvious.
This development is shown in Figures 6.16 and 6.17. Figure 6.16 shows in detail that from
the fourth inference request on also the PE methods have amortised. Figure 6.17 extends
the development to more than 60 requests – which would be the situation of continuous
inference with 1 Hz.
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Figure 6.16: Development of inference time with the number of executions for the first five inference
requests, illustrating better the “break even” of the methods for dynamic value ranges.

As many services are used repeatedly, the graph of Figure 6.17 is more relevant than
the single-inference graph of Figure 6.15. If we assume that employees pass by the foyer
about 10 times a day, and this happens every working day, a significant part of inference
time can be saved. Every week, at least 75 % of the inference resource consumption for
context inference of this service would be saved.

Although the gain per execution is only a couple of milliseconds, this is relevant indeed
when several inference processes are running in parallel. According to the projection from
chapter 3, pp. 51 et seqq., about seven context attributes will be inferred continuously
in parallel, not to mention further on-demand context requests. With plenty of running
services on a resource constrained mobile device, also such little savings sum up and are
relevant for reducing response time and, in addition, save battery life.
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Figure 6.17: Further development of inference times with higher numbers of executions, generalising
from the initial scenario shown in Figure 6.16.

6.3.4 Discussion

The evaluation of this application example shows that dynamic value ranges can reduce
inference time considerably introducing only small errors to the inferred posterior proba-
bilities.

This result can be generalised: The time necessary for calculating the reduced value
ranges will not change significantly, as it depends on the size of the BN. Having assumed
earlier an average Bayeslet size of 20 – 30 nodes, this coincides roughly with the size of our
example. The gain of probability calculation in the BN depends on the inference methods
which largely maintain their reduction rates. Hence the relative savings in terms of CPU
time should be quite stable.

The approach of DVRs yields its advantages mainly for general context inference with-
out additional assumptions (e.g. on the network structure or evidence distribution). In
this case the full conditional probability tables which depend strongly on the size of the
value ranges have highest relevance. A Bayeslet like the one for human motion related
activity recognition for instance, where it is known that all nodes but the output node
are input nodes, other inference techniques are efficient and the more complex, general
approaches such as PPTC can be avoided.

With regards to the proposed approaches for value range reduction, all methods have
produced acceptable results in terms of their mean absolute errors. The approaches based
on protecting states of interest and extending this protection to related nodes thereby
yield the best results, with negligible errors for the states of interest.

Although the time for the value range reduction in these approaches is significantly
higher than for other methods and even exceeds standard inference duration without
DVRs, they are the most appropriate choice. Their disadvantage for the value range
reduction can be neglected, as it happens only once while usually the requesting services
are executed frequently or even continuously.

Moreover, this approach benefits from taking into account application knowledge, as
the requesting service specifies the states of interest. Similarly to focussing on specific
output and input nodes which allows for modularisation of BNs, the focus on concrete
states of interest allows for the reduction of inference complexity to the relevant parts.
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6.4 Composition of Bayeslets

Section 5.4.4 has proposed a methodology to select the Bayeslets to be connected. The
relevancy of a Bayeslets thereby is determined with its expected utility for the Bayeslet
it could be connected to. The following subsections shall verify both utility measures
proposed in section 5.4.4.2 on pp. 147 et seqq.

First, section 6.4.1 presents the common application scenario. Section 6.4.2 applies
the probability based utility function to this scenario, before section 6.4.3 presents a
solution with the decision based utility. Finally, the advantages and shortcomings of
both approaches are discussed in section 6.4.4.

6.4.1 Application Example

In the following the decision algorithm introduced in the previous sections will be shown
by the exemplary application Cooperative Adaptive Cruise Control (CACC) [103, 46].
This application is used in the scenario from section 1.2.2, pp. 6 et seqq.

More and more, cars support vehicle-to-vehicle (V2V) communications, as developed
for instance by the CAR 2 CAR Communication Consortium3. V2V communications are
used to provide enhanced driver assistance applications by taking into account information
(e.g. sensor measurements) received from other vehicles.

Hence, the vehicles are part of the ubiquitous computing environment. Since the com-
munication channel has to be used collaboratively by all vehicles in the network and timely
reception of messages is crucial for safety relevant applications like CACC, bandwidth has
to be shared intelligently. This implies in particular that not relevant information should
not be transferred.

Applied to context inference, this means that a vehicle trying to infer its status should
not request soft evidence from a remote Bayeslet which does not add significant value.
Transmission over the wireless channel would consume bandwidth and thereby prevent
others from transmitting their, maybe more important, information.

In the following, this thesis considers a CACC application running in a car. On a road
with multiple lanes in the same direction CACC has to be aware of the actual lane the
preceding vehicle is driving on. If, for instance, the car is located on the centre lane of
a three-laned road, the preceding vehicle can be located on the same, the right or the
left lane. Context inference can infer this from the available information and provide this
information to CACC [123].

A part of this situation is modelled in Figure 6.18. The three states of the possible
location of the preceding vehicle are denoted in the following as values centre, right and left
of the random variable Lateral Distance (LD). Information sources for the lateral distance
are the built-in radar system of the car itself, but also the messages with GPS information
of the preceding vehicle received via V2V communications. Both information sources form
Bayeslets which can be connected to the Bayeslet for the Lateral Distance, if their NetEU ,
cf. Eq.(5.73), is sufficiently high.

The Bayeslets used for this purpose are simplified to the minimal case so the concepts
from section 5.4.4.2, pp. 147 et seqq., can be illustrated best. In particular the Bayeslets
of the information sources have been strongly simplified, so they have the same priors of
their output nodes, the same size, and the same connections. Both information source
Bayeslets hence have the same computational costs, so the evaluation can focus on the
two proposed utility functions.

