

Validation of Networked Automotive Control

Systems Using Global Predicates

Zhang Liang （张亮）B.Sc. (Hons)

M.Sc. Thesis

Supervisor: Brendan Jackman B.Sc., M.Tech.

Submitted to the Waterford Institute of Technology

Awards Council, 17 June 2011.

 	

1

Acknowledgements	

I would like to thank sincerely the following people, for all their support and help

over the past two years of this project. Without them, this thesis would not be

possible.

Firstly, I would like to thank Mr. Brendan Jackman for his encouragement,

guidance and patience help throughout this project.

I would like to thank the members in our group for their valuable advice and help.

 Frank Walsh, Group Supervisor, Department of Computing, Math &
Physics, Waterford Institute of Technology.

 Rob Shaw, Group member, Department of Computing, Math & Physics,
Waterford Institute of Technology.

 Richard Murphy, Group member, Department of Computing, Math &
Physics, Waterford Institute of Technology.

I would like to thank Ray Wrynne, who is Sales Director of Vector GB Limited,

for offering me the valuable research equipment CANoe.

I would also like to thank Dr. Burkhard Stadlmann and all members of Railway

Automation Group of Upper Austria University of Applied Science.

I would lastly and most importantly like to thank my parents who were more of a

help than they will ever know.

 	

2

Abstract	

Vehicles consist of many connected networks of electronic control units (ECUs).

Automotive application software (e.g. traction control system, climate control,

engine management) is distributed across many separate ECUs, making

application testing and system integration very difficult. The main difficulty is in

constructing a global application state, due to the asynchronous independent

operation of each ECU.

The aim of this research is to make the system integration more efficient by

creating a global application state based on analysis of application test results. To

achieve this goal, a prototype program was developed to construct global states

and to analyse these global states. The prototype collects ECU state and network

interaction data using the Vector CANoe tool. From these data a lattice of

consistent global application states is constructed. The global state lattice can

then be used as the basis for analysing ECU signal consistency across ECUs and

identifying the potential for erroneous system states to be entered.

Test results from the prototype demonstrate the validity of the theoretical

approach despite the disadvantage of the state space explosion associated with

large distributed systems.

3

DECLARATION

Declaration

I, Liang Zhang, declare that this thesis is submitted by me in partial

fulfilment of the requirement for the degree M.Sc., is entirely my own work

except where otherwise accredited. It has not at any time either whole or in part

been submitted for any other educational award.

