
 

 

Validation of Networked Automotive Control 

Systems Using Global Predicates 

 
 

Zhang Liang （张亮）B.Sc. (Hons) 

M.Sc. Thesis 

Supervisor: Brendan Jackman B.Sc., M.Tech. 

Submitted to the Waterford Institute of Technology 

Awards Council, 17 June 2011. 

 	



1 
 

Acknowledgements	

 

I would like to thank sincerely the following people, for all their support and help 

over the past two years of this project. Without them, this thesis would not be 

possible. 

Firstly, I would like to thank Mr. Brendan Jackman for his encouragement, 

guidance and patience help throughout this project.  

I would like to thank the members in our group for their valuable advice and help. 

 Frank Walsh, Group Supervisor, Department of Computing, Math & 
Physics, Waterford Institute of Technology. 

 Rob Shaw, Group member, Department of Computing, Math & Physics, 
Waterford Institute of Technology. 

 Richard Murphy, Group member, Department of Computing, Math & 
Physics, Waterford Institute of Technology. 

I would like to thank Ray Wrynne, who is Sales Director of Vector GB Limited, 

for offering me the valuable research equipment CANoe. 

I would also like to thank Dr. Burkhard Stadlmann and all members of Railway 

Automation Group of Upper Austria University of Applied Science. 

I would lastly and most importantly like to thank my parents who were more of a 

help than they will ever know. 

 	



2 
 

Abstract	

Vehicles consist of many connected networks of electronic control units (ECUs). 

Automotive application software (e.g. traction control system, climate control, 

engine management) is distributed across many separate ECUs, making 

application testing and system integration very difficult. The main difficulty is in 

constructing a global application state, due to the asynchronous independent 

operation of each ECU.  

The aim of this research is to make the system integration more efficient by 

creating a global application state based on analysis of application test results. To 

achieve this goal, a prototype program was developed to construct global states 

and to analyse these global states. The prototype collects ECU state and network 

interaction data using the Vector CANoe tool.  From these data a lattice of 

consistent global application states is constructed.  The global state lattice can 

then be used as the basis for analysing ECU signal consistency across ECUs and 

identifying the potential for erroneous system states to be entered. 

Test results from the prototype demonstrate the validity of the theoretical 

approach despite the disadvantage of the state space explosion associated with 

large distributed systems. 

  



3 
 

DECLARATION 

 

Declaration 

I, Liang Zhang, declare that this thesis is submitted by me in partial 

fulfilment of the requirement for the degree M.Sc., is entirely my own work 

except where otherwise accredited. It has not at any time either whole or in part 

been submitted for any other educational award. 

 

 

Signature: _____________________________ 

Liang Zhang, 

17 June 2011. 

  



4 
 

Table	of	contents	 	

Acknowledgements ............................................................................................................. 1 

Abstract ............................................................................................................................... 2 

Table of figures ................................................................................................................... 8 

Table of tables ................................................................................................................... 17 

Section One: Introduction ................................................................................................. 20 

Chapter 1  Introduction .................................................................................................. 21 

1.1  Automotive integration problem ...................................................................... 21 

1.2  Research questions ........................................................................................... 23 

1.3  Document layout............................................................................................... 23 

Section Two: Literature Review ........................................................................................ 26 

Chapter 2  Automotive Application Development ......................................................... 27 

2.1  Introduction ...................................................................................................... 27 

2.2  ECU software Functions .................................................................................... 28 

2.3  ECU networks .................................................................................................... 46 

2.4  Inter‐task communication ................................................................................. 55 

2.5  Event‐triggered system vs time‐triggered system ............................................ 59 

2.6  ECU calibration, measurement and diagnostics ............................................... 60 

2.7  Conclusion ......................................................................................................... 64 

Chapter 3  Automotive Software Testing ....................................................................... 67 

3.1  Introduction ...................................................................................................... 67 

3.2  V model ............................................................................................................. 67 



5 
 

3.3  Test planning ..................................................................................................... 75 

3.4  Verification and Validation ............................................................................... 79 

3.5  Automotive distributed system integration ................................................... 102 

3.6  Conclusions ..................................................................................................... 106 

Chapter 4  Logical Time ................................................................................................ 109 

4.1  Introduction .................................................................................................... 109 

4.2  Logical time ..................................................................................................... 110 

4.3  Scalar time ....................................................................................................... 112 

4.4  Vector Time ..................................................................................................... 115 

4.5  Matrix Time ..................................................................................................... 119 

4.6  Conclusions ..................................................................................................... 121 

Chapter 5  Global State and Snapshot .......................................................................... 124 

5.1  Introduction .................................................................................................... 124 

5.2  Snapshot algorithm for FIFO ........................................................................... 126 

5.3  Snapshot algorithm for non‐FIFO .................................................................... 130 

5.4  Comparison of snapshot algorithms ............................................................... 135 

5.5  Conclusions ..................................................................................................... 136 

Chapter 6  Global State Evaluation ............................................................................... 138 

6.1  Introduction: .................................................................................................... 138 

6.2  Stable and unstable Predicates ........................................................................ 139 

6.3  Possibly and definitely Predicates ................................................................... 142 

6.4  Relational Predicate ........................................................................................ 142 



6 
 

6.5  Conjunctive Predicate ..................................................................................... 148 

6.6  Predicate detection in automotive system ..................................................... 159 

6.7  Conclusion ...................................................................................................... 161 

Section Three: Methodology .......................................................................................... 165 

Chapter 7  Methodology ............................................................................................... 166 

7.1  Introduction .................................................................................................... 166 

7.2  Construct global state lattice .......................................................................... 167 

7.3  Evaluate predicate .......................................................................................... 173 

7.4  Validation tests ............................................................................................... 173 

7.5  Conclusion ....................................................................................................... 174 

Section Four: Implementation and Testing .................................................................... 176 

Chapter 8  Prototype Development ............................................................................. 177 

8.1  Introduction .................................................................................................... 177 

8.2  Implementation tools ..................................................................................... 180 

8.3  Data requirements .......................................................................................... 181 

8.4  Test case program design ............................................................................... 189 

8.5  GPD prototype program design ...................................................................... 194 

8.6  Conclusion ....................................................................................................... 217 

Chapter 9  Prototype Testing ........................................................................................ 220 

9.1  Introduction ..................................................................................................... 220 

9.2  Term explanation ............................................................................................ 222 

9.3  Test case 1 ....................................................................................................... 223 



7 
 

9.4  Test case 2 ....................................................................................................... 239 

9.5  Test case 3 ....................................................................................................... 250 

9.6  Test case 4 ....................................................................................................... 257 

9.7  Test case 5 ....................................................................................................... 270 

9.8  Test case 6 ....................................................................................................... 281 

9.9  Test case 7 ....................................................................................................... 284 

9.10  Prototype Performance Analysis .................................................................... 291 

9.11  Conclusion ....................................................................................................... 296 

Section Five: Research Summary .................................................................................... 298 

Chapter 10  Research conclusion ................................................................................ 299 

10.1  Introduction .................................................................................................... 299 

10.2  Research summary .......................................................................................... 299 

10.3  Answer Research Questions ............................................................................ 299 

10.4  Area for further research ................................................................................. 301 

Appendix A ...................................................................................................................... 303 

Bibliography ................................................................................................................ 303 

 

 

 

  



8 
 

Table	of	figures	

Figure 1-1 automotive network application .......................................................... 22 

Figure 2-1 distributed automotive application ...................................................... 28 

Figure 2-2 basic task state transition ..................................................................... 30 

Figure 2-3 extended task state transition ............................................................... 31 

Figure 2-4 Full preemptive scheduling ................................................................. 34 

Figure 2-5 non preemptive scheduling .................................................................. 34 

Figure 2-6 upward compatibility for conformance classes ................................... 36 

Figure 2-7 comparison between AUTOSAR architecture and older architectures 37 

Figure 2-8 AUTOSAR layers ............................................................................... 37 

Figure 2-9 AUTOSAR basic software .................................................................. 39 

Figure 2-10 VFB view .......................................................................................... 40 

Figure 2-11 AUTOSAR software component with interfaces .............................. 41 

Figure 2-12 Sender-Receiver Interface Data Elements (Sender Side) .................. 42 

Figure 2-13 Client-Server Interface Operation (Server Side) ............................... 43 

Figure 2-14 software component and runnables ................................................... 45 

Figure 2-15 the recursive relation of software components and compositions ..... 46 

Figure 2-16 CAN network structure ..................................................................... 48 

Figure 2-17 CAN message data frame (Brendan Jackman 2004b) ....................... 50 

Figure 2-18 standard data frame ........................................................................... 51 

Figure 2-19 Extended data frame .......................................................................... 51 

Figure 2-20 error frame ......................................................................................... 52 

Figure 2-21 overload frame ................................................................................... 53 

Figure 2-22 a CAN node status ............................................................................. 55 

Figure 2-23 OSEK/VDX COM model vs. ISO/OSI model .................................. 56 



9 
 

Figure 2-24 message transmission and reception in OSEK/VDX ........................ 57 

Figure 2-25 Communication Structure ................................................................. 58 

Figure 2-26 CCP master/slave device configuration ............................................ 61 

Figure 2-27 CRO structure .................................................................................... 62 

Figure 2-28 CRM structure ................................................................................... 63 

Figure 2-29 Data Acquisition Message structure .................................................. 63 

Figure 2-30 Object Descriptor Table .................................................................... 63 

Figure 3-1 (Schaeuffele & Zurawka 2005, p24) is an overview of the V model .. 68 

Figure 3-2 Multiple V development life cycle ...................................................... 72 

Figure 3-3 parallel development phases in V model ............................................. 74 

Figure 3-4 system decomposition and development using nested and multiple V 

models ................................................................................................................... 74 

Figure 3-5 Higher-level test issues in the nested multiple V model ..................... 75 

Figure 3-6 Master test plan ................................................................................... 78 

Figure 3-7 Verification and validation activities associated with the V model 

(Tian 2005, p204) .................................................................................................. 80 

Figure 3-8 V model (Component test) .................................................................. 83 

Figure 3-9 Vector VT system ................................................................................ 85 

Figure 3-10 Piaggio MP3 scooter ......................................................................... 86 

Figure 3-11 “easy parking” system block diagram ............................................... 87 

Figure 3-12 The hardware-in-the-loop setup with a dSPACE Simulator Mid-Size

 ............................................................................................................................... 89 

Figure 3-13 V model (Integration test) ................................................................. 89 

Figure 3-14 module call graph .............................................................................. 91 

Figure 3-15 bottom-up integration ........................................................................ 92 



10 
 

Figure 3-16 top-down integration ......................................................................... 93 

Figure 3-17 V model (system test) ........................................................................ 94 

Figure 3-18 Basic structure for an car speed control system ................................ 96 

Figure 3-19  Physical diagram for a car speed control system. ............................ 97 

Figure 3-20 model based system development ..................................................... 98 

Figure 3-21 Simulink library browser ................................................................... 99 

Figure 3-22 Simulation environment in Simulink/TargetLink. .......................... 100 

Figure 3-23 rapid prototype development ........................................................... 101 

Figure 3-24 CANape measurement configuration .............................................. 102 

Figure 3-25 CANoe top-down integration .......................................................... 104 

Figure 3-26 dSPACE simulator .......................................................................... 105 

Figure 4-1 Four node distributed system with physical clocks ........................... 110 

Figure 4-2 scalar time ......................................................................................... 113 

Figure 4-3 vector time ......................................................................................... 117 

Figure 4-4 Matrix time example ......................................................................... 121 

Figure 5-1 Chandy-Lamport algorithm ............................................................... 127 

Figure 5-2 Colouring completed ......................................................................... 128 

Figure 5-3 Spezialetti and Kearns’ snapshot algorithm ...................................... 129 

Figure 5-4 the vector counter method (Friedemann Mattern 1993) .................... 132 

Figure 5-5 Example Mattern’s algorithm ............................................................ 134 

Figure 6-1 deadlock ............................................................................................ 140 

Figure 6-2 the lattices of global predicate state .................................................. 143 

Figure 6-3 Local trace of states in the queues of central process ........................ 143 



11 
 

Figure 6-4 Example to show the states build into the lattices, the level to the 

corresponding lattices. (a) Corresponding state lattice of the execution of figure. 

(b) the state lattice for the execution. .................................................................. 145 

Figure 6-5 Example to show that states in which Definitely Ф is satisfied need not 

be at the same level in the state lattice. (a) Execution. (b) Corresponding state 

lattice. .................................................................................................................. 148 

Figure 6-6 centralized algorithm ......................................................................... 149 

Figure 6-7 distributed algorithm ......................................................................... 149 

Figure 6-8 for a conjunctive Predicate the shaded durations indicate the periods 

when the local Predicates are true. ...................................................................... 150 

Figure 6-9 Illustrating conditions for Definitely(Ф) and ¬Possible(Ф), for two 

processes. ............................................................................................................ 150 

Figure 6-10 data structure for an interval queue of central process P0 ............... 151 

Figure 6-11 two possibilities assigns head(Qi)[i] to a token .............................. 155 

Figure 7-1 Global validation of distributed automotive control systems prototype

 ............................................................................................................................. 166 

Figure 7-2 the procedure to build the lattice ....................................................... 167 

Figure 7-3 CANoe log example .......................................................................... 168 

Figure 7-4 Two processes execution with vector time........................................ 171 

Figure 7-5 Two node execution lattice example ................................................. 172 

Figure 8-1 test case generating progress ............................................................. 178 

Figure 8-2 prototype design overview ................................................................ 179 

Figure 8-3 state machine example....................................................................... 181 

Figure 8-4 CAPL code ........................................................................................ 182 

Figure 8-5 state machine node (from Eclipse UML2.1 plug-in) ......................... 183 



12 
 

Figure 8-6 state machine node component types ................................................ 184 

Figure 8-7 StatesType ......................................................................................... 184 

Figure 8-8 Initial state type ................................................................................. 185 

Figure 8-9 Message type ..................................................................................... 186 

Figure 8-10 Timer type ....................................................................................... 186 

Figure 8-11 Transition type ................................................................................. 186 

Figure 8-12 eventData type ................................................................................. 187 

Figure 8-13 Metadata type .................................................................................. 188 

Figure 8-14 Communication Matrix structure .................................................... 189 

Figure 8-15 Form class diagram ......................................................................... 190 

Figure 8-16 CAPL code generator GUI .............................................................. 190 

Figure 8-17 CAPL code generator select XML template dialog ........................ 191 

Figure 8-18 saving CAPL code dialog ................................................................ 191 

Figure 8-19  CAPL code generator class diagram .............................................. 192 

Figure 8-20 CAPL code generator main procedure ............................................ 193 

Figure 8-21 activities procedure generate initial state ........................................ 193 

Figure 8-22 activities procedure in the writeState function ................................ 194 

Figure 8-23 Prototype class diagram (only main classes) ................................... 195 

Figure 8-24 class diagram of canoeDataProcessor package .............................. 196 

Figure 8-25 class diagram of state package ........................................................ 198 

Figure 8-26 class diagram of gpd package .......................................................... 200 

Figure 8-27 sequence diagram to assign vector time .......................................... 201 

Figure 8-28 working flow of the function buildVectorTime() ............................ 202 

Figure 8-29 lattice structure ................................................................................ 205 

Figure 8-30 the getCGSs function activity diagram ............................................ 206 



13 
 

Figure 8-31 counting system structure ................................................................ 207 

Figure 8-32 work flow of the consistent global state evaluation ........................ 208 

Figure 8-33 main process of building execution lattice ...................................... 209 

Figure 8-34 work flow build lattice levels .......................................................... 210 

Figure 8-35 work flow to build relationships between parent nodes and child 

nodes ................................................................................................................... 211 

Figure 8-36 the Predicate function sequence diagram ........................................ 212 

Figure 8-37 work flow of the internal loop of the Predicate function ................ 213 

Figure 8-38 sequence diagram for the Predicate function .................................. 214 

Figure 8-39 the definitelyPredicate function work flow ..................................... 214 

Figure 8-40 GraphicGPD package class diagram .............................................. 215 

Figure 8-41 Lattice frame ................................................................................... 216 

Figure 8-42 GPDtoolController dialog ............................................................... 217 

Figure 8-43 InputValueSelector dialog ............................................................... 217 

Figure 9-1 test case 1 state machine 1 ................................................................. 224 

Figure 9-2 test case 1 state machine 2 ................................................................. 224 

Figure 9-3 the global state of the lattice does not satisfy the predicate. ............. 228 

Figure 9-4 the global state of the lattice satisfies the predicate. ......................... 229 

Figure 9-5 test case 1 predicate 1 simulated bus possibly predicate detection 

graphic result ....................................................................................................... 229 

Figure 9-6 test case 1 predicate 1 simulated bus possibly definitely detection 

graphic result ....................................................................................................... 230 

Figure 9-7 test case1 predicate 1 real bus configuration ..................................... 231 

Figure 9-8 test case 1 predicate 1 real bus possibly predicate detection graphic 

result .................................................................................................................... 234 



14 
 

Figure 9-9 test case 1 predicate 1 real bus definitely predicate detection graphic 

result .................................................................................................................... 235 

Figure 9-10 test case 1 execution ........................................................................ 236 

Figure 9-11 test case 2 state machine 1 ............................................................... 239 

Figure 9-12 test case 2 state machine 2 ............................................................... 239 

Figure 9-13 test case 2 state machine 3 ............................................................... 239 

Figure 9-14 test case 2 predicate 1 simulated bus possible predicate detection 

graphic result ....................................................................................................... 243 

Figure 9-15 test case 2 predicate 1 simulated bus definitely predicate detection 

graphic result ....................................................................................................... 244 

Figure 9-16 test case 2 predicate 1 real bus possibly predicate detection graphic 

result .................................................................................................................... 247 

Figure 9-17 test case 2 predicate 1 real bus definitely predicate detection graphic 

result .................................................................................................................... 248 

Figure 9-18 test case 2 execution ........................................................................ 249 

Figure 9-19 test case 3 state machine 1 ............................................................... 250 

Figure 9-20 test case 3 state machine 2 ............................................................... 250 

Figure 9-21 test case 3 predicate 1 simulated bus possibly predicate detection 

graphic result ....................................................................................................... 254 

Figure 9-22 test case 3 predicate 1 simulated bus definitely predicate detection 

graphic result ....................................................................................................... 255 

Figure 9-23 test case 3 execution ........................................................................ 256 

Figure 9-24 test case 4 state machine 1 ............................................................... 257 

Figure 9-25 test case 4 state machine 2 ............................................................... 257 

Figure 9-26 test case 4 state machine 3 ............................................................... 258 



15 
 

Figure 9-27 test case 4 predicate 1 simulated bus possibly predicate detection 

graphic result ....................................................................................................... 259 

Figure 9-28 test case 4 predicate 1 simulated bus definitely predicate detection 

graphic result ....................................................................................................... 260 

Figure 9-29 test case 4 predicate 1 real bus possibly predicate detection graphic 

result .................................................................................................................... 261 

Figure 9-30 test case 4 predicate 1 real bus definitely predicate detection graphic 

result .................................................................................................................... 262 

Figure 9-31 test case 4 predicate 2 simulated bus possible predicate detection 

graphic result ....................................................................................................... 263 

Figure 9-32 test case 4 predicate 2 simulated bus definitely predicate detection 

graphic result ....................................................................................................... 264 

Figure 9-33 test case 4 predicate 2 real bus possible predicate detection graphic 

result .................................................................................................................... 265 

Figure 9-34 test case 4 predicate 2 real bus definitely predicate detection graphic 

result .................................................................................................................... 266 

Figure 9-35 simulated system execution ............................................................. 267 

Figure 9-36 real system execution ...................................................................... 268 

Figure 9-37 test case 5 state machine 1 ............................................................... 270 

Figure 9-38 test case 5 state machine 2 ............................................................... 270 

Figure 9-39 test case 5 state machine 3 ............................................................... 271 

Figure 9-40 test case 5 state machine 4 ............................................................... 271 

Figure 9-41 test case 5 predicate 1 simulated bus possibly predicate detection 

graphic result ....................................................................................................... 274 



16 
 

Figure 9-42 test case 5 predicate 1 simulated bus definitely predicate detection 

graphic result ....................................................................................................... 275 

Figure 9-43 graphic result ................................................................................... 276 

Figure 9-44 graphic result ................................................................................... 278 

Figure 9-45 graphic result ................................................................................... 279 

Figure 9-46 test case 6 state machine 1 ............................................................... 281 

Figure 9-47 test case 6 state machine 2 ............................................................... 281 

Figure 9-48 test case 6 state machine 3 ............................................................... 281 

Figure 9-49 test case 6 state machine 4 ............................................................... 282 

Figure 9-50 test case 7 state machine 1 ............................................................... 284 

Figure 9-51 test case 7 state machine 2 ............................................................... 284 

Figure 9-52 test case 7 state machine 3 ............................................................... 285 

Figure 9-53 test case 7 state machine 4 ............................................................... 285 

Figure 9-54 test case 7 state machine 5 ............................................................... 286 

Figure 9-55 test case 7 state machine 6 ............................................................... 286 

Figure 9-56 number of CGSs vs. number of communication & number of nodes

 ............................................................................................................................. 294 

Figure 9-57 number of nodes  vs. number of CGSs (X-Z view of Figure 9-56) 294 

Figure 9-58 number of communications  vs. number of nodes (X-Y view of Figure 

9-56) .................................................................................................................... 295 

Figure 9-59 number of communications  vs. number of CGSs (Y-Z view of Figure 

9-56) .................................................................................................................... 295 

 

  



17 
 

Table	of	tables	

Table 2-1 basic task states explanation ................................................................. 30 

Table 2-2 basic task transitions explanation (OSEK 2005) .................................. 31 

Table 2-3 extended task state transitions explanation(OSEK 2005) ..................... 32 

Table 2-4 conformance class determination ......................................................... 36 

Table 3-1 Common Test Types ............................................................................. 76 

Table 3-2 Test levels ............................................................................................. 77 

Table 4-1 clock system comparison .................................................................... 121 

Table 5-1 snap shot algorithm comparison ......................................................... 135 

Table 6-1 Tracking intervals locally at process Pi. ............................................. 156 

Table 6-2 Message Type ..................................................................................... 156 

Table 6-3 Distributed algorithm to detect Definitely(Ф). ................................... 157 

Table 7-1 CANoe log file format ........................................................................ 168 

Table 7-2 time triggered and event triggered local state record mode ................ 169 

Table 7-3 evaluate CGS example. ....................................................................... 171 

Table 9-1 overview of test cases ......................................................................... 221 

Table 9-2 test case 1 communication matrix ....................................................... 225 

Table 9-3 test case 1 node 1 local states ............................................................. 225 

Table 9-4 test case 1 node2 local states .............................................................. 225 

Table 9-5 node1 local states ................................................................................ 226 

Table 9-6 node2 local states ................................................................................ 226 

Table 9-7 global state .......................................................................................... 227 

Table 9-8 node1 local states ................................................................................ 232 

Table 9-9 node2 local states ................................................................................ 232 

Table 9-10 global states ...................................................................................... 233 



18 
 

Table 9-11 test case 2 communication matrix ..................................................... 240 

Table 9-12 test case 2 node 1 local states ........................................................... 240 

Table 9-13 test case 2 node2 local states ............................................................ 240 

Table 9-14 test case 2 node 3 local states ........................................................... 240 

Table 9-15 node1 local states .............................................................................. 241 

Table 9-16 node2 local states .............................................................................. 241 

Table 9-17 node3 local states .............................................................................. 241 

Table 9-18 global states ...................................................................................... 242 

Table 9-19 node1 local states .............................................................................. 244 

Table 9-20 node2 local states .............................................................................. 245 

Table 9-21 node3 local states .............................................................................. 245 

Table 9-22 global states ...................................................................................... 246 

Table 9-23 test case 3 communication matrix ..................................................... 251 

Table 9-24 test case 3 node 1 local states ........................................................... 251 

Table 9-25 test case 3 node2 local states ............................................................ 251 

Table 9-26 node1 local states .............................................................................. 252 

Table 9-27 node2 local states .............................................................................. 252 

Table 9-28 global states ...................................................................................... 253 

Table 9-29 test case 4 communication matrix ..................................................... 258 

Table 9-30 test case 4 node 1 local states ........................................................... 258 

Table 9-31 test case 4 node2 local states ............................................................ 258 

Table 9-32 test case 4 node 3 local states ........................................................... 259 

Table 9-33 test case 5 communication matrix ..................................................... 272 

Table 9-34 test case 5 node 1 local states ........................................................... 272 

Table 9-35 test case 5 node2 local states ............................................................ 272 



19 
 

Table 9-36 test case 5 node 3 local states ........................................................... 272 

Table 9-37 test case 5 node 4 local states ........................................................... 273 

Table 9-38 test case 6 each node local states ...................................................... 282 

Table 9-39 test case 7 communication matrix ..................................................... 287 

Table 9-40 test case 7 node 1 local states ........................................................... 287 

Table 9-41 test case 7 node2 local states ............................................................ 287 

Table 9-42 test case 7 node 3 local states ........................................................... 287 

Table 9-43 test case 7 node 4 local states ........................................................... 288 

Table 9-44 test case 7 node 5 local states ........................................................... 288 

Table 9-45 test case 7 node 6 local states ........................................................... 288 

Table 9-46 Java primitive data type memory consumption ................................ 291 

Table 9-47 number of nodes, number of communications, number of CGS and 

memory consuming from all test cases results .................................................... 296 

  



20 
 

 

 

 

 

Section	One:	Introduction	

  



21 
 

Chapter	1 Introduction	

1.1 Automotive	integration	problem	

Modern vehicles contain many electronic control systems to enhance fuel 

efficiency, engine performance, vehicle chassis control and passenger comfort, as 

well as reducing emissions.  These control systems are organised as multiple 

interconnected networks of distributed software components running on many 

Electronic Control Units (ECUs).  In order to efficiently develop the application 

software and aid the mobility of software components, a kind of middleware 

AUTOSAR is developed. It is used as a standard runtime platform for the 

automotive software components. AUTOSAR is very similar to the common 

middleware CORBA (Common Object Request Broker Architecture) or JRE 

(Java Runtime Environment) except that the services provided are highly 

specialised and optimised for the automotive environment.  

Although these OS and middleware offers huge help for the development of the 

automotive software, it still does not sort the problem of the integration of the 

ECUs. These standards are very handy for a single ECU, but eventually all these 

ECUs will be assembled into a vehicle, communicating through the network. 

They cooperate with each other to achieve the user requirements. There are a few 

types of integration test for the automotive software: MIL (Model In the Loop), 

SIL (Software In the Loop), and HIL (Hardware In the Loop). The most critical 

one is HIL which tests and validates software on the real hardware ECUs. All 

these ECUs are distributed, so the natural difficulty for testing the distributed 

system is present. The difficulty is caused by the property of the distributed 

system; there is no global clock and shared memory for the distributed system, so 
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it is very difficult to record and validate the concurrent states of multiple ECUs. 

Examples of ECU states might be “sending value of current speed of the vehicle” 

“waiting to receive temperature of the engine”, “processing power steering angle” 

and so on.  

Figure 1-1 shows a network structure of a modern vehicle (Gabriel Leen and 

Donal Heffernan 2002). 

 

Figure 1-1 automotive network application 
 
 

 

 



23 
 

1.2 Research	questions	

The main goal of this research is to investigate the theoretical methods for 

constructing the global state of a system, made up of networked ECUs on a CAN 

bus. 

The key questions of this research are as follows: 

 How can events occurring on separate ECUs be chronologically ordered? 

 How can a snapshot of the global application state and application 

execution traces be constructed based on test case execution cycles? 

 How to deal with the large number of potential global states of execution?  

1.3 Document	layout	

Chapter 1: Introduction  

This chapter introduces the objective of the research and discovers the problem. 

The research questions are addressed. 

Chapter 2: Automotive Application Development 

This chapter describes the operating system and network protocol used in the 

automotive industry.  

Chapter 3: Automotive Software Testing 

This chapter introduces the software testing methodologies and how the 

automotive industry does software testing.  

Chapter 4: Logical Time 

This chapter introduces how to order the events in the distributed system. 
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Chapter 5: Global State and Snapshot 

This chapter describes the global state and algorithms to do a snapshot to record 

the global state for the distributed system. 

Chapter 6: Global State Evaluation 

This chapter describes the algorithms to continually record global states of the 

system and global predicate evaluation algorithms. 

Chapter 7: Methodology 

This chapter describes the method is applied to solve the automotive integration 

problems. 

Chapter 8: Prototype Development 

This chapter introduces the development of the prototype program, and the 

structure and the function activities of the prototype. 

Chapter 9: Prototype Testing 

This chapter list the test cases to verify and validate the prototype software. 

Chapter 10: Research Conclusion 

This chapter summarises this research, answers the research questions, and gives 

the potential for the further development and research. 
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Chapter	2 Automotive	Application	Development	

2.1 Introduction		

This chapter introduces automotive application development. As desktop 

computer, the application software task and hardware resources are managed by 

the operating system; for the automotive ECU such operating system is also 

needed. The most popular automotive operating system used nowadays is 

OSEK/VDX OS (AUTOSAR GbR 2008c). OSEK/VDX (Offene Systeme und 

deren Schnittstellen fur die Elektronik im Kraftfahrzeug/ Vehicle Distributed 

eXecutive) is set of standards for distributed automotive systems. It was 

developed by German and French automotive manufactures -(Joseph Lemieux 

2001). The OSEK/VDX includes four main standards: operating system (OS), 

communication (COM), network management (NM), OSEK implementation 

language (OIL). It also includes three additional standards: OSEK/VDX real-time 

interface (ORTI), OSEK/VDX time-triggered operating system (OSEK-Time), 

and OSEK/VDX fault tolerant communication specification. Also there is another 

new standard getting popular in the automotive industry. It is called AUTOSAR 

(AUTomotive Open System ARchitecture). AUTOSAR is an open standardized 

software architecture for the automotive industry (Simon Fuerst and BMW 2008). 

It separates the system into different layers: application layer, AUTOSAR 

Runtime Environment (RTE), service layer, ECU abstraction layer, 

Microcontroller abstraction layer, and complex devices. RTE isolates the 

application layer from the other layers (AUTOSAR GbR 2008a), the developer 

does not need to deal with the hardware drivers. It also enhances code mobility 

and compatibility and reduces the development complexity. This chapter will talk 
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about the OSEK/VDX OS, AUTOSAR OS, OSEK/VDX COM and AUTOSAR 

COM. They are relevant to this research. 

There are many different ECU networks e.g. CAN, FlexRay, LIN, and MOST etc. 

This research only focuses on the CAN protocol network, which will be described 

in this chapter. For reading and writing the ECU memory, the CAN Calibration 

Protocol (CCP) is also introduced in this chapter.  

Figure 2-1 shows a typical distributed automotive application

 

Figure 2-1 distributed automotive application 
 

2.2 ECU	software	Functions	

The embedded application is implemented as a set of event-driven functions. The 

event-driven functions are triggered by an event-e.g. sensor, timer expired, and 

message received etc.. These events may be detected by either interrupt or polling.  

Automotive application program functions are currently implemented as task on 

OSEK based operating systems (such as Ford’s FNOS or Vector CANbedded) or 
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as AUTOSAR components. This section will introduce the OSEK OS and 

AUTORSAR OS. 

2.2.1 OSEK	OS	

2.2.1.1 Overview	of	OSEK	operating	system	

The OSEK operating system provides a pool of different services and processing 

mechanisms (OSEK 2005). According to the configuration required by the user, 

the OSEK operating system is built at system generation time.  

The OSEK/VDX OS manages the application programs which are independent of 

each other for the processor. It schedules the work of the processor by assigning 

the application to different processing levels. 

The essential concept in the OSEK/VDX OS is the task. There are two types of 

tasks: basic task and extended task. The activation of a task depends on the 

priority of the task.  

OSEK OS offers four conformance classes. Depending on the requirement of the 

application software and system resources (e.g. processor, memory), the 

conformance class describes the available features of the operating system.  

2.2.1.2 Processing	levels	

OSEK defines three processing levels: 

1. Interrupt level 

2. Logical level for schedules  

3. Task level 

The interrupt level processes have the highest priority over other processes. And 

the task level has the lowest priority. The interrupt process level includes one or 
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more interrupt priority levels. Interrupt service routines have a statically assigned 

interrupt priority level. Assignment of interrupt service routines to interrupt 

priority levels is dependent on implementation and hardware architecture. For task 

priorities and resource ceiling-priorities bigger numbers refer to higher priorities. 

The task’s priority is assigned by the user (the task priorities are introduced in 

section 2.2.1.6 ). 

2.2.1.3 Basic	task	

A basic task runs to completion unless preempted by a higher priority task or an 

interrupt (if enabled)(Joseph Lemieux 2001). It has three states as shown in Figure 

2-2. 

 

Figure 2-2 basic task state transition 
 

The states are explained in Table 2-1. The transitions are explained in Table 2-2. 

Running Allocating the processor to process the task. The instruction of the 
task is executed. Only one task can be in this state at any time. The 
other states can be adopted simultaneously by several tasks 

Ready Waiting for allocating the processor to the task.  

Suspended In the suspended state, the task is passive and can be activated. 

Table 2-1 basic task states explanation  
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Transition Former 
state 

New state Description 

activate suspended ready A new task is set into the ready state by a 
system service. The OSEK operating 
system ensures that the execution of the 
task will start with the first instruction.  

start ready running A ready task selected by the scheduler is 
executed.  

preempt running ready The scheduler decides to start another task. 
The running task is put into the ready 
state.  

terminate running suspended The running task causes its transition into 
the suspended state by a system service.  

Table 2-2 basic task transitions explanation (OSEK 2005)  
 

2.2.1.4 Extended	task	

The extended task is very similar to basic task. The only different is that the 

extended task has one more state called waiting state. The state diagram for 

extended task is illustrated in Figure 2-3. Waiting state is used by the task that 

cannot continue execution until an event triggers it.  The other states are as same 

as basic task states. The transitions are described in Table 2-3.

 

Figure 2-3 extended task state transition 
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Transition Former 
state 

New state Description 

activate  suspended  ready  A new task is set into the ready state by a 
system service. The OSEK operating 
system ensures that the execution of the 
task will start with the first instruction.  

start  ready  running  A ready task selected by the scheduler is 
executed.  

wait  running  waiting  The transition into the waiting state is 
caused by a system service. To be able to 
continue operation, the waiting task 
requires an event.  

release  waiting  ready  At least one event has occurred which a 
task has waited for.  

preempt  running  ready  The scheduler decides to start another task. 
The running task is put into the ready 
state.  

terminate  running  suspended The running task causes its transition into 
the suspended state by a system service.  

Table 2-3 extended task state transitions explanation(OSEK 2005) 
 

2.2.1.5 Comparison	of	basic	task	and	extended	task	

The basic task does not have a waiting state. The synchronization points are 

formed at the task start and end. If the application needs internal synchronization 

points, then more than one basic task is required. The advantage of basic tasks is 

that they do not use too much RAM.  This because basic task does not have the 

waiting state; in a waiting state, the task is loaded into the RAM to wait for an 

event to active it. The advantage of extended task is that even though the 

synchronization is requested, one task can deal with a coherent job. When the 

extended task needs the data (new data or updated data) to continue execution, it 

will be in the waiting state, until the requested data arrives (Joseph Lemieux 2001). 
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2.2.1.6 Task	priority		

Every task in OSEK/VDX OS has a priority. The priority is statically assigned to 

the task, it cannot be changed dynamically. There is one situation that the priority 

can be changed by the OS. It happens when the priority ceiling protocol is active: 

the priority of a task is elevated to the priority ceiling value calculated statically 

(Joseph Lemieux 2001). 

The value 0 is the lowest priority of a task. The larger number has the higher 

priority (OSEK 2005). The same priority tasks can be grouped together. They are 

stored in a FIFO queue.  

2.2.1.7 Scheduling	policies	

A task, whether basic or extended, can be set as either full preemption or non-

preemption. The non-preemption task runs until it terminates or, in the case of 

extended task, until it transitions to a waiting state. When a preemption task is 

running, it can be preempted by a task with higher priority task. (Joseph Lemieux 

2001) 

Depending on the attribute of preemption of the task, OSEK/VDX OS schedules 

the tasks. The scheduling policy consists of full preemptive scheduling, non-

preemptive scheduling, and mixed preemptive scheduling. They will be 

introduced in the following sub-sections. 

2.2.1.7.1 Full	preemption	scheduling	

Full preemptive scheduling means that a running task is put into a ready state by a 

higher priority task. Figure 2-4 demonstrates full preemptive scheduling. Task1 

has higher priority than Task2. When Task2 is running, Task1 starts. Because the 

task1 has higher priority and Task2 is preemptive, Task2 is preempted, task 1 
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cannot be delayed. 

 

Figure 2-4 Full preemptive scheduling 
 

2.2.1.7.2 Non‐preemptive	scheduling	

Non-preemptive scheduling occurs when the current running task cannot be 

preempted by another task even a task with higher priority. So the higher priority 

task can be delayed by the non-preemptive and low priority task. Figure 2-5 

demonstrates a non-preemptive scheduling. Task1 has higher priority than Task2. 

When Task2 is running, Task2 is started, it is only stay in the ready state, until the 

Task2 is terminated, then Task1 moves to running state. The delay time of Task1 

is the time that it is in the ready state.  

 

Figure 2-5 non preemptive scheduling 
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2.2.1.7.3 Mixed	preemptive	scheduling	

The mixed preemptive scheduling system mixes the preemptable and the non-

preemptable tasks. The scheduling policy depends on the preemptive attribute of 

individual task. If the running task is preemptive, then the full preemptive 

scheduling will be applied.  If the running task is non preemptive, then the non 

preemptive scheduling will be applied.  