3http://www.car-to-car.org/

http://www.car-to-car.org/
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Figure 6.18: Three (simplified) Bayeslets to infer the Lateral Distance of two cars for Context Aware
Adaptive Cruise Control . The dotted lines indicate the possible connections of the Bayeslets, the boxes
next to the random variables give their corresponding prior and conditional probability tables, respectively.

6.4.2 Mutual Information Based Composition Decision

Section 5.4.4.2 has presented the mutual information I(X : Y) as an appropriate, proba-
bility based utility function to evaluate the relevancy of a Bayeslet Y for the evaluation of
Bayeslet X. Thereby, the mutual information between two Bayeslets X and Y is reduced
to calculating the mutual information between two random variables in the same Bayesian
network – the output node of X and the input node of X with the prior probabilities of
Y as evidence.

The following evaluation concentrates on the behaviour of the mutual information be-
tween the three Bayeslets (LD, RLD, VLD) shown in Figure 6.18, as the cost function
for both input Bayeslets are the same, following the proposed cost function for compu-
tational costs from Eq.(5.77). H(RLD) = H(VLD) = 0.86, as the output variables
of both Bayeslets have three values with uniformly distributed prior probability. The
same size of the Bayeslets results then in the identical value for the cost function, e.g.
C(RLD) = C(VLD) = 0.77, if a = b = 1.

In the simplistic example used, Bayeslet LD has to decide, if one or both of the
Bayeslets RLD and VLD should be connected. Bayeslet LD only contains input and
output nodes, so the decision is made without incorporating any evidence:

I(LD : RLD) = 0.43 (6.4)

I(LD : VLD) = 0.78 (6.5)
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Both Bayeslets hence add value to Bayeslet LD. The value of Bayeslet VLD, however,
is expected to be higher, as the conditional probability distribution of node V LD expresses
higher certainty and the CPT of RLD expresses lower sensor quality for the detection of
left and right, e.g. due to reflections on the guard rails. Neglecting transmission costs,
the Bayeslet VLD would hence be selected.
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Figure 6.19: Evaluation of the mutual information between the Bayeslets LD and V LD given the different
outcomes of Bayeslet RLD.

In the case of cars, the computing power is not as limited as for small devices. The
critical resource in traffic is rather the network bandwidth. Taking this into account,
context inference could decide in this case to always connect all local sensor systems like
radar and to evaluate only the relevancy of external sources like the Bayeslet VLD. Its
relevancy depends on the values observed for the other Bayeslets.

Figure 6.19 shows the results for the mutual information between the Bayeslets LD and
VLD given all possible observed values of Bayeslet RLD. The mutual information varies
between 0.59 and 0.27, as the utility of an additional Bayeslet depends on the probability
of LD which has already been influenced by the already available evidence. The different
degrees to which it still can be impacted by the additional Bayeslet determine the mutual
information. Depending on the cost function for the transmission costs, Bayeslet VLD
would hence be connected in some cases, in others not.

6.4.3 Value of Information Based Composition Decision

As explained in section 5.4.4.3 and shown in Figure 5.39 on page 151, also the decision
based utility function can be used to determine the (un-)certainty introduced by a Bayeslet.
However, it also offers the possibility that a Bayeslet creator defines more specific utility
functions and decisions. This thesis demonstrates the latter option, according to the work
of the author, Röckl and Pfeifer in [123]:

Here, a tripartite utility function has been specified. The basic utility functions mea-
sure the Safety and the Efficiency utility of an action. The overall utility function then
represents the weighted sum of the two basic ones at the ratio of 3:1. The decision differen-
tiates the two states accelerate and decelerate. The whole probabilistic decision network,
extending the situation shown in Figure 6.18, is depicted in Figure 6.20. The explicit rep-
resentation of the Bayeslets is neglected here as their outcome is introduced as evidence
into the nodes Radar LD and V2V LD and the value of information can be computed
only in this Bayeslet.

If no Bayeslet provides information, the state of LD is uniformly distributed, each
state with a probability of 1/3, see Figure 6.21 (left). In this case there is a tie between
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as shown in the boxes next to their node representations. The overall utility influencing the decision is
calculated by 0.75 · Safety + 0.25 · Efficiency. Taken from [123].

the actions accelerate and decelerate. Both have a utility of 0.5. In order to decide
whether another Bayeslet including additional sensor measurements either from radar or
V2V communication should be connected, the V oI is calculated. Figure 6.21 (left) shows
that both Bayeslets yield V oI > 0, hence are relevant. V oI(RLD) = 0.11 and thus carries
more information than the Bayeslet for the information from V2V communications with
V oI(V LD) = 0.10. These calculations are independent of the unknown actual state of
the evidence and only use the prior probabilities of the Bayeslets’ output nodes available
from their specifications. Thus, the Bayeslet of the radar measurements is connected and
evaluated.

When the radar Bayeslet is connected and has provided evidence to the input node
RLD the value of information and therefore the decision whether to connect the second
Bayeslet is different. If, for instance, the radar has measured a centre state, the V oI of
VLD reduces to 0.07, because both evidences are dependent due to the common cause
LD. Thus, the belief in the centre state as the actual outcome of the VLD already has a
probability of 59 %, see Figure 6.22 (middle).

The V oI of VLD is still positive however and, hence, is expected to add value for
decision-making. This is justified, as the MEU can still change significantly, depending
on the actual value of the second Bayeslet. For example, after the incorporation of the
state centre for RLD a connection of the second Bayeslet to VLD may provide state left,
as depicted in Figure 6.21 (right). This makes the MEU change to 0.51 for the accelerate
action. Thus, the best action changes from decelerate to accelerate by the connection of
the second Bayeslet.