Signature: _____________________________

Liang Zhang,

17 June 2011.

4

Table	of	contents	 	

Acknowledgements ... 1

Abstract ... 2

Table of figures ... 8

Table of tables ... 17

Section One: Introduction ... 20

Chapter 1 Introduction .. 21

1.1 Automotive integration problem .. 21

1.2 Research questions ... 23

1.3 Document layout... 23

Section Two: Literature Review .. 26

Chapter 2 Automotive Application Development ... 27

2.1 Introduction .. 27

2.2 ECU software Functions .. 28

2.3 ECU networks .. 46

2.4 Inter‐task communication ... 55

2.5 Event‐triggered system vs time‐triggered system .. 59

2.6 ECU calibration, measurement and diagnostics ... 60

2.7 Conclusion ... 64

Chapter 3 Automotive Software Testing ... 67

3.1 Introduction .. 67

3.2 V model ... 67

5

3.3 Test planning ... 75

3.4 Verification and Validation ... 79

3.5 Automotive distributed system integration ... 102

3.6 Conclusions ... 106

Chapter 4 Logical Time .. 109

4.1 Introduction .. 109

4.2 Logical time ... 110

4.3 Scalar time ... 112

4.4 Vector Time ... 115

4.5 Matrix Time ... 119

4.6 Conclusions ... 121

Chapter 5 Global State and Snapshot .. 124

5.1 Introduction .. 124

5.2 Snapshot algorithm for FIFO ... 126

5.3 Snapshot algorithm for non‐FIFO .. 130

5.4 Comparison of snapshot algorithms ... 135

5.5 Conclusions ... 136

Chapter 6 Global State Evaluation ... 138

6.1 Introduction: .. 138

6.2 Stable and unstable Predicates .. 139

6.3 Possibly and definitely Predicates ... 142

6.4 Relational Predicate .. 142

6

6.5 Conjunctive Predicate ... 148

6.6 Predicate detection in automotive system ... 159

6.7 Conclusion .. 161

Section Three: Methodology .. 165

Chapter 7 Methodology ... 166

7.1 Introduction .. 166

7.2 Construct global state lattice .. 167

7.3 Evaluate predicate .. 173

7.4 Validation tests ... 173

7.5 Conclusion ... 174

Section Four: Implementation and Testing .. 176

Chapter 8 Prototype Development ... 177

8.1 Introduction .. 177

8.2 Implementation tools ... 180

8.3 Data requirements .. 181

8.4 Test case program design ... 189

8.5 GPD prototype program design .. 194

8.6 Conclusion ... 217

Chapter 9 Prototype Testing .. 220

9.1 Introduction ... 220

9.2 Term explanation .. 222

9.3 Test case 1 ... 223

7

9.4 Test case 2 ... 239

9.5 Test case 3 ... 250

9.6 Test case 4 ... 257

9.7 Test case 5 ... 270

9.8 Test case 6 ... 281

9.9 Test case 7 ... 284

9.10 Prototype Performance Analysis .. 291

9.11 Conclusion ... 296

Section Five: Research Summary .. 298

Chapter 10 Research conclusion .. 299

10.1 Introduction .. 299

10.2 Research summary .. 299

10.3 Answer Research Questions .. 299

10.4 Area for further research ... 301

Appendix A .. 303

Bibliography .. 303

8

Table	of	figures	

Figure 1-1 automotive network application .. 22

Figure 2-1 distributed automotive application .. 28

Figure 2-2 basic task state transition ... 30

Figure 2-3 extended task state transition ... 31

Figure 2-4 Full preemptive scheduling ... 34

Figure 2-5 non preemptive scheduling .. 34

Figure 2-6 upward compatibility for conformance classes 36

Figure 2-7 comparison between AUTOSAR architecture and older architectures 37

Figure 2-8 AUTOSAR layers ... 37

Figure 2-9 AUTOSAR basic software .. 39

Figure 2-10 VFB view .. 40

Figure 2-11 AUTOSAR software component with interfaces 41

Figure 2-12 Sender-Receiver Interface Data Elements (Sender Side) 42

Figure 2-13 Client-Server Interface Operation (Server Side) 43

Figure 2-14 software component and runnables ... 45

Figure 2-15 the recursive relation of software components and compositions 46

Figure 2-16 CAN network structure ... 48

Figure 2-17 CAN message data frame (Brendan Jackman 2004b) 50

Figure 2-18 standard data frame ... 51

Figure 2-19 Extended data frame .. 51

Figure 2-20 error frame ... 52

Figure 2-21 overload frame ... 53

Figure 2-22 a CAN node status ... 55

Figure 2-23 OSEK/VDX COM model vs. ISO/OSI model 56

9

Figure 2-24 message transmission and reception in OSEK/VDX 57

Figure 2-25 Communication Structure ... 58

Figure 2-26 CCP master/slave device configuration .. 61

Figure 2-27 CRO structure .. 62

Figure 2-28 CRM structure ... 63

Figure 2-29 Data Acquisition Message structure .. 63

Figure 2-30 Object Descriptor Table .. 63

Figure 3-1 (Schaeuffele & Zurawka 2005, p24) is an overview of the V model .. 68

Figure 3-2 Multiple V development life cycle .. 72

Figure 3-3 parallel development phases in V model ... 74

Figure 3-4 system decomposition and development using nested and multiple V

models ... 74

Figure 3-5 Higher-level test issues in the nested multiple V model 75

Figure 3-6 Master test plan ... 78

Figure 3-7 Verification and validation activities associated with the V model

(Tian 2005, p204) .. 80

Figure 3-8 V model (Component test) .. 83

Figure 3-9 Vector VT system .. 85

Figure 3-10 Piaggio MP3 scooter ... 86

Figure 3-11 “easy parking” system block diagram ... 87

Figure 3-12 The hardware-in-the-loop setup with a dSPACE Simulator Mid-Size

 ... 89

Figure 3-13 V model (Integration test) ... 89

Figure 3-14 module call graph .. 91

Figure 3-15 bottom-up integration .. 92

10

Figure 3-16 top-down integration ... 93

Figure 3-17 V model (system test) .. 94

Figure 3-18 Basic structure for an car speed control system 96

Figure 3-19 Physical diagram for a car speed control system. 97

Figure 3-20 model based system development ... 98

Figure 3-21 Simulink library browser ... 99

Figure 3-22 Simulation environment in Simulink/TargetLink. 100

Figure 3-23 rapid prototype development ... 101

Figure 3-24 CANape measurement configuration .. 102

Figure 3-25 CANoe top-down integration .. 104

Figure 3-26 dSPACE simulator .. 105

Figure 4-1 Four node distributed system with physical clocks 110

Figure 4-2 scalar time ... 113

Figure 4-3 vector time ... 117

Figure 4-4 Matrix time example ... 121

Figure 5-1 Chandy-Lamport algorithm ... 127

Figure 5-2 Colouring completed ... 128

Figure 5-3 Spezialetti and Kearns’ snapshot algorithm 129

Figure 5-4 the vector counter method (Friedemann Mattern 1993) 132

Figure 5-5 Example Mattern’s algorithm .. 134

Figure 6-1 deadlock .. 140

Figure 6-2 the lattices of global predicate state .. 143

Figure 6-3 Local trace of states in the queues of central process 143

11

Figure 6-4 Example to show the states build into the lattices, the level to the

corresponding lattices. (a) Corresponding state lattice of the execution of figure.

(b) the state lattice for the execution. .. 145

Figure 6-5 Example to show that states in which Definitely Ф is satisfied need not

be at the same level in the state lattice. (a) Execution. (b) Corresponding state

lattice. .. 148

Figure 6-6 centralized algorithm ... 149

Figure 6-7 distributed algorithm ... 149

Figure 6-8 for a conjunctive Predicate the shaded durations indicate the periods

when the local Predicates are true. .. 150

Figure 6-9 Illustrating conditions for Definitely(Ф) and ¬Possible(Ф), for two

processes. .. 150

Figure 6-10 data structure for an interval queue of central process P0 151

Figure 6-11 two possibilities assigns head(Qi)[i] to a token 155

Figure 7-1 Global validation of distributed automotive control systems prototype

 ... 166

Figure 7-2 the procedure to build the lattice ... 167

Figure 7-3 CANoe log example .. 168

Figure 7-4 Two processes execution with vector time.. 171

Figure 7-5 Two node execution lattice example ... 172

Figure 8-1 test case generating progress ... 178

Figure 8-2 prototype design overview .. 179

Figure 8-3 state machine example... 181

Figure 8-4 CAPL code .. 182

Figure 8-5 state machine node (from Eclipse UML2.1 plug-in) 183

12

Figure 8-6 state machine node component types .. 184

Figure 8-7 StatesType ... 184

Figure 8-8 Initial state type ... 185

Figure 8-9 Message type ... 186

Figure 8-10 Timer type ... 186

Figure 8-11 Transition type ... 186

Figure 8-12 eventData type ... 187

Figure 8-13 Metadata type .. 188

Figure 8-14 Communication Matrix structure .. 189

Figure 8-15 Form class diagram ... 190

Figure 8-16 CAPL code generator GUI .. 190

Figure 8-17 CAPL code generator select XML template dialog 191

Figure 8-18 saving CAPL code dialog .. 191

Figure 8-19 CAPL code generator class diagram .. 192

Figure 8-20 CAPL code generator main procedure .. 193

Figure 8-21 activities procedure generate initial state .. 193

Figure 8-22 activities procedure in the writeState function 194

Figure 8-23 Prototype class diagram (only main classes) 195

Figure 8-24 class diagram of canoeDataProcessor package 196

Figure 8-25 class diagram of state package .. 198

Figure 8-26 class diagram of gpd package .. 200

Figure 8-27 sequence diagram to assign vector time .. 201

Figure 8-28 working flow of the function buildVectorTime() 202

Figure 8-29 lattice structure .. 205

Figure 8-30 the getCGSs function activity diagram .. 206

13

Figure 8-31 counting system structure .. 207

Figure 8-32 work flow of the consistent global state evaluation 208

Figure 8-33 main process of building execution lattice 209

Figure 8-34 work flow build lattice levels .. 210

Figure 8-35 work flow to build relationships between parent nodes and child

nodes ... 211

Figure 8-36 the Predicate function sequence diagram .. 212

Figure 8-37 work flow of the internal loop of the Predicate function 213

Figure 8-38 sequence diagram for the Predicate function 214

Figure 8-39 the definitelyPredicate function work flow 214

Figure 8-40 GraphicGPD package class diagram .. 215

Figure 8-41 Lattice frame ... 216

Figure 8-42 GPDtoolController dialog ... 217

Figure 8-43 InputValueSelector dialog ... 217

Figure 9-1 test case 1 state machine 1 ... 224

Figure 9-2 test case 1 state machine 2 ... 224

Figure 9-3 the global state of the lattice does not satisfy the predicate. 228

Figure 9-4 the global state of the lattice satisfies the predicate. 229

Figure 9-5 test case 1 predicate 1 simulated bus possibly predicate detection

graphic result ... 229

Figure 9-6 test case 1 predicate 1 simulated bus possibly definitely detection

graphic result ... 230

Figure 9-7 test case1 predicate 1 real bus configuration 231

Figure 9-8 test case 1 predicate 1 real bus possibly predicate detection graphic

result .. 234

14

Figure 9-9 test case 1 predicate 1 real bus definitely predicate detection graphic