2.2.1.7.4 Conformance	classes	

Depending on the requirement of the application software for the system and the 

abilities of the system (e.g. processor, memory), the operating system features can 

be configured. These features used to describe the operating system are called 

conformance classes (CC).  

There are 4 conformance classes defined (OSEK 2005): 

1. BCC1 (only basic tasks, limited to one activation request per task and one 

task per priority, while all tasks have different priorities)  

2. BCC2 (like BCC1, plus more than one task per priority possible and 

multiple requesting of task activation allowed)  

3. ECC1 (like BCC1, plus extended tasks)  

4. ECC2 (like ECC1, plus more than one task per priority possible and 

multiple requesting of task activation allowed for basic tasks)  

The determination of conformance class is illustrated in Table 2-4. 
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Attribute BCC1 BCC2 ECC1 ECC2 

Number of basic task activations 1 ≥1 1 ≥1 

Number of tasks per priority 1 ≥1 1 ≥1 

Basic tasks Yes Yes Yes Yes 

Extended tasks No  No Yes Yes 

Table 2-4 conformance class determination 
  

The conformance classes are upwardly compatible as shown in Figure 2-6 

 

Figure 2-6 upward compatibility for conformance classes 
 

Figure 2-6 shows any task developed for a BCCx level conformance class can be 

used in an ECCx-level conformance class and any task developed for a xCC1 

level conformance class can be used in an xCC2 level conformance class.  

2.2.2 AUTOSAR		

2.2.2.1 Overview	of	AUTORSAR	

The purpose of AUTOSAR is to standardize the software architecture of ECUs. It 

makes the software independent from the hardware. The horizontal layers means 

the development can be processed simultaneously and thereby reduce the 

development time and costs. The software will be more reusable for OEM 

Basic Task only Basic Task and 
Extended Task 
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(Original Equipment Manufacturer) as well as for suppliers. It enhances quality 

and efficiency. 

Figure 2-7 shows the comparison of AUTOSAR architecture and previous 

architectures (Stefan Bunzel 2010). 

 

Figure 2-7 comparison between AUTOSAR architecture and older architectures 
 

AUTOSAR defines the software as different layers. There are 5 layers in the 

AUTOSAR architecture as show in Figure 2-8(AUTOSAR GbR 2008a). The 

application software makes up the components in the application layer. 

 

Figure 2-8 AUTOSAR layers 
 



38 
 

The Microcontroller (MCU) Abstraction Layer is the lowest software layer. It 

contains the internal drivers, which are software modules with direct access to the 

MCU internal peripherals and memory mapped MCU external devices.  

The ECU Abstraction Layer interfaces the drivers of the Microcontroller 

Abstraction Layer. It also contains drivers for external devices. It offers an API 

for access to peripherals and devices regardless of their location (MCU 

internal/external) and their connection to MCU (port pins, type of interface). 

The Service Layer provides basic services for each AUTOSAR application. An 

AUTOSAR application can access these services through standardized 

AUTOSAR interfaces(Robert Warschofsky 2011). 

The ECU abstraction layer and the service layer, together are called Basic 

Software layer (BS). So the AUTOSAR also can be described as a 4 layered 

system as shown in Figure 2-9 (Simon Fuerst & BMW 2008).  

The RTE Layer provides a running environment that makes the application 

program independent from the ECU. When a AUTOSAR application program is 

completed, it can be run on different ECUs in which AUTOSAR is installed 

without change in code(AUTOSAR GbR 2010).   

The Application Layer holds the application task as a set of components.  The 

components can communicate with each other through the AUTOSAR interface 

as shown in Figure 2-9. The components also can be in the different ECUs. All 

the layers that are lower than application layer will deal with the network, 

hardware drivers and the system services etc. Therefore, the developer can only 

focus on the application software development. AUTOSAR using standard 
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interface connects the application to the RTE layer. It makes the function 

transferable and the code reusable.  

 

Figure 2-9 AUTOSAR basic software 
 

2.2.2.2 Software	component	

In the AUTOSAR system, the application is divided into functions. Each function 

is encapsulated in the AUTOSAR software component. Because the application is 

constructed by the components, it makes the component more reusable, and a 

different application may use the same component/s. The components interacts 

with each other through the Virtual Functional Bus (VFB) to implement the 

application. In the VFB model, software components interact on interfaces 
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between ports. The port/interface model is called an AUTOSAR interface. The 

view of VFB is illustrated in Figure 2-10 (Darren Buttle 2005). 

 

Figure 2-10 VFB view 
 

There are two types of AUTOSAR component: atomic software components and 

Sensor/Actuator Software Component. Atomic software components implements 

a piece of software that can be mapped to an AUTOSAR ECU.  Hardware 

sensor/actuator is coupled to sensor/actuator software component. 

Components have two types of interface (ports): provided interfaces and required 

interfaces. The provided interface gives the function or data through P-port. The 

required interface needs the function or data through R-port. The component 
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interfaces can be illustrated in Figure 2-11 (Darren Buttle 2005).

 

Figure 2-11 AUTOSAR software component with interfaces 
 

All communication in AUTOSAR modelled between ports are sender-receiver 

(signal passing) and client-server (function calling) as show in Figure 2-11. 

2.2.2.3 Sender‐receiver	

Sender-receiver communication: the data is transmitted by one component and 

received by one or more components. A component can have multiple sender-

receiver interfaces. Each sender-receiver interface can have multiple data 

elements. Each data element can be sent or received independently. The data can 

be simple types (integer, float) or complex (array, record). Figure 2-12 shows the 

sender side of a sender-receiver interface that includes three data simple elements. 

Components can use “1:1”, “n:1” and “1:n” communication. (LiveDevices Ltd. 

2004) , p30-31) 
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Figure 2-12 Sender-Receiver Interface Data Elements (Sender Side) 
 

RTE supports multiple receive modes for the receiver software component to 

handle the received data. The four possible receive node are: Implicit data read 

access, Explicit data read access, wake up of wait point, and activation of 

runnable entity. (AUTOSAR GbR 2010), p108-109) 

 Implicit data read access: when the receiver’s runnable executes it shall 

have access to a “copy” of the data that remains unchanged during the 

execution of the runnable. 

 Explicit data read access: the RTE generator creates a non-blocking API 

(Application Programming Interface) call to enable a receiver to poll (and 

read) data. This receive mode is an “explicit” mode since an explicit API 

call is invoked by the receiver. 

 Wake up of wait point: the RTE generator creates a blocking API call that 

the receiver invokes to read data. Runnable awoken when the data 

received.  

 Activation of runnable entity: the receiving runnable entity is invoked 

automatically by the RTE whenever new data is available. 
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These receive modes also can be applied on client-server communication, if 

clients call server asynchronously.  

2.2.2.4 Client‐server	

Client-server communication: a client component invokes function of the sever 

component. A component can have multiple client-server interfaces. Each client 

interface can have multiple operations. Each operation can be invoked separately. 

Figure 2-13 shows the server side of a client-server interface that serves 

elementary sorting algorithms to the client. Components support “1:1”, “n:1”  

communication. Clients cannot have multiple servers. (LiveDevices Ltd. 2004), 

p32-33) 

 

Figure 2-13 Client-Server Interface Operation (Server Side) 
 

The client-server interfaces can control how the server buffers client requests for 

the operations. In the no buffering server, the server will reject and send back an 

error notification to the requesting client while it is processing the early request. 

In the server with buffering, the server will queue the client requests. The size of 

the queue is predefined at the configure time. If the queue is full, the new request 

will be discarded without any error reply to the client.  



44 
 

2.2.2.5 Internal	communication	

Sender-receiver and client-server communication through AUTOSAR ports are 

the model for communication between software components.  For an individual 

component, it can contain one or more runnable entities (“runnables”). A runnable 

and the task is the same thing. These runnables will collaborate to each other to 

achieve the function of the component. A runnable is an entry point of the 

function as well as the subroutine of the program. Runnables has two categories as 

following (AUTOSAR GbR 2006a, p16-17): 

1. Category 1: runnable entities do not have wait point (wait state) and have 

to terminate in finite time. It can be divided to two part:  

a. The runnable entity is only allowed to use implicit reading and 

writing. A category 1a runnable entity cannot block and cannot use 

explicit read/write. 

b. The runnable entity may use explicit reading/writing including 

blocking behavior. 

Category 1 is very similar to the basic task model in OSEK OS. 

2. Category 2: It always has at least one wait point or they invoke a server 

and wait for the response to return. It is very similar to the extended task 

model in OSEK OS. 

Depending on the way to activate the runnable, a runnable can be either timing or 

event triggered (e.g. real time clock alarm expires) or communication triggered 

(e.g. a signal received). Figure 2-14 shows a component and runnables (Darren 

Buttle 2005).  
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Figure 2-14 software component and runnables 
 

2.2.2.6 Composition	

The AUTOSAR composition aggregates existing software components to form 

another function. Therefore, a composition is also a kind of component. The 

composition may be aggregated in even further compositions (AUTOSAR GbR 

2006b, p27). Such recursive relationship is illustrated in Figure 2-15. The 

compositions make code more reusable and enhance the mobility of the code.  



46 
 

 

Figure 2-15 the recursive relation of software components and compositions  
 

The compositions offer logical software architecture. Because the VFB maps the 

software component to the hardware, the composition can be designed 

independently. During the development, the target hardware and network 

topology etc. do not need to be referenced. This is the big advantage compared to 

ECU-driven development. Without concerning the hardware, the logical 

functionalities can be constructed. The functions can be integrated together to 

perform a new function. The logical functions integration also can be done at very 

early stage.  

 

2.3 ECU	networks	

The previous section describes a single ECU system. However, for the automotive 

control system, multiple ECUs are used. They collaborate with each other to 

achieve a common goal. There are some different protocols for the ECU network, 

e.g. CAN, FlexRay, LIN,etc. Nowadays, the most popular protocol used is CAN 
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(Controller Area Network) based network (Nicolas Navet and Françoise Simonot-

Lion 2009, p X). The main difference between CAN and FlexRay is that CAN is 

an event-triggered network and FlexRay is a time-triggered network.  

The big difficulty of debugging distributed systems is that there is no global time 

in the distributed system. However, in the FlexRay network system, there is a 

distributed clock synchronisation mechanism. Each node synchronizes itself to the 

global time of the cluster by measuring the timing of transmitted sync frames sent 

by sync nodes (Richard Zurawski 2009, p167-169). There is a global clock in the 

FlexRay networked system. Each node is synchronized by the global clock; 

thereby at any global time point, the global state can be constructed by the local 

state of each node at an agreed global time. The global states can be ordered by 

the global time. Even with the global time, the distributed system can be 

debugged as the single CPU system. The break point can be set, the whole system 

will stop at the same time (global time). Therefore, it is much easier to debug the 

distributed automotive system with FlexRay.  

For a CAN network based distributed system, there is no mechanism to 

synchronize all nodes on the network. The transmission of the message depends 

on the priority of the message. It is very difficult to debug a CAN based 

distributed system. This research will focus on CAN networked automotive 

systems. This section introduces the CAN protocol. 

2.3.1 CAN	network	features	

CAN is a bus structure network. Each ECU on the CAN bus has the same priority 

to send messages, so it is a multi-master network. A CAN message has a unique 

identifier that specifies its content and transmission priority. The messages are 
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broadcast and multicast on the CAN bus. The CSMA/CA (Carrier Sense Multiple 

Access/Collision Avoidance) principle is used by CAN bus, the CAN network 

offers Non-destructive bus arbitration scheme. CAN bus has comprehensive error 

detection and confinement  (Brendan Jackman 2004a, p1).  

2.3.2 CAN	bus	structure	

The CAN network structure is illustrated in Figure 2-16. Each ECU node connects 

to a two wire network. The two wires are twisted together to reduce the 

electromagnetic interference.  At two ends of the bus are 120 Ω resistors to 

remove signal reflections. Since the CAN bus is a digital bus, it is always at 

logical 0 or logical 1. Zero is known as the dominant level, one is known as the 

recessive level.  

 

Figure 2-16 CAN network structure 
 

2.3.3 Dominant	&	recessive	bits	

If more than one node on the CAN bus which to transmit a message at the same 

time, the message with the dominant (zero) bit will automatically overwrite the 

message with the recessive (one) bit. When the CAN bus is idle, it is at a recessive 
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level. Dominant and recessive both play a role in prioritizing messages during bus 

arbitration. 

2.3.4 CAN	Frames	

CAN networks contain following types of frames (BOSCH 1991): 

 A Data Frame carries data from a transmitter to the receivers. 

 A Remote Frame is transmitted by a bus unit to request the transmission 

of the data frame with the same identifier. 

 An Error Frame is transmitted by any unit on detecting a bus error. 

 An Overload Frame is used to provide for an extra delay between the 

preceding and the succeeding data or remote frames. 

There are two different types of data frame: standard and extended data frame. 

The only difference between them is the length of their arbitration field, which 

will be described in this section. Because the data frame and remote frame are 

very similar, they will be described in the same section. The overload frame is 

rarely used nowadays.  

 

 

 

 

 

 



50 
 

2.3.4.1 Data	frame	and	remote	frame	

A CAN message data frame is illustrated in Figure 2-17.  

 

Figure 2-17 CAN message data frame (Brendan Jackman 2004b) 
 

Start of Frame:  it contains single dominant bit, telling the CAN bus a message is 

going to be transmitted. 

 Arbitration Field: the difference between the standard and extended data frame 

is the length of their arbitration field. For the standard data frame, its arbitration 

field can be separated into two parts: message identifier (Id) (11 bits) and remote 

transmit request (RTR) (1 bit), and is illustrated in Figure 2-18. If the RTR is 

dominant, then the message is a data message, otherwise the message is remote 

message. The arbitration field of the extended data frame is illustrated in Figure 

2-19. The message ID is separated by two fixed recessive bits which are the 

Substitute Remote Request bit (SRR) and IDentifier Extension bit (IDE). The 

most significant 11 bits of the message ID are transmitted first. The other 18 bits 

of the message ID follow the IDE bit. The last bit of the arbitration field is the 

RTR bit. 
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Figure 2-18 standard data frame 
 

 

Figure 2-19 Extended data frame 
 

Control field: it defines the type (standard or extended) and the length of the 

transmitted message. If the message is standard, then the control field has the IDE 

bit, the reserved bit r0, and the Data Length Code (DLC) (4 bits) as shown in 

Figure 2-18. If the message is extended, then the control field has two reserved 

bits (r1 and r0) and DLC, as shown in Figure 2-19. 

Data Field: it contains the data that needs be transferred. It can contain from 0 to 

8 bytes of data.  

CRC (Cyclical Redundancy Check) Field: it holds a 15-bit number that is 

calculated based on the data of start of frame, arbitration field, control field, and 

data field. After this 15-bit number, a recessive bit marks the end of the CRC field.  

Acknowledgement (ACK) field: it contains two bits (ACK slot and ACK 

delimiter). It checks if any node received the message. If a node received the 

message and the CRC correctly, the node overwrites the ACK slot that the 

transmitter sets recessive with a dominant bit. If the transmitting node does not 
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see the ACK slot marked as dominant, then it will transmit the message again. 

The ACK delimiter is always recessive.  

Remote Frame: it is very similar to data frame, the only different is their RTR bit 

of the arbitration field. The RTR bit of remote frame is recessive. 

End of Frame Flag: it consists of 7 recessive bits that marks the end of the CAN 

message.  

2.3.4.2 Error	frame	

An error frame is illustrated in Figure 2-20. The Error Flag consists of either 6 

dominant bits (active error flag) or 6 recessive bits (passive error flag). The Error 

Delimiter consists of 8 recessive bits. It is used to signal the presence of errors on 

the bus.  

 

Figure 2-20 error frame 
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2.3.4.3 Overload	frame	

An overload frame consists of two bit fields, overload flag and overload delimiter. 

Its structure is same to error frame. An overload frame is illustrated in Figure 2-21. 

The overload flag includes 6 dominant bits. The overload delimiter consists of 8 

recessive bits. It is used to delay the message transmission. 

 

Figure 2-21 overload frame 
 

2.3.5 CAN	arbitration	

The CAN arbitration happens when more than one node sends a message at the 

same time. The transmitting node will compare its arbitration field of the message 

to other nodes bit by bit. The lowest CAN ID wins the arbitration. If the CAN ID 

is same, the standard message wins the extended message and the data message 

wins the remote message (Richard Zurawski 2009, p137). However, this typically 

does not happen. 

2.3.6 Error	handling		

There are two levels of error for the CAN bus: message level error and node level 

error.  

Overload Flag Overload Delimiter 
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Message level error is caused by the inconsistent message formatting. e.g. fail of 

CRC checking, the format of the message layout is corrupted. If the message level 

error happens, an error frame message is transmitted. 

Depending on the error counter’s level, the node can be in one of the following 

states: error active, error passive, and bus off. Each node has a Transmit Error 

Counter (TEC) and a Receive Error Counter (REC) that determines the node state. 

TEC increases when a transmitting node detects an error and decreases when a 

successful transmission occurs. REC increases when a receiving node detects an 

error and decreases for every successful message received. The node states 

transition is illustrated in Figure 2-22. When the node in the error active state 

means the node works in the normal condition. Either REC is greater than 127 or 

TEC is greater than 127, the node transits to error passive state. In the error 

passive state, the node can transmit and receive messages as well as the error 

active state, but the node must wait longer before transmitting another message. 

Only passive error frames can be transmitted. If the REC and TEC are reduced 

smaller than 128, the node will move back to error active mode.  If the TEC is 

greater than 255, the node transits to the bus off state, which means the node is 

disconnected to the network. Only to reset the node can make the node transits to 

the error active state.  
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Figure 2-22 a CAN node status 
 

2.4 Inter‐task	communication	

For the portability of the ECU application software, OSEK/VDX and AUTOSAR 

offers the communication layer. The application software can communicate to 

each other through the common interface. The communication includes internal 

and external task communication.  

2.4.1 OSEK	COM	

The OSEK/VDX COM standard supports both intra-ECU task communication 

and inter-ECU task communication. The standard describes the method to 

exchange data between different tasks on the same ECU and the tasks on the 

different ECUs.  The internal/external messages are sent by the application but 

received by the local application and by the application running on the different 

ECUs through a network. The network of the ECUs connection can be CAN, 

FlexRay, etc.. (Joseph Lemieux 2001, p125-126).  

The OSEK/VDX COM is 5 layer communication model and the ISO/OSI 

(International Standard Organisation/Open system Interconnections) is 7 layer 

model. They are shown in Figure 2-23. The application tasks are running on the 

error activ e

error passiv e

bus off

[REC>127 or TEC >127]

[REC<128 and TEC<128]

[TEC>255]

[reset]
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application level. The CAN protocol defines the data link layer and the part of the 

physical layer in the OSI model. The OSEK/VDX COM defines the Interaction 

layer; it merely defines minimum requirements for the Network Layer to support 

all features of the Interaction Layer (IL) (OSEK/VDX 2004, p6).  

 

Figure 2-23 OSEK/VDX COM model vs. ISO/OSI model 
 

The interaction layer is shown in Figure 2-24 (OSEK/VDX 2004, p8). The IL 

defines message (sending or receiving) as message objects. It makes the internal 

communication message immediately available to the receiver. The external 

messages (or message) are packed into assigned Interaction Layer Protocol Data 

Unit (I-PDU). They are passed to underlying layer. The receiving message s pass 

through underlying layer to the I-PDUs (it contains one or more messages). One I-

PDU stores one message, the message is not split across different I-PDUs. Within 

an I-PDU messages are bit-aligned. The size of a message is specified in bits.  
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The bit order of a byte in CPU may differ from the order of other CPUs and the 

order of the byte of the network.  The IL makes the bit order same as the order of 

the local machine. The external message object format is as same as the format of 

the internal message object. The message object is delivered to the application 

task by the interface IL offers. 

 

Figure 2-24 message transmission and reception in OSEK/VDX 
 

2.4.2 AUTOSAR	COM	

AUTOSAR COM layer is the layer between RTE and PDU router. The PDU 

Router module provides services for routing of I-PDUs between the following 

modules:(AUTOSAR GbR 2006c, p8) 

 communication interface modules (e.g. LINIF, CANIF, and FlexRayIf) 

 Transport Protocol modules (e.g. CAN TP, FlexRay TP) 
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 AUTOSAR Diagnostic Communication Manager (DCM) and Transport 

Protocol modules (e.g. CAN TP, FlexRay TP) 

 AUTOSAR COM and communication interface modules (e.g. LINIF, 

CANIF, or FlexRayIf) or I-PDU Multiplexer 

 PDU Multiplexer and communication interface modules (e.g. LINIF, 

CANIF, or FlexRayIf) 

Figure 2-25 shows the AUTOSAR communication structure.  

 

Figure 2-25 Communication Structure 
 

AUTOSAR COM is derived from OSEK/VDX COM (AUTOSAR GbR 2008b, 

p9). However, AUTOSAR COM provides signal gateway functionality. It 

forwards signals and signal groups in the one-many manner. Signal and signal 
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groups are assigned unique static names. The name indicates the destination of the 

signal. This indication information configure in a table. The signal gateway use 

this table to find the destination of the signal. 

 

2.5 Event‐triggered	system	vs	time‐triggered	system	

In the automotive systems, the activation of ECU functions can either be event-

triggered (asynchronous) or time-triggered (synchronous) as well as ECU 

networks (CAN and FLEXRAY). They all have their own advantages and 

disadvantages. This section discusses these two systems. 

2.5.1 Event‐triggered	system	

For the ECU functions, the event-triggered system activates the function by an 

event e.g. message received, timer expires, and other function call etc.. The  

events is possible to happen any time.  

CAN is an event-triggered ECU communication network. Event-triggered means 

that messages are transmitted to signal the occurrence of significant events (e.g., a 

door has been closed). 

In an event-triggered system, the scarce resources (CPU, memory, and network) 

of real-time systems can be efficiently used. The resources are only used when the 

event happen. The event-triggered system is easy to be designed, the application 

runs when the event happens. The new function or new node can be easily 

integrated to the system e.g. a new ECU can be easily plugged into a CAN 

network.  
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Due to the arbitrary nature of the event-triggered system, it is difficult to ensure 

deadlines are met over load conditions (many events occurring together). For the 

event-triggered distributed system, such arbitrary and the unpredictable features 

make the debug and test very difficult. In addition are safety consideration, for 

example, if the event is missed it could have a safety impact. 

2.5.2 Time‐triggered	system	

In the time-triggered system, there is master scheduler which defines the time 

cycle of the execution. For each execution cycle the scheduler assigns the 

processor to the tasks or transmits message in the configured time interval, 

thereby the execution of the task or the message transmission is guaranteed (this 

feature is ideal for the safety systems) and the resources required are easier 

estimate and schedule. Another big advantage of the time-triggered system is that 

it is easy to construct distributed system global states due to the synchronized 

global clock as discussed at the beginning of section 2.3. It makes the testing and 

debugging the distributed system easier. 

Because all the network transmission or system processing scheduled ahead, it 

makes the design process very intensive. It causes the future extension of the 

system to be more difficult. If not enough time intervals are reserved for the future 

design, the whole system may have to be redesigned.  

2.6 ECU	calibration,	measurement	and	diagnostics	

To debug the distributed system, it is necessary to be able to read the local node 

variables. For the automotive system, there are some ways to read the memory. 

This section will describe the protocol to calibrate and measure the ECU variables. 
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The CAN Calibration Protocol (CCP) is a CAN network based application 

protocol for calibration and measurement data acquisition of ECUs. The protocol 

configures the hardware as master/slave structure as shown in Figure 2-26. The 

master device sends the command to the slave device; slave device gives the 

response back to master device. Therefore, CCP consists of two message objects:  

1. Command Receive Object (CRO) is the message (command) that a master 

device sends to slave device. 

2. Data Transmission Object (DTO) is the message (response) that a slave 

device replies to the master device.  

 

Figure 2-26 CCP master/slave device configuration 
 

Since the CCP protocol is based on the CAN protocol, these two objects are 

defined in the data field of a CAN data frame. The structure of CRO is illustrated 

in Figure 2-27. CMD is Command Code which is a byte. It is identifies the 

command, e.g. 0x01 is CONNECT, the master device sends a connection 

Master 
Device 

Slave 
Device 3 

Slave 
Device 2 

Slave 
Device 1 

CAN Bus 

Logical CCP 



62 
 

command to the slave. CTR is Command Counter, which counts the command 

message.  

 

Figure 2-27 CRO structure 
 

DTO includes three types of message: 

 Command Return Message CRM, if the DTO is sent as an answer to a 

CRO from the master device. CRM is shown in Figure 2-28. PID is Packet 

ID, which is used to distinguish between different types of DTOs. The PID 

255 is CRM. ERR is the error code. CTR is Command counter as received 

in CRO with the last command. 

 Event Message, if the DTO reports internal slave status changes in order 

to invoke error recovery or other services. The structure of Event Message 

is same to CRM, except its PID is 254. 

 Data Acquisition Message (DAQ), if the DTO contains measurement 

data. It contains the data in the memory of the ECU. The structure of a 

Data Acquisition Message is illustrated in Figure 2-29. It only has PID 

field, the rest are data area. The range of the PID is from 0 to 253. 

CMD CTR 

Byte 0 1 2 3 4 5 6 7 

           Parameter  Area
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Figure 2-28 CRM structure  
 

 

Figure 2-29 Data Acquisition Message structure 
 

The DAQ contains data corresponding to an Object Description Table (ODT) that 

maps the memory address of the ECU. Figure 2-30 illustrates an ODT. Each 

address points the value stored in the memory of the ECU. ODT is assigned a 

unique Packet Id PID to identify the corresponding DAQ (DAQ-DTO). The 

contents of each element defined in a ODT are transferred into a DAQ-DTO to be 

sent to the master device. Multiple ODTs form a DAQ list debugging 

(H.Kleinknecht 1999;Rainer Zaiser 2011). 

 

Figure 2-30 Object Descriptor Table 

PID ERR 

Byte 0 1 2 3 4 5 6 7 

CTR           Data Area

PID  

Byte 0 1 2 3 4 5 6 7 

            Data  Area
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2.7 Conclusion	

This chapter has introduced automotive application development. The application 

task running on the ECU is managed by the automotive standard OS. The most 

popular one is OSEK/VDX OS and AUTOSAR OS is becoming more widely 

used. The application task needs to interact with other tasks. These tasks can 

either run on the same processor (internal communication) or run on a different 

processor (external communication). For the external communication tasks, the 

message can be sent through different networks, e.g. CAN, FlexRay, etc. but 

FlexRay networks has a global time, all nodes are synchronized by this global 

time. However, for the predominant CAN automotive network system, there is no 

such mechanism to synchronize all nodes. That’s also the difficulty for debugging 

the distributed automotive system. Therefore, the research only focuses on the 

CAN based network. For the portability and compatibilities of the tasks, the 

communication layer services were developed by the OSEK/VDX and 

AUTOSAR. Finally, the CCP protocol which measures and calibrates ECU was 

introduced. The measurement and calibration is essential successful integration 

and deployment of ECUs.  
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Chapter	3 Automotive	Software	Testing	

3.1 Introduction	

Software testing is a very important part of the software development process.  It 

will cross entire development life cycle.  If not enough testing has been done 

before the software is delivered, it can cause many problems e.g. damage the 

reputation of the company, bringing the danger to the customers and so on. A lot 

of money is lost every year with vehicle recalls.  However it is impossible to find 

all the bugs during the development life cycle. For example Microsoft will update 

windows after it has been published. “The goal of a software tester is to find bugs, 

find them as early as possible, and make sure they get fixed.” (Patton 2005) 

In the automotive industry, software testing is very important issue, because 

nowadays all cars are controlled by the software, even some safety features. 

Before the software can be used in a production; it must have been passed a huge 

number of testing, even though it cannot be guaranteed that all possible test cases 

can be tested.  

This chapter combines the general software test and automotive software test 

together, to describe the steps for automotive software testing, what kind of test 

should apply to each development phase, and the industry tools are used for the 

ECU integration. 

3.2 V	model	

The V model was developed in the 1980s (National ITS Architecture Team 2007), 

as the German industry standard. It is the most predominant development cycle in 

the automotive industry (Schaeuffele and Zurawka 2005, p24).   
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The V model was developed from waterfall software development methods 

(Schaeuffele & Zurawka 2005), and they have common disadvantages and 

advantages;  they are good for the project that is defined well, the requirements 

are fully understood. Because of its sequential nature, it is not flexible; it 

supposed to give a complete system at the end, but if the requirements change 

during the development, it is difficult to go back (A.Al-Ashaab et al. 

2009;Pressman 2001).  

Figure 3-1 Overview of the core process for the development of electronic 

systems and software 

 

Figure 3-1 (Schaeuffele & Zurawka 2005, p24) is an overview of the V model 
 

 Analysis of user requirements and specification of logical system 
architecture  

 Developers have meeting with users, to find the requirements from the 

users. The user requirements are analysed. The uses case is defined. The 

system to be developed depends on these use cases, also the acceptance 
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tests are defined. The requirements are linked and the technical system 

architecture is designed. These can be expressed and modelled by using 

diagrams (block diagram, UML etc.). 

Logical system requirements are formulated based on two different 

perspectives: functional and non-functional requirements. 

Define the logical system architecture based on the requirements that have 

been found. Logical system architecture is the model of the function 

network, function interface and the communication among the functions. It 

does not involve any technical implementation.   

Decomposition of system function is used to determine the system 

components, interface and functions. Function network describes the 

relationship among the functions (e.g. dependency). The communication 

networks describe how the functions communicate with each other (e.g. 

CAN, LIN and FlexRay). The functions are grouped into components. 

 Analysis of the logical system architecture and specification of 
technical system architecture 

The specification of the technical system is based on the logical system 

architecture. To decide use what hardware (ECU) implement which 

function or functions by considering constrains of ECU. Because some 

ECU may not be suitable for the function, the ECU is better to implement 

the function than the others or the price of ECUs ect.. The software 

requirements are defined. 
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 Analysis of software requirements and specification of software 
architecture 

Define software boundaries and interface. The software boundaries which 

items are part of the software system, and which items belong to the 

periphery or environment. The software interface defines includes two 

types interface, on board and off board. On board interface includes set-

point generators, sensors and actuators. Off board interface include 

downloading and debugging tool, flash programming tool, diagnostic tool 

and network development tool . 

 Specification of software components 

This step involves modelling software components, the implementation 

detail is ignored. There are three types of model to be specified. They are 

the data model, the behavioural model and the real-time model. The data 

model defines the data to be processed by the software. The behavioural 

model specifies the dynamic structure of software components. It includes 

specification of data flow and control flow. Specification of data flow is a 

processing flow of the data (input to output) among the software 

components. It describes the paths of data transfer between software 

components. Specification of control flow describes the control of the 

instructions’ execution. There are four control structures: sequence, 

branching, repetition (iteration) and call. The real-time model defines the 

real-time requirements of the task that assign a process that implements 

software component, such as deadlines for event handling. 

 Design, implementation, and testing of software components 

The design phase must define all specific implementation for the data, 

behaviour and real-time model of the software components. Consideration 
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of the requested non-functional product properties (hardware cost, 

reliability etc..). Design and implementation of the three models is based 

on the specification of the software components. Every implementation is 

tested by a corresponding test method during the development. 

 Integration of software components and software integration tests 

After all software components are completed and have passed the 

corresponding test e.g. unit test, they are integrated into a software system 

and integration testing can start. 

 Integration of system components and system integration tests 

This step installs all programs into the ECUs. All of these ECUs are 

connected to the other electronic devices (setpoint generators, sensors, and 

actuators).  

 Calibration 

This involves setting data point to give optimum system performance.      

 System and acceptance test 

This step checks that if the system satisfies the user requirements. 

3.2.1 Multiple	V	models	

As in other transportation industries (train and aerospace), the automotive system 

is a big project. It can't be built directly after it is designed. The model of the 

system is built on a PC and is a simulation of the system. If the model is correct, 

then the code is generated and embedded in a prototype. The hardware of the 

prototype will be gradually replaced by the real hardware. Eventually the final 

product will be formed in this way. The reason for building the model and 

prototype is because changing a prototype is easier and cheaper than changing the 

final product. Also at the beginning the user requirements are very hard to be fully 
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understood. The model can help the developers to better understand these 

requirements.  It also can be shown to the user to check if the model satisfies their 

requirements. The validation of the system happens on the early stage and can 

help reduce the risk.  

In the multiple V models, each V development cycle develop the same required 

functionality. But they are developed in the different physical versions of the 

same system. This means the same functionality can be tested for the model as 

well as for the prototype and the final product. The difference is the executing 

environment.  

 

Figure 3-2 Multiple V development life cycle 
 

In a single V model method, the testing starts after all implementation is done. It 

is not on adequate approach in today’s iterative software processes. It may work 

for some small, simple and well understood project, however nowadays software 

gets bigger and more complex each year.  
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Automotive software development involves both software and hardware, often 

developed independently and in parallel. It is big risk to find that the software and 

hardware don't work together at a very late stage of the development. The iterative 

development method allows frequent communication, integration and testing 

between them. The system is built little by little. After one small part of the 

system functionality is built (hardware and software) and it is successfully 

integrated and tested, the next small part of functionality is built and so on.   

To develop some really large system a decomposition of the system is necessary. 

The works are assigned to groups. Each group develops part of the system in 

parallel. The multiple V process is applied to every group. The integration of the 

different components happened many times in the development process. The early 

stage integration is based on different component models or lab hardware. In the 

end the final product is integrated together when all the components have been 

fully developed.  

3.2.2 Nested	V	model	

The multiple V process does not address the decomposition of complex systems 

which are very common in the automotive industry. A high level process is 

needed to decompose the system. Also at the end, a process is required to 

recompose the system. As a matter of fact, a single V process can be applied to 

achieve such process requirements. This is shown in Figure 3-3. The left side of 

the V process is to decompose the complex system into the components. The 

middle of V process is the development of these components in parallel. On the 

right side of the V is the integration of all the components. 
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Figure 3-3 parallel development phases in V model 
 

After the system is decomposed, since each component is not as complex as 

before, a multiple V model can be applied to the component development. The 

whole development process is like many multiple Vs nested in a V model as 

Figure 3-4 illustrates. 

 

 

Figure 3-4 system decomposition and development using nested and multiple V models 
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By using a nested V model, everything related to system testing can be addressed 

at the right place and level as illustrated in Figure 3-5. 

 

Figure 3-5 Higher-level test issues in the nested multiple V model 
 

3.3 Test	planning	

A modern car contains a lot of hardware components and the associated software 

control systems are extremely large. During the development many tests should be 

done in the different stages; some of them test performance, others test component 

integration, others test the user-friendlessness etc..  Lots of complex situation 

appear, so plan are needed to control the testing process.  

For complex systems, making a master plan can give an overview of the test 

control process. There are two fundamental aspects to the master test plan: test 

type and test level.  

A system can be tested from different points of view; functionality, user 

friendlessness, performance, etc. These attributes are essential for software quality 

assurance. Some of the quality attributes are related so we can define them in the 
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test type. “A test type is a group of activities with the aim of evaluating a system 

on a set of related quality attributes.”(Broekman and Notenboom 2003, p33). Test 

types state what is going to be tested (and what is not). It gives a boundary for the 

tester to test.  

Table 3-1 lists some common test types (Broekman & Notenboom 2003, p34). 

Test type 
 

Description 
 

Quality 
characteristics 

included 
Functionality 
 

Testing functional behaviour (includes dealing with 
input errors) 

Functionality 
 

Interfaces Testing interaction with other systems Connectivity 
Load and stress 
 
 

Allowing large quantities of events and numbers to 
be processed 
 

Continuity, 
performance 
 

Support 
(manual) 
 

Providing the expected support in the system’s 
intended environment (such as matching with the 
user manual procedures) 

Suitability 
 
 

Production 
 

Test production procedures 
 

Operability, 
continuity 

Recovery Testing recovery and restart facilities Recoverability 
Regression 
 

Testing whether all components function correctly 
after the system has been changed 

All 
 

Security Testing security Security 
Standards 
 

Testing compliance to standards 
 

Security, user-
friendliness 

Resources 
 

Measuring the required amount of resources 
(memory, data communication, power, …) 

Efficiency 
 

Table 3-1 Common Test Types 
 

“A test level is a group of activities that is organized and managed as an entity.” 

(Broekman & Notenboom 2003, p34). Test levels states who is going to perform 

the testing and when. The test level can be defined as high-level tests and low-

level tests. The high-level tests are tests on the integrated system or subsystem, 

they are more black-box oriented. The low-level tests are tests on isolated 

components, they are more white-box oriented. In the nested V model 

development process, the low-level test is at left side of V, the high-level test is at 

right side of V.  Table 3-2 list test level (Broekman & Notenboom 2003, p35). 
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Test level  Level  Environment  Purpose 

Hardware unit 
test 
 

Low 
 

Laboratory 
 

Testing the behaviour of hardware 
component in isolation 

Hardware 
integration test 

Low 
 

Laboratory 
 

Testing hardware connections and 
protocols 
 

Model in the loop 
 

High/low  Simulation 
models 
 

Proof of concept; testing control 
laws; design optimization 

Software unit 
test, host/target 
test 

Low 
 

Laboratory, 
host + target 
processor 

Testing the behaviour of software 
components in isolation 

Software 
integration test 

Low 
 

Laboratory, 
host + target 
processor 

Testing interaction between software 
components 

Hardware/softwa
re integration test 

High 
 

Laboratory, 
host + target 
processor 

Testing interaction between 
hardware and software components 

System test  High  Simulated 
real life 

Testing that the system works as 
specified 

Acceptance test 
 

High 
 

Simulated 
real life 
 

Testing that the system fulfils its 
purpose for the user/customer 

Field test 
 

High 
 

Real life 
 

Testing that the system keeps 
working under real life conditions. 