Obviously, when transmission costs are neglected in this example, position information
from the preceding vehicle via V2V communications may provide a valuable benefit for
decision-making.

The V oI is not static for Bayeslets, but depends on the evidence already available. This
can be seen in Figure 6.22. The figure is based on the same parameters and assumptions as
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Figure 6.22: Variation of the maximum expected utility (MEU) with different outcomes of the V2V
evidence after observing the radar evidence left. Taken from [123].

Figure 6.21, but instead of centre, the outcome of the Bayeslet for RLD is left. Accordingly,
the best action is accelerate with a MEU of 0.60. In this case V oI(V LD) = 0.

The figure shows on the right side the consequences of a hypothetical connection of the
Bayeslet for VLD. If its evaluation yields left, the best action obviously stays accelerate.
If it provides centre, still accelerate is the best action and even if it provides right, the
best action is accelerate. Thus, independently of the outcome of the Bayeslet the decision
remains unchanged. Hence, it does not add information and this Bayeslet is not connected,
saving computational load, transmission time and bandwidth.

6.4.4 Discussion

The last sections have shown how both composition criteria can be applied for a context
inference goal. The approaches have shown to provide the desired results, i.e. a compre-
hensible decision about which Bayeslet is more relevant, taking into account the evidence
already available from different sources.

Both approaches yield different results for the used example. Mutual information rates
Bayeslet V LD more relevant, value of information is higher for RLD. This is due to the
different objectives of both approaches. The objective of mutual information based on
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the entropy is always the reduction of uncertainty. The objective of the decision based
approach, however, can be defined freely by the configuration of the utility node(s).

Consequently, both methods are not mutually exclusive, but are valid alternatives
which can be chosen depending on the current situation. The creator/owner of a Bayeslet
hence has the option to define decision and utility nodes for a specific objective. If no
objective is defined, the standard would be the uncertainty reduction. This can be realised
with the mutual information based composition decision.

The final performance of both approaches also depends on the cost function. The
cost function defined in Eq.(5.77) works fine for determining the computational cost of a
Bayeslet. However it has to be complemented with a measure for the transmission costs
which would depend on the network status and the needs of the application.

6.5 Tractability Evaluation

In chapter 3 context usage of ubiquitous computing has been quantified with the conclu-
sion that a central approach would be intractable. Exact Bayesian inference on resource
constrained, mobile devices however has narrow limits due to the NP-hardness of Bayesian
inference, see section 2.3. To fulfil the resulting requirements, (i) decentralised, modular
inference, (ii) reduction to relevant input, (iii) demand driven inference, (iv) support for
different characteristics of context, (v) access control and privacy, and (vi) adaptability,
chapter 5 has proposed a set of design patterns and processing approaches for context
inference with Bayesian techniques.

The previous sections 6.1 – 6.4 have shown that particular, single Bayeslets can be
evaluated efficiently, that their inference time can be further reduced with dynamic value
ranges and that there are means to select only relevant Bayeslets for an inference goal.
Therefore this section mainly focusses on the evaluation of the modular approach with
Bayeslets, linked by soft evidence. An example, presented in the first subsection, shall
demonstrate how modularisation of a big Bayesian network improves tractability of infer-
ence, both, in terms of inference time (section 6.5.2) and network load (section 6.5.3).

6.5.1 Evaluation Example

The evaluation example in this section is meant to describe large parts of the situation of
a user. Not surprisingly, all different parts of a current situation are more or less closely
related and influence each other, forming a large Bayesian network shown in Plate A.1 of
Appendix A which shall be used in the following evaluation. It is formed from all Bayesian
networks used in the preceding sections and some further information which either extends,
connects or complements the already shown parts of a user’s situation model.

The resulting Situation network includes 180 random variables, some with discrete,
others with continuous value ranges, connected by 275 edges. It can be grouped into more
than 50 Bayeslets in which 80 RVs have been marked as input nodes, i.e. have direct
input from sensors or other information sources. As a network with such dimensions is
hard to represent on paper, Figure 6.23 shows a simplification of it, where nodes have
been grouped into rough categories.

Thereby this network is not complete by far. Modelling of properties of the situation,
personal preferences and influence factors could be continued ad infinitum. For instance
health related features such as allergies have not been considered in the current example.

The dimensions of the example network have also been limited as to the modelling of
domains related to the BN’s owner. It considers only one home, one car, one meeting,
and two active services, while in reality often more than one “home” is relevant (e.g. the
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Figure 6.23: Compressed representation of a Bayesian network describing parts of the Situation of a
user, including the activities at work, location, motion related activity, the situation in his smart home,
and the traffic situation of his car. The boxes represent groups of random variables, the arcs between them
summarise the connections of the contained RVs. See Plate A.1 for details.

own home, the partner’s home, the parents’ home, the hotel room, etc.), more than one
car is available and, referring back to the scenarios of section 1.2, pp. 3 et seqq., and the
context usage analysis in section 3.1 (see for instance Table 3.1 on page 55), more than
two services are used in parallel.

Other cars which determine the current traffic situation and hence should be connected
to the car’s situation are not modelled either. Most importantly however, no other people
are referred to in the current model, although their input would be important. Information
about other people is referred to by eight of the modelled nodes:

• High Level Activity : Often, the activity of people nearby influences the own activity.

• Availability : The decision whether a user is available for a communication request
depends not last on the person who requests the communication, in particular the
relation between the persons and the situation of the communication requester.

• Car : A car can be used by more than one person. As the car’s situation influences
the status of all passengers, knowledge about a co-passenger influences the user’s
situation.