result .. 235

Figure 9-10 test case 1 execution .. 236

Figure 9-11 test case 2 state machine 1 ... 239

Figure 9-12 test case 2 state machine 2 ... 239

Figure 9-13 test case 2 state machine 3 ... 239

Figure 9-14 test case 2 predicate 1 simulated bus possible predicate detection

graphic result ... 243

Figure 9-15 test case 2 predicate 1 simulated bus definitely predicate detection

graphic result ... 244

Figure 9-16 test case 2 predicate 1 real bus possibly predicate detection graphic

result .. 247

Figure 9-17 test case 2 predicate 1 real bus definitely predicate detection graphic

result .. 248

Figure 9-18 test case 2 execution .. 249

Figure 9-19 test case 3 state machine 1 ... 250

Figure 9-20 test case 3 state machine 2 ... 250

Figure 9-21 test case 3 predicate 1 simulated bus possibly predicate detection

graphic result ... 254

Figure 9-22 test case 3 predicate 1 simulated bus definitely predicate detection

graphic result ... 255

Figure 9-23 test case 3 execution .. 256

Figure 9-24 test case 4 state machine 1 ... 257

Figure 9-25 test case 4 state machine 2 ... 257

Figure 9-26 test case 4 state machine 3 ... 258

15

Figure 9-27 test case 4 predicate 1 simulated bus possibly predicate detection

graphic result ... 259

Figure 9-28 test case 4 predicate 1 simulated bus definitely predicate detection

graphic result ... 260

Figure 9-29 test case 4 predicate 1 real bus possibly predicate detection graphic

result .. 261

Figure 9-30 test case 4 predicate 1 real bus definitely predicate detection graphic

result .. 262

Figure 9-31 test case 4 predicate 2 simulated bus possible predicate detection

graphic result ... 263

Figure 9-32 test case 4 predicate 2 simulated bus definitely predicate detection

graphic result ... 264

Figure 9-33 test case 4 predicate 2 real bus possible predicate detection graphic

result .. 265

Figure 9-34 test case 4 predicate 2 real bus definitely predicate detection graphic