Table 3-2 Test levels 
 

At the begging of the project,  a master plan (Figure 3-6) needs to be drawn up 

which defines the tasks, responsibilities, and boundaries for each test level. A 

master test plan describes how to combine the test type and test level together; test 

type is what has to be tested and test level is who is going to perform the test. 

Three areas are of main interest for the master test plan: 

 Test strategic choices – what to test and how thorough; 

 Allocation of scarce resources; 

 Communication between the disciplines involved. 
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Figure 3-6 Master test plan 
 

After the master test plan has been made, the detailed plan of each test level is 

based on the master test plan. A typical test plan should include the following: 

1. application(s)/system(s) to be tested 

2. testing objectives and their rationale (risk and requirements) 

3. scope and limitations of the test plan 

4. sources of business expertise for test planning and execution 

5. source of development expertise for test planning and execution 

6. sources of test data 

7. test environments and their management 

8. testing strategy  

9. <Repeated> testing details for each development phase 

(a) development phase 

(b) how can you tell when you are ready to start testing? 

(c) how can you tell when you are finished testing? 

(d) <Draft> test cases list (ID, title, and brief description) 

(e) <Draft> test case writing schedule 

(f)<Draft> test case execution schedule 

(g) <Draft> test case execution results analysis and reporting schedule 

10. <Draft> overall testing schedule 

<Repeated> means that you should expect to repeat this item and all sub-items for as many times 
as there are development phases. 

<Draft> means that at the time the test plan is first written, there is insufficient information from 
the development activities to fully document the <Draft> items. 
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3.4 Verification	and	Validation	

There are two types of fault in software products. They are specification faults and 

implementation faults. The specification faults are predominant in most projects 

from the research result  (Michael Schneider et al. 1992), so the V model 

differentiates between verification and validation. 

Verification checks if the software satisfies the specification (Patton 2005). Was 

the software built right?  

Validation checks if the software satisfies the user requirements (Patton 2005). 

Was the right software built? 

The V model separated four test steps: 

 Component test versus component specification. 

 Integration test versus specification of the technical system architecture. 

 System test versus specification of the logical system architecture. 

 Acceptance test versus user requirements. 

 

Figure 3-7 (Tian 2005, p31) shows the verification and validation activities 

associated with V model 
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Figure 3-7 Verification and validation activities associated with the V model (Tian 2005, 
p204) 
 

3.4.1 Verification	

There are two methods for the software verification: static and dynamic method.  

3.4.1.1 Static	testing	

Static testing is “a process of evaluating a system or component without executing 

the test object.” (Broekman & Notenboom 2003, p331). It examines the 

documentation that has been produced during the development. Static test is the 

least expensive testing, giving a big opportunity to reduce defects that have been 

written in the documentation.  

There are three static testing techniques to review documents' content.  

 Desk checking 

 Inspections 

 Walk troughs 
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Desk checking is done by the author. He (she) check his (her) own documents. 

“Desk checking involves first running a spellchecker, grammar checker, syntax 

checker, or whatever tools are available to clean up the cosmetic appearance of 

the document. Then, the author slowly reviews the document trying to look for 

inconsistencies and incompleteness. Problems detected in the contents should be 

corrected directly by the author with the possible advice of the project manager 

and other experts on the project. Once all corrections are made, the cosmetic 

testing is rerun to catch and correct all spelling, grammar, and punctuation errors 

introduced by the content corrections.” (Everett and McLeod 2007,p 97).  

Inspections require more people to check the documents. The inspectors are more 

senior members of the team. The document is read by the inspectors who discover 

the content problems. When they read the document, it is better to avoid the 

author, because human tendency is for the author may to influence the reviewer. 

During the reviewing the inspector should record any problems that they see. 

After they can have the discussion with project manager or someone who is senior 

in the project to correct the problems. 

“The walk-through is a scheduled meeting with a facilitator, the document author, 

and an audience of senior technical staff and possibly business staff. The author 

must scrub the document for cosmetic errors and send the document to all 

participants in advance of the meeting. The participants read the document and 

formulate questions about the document contents based on their own knowledge 

of the new system or application. At the appointed time, the author presents his or 

her document to the walk-through meeting. The facilitator becomes the 

clearinghouse for questions by the audience and answers by the author. The 

facilitator also ensures that the questions are posed in an objective, nonthreatening 
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way. The walk-through facilitator documents all suspected content problems and 

author responses for later resolution by the project manager in a manner similar to 

the inspection resolutions” (Everett & McLeod 2007, p98). 

All the techniques previously introduced are the review techniques. But code 

review only can find spelling or syntax errors; it is not very effective for logic 

errors. So the static code analysis is another important part in the static test. There 

are two main components: building a model and analysis algorithm. 

3.4.1.2 Dynamic	test	

Dynamic test runs the program as a customer would. There are two test levels: 

unit test and integration test, and two ways for testers to approach the test: black 

box testing and white box testing.  

3.4.1.2.1 Black	box	test	

In black box testing the tester does not need to know how the software works, it 

checks if the software does what it is supposed to do. The input and the output is 

the main thing to test. The process is ignored. For example, to test a vending 

machine, the tester puts the coin to the machine, select an item and see if the 

machine gives the right item. The tester does not care how the machine performs 

the task. 

3.4.1.2.2 White	box	test			

To do white box testing, the tester must have access to the program's code and be 

able to observe the execution trace. The whole execution of the program is 

monitored. For example, the vending machine will be disassembled; all operations 

will be monitored from the time the coin has been put in to when the item gets out.  
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3.4.1.2.3 Component	(Unit)	test	

 

 

Figure 3-8 V model (Component test) 
 

“The tests that are conducted on the module software are called unit tests or 

module tests.” (Everett & McLeod 2007, p53) The unit test normally happens at 

the function level. A unit test should apply to each function as they are developed. 

It makes sure the individual function is working before integrating them together.  

Procedure to implement unit testing (Dasso and Funes 2006, p76): 

1. Prepare test environment. 

2. Define input domain based on requirements and use cases. 

3. Define, for every input, expected output based on requirements and use 
cases. 

4. Implement components to be tested. 

5. Group unit tests in collections of components. 

6. Implement unit tests. 
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7. Execute unit testing. 

8. Fix component tested, if there is an error. 

9. Execute step 8 while any error remains. 

 

Unit testing consists basically of  (Dasso & Funes 2006, p76): 

1. Variable initialisation, including database population. 

2. Business rules or input functions are applied. 

3. Destruction of variables, including the cleaning up of data input to data 
base. 

4. Comparison between results of applied function with expected results, 
failing in cases where they differ. 

 

3.4.1.2.4 Hardware	in	the	loop	(HIL)	

HIL is a test level where real hardware is used and tested in a simulated 

environment. (Broekman & Notenboom 2003, p329) In the real world, the ECUs 

connect to actuators or sensors. But during the development, it is not very 

convenient to establish these connections all the time. Some companies produce 

simulated actuators and sensors to help testing the real ECUs. Vector is one of the 

companies. One of their products called VT system that is connected to the ECU 

instead of the actuators or sensors. Figure 3-9 (Vector Informatik GmbH 2010a) 

shows a block diagram that Vector VT system tests an ECU.  
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Figure 3-9 Vector VT system 
 

Benefits of HIL Simulation 

 Systematic and Reproducible 

HIL simulation is the method used to test the functions, system integration, 

and communication of electronic control units (ECUs). The ECUs can be 

applied in vehicle, aerospace, machine tools etc. All the parts (sensor, 

actuator, etc.) that ECUs connect to are simulated in HIL. HIL is very 

systematic and safe, even when critical thresholds are exceeded. The main 

purpose of HIL is to detect errors (e.g. unconnected sensor etc.). If the 

error has been detected, then this error can be produced again.  

 Improving ECU Software Quality 

HIL simulation helps to improve quality at an early development stage. A 

major Japanese automobile manufacturer states that HIL simulation finds 

90% of ECU errors, and almost all the errors can be found before the 

calibration phase (dSPACE 2009, p102). This shortens the time to market 

and avoids recall campaigns that damage a company’s image. The 

investments made in HIL systems and in developing tests have usually 

paid off after only a few months. 
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The following example is about HIL for a Three-Wheeler Scooter (dSPACE 

GmbH 2007).  

“Piaggio developed the three-wheeler scooter MP3 with two front wheels. The 

innovative, electronically controlled locking system keeps the vehicle upright 

without using the usual central stand. The complete system of networked 

electronic control units (ECU) was tested by ELASIS using a dSPACE 

hardware-in-the-loop (HIL) simulator. 

 

Figure 3-10 Piaggio MP3 scooter 
 

The new three wheeler scooter MP3 is better road holding in whatever grip 

conditions and on bad surface roads. It has a parallelogram suspension 

anchored to the frame that allows a tilt angle of up to 40°. The locking 

mechanism for the front suspension mainly consists of the NST (Nodo 

Stazionamento, Locking Mechanism Control Unit) and the engine control unit 

NCM (Nodo Controllo Motore). The implementation of the NST is feasible 

only if the electronic control unit (ECU) which controls it is connected to the 

NCM via a CAN network.” 



87 
 

The new locking system NST allows “easy parking” without the kickstand; 

When the driver pushes the lock request lever, the lock conditions have to be 

simultaneously verified: 

 Vehicle speed below a threshold which is a function of vehicle 
deceleration 

 Throttle closed and engine speed under a threshold 

 

 
Figure 3-11 “easy parking” system block diagram 
 

If these conditions are not reached after a certain time span, the lock request 

is rejected. If the locking conditions are true, a lamp on the dashboard starts 

flashing and is lit permanently when the suspension is locked. When the 

driver is on the scooter, the suspension is unlocked on the driver’s request and, 

for safety reasons, if one of the following conditions is verified: 

 Engine speed above a threshold which assures that the clutch is 
closed 

 Vehicle speed above a threshold 

 

NST NCM Actuator  
Engine  

Speed Speed display 

Speed <threshold Throttle closed & Speed <threshold 

&

Lock 
rejected 

False Lamp flashing True 

Lock request lever 
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To test the NST thoroughly, needs a lot of severe testing conditions that are 

difficult or even dangerous to reach, like cornering sharply or braking at top 

speed on rain-soaked surfaces. Moreover, it is almost impossible to generate 

exactly the same testing condition twice. ELASIS tested the NST and the 

NCM simultaneously on the CAN network. The model of the engine runs in 

real time to verify correct control system integration on the CAN network. 

The simulation therefore had to provide a short turn-around time. They also 

needed a test platform with closed-loop simulation, the facility for test 

automation, and Fault Insertion Unit (FIU) capabilities. To make sure the 

locking mechanism will be reliable even if other components fail, FIU is very 

important. Having this in mind and working towards extending the same 

development platform for different ECUs,  ELASIS selected a dSPACE 

Simulator Mid-Size as real-time hardware. They built the model for the 

scooter behaviour in MATLAB®/Simulink® and computed it with a DS1005 

PPC Board. The I/O signals were generated and measured by the DS2210 

HIL I/O Board, which also performed the signal conditioning. This board 

contains special functions for generating and reading ECU crank-angle-based 

signals with high accuracy and convenience. 

Figure 3-12 shows the set up for Piaggio MP3 scooter HIL test with dSPACE 

tools (dSPACE GmbH 2007). 
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Figure 3-12 The hardware-in-the-loop setup with a dSPACE Simulator Mid-Size 
 

3.4.1.2.5 Integration	test	

 

Figure 3-13 V model (Integration test) 
 

The aim of integration testing is to make sure different parts of system are able to 

correctly work together. (McGregor and Sykes 2001)  “Integrated tests are 

performed to test various parts of the system (components, modules, applications, 
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etc.) that were separately developed in a set.” (Dasso & Funes 2006, p76). The 

integration test starts after each function is complete and passed its own unit test. 

Procedure to implement integrated tests(Dasso & Funes 2006, p77): 

1. Prepare test environment, using test data and test server, which are 
configured to simulate the production environment. 

2. Identify test cases based on requirements and architecture. 

3. Detail procedures for each test case. 

4. Implement integrated tests. 

5. Execute integrated tests. 

6. Analyse results. If errors are found, they must be registered in the problem 
reports tool and associated with those responsible for the corresponding 
corrections. If none are found codification may stop. 

7. Fix problems encountered. 

8. Execute tests again. After ending it, return to step 6.  

 

The integration test covers the hardware and the software. Due to the dependency 

of the different software components and different hardware parts. It is very 

important and useful to make a strategy to do the integration test. There are three 

fundamental strategies: Big bang, Bottom-up, and Top-down. They are not 

mutually exclusive, so a variety of different strategies can be combined. The 

choice of strategies depends on factors such as availability of the integration parts 

(e.g. third party software or hardware); size of the system; whether it is a new 

system or an existing system with added/changed functionality; and the system 

architecture (Broekman & Notenboom 2003, p46). 

Big bang integration 

This strategy is quite simple, all modules are integrated together, the whole 

system is tested. It can be successful if: a large part of the system is stable and 
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only a few new modules are added; the system is rather small; the modules are 

tightly coupled and it is too difficult to integrate the different modules stepwise. 

Bottom-up integration  

This strategy starts with low level modules with the least dependencies, using 

drivers to test these models. It can be applied to build a system step by step; the 

subsystem is developed in parallel and then integrated together. The integration 

can start very early in the development process. The advantage is this strategy can 

detect interface problems early. The disadvantage is that many drivers are used, 

and consume lots time because of the iteration of tests. 

Figure 3-14 is a module call graph. A bottom up integration is illustrated in Figure 

3-15.   

 

Figure 3-14 module call graph 
 

main 

A B C 

D E F 
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Figure 3-15 bottom-up integration 
 

Top-down integration 

This strategy offers the ability to integrate the modules top-down starting with the 

top-level control module. The top-level module is tested at beginning and the 

lower level modules progressively added one by one. The lower level modules 

normally are simulated by stubs. The advantage of top-down integration is that it 

can give an overview of the entire system. The disadvantage is that a change of 

requirements, that will affect the low level modules, may lead to changes in top-

level modules. A large number of stubs are needed to test every integration step. 

For the call graph in Figure 3-14, top-down integration can be illustrated in Figure 

3-16. 

test 
D 

test 
main, A, B, C

D, E, F 

test 
D,E,A 

test 
E 

test 
F 

test 
C,F 

test 
B

driver 



93 
 

 

Figure 3-16 top-down integration 
 

In the automotive industry, the integration test involves hardware and software. 

Often the system works in the simulated model or prototype, but won't work for 

the hardware integration. Hardware-In-The-Loop can also be used for integration 

testing. The ECUs may be connected to different networks (e.g. CAN, FlexRay, 

and LIN etc.). They communicate with each other by message passing. During the 

message transmission, many things could happen to affect the message arriving at 

the destination, so we need some mechanism to record the whole system's 

behaviour which includes local ECUs and network. There are some tools to help 

to monitor the network of ECUs, e.g. CANoe, CANalyzer etc., but they only 

record the data on the network and cannot record any synchronised information 

about the local ECUs. So a method is needed to be able to record whole system 

state (global state). In a later chapter is decribed more detail about how to build 

and analyse the global system state.  

3.4.2 Validation		

Validation is the process confirming that it meets the user's requirements. It 

checks if the system meeting the users’ need. 
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Figure 3-17 V model (system test) 
 

The early system validation will be checked by using some animation techniques: 

formal specification, modelling and simulation techniques, and using software to 

simulate the system. These techniques are used in the early design and 

development phases. Computer algorithms can be used to mathematically prove 

that the system specifications are consistent. 

3.4.2.1 Formal	specifications	validation		

“A formal specification is simply a description of a system using a mathematical 

notation.” (Bowen 2003, p4). Formal specification can clearly explain the system, 

without any confusion as the mathematics is precise. After the developer acquires 

the requirements from the user, they can build a system specification with the 

mathematical notation. This specification is able to describe exactly the system to 

apply on the requirements. In order to check if the system is satisfies the users' 

requirements, after the system formal specification is built; the developer needs to 

meet the users again to show them this specification. This should be the first 

validation of the system.  
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There are different mathematical notations. The notation widely used by the 

computer is the Z notation. Z notation that is has been developed at Oxford 

University since the late 1970’s by members of the Programming Research Group 

(PRG) within the Computing Laboratory (Bowen 2003, p4).  For example, {n : Z 

• 2 * n} means a set of all even integer. n is a variable, Z represents integer type,  

any integer multiplies by 2, the result will be an even integer. This is an easy 

example about denoting sets by using Z notation. It also can denote logic, types, 

structure, relations, functions, etc.. The big advantage of using Z notation to 

represent the requirements of the user reduces the ambiguity, as the nature of the 

formal specification. It helps the earlier system validation and enhances the 

validation of the system.  

 

3.4.2.2 Model	based	development	

“Modelling is the process of producing a model; a model is a representation of the 

construction and working of some system of interest. A simulation of a system is 

the operation of a model of the system.” (Maria 1997) Model is the static 

“shape/body” of the system. The simulation is the dynamic “activities” of the 

system model. The model test is known as Model In the Loop (MIL). 

A system model is built of the behaviour and the structure of the system. System 

structure defines the interaction among the components. System behavior defines 

the how the components change state, it may be caused by the communication 

among themselves.   

Figure 3-18 is an example of the structure of a car speed control system. If the 

driver presses the accelerate pedal or the button to set a constant speed; the force 
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sensor that is connected with the pedal or button sends a signal to the speed 

controller; the speed controller tells fuel controller. How much fuel to feed, and 

this is shown in the diagram as the “accelerate” relationship. This is the system 

structure. 

 

Figure 3-18 Basic structure for an car speed control system 

 

In automotive system design, the system and platform on which system is being 

implemented ( e.g. ECU is a platform in the automotive industry) both need to be 

considered, because they are developed in parallel . But the platform plays less or 

no role in the normal software design. This is the main difference between normal 

software design and automotive software design. The combination of platform 

model with system model forms one huge unified model. The platform model 

could offer some guarantees which could be used in the debugging/validation of 

the system model. The problem is how to relate the platform validation and 

system model validation? In the car speed control system, system model describes 

speed controller, fuel controller, and brake controller running on the different 

ECUs and communicating each other via a network. The platform model describe 

all the ECUs' connection architecture(processing elements connected via network) 

and the communication behaviour (in the form of the network protocol through 
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which the processing elements communicate). The platform model of a car speed 

control system is described in Figure 3-19 

In this case, the guarantees to validate the protocol for system model are: 

 the network should be always connected 

 The messages in the channel should have the correct priority. (Brake 
controller should have highest priority safety resons.) 

 The message should be passed in a limited/useful time.  

 

Figure 3-19  Physical diagram for a car speed control system. 

 

Normally the model design depends on the requirements of the user. The 

requirements are analysed by the developers. The model design should have 

following properties:(Roychoudhury 2009, p11) 

 Complete—The model should be a complete description of system 
behaviour. 

 Based on well-accepted modelling notations/standards. 

 Preferably executable—ideally the model is equipped with execution 
semantics, so that simulations can be run on the model itself. 

After building the model, it should be operated to see how it works.  Simulating a 

model can discover some unexpected behaviour by random simulation.  The 

requirements of user are implemented in the model, to find out if the system 

operates as expected. Even the user can be asked to operate the model and check 
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out if any problems. It is the main reason why model simulation is used. Model 

simulation validates if the system model satisfies the requirements of user. 

A simulation model builds a link between informal requirements and the system 

model. Also there should be a link between the model and the real system; this 

can be done by code generator. The source code of system can be generated by the 

model compiler and compiled by the compiler toolset. After the source code is 

compiled, the binary code is generated. The binary code is flashed into the 

hardware. The hardware can be tested against the model, see if the hardware 

implementation matches the model. This process is called model based system 

development. It is illustrated in Figure 3-20 (Roychoudhury 2009, p51) 

Figure 3-20 model based system development 

 

In automotive software development, math works Simulink is commonly used for 

model based development. Simulink is an important component of the MATLAB. 
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It offers dynamic system modelling, simulation, and comprehensive analysis 

integration environment.  

Simulink offers all mathematically simulated models. Each Simulink model is a 

block diagram. After the system is modelled by the block diagram, the model can 

be run on Simulink. Therefore it gives the initial overview of the system execution 

situation. Figure 3-21shows Simulink library browser. 

 
Figure 3-21 Simulink library browser 
 

Based on Simulink, dSPACE developed TargetLink that is integrated with 

Simulink.  The following example is a company called “Delphi Electronics & 

Safety” using dSPACE tools to develop new algorithms for power window 

functions (dSPACE GmbH 2010).  

“The entire functionality of the power window control was designed in 

Simulink/TargetLink and then autocoded with TargetLink. The generated 

code was highly efficient and clearly structured. Moreover, simulation in 

MIL and SIL modes proved extremely useful in advancing controller 

design and fixed-point software development. For offline simulation, 



100 
 

signals recorded in rapid control prototyping were reused, and additional 

test vectors were also developed (Figure 3-22). To specify the position 

control’s software interfaces, the TargetLink Property Manager was used 

frequently to convert the Stateflow sections of the anti-pinch protection 

into production-ready C code. TargetLink’s ability to flexibly generate 

code for look-up tables was harnessed to autocode the stall detection, 

making it possible to use different types of search and interpolation 

routines, to partition the code into different files, etc.” (dSPACE GmbH 

2010) 

 
Figure 3-22 Simulation environment in Simulink/TargetLink. 
 

3.4.2.3 Rapid	prototype	validation	

The prototype embedded system is tested while connected to the real environment. 

This is the ultimate way of assessing the validity of the simulation model. Figure 

3-23 shows the process for the rapid prototype development. 
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Figure 3-23 rapid prototype development  
 

The system test and acceptance test are used to validate if the system satisfies the 

requirements of the user by installing the software in the real hardware. 

Performance testing can be carried out which focuses on the performance of the 

software system in realistic operational environments. Many such systems are 

real-time systems, where timely completion of computational tasks and overall 

workload handling are of critical importance (Tian 2005, p213). 

Stress testing, which is a special form of performance testing can also be done, 

where software system performance under stress is tested. This type of testing is 

also closely related to capacity testing, where the maximal system capacity is 

assessed (Tian 2005, p213). 

The prototype validation also involves system parameters evaluation. In the 

automotive industry there are some tools developed for the rapid prototyping 

hardware; CANape is a tool that is developed by Vector, it is available for ECU 

development, calibration, and diagnostics as well as for measurement data 

acquisition. 
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The primary application area of CANape is in optimizing parameterization 

(calibration) of electronic control units. It can calibrate parameter values and 

simultaneously acquire measurement signals during system runtime. The physical 

interface between CANape and the ECU might be made via the CAN bus with 

CCP, for example, or via FlexRay with XCP. Additionally, with its Diagnostic 

Feature Set CANape offers symbolic access to diagnostic data and services. As a 

result it has all relevant integrated functions for measurement, calibration, flashing 

and diagnostics. Its reliance on standards makes CANape an open and flexible 

platform for all phases of ECU development. Figure 3-24 shows CANape 

measurement configuration window. 

 

Figure 3-24 CANape measurement configuration 
 

3.5 Automotive	distributed	system	integration	

There are some companies that develop the tools for the automotive distributed 

system integration test. The most popular two companies are Vector and dSPACE. 

Vector offers the CANoe, CANalyzer, CANdela, CANape, etc. for the network 

analysis, ECU diagnostic and calibration.  CANoe is a very powerful development 

tool for the distributed automotive system; it offers the service to do the ECUs 
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integration and the restbus simulation is supported. It connects all or part of ECUs 

(simulated or/and real) together to implement the integration test. During the test 

CANoe logs all communication messages to the CANoe log file. To use CCP (see 

section 2.6), the local state of each node also can be logged into the CANoe log 

file. Therefor the CANoe log file records all communication messages and the 

local states of each node. However from this log file, the variable relationship 

between the nodes cannot be clearly observed, e.g. if the node A send message M, 

how M is going to affect the other nodes or have no affect at all because M does 

not satisfy the threshold of the nodes, or what happens if M delayed. The message 

delay, halt and modification (bits lost during the transmitting) is the major 

problem for the distributed systems. Some of them are very easy to be observed, 

e.g. termination: the whole system just shut down, deadlock: all nodes are in the 

waiting state. However, failure of distributed systems is not easy to be observed 

(unpredictable), because of the arbitrary of the distributed system. Every time 

starting the distributed system, it may go through different execution states (global 

states). In the automotive system, some of global states may reduce the safety of 

the vehicle, increases the other risks and be uncomfortable for the customers etc., 

so to find fault global states is essential for the ECU integration. The global states 

of the system are more about the global view of all local states of all ECUs. 

CANoe does not have a function to construct the global states of the system; 

however, it offers potential abilities to construct the global states. The next section 

is going to talk about how the software integration testing is done by the industry. 

3.5.1 Automotive	Software	integration	testing	

The automotive software integration test can be done by two approaches: top-

down integration or bottom-up integration. Both approaches are supported by the 



104 
 

most popular automotive development tool companies Vector and dSPACE. The 

CANoe tool of Vector can run the whole system in which all nodes are simulated 

as soon as whole system is specified or partly specified. Each time after the real 

ECU is developed, replace the simulated node with the real node on the restbus 

simulation. The system will be integrated progressively by replacing the ECUs 

one by one. The top-down integration of CANoe is shown in Figure 3-25(Vector 

Informatik GmbH 2010b, p23).  

 

Figure 3-25 CANoe top-down integration 
 
Phase 1: Requirements analysis and design of the network system. 
Phase 2: Implementation of components with simulation of remainder of the bus 
Phase 3: Integration of the overall system  
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Also the bottom up approach can be done by using CANoe. Every time when the 

least dependency ECU is developed, integrating the ECU to the CANoe, the 

system can be integrated one by one.  

dSPACE uses the HIL simulation to do the system integration testing (dSPACE 

GmbH 2009, p102). They also offer the restbus simulation as well as CANoe. The 

difference is CANoe using program code to simulate the ECU nodes, the dSPACE 

simulation using the hardware simulator to simulate the ECU.  The dSPACE 

simulator is illustrated in Figure 3-26. 

 

Figure 3-26 dSPACE simulator 
 

3.5.2 Integrating	time‐triggered	system	

As discussed in section 2.5.2, the timer-triggered system has the global clock that 

synchronized the system, the global states can be easily constructed or the system 

can be paused in the same global time.  It makes the integration of the time-

triggered system is much easier. 
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3.5.3 Integrating	event‐triggered	system	

Because the event-triggered system does not have global clock as time-triggered 

system has or the shared memory, it makes the integration test much harder than 

the time-triggered system. The system execution global states trace is 

unpredictable; it may change on the different running. The unexpected global 

states are very hard to be detected by the current development tools. There are no 

such tools in the automotive industry to construct global execution states for the 

ECU network.  

3.6 Conclusions	

Testing is very important during software development, also for the automotive 

software; it goes through entire development life cycle. This chapter described the 

V model that is the fundamental development methodology, and the variants of 

the V model (multiple V and nested V). The test plan states how to apply the 

different tests to the corresponding development phase in the V model. 

In general there are two types of faults in the software product; specification and 

implementation fault; specification faults fail the requirement of the user, it does 

not do the thing that user expect properly, so developers need to validate the 

specification that is delivered from requirements of the user. Implementation fault 

fails the specification that has been written, it does not correctly implement the 

function that has been specified, so developers needs to verify if the function 

satisfies the specification. The validation of a system requires a global overview 

of the system to check if it works as it expected. Verification checks the detailed 

implementation of the system. The different test types are applied to check these 

two fault types. A number of common automotive system integration problems 

were discussed as well as the difficulties in detecting them. 
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Chapter	4 Logical	Time	

4.1 Introduction	

Time is important to determine the order or causality of events. The clock is the 

mechanism used to record time. The causality (order) of events is a very important 

issue in distributed system and is a fundamental concept for analysing and 

debugging the system state. Physical time is used to track the causality of events 

using synchronized clocks. However it is impossible to apply a global physical 

time in distributed system made up of many separate CPUs devices.  This is 

because the devices, which can be either the same or different types, may have 

different CPU clock frequencies, the accuracies of which can vary with 

temperature, moisture and manufacturing tolerances.  Accurate clock 

synchronization is therefore impossible to achieve over a period (Nicola Santoro 

2007, p333).  

For example Figure 4-1 shows 4 nodes, all connected by a bus line. Each node has 

its own local time above it. If node2 sends message to node1 at local time 3:55 

and node1 receives the message at local time 3:35, it looks very confusing that the 

receiving message event happens before the sending event. Such unsynchronized 

time is not good for distributed system analysis or testing; so a common time 

(Global time) is needed for the purpose of distributed system analysis and testing. 
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Figure 4-1 Four node distributed system with physical clocks 

 

Although there can be no common synchronized global physical time in a 

distributed system there are some mechanisms (clocks) that can help us to 

approximately realize global physical time. This chapter introduces these 

mechanisms and describes their principles of operation. 

 

4.2 Logical	time	

In general a logical clock can measure the causalities of events. In a distributed 

system, every node has its own local clock that is advanced using a set of rules. 

Each event is assigned a timestamp and the causalities of events can be inferred 

from the timestamps. The timestamp follows the basic monotonic property; if an 

event a causally effects event b, then the timestamp of event a should be smaller 

than the timestamp of event b.  

A system of logical clocks consists of a time domain T and a logical clock C. 

Elements in T are an ordered set over a relation <.  This relationship can be called 

“happens before” or causal precedence (denoted by →) and is also the same as the 

“earlier than” relationship provided by physical time. The logical clock is a 

Node1 Node4Node3Node2
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function that maps the event e in a distributed system to an element, denoted as 

C(e) and called the timestamp of e in the domain T. The clock is defined as  

 C: H ↦ T  

To satisfy the property 

 e1→e2   C(e1) < C(e2)  

This monotonic character is called the clock consistency condition.  

If for event e1 and e2 

       e1→e2 ≡ C(e1) < C(e2) 

then the system of clocks is strongly consistent.   (Ranal and Singhal 1996) 

There are two requirements for implementing logical clocks  

1.  A data structure for the local process to represent its logical time;  

2.  A protocol (set of rules) to update the data structure and ensure the protocol 

follows the consistency condition.  

A data structure for each process has two functions:  

 As a local logical clock, denoted by lci, that helps process pi measure its 

own progress. 

 As a logical global clock, denoted by gci, that is a representation of 

process pi’s local view of the logical global time. It allows this process to 

assign consistent timestamps to its local events. Typically, lci is a part of 

gci. 

The protocol ensures that a process’s logical clock, and thus its view of the global 

time, is managed consistently. The protocol consists of the following two rules: 
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 R1 - This rule governs how the local logical clock is updated by a process 

when it executes an event (send, receive, or internal). 

 R2 - This rule governs how a process modifies its global logical clock to 

update its view of the global time and global progress. It dictates what 

information about the logical time is piggybacked in a message and how 

this information is used by the receiving process to update its view of the 

global time. 

Different systems may use different data structures to represent the logical time 

and different protocols to update the data structure. However, all logical clock 

systems should implement R1 and R2 and consequently ensure the fundamental 

monotonicity property associated with causality. Moreover, the different logical 

clock systems may provide some additional properties to its user.   

4.3 Scalar	time	

Scalar time was proposed by Lamport (Leslie Lamport 1978) and attempts to 

totally order events in the distributed system. In the scalar time system, time is 

represented by positive natural numbers.  The logical local clock of a process P 

and its local view of the global time are expressed by one integer variable C. 

Rules R1 and R2 to update the clocks are as follows:  

 R1 - Before executing an event (send, receive, or internal), process Pi 

executes the following: 

Ci := Ci + d (d>0) 

In general, every time R1 is executed, d can have a different value, and this value 

may be application-dependent. However, typically d is kept at 1 because this is 
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able to identify the time of each event uniquely at a process while keeping the rate 

of increase of d to its lowest level. 

 R2 - Each message piggybacks the clock value of its sender at sending 

time. When a process Pi receives a message with timestamp Cmsg, it 

executes the following actions: 

1. Ci :=  max(Ci, Cmsg); 

2. execute R1; 

3. deliver the message. 

The sequencing of scalar clocks between three communicating processes is 

illustrated in  

Figure 4-2.  The events of each process are shown on horizontal timelines with 

their local scalar timestamps.  Messages transmission events between processes 

are shown using arrows. 

 

 

Figure 4-2 scalar time 

 

Gap Detection:    

Sometimes because of the delay of the message transmission the receiving 

message timestamp may be smaller than the current scalar time of the receiving 
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process.  This is because scalar time lack of the overview of the global time, what 

is called the gap detection property. The gap detection can be used to detect the 

message delay or the message undelivered; they are the main problems that could 

happen on the distributed system, so the gap detection is a very important issue 

for the distributed system.  

Gap Detection(Ozalp Babaoglu and KeithMarzullo  1993): 

Given two events e1 and e2 along with their clock values C(e1) and C(e2) where 

C(e1)<C(e2), determine whether some other event e3 exits such that 

C(e1)<C(e3)<C(e2). 

To account for the lack of logical time gap detection, the system needs to set an 

allowable delay time; if the received message has a timestamp smaller than the 

allowable delay time, we can call this received message stable. Stable means:  A 

message m received by process p is stable if no future messages with timestamps 

smaller than TS(m) can be received by p.(Ozalp Babaoglu & KeithMarzullo  1993) 

Properties of Scalar Clocks:   

Scalar clocks exhibit the following properties. 

Consistency property: 

Scalar clocks are monotonic and therefore consistent. 

  For events e1 and e2   e1→e2  C(e1) < C(e2) 

No strong consistency: 

Although the scalar clocks are consistent, they are not strongly consistent which is 

for two events e1 and e2 means that if C(e1)<C (e2)  then this does not necessarily 

mean that e1→e2. 
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Total ordering: 

All timed system events can be put in an ordered set; the whole set being ordered 

by the timestamps. However, the problem is that there may be two or more events 

in the different processes that have the same timestamps. The notation < expresses 

any arbitrary ordering of the processes. If event ei occurs in process pi and event ej 

occurs in process pj, then ei  ej if and only if  

 (i) either C(ei) < C(ej) or  

(ii) C(ei) = C(ej) and pi < pj.  

Because events can occur at the same logical scalar time independently, they can 

be ordered in any arbitrary criterion without violating the causality relation. A 

total order is generally used to ensure liveness properties in distributed system. 

Liveness means a message that arrives at a process must eventually be delivered 

to the process. 

 Event counting: 

If the timestamp of events always increases by a known number (normally 1) and 

event e has a timestamp te, then the minimum event logical duration can be 

calculated by te-1. This is the number of events handled by the process before 

event e occurs. 

4.4 Vector	Time	

In the previous section, the causal history of events in distributed system was 

measured by a scalar time, which is a local view of the global time condensed into 

one integer variable. Scalar time combines the global time and local time together, 
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using one non-negative integer to measure global and local time; it lacks the 

global view of the system. 

Alternatively, a fixed-dimensional vector can represent the causal history. The 

mechanism of vector clocks was developed individually by Fidge (Colin Fidge 

1991)  and Mattern (Friedemann Mattern 1998). Vector time assigns the times of 

processes in a vector; each process has a vector time which contains other 

processes’ local time, so every process the global view of the whole system. 

The implementation of Vector time is as follows:  

Each process pi maintains a vector time VTi.  If the total number of processes is n, 

the vector time of a process can be expressed as VTi[1..n]  where 

(i) The element VTi[i] is local clock of the process pi; 

(ii) VTi[j] ( j ∈x:N | x ∈0..n  x ≠i }) is the latest knowledge that Pi has of the 

local clock of process Pj. 

Process pi uses the following two rules R1 and R2 to update its clock: 

R1 - Before executing an event, process pi updates its local logical time as 

follows: 

VTi[i] := VTi[i] + d  (d > 0, normally is 1). 

R2 - Each message m is piggybacked with the vector clock VT of the sender 

process at sending time. On the receipt of such a message (m,VT), process pi 

executes the following sequence of actions: 

 update its global logical time as follows: 

1 ≤ k ≤ n : VTi[k] := max(VTi[k], VT[k]); 

 execute R1; 

 deliver the message m. 
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Figure 4-3 shows an example of vector time. 

 

Figure 4-3 vector time 

 

Properties of Vector Time 

This section describes the useful properties of Vector clocks and illustrates 

practical uses of these properties.  

Given two n-dimensional vectors V and V' of natural numbers, we define the “less 

than” relation (written as <) between them as follows  

V < V' = (V ≠ V')  ( k:1 k n: V[k] V'[k]) 

Property 1 Strongly Consistent Clock Condition 

If event e happens before event e' then vector time of e is smaller than vector time 

of e'. Another way of putting this is if the vector time of e is smaller than vector 

time of e'  then e happened before e'. 

    e e'  VT(e) < VT(e'). 

(1,0,0) (2,0,0) (3,0,0) (4,3,4) (5,4,4)

(0,1,2) (2,2,2) (2,3,2) (2,4,2) 

(0,0,1) (0,0,2) (2,3,3) (2,3,4)

Process1 

Process2 

Process3 

C1 
C2 
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It is not necessary to know on which processes the two events were executed. If 

this information is available, causal precedence between two events can be 

verified through a single scalar comparison. 