• Twice in Smart Home: Two services modelled for the smart home take into account
its residents’ location and activities. Just as for the car, the situation of cohabitants
influences the user’s situation.
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• Meeting : The location, presence and role of other people (colleagues, conference
participants, etc.) gives important information about the status of a meeting.

• Twice at Work Activity : Beyond meetings, the daily work routines are influenced
by the colleagues. Knowledge about their current activities gives hints about the
own activity, knowledge about current communications helps to infer the situation
and situations (such as going to lunch) which are usually executed in a group are
recognised more easily.

In the most näıve case, the same nodes would have to be connected for every relevant
user. And the number of persons possibly relevant is immense, thinking of all persons
working at the same office building or campus, going to the same canteen, super market
and gym, one’s family, friends and acquaintances. An approximation of the most relevant
ones can be given by the help of “facebook”4 which is representative with its currently
more than 500 million active users. On average, every user has marked 130 other users as
friends. Keeping up all limitations mentioned before, and incorporating the 130 facebook-
friends would result in more than 22, 000 random variables in the inference network.

The example clearly shows that some modularisation is necessary and limits have to
be set for a situation model.

6.5.2 Evaluation Time

To evaluate the benefit of a modular approach in terms of inference time, the monolithic
situation BN presented in the previous section is partitioned into four subnets, which can
be seen in Figure 6.24.

• Network A1 contains the random variables concerning the Smart Home and the
Work Activity which has been described in section 6.3.1 on page 174, extended by
nodes for a business meeting. Moreover nodes for Active Services, different Symbolic
Locations, as well as to Agenda and Time, Delay, Mood and High Level Activity are
used as interface nodes to the other BNs. The core of this network can be remotely
evaluated at servers of the smart home and the workplace.

• Network A2 is formed mainly by a static implementation of the dynamic network for
Location fusion and inference used in section 5.2.2, pp. 88 et seqq., and its extension
to symbolic location. In addition, the Communication Status, Active Services and
the Weather are parts of the inference network. Additional nodes, used as interface to
the other BNs are two nodes providing input about the Work Activity, Delay, Mood
and High Level Activity. The information necessary therefore is coming mainly from
sensors in the user’s local smart space and would be evaluated locally.

• Network B1 represents mainly the Car Situation (including the lateral distance
information presented in section 6.4.1, Agenda and Time and Delay, as well as
interface nodes to Availability and High Level Activity. The largest part, the Car
Situation refers to remote information and would be evaluated in the car.

• Network B2 represents information about the user’s state. It contains the evaluation
of Stress, Mood, Availability, and in particular the static inference network for human
Motion Related Activity, presented in section 5.3.3.2 on page 124. Moreover, three
interface nodes to Agenda and Time and High Level Activity are contained. All this
information stems from the user’s local smart space and can be inferred in it.

4Statistics from http://www.facebook.com/press/info.php?statistics, as of 06/06/2011

http://www.facebook.com/press/info.php?statistics
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Figure 6.24: Modular split of the Situation BN from Figure 6.23 into four parts. BN A on the left side,
containing Work Activity, Location and Smart Home, is connected to BN B on the right side (with Motion
Related Activity, Availability and the Car Situation) only via eight overlapping nodes from Agenda and
Time, the High Level Activity, Mood and Delay. Similarly, networks A and B are split into A1 and A2
(sharing seven nodes), and B1 and B2 (sharing only node Availability), respectively.

These four Bayesian networks are used to show the benefits of evaluating Bayesian
networks separately in modules linked by soft evidence, as proposed in section 5.4, pp.
129 et seqq. Although more than 50 Bayeslets have been identified in the Situation BN,
the larger size and limited number of the BNs A1, A2, B1, B2 better illustrates the benefits
of the proposed approach.

The basic reference for inference duration in this evaluation is the probabilistic infer-
ence in the monolithic Situation BN using the author’s Java implementation of the PPTC
algorithm on a notebook with Intel Core 2 Duo T9600 processor at 2.8 GHz and 3 GB of
RAM under Windows XP. The measured reference times, shown in Table 6.6, are based
on 100 executions without any evidence, because the duration of propagating probabilities
through the junction tree is independent from evidence in the BN.

Inference steps mean (in s) standard deviation (in s)

BN construction 0.34 0.1

J-Tree construction 4.40 0.1

J-Tree initialisation 193.7 3.4

J-Tree propagation 203.8 2.5

Table 6.6: Duration (in s) of the steps of probabilistic inference in the Situation BN from Figure 6.23.
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The evaluation shows that the construction of the object representation of the BN is
relatively efficient and also the set up of the junction tree does not take too long, compared
to the large size with 180 nodes and 275 edges. What takes really long are all operations
on the potentials of the clusters, as their size is the cross product of the value ranges
of all contained nodes. Although also the initialisation of the potentials in the junction
tree takes more than three minutes on average, the biggest problem is the duration of
the propagation of the conditional probabilities between the clusters. This is the actual
inference which is repeated for every inference request when evidence is available. Taking
3.4 minutes on a laptop computer, it is obvious that inference of such a BN would not be
tractable for mobile devices.

Although the Java implementation is far from optimal in terms of computational ef-
ficiency, the results show clearly the expected behaviour, e.g. compared to the inference
in the BN for Work Activity. As has been shown in section 6.3.3, propagation in the 17
nodes comprising BN takes less than 2.5 ms.

The propagation time of the sub-networks A, B, A1, A2, B1, and B2 in relation to
their size is evaluated and compared to the Situation BN in Figure 6.25.