result .. 266

Figure 9-35 simulated system execution ... 267

Figure 9-36 real system execution .. 268

Figure 9-37 test case 5 state machine 1 ... 270

Figure 9-38 test case 5 state machine 2 ... 270

Figure 9-39 test case 5 state machine 3 ... 271

Figure 9-40 test case 5 state machine 4 ... 271

Figure 9-41 test case 5 predicate 1 simulated bus possibly predicate detection

graphic result ... 274

16

Figure 9-42 test case 5 predicate 1 simulated bus definitely predicate detection

graphic result ... 275

Figure 9-43 graphic result ... 276

Figure 9-44 graphic result ... 278

Figure 9-45 graphic result ... 279

Figure 9-46 test case 6 state machine 1 ... 281

Figure 9-47 test case 6 state machine 2 ... 281

Figure 9-48 test case 6 state machine 3 ... 281

Figure 9-49 test case 6 state machine 4 ... 282

Figure 9-50 test case 7 state machine 1 ... 284

Figure 9-51 test case 7 state machine 2 ... 284

Figure 9-52 test case 7 state machine 3 ... 285

Figure 9-53 test case 7 state machine 4 ... 285

Figure 9-54 test case 7 state machine 5 ... 286

Figure 9-55 test case 7 state machine 6 ... 286

Figure 9-56 number of CGSs vs. number of communication & number of nodes

 ... 294

Figure 9-57 number of nodes vs. number of CGSs (X-Z view of Figure 9-56) 294

Figure 9-58 number of communications vs. number of nodes (X-Y view of Figure

9-56) .. 295

Figure 9-59 number of communications vs. number of CGSs (Y-Z view of Figure

9-56) .. 295

17

Table	of	tables	

Table 2-1 basic task states explanation ... 30

Table 2-2 basic task transitions explanation (OSEK 2005) 31

Table 2-3 extended task state transitions explanation(OSEK 2005) 32

Table 2-4 conformance class determination ... 36

Table 3-1 Common Test Types ... 76

Table 3-2 Test levels ... 77

Table 4-1 clock system comparison .. 121

Table 5-1 snap shot algorithm comparison ... 135

Table 6-1 Tracking intervals locally at process Pi. ... 156

Table 6-2 Message Type ... 156

Table 6-3 Distributed algorithm to detect Definitely(Ф). 157

Table 7-1 CANoe log file format .. 168

Table 7-2 time triggered and event triggered local state record mode 169

Table 7-3 evaluate CGS example. ... 171

Table 9-1 overview of test cases ... 221

Table 9-2 test case 1 communication matrix ... 225

Table 9-3 test case 1 node 1 local states ... 225

Table 9-4 test case 1 node2 local states .. 225

Table 9-5 node1 local states .. 226

Table 9-6 node2 local states .. 226

Table 9-7 global state .. 227

Table 9-8 node1 local states .. 232

Table 9-9 node2 local states .. 232

Table 9-10 global states .. 233

18

Table 9-11 test case 2 communication matrix ... 240

Table 9-12 test case 2 node 1 local states ... 240

Table 9-13 test case 2 node2 local states .. 240

Table 9-14 test case 2 node 3 local states ... 240

Table 9-15 node1 local states .. 241

Table 9-16 node2 local states .. 241

Table 9-17 node3 local states .. 241

Table 9-18 global states .. 242

Table 9-19 node1 local states .. 244

Table 9-20 node2 local states .. 245

Table 9-21 node3 local states .. 245

Table 9-22 global states .. 246

Table 9-23 test case 3 communication matrix ... 251

Table 9-24 test case 3 node 1 local states ... 251

Table 9-25 test case 3 node2 local states .. 251

Table 9-26 node1 local states .. 252

Table 9-27 node2 local states .. 252

Table 9-28 global states .. 253

Table 9-29 test case 4 communication matrix ... 258

Table 9-30 test case 4 node 1 local states ... 258

Table 9-31 test case 4 node2 local states .. 258

Table 9-32 test case 4 node 3 local states ... 259

Table 9-33 test case 5 communication matrix ... 272

Table 9-34 test case 5 node 1 local states ... 272

Table 9-35 test case 5 node2 local states .. 272

19

Table 9-36 test case 5 node 3 local states ... 272

Table 9-37 test case 5 node 4 local states ... 273

Table 9-38 test case 6 each node local states .. 282

Table 9-39 test case 7 communication matrix ... 287

Table 9-40 test case 7 node 1 local states ... 287

Table 9-41 test case 7 node2 local states .. 287

Table 9-42 test case 7 node 3 local states ... 287

Table 9-43 test case 7 node 4 local states ... 288

Table 9-44 test case 7 node 5 local states ... 288

Table 9-45 test case 7 node 6 local states ... 288

Table 9-46 Java primitive data type memory consumption 291

Table 9-47 number of nodes, number of communications, number of CGS and

memory consuming from all test cases results .. 296

20

Section	One:	Introduction	

21

Chapter	1 Introduction	

1.1 Automotive	integration	problem	

Modern vehicles contain many electronic control systems to enhance fuel

efficiency, engine performance, vehicle chassis control and passenger comfort, as

well as reducing emissions. These control systems are organised as multiple

interconnected networks of distributed software components running on many

Electronic Control Units (ECUs). In order to efficiently develop the application

software and aid the mobility of software components, a kind of middleware

AUTOSAR is developed. It is used as a standard runtime platform for the

automotive software components. AUTOSAR is very similar to the common

middleware CORBA (Common Object Request Broker Architecture) or JRE

(Java Runtime Environment) except that the services provided are highly

specialised and optimised for the automotive environment.

Although these OS and middleware offers huge help for the development of the

automotive software, it still does not sort the problem of the integration of the

ECUs. These standards are very handy for a single ECU, but eventually all these

ECUs will be assembled into a vehicle, communicating through the network.

They cooperate with each other to achieve the user requirements. There are a few

types of integration test for the automotive software: MIL (Model In the Loop),

SIL (Software In the Loop), and HIL (Hardware In the Loop). The most critical

one is HIL which tests and validates software on the real hardware ECUs. All

these ECUs are distributed, so the natural difficulty for testing the distributed

system is present. The difficulty is caused by the property of the distributed

system; there is no global clock and shared memory for the distributed system, so

22

it is very difficult to record and validate the concurrent states of multiple ECUs.

Examples of ECU states might be “sending value of current speed of the vehicle”

“waiting to receive temperature of the engine”, “processing power steering angle”

and so on.

Figure 1-1 shows a network structure of a modern vehicle (Gabriel Leen and

Donal Heffernan 2002).

Figure 1-1 automotive network application

23

1.2 Research	questions	

The main goal of this research is to investigate the theoretical methods for

constructing the global state of a system, made up of networked ECUs on a CAN

bus.

The key questions of this research are as follows:

 How can events occurring on separate ECUs be chronologically ordered?

 How can a snapshot of the global application state and application

execution traces be constructed based on test case execution cycles?

 How to deal with the large number of potential global states of execution?

1.3 Document	layout	

Chapter 1: Introduction

This chapter introduces the objective of the research and discovers the problem.

The research questions are addressed.

Chapter 2: Automotive Application Development

This chapter describes the operating system and network protocol used in the

automotive industry.

Chapter 3: Automotive Software Testing

This chapter introduces the software testing methodologies and how the

automotive industry does software testing.

Chapter 4: Logical Time

This chapter introduces how to order the events in the distributed system.

24

Chapter 5: Global State and Snapshot

This chapter describes the global state and algorithms to do a snapshot to record

the global state for the distributed system.

Chapter 6: Global State Evaluation

This chapter describes the algorithms to continually record global states of the

system and global predicate evaluation algorithms.

Chapter 7: Methodology

This chapter describes the method is applied to solve the automotive integration

problems.

Chapter 8: Prototype Development

This chapter introduces the development of the prototype program, and the

structure and the function activities of the prototype.

Chapter 9: Prototype Testing

This chapter list the test cases to verify and validate the prototype software.

Chapter 10: Research Conclusion

This chapter summarises this research, answers the research questions, and gives

the potential for the further development and research.

25

References

Gabriel Leen & Donal Heffernan. Expanding Automotive Electronic Systems.
88-93. 2002. IEEE.

	 	

26

Section	Two:	Literature	Review	

27

Chapter	2 Automotive	Application	Development	

2.1 Introduction		

This chapter introduces automotive application development. As desktop

computer, the application software task and hardware resources are managed by

the operating system; for the automotive ECU such operating system is also

needed. The most popular automotive operating system used nowadays is

OSEK/VDX OS (AUTOSAR GbR 2008c). OSEK/VDX (Offene Systeme und

deren Schnittstellen fur die Elektronik im Kraftfahrzeug/ Vehicle Distributed

eXecutive) is set of standards for distributed automotive systems. It was

developed by German and French automotive manufactures -(Joseph Lemieux

2001). The OSEK/VDX includes four main standards: operating system (OS),

communication (COM), network management (NM), OSEK implementation

language (OIL). It also includes three additional standards: OSEK/VDX real-time

interface (ORTI), OSEK/VDX time-triggered operating system (OSEK-Time),

and OSEK/VDX fault tolerant communication specification. Also there is another

new standard getting popular in the automotive industry. It is called AUTOSAR

(AUTomotive Open System ARchitecture). AUTOSAR is an open standardized

software architecture for the automotive industry (Simon Fuerst and BMW 2008).

It separates the system into different layers: application layer, AUTOSAR

Runtime Environment (RTE), service layer, ECU abstraction layer,

Microcontroller abstraction layer, and complex devices. RTE isolates the

application layer from the other layers (AUTOSAR GbR 2008a), the developer

does not need to deal with the hardware drivers. It also enhances code mobility

and compatibility and reduces the development complexity. This chapter will talk

28

about the OSEK/VDX OS, AUTOSAR OS, OSEK/VDX COM and AUTOSAR

COM. They are relevant to this research.

There are many different ECU networks e.g. CAN, FlexRay, LIN, and MOST etc.

This research only focuses on the CAN protocol network, which will be described

in this chapter. For reading and writing the ECU memory, the CAN Calibration

Protocol (CCP) is also introduced in this chapter.

Figure 2-1 shows a typical distributed automotive application

Figure 2-1 distributed automotive application

2.2 ECU	software	Functions	

The embedded application is implemented as a set of event-driven functions. The

event-driven functions are triggered by an event-e.g. sensor, timer expired, and

message received etc.. These events may be detected by either interrupt or polling.