Property 2 Simple Strong Clock Condition 

Given event ei of process pi and event ej of process pj, where i ≠ j 

ei → ej ≡ VT(ei)[i]  ≤ VT(ej)[i] 

VT(ei)[i] = VT(ej)[i] represents that ei is the latest event of pi which causally 

precedes ej of pj, so ei must be a send event.  

Property 3 Concurrency  

Given event ei of process pi and event ej of process pj 

ei || ej ≡ (VT(ei)[i]>VT(ej)[i]) ˄  (VT(ej)[j]>VT(ei)[j]) 

the two events in different processes happen at the same time.  

In the example process1 event with vector time (4,3,4) and process2 event with 

vector time (2,4,2)  are concurrent events.  

Property 4 Pairwise Inconsistent 

Event ei of process pi is pairwise inconsistent with event ej of process pj, where i ≠ 

j, if an only if 

   (VT(ei)[i]<VT(ej)[i])  (VT(ej)[j]<VT(ei)[j]) 

 “A cut is a line joining an arbitrary point on each process line that slices the 

space–time diagram into a PAST and a FUTURE.” In Figure 4-3, cut C1 is a 

pairwise inconsistent. In this situation happens, the cut includes at least one 

receive event without the corresponding send events. 
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A consistent cut contains no pairwise inconsistent events. In vector clock terms, 

the property becomes 

Property 5 Consistent Cut 

A cut defined by (c1;. . . cn)is consistent if and only if 

   i, j : 1  i  n, 1  j  n : VT(ei
ci)[i]  VT(ej

cj)[i] 

This expression means if the cut is consistent, then all events in the cut can track 

back to the previous events which precede current event without losing any send 

event. In Figure 4-3 the cut C2 is a consistent cut. 

Property 6 Counting 

Given event ei of process pi and its vector clock value VT(ei), the number of 

events e such that e → ei (equivalently, VT(e) < VT(ei)) is given by #(ei). 

Property 7 Weak Gap Detection 

Given Event ei of process pi is pairwise inconsistent with event ej of process pj, if 

VT(ei)[k] < VT(ej)[k] for some k ≠ j, then there exists an event ek such that 

   (ek → ei)  (ek → ej) 

Three random events ei, ej and ek, so it cannot be concluded these events forms a 

causal chain ei→ej→ek. 

4.5 Matrix	Time	

The logical time can be represented by a set of  n×n matrices of  non-negative 

integers. A process pi maintains a matrix mti[1..n, 1..n] where, 

 mti[i,i] denotes the local logical clock of pi and tracks the progress of the 

computation at process pi; 
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 mti[i,j] denotes the latest knowledge that process pi has about the local 

logical clock, mtj[j,j], of process pj (note that row, mti [i,.] is nothing but 

the vector clock vti[.] and exhibits all the properties of vector clocks); 

 mti[j,k] represents the knowledge that process pi has about the latest 

knowledge that pj has about the local logical clock, mtk[k,k], of pk. 

The matrix clock of mti contains the local view of the global time. The matrix 

timestamp of an event is the value of the matrix clock of the process when the 

event is executed. 

Process pi uses the following rules R1 and R2 to update its clock: 

 R1: Before executing an event, process pi updates its local logical time as 

follows: 

mti[i,i]:=mti[i,i]+d (d>0, normally d is 1). 

 R2: Each message m is piggybacked with matrix time mt. When pi 

receives such a message (m,mt) from a process pj , pi executes the 

following sequence of actions: 

1. update its global logical time as follows: 

a) 1 ≤ k ≤ n : mti[i,k]:=max(mti[i,k], mt[j,k]), (that is, update its row 

mti[i,*] with pj's row in the received timestamp, mt); 

b) 1 ≤ k, l ≤ n: mti[k,l]:=max(mti[k,l],  mt[k,l]); 

2. execute R1; 

3. deliver message m. 
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An example of matrix clocks is given in Figure 4-4. 

 

Figure 4-4 Matrix time example 

 

A system of matrix clocks was first informally proposed by Michael and Fischer 

(M.J.Fischer and A.Michael 1982) and has been used by Wuu and Bernstein 

(M.J.Fischer & A.Michael 1982) and by Sarin and Lynch (G.T.J.Wuu and 

A.J.Bernstein 1984) to discard obsolete information in replicated databases. 

4.6 Conclusions	

Logical Time 
Mechanism 

Storage Complexity  Global 
Over 
View 

Scalar Time Only use a positive 
integer for each 

process 

Easy to update None 

Vector Time Each process stores 
one dimension 

vector clock that 
contains Ɵ(n) 
components. 

Harder Good 

Matrix Time Each process stores 
two dimension 

vector clock, each 
dimension vector 

contains Ɵ(n2)  
comports. 

Hardest Very Good

Table 4-1 clock system comparison 

n is the total number of process on the network. 
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Each one of these logical time measurements have their advantages and 

disadvantages. Scalar time consumes less resource to process the logical time, but 

the lack of the global view of the other processes. Vector time gives more detail 

about other processes, but consumes more resources. Matrix time includes current 

global time and past global time, but it can consume extremely large resources 

depends on how many process in the distributed system. Table 4-1 compares the 

clock systems in their complexity, storage, and global view. 

For automotive system testing, to find the relationship of the causality of events in 

the system can be a good help. All Electronic Control Units (ECUs) in the 

automotive system are distributed on a network and communicate with each other 

by message passing. There is no global clock for them to synchronize their local 

clock; the only way is to use the logical clock to synchronize all the ECUs. By 

using the global logical clock, the events causality can be defined, and can help to 

track the execution path of the system.  

It seems the vector time is more suitable for the automotive integration because it 

is more descriptive than scalar time and more efficient than matrix time. 
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Chapter	5 Global	State	and	Snapshot	

5.1 Introduction				 	

Global state is very useful for system analysis, testing or verifying properties 

associated with distributed executions. For a single machine, the global state is its 

own local state; but for a distributed system, each node has running its own 

process. These processes do not have shared memory, they communicate with 

each other asynchronously by sending messages. Each component of the 

distributed system has its own state; the state of a node is defined by its local 

memory and the active history. The state of network is defined by the sets of 

messages that pass on the communication channel. The global state is a collection 

of the local states and the network state.    

Recording the global state of a distributed system is a very important issue and 

can be used in distributed system design in some aspects for example, detecting 

the stability of a system, deadlocks  (Rahul Garg et al. 1994) and termination 

(K.M.Chandy and L.Lamport 1985), using the global state. In system recovery, 

each global state can be used as a failure recovery point, just as in windows XP 

the user can set the recovery point; if the system crashed, it can go back the 

recover point, or in a database if the transaction crashed, the whole system can roll 

back to the state before the transaction. For testing the distributed system, the 

global states can be recorded with a time stamp (logical time normally), ordering 

them by the time stamp. The execution trace of the distributed system can be built 

up and the tester can analyse the execution trace to find error.  
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The snapshot algorithm is used to record the global state. It is very important to 

have efficient ways to records the global state for the distributed system; but 

unfortunately there is no shared memory or global physical time. 

If there were a shared memory in the distributed system, all processes would have 

the same view of the data and the entire system states could be considered as one 

state. If global time were available (each node has the same local clock), the 

snapshot could record the global state at the same time, and the order of the global 

state would be absolutely consistent. However, since different node may use the 

different type of microprocessors, it is impossible to synchronise the clocks of 

each microprocessor. Even using the same microprocessor the clock cannot be 

synchronised as it can be affected by the environment (temperature, humidity etc.) 

and power voltage, particularly for the microprocessors that are used in the 

automotive industry.  

However the shared memory or global physical time is not available for the 

distributed system. Some snapshot algorithms are developed to help record the 

global state. Some of them use more memory, some use more channel capacity, 

the snapshot algorithms have a trade-off between the memory and channel 

capacity, it mostly depends on the hardware. As there are different 

communication modes, such as FIFO (First In First Out) and non-FIFO 

communication channels, the different snapshot algorithm is applied. This chapter 

introduces some of the snapshot algorithms. 
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5.2 Snapshot	algorithm	for	FIFO	

Originally  K. Mani Chandy and Leslie Lamport developed the first snapshot 

algorithm called Chandy-Lamport algorithm, since then  other snapshot 

algorithms have been derived from Chandy-Lamport algorithm. 

5.2.1 Chandy‐Lamport	algorithm	

Chandy-Lamport algorithm (K.M.Chandy & L.Lamport 1985) uses a control 

message, called a marker. It is used as a state save request signature. The 

algorithm is only suitable for FIFO systems. There are two rules for processes to 

implement the algorithm, the marker sending rule and the receiving rule. 

Marker sending rule for process pi  

 process pi  records its own state. 

 pi  broadcast marker to all process that are connected with pi . 

Marker receiving rule for process pi   

 If  pi  has not saved its state then execute the “marker sending rule”. 

 Else  

save the channel state between the last time state saved to the time 

pi received the marker.  

(The channel state can be the message send or receive between the time of pi  

sending and receiving the marker.) 
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Figure 5-1 Chandy-Lamport algorithm 
 

After the Chandy-Lamport algorithm was developed, some other algorithms were 

developed variants from it. For example, the Spezialetti-Kearns algorithm 

(Madalene Spezialetti and Phil Kearns 1986) collects snapshot of concurrent 

initiation and efficiently distributes the recorded snapshot. 

5.2.2 Spezialetti–Kearns	algorithm		

In the Spezialetti-Kearns algorithm (Madalene Spezialetti & Phil Kearns 1986), 

each node has unique colour(id_colour) that identifies the node, and local 

colour(local_colour) that represents the current colour of the node in the particular 

snapshot.  

At the beginning, the local colour for every node is initiated as white. If a initiator 

node records its local snapshot, then change its local colour to its id_colour, and 

broadcast snapshot request messages with its id_colour to other nodes. When a 

white node receives a coloured snapshot request, changes its local colour to the 

request message colour, and forwards the message to its neighbour nodes.  When 

a non-white node receives a different colour request messages to it local message, 

it knows there are more than one snapshot initiator on the network; the different 

initiator can be inferred from the colour of the request message. The coloured 
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node adds the id_colour of the other initiator to a list called border_list. After a 

node has received all requests from its incident edges, the colouring phase is 

finished. The node ni sends its border_list to the node nj that sent the first snapshot 

request message to ni. When a node receives a border_list from its neighbours, it 

union the border_list with its own border_list and updates its own border_list with 

the resultant list. Finally, the initiator node that caused this request message gets 

this list. Figure 5-2 shows the phase when colouring has completed.  

 

Figure 5-2 Colouring completed 
 

In the colouring phase, the system is divided into different regions by different 

id_colours of initiators; the initiator knows its neighbouring initiators by 

border_list. The initiators exchange the partial snapshots of the nodes in their 

region. The exchanges occur in rounds, in each round of exchange, an initiator 

sends to its bordering initiator any new state information that it obtained during 

the previous round of message exchange. After the initiator state information 

exchange phase, each initiator has the consistent snapshot.  
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Figure 5-3 gives the example of the Spezialetti and Kearns’ snapshot algorithm. 

There are three nodes on the network, process 1(P1), process 2(P2), and process 

3(P3) are running on corresponding nodes. Node P2 initiates a snapshot collection 

by taking its local state, sends green mark to other nodes. Concurrently node P3 

initiate a snapshot by taking its local state with red marker, send the marker to 

other nodes; the cut is the global snapshot. In Spezialetti and Kearns’ snapshot 

algorithm P3 takes its snapshot in response to P2; P1 ignores P2’s request. The 

global snapshot thus collected is shown by the cut. 

 

Figure 5-3 Spezialetti and Kearns’ snapshot algorithm 
 

All algorithms above are only suitable for the FIFO system, when the messages 

after the marker are sure to be sent. But for non-FIFO systems, the messages after 

marker cannot be sure to be sent. For example the CAN network is a priority 

based network communication channel, the message only can be sent by the node 

that has the highest priority; so it won’t guarantee the message sends after the 

marker.  

For the non-FIFO system different algorithms have been developed. Lai-Yang 

algorithm is the first non-FIFO snapshot system. It is based on the Chandy-
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Lamport algorithm, and does not need markers to control other process to take 

snapshots. 

5.3 Snapshot	algorithm	for	non‐FIFO	

5.3.1 Lai–Yang	algorithm	

The Lai-Yang snapshot algorithm (T.H.Lai and T.H.Yang 1987) for non-FIFO 

does not send markers to request the other processes to record their local state; 

instead it colours messages red and white. If the sender has not recorded its state 

the sent message colour is white, if the sender has recorded its state the sent 

message colour is red. The messages are appended by the red or white colour. 

Processes are allowed to record their local state by itself (Sukumar Ghosh 2007). 

The algorithm can be stated as followed: 

1. Every process is initially white and if it takes a snapshot, it turns to red. 

2. Every message sent by a white (red) process is coloured white(red); so the 

white (red) message is sent before (after) the sender process record its local 

state. 

3. Each process can record its local state at any time, but before possibly 

receives a red message. 

To make it possible, if the destination process (white) receives a red message, 

the destination process needs to record its local state before processing the 

message. By doing this, can make sure that there is no message sent after 

recording its local state, and also the marker is not required. 

4. Each white process records a history of white messages that it sent or 

received by the channel. 
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5. If a process turns to red, then it sends all these white message histories and its 

local state to the initiator process. 

6. The initiator process computes the channel state by evaluating transit (LSi, 

LSj), LSi is local state of process i, LSj is local state of process j. 

SCij = white message sent by Pi on Cij 

 White message received by Pj on  

Cij = {mij|send(mij)∈LSi} − {mij|rec(mij) ∈LSj} 

Although the algorithm needs no control message, it needs to compute the channel 

state by the differences of histories of message and thus needs large storage for 

each process to store the message histories. The control message is used for the 

sake of recording a consistent snapshot, but the Lai-Yang algorithm does not use 

such control message, so the snapshot won’t be consistent, unless the complete 

snapshot is taken. However the problem is if a process terminates, it will record its 

own state following its last action, but it won’t tell the other processes, so the 

other processes won’t record their state and the snapshot won’t be consistent.   

5.3.2 Mattern’s	algorithm	

Mattern’s algorithm (Friedemann Mattern 1993) works for both system FIFO and 

non-FIFO. The basic idea of Mattern’s algorithm uses two colours to indicate 

whether a process has recorded its local state and whether a message is sent before 

or after the local state is recorded in a process. The algorithm is based on the 

vector clock that was discussed in section 4.4. The dimension of vector time 

equals the number of process, each dimension records the corresponding process 

local time. But the vector clock that is applied for Mattern’s algorithm, is different 
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from previous vector clock; it is used to make sure all messages that are sent 

before the snapshot reach their destination before taking the snapshot. By doing 

this the vector time works as a counter, vector counter system allows to use a 

negative integer to count the time of message. 

In the vector counter method any process pi has a counting system for white 

messages (the message before the snapshot taking place). If pi sent message to pj 

(ij) on the j-th component of a local vector Vi of length of number of processes, 

then Vi [j]= Vi [j]+1. If pi receives a message, then Vi [i]= Vi [i]-1; so if all 

messages arrive at the destination process, the all components of vector clock 

should be zero.  

 

Figure 5-4 the vector counter method (Friedemann Mattern 1993) 
 

 

Mattern’s algorithm can be implemented with the following rules 

1. At the beginning, every node colour is white. If a node sends (or receives) a 

white message, then it implements vector counting algorithm; message header 
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includes colour and timestamp, the timestamp is equal to or greater than the 

local time of sending node. If a red node sends a message, the red message 

timestamp updates to the minimum of this red message timestamp and the 

local time; the red message sent or received does not implement vector 

counter rules.   

2. If an initiator node takes a snapshot, then the initiator colours itself as red, 

sends a marker to next node, the marker delivery is implemented as a token 

ring network; a marker contains minimum of local clocks, minimum 

timestamp, and local vector counter called count.  

3. If a node ni receives a marker, it takes a local snapshot, colours itself as red, 

the ni waits V[i]+count[i]0 (where V is the local vector counter); by doing 

this can prove there is no white message that was sent to current node on the 

network, if the value smaller than zero the message can be ignored, otherwise 

it is not consistent; repeat rule 2. 

4. If an initiator node ninit receives a marker, ninit wait until V[init]+count[init]0, 

if the count=0; then a value called Global Virtual Time (GVT) 

Approximation (GVT_approx) is generated. If the first round finishes with 

count  0, then the second round will start. But after second round marker 

pass the count is guaranteed to be zero vector and the GVT approximation is 

found. The main idea of GVT approximation is to use two cuts and to make 

sure that no messages cross both cuts. Hence, the minimum of the timestamps 

of all messages which cross the second cut can easily be determined by 

considering all messages which are sent between the two cuts. The snapshot 
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process is finished (Friedemann Mattern 1993). The message across the 

second cut is the state of the channel. 

 

Figure 5-5 Example Mattern’s algorithm 
 

Figure 5-5 is an example of Mattern’s algorithm; the last cut C’ is the final 

snapshot, there are no message to cross the two cuts, the message received before 

C’ but sent after C’ is ignored, otherwise it is not consistent. The left part of C’ is 

the global state of the system. 

The Mattern’s algorithm does not record the whole history of the channel state, 

but it needs to wait for the white message to finish delivery, so it delays the 

termination of the snapshot. It also uses a marker to check if any node terminated 

by accumulating the vector counter, a message counter per channel.   
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5.4 Comparison	of	snapshot	algorithms	

 

Algorithm Feature 

Chandy–Lamport(K.M.Chandy & 
L.Lamport 1985) 

Original algorithm, only apply for FIFO 
channel. Using n(n-1) markers 
generated on the network.  

Spezialetti–Kearns(Madalene Spezialetti 
& Phil Kearns 1986) 

Improvements over (K.M.Chandy & 
L.Lamport 1985): supports concurrent 
initiators, efficient assembly and 
distribution of a snapshot. Assumes 
bidirectional channels. O(e) messages to 
record, O(rn2) messages to assemble and 
distribute snapshot. 

Lai–Yang(T.H.Lai & T.H.Yang) Works for non-FIFO channels. Markers 
piggybacked on computation messages. 
Message history required to compute 
channel states. 

Mattern(Friedemann Mattern 1993) Works for both type of channels. Similar 
to (T.H.Lai & T.H.Yang) No message 
history required. Termination detection 
(e.g., a message counter per channel) 
required to compute channel states.  

Table 5-1 snap shot algorithm comparison 
n = # processes, u = # edges on which messages were sent after previous snapshot,  
e = # channels, d = diameter of the network, r = # concurrent initiators. 
 

Chandy–Lamport algorithm is the first snapshot algorithm, it only suitable for the 

FIFO system, it consumes large channel resources to broadcast the marker as 

Table 5-1 shows, it does not include the algorithm to assemble the global state. 

Spezialetti–Kearns algorithm optimizes the Chandy–Lamport algorithm, it is not 

only sending the marker to record the state, it also uses messages to assemble the 

snapshots. The Chandy–Lamport algorithm only works for the FIFO channel, 

Lai–Yang is developed for non-FIFO channel and is easy to implement. It does 

not need send any mark on the channel, but each node has to store whole history 

of messages. The Mattern algorithm works for both types of channel, it does not 
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need to store the history of message, but for the termination detection it needs to 

compute the channel state.  

5.5 Conclusions	

This chapter introduced some snapshot algorithms that records the global state of 

the distributed system; these algorithms are very useful for the system analysis, 

testing or verifying properties associated with distributed executions. 

In the automotive software testing, the global snapshot can be very useful to 

analyse the particular state that the system could be in the snapshot gives a global 

view of entire system state that includes states of every electronic control unit 

(ECU) and channel, so we can know what happened at the point of the snapshot 

by checking the value of each ECU variable and the messages on the network. 

However the snapshot algorithms only compute the instantaneous system global 

state, not a history of states. Some way of computing the whole history of system 

global states would be more useful for validating system behaviour over a period 

of time. 
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Chapter	6 Global	State	Evaluation	

6.1 Introduction:  

Global Predicate Detection (GPD) is used to map all or part of the states that 

system goes through.  A predicate is a requirement or standard, e.g. a comfortable 

room temperature is 20 Celsius to 29 Celsius, using this standard to check if the 

room temperature is comfortable. The predicate can be predefined by specification 

language (interval approach), or defined after correct executions (state approach). 

To define a predicate on the system state is very important to specify, observe, 

and detect the behaviour of a system. predicate specification and detection are 

very useful for distributed system analysis and testing. 

In the automotive industry, networked ECUs are distributed systems and ECU 

integration testing is a hard and complex process during the automotive software 

development. GPD may help the ECU integration. As an example in the 

automotive industry, some cars have the auto-window wiper, when it is raining 

(the water toggles the rain sensor), the window wiper should work. As another 

example, an application might be interested in detecting the predicate engine 

temperature under 120 degrees Celsius and fuel use under 7 L/100 km. 

Analysis of GPD is different from the global snapshot; the global snapshot is only 

one possible state that can be gone through during the whole execution of the 

system. GPD is the collection of whole execution path that has been executed; a 

snapshot is a one predicate value of a GDP. If the GDP is a map data structure, the 

snapshot is an element of the map; the map can be ordered by the time of the 

snapshot that has been taken, the logical time can be used as such time to order 

the snapshots in the GDP. 



139 
 

6.2 Stable and unstable Predicates 

6.2.1 Stable predicate  

Predicates can be either stable or unstable, a stable predicate is a predicate that 

remains true once it becomes true (K.M.Chandy & L.Lamport 1985); there are 

two properties in the stable predicate, termination and deadlock. 

6.2.1.1 Termination 

The termination (Friedemann Mattern) predicate is stable (persistent), because if 

such state has been reached, it will never change. A process can be executed in 

two states, active and passive. An active state can be automatically changed to 

passive state (waiting), if there is no further work to do. A passive process can 

become active when it receives a message from another process. If a passive 

process receives a message it becomes active, it may send a message back to 

another process or processes; so the processes communicate by message passing. 

This is the basic communication style of the distributed system; all processes 

work together as one system, they interact with each other by message passing, an 

execution terminates if each process is passive, until it receives more messages. 

There are two conditions of the termination state, local and global: 

 Local condition: Each process in a passive state 

 Global condition: there is no message on the communication channel. 

Assuming that the local condition can be characterized by a local state, the global 

condition can be characterized by a channel state; so it can be related with the 

system global snapshot, any channel state can be observed by the process local 

states that have been taken by two endpoints of the channel.  
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6.2.1.2 Deadlock 

Deadlock (GARY S.HO and C.V.RAMAMOORTHY 1982) is another property 

of the stable predicate. Two or more processes are waiting for the resources of 

each other, but none of them can release the resource unless one of them release 

the resource to the other, such situation cause the deadlock; it just as the situation 

as “chicken or egg”.  

 

Figure 6-1 deadlock 
 

Figure 6-1 shows a system that in the deadlock situation; node 1 waits on the 

resource from node 3, node 3 waits on the resource from node 2, node 2 waits on 

the resource from node 1. Each process in the node is blocked by waiting for the 

request from another node, also the deadlock process cannot receive a reply from 

some process(es); the deadlock just like a circular chain, if any link is broken, the 

deadlock is solved, or any node release the resources, the deadlock is also solved.  
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6.2.2 Unstable predicate 

The unstable predicate only holds the predicate instantaneously(Keith Marzullo 

and Gil Neiger 1991;Robert Cooper and Keith Marzullo 1991). There are some 

difficulties to detecting unstable predicates: 

 The message transmitting times and scheduling of the various processes on 

the processors under various load conditions, they are all unpredictable; the 

execution is not deterministic, the distributed system may have gone through 

different global states; the predicate may be true in some executions, but fails 

in others. 

 Instantaneous time in a distributed system is not available; if a predicate is 

true in a global state, it may not have held in the execution; if a predicate is 

true in the transmitting period, it may not be detected by a consistent 

snapshot. So the periodic monitoring of the execution is not enough. 

There are two difficulties for the unstable predicate; one is the snapshot algorithm 

to be used to record the global state; another is the methodology to evaluate 

collected data. 

To overcome these difficulties, two important observations can be made (Keith 

Marzullo & Gil Neiger 1991;Robert Cooper & Keith Marzullo 1991). 

1. The entire execution monitoring is necessary, so all states that appeared 

in the execution can be examined.  

2. The execution of a distributed system may go through different states 

every time it is executed; some predicate may be true in one execution 

but not in another; so it is very useful to define all the observations of the 

execution path not just one. 
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6.3 Possibly and definitely Predicates  

Possibly (Ф): There exists a consistent observation of the execution such that 

predicate Ф holds in a global state of the observation. 

Definitely (Ф): For every consistent observation of the execution, there exists a 

global state of it in which predicate Ф holds. 

6.4 Relational Predicate 

“A relational predicate is of the form x1+x1+x2+…+xn relop k, where each xi is an 

integer variable on process pi and relop ∈{=, < , > , ≤ , ≥}” (Neeraj Mittal and 

Vijay K.Garg 2001). The relational predicates are useful for detecting potential 

problems in a distributed system. For example, two processes: pi and pj  each have 

a variable x and y,  and communicate by passing messages, the predicate (x+y<9) 

may indicate a potential error (Alexander I.Tomlinson and Vijay K.Garg 1993).  

The centralized relational GPD algorithms (Keith Marzullo & Gil Neiger 

1991;Robert Cooper & Keith Marzullo 1991) for detecting possibly Ф and 

definitely Ф are based on the same data structure.  

The data structure is built as lattices, the lattice is a possible execution path, 

ordered by the vector time and every subsequent point in the path is increased by 

one. The lattices are arranged by level that is the sum of components of the vector 

time, all states in the same level will not affect each other, because they are the 

potential states that are reached from the previous level, so they are concurrent. 

Figure 6-2 is the example of the lattices of global predicate states, S is the global 

state the execution is going through, and the numbers on the right corner is the 

vector clock of that global state. This example only has two processes, so the 

vector time only has two components.   
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Figure 6-2 the lattices of global predicate state 
  

The centralized algorithms are able to assemble the local state to the global state, 

order the global state into the lattices. There is a central process P0 and each local 

process Pi sends its local state trace, each state with its vector time, to P0; P0 

contains n queues, Q1…Qn . Qi contains Pi’s states trace; each local state of a 

process are stored in the queue. Figure 6-3 illustrates the queues where Pi stores 

each local state trace of each process.   

 
Figure 6-3 Local trace of states in the queues of central process 
 

A global state is assembled from the local states; all these local states are selected 

from one element of each queue; but which local state should be selected from 

... ...............(S2,V2)(S1,V1)Q1 Process 1

Q3 Process n

Q2 Process 2 ... ...............(S2,V2)(S1,V1)

... ...............(S2,V2)(S1,V1)

(local state, vector Time)
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each queue? The question can be answered by the following rules, based on the 

vector time. Each local state in the queue is labelled with its vector time V(Si), Si 

is a local state of Pi . A valid global state has to satisfy (Robert Cooper & Keith 

Marzullo 1991, p170) 

 i,j : 1 i,jn : V(Si) [i]V(Sj)[i]  

This condition states that a message cannot be received before it is sent. The 

newest update of the vector time is only known by the corresponding process 

itself, other processes only hold the earlier time than or the same time as the 

process.  

For each local state Si of a process Pi there is exists a minimum global state Smin(Si) 

that contains Si and a maximum global state Smax(Si) that contains Si. The global 

states are (Robert Cooper & Keith Marzullo 1991, p170): 

Smin (Si)=(S1, S2, … , Sn) : V(Sj)[j]=V(Si)[j] and  

Smax(Si)= (S1, S2, … , Sn) : V(Sj)[i]  V(Si)[i]   S’
j : Sj  S’

j V(S’
j)[i] > V(Si)[i] 

These two rules constrain the selection of the levels that Si occurs; the minimum 

level containing Si is very easy to compute, it is the sum of components of the 

vector timestamp V(Si); for each sequence Qi , P0 can construct the set of states at 

each level; the sum of the components of timestamp of the last element of Qi is the 

last level. For any level that is greater than the last level (Smax(Si)), P0 removes Si 

from Qi . 

Given the states of level lvl, the set of states at level lvl+1 can be constructed as 

follows; for each global state GS(S1, S2, … , Sn), construct the n global state (S1+1, 

S2, … , Sn) (S1, S2+1, … , Sn)…(S1, S2, … , Sn+1). 
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Figure 6-4 gives the example how to construct the lattices from the corresponding 

execution.  

(a) 

 
(b) 

 

Figure 6-4 Example to show the states build into the lattices, the level to the corresponding 
lattices. (a) Corresponding state lattice of the execution of figure. (b) the state lattice for the 
execution. 
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6.4.1 Algorithms	to	detect	possibly	predicate	and	definitely	predicate	

After the state lattice is built, detecting predicate can proceed. The algorithm for 

detecting a relational predicate by examining the state lattice can be describe as 

following: 

Variables: 

Set of global states current Ф, next Ф  GS(0,0,...,0) 

int level  0 

Possible(Ф):  

While (no state in current Ф satisfies Ф) do 

If (current Ф={final state}) then return false; 

lvl  lvl+1; 

current Ф  {states at level lvl}; 

return true.  

Definitely(Ф): 

remove from current Ф those states that satisfy Ф 

lvl  lvl+1; 

while (current Ф not empty) do 

next Ф  {states of level lvl reachable from a state in current Ф }; 

remove from next Ф all the states satisfying Ф;  

if next Ф = {final state} then return false; 

lvl  lvl+1; 

current Ф  next Ф; 

return true.  
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possibly(Ф): To detect possibly predicate, an exhaustive search of the state lattice 

is performed; any one state that satisfies Ф the search can be terminated; the 

algorithm examines the lattice level by level. It starts from level 0, ends at the 

final state; each level is examined to find a state that satisfiesФ; if such state exists 

the algorithm terminates. 

Definitely(Ф): For definitely to be true, there should exist a set of states that 

satisfy Ф, every path of execution going through one of these states. It is not 

necessary that all these states are at the same lattice level. Figure 6-5 is the 

example of the set of states that are not at the same level, but all the states in the 

set satisfy the predicate and every execution path goes through one of these 

states(4,6), (5,5), (6,5), (7,4). 

Because definitely (Ф) may be true but the sets of states may not at the same level, 

the Possibly (Ф) algorithm approach cannot be applied to the Definitely (Ф) 

predicate; definitely approach detects the states that not satisfy predicate Ф 

(satisfy ¬Ф); rather than track the state in which Ф is true, it tracks the states in 

which Ф is not true, the set of states tracked at different level should be reachable 

from the previous level; variable next Ф is used to check any states in the next 

level that do not satisfy predicate; the states that do not satisfy predicate are stored 

into the next Ф, next Ф go through all the level from initial to final, if the next Ф is 

empty the algorithm terminated successfully, otherwise it terminates 

unsuccessfully. 
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Figure 6-5 Example to show that states in which Definitely Ф is satisfied need not be at the same 
level in the state lattice. (a) Execution. (b) Corresponding state lattice. 
 

6.5 Conjunctive	Predicate	

Up to now, the predicates introduced are relational; the predicate can be specified 

in the system, after all execution paths are constructed. Another predicate is called 

a conjunctive predicate, where a predicate Ф will be given first, and the states that 

satisfy Ф are recorded. A predicate Ф is a conjunctive predicate if and only if Ф is 

the logical “AND” of local predicates. It can expressed as the conjunction i,j∈nФi, 

where Фi is a predicate local to process i, n is the total number of process. The 

predicate of interest can be modelled as a conjunctive predicate; there are two 

main algorithms for the conjunctive predicate: centralized algorithm (Figure 6-6) 

and distributed algorithm (Figure 6-7). The difference between centralized and 

distributed algorithm is that the centralized algorithm support offline GDP 

evaluation and the predicates can be specified after system execution; the 

distributed algorithm evaluates the predicate in the real-time and the predicate has 

to be specified ahead. This section will describe the algorithms for conjunctive 

predicate.  
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Figure 6-6 centralized algorithm 
 

 

 

Figure 6-7 distributed algorithm 
 

6.5.1 Interval‐based	centralized	algorithm	for	conjunctive	predicate	

In the interval based approach, the local predicate changes between false and true; 

for some periods the local predicate is true in a process, some periods it is false; 

the local predicate shifts during the execution, and is illustrated in Figure 6-8. 

Process 1 Process 2 Process 3 

Observer process Predicate specification & 
evaluation 

Specify predicates 

Process  

Evaluate 
predicates  

Process 

Evaluate 
predicates  

Process  

Evaluate 
predicates  

All predicates are true 
store to the log 
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Figure 6-8 for a conjunctive Predicate the shaded durations indicate the periods when the local 
Predicates are true. 
 

For two processes Pi and Pj, when the local predicate Фi and Фj are true, the 

intervals of these processes are denoted Xi and Yj. Let the start and end of interval 

X be denoted as min(X) and max(X), for interval Y is the same. Assume the 

global state predicate is defined on these two processes, then Definitely (Ф) and 

possibility (Ф) can be defined as: 

Equation 6-1 Definitely(Ф):min(X) ≺ max(Y)  min(Y) ≺ max(X); 
   
Equation 6-2  ¬Possible(Ф) :max(X) ≺ min(Y)  max(Y) ≺ min(X);   
 

where ≺ means an irreflexive partial ordering representing the causality relation 

on the event set(Ajay D.Kshemkalyani 2003), for example if event e ≺ e’  T(e) 

< T(e’), T is the timestamp. Figure 6-9 shows the condition for two processes. 

 

 

Figure 6-9 Illustrating conditions for Definitely(Ф) and ¬Possible(Ф), for two processes. 
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The conjunctive predicate for more than two processes (Ajay D.Kshemkalyani 

2003) are defined as 

Equation 6-3 Definitely(Ф) if and only if  i,j∈n  Definitely(ФiФj);  
  
Equation 6-4 Possibly(Ф) if and only if i,j∈n  Possibly(ФiФj);   
 

Interval-based centralized algorithm runs the algorithm on a central server P0 to 

monitor possibly or definitely conjunctive predicate Ф (Punit Chandra and Ajay 

D.Kshemkalyani 2005;Vijay K.Garg and Brian Waldecker 1994;Vijay K.Garg 

and Brian Waldecker 1996). When a local predicate is true, the process can send 

its vector timestamp of start and end events of an interval to P0, the interval is part 

of the log. Another element of the log is a queue of events in the interval, called 

the process log; P0 stores the log of a process to a queue; each queue contains a set 

of intervals of one process. Figure 6-10 is the data structure of the data structure 

for an interval queue of P0. 

 

Figure 6-10 data structure for an interval queue of central process P0  
 

If any message send or receive event between start of previous interval and the 

end of later interval, then an interval needs to be sent to central process, each 

Interval

Start
Vector time

End
Vector time

Queue for a process

Process log

log
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execution need send most 4 messages, two from sender and another two from 

receiver. 

There are two queues in the algorithm, updatedQueues and newUpdatedQueues. 

The updatedQueues stores the indices of the queues whose heads got updated; the 

newUpdatedQueues is a temporary variable to update updatedQueues. There are 

two situations to update the queue of a log of a process; when a new log is added 

to the head of the queue, or the head of the queue is deleted, as determined by 

Equation 6-1. After the queue is updated, the new head is the candidate log, the 

interval of the log is the candidate interval. Each new candidate interval is 

examined with the head of all other queues by Equation 6-1. In each comparison, 

if it does not satisfy the Equation 6-1, one of the two intervals examined is marked 

for deletion and the queue is updated by doing the deletion. 

queue of Log: Qi, Q2, … Qn    
set of int: updatedQueues, newUpdatedQueues  {} 
On receiving interval from process Pz at P0: 
(1) Enqueue the interval onto queue Qz 
(2) if (number of intervals on Qz is 1) then 
(3)  updatedQueues  {z} 
(4)  while (updatedQueues is not empty) 
(5)   newUpdatedQueues  {} 
(6)   for each i ∈ updatedQueues do 
(7)    if (Qi is non-empty) then 
(8)     X  head of Qi 
(9)      for j = 1 to n do 
(10)      if (Qj is non-empty) then 
(11)       Y  head of Qj 
(12)       if (¬(min(X) ≺ max(Y))) then // Definitely 
(13)        newUpdatedQueues   {j}∪newUpdatedQueues 
(14)       if (¬ (min(Y) ≺ max(X))) then // Definitely 
(15)        newUpdatedQueues   {i}∪newUpdatedQueues 
(12’)      if (¬ (max(X) ≺ min(Y))) then // Possibly 
(13’)        newUpdatedQueues   {i}∪newUpdatedQueues 
(14’)       if (¬ (max(Y) ≺ min(X))) then // Possibly 
(15’)       newUpdatedQueues   {j}∪newUpdatedQueues 
(16)  Delete heads of all Qk where k ∈ newUpdatedQueues 
(17)  updatedQueues  newUpdatedQueues 
(18) if (all queues are non-empty) then 
(19)  solution found. Heads of queues identify intervals solution. 

 means empty 
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The algorithm above is a centralized algorithm, it detects a conjunctive for 

possibly or definitely predicate; lines 12-15 are for definitely predicate, lines 12’-

15’ is for possibly. 

The set updatedQueues stores the indices of all the queues whose heads get 

updated. In each iteration of the while loop, the index of each queue whose head 

is updated is stored in set newUpdatedQueues (lines 12–15 or 12’–15’); In lines 

16 and 17, the heads of all these queues are deleted and indices of the updated 

queues are stored in the set updatedQueues. Thus, an interval gets deleted only if 

it cannot be part of the solution. Now observe that each interval gets processed 

unless a solution is found using an interval from each process. According to 

Def5.5.3 and Def5.5.4, if each queue is not empty and their head cannot be 

deleted, then the set of logs at the head of each queue forms the global state that 

satisfy the conjunctive predicate.  