Graph (a) relates the absolute propagation times to the number of nodes, the number
of arcs and the number of values – hence the basic factors targeted by the concepts
of section 5.4. In addition, the number of parameters, i.e. the number of conditional
probabilities necessary to fully specify the BN is given. To ease comparability of the
curves for the different factors, the following scaling was used: the number of parameters
has been divided by 1000, the number of arcs and values divided by 10 and compared
to the propagation time in hundredths of seconds. The curves for the nodes, parameters
and the mean propagation time develop similarly. Both, networks A and B, have roughly
half of the nodes of the original BN, their individual inference time is under half of the
full inference time. The drastic drop is experienced in the inference time for networks A1
(2.05), A2 (0.005) and B1 (0.12), although the number of nodes, again, is only divided in
halves. The behaviour of B2 differs significantly. This network contains the Bayeslet for
motion related activity, the only part of the Situation BN which has been learnt from data
and not been specified manually. It has large value ranges and is strongly interconnected,
which results in the high number of parameters, explaining the long inference time.

Graph (b) of Figure 6.25 details this issue further. In a relative scale according to the
corresponding factors of the full Situation BN, it compares again nodes, values, parame-
ters, propagation time and, newly, the mean number of incoming edges per node (Mean
In-Degree) and the mean cluster size in the junction tree. The latter help explaining why
network A1 has such a short inference time, although the number of parameters is quite
as high as for networks A, B, and B2. While it is explainable for networks A and B by the
number of nodes (A: 105, B : 83 and A1 : 50), network B2 with 39 nodes is even smaller.
B2 has however exceptionally high values for the mean in-degree and, consequently, the
mean cluster size. The cluster size had been identified as a core factor for the computa-
tional complexity of arbitrarily structured BNs [85].

More concretely, the inference time savings are shown in Figure 6.26 for the full Sit-
uation BN and four combinations of the four sub-networks which can be used to infer a
user’s Interaction Situation, part of the group Communication Status (see Figure 6.23) in
network A2. The following combinations are compared:

• A + B: inference of the full network in the two sub-networks A and B with soft
evidence in the 8 interface nodes.



6.5. Tractability Evaluation 191

0

50

100

150

200

Situation A B A1 A2 B1 B2

Bayesian Networks

Nodes

Arcs/10

Values/10

Parameters/1000

Mean Propagation Time (s/100)

(a)

0%

20%

40%

60%

80%

100%

120%

140%

A B A1 A2 B1 B2

Bayesian Networks

Pe
rc

en
ta

ge
 o

f F
ul

l S
itu

at
io

n 
BN

Nodes
Values
Mean In-Degree
Parameters
Average Cluster Size
Mean Propagation Time

(b)

Figure 6.25: Comparison of the inference time (in terms of the propagation duration) of different Bayesian
networks in relation to the factors determining the complexity of the Bayesian network. Absolute numbers
in (a), and relative to the reference measures of the full Situation BN in (b).

• A1 +A2 +B1 +B2: inference of the full network in the four sub-networks A1, A2,
B1 and B2 with soft evidence for 23 duplicated interface nodes.

• A2 + (A1, B1, B2): the same nodes are used as for A1 +A2 +B1 +B2, however the
spatial distribution of inference is used. A2 and B2 are inferred locally, B1 and A1
mainly remotely. Therefore, BN A2 with the queried node Interaction Situation can
trigger evaluation of A1, B1 and B2 simultaneously. The maximum inference time
of the other subnets added to the queried one gives the overall inference time.

• A2 + (A1, B1): distributed inference for the non-queried sub-networks taking into
account the dynamic plugging of inference networks proposed in section 5.4.4. Cal-
culating the NetEU of the available sub-networks, B2 has not been selected for
composition due to its very high computational inference costs.
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Figure 6.26: Comparison of the duration to infer a user’s Interaction Situation, part of the group
Communication Status in network A2, with different combinations of BNs.

Figure 6.26 shows for these evaluations that already A+B, hence dividing the Situation
BN in halves, reduces inference time by 25 %. Inference partitioned into four sub-networks
in A1+A2+B1+B2 decreases it to only a little more than a third of the original duration.
The decrease from A1 +A2 +B1 +B2 to A2 + (A1, B1, B2) is negligible, as inference in
A1 and B1 which is parallelised with B2 only takes fractions of a second. Applying then
the dynamic composition criteria in A2 + (A1, B1) reduces inference time then to a mere
percent (2.05 hundredths of a second) of the original inference time, while still processing
164 nodes, 91 % of the 180 original nodes.

Moreover, the more than 70 s propagation time in B2 are due to the basic, näıve
approach. With the methods for the reductions of edges and value ranges, shown in
sections 5.4.2 and 5.4.3 respectively, pp. 136 et seqq., inference time could be reduced
significantly. Even better results are yielded by the approach used for the real-time activity
recognition system evaluated in section 6.2: using the fact that input nodes can be defined
in Bayeslets and therefore can be regarded as observed, more efficient inference algorithms
can be applied. Like this, the 20 nodes with a Mean In-Degree of 2.65 in the Bayeslet
shown in Figure 5.26 on page 124 is evaluated in 7.2 ms.

6.5.3 Remote Communication

Beyond the reduction of inference complexity, a second aim of the proposed methodology
is to reduce the remote communication necessary to incorporate evidence from remote
information sources. A first step to realise this is the proposed distributed inference
approach in the user’s smart space instead of a central approach. As a large part of the
information concerning a user’s situation is available in his smart space, transmission of
this information is unnecessary.

The proposed methodology infers information in Bayeslets locally in the smart spaces
where the information is generated, hence without remote communication demands. Re-
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mote communication is necessary when results of a local inference are relevant for a remote
Bayeslet and have to be transferred there to be introduced as soft evidence. Hence, instead
of the transmission of all evidence used for the inference of a Bayeslet, only the outcome
has to be transferred.