Automotive application program functions are currently implemented as task on

OSEK based operating systems (such as Ford’s FNOS or Vector CANbedded) or

ECU 1

OS

Task Task Task

OS

Task Task Task

OS

Task Task Task

ECU 2 ECU 3

Automotive network (CAN, FLEXRAY,LIN, and MOST etc.)

29

as AUTOSAR components. This section will introduce the OSEK OS and

AUTORSAR OS.

2.2.1 OSEK	OS	

2.2.1.1 Overview	of	OSEK	operating	system	

The OSEK operating system provides a pool of different services and processing

mechanisms (OSEK 2005). According to the configuration required by the user,

the OSEK operating system is built at system generation time.

The OSEK/VDX OS manages the application programs which are independent of

each other for the processor. It schedules the work of the processor by assigning

the application to different processing levels.

The essential concept in the OSEK/VDX OS is the task. There are two types of

tasks: basic task and extended task. The activation of a task depends on the

priority of the task.

OSEK OS offers four conformance classes. Depending on the requirement of the

application software and system resources (e.g. processor, memory), the

conformance class describes the available features of the operating system.

2.2.1.2 Processing	levels	

OSEK defines three processing levels:

1. Interrupt level

2. Logical level for schedules

3. Task level

The interrupt level processes have the highest priority over other processes. And

the task level has the lowest priority. The interrupt process level includes one or

30

more interrupt priority levels. Interrupt service routines have a statically assigned

interrupt priority level. Assignment of interrupt service routines to interrupt

priority levels is dependent on implementation and hardware architecture. For task

priorities and resource ceiling-priorities bigger numbers refer to higher priorities.

The task’s priority is assigned by the user (the task priorities are introduced in

section 2.2.1.6).

2.2.1.3 Basic	task	

A basic task runs to completion unless preempted by a higher priority task or an

interrupt (if enabled)(Joseph Lemieux 2001). It has three states as shown in Figure

2-2.

Figure 2-2 basic task state transition

The states are explained in Table 2-1. The transitions are explained in Table 2-2.

Running Allocating the processor to process the task. The instruction of the
task is executed. Only one task can be in this state at any time. The
other states can be adopted simultaneously by several tasks

Ready Waiting for allocating the processor to the task.

Suspended In the suspended state, the task is passive and can be activated.

Table 2-1 basic task states explanation

running

suspended

ready

preempt start

terminate

activate

31

Transition Former
state

New state Description

activate suspended ready A new task is set into the ready state by a
system service. The OSEK operating
system ensures that the execution of the
task will start with the first instruction.

start ready running A ready task selected by the scheduler is
executed.

preempt running ready The scheduler decides to start another task.
The running task is put into the ready
state.

terminate running suspended The running task causes its transition into
the suspended state by a system service.

Table 2-2 basic task transitions explanation (OSEK 2005)

2.2.1.4 Extended	task	

The extended task is very similar to basic task. The only different is that the

extended task has one more state called waiting state. The state diagram for

extended task is illustrated in Figure 2-3. Waiting state is used by the task that

cannot continue execution until an event triggers it. The other states are as same

as basic task states. The transitions are described in Table 2-3.

Figure 2-3 extended task state transition

running

waiting suspended

ready

wait

release activate

terminate

startpreempt

32

Transition Former
state

New state Description

activate suspended ready A new task is set into the ready state by a
system service. The OSEK operating
system ensures that the execution of the
task will start with the first instruction.

start ready running A ready task selected by the scheduler is
executed.

wait running waiting The transition into the waiting state is
caused by a system service. To be able to
continue operation, the waiting task
requires an event.

release waiting ready At least one event has occurred which a
task has waited for.

preempt running ready The scheduler decides to start another task.
The running task is put into the ready
state.

terminate running suspended The running task causes its transition into
the suspended state by a system service.

Table 2-3 extended task state transitions explanation(OSEK 2005)

2.2.1.5 Comparison	of	basic	task	and	extended	task	

The basic task does not have a waiting state. The synchronization points are

formed at the task start and end. If the application needs internal synchronization

points, then more than one basic task is required. The advantage of basic tasks is

that they do not use too much RAM. This because basic task does not have the

waiting state; in a waiting state, the task is loaded into the RAM to wait for an

event to active it. The advantage of extended task is that even though the

synchronization is requested, one task can deal with a coherent job. When the

extended task needs the data (new data or updated data) to continue execution, it

will be in the waiting state, until the requested data arrives (Joseph Lemieux 2001).

33

2.2.1.6 Task	priority		

Every task in OSEK/VDX OS has a priority. The priority is statically assigned to

the task, it cannot be changed dynamically. There is one situation that the priority

can be changed by the OS. It happens when the priority ceiling protocol is active:

the priority of a task is elevated to the priority ceiling value calculated statically

(Joseph Lemieux 2001).

The value 0 is the lowest priority of a task. The larger number has the higher

priority (OSEK 2005). The same priority tasks can be grouped together. They are

stored in a FIFO queue.

2.2.1.7 Scheduling	policies	

A task, whether basic or extended, can be set as either full preemption or non-

preemption. The non-preemption task runs until it terminates or, in the case of

extended task, until it transitions to a waiting state. When a preemption task is

running, it can be preempted by a task with higher priority task. (Joseph Lemieux

2001)

Depending on the attribute of preemption of the task, OSEK/VDX OS schedules

the tasks. The scheduling policy consists of full preemptive scheduling, non-

preemptive scheduling, and mixed preemptive scheduling. They will be

introduced in the following sub-sections.

2.2.1.7.1 Full	preemption	scheduling	

Full preemptive scheduling means that a running task is put into a ready state by a

higher priority task. Figure 2-4 demonstrates full preemptive scheduling. Task1

has higher priority than Task2. When Task2 is running, Task1 starts. Because the

task1 has higher priority and Task2 is preemptive, Task2 is preempted, task 1

34

cannot be delayed.

Figure 2-4 Full preemptive scheduling

2.2.1.7.2 Non‐preemptive	scheduling	

Non-preemptive scheduling occurs when the current running task cannot be

preempted by another task even a task with higher priority. So the higher priority

task can be delayed by the non-preemptive and low priority task. Figure 2-5

demonstrates a non-preemptive scheduling. Task1 has higher priority than Task2.

When Task2 is running, Task2 is started, it is only stay in the ready state, until the

Task2 is terminated, then Task1 moves to running state. The delay time of Task1

is the time that it is in the ready state.