6.5.2  Distributed algorithms for conjunctive predicate 

6.5.2.1 	Distributed	state	based	token	algorithm	for	possibly	conjunctive	

predicate	

In the distributed state based token algorithm, the queue Qi stores the local vector 

times of process Pi. Qi is maintained locally at Pi; there is a token passing through 

whole network. The token contains a vector time (Vtime) which is the newest 

update of each process and a set of Boolean values (Valid) that are flag for the 

validation of local state of a process. If the local state is validated (predicate is 

true) the value becomes to true. The data structure for a token can be expressed as: 
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struct token{ 

interger: Vtime[1…n]; 
boolean: Valid[1…n]; 

   } 

where n is the total number of process. 

 

When algorithm starts, program initialized as:  

queue of array of integer: Qi  ; 

Token can be randomly initialized by a process; 

when a process Pi  receives a token it does following: 

1. while(token.Valid[i])=0 do Check if the current local state of process Pi is 
validated. 

2.    await (Qi to be nonempty) Waiting till at least one vector timestamp is stored into 
the Pi  

3.    if((head(Qi))[i]>token.Vtime[i]) then Earliest timestamp of Pi may be part of vector 
timestamp of the token, it depends on if the earliest 
timestamp is greater than the timestamp of token.  

4.       token.Vtime[i]  (head(Qi))[i] 
5.       token.Valid[i]  1; 
6.    else dequeue head(Qi); Delete the inconsistent vector timestamp 
7. for j=1 to n (ij) do Checking if the timestamps of other process of the 

local vector time consist with the vector timestamps of 
token. 
 

8.    if ij and (head(Qi))[j] token.Vtime[j] then 
9.       token.Vtime[j]  (head(Qi))[j]; 
10.       token.Valid[j]  0; 
11. dequeue (head (Qi )); 
12. if for some k, token.valid[k]=0 then  
13.    send token to pk;  
14. else return (1);  

 

When a process Pi can receive a token, only token.Valid[i]=0. line 3 to 6 

compares the ith vector time of earliest timestamp of Qi  with the token.Vtime[i] 

(the earliest timestamp in Qi is head(Qi)); if head(Qi) greater than token.Vtime[i], 

then the token.Vtime[i] updated to head(Qi)[i], the token.Valid[i] set to true, the 

next step need  to check if other vector time components of head(Qi) consistent 

with corresponding components of vector time of token, line 7 starts such a 

checking loop; if line 8 is true the state of Pj is not consistent (Figure 6-11(a)), 

token.Valid[j] is reset, the token is sent to Pj before termination of the algorithm 
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and Pj needs to check its Qj that is consistent with all the other states in 

token.Vtime; otherwise the state of Pj is consistent (Figure 6-11(b)). 

 

Figure 6-11 two possibilities assigns head(Qi)[i] to a token 
 

If all values of Valid of the token, then a solution is found; otherwise the 

algorithm is going to repeat, the code goes back to line 1 as line 14 stated. 

6.5.2.2 	Distributed	interval‐based	token	algorithm	for	Definitely	

conjunctive	predicate	

The interval-based token algorithm for definitely conjunctive predicate is based 

on the “Distributed algorithm to detect strong conjunctive Predicates” (Punit 

Chandra and Ajay D.Kshemkalyani 2003) . Define Ii ↳ Ij as min(Ii) ≺ max(Ij) 

Problem statement. In a distributed execution, identify a set of intervals I 

containing one interval from each process, such that  

(i) the local predicate Фi is true in Ii ∈ I, and  

(ii) (ii) for each pair of processes Pi and Pj , Definitely(Фi,j ) holds, i.e., Ii 

↳ Ij and Ij ↳ Ii. 

Before explaining the algorithm, the data types that are used in the algorithm 

should be stated. The type of Log contains start (Vi
-) and end (Vi

+) vector 



156 
 

times of the interval. Each process has a queue to store the logs. An interval 

Y at Pj is deleted if on comparison with some interval X on Pi, ¬X↳Y , i.e., 

Vi
-(X)>Vj

+(Y)[i]. Thus the interval(Y) being deleted or retained depends on 

its value of Vj
+(Y)[i]. The value Vj

+(Y)[i] changes only when a message is 

received. Hence an interval needs to be stored only if a receive has occurred 

since the last time a Log of a local interval was queued. The Table 6-1 shows 

the local process data type used in the algorithm. 

type Log 

start: array[1 . . .n] of integer; 

end: array[1 . . .n] of integer; 

type Q: queue of Log; 

When an interval begins: 

Logi.start  Vi
- 

When an interval ends: 

Logi.end  Vi
+ 

if (a receive event has occurred since the last time 

a Log was queued on Qi ) then Enqueue Logi on to the local queue Qi . 

Table 6-1 Tracking intervals locally at process Pi. 
 

There are three types of message in the algorithm; request message of type 

REQUEST, reply message of type REPLY, token message of type TOKEN, they 

are denoted as REQ, REP, and T, respectively Table 6-1 shows the message type 

for the algorithm. 

type REQUEST             //used by Pi to send a request to each Pj 

start: integer;               //contains Logi.start[i] for the interval at the queue head of Pi 

end: integer;               //contains Logi.end[j] for the interval at the queue head of Pi , when sending to Pj 

type REPLY               //used to send a response to a received request 

updated: set of integer;       //contains the indices of the updated queues 

 

type TOKEN              //used to transfer control between two processes 

updatedQueues: set of integer; //contains the index of all the updated queues 

Table 6-2 Message Type 
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1 Process Pi initializes local state 
 Qi is empty. 

2 Token initialization 
 A randomly elected process Pi holds the token T. 
 T.updatedQueues   {1,2,…,n}. 

3 RcvToken: When Pi receives a token T: 
 Remove index i from T.updatedQueues 
 wait until (Qi is nonempty) 
 REQ_start  Logi.start[i], where Logi is the log at head of Qi 
 for j = 1 to n do 
   REQ_end  Logi.end[j] 
   Send the request REQ to process Pj 
 wait until (REPj is received from each process Pj) 
 for j = 1 to n do 
   T.updatedQueuesT.updatedQueues ∪REPj.updated 
 if (T.updatedQueues is empty) then 
   Solution detected. Heads of the queues 
               identify intervals that form the solution. 
 else 
   if (i ∈ T.updatedQueues) then 
     dequeue the head from Qi 
   Send token to Pk where k is randomly 

         selected from the set T.updatedQueues. 
4 RcvReq: When a REQ from Pi is received by Pj : 

 wait until (Qj is non-empty) 
 REP.updated  Ø 
 Y  head of local queue Qj 
 Vi

-(X)[i]   REQ.start and Vi
+(X)[j]  REQ.end 

 Determine X ↳ Y and Y ↳ X 
 if(¬(Y ↳ X)) then REP.updated REP.updated∪ {i} 
 if(¬(X ↳ Y)) then 
   REP.updated  REP_updated ∪ {j} 
   Dequeue Y from local queue Qj 
 Send reply REP to Pi. 
Table 6-3 Distributed algorithm to detect Definitely(Ф). 
 

In the algorithm only the token-holder can send REQs and receive REPs to all 

other processes (line 3f), Logi.start[i] and Logi.end[j] for the interval at the head 

of the queue Qi are piggybacked on the request REQ sent to process Pj lines (3c–

3e). On receiving a REQ from Pi , process Pj compares the piggybacked interval 

X with the interval Y at the head of its queue Qj (line 4e). The comparisons 

between intervals on process Pi and Pj can result in these outcomes. (1) 

Definitely(Фi,j ) is satisfied. (2) Definitely(Фi,j ) is not satisfied and interval X 

can be removed from the queueQi . The process index i is stored in REP.updated 

(line 4f). (3) Definitely(Фi,j ) is not satisfied and interval Y can be removed from 
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the queue Qj . The interval at the head of Qj is dequeued and process index j is 

stored in REP.updated (lines 4g, 4h). Note that outcomes (2) and (3) may occur 

together. After the comparisons, Pj sends REP to Pi. Once the token-holder 

process Pi receives a REP from all other processes, it stores the indices of all the 

updated queues in the set T.updatedQueues (lines 3h, 3i). A solution, identified by 

the set I formed by the interval Ik at the head of each queue Qk , is detected if the 

set updatedQueues is empty. Otherwise, if index i is contained in 

T.updatedQueues, process Pi deletes the interval at the head of its queue Qi (lines 

3m, 3n). As the set T.updatedQueues is non-empty, the token is sent to a process 

selected randomly from the set (line 3o). The correctness of the algorithm is based 

on Equation 6-1 and Equation 6-3. The following observations can be made: 

 If Definitely(Фi,j ) is not true for a pair of intervals Xi and Yj , then either i or 

j is inserted into T.updatedQueues. 

 An interval is deleted from queue Qi at process Pi if and only if the index i is 

inserted into T.updatedQueues. 

 When a solution I is detected by the algorithm, the solution is correct, i.e., for 

each pair Pi,Pj ∈ N, the intervals Ii = head(Qi ) and Ij = head(Qj ) are such that 

Ii ↳ Ij and Ij ↳ Ii (and hence by Equation 6-1 and Equation 6-2, Definitely(Ф) 

must be true). 

 If a solution I exists, i.e., for each pair Pi,Pj ∈ N, the intervals Ii, Ij belonging 

to I are such that Ii ↳ Ij and Ij ↳ Ii (and hence from Equation 6-1 and Equation 

6-2, Definitely(Ф) must be true), then the solution is detected by the 

algorithm. 
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6.6 Predicate	detection	in	automotive	system	

Comparing to the desk computer, the automotive distributed systems have less 

CPU power, less memory, and different network protocols. Therefore to apply 

GPD on the automotive system has to satisfy the following requirement: 

 No interference with application software so as not to effect its real-time 

characteristics.  

 The local state cannot be recorded into the local ECU memory. 

 As less as possible to use the processor power to implement the GPD 

functions. 

 CAN bus is non-FIFO and event triggered network (the message are 

transmitted in priority order.). 

The above requirements for the automotive system are used to compare and 

contrast the alternative GPD options 

6.6.1 Distributed	algorithm	vs.	centralized	algorithm	

The distributed GPD algorithms need to specify the predicate ahead and each 

node only evaluates its own predicates (it only knows its local variable’s value). 

Therefor the specified predicate cannot express the logical relationship between 

the variables that are in the different nodes, e.g. x in node1 and y in node2, for the 

distributed algorithm it is impossible to give the predicate like “x=y”, because 

node1 does not know node2’s variable. Each node has to evaluate the predicates 

locally (more process are needed).  

The centralized GPD algorithms use extra process to observe each local process. 

The predicate can be specified after the system execution and the evaluation can 
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be done offline. It does not use much local processor power. Almost all heavy 

work can be done by the extra process.  

6.6.2 Conjunctive	vs.	relational	predicate	

The conjunctive predicates need to specify the predicate ahead. Each node need to 

evaluate its own local predicates, the evaluation results are connected by logical 

“AND”. If the conjunction is true, the local states construct the validated global 

state for the predicate. The global state is stored in a log. This way makes the 

storage is smaller, due to it only logs the validated predicate states. However it 

does not give the whole execution trace.  

The relational predicate can be done by the offline. All global states are captured 

and the execution lattice is built up. The predicates can be specified after the 

execution. It gives a global over view of the execution; however comparing to the 

conjunctive predicate it consumes more memory.  

6.6.3 GPD	algorithm	choice		

Finally putting all together the requirements of the automotive systems, the 

comparison of distribute GPD algorithm and centralized GPD algorithm, and the 

comparison of conjunctive predicate and relational predicate, the centralized and 

relational algorithm is the better choice. They do not consume too much local 

process power, an extra process can be used to do the heavy work; this extra 

process may be done by a desktop computer which is much more powerful than 

an ECU. Also the global state can be recorded into the hard disk of the desktop 

computer; it won’t consume any storage of the ECU. Because the GPD algorithms 

do not record the communication channel states, the network protocol is not big 

issue for it. 
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6.7  Conclusion  

The global state capture is a fundamental problem in the asynchronous distributed 

system; this has been discussed in chapter 4. The extension of this problem is to 

observe global states that satisfy a given predicate of variables of the system. If 

the Predicates remain true once they become true, it is called a stable predicate; 

dead lock and termination detection are based on the settable predicate detection. 

Another predicate is unstable predicate which is very hard to detect, because the 

values of variables that make the predicate true can change and falsify the 

predicate.  

The unstable predicate can be defined as possibly and definitely, Possibly means 

the execution may go through the global states that satisfy the predicate, 

Definitely means all executions must go through a global state that is in the set of 

global states that satisfy the predicate. 

There are two ways to specify predicates, relational and conjunctive. Relational 

predicate detection collects entire execution states, and uses these global states to 

build execution lattices, the predicate can be specified after the lattices are built. 

From the execution lattices, the definitely and the probably predicate can be found. 

The conjunctive predicate detection needs to specify the Predicates ahead of 

execution; only the global states that satisfy this conjunctive predicate can be 

captured.  

The global predicate detection could be applied to automotive distributed system 

testing, using the predicate detection to verify if the system is in the right states 

given by predicate. In order find the failure states of the system, the failure 

variable can be used as Predicates. For some important issues of a car such as 
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security, e.g. the brake or airbag. Predicate detection can be used to detect unsafe 

system states. Finally a centralized relational predicate algorithm is chosen to 

apply on the automotive distributed system testing. 
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Chapter	7 	Methodology	

7.1 Introduction	

This research investigates the theoretical methods to validate CAN network based 

distributed automotive control systems. A validated system should satisfy the 

requirements from the users.  The approach taken is to build a prototype global 

predicate evaluation system to check if the system under test validated. The 

approval is  shown in Figure 7-1 . The prototype takes the data from the ECU 

network descriptions, evaluates the predicate according to these data and 

generates the validation result. In order to validate this result, a global predicate 

evaluation result should be generated manually. The result of the prototype 

evaluation should match the result that is evaluated manually; otherwise the 

prototype is not validated. This chapter will conceptually introduce the prototype. 

 

Figure 7-1 Global validation of distributed automotive control systems prototype 
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7.2 	Construct	global	state	lattice	

The lattice that is evaluated by the predicate is constructed from the global states 

of the system. The global state is constructed from the local states of each node in 

the system. The global state has to be consistent otherwise it won’t make any 

sense. For example, a message won’t be received before it is sent; this never 

happens in the distributed system. As there is no physical global time in the 

system, to decide if the global state is consistent, the prototype needs to assign the 

logical time to each local state. The logical time used in the prototype is a vector 

clock.  The whole procedure to build the lattice is shown in Figure 7-2 . Next 

sections are going to go through these three steps. 

 

Figure 7-2 the procedure to build the lattice 
 

7.2.1 Vector	time	assignment	

The vector clock assignment depends on the local process event. When an internal 

event happens the node only increases its own clock. If it receives a message it 

updates all other node clocks from the sender’s vector clock(Leslie Lamport 

1978). The local state consists of node variables of interest in predicate evaluation. 

It can be logged by the XCP protocol. 

The XCP measurement and the real network communication channel can be either 

on the same CAN channel or a different channel. The CANoe application records 

the whole network information. All messages on the network are synchronized by 

Assign local vector times

Identify consistent global

states assign the global

vector time

Build the lattice



168 
 

CANoe real-time clock. The result is written into a log file, its format is shown in 

Table 7-1. 

Real 
Time 

CAN 
Channel 

Message 
identifier

Message 
type 

Frame 
type  

Data 
length 

Data 

Table 7-1 CANoe log file format  
 

Figure 7-3 is an example of the CANoe log file 

 

Figure 7-3 CANoe log example 
 

The log file also has other different formats, but they won’t be used in the 

prototype, so it is not necessary to introduce them. 

There are two ways to record local state using XCP; one is time triggered that will 

send its local state continuously; another one is event triggered where the node 

only sends its state when the state changes. Each method has its own advantages 

and disadvantages; the comparison of them is shown in Table 7-2 . 

 

   0.000236 1  1               Tx   d 8 0B 0B 0B 0B 0B 00 00 00 
   0.000478 1  2               Tx   d 8 15 15 15 15 00 00 00 00 
   0.000728 1  3               Tx   d 8 1F 1F 1F 00 00 00 00 00 
   0.100248 1  1               Tx   d 8 0C 0C 0C 00 00 00 00 00 

0.100496 1 101 Tx d 8 01 01 02 00 00 00 00 00

Real time 

CAN   
channel 

Message ID 

Transmission 
type 

 Data length

 Data

 Frame type

Transmission type: 
TX = Transmit message, 
RX = Response message, 
TXRQ = Transmit request. 

Frame type:
d = data frame, 
r = remote frame. 
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 Communication 
traffic  

Storage 
requirement 

ECU application 
code modification 

Time triggered  High  High  none 

Event triggered Low  Low  little 

Table 7-2 time triggered and event triggered local state record mode 
 

After the log file is generated, the local vector time needs to be assigned to the 

local state. There are two kinds of event that can cause the local state change: 

internal event and receiving event. An internal event is the event that only affects 

the its own local variable, and only updates its corresponding vector time 

component, e.g. timer triggered, panel button pressed, etc.. Receiving event 

occurs when the node receives a message. It causes the receiving node local 

variable change, as well as updating its corresponding vector time component. It 

also needs to update other vector time components based on the sender’s vector 

clock. Therefore the sending event causes the other nodes vector time to change. 

7.2.2 Identify	consistent	global	state	(CGS)	

After all local states are assigned vector times; the next step is to construct the 

global state from these local states.  An inconsistent global state is not meaningful 

in the sense that a distributed system can never be in an inconsistent state. To 

decide if the global state is consistent, the prototype needs to evaluate its local 

states’ vector time; the algorithm to evaluate if the global state is consistent is 

(Ozalp Babaoglu & KeithMarzullo  1993) as follows: 

i, j : 1  i  n, 1  j  n : VT(ei)[i]  VT(ej)[i] 

Equation 7-1 consistent cut 
 



170 
 

In the specification i, j represents the component (node) index in the vector time, n 

represents the total number of nodes, VT represents vector time, e represents 

event; it means if a global state is consistent, its local state vector time ith 

component of node i (local time) has to greater than or equal to local state vector 

time ith component of node j. Each node in the consistent global state has to have 

its latest corresponding vector clock component value. When the sending event 

happens, the receiving node knows the latest vector clock component of the 

sender, that’s the situation VT(ei)[i]  VT(ej)[i]. 

The following example demonstrates how to evaluate consistent global state. 

Figure 7-4 illustrates two processes’ execution with vector time. Table 7-3 shows 

how to find consistent global state from the execution. The subscript number of e 

is the node number and the superscript number of e is the event counter (scalar 

time or local time). The numbers in the bracket is the vector time, first number is 

the scalar time of node 1 and second number is the scalar time of node 2. In the 

Table 7-3, the vector time of e1
1 compares to the vector time of e2

x; the red 

coloured number is the local time of node1 and the green coloured number is the 

local time of node 2. According to Equation 7-1 in the red numbers and the green 

numbers comparisons, both of them have to be true, for the global state to be 

consistent.  The global state which is constructed by e1
2 and e2

3 is consistent in the 

case of VT(ei)[i]  VT(ej)[i].  
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Figure 7-4 Two processes execution with vector time.  

Node 1 event  Node 2 event Vector time 

comparison  

result 

e1
1 e2

1 (1,0)  (0,1) 

1>0 and 0<1 

Consistent  

e1
1 e2

2 (1,0) (0,2) 

1>0 and 0<2 

Consistent 

 

e1
1 e2

3 (1,0) (2,3) 

1>2 and 0<3 

Inconsistent 

 

Table 7-3 evaluate CGS example. 
 

The example only shows a two nodes network, for three or more nodes the system 

need to compare each node to all the other nodes.   

If the global state is consistent, then the global vector time can be assigned to this 

CGS. Each component of the global vector time is the highest value of each 

node’s corresponding vector time component, e.g. for the CGS {e1
1, e2

1}, its 

global vector time is (1,1) . 
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7.2.3 Build	the	lattice	

After all consistent global states are built; the next step is to build the lattice.  

Figure 7-5 is an example of a two node execution lattice.  The level on the right of 

the lattice is defined as the sum of the global vector time (Keith Marzullo & Gil 

Neiger 1991). In the same level, it is possible to have different CGS, it means at 

the same time the system can be in any one of the same level consistent global 

states; depending on the actual execution run. 

 

Figure 7-5 Two node execution lattice example 
 

The execution goes through levels; each CGS may have a corresponding 

reachable CGS, it has to increase one corresponding vector time component by 

one to reach the next CGS, e.g. in Figure 7-5 from S02 to S12 and S02 to S03 is 

reachable, but it is not reachable from S02 to S21.  

From the example lattice it can see that one application can go through different 

consistent global state sequences.  It is non-deterministic, so the next step needs to 

evaluate if it goes through expected or unexpected states by specifying a predicate.  



173 
 

7.3 Evaluate	predicate		

For a given predicate (Ф) there are two modalities: Possibly predicate and 

Definitely predicate. They are defined as (Robert Cooper & Keith Marzullo 1991) 

Possibly predicate: “For all executions consistent with the observed behaviour, 

there was some point in real time at which the global state of the system satisfied 

Ф.” 

Definitely predicate: “For all executions of P consistent with its observed 

behaviour, Ф was true at some point.  

Predicates are evaluated on the local states of nodes. 

The prototype system should be able to take any combination of ECUs’ values to 

evaluate if it is definitely or possibly true.   

7.4 Validation	tests	

After the prototype is built, it is necessary to validate it. The method to validate 

the prototype program is  

1. Specify a predicate  

2. Evaluates the test when system execution lattice by manually checking if 

the global states in lattice satisfies the specified predicate.  

3. Evaluate the under test system execution lattice by prototype. 

4. Compare the manually generated result against the prototype result; if they 

are match the prototype is validated, otherwise it is invalidated. 
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7.5 Conclusion		

The common problem for distributed system debugging is no physical global time 

and shared memory exists. Some research on solutions has been done, but they are 

mostly for the Ethernet (Kenneth P.Birman 1995, p288-292), not for the 

distributed automotive system.  

For the moment, the most reasonable method to debug the distributed automotive 

system is to evaluate the predicate of the system execution lattice, which is 

constructed by the consistent global states. A consistent global state is built using 

the local state of each node, the selection of the local state is based on the 

causality or logical time (vector time). 

This research will build prototype software based on the GPD method to validate 

CAN network based distributed automotive control system. The effectiveness of 

the prototype in achieving system validation goals will be evaluated. 
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Section	Four:	Implementation	

and	Testing	
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Chapter	8 Prototype	Development	

8.1 Introduction		

The methodology to validate the CAN network based distributed automotive 

control system has been given in the previous chapter. This chapter will describe 

the design of the prototype software. 

The first section gives an overview of the design of the prototype. The second 

section describes the data requirement for the prototype. The third section talks 

about how to generate the test cases for the prototype. The fourth section is the 

detail of the prototype design.  

8.1.1 Design	overview	

There are two main parts for the prototype software design.  

1. The test case generation system uses UML to interpret the structure of the 

test case and uses software to generate the test case described by the UML.  

2. The prototype software evaluates execution lattice of CAN network ECUs. 

8.1.1.1 Test	case	generation	system	

For the purpose of conveniently validating the prototype; the test cases can be 

generated as CAPL code that simulates the ECUs. The CAPL code acts as a state 

machine, any internal or receiving events happening will cause a state change. 

The overall process of generating the test case can be illustrated as Figure 8-1  
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Figure 8-1 test case generating progress 
 

The sequence for test case generation is 

1. Using UML to model the test case which is described in a state machine 

diagram. 

2. Using a state machine template creates the XML file for each node. 

3. Using CANoe to compile these CAPL codes. 

4. Running the CAPL code, using CANoe to log messages passed on the 

CAN network. 

 

8.1.1.2 Prototype	software	

Based on the methodology that has been identified in Chapter 7, the prototype 

structure can be generally illustrated as Figure 8-2. 

Test case modelling 
(State machine UML)

Interpreting  state 
machine in XML

CAPL generator 
generate CAPL code

CANoe compiles CAPL 
codes

Run CANoe generate 
CANoe log
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Figure 8-2 prototype design overview 
 

The diagram shows: CANoe records the CAN messages and environment 

variables of the system under test to the CANoe log file. The node of system 

under test can be real ECUs and/or simulated ECUs using CAPL code. To run the 

simulation also needs to create a CANdb database that describes the bus data in 

symbolic terms. CANdb contains the communication matrix that describes the 

senders and receivers of all messages. After the CANoe log is generated, the 

prototype subsystem canoeDataProcessor reads this log file and encapsulates log 

CANoe log Communication matrix

System under test 

Real ECUs
CANoe (simulation node) 

Prototype subsystems 

Input predicate 

Predicate evaluation result 

(Possibly & Definitely) 

canoeDataProcessor

+ CanMessage

+ CanoeLogReader

+ CanoeVectorClock

+ Measurement

state

+ GlobalState

+ LocalState

+ VectorClock

gpd

+ LatticeBuilder

+ Predicate

+ VectorTimeBuilder
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data into classes. The subsystem state is used as data structures to encapsulate the 

state element. The subsystem gpd assembles the encapsulated measurement data 

from CANoe log and associated vector time as a local state. It evaluates 

assembled local states to construct the consistent global states and assigns global 

vector times to these consistent global states. According to the global vector time 

of the consistent global state gpd builds the system execution lattice. For a given 

predicate, gpd can evaluate if it is a definitely or a possibly predicate. The gpd 

package is the core package of the whole prototype. Most of the processing is 

done by gpd. There are also other packages for convenient operation of the 

prototype and representing the result. They will be introduced in a later section.  

The next sections will give the detail of how the prototype is designed, but first of 

all it is necessary to introduce the data required for the prototype.   

8.2 Implementation	tools	

For the prototype design, the following tools are used.  

 Enterprise architecture (EA): modelling the state machines of the node.  

 Visual studio: CAPL code generator (C#). 

 CANoe: it is a comprehensive software tool for the development, testing 

and analysis of entire ECU networks and individual ECUs.  It runs CAPL 

code, monitors CAN bus, generates CANoe log file. 

 Eclipse: all predicate evaluation programs are coded in java. Eclipse offers 

a powerful Integrated Development Environment (IDE) for Java.  
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8.3 Data	requirements	

There are four types of file required for the test case and the prototype. Data used 

by test case generation are UML (test case modelling), XML (test node template). 

Data used by prototype are asc (CANoe log file), XML (communication matrix). 

They will be introduced in this section one by one.  

8.3.1 UML	test	case	modelling		

The UML diagram is used to model the test case with state machine diagrams; it 

gives a clear conceptual view of the test case. The test case is constructed as state 

machines, because the real ECU works similar to state machine as well.  Figure 

8-3 is an example of a simple state machine; there are three states in this state 

machine, the state1 sets timer t_n1_1 as 50 milliseconds, when the timer t_n1_1 

expires the transition happen, the state machine will be in the state2; in state2, it 

sends message msg_n1_1 and set t_n1_2. When the timer t_n1_2 expires, the 

transition happens, the state machine goes to state3; there is no action in state3; 

when the state machine receives message msg_n2_1 (message ID is hex 102), the 

transition makes the state machine go to state1; the state machine will repeat the 

process.

 

Figure 8-3 state machine example 

State1

+ set /  t_n1_1(50)

State2

+ send / msg_n1_1(101)
+ set / t_n1_2(50)

State3

[rec msg_n2_1]
/msg_n2_1(102)

[on t_n1_2]

[on t_n1_1]
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In any state, the state machine can set timer and/or send message; the timer name 

is as t_n1_1, the n1 means node 1, the following 1 means state 1. The message 

name is similar to the timer name, the only different is the message variable starts 

with msg. The transitions can be caused by timer expiring, receiving message, and 

environment variable changes (the variable on the CANoe panel changes. e.g. 

button pressed etc.). The transitions timer expiring and environment variable 

changing uses “on” before the timer variable and environment variable; The 

transition receiving message uses “rec” before the message variable.  

Based on Figure 8-3, the corresponding CAPL code is shown in Figure 8-4. 

CAPL program manual is (Vector CANtech 2004). To use CANoe/CAPL to 

simulate test case nodes is quicker than programming individual ECUs. 

 

Figure 8-4 CAPL code 
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8.3.2 CAPL	code	generator	XML	schema	

The UML specification of the state machine node can be manually saved in XML 

format. This XML file is used as a template to generate the CAPL code which 

simulates the ECU on the CAN network. The XML file structure can be described 

by the XML schema. The state machine XML template will be constructed by 

using this schema. A state machine node can be described as Figure 8-5 .  

 

 

Figure 8-5 state machine node (from Eclipse UML2.1 plug-in) 
 

There are four components in a state machine node; states, initialState, transition, 

metadata. They are instances of four different types that is illustrated in Figure 

8-2 
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Figure 8-6 state machine node component types 
 

These four types also contain subtypes; the following subsections will 

individually describes all types of data used by the state machine schema. 

8.3.2.1 StatesType	

StatesType consists of one or more State type elements. A state type element is a 

local state of the state machine node. Each state type has its state number (state 

index) and variables (local states). The StatesType structure illustrates as Figure 

8-7 

 

Figure 8-7 StatesType  
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8.3.2.2 InitialState	

InitialState type element describes the initial state and event of the state machine. 

It is illustrated in Figure 8-8 

 

Figure 8-8 Initial state type 
 

The initialStateNum is the initial state number (state index); the events that 

possibly happen in the initial state are send message and set timer. 

ini_send_message and ini_setTimer is instances of Message type and Timer type. 

The structure of Message type is similar to a CAN message. msgName records the 

name of the message. messageId is type of MessageType that is a selection type:  

it can either be a standard message which uses standard CAN message ID or an 

extended message which uses extended message ID. The MessageType type is 

illustrated in Figure 8-9 ; dataLength describe the length of the data frame. 

msgData records the message data that can contain 0 to 8 bytes, MsgData type is 

illustrated in Figure 8-9 
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Figure 8-9 Message type 
 

The structure of Timer type records the name of the timer (timerName) and the 

duration of the timer (msTimer); it is illustrated in Figure 8-10 

 

Figure 8-10 Timer type 
 

8.3.2.3 Transition	

The transition type data records current state number, the event that causes the 

state change and next state number. Figure 8-11 shows the structure of the 

Transition type. Variable currentStatNum and nextStateNum is the number of a 

state and event is an instance of eventData type.  

 

Figure 8-11 Transition type 
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eventData type consists of eventTag, action, send_message, setTimer. It is 

illustrated in Figure 8-12. eventTag is instance of ActionType that is a selection 

type, it records event tag that is used as boundary in the CAPL code to separate 

different events, the ActionType is illustrated in Figure 8-12.  Action type records 

the variable that is triggered by event, it is used as handler to handle the event e.g. 

a timer variable t_n1_1 is set to 100 milliseconds, when t_n1_1 expires, the 

handler “on t_n1_1” will handle the timer expiry event. In the handler, the local 

states are changed and the messages can be sent and/or the timers can be set as 

well. The Message and Timer types have been introduced in 8.3.2.2 .  

 

Figure 8-12 eventData type 

8.3.2.4 Metadata	

Metadata is used to record the information about the test case and the node name 

in the case. It is illustrated in Figure 8-13 
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Figure 8-13 Metadata type 
 

8.3.3 CANoe	log	file	

The CANoe log file is generated by CANoe. It logs the information about 

transmitted CAN messages and environment variables. The structure of the file 

has been described in section 7.2.1. 

The local state of ECUs (simulated and/or real) will be recorded by the CCP 

(CAN Calibration Protocol) either on the same or different network. CCP is also 

CAN messages, thereby the CANoe logs the local states of each nodes in a single 

CANoe log file. The CANoe timestamp will be used to order local ECU state and 

inter ECU messages. The local states can be stored by CCP either continually or 

triggered by the state change. For continually log the local states, the frequency of 

CCP data logging is important to ensure that all internal events changes are 

detected. 

8.3.4 Communication	matrix		

Communication matrix describes the information about the sender and receivers 

of the corresponding CAN message ID. The CAN message ID has to be unique on 

the same CAN network: only one node can send a specific ID message, but it can 

be received by different nodes.  
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The communication matrix is contained in CANdb, but it is in the different format 

that is not convenient to use by prototype program. For the prototype system, it is 

manually migrated to XML format.  

The communication matrix schema contains zero or more message type elements; 

a message type element contains the attributes of the message id and the number 

of the sender node, it also contains a list of the receiving node numbers. The 

structure of the communication matrix illustrates in Figure 8-14 

 

Figure 8-14 Communication Matrix structure 
 

All the data required by test cases and the prototype has been introduced in this 

section. The next section will describe the design of the test cases and the 

prototype. 

 

8.4 Test	case	program	design	

8.4.1 CAPL	code	generator	

CAPL code generator is used to convert the XML state machine node description 

to CAPL code. It is programed in C#. There are two main classes of the CAPL 

code generator: Form and CodeGenerator. 
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8.4.1.1 Form	class	

The Form’s class diagram is shown in Figure 8-15, it has two main event 

operations; CAPL code XML template selection button selXML_btn_click gives a 

file selection dialog to let users select the XML template file. CAPL code 

generation button generateBtn_Click opens a saving path dialog to let the user 

choose the saving path of the CAPL code. 

 

Figure 8-15 Form class diagram 
 

Next is an example how to use the GUI. The GUI of the code generator is shown 

in Figure 8-16 

 

Figure 8-16 CAPL code generator GUI 
 

The select XML button lets the user select the state machine XML template as 

shown in Figure 8-17 

Form

Form

+ Form()
- Form_Load(object, EventArgs) : void
- generateBtn_Click(object, EventArgs) : void
- selXML_btn_Click(object, EventArgs) : void
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Figure 8-17 CAPL code generator select XML template dialog 
 

After the XML template file is selected, click the Generate button to choose the 

desired path and give the name of the CAPL code file to be saved. This is shown 

in Figure 8-18 . 

 

Figure 8-18 saving CAPL code dialog 
 

8.4.1.2 CodeGenerator	class	

The CodeGenerator class does the actual job of converting the XML template to 

the CAPL code.  Figure 8-2 is the class diagram of the CAPL code generator. It is 

more like procedure program; it takes the input CAPL code template XML file 

and generates the CAPL code. The red texts in the diagram are the variables of the 



192 
 

class, and the green texts are the functions of the class. The main function in the 

program is generateCode. It takes as parameter the string of the XML template 

path to generate the CAPL code.  

 

Figure 8-19  CAPL code generator class diagram 
 

The main procedure in the generateCode function is illustrated in Figure 8-20. It 

starts with generating the initial state code that includes the code to define the 

variables, initial state, and initial actions for the state machine node. Next activity 

is a loop to generate the rest of the states codes; the final activity writes the CAPL 

function code to record the state.  There are also subordinate activities in the 

“generate initial state” and “generate state” activities.  

CodeGenerator

+ currentStateNum:  int
+ message:  Message
+ states:  List<State>
- xDoc:  XmlDocument

+ CodeGenerator(String)
+ generateCode(String) : void
+ generateInitialState() : String
+ generateStates() : String
+ getStateByStaNum(string) : State
+ recordState() : String
+ writeMessage(XmlNode) : String
+ writeOnMessage(XmlNode) : String
+ writeStart() : String
+ writeState(XmlNode) : String



193 
 

 

 

Figure 8-20 CAPL code generator main procedure 
 

The activities procedure to generateInitialState is illustrated in Figure 8-21 . The 

activity generate variable writes the variable declaration for the CAPL code; the 

activity writeStart codes the initial state and actions. 

 

Figure 8-21 activities procedure generate initial state 
 

act generateCode

«structured»
generateInitialState

«loop»
generateStates

recordState

act generateInitialState

generate v ariable

writeStart
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In order to generate state, the generateStates activity contains a loop to call the 

writeState function. The writeState function codes the state and transition events 

of the state machine. The activities procedure in the writeState fucntion is shown 

in Figure 8-22. The procedure updates states first, after checking for any send 

message and/or set timer events. If any of them are recorded in the XML template, 

they will be coded in the CAPL code. 

 

Figure 8-22 activities procedure in the writeState function 
 

After all CAPL nodes codes are generated, they are compiled and run by CANoe. 

CANoe generates the CANoe log file for the later processing. The following 

sections will describe the design of the GPD prototype.  

 

8.5 GPD	prototype	program	design		

This section introduces the design of the prototype. There are three main packages 

(canoeDataProcessor, state, and gpd) to implement the predicate evaluation as 

act writeState

update states

check if any send message or set timer event send message

set timer

write send message code

write set timer code

[no]

[yes]

[no] [yes]

[yes]

[no]
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shown in Figure 8-2. Each package contains classes. These classes collaborate 

together to achieve the predicate evaluation result. Figure 8-23 is the class 

diagram to describe the relationship between the classes. 

 

Figure 8-23 Prototype class diagram (only main classes) 
 

In the class diagram, the packages are separated by the dashed rectangle. The 

following sections describe these packages.  

 

8.5.1 canoeDataProcessor	package	

canoeDataProcessor package is used to read CANoe log file and encapsulate 

CANoe log data. There are four classes in this package. Their relationships are 

shown in Figure 8-24. 