Therefore, the communication savings depend on the contents of the Bayeslets. A
Bayeslet containing only one input node (like for instance the RLD Bayeslet for the cal-
culation of the lateral distance based on a car’s radar used in 6.4.1) could not save remote
communication costs, unless it is used only locally. In contrast, the Bayeslet for Motion
Related Activity, presented in Figure 5.26 and used in section 6.2 contains 19 input nodes,
the always observed features of the IMU. Using this information remotely, consequently
only one evidence would have to be transferred instead of 19.

A larger effect for the reduction of network traffic is achieved by the modular approach
and the dynamic composition of Bayeslets. Avoiding the inclusion of a remote Bayeslet
not only reduces inference time, but also saves network bandwidth as its soft evidence does
not have to be retrieved. The modular approach in general allows that not all possibly
related information has to be evaluated together – in terms of the example above hence,
not all 130 facebook-friends have to be connected, not all meetings, all smart homes and
cars have to be modelled with random variables in a BN. Being able to select only those
Bayeslets of relevance for a task therefore inherently reduces the network traffic to all
these remote domains to a fraction.

Moreover, the dynamic composition takes into account remote communication costs
and can therefore help to limit it. Section 6.4.4 proposes to use a cost function which
dynamically uses the current network load to rate the relevancy of a Bayeslet. If the
channel is free, there is no need to impose particular limits, while in a full channel only
the most important information should be transferred, i.e. those with the highest NetEU
taking into account computational, as well as communication costs.

6.5.4 Discussion

The example in this section has shown that the proposed methodology offers a set of
concepts helping to improve the tractability of context inference on resource constrained
devices.

It can be seen that the modular approach with soft evidence alone, as followed by
the Bayeslet concept, already reduces the inference time in the example to 35 %. It can
be even further reduced to only about 1 % by the application of a more suitable context
inference method exploiting the assumptions defined by the Bayeslet concept, i.e. that
there are input nodes which can be assumed to be always observed.

The same result would be obtained by the application of the proposed method for
dynamic composition of Bayeslets based on the net expected utility NetEU where the
costs are evaluated against the benefits of incorporating new information.

The modular approach and the cost based composition of Bayesian inference rules
moreover reduce the demands for remote communication, because only one transmission
per Bayeslet is necessary and the number of connected Bayeslets can be reduced. This is
easy to understand, but difficult to quantify, as a simulation environment would have to
take into account the complete context of several users, their active services and context
requests, different context information update frequencies, different background network
load, etc.
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The exact improvements for tractability, both for remote communication and compu-
tational demands, depend on the network size, structure and parameters of the individual
Bayeslets. In the examples for location, human motion related activity and the work activ-
ity, it could be seen that networks with about 20 nodes are tractable with inference times
of only a few milliseconds. Re-usability of Bayeslets however is improved when smaller
entities are grouped, like the five Bayeslets shown in Figure 6.13. If they are too small
however, e.g. Bayeslets for only one input and output node like in Figure 6.18, neither re-
duce remote communication (unless it is used in a Bayeslet in the same smart space only),
nor inference time, as the node’s outcome could be directly inserted into the connected
node as soft evidence.

These considerations have to be taken into account by the creators of Bayeslets and
could also be used to configure automatic Bayeslet learning processes.

Having seen the reductions possible by the proposed set of methods, the requirements of
mobile context inference seem to be realistically achievable. It will be possible to infer the
seven continuously monitored high level context attributes per person assumed in Table 3.1
(p.55) on mobile devices with the modular approach, dynamic reduction of value ranges,
and intelligent composition decisions. Current limitations will be even more reduced by
an optimised implementation of the inference algorithms and the further development of
mobile devices.



Chapter 7

Summary and Conclusions

Concluding this work, this chapter summarises the work presented in the previous chapters
and stresses the author’s main contributions to the field of research. After that, the
conclusions drawn from the evaluations are described and an outlook for future work in
this field is given.

7.1 Summary

The research in this thesis has proposed to use Bayesian techniques (presented in chapter 2)
for inference of context information. Central, server based approaches to context inference
would not scale for the assumed high dimensions for context usage in ubiquitous computing
systems, as can be understood from the analysis in chapter 3. Distributed context inference
in every user’s smart space however suffers from the resource constraints of the mobile
devices which often are the core part of a personal smart space. These limitations are
severe, as Bayesian inference is NP-hard and no general inference algorithm with less than
exponential complexity is known.

To allow for efficient response times to context requests in ubiquitous computing,
this research has proposed in section 5.1 an integration of context inference in context
management systems which allows for both flexible creation of inference rules and resource
efficient inference scheduling based on actual demands. To allow for distributed inference,
reduced inference rule size, personalisation of inference rules and better privacy control,
Bayesian networks are divided in modules, so called Bayeslets.

Chapter 5 has shown two examples for Bayeslets with particular importance for con-
text – location (in section 5.2) and motion related activity (in section 5.3). An efficient
approach for the fusion of a Wi-Fi fingerprinting with an inertial navigation system for
precise location inference with a Kalman filter has been presented in section 5.2, as well as
the usage of this information (i) to extract symbolic location maintaining the important
uncertainty information and (ii) to deduce the proximity of other entities measuring the
distance based on a known map with a gas diffusion model. Section 5.3 has shown a
fully Bayesian approach to recognise human motion related activity. It has described the
features computed from the input data with their justification, the automated learning
of a static Bayesian network and four different classifiers which can be used to infer the
activity.

Section 5.4 has detailed the Bayeslet concept, showing how all factors determining the
complexity of probabilistic inference (nodes, edges and value ranges) can be addressed
by approaches to make context inference better tractable. The current situation of a
user thereby is incorporated in the decisions how to reduce the value ranges and which
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Bayeslets to combine for a given inference target. The outcome of a Bayeslet is used as
soft evidence in a connected Bayeslet.