Figure 2-5 non preemptive scheduling

Suspended Running Suspended

Running Ready Running

Task1 Ready

Task2

Preempted

Suspended Running

Suspended Running

ReadyTask 1

Task 2

Latency time for task 1

35

2.2.1.7.3 Mixed	preemptive	scheduling	

The mixed preemptive scheduling system mixes the preemptable and the non-

preemptable tasks. The scheduling policy depends on the preemptive attribute of

individual task. If the running task is preemptive, then the full preemptive

scheduling will be applied. If the running task is non preemptive, then the non

preemptive scheduling will be applied.

2.2.1.7.4 Conformance	classes	

Depending on the requirement of the application software for the system and the

abilities of the system (e.g. processor, memory), the operating system features can

be configured. These features used to describe the operating system are called

conformance classes (CC).

There are 4 conformance classes defined (OSEK 2005):

1. BCC1 (only basic tasks, limited to one activation request per task and one

task per priority, while all tasks have different priorities)

2. BCC2 (like BCC1, plus more than one task per priority possible and

multiple requesting of task activation allowed)

3. ECC1 (like BCC1, plus extended tasks)

4. ECC2 (like ECC1, plus more than one task per priority possible and

multiple requesting of task activation allowed for basic tasks)

The determination of conformance class is illustrated in Table 2-4.

36

Attribute BCC1 BCC2 ECC1 ECC2

Number of basic task activations 1 ≥1 1 ≥1

Number of tasks per priority 1 ≥1 1 ≥1

Basic tasks Yes Yes Yes Yes

Extended tasks No No Yes Yes

Table 2-4 conformance class determination

The conformance classes are upwardly compatible as shown in Figure 2-6

Figure 2-6 upward compatibility for conformance classes

Figure 2-6 shows any task developed for a BCCx level conformance class can be

used in an ECCx-level conformance class and any task developed for a xCC1

level conformance class can be used in an xCC2 level conformance class.

2.2.2 AUTOSAR		

2.2.2.1 Overview	of	AUTORSAR	

The purpose of AUTOSAR is to standardize the software architecture of ECUs. It

makes the software independent from the hardware. The horizontal layers means

the development can be processed simultaneously and thereby reduce the

development time and costs. The software will be more reusable for OEM

Basic Task only Basic Task and
Extended Task

37

(Original Equipment Manufacturer) as well as for suppliers. It enhances quality

and efficiency.

Figure 2-7 shows the comparison of AUTOSAR architecture and previous

architectures (Stefan Bunzel 2010).

Figure 2-7 comparison between AUTOSAR architecture and older architectures

AUTOSAR defines the software as different layers. There are 5 layers in the

AUTOSAR architecture as show in Figure 2-8(AUTOSAR GbR 2008a). The

application software makes up the components in the application layer.

Figure 2-8 AUTOSAR layers

38

The Microcontroller (MCU) Abstraction Layer is the lowest software layer. It

contains the internal drivers, which are software modules with direct access to the

MCU internal peripherals and memory mapped MCU external devices.

The ECU Abstraction Layer interfaces the drivers of the Microcontroller

Abstraction Layer. It also contains drivers for external devices. It offers an API

for access to peripherals and devices regardless of their location (MCU

internal/external) and their connection to MCU (port pins, type of interface).

The Service Layer provides basic services for each AUTOSAR application. An

AUTOSAR application can access these services through standardized

AUTOSAR interfaces(Robert Warschofsky 2011).

The ECU abstraction layer and the service layer, together are called Basic

Software layer (BS). So the AUTOSAR also can be described as a 4 layered

system as shown in Figure 2-9 (Simon Fuerst & BMW 2008).

The RTE Layer provides a running environment that makes the application

program independent from the ECU. When a AUTOSAR application program is

completed, it can be run on different ECUs in which AUTOSAR is installed

without change in code(AUTOSAR GbR 2010).

The Application Layer holds the application task as a set of components. The

components can communicate with each other through the AUTOSAR interface

as shown in Figure 2-9. The components also can be in the different ECUs. All

the layers that are lower than application layer will deal with the network,

hardware drivers and the system services etc. Therefore, the developer can only

focus on the application software development. AUTOSAR using standard

39

interface connects the application to the RTE layer. It makes the function

transferable and the code reusable.

Figure 2-9 AUTOSAR basic software

2.2.2.2 Software	component	

In the AUTOSAR system, the application is divided into functions. Each function

is encapsulated in the AUTOSAR software component. Because the application is

constructed by the components, it makes the component more reusable, and a

different application may use the same component/s. The components interacts

with each other through the Virtual Functional Bus (VFB) to implement the

application. In the VFB model, software components interact on interfaces

40

between ports. The port/interface model is called an AUTOSAR interface. The

view of VFB is illustrated in Figure 2-10 (Darren Buttle 2005).

Figure 2-10 VFB view

There are two types of AUTOSAR component: atomic software components and

Sensor/Actuator Software Component. Atomic software components implements

a piece of software that can be mapped to an AUTOSAR ECU. Hardware

sensor/actuator is coupled to sensor/actuator software component.

Components have two types of interface (ports): provided interfaces and required

interfaces. The provided interface gives the function or data through P-port. The

required interface needs the function or data through R-port. The component

41

interfaces can be illustrated in Figure 2-11 (Darren Buttle 2005).

Figure 2-11 AUTOSAR software component with interfaces

All communication in AUTOSAR modelled between ports are sender-receiver

(signal passing) and client-server (function calling) as show in Figure 2-11.

2.2.2.3 Sender‐receiver	

Sender-receiver communication: the data is transmitted by one component and

received by one or more components. A component can have multiple sender-

receiver interfaces. Each sender-receiver interface can have multiple data

elements. Each data element can be sent or received independently. The data can

be simple types (integer, float) or complex (array, record). Figure 2-12 shows the

sender side of a sender-receiver interface that includes three data simple elements.

Components can use “1:1”, “n:1” and “1:n” communication. (LiveDevices Ltd.

2004) , p30-31)

42

Figure 2-12 Sender-Receiver Interface Data Elements (Sender Side)

RTE supports multiple receive modes for the receiver software component to

handle the received data. The four possible receive node are: Implicit data read

access, Explicit data read access, wake up of wait point, and activation of

runnable entity. (AUTOSAR GbR 2010), p108-109)

 Implicit data read access: when the receiver’s runnable executes it shall

have access to a “copy” of the data that remains unchanged during the

execution of the runnable.

 Explicit data read access: the RTE generator creates a non-blocking API

(Application Programming Interface) call to enable a receiver to poll (and

read) data. This receive mode is an “explicit” mode since an explicit API

call is invoked by the receiver.

 Wake up of wait point: the RTE generator creates a blocking API call that

the receiver invokes to read data. Runnable awoken when the data

received.

 Activation of runnable entity: the receiving runnable entity is invoked

automatically by the RTE whenever new data is available.