LatticeBuilder::
LatticeBuilder

Predicate::
Predicate

VectorTimeBuilder::
VectorTimeBuilder

Comparable

T

GlobalState::
GlobalState

Serializable

T

LocalState::
LocalState

Serializable

VectorClock::
VectorClock

CanMessage::
CanMessage

CanoeLogReader::
CanoeLogReader

CanoeVectorClock::
CanoeVectorClock

Comparable

Measurement::
Measurement

gpd

state

canoeDataProcessor

-vectorTimerBuilder

-vectorClock

-GSclock-currentClocks

-canoeLogReader

-message
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Figure 8-24 class diagram of canoeDataProcessor package 
 

8.5.1.1 CanoeVectorClock	class	

The CanoeVectorClock class is a child class of VectorClock that is an abstract 

class contained in state package. It specializes the VectorClock class.  The 

CanoeVectorClock class inherits the attribute vectorClock that is Long type of 

ArrayList from the VectorClock class. The attribute vectorClock is the data 

structure to store the vector clock. A CanoeVectorClock has operations to increase 

a given component of its own vectorClock, compare its own vectorClock with 

another vectorClock, update its own vectorClock from another vectorClock, and 

check if its own vectorClock is consistent with another vectorClock. All attributes 

and functions of the CanoeVectorClock class are shown in Figure 8-24. 

 

CanMessage::CanMessage

- CAN_Channel:  int
- Data:  long ([]) = new long[8]
- Data_length:  int
- Message_ID:  char

+ CanMessage()
+ CanMessage(int, char, String, long[])
+ dataEquals(byte[]) : boolean
+ getDataToString() : String

«property get»
+ getCAN_Channel() : int
+ getData() : long[]
+ getData_length() : int
+ getMessage_ID() : char

«property set»
+ setCAN_Channel(int) : void
+ setData(long[]) : void
+ setData_length(int) : void
+ setMessage_ID(char) : void

CanoeLogReader::CanoeLogReader

- CanoeLog:  Vector<Measurement>

+ CanoeLogReader(String, int)
+ findTotalNodeNum(char) : int
+ isInteger(String) : boolean

«property get»
+ getCanoeLog() : Vector<Measurement>

VectorClock

CanoeVectorClock::CanoeVectorClock

- serialVersionUID:  long = 1L {readOnly}

+ CanoeVectorClock(VectorClock)
+ CanoeVectorClock(ArrayList<Long>)
+ CanoeVectorClock(int)
+ CanoeVectorClock(int, int)
+ increment(int) : void
+ isTwoNodeConsistent(int, VectorClock, int) : boolean
+ notLessThan(VectorClock) : boolean
+ update(VectorClock) : void

Comparable

Measurement::Measurement

- event:  Event
- message:  CanMessage
+ msgNum:  long
- timer:  double

+ compareTo(Measurement) : int
+ equals(Object) : boolean
+ getEvent() : Event
+ getMessage() : CanMessage
+ getMsgNum() : long
+ getTimer() : double
+ Measurement()
+ Measurement(double, CanMessage, Event)
+ Measurement(Measurement)
+ setEvent(Event) : void
+ setMessage(CanMessage) : void
+ setMsgNum(long) : void
+ setTimer(double) : void
+ toString() : String

+CanoeLog

-message
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8.5.1.2 CanMessage	class	

The CanMessage class encapsulates the CAN message. It has attributes: 

CAN_Channel, Message_ID, Data_length, and Data. CAN_Channel  defines the 

CAN bus channel used. Message_ID defines message ID. Data_length defines the 

length of the data.  Data defines the message data.  

8.5.1.3 Measurement	class	

The Measurement class encapsulates the item in the CANoe log. A CANoe log 

item contains the real time of the message sent and the CAN message frame 

(described in Chapter 7). The Measurement class contains attribute of the 

CanMessage type and attribute of the Double type (real time). The CANoe log 

item stores the node state in the format of the CAN frame.  But it does not have 

any knowledge about the type of the event that can be found by the other 

functions. So it is necessary to have an attribute of Event type.  The Event is an 

enum type, it has three elements: receiveMsg, sendMsg, and internalEvent. They 

are the three possible events: receive message, send message, and internal event.  

8.5.1.4 CanoeLogReader	class	

The CanoeLogReader class reads the CANoe log to extract the data. Depending 

on these data, it creates the Measurement objects and stores these objects into a 

Vector. The only attribute in the CanoeLogReader class is the Measurement 

Vector called CanoeLog.  

8.5.2 state	package	

The state package defines the elements and the structures of the states (global and 

local).  There are three classes in the state package: VectorClock, LocalState, and 

GlobalState. Their relationships are illustrated in Figure 8-25. 
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Figure 8-25 class diagram of state package 
 

8.5.2.1 VectorClock	class	

The VectorClock class is an abstract class. It generalizes the type of vector clock. 

The VectorClock class defines the structure and the behaviors of the vector time. 

It is specified by the CanoeVectorClock class. More detail can be found in section 

8.5.1.1 . 

8.5.2.2 LocalState	class	

The LocalState class defines the local node structure. It is a generic class, so it can 

hold objects of any state class. For the prototype, the state class used is the 

Measurement class. A  LocalState class contains three attributes; nodeIndex, state, 

and vectorClock. The nodeIndex is an integer. It records the index of the node. 

Comparable

T

GlobalState::GlobalState

- defPredicateFlag:  boolean
- globalState:  Vector<LocalState<T>>
- GSclock:  VectorClock
- level:  long
- predicateFlag:  boolean

+ addState(LocalState<T>) : boolean
+ compareTo(GlobalState<T>) : int
+ getGlobalState() : Vector<LocalState<T>>
+ getLevel() : long
+ getVectorClocks() : Vector<VectorClock>
+ GlobalState()
+ GlobalState(Vector<LocalState<T>>)
+ GlobalState(GlobalState<T>)
+ isDefPredicateFlag() : boolean
+ isGSconsistent() : boolean
+ isPredicateFlag() : boolean
+ printVectorClockOrder() : String
+ setDefPredicateFlag(boolean) : void
+ setGlobalState(Vector<LocalState<T>>) : void
+ setPredicateFlag(boolean) : void
+ toString() : String
+ vectorClockToString() : String

«property get»
+ getGSclock() : VectorClock

«property set»
+ setGSclock(VectorClock) : void

Serializable

T

LocalState::LocalState

- nodeIndex:  int
- state:  T
- vectorClock:  VectorClock

+ equals(Object) : boolean
+ getNodeIndex() : int
+ getState() : T
+ getVectorClock() : VectorClock
+ LocalState()
+ LocalState(int, VectorClock, T)
+ setNodeIndex(int) : void
+ setState(T) : void
+ setVectorClock(VectorClock) : void
+ toString() : String

Serial izable

VectorClock::VectorClock

- serialVersionUID:  long = 1L {readOnly}
# vectorClock:  ArrayList<Long>

+ equals(Object) : boolean
+ getVectorClock() : ArrayList<Long>
+ increment(int) : void
+ isTwoNodeConsistent(int, VectorClock, int) : boolean
+ notLessThan(VectorClock) : boolean
+ setVectorClock(ArrayList<Long>) : void
+ toString() : String
+ update(VectorClock) : void
+ VectorClock(int)
+ VectorClock(ArrayList<Long>)
+ VectorClock(VectorClock)

+globalState

-vectorClock

-GSclock
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The nodeIndex minus 1 is its corresponding vector clock component index. The 

attribute state can is a generic type, it holds the state value of the node. 

8.5.2.3 GlobalState	class	

The global state is the collection of the local states, and has its own global vector 

clock.  The GlobalState class has the attributes of LocalState Vector type and 

VectorClock type. For the purpose of detecting the possibly predicate, the 

attribute predicateFlag is used as a flag to indicate if the global state satisfies the 

predicate. Also another attribute defPredicateFlag is used to find definitely 

predicate. It indicates the global state that does not satisfy the predicate is 

reachable from the initial state. If the unsatisfied predicate global state is 

reachable, then the value of defPredicateFlag of all global states in the path has to 

be false. The attribute level is used to present which level the global state 

belonged to. There is a function called isGSconsistent. It is used to check if the 

global state is consistent. isGSconsistent implements the algorithm in section 7.2.2. 

8.5.3 gpd	package	

The gpd package is the core package of the prototype. All logical GPD processes 

are implemented by the classes in this package.  There are three classes in gpd 

package; Predicate class, VectorTimeBuilder class, and LatticeBuilder class. 

Their relationships are illustrated in Figure 8-26.  
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Figure 8-26 class diagram of gpd package 
 

8.5.3.1 Predicate	class	

The Predicate class is a structure to hold a predicate. A predicate consists of a 

state variable, relational operator, constraint value, and logical connective which 

can connect to another predicate (e.g.  “||” and “&&”). The corresponding 

attributes of the Predicate class are valueIndex which is the index of the local 

state array, operator, predicate, and relation. The attribute nodeNumber indicates 

the index of the node.  An example of a predicate is “node[1].stateArray[0]>21 ||” . 

LatticeBuilder::LatticeBuilder

- lattice:  HashMap<Integer,Vector<GenericTreeNode<GlobalState<Measurement>>>>
- vectorTimerBuilder:  VectorTimeBuilder

- ascendOrderTotalLocalState() : Vector<Integer>
+ buildLattice() : void
+ checkPredicateFalseReachable(GenericTreeNode<GlobalState<Measurement>>) : boolean
+ definitelyPredicate(Vector<Predicate>) : boolean
+ getCGSs() : Vector<GlobalState<Measurement>>
+ getLattice() : HashMap<Integer, Vector<GenericTreeNode<GlobalState<Measurement>>>>
+ getVectorTimerBuilder() : VectorTimeBuilder
+ isReachable(GenericTreeNode<GlobalState<Measurement>>, GenericTreeNode<GlobalState<Measurement>>) : boolean
+ LatticeBuilder(VectorTimeBuilder)
+ possiblyPredicate(Vector<Predicate>) : boolean
+ printAllParentChild() : void
+ printAllParentChildWithGlobalVectorClock() : void
+ setLattice(HashMap<Integer, Vector<GenericTreeNode<GlobalState<Measurement>>>>) : void
+ setVectorTimerBuilder(VectorTimeBuilder) : void

Predicate::Predicate

# nodeNumber:  int
# operator:  String
# predicate:  long
# relation:  String
# varIndex:  int

+ getNodeNumber() : int
+ getOperator() : String
+ getPredicate() : long
+ getRelation() : String
+ getVarIndex() : int
+ Predicate()
+ Predicate(int, int, String, long, String)
+ setNodeNumber(int) : void
+ setOperator(String) : void
+ setPredicate(long) : void
+ setRelation(String) : void
+ setVarIndex(int) : void
+ toString() : String

VectorTimeBuilder::VectorTimeBuilder

- canoeLog:  Vector<Measurement>
- canoeLogReader:  CanoeLogReader
- commMatrix:  HashMap<Character,Vector<Integer>>
- currentClocks:  VectorClock ([])
- messageCount:  long
- nodesLocalStateMap:  HashMap<Integer, Vector<LocalState<Measurement>>>
- threshold:  char = 0x100 {readOnly}

+ buildVectorTime() : void
- findSendingNodeNum(char) : int
+ getCanoeLog() : Vector<Measurement>
+ getCanoeLogReader() : CanoeLogReader
+ getNodesLocalStateMap() : HashMap<Integer, Vector<LocalState<Measurement>>>
+ loadCommMatrix(String) : void
+ setCanoeLog(Vector<Measurement>) : void
+ setCanoeLogReader(CanoeLogReader) : void
+ setNodesLocalStateMap(HashMap<Integer, Vector<LocalState<Measurement>>>) : void
+ VectorTimeBuilder(String, String, int)

-vectorTimerBuilder
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8.5.3.2 VectorTimeBuilder	class	

The VectorTimeBuilder class assigns the vector time to the local state.  It uses 

attribute canoeLogReader  to read the CANoe log file, stores the data of the 

CANoe log into a Measurement Vector (the attribute canoeLog), loads 

communication matrix data, and goes through the Measurement Vector to assign 

the value to the instance of the LocalState. The order of assigning the vector clock 

is illustrated in Figure 8-27. 

 

 

Figure 8-27 sequence diagram to assign vector time 
 

 A HashMap type data structure (the attribute nodesLocalStateMap) is used to 

store the local states of different nodes. The key of the nodesLocalStateMap is the 

index of the node, and the value of the nodesLocalStateMap is a LocalState 

Vector. Each node has its corresponding list of local states. Another HashMap 

type data structure (the attribute commMatrix) is used to store the data of the 

communication matrix.  The key of the commMatrix is the CAN message ID. The 

value of the commMatrix is an Integer Vector. The first element of the vector is 

the index of the sending node; the other elements are the indexes of the receiving 

VectorTimeBuilder::VectorTimeBuilder

CanoeLogReader::CanoeLogReader
CanoeLogReader(String, int)

loadCommMatrix(String)
CanoeLogReader(String, int)

getCanoeLog() :Vector<Measurement>

buildVectorTime()
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nodes. Because the real system communication and CCP uses the same CAN 

channel, the attribute threshold works as a separator to separate them. If the CAN 

message ID is smaller than threshold, then the message is a CCP message. 

Otherwise it is a real system communication message. 

The process to build the vector time from the Measurement Vector is quite 

complex. The whole process is done by buildVectorTime() function as shown in 

Figure 8-27. The working flow of the function buildVectorTime() is illustrated in 

Figure 8-28. 

 

Figure 8-28 working flow of the function buildVectorTime() 
 

i=0

i++

int logSize=this.canoeLog.size();

add a new key(nodeNum) to 
the nodesLocalStateMap 

add localState to 
nodesLocalStateMap.get(nodeNum)

increase 
localState.v ectorClock[nodeNum-1]

increase 
localState.v ectorClock[nodeNum-1]

update 
localState.v ectorClock

add the localState to  
nodesLocalStateMap.get(nodeNum)

get the 
sender node 

index 
(nodeNum)

get node index (nodeNum)

localState.state = 
canoeLog.get(i)

localState.nodeIndex = 
nodeNum

initialize localState.v ectorClock

increase 
localState.v ectorClock[nodeNum-1]

localState.nodeIndex 
= nodeNum

[i<logSize]

[else]

[it is the initial state
of the
node[nodeNum]]

[it is a CCP message]

[else]

[it is a receiving event]

[else]

[else]
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As shown in the activity diagram (Figure 8-28), the buildVectorTime() function is 

based on a big for-loop. The variable i is the counter of the loop. Each time 

through the loop a new LocalState object called localState is created. The variable 

localState does not exist in the real code. It is only used for explanation purposes 

and makes it easier to understand the diagram. At the start of the loop iteration the 

state of the localState is assigned to the ith canoeLog element. The loop goes 

through the canoeLog evaluating each measurement, to find which node local 

state it belongs to and to assign the vector time to the local state. There are a few 

condition statements to implement such evaluation. The first condition statement 

is to separate the CCP message and the real system communication message. 

They are separated by the threshold. If it is a real system communication message, 

then the sending node index (nodeNum) will be found by searching the 

communication matrix; the nodeNum is assigned to the variable state of the 

localState; the (nodeNum – 1)th  vector clock of the localState increases one; the 

localState is added to the LocalState Vector in the nodesLocalStateMap mapped 

by the key which is the nodeNum. If the message is a CCP message, then it will 

meet the second condition statement. But before the second condition statement, 

the nodeNum is found by the message ID (the message Id is the node index). The 

second condition statement separates the initial state and the non-initial state. To 

judge if the localState is the initial state of a node, it needs to check if the value of 

the nodeNum mapped in nodesLocalStateMap is null. If null it is an initial state, 

otherwise it is a non-initial state. If it is an initial state, then the following process 

will be pretty simple. The process is initializing the vector clock of the localState, 

adding the new key nodeNum to the nodesLocalStateMap and adding the first 

element to this key mapped LocalState Vector. If the localState is non-initial state, 
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then it goes to the third condition statement. The third condition statement 

separates the event types which causes the state change. Here the event types are 

internal and receiving events, the sending event has been filtered out by the first 

condition statement. If the localState is caused by an internal event, then 

(nodeNum – 1)th  vector clock of the localState increases by one; the localState is 

added to the LocalState Vector in the nodesLocalStateMap mapped by the 

nodeNum. If the localState is caused by a receiving event, the process is similar to 

the internal event. The only difference is after the vector clock increased, it needs 

to update the vector clock of the localState from the vector clock of the sender. 

The index of the sender can be found by searching the communication matrix. The 

vector clock of the last state of the node pointed by this index is the vector clock 

that the localState should update from.   

 

8.5.3.3 LatticeBuilder	class	

The LatticeBuilder class evaluates the consistent global states, constructs lattice 

and detects the predicate.  It consists of two attributes: vectorTimeBuilder and 

lattice. The type of the vectorTimeBuilder is VectorTimeBuilder. The type of the 

lattice is a HashMap, the type of the key of the HashMap is Integer. The key 

indicates the level of the lattice. The value type of the HashMap is 

GenericTreeNode Vector. The GenericTreeNode class is a tree type of the data 

structure. In the lattice, a node may have child nodes and/or parent nodes. A 

GenericTreeNode holds a global state, and also maps the child and parent 

relationships. The structure of the lattice is illustrated in Figure 8-29.  
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Figure 8-29 lattice structure 
 

The diagram demonstrates: The current level is n. The first element of level n has 

one parent node and two child nodes. The second element of level n has only one 

parent node.  

The procedure to evaluate the predicate in the LatticeBuilder class has three steps. 

1. Constructing consistent global states 

2. Building lattice  

3. Predicate evaluation 

These steps are separated to different functions.  

The getCGSs function evaluates the local states and constructs consistent global 

state with validated local states. It returns a GlobalState Vector. All consistent 

global states are stored in this vector.  Figure 8-30 is the work flow of the 

getCGSs function. 

   

  

 

level

n-1 

n 

n+1 

 

Vector< GenericTreeNode > GenericTree

GlobalState
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Figure 8-30 the getCGSs function activity diagram 
 

Before explaining Figure 8-30, an important algorithm needs to be explained. The 

getCGSs function needs to go through all possible combinations of the local states 

to evaluate if they are consistent global states. In order to search all local states of 

all nodes, a “counting” algorithm is used. The “counting” algorithm is similar to 

counting numbers. It uses an array to store the digits; each element in the array 

can be considered as a digit. The size of the array is the total number of nodes. 

Each element of the array is an index counter to go through its corresponding 

node LocalState Vector. A base of a binary system is 2, a base of a octal system is 

8 etc.  Here the base of each digit (element of the array) is variable. The base of a 

digit is the total number of local states of the node. If the lower level digit exceeds 

its base, then the higher level digit increases one. By using such counting system, 

all possible global states of the combination of local states will be checked.   

result = new 
Vector<GlobalState<Measurement>>()

localStatesMap = 
vectorTimeBuilder.getNodesLocalStateMap()

stateCounters = new 
int[keys.length]

firstNodeLocalStateSize = 
localStatesMap.get(keys[(stateCounters[0])]).size()

currentGS= new 
GlobalState<Measurement>()

return result

keys = 
localStatesMap.keySet()

currentGS.addState(localStatesMap 
.get(keys[0]) .get(stateCounters[0]))

«loop»
evaluate consistent 

global state

[stateCounters[0] !=
firstNodeLocalStateSize]
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In Figure 8-30, the variable result is the returned GlobalState Vector. The 

HashMap localStateMap stores all local states of all nodes. The array keys stores 

all node indexes. The array stateCounters is used as a counter as described above 

(“counting” algorithm) to go through all possible global states constructed by 

local states. The Integer firstNodeLocalStateSize is the size of the LocalState 

Vector mapped by key[0] in the localSTateMap.  It is the base of the highest digit 

of the counting system. All these variables are initialized or assigned at the start of 

the work flow. The counting system is implemented by two loops. The first loop 

is used to control the counting flow.  The second loop is used to add the local state 

of each node to a temporary global state and evaluates this global state.  

 

Figure 8-31 counting system structure 
 

The structure of the counting system is illustrated in Figure 8-31. The component 

stateCounters[0] is the highest digit in the counter array. The first loop keeps 

iterating, when stateCounters[0] does not equal to firstNodeLocalStateSize. 
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stateCounters[0]  reaching the firstNodeLocalStateSize means that the counting is 

finished. In this loop, a temporary GlobalState object currentGS is created to hold 

the local state of each node. After currentGS created, the first local state is added 

to it. The second loop that is an internal loop of the first loop adds the remaining 

local states to currentGS, and evaluates if currentGS is consistent.  The work flow 

of this loop is shown in Figure 8-32. It is a for-loop. The counter i counts the node 

index.  

 

Figure 8-32 work flow of the consistent global state evaluation 
 

The second loop is a for-loop. The counter i count the node index. The number of 

local states in the global state is checked at beginning.  If the number of nodes 

held by currentGS is smaller than the total number of nodes 

(i<stateCounters.length), then the loop keeps iterating. There are three conditions 

in the loop. The first condition (stateCounters[i] == 

localStatesMap.get(keys[(i)]).size()) checks if the digit counter reaches the base, if 

stateCounters[i-1]++ i++stateCounters[i]=0

i=0

currentGS 
.addState(localStatesMap 

.get(keys[i]).get(stateCounters[i]))

result.add(currentGS) stateCounters[i]++

currentGS 
.addState(localStatesMap 

.get(keys[i]) 
.get(stateCounters[i]))

[the currentGS is consistent]

[i ==
stateCounters.length-1]

[stateCounters[i] ==
localStatesMap.get(keys[(i)]).size()]

[i<stateCounters.length]
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it is true, then this digit will be reset to zero (stateCounters[i]=0) and the higher 

level counter increases by one (stateCounters[i-1]++). The second condition 

checks if currentGS gets all local states, if it is true, then currentGS is checked by 

its own function isGSconsistent, if it consistent, then it is added to result. If 

previous two conditions fail, the third condition adds the local state to currentGS. 

Depending on the combination equation, the total number of combinations of 

local state of global state can be as much as  

l1×l2×l3 …ln 

l is the total number of local states of a node. n is the index number of the node. 

The combinations depend on the number of nodes and number of local states. 

Suppose if the node number is 10 and 100 local states are collected for each node, 

it is 10010 possible combinations. The combinations to be evaluated can be a very 

large number, and also the validated CGSs may need large storage.  

After all consistent global states are defined; the execution lattice can be built. 

The main process to build the execution lattice is shown in Figure 8-33.  

 

 

Figure 8-33 main process of building execution lattice 
 

«loop»
build lev els

«loop»
build relationships

CGSs=this.getCGSs() levelCounter=0
sameLevelCGSs=new 

Vector<GenericTreeNode<GlobalState<Measurement>>>()
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The main process to build the execution lattice is:  store all consistent global states 

to an GlobalState Vector, assigning a variable levelCounter to count the level, 

creating a temporary GenericTreeNode Vector called sameLevelCGSs that is used 

to store the same level CGSs, a loop building the levels of the lattice, and a loop 

building the relationship between levels.  

The work flow of the loop to build the levels is illustrated in Figure 8-34. The 

loop goes through CGSs to add the CGS to corresponding level GenericTreeNode 

Vector of the class variable lattice. The exit condition of this loop is when the 

CGSs is empty. In each loop iteration, the level of the CGS is checked 

(CGSs.firstElement().getLevel()==levelCounter) . If the level of the CGS equals 

to levelCounter, then the CGS is removed from CGSs and wrapped in a temporary 

GenericTreeNode object GSnode that is added to sameLevelCGSs. Otherwise a 

new level and the corresponding GenericTreeNode Vector is added to lattice; 

sameLevelCGSs is emptied, so the next level GenericTreeNode Vector can be 

stored. 

 

Figure 8-34 work flow build lattice levels 
 

GSnode = new 
GenericTreeNode<GlobalState<Measurement>> 

(CGSs.remov e(0))

sameLev elCGSs.add(CGSnode)

sameLev elCGSs.remov eAllElements()

this.lattice.put(lev elCounter, new 
Vector<GenericTreeNode<GlobalState<Measurement>>> 

(sameLevelCGSs))

lev elCounter++

[!CGSs.isEmpty()]

[CGSs.firstElement().getLevel()==levelCounter]
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The work flow of the loop to build relationships between parent nodes and child 

nodes is illustrated in Figure 8-35. The loop goes though each level to relate 

parent nodes to child nodes. The loop starts with level one (i=1), so level i-1 holds 

all parent nodes (parentLevel=i-1) (parentSize = 

this.lattice.get(parentLevel).size()) and level i holds all child nodes. There is a 

loop (parent loop) in this loop. The parent loop goes through the parent level 

nodes to relate the node to its child nodes. There is an inner loop (child loop) in 

each round of the parent loop. The child loop goes through the child level nodes to 

relate the node to its parents.  

 

Figure 8-35 work flow to build relationships between parent nodes and child nodes 
 

After the lattice builds up, the predicate evaluation can start. There are two 

evaluation types of the predicate. They are possibly predicate and definitely 

predicate. The corresponding implementation functions are 

possiblyPredicate(Vector<Predicate> inputs) and 

definitelyPredicate(Vector<Predicate> inputs).  Both of them take Predicate 

Vector (inputs) as parameter. A library Jep (Nathan Funk 2011) is used for the 

purpose to compare the state values to the predicate. After the program is 

compiled, it is hard to evaluate mathematical expressions that are dynamically 

i=1

parentLev el=i-1

parentSize = 
this.lattice.get(parentLevel).size()

«loop»
go through the parent CGSs

«loop»
go through child node, 
check if the child node 

reachable from the parent

i++

[i<levelSize]
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defined; particularly if the expression contains the internal variables and external 

values. Jep parses mathematical expression strings and generates the result.    

As shown in section 6.4.1 to evaluate possibly predicate is easier than evaluating 

definitely predicate. For detecting the possibly predicate, it only needs to be 

proven one global state in the lattice satisfies the predicate. The Predicate function 

tags all global states that satisfy the predicate. Its execution order is demonstrated 

in Figure 8-36.  

 

Figure 8-36 the Predicate function sequence diagram 
 

At the beginning of the sequence, the Predicate function calls the buildLattice() 

function to build the lattice. A new object of JEP j is created. The steps from 1.3 

to 1.5 in Figure 8-36 are initializing  j. The following two loops go through lattice 

: LatticeBuilder

j : org.nfunk.jep.JEP

loop

[for each new TreeSet<Integer>(this.lattice.keyS

loop

[for each this.lattice.get(key)]

1: possiblyPredicate()

1.1: buildLattice()

1.2:

1.3: addStandardConstants()

1.4: addStandardFunctions()

1.5: addComplex()

1.6: parseExpression(expression)

1.7: getValueAsObject()

1.8:
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to evaluate if the global state satisfies the predicate. The external loop goes 

through the different level. The internal loop goes through the global state vector 

that is mapped by the level. The step 1.6 shows j evaluates the predicate and the 

step 1.7 is get result from the evaluation. The detail of the work flow in internal 

loop is demonstrated in Figure 8-37.  

 

Figure 8-37 work flow of the internal loop of the Predicate function 
 

After the evaluation the result is assigned to value. The value of value is checked. 

If the value is 1.0 then it means the global state satisfies the predicate. The return 

value result and the value predicateFlag will be set to true. Otherwise it means 

the global state does not satisfy the predicate. There is a decision here to check if 

the non-satisfied global state is reachable from the initial state. If it is reachable 

then the defPredicateFlag of the global state is set to true. Otherwise it is set to 

false. This decision is used for the definitely predicate for later.  So the Predicate 

function can be used as the sub-function of the Predicate function (Figure 8-38).   

appending predicate 
to expression

j .parseExpression(expression)

v alue = 
j .getValueAsObject()

cgs.data.setPredicateFlag(true)

result=true cgs.data.setDefPredicateFlag(true) cgs.data.setDefPredicateFlag(false)

[value.equals(1.0)]

[checkPredicateFalseReachable(cgs)||key==0]
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Figure 8-38 sequence diagram for the Predicate function 
 

After the possiblyPredicate function is invoked, all global states that do not 

satisfy predicate and is reachable from initial global state are marked 

(defPredicateFlag).  As shown in section 6.4.1 the definitely predicate detection 

algorithm, a loop is used to check each level to see if any of them do not contain a 

global state reachable from initial state without predicate being true.  

 

Figure 8-39 the definitelyPredicate function work flow 
 

: LatticeBuilder

1: definitelyPredicate()

1.1: possiblyPredicate()

1.2:

definitelyPredicate

«loop»

lev el=1 count=0

«loop»

cgs:
lattice.get(lev el)

count++

result=false

result=true

return result

[i<lattice.keySet().size()]

[cgs!=null]

[cgs.getData().isDefPredicateFlag()]

[count==0]
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The work flow of the definitelyPredicate function is shown in Figure 8-39. The 

external loop goes through the level. A variable count is assigned to zero. It is 

used to count how many global states marked with defPredicateFlag.  The 

internal loop goes through the global states in the level to check if the global state 

marked with defPredicateFlag. If the global state marked with defPredicateFlag, 

then count increases one. After the internal loop, count is checked. If it is zero, 

then the predicate is definitely true; the function terminates and returns value 

result assigned true. Otherwise it goes to check next level. If all levels checked, 

and there is no count is zero, then the predicate is not definitely true. result is 

returned as false.  

8.5.4 GraphicGPD	

The GraphicGPD package gives a GUI to control the predicate evaluation tool 

and also generates the evaluation result in a graph. It makes the control of the tool 

easier and the graphic view of the execution lattice makes it more understandable. 

There are five classes in the GraphicGPD package. They are CGScell, 

LatticeImageTraslator, GSlatticeFrame, GPDtoolController, and 

InputValueSelector. Their relationships are demonstrated in Figure 8-40. 

 

Figure 8-40 GraphicGPD package class diagram 
 

CGScell

A

JFrame

GSlatticeFrame

LatticeImageTranslatorGPDtoolController

JFrame

InputValueSelector

-translator

-gsFrame

-inputSelector +imageLattice
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The CGScell class holds a global state, positioning it on the graphic view of the 

lattice. It uses different colors to demonstrate if the state satisfies the predicate and 

the reachable non-satisfied predicate global state from the initial global state. The 

circles that are shown in Figure 8-41 illustrate the CGScell objects.  

The LatticeImageTranslator class reassembles each level mapped GlobalState 

Vector to CGScell Vector. It generates a BufferedImage of the lattice.  

The GSlatticeFrame class draws the image depending on the BufferedImage of 

the lattice. Figure 8-41 shows a lattice frame with a BufferedImage embedded. 

 

Figure 8-41 Lattice frame 
 

The GPDtoolController class gives a GUI to configure the file paths (CANoe log 

and communication matrix) and select the predicate evaluation type. A 

GPDtoolController dialog is illustrated in Figure 8-42. 

The InputValueSelector class gives a graphic table to set up the predicates. A 

InputValueSelector dialog is illustrated in Figure 8-43. 
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Figure 8-42 GPDtoolController dialog 
 

 

Figure 8-43 InputValueSelector dialog 

8.6 Conclusion	

This chapter described the GPD prototype program design. The prototype 

includes two main parts: test case generating and global predicate evaluation. For 

the purpose of rapidly and clearly generating test cases, UML modelling language 

is used. Depending on the state machine modelled, the state machine can be 

described in xml format. This xml file is read by a CAPL code generator to parse 

the XML to CAPL code which simulates the ECU. Running these CAPL codes on 

CANoe, CANoe logs the CAN messages of the system for the prototype program 

to evaluate. 

The global predicate evaluation program reads the CANoe log file; selects the 

local state from the file, assigning the vector time; finds out the consistent global 

states, builds the lattice with these CGSs, and evaluates the predicate. Depending 

on the total number of node and the local states logged in the CANoe log, the 
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evaluation process takes a different time. The more node and/or local states, the 

more time taken. The storage of the CGSs also depends on the communications 

between the nodes. The more communications, the less CGSs are stored, because 

more communications make more constraints to evaluate the CGSs.  

The result of the evaluation can be graphically viewed. The execution lattice is 

drawn in a java frame. The predicate situation is demonstrated in different colours.  
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Chapter	9 Prototype	Testing	

9.1 Introduction 

This chapter describes test cases to test the prototype global predicate evaluation 

software. These test cases will verify the functions of the prototype and finally 

validate the prototype. Each test case includes ECU state diagrams, the values of 

different states, and the communication matrix. These test cases test simulated 

ECUs running on the simulated bus and real bus. On the simulated bus, all 

simulated ECUs run on one computer and they share the single CPU clock; so 

their clocks are synchronized by the clock of the computer. On the real bus, some 

simulated ECUs are moved to another computer. They communicate with each 

other through the real CAN bus. Because these ECUs are running on different 

computers, the ECUs use different CPU clocks, they are not synchronized by a 

single clock.  

The terms and structures used by the different test cases are very similar, so they 

will be described first. For better understanding, the first test case will be 

described with some assistant texts. The terms and structures used by the 

following test cases will be as same as the first one, so it is not necessary to 

explain them again.  

There are seven test cases in this chapter. Test cases 1 to 4 verifies and validates 

the prototype. The last three test cases test the performance of the prototype. 

In order to make the execution lattice more understandable, some of the results of 

the test cases are graphically presented. 

Table 9-1 gives a general overview of all test cases.  
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Test case Number of nodes Purpose 

1 2 Verify and validate prototype 

2 3 Verify and validate prototype 

3 2 Verify and validate prototype 

4 3 Verify and validate prototype 

5 4 Test prototype Performance 

6 4 Test prototype Performance 

7 6 Test prototype Performance 

Table 9-1 overview of test cases 
 

The first four test cases are used to verify and validate prototype. Because the 

verification and validation is done manually, the quantity of nodes is less than 

three. Otherwise, it is hard to accurately  verify and validate the prototype. The 

first test case verifies the vector clock assignment and building lattice functions. 

Test case 2 tests high dependence system. Test case 3 tests the effect of 

environment variables in the state machine. Test case 4 is randomly generated.  

The last 3 test cases test the performance of the prototype. Test case 5 tests 4-

nodes system performance (randomly chosen).  Test case 6 tests non-

communication system performance. Test case 7 tests 6-nodes system (randomly 

chosen). 

Due to the time constraints of this research, these test cases cannot fully test the 

prototype. However, they verify the basic functions, e.g. vector time assignment, 

consistent global  state verification, and building the execution lattice. They also 

validate the predicate evaluation.  
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9.2 Term explanation  

9.2.1 Terms used on state machine diagram 

On the state of the state machine diagram, “set” is for the action set timer. Its 

following variable is the timer variable in the CAPL code. The timer variable 

always starts with letter “t”. “send” is for the action send message. The message 

variable starts with “msg”.  

Each “t” or “msg” is followed by letter “n” with number, which means the node 

with node number.  The last number of the variable is the counter of the timer 

variable or the message variable.  For example the variable “msg_n1_2” means it 

is a message variable and it is the second message sent by node one. There are 

also another variable starting with “env” which indicates the variable is an 

environment variable. It is not on the state. It only appears on the transition.   

The guard of the transition on the state machine diagram, “on” means timer 

expired triggers the transition or an environment variable triggers the transition; 

“rec” means when a message is received the transition is triggered. The variable 

following “on” or “rec” is the trigger variable.  

Figure 9-1 demonstrates the state machine diagram of node 1. There are three 

state in the node 1 and four transitions. timer t_n1_1 is set up to 50 milliseconds 

in state1. State 2 sends message msg_n1_1 with ID hex 100, sets up timer t_n1_1, 

and sets up timer t_n1_2. State 3 sends message msg_n1_2. The initial state of the 

state machine is state 1. When the timer t_n1_1 expires the state machine moves 

to state 2. When the timer t_n1_2 expires the state machine moves to state 3. 

When state3 receives the message msg_n2_2 the state machine moves to state 2. 

When the timer t_n1_1 expires the state machine move to state 1. 
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9.2.2 Terms used on communication matrix 

The first column (MessageID) of the communication matrix records the CAN 

message ID. The second column (SendNodeNum) records the index of the sending 

node. The third column (receive: nodeNum) records the index of the receiving 

node. 

Table 9-2 is the communication matrix for the test case 1. There are four 

messages on the CAN bus. The message with ID 100 is sent by node 1 and 

received by node2. The message with ID 300 is sent by node2 and received by 

node1. The message with id 101 is sent by node1 and received by no node. The 

message with ID 200 is sent by node2 and received by no node. 

9.2.3 Terms on local state table 

A local state table shows the different state values of the state machine. The first 

column (stateNum) of the local state table is the index of the state. The other 

columns (var1..var10) are the values of the state variables.  

Table 9-3 shows the local state values of each state. In state 1, the value of 

variable 1 (var1) is 11; the value of variable 2 (var2) is 11 etc.. 

9.3 Test case 1 

This test case only includes two nodes. Depending on the UML specification, it is 

easier to manually figure out the time line of the execution. So it is possible to 

verify if the right vector clock is assigned to the local state. Also it is easier to 

manually find out the consistent global states and to build the lattice. Using this 

lattice against the lattice generated by the prototype verifies if the prototype builds 

the right lattice.  
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9.3.1 Model explanation 

9.3.1.1 State machine diagram 

Test case 1 contains two nodes.  

 

Figure 9-1 test case 1 state machine 1 

 

Figure 9-2 test case 1 state machine 2 
 

 

 stm node1

State1

+ set /  t_n1_1(50)

State2

+ send / msg_n1_1(100)
+ set / t_n1_1(100)
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+ set / t_n2_2(200)
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rec
/msg_n2_1(200)

rec
/msg_n1_1(100)
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9.3.1.2 Communication matrix 

MessageID SendNodeNum receive: nodeNum

100 1 2 

300 2 1 

101 1 

200 2 
Table 9-2 test case 1 communication matrix 
 

9.3.1.3 Local states 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 11 11 11 11 0 0 0 0 0 

2 12 12 12 12 12 0 0 0 0 0 

3 13 13 13 13 13 13 0 0 0 0 
Table 9-3 test case 1 node 1 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 21 21 21 21 21 0 0 0 0 0 

2 22 22 22 22 22 22 0 0 0 0 

3 23 23 23 23 23 0 0 0 0 0 
Table 9-4 test case 1 node2 local states 

9.3.2 Test different inputs 

9.3.2.1 Predicate 1 

Predicate expression: 

node2.var2 > 21 && node1.var2 == 11 

var2 of the node2 is greater than 21 and var1 of node 1 equals to 11  
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9.3.2.1.1 Simulated system test result 

 Local states of each node  9.3.2.1.1.1

This section shows part of local states of each node. 