The application of the proposed concepts and methodologies has been shown in ex-
ample environments in chapter 6. The location estimation approach yields an average
position error of about 1.6 m, the additional time necessary to extract the symbolic lo-
cation only amounts to about 1 %. Human motion related activity recognition yields its
best results when inferred with a grid based filter based on a learnt Bayesian network
structure, reaching recall rates between 93 and 100 %. The dynamic reduction of value
ranges has yielded inference time savings between 75 and 90 %. The increased effort for
constructing and maintaining the dynamic value ranges will have amortised at the fourth
inference in a reduced Bayeslet at latest. The best results thereby are reached with a
protection extension (PE) approach which takes into account the context values which
are of interest for the requester and excludes them (and closely related other values) from
reduction. The application of the criteria for the composition of Bayeslets has shown that
both mutual information and value of information are suitable measures that complement
each other, giving the Bayeslet designer the choice to select the more appropriate for the
specific Bayeslet.

Applying the different proposed concepts (modularisation, composition of only relevant
Bayeslets and assumptions about the interface nodes) to an example in section 6.5 has
yielded strong reductions in inference time, up to 99 % and has suggested also reductions
in remote communications.

7.2 Main Contributions

The main contributions of this work are the following:

1. A model for generic context inference:
This work has proposed a general method for the modelling and usage of context
information in context inference. Bayesian inference rules, called Bayeslets, have to
represent closed domains which can be dynamically selected and plugged for a given
inference target using the novel approach. The resulting Bayesian inference modules
have the advantages of object oriented modules and are reusable for different do-
mains. This concept is generically applicable and has been demonstrated in different
domains, such as road traffic, working life or the physical status of people, for raw
data and high level information.

2. Faster Bayesian Context Inference:
As the computational complexity of Bayesian inference is NP-hard, context inference
has to minimise the factors that determine computation time. These are the number
of random variables in the BN, the number of edges between them and the number
of values in the value ranges of the random variables. This work has proposed coun-
termeasures for all of them and demonstrated their benefits in different application
examples. Using Bayeslets, the number of random variables is reduced, as well as
the number of edges. Edges to external Bayeslets are only added where they are
relevant. Learning personalised Bayeslets from data also reduces the dependencies
and therefore the edges to those necessary for a given user. The number of values
per value range finally is addressed by the concept of dynamic value ranges, depend-
ing on the user’s current context. Different examples have shown that inference in
Bayeslets with a size of approximately 20 nodes is tractable for mobile devices, while
the difference to the ground truth (or exact inference) is acceptable. The additional
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assumptions on the structure of Bayeslets, always observed input nodes and a limited
number of output nodes, have proven useful for the selection of appropriate inference
techniques and to allow for selective composition of Bayeslets.

3. Location Inference:
For context inference a translation of absolute location to symbolic location is nec-
essary, where the uncertainty information has to be maintained which is most im-
portant for context inference. This work has proposed and demonstrated a viable
approach based on a particle filter, as well as a formalism for modelling several ran-
dom variables describing location aspects in a single Bayeslet. This formalism is
necessary to avoid inconsistent random variables (containing not mutually exclusive
values) and to allow for generic usability of symbolic location in Bayesian context in-
ference. Also a proposal for inference of proximity based on precise absolute location
information, existing floor plans and a gas diffusion model has been shown.

4. Highly reliable, unobtrusive motion related activity recognition:
This work has provided an inference module for the activities sitting, standing, walk-
ing, running, jumping, falling and lying based on a single, belt-worn sensor box. A
fully Bayesian approach has been used to learn a Bayesian network structure together
with the corresponding conditional probabilities and to infer the current activity.
The resulting classifier has proven robust to different application environments, dif-
ferent motion styles and different users, as well as being computationally so efficient
that it would not be a major challenge to integrate the complete recognition module
in a belt buckle.

The concepts proposed and demonstrated in this thesis help to answer the research
questions presented in section 1.3 on page 11. The core idea to realise the integration of
inference rules into the context management system, to adapt and personalise them dur-
ing runtime, and to allow for compatibility with other inference methods is the modular
approach of the Bayeslet concept with well defined interfaces. Only the reduced size of
Bayesian networks makes them realistically manageable. The integration in context man-
agement systems and with other inference methods is described in section 5.1, answering
research questions (4), (5) and (8).

Personalised context inference, research question (3), is a consequence of minimising
the Bayeslets strictly to the necessities. The BN Structure learning and further processes
described in section 5.4.2 yield this result. The adaptation to the changing mobile environ-
ments, research question (2), is solved by the modular approach and the situation aware
composition of modules proposed in section 5.4.4 and demonstrated in section 6.4. The
composition criteria measure the current relevancy of a Bayeslet in the current situation,
addressing research questions (6) and (7).

The examples presented in this thesis show that the Bayesian approach to context
inference is applicable to both, low and high level context, cf. research question (9). The
approaches for lower level context, location and human motion related activity, have been
presented and evaluated in detail in the sections 5.2 and 6.1, 5.3 and 6.2, respectively.
An example for high level context inference is given in the evaluation of the professional
activity at a user’s workplace in section 6.3.1. The applicability hence does not depend
on the level of information, but only on careful modelling of the influence factors and the
available information. The level of context rather has an influence on the selection of the
Bayesian approach to be used, hence the decision whether the involved random variables
are continuous or discrete, if a transition model has relevancy or not.
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The answer to research questions (1) and (10) is given by the overall set of methods
proposed. The advantages are the general applicability to all domains, efficient inference
and reduced communication needs, enabled by the orchestration of the concepts in section
5.4. The improvements have been shown for an example in section 6.5.