43

These receive modes also can be applied on client-server communication, if

clients call server asynchronously.

2.2.2.4 Client‐server	

Client-server communication: a client component invokes function of the sever

component. A component can have multiple client-server interfaces. Each client

interface can have multiple operations. Each operation can be invoked separately.

Figure 2-13 shows the server side of a client-server interface that serves

elementary sorting algorithms to the client. Components support “1:1”, “n:1”

communication. Clients cannot have multiple servers. (LiveDevices Ltd. 2004),

p32-33)

Figure 2-13 Client-Server Interface Operation (Server Side)

The client-server interfaces can control how the server buffers client requests for

the operations. In the no buffering server, the server will reject and send back an

error notification to the requesting client while it is processing the early request.

In the server with buffering, the server will queue the client requests. The size of

the queue is predefined at the configure time. If the queue is full, the new request

will be discarded without any error reply to the client.

44

2.2.2.5 Internal	communication	

Sender-receiver and client-server communication through AUTOSAR ports are

the model for communication between software components. For an individual

component, it can contain one or more runnable entities (“runnables”). A runnable

and the task is the same thing. These runnables will collaborate to each other to

achieve the function of the component. A runnable is an entry point of the

function as well as the subroutine of the program. Runnables has two categories as

following (AUTOSAR GbR 2006a, p16-17):

1. Category 1: runnable entities do not have wait point (wait state) and have

to terminate in finite time. It can be divided to two part:

a. The runnable entity is only allowed to use implicit reading and

writing. A category 1a runnable entity cannot block and cannot use

explicit read/write.

b. The runnable entity may use explicit reading/writing including

blocking behavior.

Category 1 is very similar to the basic task model in OSEK OS.

2. Category 2: It always has at least one wait point or they invoke a server

and wait for the response to return. It is very similar to the extended task

model in OSEK OS.

Depending on the way to activate the runnable, a runnable can be either timing or

event triggered (e.g. real time clock alarm expires) or communication triggered

(e.g. a signal received). Figure 2-14 shows a component and runnables (Darren

Buttle 2005).

45

Figure 2-14 software component and runnables

2.2.2.6 Composition	

The AUTOSAR composition aggregates existing software components to form

another function. Therefore, a composition is also a kind of component. The

composition may be aggregated in even further compositions (AUTOSAR GbR

2006b, p27). Such recursive relationship is illustrated in Figure 2-15. The

compositions make code more reusable and enhance the mobility of the code.

46

Figure 2-15 the recursive relation of software components and compositions

The compositions offer logical software architecture. Because the VFB maps the

software component to the hardware, the composition can be designed

independently. During the development, the target hardware and network

topology etc. do not need to be referenced. This is the big advantage compared to

ECU-driven development. Without concerning the hardware, the logical

functionalities can be constructed. The functions can be integrated together to

perform a new function. The logical functions integration also can be done at very

early stage.

2.3 ECU	networks	

The previous section describes a single ECU system. However, for the automotive

control system, multiple ECUs are used. They collaborate with each other to

achieve a common goal. There are some different protocols for the ECU network,

e.g. CAN, FlexRay, LIN,etc. Nowadays, the most popular protocol used is CAN

SwComponentType SwComponentPrototype

CompositionSwComponentType

+component 1..*

*《isOfType》

+type

1

47

(Controller Area Network) based network (Nicolas Navet and Françoise Simonot-

Lion 2009, p X). The main difference between CAN and FlexRay is that CAN is

an event-triggered network and FlexRay is a time-triggered network.

The big difficulty of debugging distributed systems is that there is no global time

in the distributed system. However, in the FlexRay network system, there is a

distributed clock synchronisation mechanism. Each node synchronizes itself to the

global time of the cluster by measuring the timing of transmitted sync frames sent

by sync nodes (Richard Zurawski 2009, p167-169). There is a global clock in the

FlexRay networked system. Each node is synchronized by the global clock;

thereby at any global time point, the global state can be constructed by the local

state of each node at an agreed global time. The global states can be ordered by

the global time. Even with the global time, the distributed system can be

debugged as the single CPU system. The break point can be set, the whole system

will stop at the same time (global time). Therefore, it is much easier to debug the

distributed automotive system with FlexRay.

For a CAN network based distributed system, there is no mechanism to

synchronize all nodes on the network. The transmission of the message depends

on the priority of the message. It is very difficult to debug a CAN based

distributed system. This research will focus on CAN networked automotive

systems. This section introduces the CAN protocol.

2.3.1 CAN	network	features	

CAN is a bus structure network. Each ECU on the CAN bus has the same priority

to send messages, so it is a multi-master network. A CAN message has a unique

identifier that specifies its content and transmission priority. The messages are

48

broadcast and multicast on the CAN bus. The CSMA/CA (Carrier Sense Multiple

Access/Collision Avoidance) principle is used by CAN bus, the CAN network

offers Non-destructive bus arbitration scheme. CAN bus has comprehensive error

detection and confinement (Brendan Jackman 2004a, p1).

2.3.2 CAN	bus	structure	

The CAN network structure is illustrated in Figure 2-16. Each ECU node connects

to a two wire network. The two wires are twisted together to reduce the

electromagnetic interference. At two ends of the bus are 120 Ω resistors to

remove signal reflections. Since the CAN bus is a digital bus, it is always at

logical 0 or logical 1. Zero is known as the dominant level, one is known as the

recessive level.

Figure 2-16 CAN network structure

2.3.3 Dominant	&	recessive	bits	

If more than one node on the CAN bus which to transmit a message at the same

time, the message with the dominant (zero) bit will automatically overwrite the

message with the recessive (one) bit. When the CAN bus is idle, it is at a recessive

49

level. Dominant and recessive both play a role in prioritizing messages during bus

arbitration.

2.3.4 CAN	Frames	

CAN networks contain following types of frames (BOSCH 1991):

 A Data Frame carries data from a transmitter to the receivers.

 A Remote Frame is transmitted by a bus unit to request the transmission

of the data frame with the same identifier.

 An Error Frame is transmitted by any unit on detecting a bus error.

 An Overload Frame is used to provide for an extra delay between the

preceding and the succeeding data or remote frames.

There are two different types of data frame: standard and extended data frame.

The only difference between them is the length of their arbitration field, which

will be described in this section. Because the data frame and remote frame are

very similar, they will be described in the same section. The overload frame is

rarely used nowadays.

50

2.3.4.1 Data	frame	and	remote	frame	

A CAN message data frame is illustrated in Figure 2-17.

Figure 2-17 CAN message data frame (Brendan Jackman 2004b)

Start of Frame: it contains single dominant bit, telling the CAN bus a message is

going to be transmitted.