Vector time Real time State Event 
<0,0> 2.36E-04 11 11 11 11 11 0 0 0 internalEvent 
<1,0> 0.050246 12 12 12 12 12 0 0 0 internalEvent 
<2,0> 0.050398 12 12 12 12 12 0 0 0 sendMsg 
<3,0> 0.100234 13 13 13 13 13 13 0 0 internalEvent 
<4,0> 0.100368 13 13 13 13 13 13 0 0 sendMsg 
<5,5> 0.35105 12 12 12 12 12 0 0 0 receiveMsg 
<6,5> 0.351202 12 12 12 12 12 0 0 0 sendMsg 
<7,5> 0.45104 11 11 11 11 11 0 0 0 internalEvent 
<8,5> 0.55105 12 12 12 12 12 0 0 0 internalEvent 
<9,5> 0.551202 12 12 12 12 12 0 0 0 sendMsg 

<10,5> 0.601038 13 13 13 13 13 13 0 0 internalEvent 
Table 9-5 node1 local states 
  

Vector time Real time State Event 
<0,0> 4.76E-04 21 21 21 21 21 0 0 0 internalEvent 
<2,1> 0.050634 22 22 22 22 22 22 0 0 receiveMsg 
<2,2> 0.150636 23 23 23 23 23 0 0 0 internalEvent 
<2,3> 0.150766 23 23 23 23 23 0 0 0 sendMsg 
<2,4> 0.350638 21 21 21 21 21 0 0 0 internalEvent 
<2,5> 0.350804 21 21 21 21 21 0 0 0 sendMsg 
<6,6> 0.351438 22 22 22 22 22 22 0 0 receiveMsg 
<6,7> 0.45144 23 23 23 23 23 0 0 0 internalEvent 
<6,8> 0.45157 23 23 23 23 23 0 0 0 sendMsg 

<11,9> 0.651442 21 21 21 21 21 0 0 0 receiveMsg 
<11,10> 0.651608 21 21 21 21 21 0 0 0 sendMsg 
<13,11> 0.652242 22 22 22 22 22 22 0 0 receiveMsg 
<13,12> 0.752244 23 23 23 23 23 0 0 0 internalEvent 

Table 9-6 node2 local states 
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 Consistent global states 9.3.2.1.1.2

This section shows part of consistent global states found by the prototype. The 

global states are separated by the blank row. 

Global vector time Local vector time Real time State Event 

<0,0> <0,0> 2.36E-04  11 11 11 11 11 0 0 0    internalEvent 

<0,0> 4.76E-04  21 21 21 21 21 0 0 0    internalEvent 

<1,0> <1,0> 0.050246  12 12 12 12 12 0 0 0    internalEvent 

<0,0> 4.76E-04  21 21 21 21 21 0 0 0    internalEvent 

<2,0> <2,0> 0.050398  12 12 12 12 12 0 0 0    sendMsg 

<0,0> 4.76E-04  21 21 21 21 21 0 0 0    internalEvent 

<2,1> <2,0> 0.050398  12 12 12 12 12 0 0 0    sendMsg 

<2,1> 0.050634  22 22 22 22 22 22 0 0    receiveMsg 

<3,0> <3,0> 0.100234  13 13 13 13 13 13 0 0    internalEvent 

<0,0> 4.76E-04  21 21 21 21 21 0 0 0    internalEvent 

<2,2> <2,0> 0.050398  12 12 12 12 12 0 0 0    sendMsg 

<2,2> 0.150636  23 23 23 23 23 0 0 0    internalEvent 

<3,1> <3,0> 0.100234  13 13 13 13 13 13 0 0    internalEvent 

<2,1> 0.050634  22 22 22 22 22 22 0 0    receiveMsg 

<4,0> <4,0> 0.100368  13 13 13 13 13 13 0 0    sendMsg 

<0,0> 4.76E-04  21 21 21 21 21 0 0 0    internalEvent 

<2,3> <2,0> 0.050398  12 12 12 12 12 0 0 0    sendMsg 

<2,3> 0.150766  23 23 23 23 23 0 0 0    sendMsg 

<3,2> <3,0> 0.100234  13 13 13 13 13 13 0 0    internalEvent 

<2,2> 0.150636  23 23 23 23 23 0 0 0    internalEvent 

<4,1> <4,0> 0.100368  13 13 13 13 13 13 0 0    sendMsg 

<2,1> 0.050634  22 22 22 22 22 22 0 0    receiveMsg 

<2,4> <2,0> 0.050398  12 12 12 12 12 0 0 0    sendMsg 

<2,4> 0.350638  21 21 21 21 21 0 0 0    internalEvent 

<3,3> <3,0> 0.100234  13 13 13 13 13 13 0 0    internalEvent 

<2,3> 0.150766  23 23 23 23 23 0 0 0    sendMsg 
Table 9-7 global state 
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 General result (possibly predicate) 9.3.2.1.1.3

Total local states of node1: 61 

Total local states of node2: 44 

Total number global states: 234 

Possibly predicate: true 

Running time cost: 346ms 

 

Figure 9-5 shows the graphic result of the test case 1 predicate 1 simulated bus 

possibly predicate detection. The red and the green circles are the global states of 

the execution lattice. The red circle means the global state satisfies the predicate. 

The green circle means the global state does not satisfy the predicate. The 

numbers on the circle is the vector time of the global state. The numbers on the 

right of the lattice are the level of the lattice. Figure 9-3 shows the global state 

with the global vector time <2,3>. The dialog above the lattice is the detail about 

the global state; it tells the predicate flag is false, so the colour of this global state 

is green.  Figure 9-4 shows the example of the colour of the global state that 

satisfies the predicate is red (predicate flag is true).  

 

Figure 9-3 the global state of the lattice does not satisfy the predicate. 



229 
 

 

 

Figure 9-4 the global state of the lattice satisfies the predicate. 
 

For the graphic result of the definitely predicate detection, the global state which 

is reachable from initial state without predicate being true is coloured yellow as 

shown in Figure 9-6.  

To use graph can clearly show the predicate detection algorithm and result of the 

predicate evaluation. The more consistent global state the bigger of the graph.  

  

Figure 9-5 test case 1 predicate 1 simulated bus possibly predicate detection graphic result 
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 General result (Definitely predicate) 9.3.2.1.1.4

Total local states of node1: 61 

Total local states of node2: 44 

Total number global states: 234 

Definitely   predicate: false 

Running time cost: 311ms 

 

 

Figure 9-6 test case 1 predicate 1 simulated bus possibly definitely detection graphic result 
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9.3.2.1.2 Real system test result 

 

Figure 9-7 test case1 predicate 1 real bus configuration 
 

For the real bus running the test case, the configuration of CANoe is show in 

Figure 9-7. In the diagram, node2 is paler than node1. This means node2 

simulated by CANoe is deactivated from the CAN bus. node2 should be replaced 

by the same function ECU on the real CAN bus.  

node1 runs on laptop with CANoe . node2 is moved to another  laptop which runs 

CANalyzer. CANalyzer is the universal analysis tool for networks and distributed 

systems. It is pretty similar to CANoe.  The CAPL code (node2) can be run by 

CANalyzer as well as CANoe. In order to send CAN messages on the real bus, 

CANalyzer has to be used with a PC card CANcardXL. This card is connected to 

the real bus and sends the CAN message generated by node2 to the real bus. 
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 Local state of each node 9.3.2.1.2.1

 

Vector time Real time State Event 
<0,0> 0.075945  11 11 11 11 11 0 0 0    internalEvent 
<1,0> 0.076207  12 12 12 12 12 0 0 0    internalEvent 
<2,0> 0.076375  12 12 12 12 12 0 0 0    sendMsg 
<3,0> 0.100968  13 13 13 13 13 13 0 0    internalEvent 
<4,0> 0.101118  13 13 13 13 13 13 0 0    sendMsg 
<5,5> 0.37795  12 12 12 12 12 0 0 0    receiveMsg 
<6,5> 0.378118  12 12 12 12 12 0 0 0    sendMsg 
<7,5> 0.477358  11 11 11 11 11 0 0 0    internalEvent 
<8,5> 0.577498  12 12 12 12 12 0 0 0    internalEvent 
<9,5> 0.577666  12 12 12 12 12 0 0 0    sendMsg 

<10,5> 0.62741  13 13 13 13 13 13 0 0    internalEvent 
Table 9-8 node1 local states 
 

<0,0> 0.075707  21 21 21 21 21 0 0 0    internalEvent 
<2,1> 0.076778  22 22 22 22 22 22 0 0    receiveMsg 
<2,2> 0.176898  23 23 23 23 23 0 0 0    internalEvent 
<2,3> 0.177051  23 23 23 23 23 0 0 0    sendMsg 
<2,4> 0.376839  21 21 21 21 21 0 0 0    internalEvent 
<2,5> 0.377027  21 21 21 21 21 0 0 0    sendMsg 
<6,6> 0.378454  22 22 22 22 22 22 0 0    receiveMsg 
<6,7> 0.478898  23 23 23 23 23 0 0 0    internalEvent 
<6,8> 0.47905  23 23 23 23 23 0 0 0    sendMsg 

<11,9> 0.678916  21 21 21 21 21 0 0 0    receiveMsg 
<11,10> 0.679104  21 21 21 21 21 0 0 0    sendMsg 
<13,11> 0.680489  22 22 22 22 22 22 0 0    receiveMsg 
<13,12> 0.780937  23 23 23 23 23 0 0 0    internalEvent 

Table 9-9 node2 local states 
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 Consistent global states 9.3.2.1.2.2

Global vector time Local vector time Real time State Event 

<0,0> <0,0> 7.59E-02  11 11 11 11 11 0 0 0    internalEvent 

<0,0> 7.57E-02  21 21 21 21 21 0 0 0    internalEvent 

<1,0> <1,0> 0.076207  12 12 12 12 12 0 0 0    internalEvent 

<0,0> 7.57E-02  21 21 21 21 21 0 0 0    internalEvent 

<2,0> <2,0> 0.076375  12 12 12 12 12 0 0 0    sendMsg 

<0,0> 7.57E-02  21 21 21 21 21 0 0 0    internalEvent 

<2,1> <2,0> 0.076375  12 12 12 12 12 0 0 0    sendMsg 

<2,1> 0.076778  22 22 22 22 22 22 0 0    receiveMsg 

<3,0> <3,0> 0.100968  13 13 13 13 13 13 0 0    internalEvent 

<0,0> 7.57E-02  21 21 21 21 21 0 0 0    internalEvent 

<2,2> <2,0> 0.076375  12 12 12 12 12 0 0 0    sendMsg 

<2,2> 0.176898  23 23 23 23 23 0 0 0    internalEvent 

<3,1> <3,0> 0.100968  13 13 13 13 13 13 0 0    internalEvent 

<2,1> 0.076778  22 22 22 22 22 22 0 0    receiveMsg 

<4,0> <4,0> 0.101118  13 13 13 13 13 13 0 0    sendMsg 

<0,0> 7.57E-02  21 21 21 21 21 0 0 0    internalEvent 

<2,3> <2,0> 0.076375  12 12 12 12 12 0 0 0    sendMsg 

<2,3> 0.177051  23 23 23 23 23 0 0 0    sendMsg 

<3,2> <3,0> 0.100968  13 13 13 13 13 13 0 0    internalEvent 

<2,2> 0.176898  23 23 23 23 23 0 0 0    internalEvent 

<4,1> <4,0> 0.101118  13 13 13 13 13 13 0 0    sendMsg 

<2,1> 0.076778  22 22 22 22 22 22 0 0    receiveMsg 

<2,4> <2,0> 0.076375  12 12 12 12 12 0 0 0    sendMsg 

<2,4> 0.376839  21 21 21 21 21 0 0 0    internalEvent 

<3,3> <3,0> 0.100968  13 13 13 13 13 13 0 0    internalEvent 

<2,3> 0.177051  23 23 23 23 23 0 0 0    sendMsg 

<4,2> <4,0> 0.101118  13 13 13 13 13 13 0 0    sendMsg 

<2,2> 0.176898  23 23 23 23 23 0 0 0    internalEvent 
Table 9-10 global states 
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 General result (possibly predicate) 9.3.2.1.2.3

Total local states of node1: 141 

Total local states of node2: 104 

Total number global states: 542 

Possibly predicate: true 

Running time cost: 356ms 

 

Figure 9-8 test case 1 predicate 1 real bus possibly predicate detection graphic result 
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 General result (Definitely predicate) 9.3.2.1.2.4

Total local states of node1: 420 

Total local states of node2: 302 

Total number global states: 1626 

Definitely predicate: false 

Running time cost: 637ms 

 
 

 
 

Figure 9-9 test case 1 predicate 1 real bus definitely predicate detection graphic result 
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9.3.3 Result analysis 

The vector clock is the fundamental element for the GPD. So at the beginning, the 

verification of the function to assign the vector clock is essential.  

For assigning the vector clock, if the event does not affect the node state change, 

the vector clock won’t increase. The only exception is the event of sending 

message. Based on this rule, the vector clock is assigned.  

As shown in the state diagram in section 9.3.1.1, the execution of the test case is 

manually generated as shown in Figure 9-10. In the diagram, the arrow is the 

message passing on the CAN bus. Dashed blue arrow message is a message that 

does not affect any change of any node. E.g. msg_n1_ 2 is not received by any 

node, so it won’t affect any node’s state changing. msg_n1_1 is received by node2. 

But if node2 is not in State1, node2 won’t change its state. 

 

Figure 9-10 test case 1 execution 
 

As shown in the result in section 9.3.2.1.1.1 , the order of vector times of node1is 

<0,0>,  <1,0>, <2,0>, <3,0>, <4,0>, <5,5>, <6,5>, <7,5>,  <8,5>, <9,5>, <10,5>. 

This order matches the order of the execution diagram, and the events that these 

 (1,0)  (2,0)  (3,0)  (4,0)  (5,5)  (6,5)  (7,5)  (8,5)  (9,5)  (10,5)

 (2,1)  (2,2)  (2,3)  (2,4)  (2,5)  (6,6)  (6,7)  (6,8)  (11,9)

msg_n1_1 

msg_n2_1 

msg_n2_2

msg_n1_1 

msg_n1_2 msg_n1_1 

msg_n2_1 

node1 

node2 
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vector times relate to match the events on the execution diagram. For node2, all its 

vector time order and events match the execution diagram. So for this test case, 

the function of assigning vector clocks is verified.  

The next step is to verify if the global state in the lattice is consistent. Depending 

on section 7.2.2 and the data in section 9.3.2.1.1.2 that shows the consistent global 

states that are evaluated by the prototype, the consistent global state evaluation 

function can be verified.  The following example is how to manually verify the 

function of evaluating global state. The global states with vector time <4,1> on 

Table 9-7 includes two local states. The vector times of these local states are <4,0> 

and <2,1>.  <4,0> is the vector time of node1. <2,1> is the vector time of node2. 

The first element of the vector time records the time of node1. The second element 

of the vector time records the time of node2. Manually doing the comparison 4>2 and 

0<1, the result is true, so the global state is consistent. The other global states are 

manually checked by the same method.  For this test case, the result of verifying the 

function of evaluating the consistent global state is success.  

The lattice can be visually checked by the lattice diagram (e.g. Figure 9-5, Figure 9-7). 

For two reachable global states, only one component of the vector time of the parent node 

is one smaller than the corresponding component of the vector time of the child node. All 

global states in the lattice diagram match this rule. 

The last step is to validate prototype software. To validate the prototype involves going 

through the global state table, to manually check if the global state satisfies the predicate 

and to manually mark each check result to the global state. Using this checking result 

against the result generated by the prototype, if two results match each other, then the 

prototype is validated; otherwise the prototype is not validated.  
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 In this test case, the expression of predicate 1 is node2.var2 > 21 && node1.var2 == 

11.  Going through Table 9-7, in the first global state of the table, node2.var2 is 21. 

It does not satisfy the first expression.  node1.var2 satisfies the second expression. 

Because the predicate is a conjunction of the two expressions, the global state 

does not satisfy the predicate. This global state should be marked as false. The 

following global states are checked in the same way. After the whole table is 

checked, each global state is marked with a true or false flag. Using this checked 

table against Figure 9-5 and Figure 9-6 validates the prototype. The result of the 

validation is successful for this test case.   

To verify the result of the real system, the same result is achieved as for the simulated 

system. For this test case, it is proved that the prototype can be applied on both systems 

(simulated and real).   
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9.4 Test	case	2	

This test case consists of 3 state machine nodes. One state machine depends on 

another’s message. Each state machine is tightly related to each other.  

 

9.4.1 Model explanation 

9.4.1.1 State machine diagram 

 

Figure 9-11 test case 2 state machine 1 
 

 

Figure 9-12 test case 2 state machine 2 
 

 

Figure 9-13 test case 2 state machine 3 
 

 

 stm node1

State1

+ set / t_n1_1(100)

State2

+ send / msg_n1_1(101)

rec
/msg_n3_1(103)

on
/t_n1_1(100)

 stm node2

State1

+ send / msg_n2_1(102)

State2

+ set / t_n2_1(100)

on
/t_n2_1(100)

rec
/msg_n1_1(101)

 stm node3

State1

+ send / msg_n3_1(103)

State2

+ set / t_n3_1(100)

on
/t_n3_1(100)

rec
/msg_n2_1(102)
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9.4.1.2 Communication matrix 

MessageID SendNodeNum receive: nodeNum

101 1 2 

102 2 3 

103 3 1 
Table 9-11 test case 2 communication matrix 
 

9.4.1.3 Local states 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 11 11 11 11 0 0 0 0 0 

2 12 12 12 0 0 0 0 0 0 0 
Table 9-12 test case 2 node 1 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 21 21 21 21 0 0 0 0 0 0 

2 22 22 22 0 0 0 0 0 0 0 
Table 9-13 test case 2 node2 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 31 31 31 0 0 0 0 0 0 0 

2 32 32 32 32 0 0 0 0 0 0 
Table 9-14 test case 2 node 3 local states 
 

 

9.4.2 Test different inputs 

9.4.2.1 Predicate 1 

node2.var2==11|| node3.var2==33 

 

 

 



241 
 

9.4.2.1.1 Simulated system test result 

 Local states of each node  9.4.2.1.1.1

Vector time Real time State Event 
<0,0,0> 2.36E-04 11 11 11 11 11 0 0 0 internalEvent 
<1,0,0> 0.100248 12 12 12 0 0 0 0 0 internalEvent 
<2,0,0> 0.100382 12 12 12 0 0 0 0 0 sendMsg 
<3,3,3> 0.30138 11 11 11 11 11 0 0 0 receiveMsg 
<4,3,3> 0.401392 12 12 12 0 0 0 0 0 internalEvent 
<5,3,3> 0.401526 12 12 12 0 0 0 0 0 sendMsg 
<6,6,6> 0.602524 11 11 11 11 11 0 0 0 receiveMsg 
<7,6,6> 0.702536 12 12 12 0 0 0 0 0 internalEvent 
<8,6,6> 0.70267 12 12 12 0 0 0 0 0 sendMsg 
<9,9,9> 0.903668 11 11 11 11 11 0 0 0 receiveMsg 

<10,9,9> 1.00368 12 12 12 0 0 0 0 0 internalEvent 
Table 9-15 node1 local states 
 

Vector time Real time State Event 
<0,0,0> 4.78E-04  21 21 21 21 0 0 0 0    internalEvent 
<2,1,0> 0.100626  22 22 22 0 0 0 0 0    receiveMsg 
<2,2,0> 0.200624  21 21 21 21 0 0 0 0    internalEvent 
<2,3,0> 0.20076  21 21 21 21 0 0 0 0    sendMsg 
<5,4,3> 0.40177  22 22 22 0 0 0 0 0    receiveMsg 
<5,5,3> 0.501768  21 21 21 21 0 0 0 0    internalEvent 
<5,6,3> 0.501904  21 21 21 21 0 0 0 0    sendMsg 
<8,7,6> 0.702914  22 22 22 0 0 0 0 0    receiveMsg 
<8,8,6> 0.802912  21 21 21 21 0 0 0 0    internalEvent 
<8,9,6> 0.803048  21 21 21 21 0 0 0 0    sendMsg 

<11,10,9> 1.004058  22 22 22 0 0 0 0 0    receiveMsg 
<11,11,9> 1.104056  21 21 21 21 0 0 0 0    internalEvent 

Table 9-16 node2 local states 
 

Vector time Real time State Event 
<0,0,0> 7.28E-04  31 31 31 0 0 0 0 0    internalEvent 
<2,3,1> 0.201008  32 32 32 32 0 0 0 0    receiveMsg 
<2,3,2> 0.30101  31 31 31 0 0 0 0 0    internalEvent 
<2,3,3> 0.301144  31 31 31 0 0 0 0 0    sendMsg 
<5,6,4> 0.502152  32 32 32 32 0 0 0 0    receiveMsg 
<5,6,5> 0.602154  31 31 31 0 0 0 0 0    internalEvent 
<5,6,6> 0.602288  31 31 31 0 0 0 0 0    sendMsg 
<8,9,7> 0.803296  32 32 32 32 0 0 0 0    receiveMsg 
<8,9,8> 0.903298  31 31 31 0 0 0 0 0    internalEvent 
<8,9,9> 0.903432  31 31 31 0 0 0 0 0    sendMsg 

<11,12,10> 1.10444  32 32 32 32 0 0 0 0    receiveMsg 
<11,12,11> 1.204442  31 31 31 0 0 0 0 0    internalEvent 

Table 9-17 node3 local states 
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 Consistent global states 9.4.2.1.1.2

Global vector 
time 

Local vector 
time 

Real 
time 

State 
 

Event 
 

<0,0,0> <0,0,0> 2.36E-04 
 11 11 11 11 11 0 0 

0   
 

internalEvent 

<0,0,0> 4.78E-04  21 21 21 21 0 0 0 0   
 

internalEvent 

<0,0,0> 7.28E-04  31 31 31 0 0 0 0 0   
 

internalEvent 

<1,0,0> <1,0,0> 1.00E-01  12 12 12 0 0 0 0 0   
 

internalEvent 

<0,0,0> 4.78E-04  21 21 21 21 0 0 0 0   
 

internalEvent 

<0,0,0> 7.28E-04  31 31 31 0 0 0 0 0   
 

internalEvent 

<2,0,0> <2,0,0> 0.100382  12 12 12 0 0 0 0 0    sendMsg 

<0,0,0> 4.78E-04  21 21 21 21 0 0 0 0   
 

internalEvent 

<0,0,0> 7.28E-04  31 31 31 0 0 0 0 0   
 

internalEvent 

<2,1,0> <2,0,0> 0.100382  12 12 12 0 0 0 0 0    sendMsg 
<2,1,0> 1.01E-01  22 22 22 0 0 0 0 0    receiveMsg 

<0,0,0> 7.28E-04  31 31 31 0 0 0 0 0   
 

internalEvent 

<2,2,0> <2,0,0> 0.100382  12 12 12 0 0 0 0 0    sendMsg 

<2,2,0> 0.200624  21 21 21 21 0 0 0 0   
 

internalEvent 

<0,0,0> 7.28E-04  31 31 31 0 0 0 0 0   
 

internalEvent 

<2,3,0> <2,0,0> 0.100382  12 12 12 0 0 0 0 0    sendMsg 
<2,3,0> 0.20076  21 21 21 21 0 0 0 0    sendMsg 

<0,0,0> 7.28E-04  31 31 31 0 0 0 0 0   
 

internalEvent 
Table 9-18 global states 
 

 General result (possibly predicate) 9.4.2.1.1.3

Total local states of node1: 36 
Total local states of node2: 35 
Total local states of node3: 34 
Total number global states: 103 
Possibly predicate: false 
Running time cost: 484ms 
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Figure 9-14 test case 2 predicate 1 simulated bus possible predicate detection graphic result 
 

 

 General result (Definitely predicate) 9.4.2.1.1.4

Total local states of node1: 36 
Total local states of node2: 35 
Total local states of node3: 34 
Total number global states: 103 
Definitely predicate: false 
Running time cost: 296ms 
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Figure 9-15 test case 2 predicate 1 simulated bus definitely predicate detection graphic result 
 

9.4.2.1.2 Real system test result 

 Local states of each node  9.4.2.1.2.1

Vector time Real time State Event 
<0,0,0> 4.76E-03  11 11 11 11 11 0 0 0    internalEvent 
<1,0,0> 0.101  12 12 12 0 0 0 0 0    internalEvent 
<2,0,0> 0.101134  12 12 12 0 0 0 0 0    sendMsg 
<3,3,3> 0.304042  11 11 11 11 11 0 0 0    receiveMsg 
<4,3,3> 0.40399  12 12 12 0 0 0 0 0    internalEvent 
<5,3,3> 0.404124  12 12 12 0 0 0 0 0    sendMsg 
<6,6,6> 0.607042  11 11 11 11 11 0 0 0    receiveMsg 
<7,6,6> 0.706938  12 12 12 0 0 0 0 0    internalEvent 
<8,6,6> 0.707072  12 12 12 0 0 0 0 0    sendMsg 
<9,9,9> 0.90995  11 11 11 11 11 0 0 0    receiveMsg 

<10,9,9> 1.00999  12 12 12 0 0 0 0 0    internalEvent 
<11,9,9> 1.010124  12 12 12 0 0 0 0 0    sendMsg 

Table 9-19 node1 local states 
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Vector time Real time State Event 
<0,0,0> 0.003732  21 21 21 21 0 0 0 0    internalEvent 
<2,1,0> 0.102022  22 22 22 0 0 0 0 0    receiveMsg 
<2,2,0> 0.20227  21 21 21 21 0 0 0 0    internalEvent 
<2,3,0> 0.202428  21 21 21 21 0 0 0 0    sendMsg 
<5,4,3> 0.405028  22 22 22 0 0 0 0 0    receiveMsg 
<5,5,3> 0.505278  21 21 21 21 0 0 0 0    internalEvent 
<5,6,3> 0.505436  21 21 21 21 0 0 0 0    sendMsg 
<8,7,6> 0.70804  22 22 22 0 0 0 0 0    receiveMsg 
<8,8,6> 0.808287  21 21 21 21 0 0 0 0    internalEvent 
<8,9,6> 0.808446  21 21 21 21 0 0 0 0    sendMsg 

<11,10,9> 1.011046  22 22 22 0 0 0 0 0    receiveMsg 
Table 9-20 node2 local states 
 

 

Vector time Real time State Event 
<0,0,0> 0.004526  31 31 31 0 0 0 0 0    internalEvent 
<2,3,1> 0.203034  32 32 32 32 0 0 0 0    receiveMsg 
<2,3,2> 0.302982  31 31 31 0 0 0 0 0    internalEvent 
<2,3,3> 0.303122  31 31 31 0 0 0 0 0    sendMsg 
<5,6,4> 0.50644  32 32 32 32 0 0 0 0    receiveMsg 
<5,6,5> 0.606068  31 31 31 0 0 0 0 0    internalEvent 
<5,6,6> 0.606202  31 31 31 0 0 0 0 0    sendMsg 
<8,9,7> 0.809514  32 32 32 32 0 0 0 0    receiveMsg 
<8,9,8> 0.908938  31 31 31 0 0 0 0 0    internalEvent 
<8,9,9> 0.909072  31 31 31 0 0 0 0 0    sendMsg 

<11,12,10> 1.112464  32 32 32 32 0 0 0 0    receiveMsg 
Table 9-21 node3 local states 
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 Consistent global states 9.4.2.1.2.2

Global vector 
time 

Local vector 
time 

Real 
time State Event 

<0,0,0> <0,0,0> 4.76E-03 
 11 11 11 11 11 0 0 

0   
 

internalEvent 

<0,0,0> 3.73E-03  21 21 21 21 0 0 0 0   
 

internalEvent 

<0,0,0> 4.53E-03  31 31 31 0 0 0 0 0   
 

internalEvent 

<1,0,0> <1,0,0> 1.01E-01  12 12 12 0 0 0 0 0   
 

internalEvent 

<0,0,0> 3.73E-03  21 21 21 21 0 0 0 0   
 

internalEvent 

<0,0,0> 4.53E-03  31 31 31 0 0 0 0 0   
 

internalEvent 

<2,0,0> <2,0,0> 0.101134  12 12 12 0 0 0 0 0    sendMsg 

<0,0,0> 3.73E-03  21 21 21 21 0 0 0 0   
 

internalEvent 

<0,0,0> 4.53E-03  31 31 31 0 0 0 0 0   
 

internalEvent 

<2,1,0> <2,0,0> 0.101134  12 12 12 0 0 0 0 0    sendMsg 
<2,1,0> 1.02E-01  22 22 22 0 0 0 0 0    receiveMsg 

<0,0,0> 4.53E-03  31 31 31 0 0 0 0 0   
 

internalEvent 

<2,2,0> <2,0,0> 0.101134  12 12 12 0 0 0 0 0    sendMsg 

<2,2,0> 0.20227  21 21 21 21 0 0 0 0   
 

internalEvent 

<0,0,0> 4.53E-03  31 31 31 0 0 0 0 0   
 

internalEvent 
Table 9-22 global states 
 

 General result (possibly predicate) 9.4.2.1.2.3

Total local states of node1: 469 
Total local states of node2: 469 
Total local states of node3: 469 
Total number global states: 1405 
Possibly predicate: false 
Running time cost: 94938ms 
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Figure 9-16 test case 2 predicate 1 real bus possibly predicate detection graphic result 
 

 

 General result (Definitely predicate) 9.4.2.1.2.4

Total local states of node1: 469 
Total local states of node2: 469 
Total local states of node3: 469 
Total number global states: 1405 
Definitely predicate: false 
Running time cost: 106266ms 
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Figure 9-17 test case 2 predicate 1 real bus definitely predicate detection graphic result 
 

 

9.4.3 Result analysis 

The execution of this text case is shown in Figure 9-18. This test case is analysed 

with the same method as the test case 1.  

1. To verify the function that assigns vector clocks using Table 9-19 node1 

local states, Table 9-20 node2 local states, and Table 9-21 node3 local 

states against the execution Figure 9-18. The result of the verification is 

success.  
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Figure 9-18 test case 2 execution 
 

2. To verify the function that evaluates consistent global state. Going through 

Table 9-22, using algorithm in section 7.2.2  manually verifying consistent 

global states that are found by prototype. The result of the verification is 

success. 

3. Validate the result of predicate evaluated by the prototype. The result of 

the validation is successes.  

4. Visually checking the lattice diagram.  

All steps also are applied on the real system. The same results are obtained.  

 

 

 

 

 

 

 

<2,3,1>

<2,1,0> 

<2,3,2> <2,3,3>Node3 

Node2 

Node1 <1,0,0> <2,0,0> <3,3,3> <4,3,3> <5,3,3> <6,6,6> <7,6,6> <8,6,6> <9,9,9> <10,9,9>

<2,2,0> <2,3,0> <5,4,3> <5,5,3> <5,6,3> <8,7,6> <8,8,6> <8,9,6> 

<5,6,4> <5,6,5> <5,6,6> <8,97,> <8,9,8> <8,9,9>

msg_n1_1 msg_n1_1 msg_n1_1 

msg_n2_1 
msg_n2_1 msg_n2_1 msg_n3_1 msg_n3_1 msg_n3_1
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9.5 Test case 3 

Test case 3 tests the effect of the environment variable in the state machine. 

Environment variables are data objects global to the CANoe environment, and are 

used to link the functions of a CANoe panel to CAPL programs (Vector 2004, 

p28). 

 

9.5.1 Model explanation 

9.5.1.1 State	machine	diagram	

 

 

Figure 9-19 test case 3 state machine 1 
 

 

Figure 9-20 test case 3 state machine 2 
 

 stm node1

State1

State2

+ set / t_n1_1(100)

State3

+ send / msg_n1_1(100)

[on env_n1_1] rec
/msg_n2_1(101)

on
/t_n1_1(100)

 stm node2

State1 State2

+ send / msg_n2_1(101)
+ set / t_n2_1(50)

on /t_n2_1(50)

rec
/msg_n1_1(100)
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9.5.1.2 Communication matrix 

MessageID SendNodeNum receive: nodeNum

100 1 2 

101 2 1 
Table 9-23 test case 3 communication matrix 
 

9.5.1.3 Local states 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 1 1 1 1 11 0 1 1 0 0 

2 0 2 2 2 2 0 2 0 0 0 

3 3 3 3 3 3 3 3 3 0 0 
Table 9-24 test case 3 node 1 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 21 21 21 21 21 21 21 21 0 0 

2 22 22 22 22 22 22 22 0 0 0 
Table 9-25 test case 3 node2 local states 
 

9.5.2 Test different inputs 

9.5.2.1 Predicate 1 

node2.var1>node1.var2 || node1.var2<node2.var5 
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9.5.2.1.1 Simulated system test result 

 Local states of each node  9.5.2.1.1.1

Vector time Real time State Event 
<0,0> 2.44E-04  1 1 1 1 11 0 1 1    internalEvent 
<1,0> 4.92E-04  0 2 2 2 2 0 2 0    internalEvent 
<2,0> 0.100242  3 3 3 3 3 3 3 3    internalEvent 
<3,0> 0.100378  3 3 3 3 3 3 3 3    sendMsg 
<4,3> 0.150982  1 1 1 1 11 0 1 1    receiveMsg 
<5,3> 1.142855  0 2 2 2 2 0 2 0    internalEvent 
<6,3> 1.242849  3 3 3 3 3 3 3 3    internalEvent 
<7,3> 1.242985  3 3 3 3 3 3 3 3    sendMsg 
<8,6> 1.293589  1 1 1 1 11 0 1 1    receiveMsg 
<9,6> 1.437584  0 2 2 2 2 0 2 0    internalEvent 
Table 9-26 node1 local states 
 

Vector time Real time State Event 
<0,0> 7.22E-04  21 21 21 21 21 21 21 21    internalEvent 
<3,1> 0.100612  22 22 22 22 22 22 22 0    receiveMsg 
<3,2> 0.150608  21 21 21 21 21 21 21 21    internalEvent 
<3,3> 0.150738  21 21 21 21 21 21 21 21    sendMsg 
<7,4> 1.243219  22 22 22 22 22 22 22 0    receiveMsg 
<7,5> 1.293215  21 21 21 21 21 21 21 21    internalEvent 
<7,6> 1.293345  21 21 21 21 21 21 21 21    sendMsg 
Table 9-27 node2 local states 
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 Consistent	global	states	9.5.2.1.1.2

Global 
vector time 

Local vector 
time 

Real time 
 

State 
 

Event 
 

<0,0> <0,0> 2.44E-04  1 1 1 1 11 0 1 1    internalEvent 
<0,0> 7.22E-04  21 21 21 21 21 21 21 21    internalEvent 

<1,0> <1,0> 4.92E-04  0 2 2 2 2 0 2 0    internalEvent 
<0,0> 7.22E-04  21 21 21 21 21 21 21 21    internalEvent 

<2,0> <2,0> 0.100242  3 3 3 3 3 3 3 3    internalEvent 
<0,0> 7.22E-04  21 21 21 21 21 21 21 21    internalEvent 

<3,0> <3,0> 0.100378  3 3 3 3 3 3 3 3    sendMsg 
<0,0> 7.22E-04  21 21 21 21 21 21 21 21    internalEvent 

<3,1> <3,0> 0.100378  3 3 3 3 3 3 3 3    sendMsg 
<3,1> 0.100612  22 22 22 22 22 22 22 0    receiveMsg 

<3,2> <3,0> 0.100378  3 3 3 3 3 3 3 3    sendMsg 
<3,2> 0.150608  21 21 21 21 21 21 21 21    internalEvent 

<3,3> <3,0> 0.100378  3 3 3 3 3 3 3 3    sendMsg 
<3,3> 0.150738  21 21 21 21 21 21 21 21    sendMsg 

<4,3> <4,3> 0.150982  1 1 1 1 11 0 1 1    receiveMsg 
<3,3> 0.150738  21 21 21 21 21 21 21 21    sendMsg 

<5,3> <5,3> 1.142855  0 2 2 2 2 0 2 0    internalEvent 
<3,3> 0.150738  21 21 21 21 21 21 21 21    sendMsg 

Table 9-28 global states 
 

 General result (possibly predicate) 9.5.2.1.1.3

Total local states of node1: 101 
Total local states of node2: 76 
Total number global states: 176 
Possibly predicate: true 
Running time cost: 506ms 
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Figure 9-21 test case 3 predicate 1 simulated bus possibly predicate detection graphic result 
 

 

 General result (Definitely predicate) 9.5.2.1.1.4

Total local states of node1: 101 
Total local states of node2: 76 
Total number global states: 176 
Definitely predicate: true 
Running time cost: 369ms 
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Figure 9-22 test case 3 predicate 1 simulated bus definitely predicate detection graphic result 
 

9.5.2.1.2 Real system test result 

 General result (possibly predicate) 9.5.2.1.2.1

Total local states of node1: 597 
Total local states of node2: 895 
Total number global states: 1493 
Possibly predicate: true 
Running time cost: 1703ms 
 

 General result (Definitely predicate) 9.5.2.1.2.2

Total local states of node1: 597 
Total local states of node2: 895 
Total number global states: 1493 
Definitely predicate: true 
Running time cost: 1342ms 
 

9.5.3 Result	analysis	

The prototype is verified and validated for this test case as well as test case 1 and 

test case 2.   
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1. To verify the function that assigns vector clocks using Table 9-26 node1 

local states and Table 9-27 node2 local states against the execution Figure 

9-23 test case 3 execution. The result of the verification is success.  