7.3 Conclusions

The amount of information digitally available constantly increases, as new smartphones
and other electronic devices emerge and spread. This information allows for informed infer-
ence of higher level context, but also poses the problem of inference complexity. Although
also the hardware constantly improves (approximately by Moore’s law [7]), it cannot keep
pace with the increasing requirements of context inference, because for both, logical and
probabilistic inference, only algorithms with exponential complexity are known.

Therefore this research has proposed methods to limit the amount of information
considered for context inference, hence to trade exactness of inference against efficiency
gain. From the application examples shown in this work, it can be concluded that the
proposed way is viable and that not a single concept, but a combination of approaches is
necessary to minimise resource consumption of inference.

With the general applicability of the proposed concepts to multiple domains, this thesis
combines a number of research directions which have been rather decoupled, like context
modelling, activity recognition, multi-sensor location estimation and machine learning for
proactive context awareness.

7.4 Future Work

Many new insights have been obtained in this research. In some of the examined appli-
cation areas however, the new ideas only show the potential without providing a mature,
market-ready solution. The following areas for future work have been identified:

1. User acceptance analysis:
The most crucial issue for the success of ubiquitous, context aware computing is the
users’ acceptance. It depends on trustworthiness of the system providers, privacy
protection, usability of devices, but also on context inference. Inference quality
obviously has to be high enough to avoid frustration which would arise when the
system misinterprets the situation too often and then always causes wrong actions.
But also the acceptable response time is a crucial parameter for context inference.
If a limit for an acceptable response time could be identified (e.g. per application),
real-time inference approaches could be employed which allow for the connection of
more Bayeslets and therefore improve inference quality as far as possible within the
specified time frame.

2. Cost functions:
Taking care of a maximum response time could be realised for instance with an adap-
tive cost function for the composition of Bayeslets. In general, the work on cost func-
tions for composition still offers room for research. A range of requirements (speed of
computation, adaptation to situation, comparability among different Bayeslets, etc.)
can be defined which has to be fulfilled for all different domains causing composition
costs, such as time, memory and communication costs.

3. Further user context:
User acceptance also depends on context awareness, as a high number of sensors
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which the user would have to wear constantly would reduce the usability. The current
work already uses sensors in the shoe and worn at the belt. Further research with
microphones and sensors in a chest belt measuring the wearer’s psychophysiology is
currently being undertaken. On the one hand, the modular approach proposed in this
work eases the integration of new modules which determine for instance the user’s
stress level, on the other hand the usability of the system has to be considered. At a
first step probably, only users with special needs (e.g. continuous health monitoring
in AAL) would accept obtrusion by a ubiquitous system when for them the benefits
outweigh the inconveniences.

4. Interaction recognition:
An important factor for the recognition of a user’s situation are his interactions with
other people. This information is useful for the composition of Bayeslets themselves,
but also for context aware services, advertising, social networking, etc. Important
input for the recognition of interactions are location, orientation, sound, but also ac-
tive remote communication channels. Inference could be based on similar techniques
like the recognition of motion related activity.

5. Group context:
Further current research, as in the EU research project ICT Societies1 combines
personal, context aware smart spaces with the benefits of social computing. To this
end, not only the context of single users, but also of groups of persons has to be
inferred. Also this inference requires a modular approach and dedicated modelling of
a group’s common interests and objectives. A group utility function could represent
such characteristics and extend a Bayeslet for inference to take decisions for proactive
service execution.

Further work in these areas will lead to both, better context inference results and bet-
ter usability. This shall increase the user acceptance and eventually make the vision of
ubiquitous, context aware computing come true.

1http://www.ict-societies.eu/

http://www.ict-societies.eu/
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[211] K. Frank, M. J. Vera Nadales, M. Röckl, and P. Robertson. Comparison of exact
static and dynamic bayesian context inference methods for activity recognition. In
D. O’Sullivan, T. Pfeifer, and B. Stiller, editors, MUCS 2010: Proceedings of the
7th IEEE International Workshop on Managing Ubiquitous Communications and
Services, March 29, Mannheim, Germany, in cooperation with the 8th Annual IEEE
International Conference on Pervasive Computing and Communications, PerCom
2010, number 12 in multicon lecture notes, pages 41–47. Multicon, Schöneiche, Mar.
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human activity recognition. PhD thesis, École Polytechnique Fédérale de Lausanne,
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Appendix A

Bayesian Network Modelling a
User’s “Situation”

This appendix shows the example Bayesian network used to illustrate the tractability
advantages in section 6.5.

The Bayesian network describes many aspects of the situation of a user and is formed
from all Bayesian networks used in the previous chapters. Some further information is
added which either extends, connects or complements the already shown parts of a user’s
situation model. Thereby it is still a heavy simplification of the reality. Some parts of the
BN are simplified and connections to other entities neglected. It considers only one home,
one car, one meeting, and two active services, while it misses the modelling of other cars
in traffic and other persons.

The resulting Situation network includes 180 random variables, some with discrete,
others with continuous value ranges, connected by 275 edges. It can be grouped into more
than 50 Bayeslets in which 80 RVs have been marked as input nodes, i.e. have direct input
from sensors or other information sources.

The figure shows input nodes in yellow. Nodes receiving input from other, not modelled
entities are orange or, if observed, have orange borders. For every connected entity, a BN
of about the same size would have to be co-evaluated.

Plate A.1 See next page: a Bayesian network modelling parts of the situation of a user.
The model with 180 random variables and 275 edges is still grossly simplified. A grouped
version of this Plate is given in Figure 6.23 on page 187.
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