2. To verify the function that evaluates consistent global state. Going through 

Table 9-28, using algorithm in section 7.2.2  manually verifying consistent 

global states that are found by prototype. The result of the verification is 

success. 

3. Validate the result of predicate evaluated by the prototype. The result of 

the validation is successes.  

4. Visually checking the lattice diagram.  

All steps also are applied on the real system. The same results are obtained.  

 

Figure 9-23 test case 3 execution 
 

 

 

 

<3,1>

Node2 

Node1 
<1,0> <2,0> <3,0> <4,3> <5,3> <6,3> <7,3> <8,6> 

<3,2> <3,3> <7,4> <7,5> <7,6> 

<9,6> 

msg_n1_1 msg_n2_1 msg_n1_1 msg_n2_1 
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9.6 Test case 4 

This test case is randomly generated. node1 only sends messages.  The transition 

routes of the other nodes depend on these messages. The possibility of different 

execution traces should be high.  

9.6.1 Model explanation 

9.6.1.1 State machine diagram 

 

Figure 9-24 test case 4 state machine 1 
 

 

Figure 9-25 test case 4 state machine 2 

 stm node1

State1

+ set / t_n1_1(100)

State2

+ send / msg_n1_2(101)
+ set / t_n1_3(100)

State3

+ send / msg_n1_1(100)
+ set / t_n1_2(100)

State4

+ send / msg_n1_3(102)
+ set / t_n1_4(100)

on
/t_n1_4(100)

on
/t_n1_3(100)

on
/t_n1_2(100)

on
/t_n1_1(100)

 stm node2

State1

+ send / msg_n2_1(103)

State2

+ send / msg_n2_2(104)
+ set  / t_n2_1(50)

State3

+ send / msg_n2_3(105)

State4

+ set / t_n2_2(50)

on /t_n2_2(50)

on /t_n2_1(50)

rec
/msg_n1_3(102)

rec
/msg_n1_2(101)

rec
/msg_n1_1(100)
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Figure 9-26 test case 4 state machine 3 
 

9.6.1.2 Communication matrix 

MessageID SendNodeNum receive: nodeNum

100 1 2 

100 1 3 

101 1 2 

101 1 3 

102 1 2 

103 2 

104 2 3 

105 2 

106 3 

107 3 
Table 9-29 test case 4 communication matrix 
 

9.6.1.3 Local states 

stateNum var1 var2 0　 var4 var5 var6 var7 var8 var9 var10 

1 11 11 11 11 11 0 0 0 0 0 

2 12 12 12 12 12 2 0 0 0 0 

3 13 13 13 13 13 0 0 0 0 0 

4 14 14 14 14 14 14 0 0 0 0 
Table 9-30 test case 4 node 1 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 21 21 21 21 21 0 0 0 0 0 

2 22 22 22 22 22 0 0 0 0 0 

3 23 23 23 23 23 0 0 0 0 0 

4 24 24 24 24 24 0 0 0 0 0 
Table 9-31 test case 4 node2 local states 

 stm node3

State1

+ set / t_n3_1(100)

State2

+ send / msg_n3_2(107)

State3

+ send / msg_n3_1(106)

State4

+ set / t_n3_2(50)

rec
/msg_n1_1(100)

rec
/msg_n1_2(101)

on /t_n3_2(50)

rec
/msg_n2_2(104)

on
/t_n3_1(100)
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stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 31 31 31 31 31 0 0 0 0 0 

2 32 32 32 32 32 32 0 0 0 0 

3 33 33 33 33 33 33 0 0 0 0 

4 34 34 34 34 34 34 0 0 0 0 
Table 9-32 test case 4 node 3 local states 
 

9.6.2 Test different inputs 

9.6.2.1 Predicate 1 

node2.var2>21 && node1.var2==11 

9.6.2.1.1 simulated system test result 

 General result (possibly predicate) 9.6.2.1.1.1

Total local states of node1: 10 
Total local states of node2: 13 
Total local states of node3: 8 
Total number global states: 492 
Possibly predicate: true 
Running time cost: 345ms 
 

 

Figure 9-27 test case 4 predicate 1 simulated bus possibly predicate detection graphic result 
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 General result (Definitely predicate) 9.6.2.1.1.2

Total local states of node1: 10 
Total local states of node2: 13 
Total local states of node3: 8 
Total number global states: 492 
Definitely predicate: false 
Running time cost: 331ms 
 

 

Figure 9-28 test case 4 predicate 1 simulated bus definitely predicate detection graphic result 
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9.6.2.1.2 Real system test result 

 General result (possibly predicate) 9.6.2.1.2.1

Real time period of the log file: 0.001696-0.901011 
Total local states of node1: 16 
Total local states of node2: 14 
Total local states of node3: 10 
Total number global states: 833 
Possibly predicate: true 
Running time cost: 641ms 
 

 

 

Figure 9-29 test case 4 predicate 1 real bus possibly predicate detection graphic result 
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 General result (Definitely predicate) 9.6.2.1.2.2

Total local states of node1: 16 
Total local states of node2: 14 
Total local states of node3: 10 
Total number global states: 833 
Definitely predicate: false 
Running time cost: 482ms 
 

 

Figure 9-30 test case 4 predicate 1 real bus definitely predicate detection graphic result 
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9.6.2.2 Predicate 2  

Predicate expression: 

node1.var2>21 && node3.var2>=11 || node1.var6<=11 && 

node3.var2==node2.var2 && node2.var2>node3.var7 && 

node1.var2!=node2.var5 || node3.var5>node1.var7 && node2.var2==node3.var3 

9.6.2.2.1 simulated system test result 

 General result (possibly predicate) 9.6.2.2.1.1

Real time period of the log file: 0.000236- 0.700626 
Total local states of node1: 14 
Total local states of node2: 16 
Total local states of node3: 13 
Total number global states: 1097 
Possibly predicate: true 
Running time cost: 515ms 
 

 

Figure 9-31 test case 4 predicate 2 simulated bus possible predicate detection graphic result 
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 General result (Definitely predicate) 9.6.2.2.1.2

Total local states of node1: 14 
Total local states of node2: 16 
Total local states of node3: 13 
Total number global states: 1097 
Definitely predicate: true 
Running time cost: 484ms 
 

 

 

Figure 9-32 test case 4 predicate 2 simulated bus definitely predicate detection graphic result 
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9.6.2.2.2 Real system test result 

 General result (possibly predicate) 9.6.2.2.2.1

Real time period of the log file: 0-0.701443 
Total local states of node1: 14 
Total local states of node2: 9 
Total local states of node3: 10 
Total number global states: 381 
Possibly predicate: true 
Running time cost: 312ms 
 

 

Figure 9-33 test case 4 predicate 2 real bus possible predicate detection graphic result 
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 General result (Definitely predicate) 9.6.2.2.2.2

Total local states of node1: 14 
Total local states of node2: 9 
Total local states of node3: 10 
Total number global states: 381 
Definitely predicate: true 
Running time cost: 328ms 
 

 

Figure 9-34 test case 4 predicate 2 real bus definitely predicate detection graphic result 
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9.6.3 Result	analysis	

Due to this test case being generated randomly (previous test cases are designed), 

the execution track is arbitrary. The method to analyze this test case is a little 

different from the previous method. In the previous test cases, the execution 

diagram which is used to verify the function assigning the vector clocks is 

manually generated from the state diagram. But in this test case the execution 

diagram is manually generated from the result of the prototype vector clock 

assigning function. Using this execution diagram against the state diagram verifies 

the vector clock assigning function. If the execution logically matches the state 

diagram, then the function is verified. Otherwise it is not verified. 

The execution diagram generated from the simulated system is different from the 

diagram generated from real system. Two diagrams are illustrated in Figure 9-35 

and Figure 9-36. The real system needs to start the node running on another 

machine manually. It takes a longer delay than the simulated system. The 

simulated system almost starts all nodes at the same time. 

 

Figure 9-35 simulated system execution 
 

<0,0,1>

<0,1,0> 

<2,3,2> <2,3,3>Node3 

Node2 

Node1 <1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,0,0> <6,0,0> <7,0,0> <8,0,0> <9,0,0> <10,0,0>

<2,2,0> <2,3,0> <2,4,0> <2,5,0> <4,6,0> <4,7,0> <6,8,0> <6,9,0> 

<2,3,4> <2,3,5> <4,3,6> <4,3,7> <9,3,8> <11,3,9>

<6,10,0>

<11,0,0>

msg_n1_1 msg_n1_1 msg_n1_2 msg_n1_3 msg_n1_2

msg_n2_1 msg_n2_1 
msg_n2_2 msg_n2_2msg_n2_3

msg_n3_1 msg_n3_1 msg_n3_2 
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As shown in Figure 9-35, the sending event with vector time <4,0,0> in node1has 

two arrows. These two arrows do not mean that two messages are sent. It is one 

message (in CAN network, all messages are broadcast), two other nodes filter the 

message. It can be that any number of nodes filters this message, so the sending 

event vector clock does not increase.  

 

Figure 9-36 real system execution 
 

Using the execution diagrams against the state machine diagrams verify vector 

times in the execution diagram. To verify the vector time need to manually 

evaluate if the vector times match the state diagram. The evaluation needs to 

consider the causality of events. These considerations are: 

1. The transition caused by receiving event should happen after the sending 

event. 

2. Two states on two ends of the transition in the state machine diagram have 

to match two corresponding events and transition on the execution 

diagram. E.g. in Figure 9-24 between state1 and state2 is transition t_n1_1, 

state1 move to state2 has to be when the timer t_n1_1 expired. Otherwise 

the state move is not valid.  

<0,0,1>

<0,1,0>

<0,0,2> <2,3,3>Node3 

Node2 

Node1 <1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,0,0> <6,0,0> <7,0,0> <8,0,0> <9,0,0> <10,0,0> 

<2,2,0> <2,3,0> <6,4,0> <6,5,0> <11,6,0> <11,7,0> 

<2,3,4> <9,3,5> <11,3,6> <11,3,7> 11,3,8> <11,3,9> 

<11,0,0>

msg_n1_1 msg_n1_1 msg_n1_2
msg_n1_3

msg_n1_2

msg_n2_1 
msg_n2_2 msg_n2_1 msg_n2_3

msg_n3_1 msg_n3_1msg_n3_2 msg_n3_2 
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After evaluating these two execution diagrams, they are all validated. So the 

function that assigns vector times is verified. 

The remaining steps are to verify the function evaluating consistent global state, 

to validate the predicate evaluation result, and validate the lattice. 

The above four test cases verify and validate the prototype. The next few test 

cases will test the performance of the prototype.  
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9.7 Test case 5 

This test case consists of 4 state machines. One of the state machines contains an 

environment variable. The change of the environment variable may cause the 

transition to a different execution state.  

 

9.7.1 Model explanation 

9.7.1.1 State machine diagram 

 

Figure 9-37 test case 5 state machine 1 
 

 

Figure 9-38 test case 5 state machine 2 
 

 stm node1

State1

+ set /  t_n1_1(50)

State2

+ send / msg_n1_1(101)
+ set / t_n1_2(50)

State3

rec
/msg_n2_1(102)

on
/t_n1_2(50)

on
/ t_n1_1(50)

 stm node2

State1

+ send / msg_n2_2(105)
+ set / t_n2_1(50)

State2

+ set / t_n2_2(100)

State3

+ send / msg_n2_1(102)
+ set / t_n2_3(100)

State4 rec
/msg_n3_2(103)

rec
/msg_n4_1(106)

[on t_n2_3]

[on t_n2_2]

[on t_n2_1]
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Figure 9-39 test case 5 state machine 3 
 

 

 

Figure 9-40 test case 5 state machine 4 
 

 stm node3

State1

+ send / msg_n3_1(104)

State2

+ set / t_n3_1(30)

State3

+ set / t_n3_2(50)

State4

+ send / msg_n3_2(103)
+ set / t_n3_4(30)

State5

+ set / t_n3_3(40)

[on t_n3_4]

[on env_n3_1]

[on t_n3_3]

[on t_n3_2]
[on t_n3_1]

rec
/msg_n1_1(101)

 stm node4

State1

+ set / t_n4_1(20)

State2

+ send / msg_n4_1(106)
+ set / t_n4_2(50)

State3

State4

State5

+ set / t_n4_3(20)

State6

+ set / t_n4_4(30)

rec
/msg_n3_2(103)

[on t_n4_4]

[on t_n4_3]

rec
/msg_n2_2(105)

rec
/msg_n3_1(104)

[on t_n4_2]

[on t_n4_1]
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9.7.1.2 Communication matrix 

MessageID SendNodeNum receive: nodeNum

101 1 3 

102 2 1 

105 2 4 

104 3 4 

103 3 2 

103 3 4 

106 4 2 
Table 9-33 test case 5 communication matrix 
 

9.7.1.3 Local states 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 11 11 11 11 11 0 0 0 0 

2 12 12 12 12 12 12 12 12 0 0 

3 13 13 13 13 13 13 0 0 0 0 
Table 9-34 test case 5 node 1 local states 
 

 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 21 21 21 21 21 21 21 0 0 0 

2 22 22 22 22 22 22 22 0 0 0 

3 23 23 23 23 23 23 23 0 0 0 

4 24 24 24 24 24 24 24 24 0 0 
Table 9-35 test case 5 node2 local states 
 

 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 31 31 31 31 31 31 31 0 0 0 

2 32 32 32 32 32 32 32 32 0 0 

3 33 33 33 33 33 33 33 0 0 0 

4 34 34 34 34 34 34 34 0 0 0 

5 35 35 35 35 35 35 35 35 0 0 
Table 9-36 test case 5 node 3 local states 
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stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 41 41 41 41 41 41 41 41 0 0 

2 42 42 42 42 42 42 42 42 0 0 

3 43 43 43 43 43 43 43 43 43 0 

4 44 44 44 44 44 44 44 44 0 0 

5 45 45 45 45 45 45 45 45 45 0 

6 46 46 46 46 46 46 46 46 0 0 
Table 9-37 test case 5 node 4 local states 
 

9.7.2 Test different inputs 

9.7.2.1 Predicate 1 

node3.var1<node2.var2 || node4.var2<node1.var7 || node4.var7<= 0 && 

node2.var4==node1.var6 

 

9.7.2.1.1 Simulated system test result 

 General result (possibly predicate) 9.7.2.1.1.1

Real time period of the log file: 2.370622- 3.950638 
Total local states of node1: 10 
Total local states of node2: 12 
Total local states of node3: 10 
Total local states of node4: 9 
Total number global states: 454 
Possibly predicate: false 
Running time cost: 383ms 
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Figure 9-41 test case 5 predicate 1 simulated bus possibly predicate detection graphic result 
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 General result (Definitely predicate) 9.7.2.1.1.2

Real time period of the log file: 0.000000- 0.400392 
Total local states of node1: 8 
Total local states of node2: 10 
Total local states of node3: 12 
Total local states of node4: 12 
Total number global states: 566 
Possibly predicate: false 
Running time cost: 473ms 
 

 

Figure 9-42 test case 5 predicate 1 simulated bus definitely predicate detection graphic result 
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 General	result	9.7.2.1.1.3

Real time period of the log file: 0.231044- 0.701058 
Total local states of node1: 8 
Total local states of node2: 10 
Total local states of node3: 9 
Total local states of node4: 8 
Total number global states: 236 
Possibly predicate: false 
Running time cost: 424ms 
 

 

Figure 9-43 graphic result 
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 General	result	9.7.2.1.1.4

Real time period of the log file: 0.000000- 0.400392 
Total local states of node1: 12 
Total local states of node2: 14 
Total local states of node3: 12 
Total local states of node4: 12 
Total number global states: 772 
Possibly predicate: true 
Running time cost: 378ms 
 

9.7.2.2 Predicate	2	

node1.var4==11 

 

9.7.2.2.1 Simulated	system	

 General result (possibly predicate) 9.7.2.2.1.1

Real time period of the log file: 0.000000- 0.370622 
Total local states of node1: 8 
Total local states of node2: 8 
Total local states of node3: 12 
Total local states of node4: 12 
Total number global states: 530 
Possibly predicate: true 
Running time cost: 302ms 
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Figure 9-44 graphic result 
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 General	result	9.7.2.2.1.2

Real time period of the log file: 1.071626- 1.571062 
Total local states of node1: 8 
Total local states of node2: 10 
Total local states of node3: 9 
Total local states of node4: 6 
Total number global states: 800 
Possibly predicate: true 
Running time cost: 443ms 
 

 

Figure 9-45 graphic result 

 

 General result (definitely predicate) 9.7.2.2.1.3

Real time period of the log file: 0.000000- 0.370622 
Total local states of node1: 8 
Total local states of node2: 8 
Total local states of node3: 12 
Total local states of node4: 12 
Total number global states: 530 
Definitely predicate: true 
Running time cost: 334ms 
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 General	result	9.7.2.2.1.4

Real time period of the log file: 1.071626- 1.571062 
Total local states of node1: 8 
Total local states of node2: 10 
Total local states of node3: 9 
Total local states of node4: 6 
Total number global states: 800 
Definitely predicate: true 
Running time cost: 390ms 
 

9.7.3 Result	analysis	

This test case includes four nodes. The CANoe log file used in this test case is 

large.  It stores about 12 minutes CANoe data. The total local states of each node 

are 196, 245, 249, and 200.  So the total number of consistent global state 

evaluations is the product of these numbers.  The result of the product is 

2,391,396,000. So the prototype should be able to evaluate part of the log file.  

This test case tests the data randomly selected from the CANoe log. These data 

are different periods of the execution data in the CANoe log. They are tested by 

different predicates and different types of predicate.  

This test case finds that in the same predicate and different period execution data, 

the results of possibly predicate evaluation are the same, so are the results of 

definitely predicate evaluation. Comparing the graphic lattices of these executions, 

they have very similar shape. All of them have two heaved curves. The bottom 

heaved curve in Figure 9-44 is higher than the bottom heaved curve in Figure 9-45. 

It is because of the different execution periods of each test case; however it should 

not affect the predicate evaluation result. 
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9.8 Test case 6 

This test case consists of four state machines. They do not communicate with each 

other, so it does not matter if the test case is tested under the simulated bus or real 

bus. The total number of the global states should be the product of the total local 

state of each node.  

 

9.8.1 Model explanation 

9.8.1.1 State machine diagram 

 

Figure 9-46 test case 6 state machine 1 
 

 

Figure 9-47 test case 6 state machine 2 
 

 

Figure 9-48 test case 6 state machine 3 
 

 stm node1

State1

+ set / t_n1_!(50)

State2

+ set / t_n1_2(50)
on /t_n1_2(50)

on /t_n1_!(50)

 stm node2

State1

+ set / t_n2_1(50)

State2

+ set / t_n2_2(50)on /t_n2_2(50)

on /t_n2_1(50)

 stm node3

State1

+ set / t_n3_1(50)

State2

+ set / t_n3_2(50)

on /t_n3_1(50)

on /t_n3_2(50)
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Figure 9-49 test case 6 state machine 4 
 

9.8.1.2 Communication matrix 

9.8.1.3 Local states 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 12 13 14 15 16 17 0 0 0 

2 21 22 23 24 25 26 27 28 29 0 
Table 9-38 test case 6 each node local states 
 

9.8.2 Test different inputs 

9.8.2.1 Predicate 1 

9.8.2.1.1 Simulated system test result 

node3.var1 < node2.var2  ||  node4.var2 < node1.var7  ||  node4.var7 <=  0         

&& node2.var4==node1.var6 

 General result (possibly predicate) 9.8.2.1.1.1

Real time period of the log file: 0-0.150926 
Total local states of node1: 4 
Total local states of node2: 4 
Total local states of node3: 4 
Total local states of node4: 4 
Total number global states: 256 
Possibly predicate: false 
Running time cost: 368ms 
 

 

 stm node4

State1

+ set / t_n4_1(50)

State2

+ set / t_n4_2(50)on /t_n4_2(50)

on /t_n4_1(50)
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 General result (possibly predicate) 9.8.2.1.1.2

Real time period of the log file: 0-0.400956 
Total local states of node1: 9 
Total local states of node2: 9 
Total local states of node3: 9 
Total local states of node4: 9 
Total number global states: 6561 
Possibly predicate: false 
Running time cost: 7157ms 
 

 General result (possibly predicate) 9.8.2.1.1.3

Real time period of the log file:  0-0.750926 
Total local states of node1: 16 
Total local states of node2: 16 
Total local states of node3: 16 
Total local states of node4: 16 
Total number global states: 65536 
Possibly predicate: false 
Running time cost: 273754ms 
 

 General result (possibly predicate) 9.8.2.1.1.4

Real time period of the log file: 0-0.850926 
Total local states of node1: 18 
Total local states of node2: 18 
Total local states of node3: 18 
Total local states of node4: 18 
Total number global states: 104976 
Possibly predicate: false 
Running time cost: 627407ms 
 

9.8.3 Result	analysis	

This test case includes three nodes. They do not communicate to each other, so all 

global states evaluated are consistent. The total global state should be the product 

of total local states of each node.  This is proven by the results of this test case.  

The storage used by the lattice is extremely high. The Java virtual machine 

crashed with such big memory usage and a memory out of boundary exception 

was thrown.  
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9.9 Test case 7 

This test case consists of six state machines.  It tests the ability of the prototype to 

evaluate large numbers of state machines.  

9.9.1 Model explanation 

9.9.1.1 State machine diagram 

 

Figure 9-50 test case 7 state machine 1 
 

 
Figure 9-51 test case 7 state machine 2 
 

 stm node1

State1

+ set / t_n1_1(50)

State2

+ send / msg_n1_1(101)

State3

+ set / t_n1_2(50)

rec
/msg_n2_1(103)

on
/t_n1_2(50)

on /t_n1_1(50)

 stm node2

State1

+ send / msg_n2_1(103)
+ set / t_n2_1(50)

State2

+ set / t_n2_4(50)

State3

+ set / t_n2_2(50)

State4

+ send / msg_n2_2(102)
+ set / t_n2_3(50)

rec
/msg_n1_1(101)

on /t_n2_4(50)

on /t_n2_3(50)on
/t_n2_2(50)

on /t_n2_1(50)
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Figure 9-52 test case 7 state machine 3 
 

 

Figure 9-53 test case 7 state machine 4 
 

 stm node3

State1

+ set / t_n3_1(50)

State2

+ send / msg_n3_1(104)
+ set / t_n3_2(50)

State3

rec
/msg_n1_1(101)

on /t_n3_2(50)

on /t_n3_1(50)

 stm node4

State1

+ send / msg_n4_1(106)
+ set / t_n4_1(50)

State2

+ set / t_n4_6(10)

State3

+ set / t_n4_5(10)

State4

+ send / msg_n4_2(105)
+ set / t_n4_4(10)

State5

+ set / t_n4_3(10)

State6

+ set / t_n4_2(10)

rec
/msg_n6_2(110)

on /t_n4_6(10)

on /t_n4_5(10)

on /t_n4_4(10)
on /t_n4_3(10)

on /t_n4_2(10)

on /t_n4_1(50)
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Figure 9-54 test case 7 state machine 5 
 

 

Figure 9-55 test case 7 state machine 6 
 

 

 

 

 

 stm node5

State1

+ send / msg_n5_1(107)
+ set / t_n5_1(10)

State2

+ set / t_n5_2(10)

State3

+ set / t_n5_3(40)

State4

+ send / msg_n5_2(108)
[env_n5_1]

rec
/msg_n4_1(106)

on /t_n5_3(40)on /t_n5_2(10)

on
/t_n5_1(10)

 stm node6

State1

+ send / msg_n6_1(109)
+ set / t_n6_1(40)

State2 State3

+ send / msg_n6_2(110)
rec
/msg_n1_1(101)

rec
/msg_n5_1(107)

on /t_n6_1(40)
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9.9.1.2 Communication matrix 

MessageID SendNodeNum nodeNum

110 6 4 

101 1 2 

101 1 3 

101 1 6 

102 2 

103 2 1 

104 3 

105 4 

106 4 5 

107 5 6 

108 5 

109 6 
Table 9-39 test case 7 communication matrix 
 

9.9.1.3 Local states 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 12 13 14 15 16 17 18 0 0 

2 21 22 23 24 25 26 27 28 29 0 

3 31 32 33 34 35 36 37 38 39 0 
Table 9-40 test case 7 node 1 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 12 13 14 15 16 17 18 0 0 

2 21 22 23 24 25 26 27 28 29 0 

3 31 32 33 34 35 36 37 38 39 0 

4 41 42 43 44 45 46 47 48 49 0 
Table 9-41 test case 7 node2 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 11 11 11 11 11 11 11 0 0 

2 21 21 21 21 21 21 21 21 0 0 

3 31 31 31 31 31 31 31 31 31 0 
Table 9-42 test case 7 node 3 local states 
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stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 12 13 14 15 16 17 18 0 0 

2 21 22 23 24 25 26 27 28 29 0 

3 31 32 33 34 35 36 37 38 39 0 

4 41 42 43 44 45 46 47 48 49 0 

5 51 52 53 54 55 56 57 58 59 0 

6 61 62 63 64 65 66 67 68 69 0 
Table 9-43 test case 7 node 4 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 12 13 14 15 16 17 18 0 0 

2 21 22 23 24 25 26 27 28 29 0 

3 31 32 33 34 35 36 37 38 39 0 

4 41 42 43 44 45 46 47 48 49 0 
Table 9-44 test case 7 node 5 local states 
 

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 

1 11 12 13 14 15 16 17 18 0 0 

2 21 22 23 24 25 26 27 28 29 0 

3 31 32 33 34 35 36 37 38 39 0 
Table 9-45 test case 7 node 6 local states 
 

9.9.2 Test different inputs 

node4.var2<=11 || node2.var4==node1.var6 
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9.9.2.1 Predicate 1 

9.9.2.1.1 Simulated system test result	

 General result (possibly predicate) 9.9.2.1.1.1

Real time period of the log file: 0-0.070364 
Total local states of node1: 2 
Total local states of node2: 3 
Total local states of node3: 3 
Total local states of node4: 6 
Total local states of node5: 6 
Total local states of node6: 3 
Total number global states: 1620 
Possibly predicate: false 
Running time cost: 1226ms 
 

 General result (possibly predicate) 9.9.2.1.1.2

Real time period of the log file: 0-0.101776 
Total local states of node1: 4 
Total local states of node2: 5 
Total local states of node3: 5 
Total local states of node4: 9 
Total local states of node5: 6 
Total local states of node6: 4 
Total number global states: 10800 
Possibly predicate: false 
Running time cost: 19570ms 
 

 General result (possibly predicate) 9.9.2.1.1.3

Real time period of the log file: 3.960232-4.370364 
Total local states of node1: 16 
Total local states of node2: 20 
Total local states of node3: 16 
Total local states of node4: 34 
Total local states of node5: 26 
Total local states of node6: 20 
Total number global states: 221017 
Possibly predicate: false 
Running time cost: 799612ms 
 



290 
 

9.9.2.1.2 Real system test result 

 General result (possibly predicate) 9.9.2.1.2.1

Real time period of the log file: 43.459959-43.578460 
Total local states of node1: 4 
Total local states of node2: 5 
Total local states of node3: 4 
Total local states of node4: 10 
Total local states of node5: 7 
Total local states of node6: 2 
Total number global states: 2352 
Possibly predicate: false 
Running time cost: 1767ms 
 

 General result (possibly predicate) 9.9.2.1.2.2

Real time period of the log file: 43.459959-43.848486 
Total local states of node1: 13 
Total local states of node2: 16 
Total local states of node3: 14 
Total local states of node4: 31 
Total local states of node5: 26 
Total local states of node6: 15 
Total number global states: 114014 
Possibly predicate: false 
Running time cost: 292335ms 
 

9.9.3 Result	analysis	

This test case consists of six nodes. The possible number of combination of 

consistent global state is the product of total number of these six nodes local state. 

Even if node has a small number of local states, the product is going to be large. 

Also it is possible to store lots of consistent global states. As in section 9.9.2.1.1.1 

the total number of local state of each node is 2, 3, 3, 6, 6, and 3. The total number 

of global state is 1620. In section 9.9.2.1.1.3, the total number of local states of 

each node is 16, 20, 16, 34, 26, and 20. The total number of consistent global 

states is 221017. It takes about 799612 million seconds (13.33 minutes). The 
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results show the storage and time consumption is very large for a large number of 

nodes.  

9.10 Prototype	Performance	Analysis	

9.10.1 Memory	consumption	

The prototype program is coded in Java language, which runs on the JVM (Java 

Virtual Machine). During the test, the JVM crashed few times by the exception of 

memory out of boundary. Therefore, it is necessary to analysis how much memory 

that is taken by the lattice. Table 9-46 (Borland Software Corporation 2005, p8-9) 

shows the Java memory consumption of each primitive data type. 

Type  Size (byte) 

double  8 

int  4 

long  8 

float  4 

short  2 

byte  1 

char  2 
Table 9-46 Java primitive data type memory consumption 
 

Because a global state is constructed from the local states, to know the memory 

size of a local state is essential. By comparing Table 9-46 and the attributes of the 

LocalState class, a size of a local state is at least 114 bytes for a two nodes system 

(the size of vectorTime depends on how many nodes on the system. The two 

nodes system is the smallest distributed system).  Let t_node denotes the total 

number of nodes. The size of a local state can be calculated by using:  

Memory_size_of _a_ local_state =  

(98+ (t_node × 8)) 
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If without the vectorTime the size of a local state is 98 bytes. Except the local 

states and global vector time, a GlobalState class consists of other attributes, their 

size is 8.25 byte (a Boolean value is one bit). It equals to 66 bits. The size for a 

global state will be calculated by using: 

Memory_size_of _a_ global_state =  

((98 + (t_node × 8)) × t_node ) + 8.25 + (t_node × 8) 

A global state of a 10-node system will consume 1868.25 bytes. If 100 consistent 

global states are found, the storage will consume 186825 bytes memory.  

Because most memory is used by storing the consistent global states, it is 

necessary to find what factors produce the consistent global states. Table 9-47 

shows all memory consumptions for all test cases. 

9.10.2 Factors	affecting	the	quantity	of	consistent	global	states	

Because a global state is constructed by the local states and all the consistent 

global states are evaluated from these global states, the number of local states is 

the main factor influences the quantity of consistent global states. 

Depending on the results of the test cases, the quantity of consistent global states 

affected by the following factors: 

 The number of the nodes are an obvious factor that influences the quantity 

of the consistent global states. The bigger system (more nodes) the more 

consistent global states are generated. The bigger system, the more 

complex of the execution condition of the system will be and the more 

local states will be generated; thereby the more candidates global states 

will be constructed by these local state.  From the large population of 
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global state to evaluate the consistent global state, there is a big chance to 

achieve the large number of consistent global states. 

 The communications between the nodes are another factor. The more 

communications the less consistent global states will be. Because 

sometimes, a node moving state needs to receive a message, if the message 

is not transmitted, the local state of the node will not be changed, thereby 

it reduces the number of the local states. It reduces the candidates for the 

consistent global state evaluation.  

 The number of consistent global states also can depend on the interval of 

the system running time. If the transition of local states is more depending 

on the timer expiring, then the longer the system running, the more local 

states will generated. If the transition more depends on the event happen, 

then the time will not affect the quantity of local states, thereby it will not 

affect the quantity of the consistent global state.  

Figure 9-56 is generated from the results of the test cases (Table 9-47); the 3-

dimension plot shows how the number of nodes and number of communications 

influence the number of consistent global state. Test case 5 and test case 6 has the 

same number of nodes. Comparing the number of consistent global states between 

them in Figure 9-57, the test case 6 is higher than the test case 5; because test case 

5 has more communications than test case 6 as shown in Figure 9-58. 

Test case 5 and test case 7 has the same number of communications. Comparing 

the number of consistent global state between them in Figure 9-59, the test case 7 

is higer than the test case 5; because test case 5 has less nodes than test case 7 as 

shown in Figure 9-58. 
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Most test cases are based on the time triggering system (except test case 3), 

thereby for the same test case in Figure 9-56, the longer system running the more 

consistent global states are generated. 

 

Figure 9-56 number of CGSs vs. number of communication & number of nodes 
 

 

 

 

Figure 9-57 number of nodes  vs. number of CGSs (X-Z view of Figure 9-56) 
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Figure 9-58 number of communications  vs. number of nodes (X-Y view of Figure 9-56) 
 

 

 

Figure 9-59 number of communications  vs. number of CGSs (Y-Z view of Figure 9-56) 
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Number of Communications Number of nodes Consistent Global States Memory consumption (byte) 

2 2 234 59026.5 

2 2 542 136719.5 

2 2 1626 410158.5 

3 3 103 41019.75 

3 3 1405 559541.3 

2 2 176 44396 

2 2 1493 376609.3 

6 3 492 195939 

6 3 833 331742.3 

6 3 1097 436880.3 

6 3 381 151733.3 

7 4 454 254353.5 

7 4 566 317101.5 

7 4 234 131098.5 

7 4 772 432513 

7 4 530 296932.5 

7 4 800 448200 

7 4 530 296932.5 

0 4 256 143424 

0 4 6561 3675800 

0 4 65536 36716544 

0 4 104976 58812804 

7 6 1620 1510245 

7 6 10800 10068300 
7 6 221017 2.06E+08 
7 6 114014 1.06E+08 

Table 9-47 number of nodes, number of communications, number of CGS and memory 
consuming from all test cases results 
 

9.11 Conclusion		

This chapter describes seven test cases to test the prototype software. The first 

four test cases verify and validate the prototype. The last three test cases test the 

performance of the prototype. Analysing each test case result, for the verification 

of the functions of the prototype is successful. The validation of the prototype is 

also successful. The performance of the prototype depends on the 

communications between nodes, the total number of nodes, and the total number 

of each node’s local states.  
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Chapter	10 	Research	conclusion		

10.1 Introduction		

The aim of this research is to investigate a method to test distributed automotive 

system. To achieve this aim, the system global states are constructed and 

evaluated by the specified predicates.  

 

10.2 Research	summary	

There are some literatures investigated for testing the distributed system. The 

logical time is used to order the distributed events. The snapshot algorithm 

capture a global state of an execution, but it cannot continuously capture the 

global states. However for distributed system testing the continuous history of the 

execution is important, so it leads to the GPD algorithm. 

By comparing and contrasting different GPD algorithms, the centralized relational 

predicate is chosen to apply on the automotive distributed system. A prototype 

program was developed to evaluate the global predicates. During the prototype 

development, seven test cases were used to verify and validate the prototype. The 

prototype was successfully verified and validated in these test cases.  

10.3 Answer Research Questions 

10.3.1 How can events occurring on separate ECUs be chronologically 

ordered? 

The events occurring on the different ECUs can be ordered by the vector clock as 

in the prototype program. The prototype assigns the vector clock to each local 
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state of each ECU; the test cases verified the local vector clock assignment 

working fine.  

 

10.3.2 How can a snapshot of the global application state and application 

execution traces be constructed based on test case execution cycles? 

Depending on vector clock of each local state, the consistent global states can be 

constructed. Each consistent global state also is assigned the vector clock, the 

vector clock of the consistent global states assignment is verified by the test cases.  

 

10.3.3 How to deal with the large number of global states of execution? 

The global states include consistent global states and non-consistent global states. 

More global states consume more CPU power to evaluate if these global states are 

consistent. These consistent global states need to be stored in a data structure such 

as the execution lattice. The data structure could consume lots of memory. All 

problems stem from the large number of global states.  

The total number of global states equals the product of total number of each node 

local states. The number of nodes can’t be reduced. The entire system should be 

evaluated. The only way is to reduce the local states of each node. The local states 

are constructed by the CAN messages from the CANoe log file.  The longer time 

the system run, the more data are collected. So if the running time of the testing 

system is reduced, it will reduce the total number of local states.  If the system is 

run for a short time, it may work well, but it won’t be certain if it works for a long 

time running. So the prototype should have the ability to evaluate a period time of 

the system running. It should allow the user to choose the part of the CANoe log 
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file to be evaluated. So the best way to deal with the large number of global states 

is to evaluate the local states over a series of shorter intervals. 

 

10.4  Area for further research 

Due to the time constraint for the research, the prototype is not a sophisticated 

product. Lots of optimizations and extensions can be developed in the further. 

They are: 

 In the prototype program, the algorithm used for evaluating the consistent 

global state is checking every possible global state. In the situation, where 

one or more global states caused by an inconsistent parent global state; 

there is no need to evaluate its child global states. The time to evaluate the 

consistent global states can be shortened. If an algorithm offers the ability 

to cleverly skip all child global states of a non-consistent global state, it 

will be very useful for large distributed automotive systems. 

 For the execution lattice presentation, the prototype presents the lattice on 

the JAVA frame; the user can browse the global state on the lattice by 

double clicking. The lattice is also can be saved as PNG format, but the 

PNG format cannot interact with the user, it only a picture. If too many 

global states are on the lattice, the lattice cannot be presented on the frame 

or PNG image. So finding a way to present large lattices in a different 

format that can offer a good user interface would let the user easily browse 

the global state information. 

 For the performance analysis of the prototype program, some mathematic 

al solution may be generated by the results data of massive test cases. 
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Because the number of consistent global states is affected by the number 

of nodes, the number of communications, and maybe the system running 

period (the local state transition depends on the timer); it is may be 

possible to use the massive test results’ data to figure out the coefficient of 

these factors and generate a formula.  
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