 Arbitration Field: the difference between the standard and extended data frame

is the length of their arbitration field. For the standard data frame, its arbitration

field can be separated into two parts: message identifier (Id) (11 bits) and remote

transmit request (RTR) (1 bit), and is illustrated in Figure 2-18. If the RTR is

dominant, then the message is a data message, otherwise the message is remote

message. The arbitration field of the extended data frame is illustrated in Figure

2-19. The message ID is separated by two fixed recessive bits which are the

Substitute Remote Request bit (SRR) and IDentifier Extension bit (IDE). The

most significant 11 bits of the message ID are transmitted first. The other 18 bits

of the message ID follow the IDE bit. The last bit of the arbitration field is the

RTR bit.

51

Figure 2-18 standard data frame

Figure 2-19 Extended data frame

Control field: it defines the type (standard or extended) and the length of the

transmitted message. If the message is standard, then the control field has the IDE

bit, the reserved bit r0, and the Data Length Code (DLC) (4 bits) as shown in

Figure 2-18. If the message is extended, then the control field has two reserved

bits (r1 and r0) and DLC, as shown in Figure 2-19.

Data Field: it contains the data that needs be transferred. It can contain from 0 to

8 bytes of data.

CRC (Cyclical Redundancy Check) Field: it holds a 15-bit number that is

calculated based on the data of start of frame, arbitration field, control field, and

data field. After this 15-bit number, a recessive bit marks the end of the CRC field.

Acknowledgement (ACK) field: it contains two bits (ACK slot and ACK

delimiter). It checks if any node received the message. If a node received the

message and the CRC correctly, the node overwrites the ACK slot that the

transmitter sets recessive with a dominant bit. If the transmitting node does not

52

see the ACK slot marked as dominant, then it will transmit the message again.

The ACK delimiter is always recessive.

Remote Frame: it is very similar to data frame, the only different is their RTR bit

of the arbitration field. The RTR bit of remote frame is recessive.

End of Frame Flag: it consists of 7 recessive bits that marks the end of the CAN

message.

2.3.4.2 Error	frame	

An error frame is illustrated in Figure 2-20. The Error Flag consists of either 6

dominant bits (active error flag) or 6 recessive bits (passive error flag). The Error

Delimiter consists of 8 recessive bits. It is used to signal the presence of errors on

the bus.

Figure 2-20 error frame

53

2.3.4.3 Overload	frame	

An overload frame consists of two bit fields, overload flag and overload delimiter.

Its structure is same to error frame. An overload frame is illustrated in Figure 2-21.

The overload flag includes 6 dominant bits. The overload delimiter consists of 8

recessive bits. It is used to delay the message transmission.

Figure 2-21 overload frame

2.3.5 CAN	arbitration	

The CAN arbitration happens when more than one node sends a message at the

same time. The transmitting node will compare its arbitration field of the message

to other nodes bit by bit. The lowest CAN ID wins the arbitration. If the CAN ID

is same, the standard message wins the extended message and the data message

wins the remote message (Richard Zurawski 2009, p137). However, this typically

does not happen.

2.3.6 Error	handling		

There are two levels of error for the CAN bus: message level error and node level

error.

Overload Flag Overload Delimiter

54

Message level error is caused by the inconsistent message formatting. e.g. fail of

CRC checking, the format of the message layout is corrupted. If the message level

error happens, an error frame message is transmitted.

Depending on the error counter’s level, the node can be in one of the following

states: error active, error passive, and bus off. Each node has a Transmit Error

Counter (TEC) and a Receive Error Counter (REC) that determines the node state.

TEC increases when a transmitting node detects an error and decreases when a

successful transmission occurs. REC increases when a receiving node detects an

error and decreases for every successful message received. The node states

transition is illustrated in Figure 2-22. When the node in the error active state

means the node works in the normal condition. Either REC is greater than 127 or

TEC is greater than 127, the node transits to error passive state. In the error

passive state, the node can transmit and receive messages as well as the error

active state, but the node must wait longer before transmitting another message.

Only passive error frames can be transmitted. If the REC and TEC are reduced

smaller than 128, the node will move back to error active mode. If the TEC is

greater than 255, the node transits to the bus off state, which means the node is

disconnected to the network. Only to reset the node can make the node transits to

the error active state.

55

Figure 2-22 a CAN node status

2.4 Inter‐task	communication	

For the portability of the ECU application software, OSEK/VDX and AUTOSAR

offers the communication layer. The application software can communicate to

each other through the common interface. The communication includes internal

and external task communication.

2.4.1 OSEK	COM	

The OSEK/VDX COM standard supports both intra-ECU task communication

and inter-ECU task communication. The standard describes the method to

exchange data between different tasks on the same ECU and the tasks on the

different ECUs. The internal/external messages are sent by the application but

received by the local application and by the application running on the different

ECUs through a network. The network of the ECUs connection can be CAN,

FlexRay, etc.. (Joseph Lemieux 2001, p125-126).

The OSEK/VDX COM is 5 layer communication model and the ISO/OSI

(International Standard Organisation/Open system Interconnections) is 7 layer

model. They are shown in Figure 2-23. The application tasks are running on the

error activ e

error passiv e

bus off

[REC>127 or TEC >127]

[REC<128 and TEC<128]

[TEC>255]

[reset]

56

application level. The CAN protocol defines the data link layer and the part of the

physical layer in the OSI model. The OSEK/VDX COM defines the Interaction

layer; it merely defines minimum requirements for the Network Layer to support

all features of the Interaction Layer (IL) (OSEK/VDX 2004, p6).

Figure 2-23 OSEK/VDX COM model vs. ISO/OSI model

The interaction layer is shown in Figure 2-24 (OSEK/VDX 2004, p8). The IL

defines message (sending or receiving) as message objects. It makes the internal

communication message immediately available to the receiver. The external

messages (or message) are packed into assigned Interaction Layer Protocol Data

Unit (I-PDU). They are passed to underlying layer. The receiving message s pass

through underlying layer to the I-PDUs (it contains one or more messages). One I-

PDU stores one message, the message is not split across different I-PDUs. Within

an I-PDU messages are bit-aligned. The size of a message is specified in bits.

57

The bit order of a byte in CPU may differ from the order of other CPUs and the

order of the byte of the network. The IL makes the bit order same as the order of

the local machine. The external message object format is as same as the format of

the internal message object. The message object is delivered to the application

task by the interface IL offers.

Figure 2-24 message transmission and reception in OSEK/VDX

2.4.2 AUTOSAR	COM	

AUTOSAR COM layer is the layer between RTE and PDU router. The PDU

Router module provides services for routing of I-PDUs between the following

modules:(AUTOSAR GbR 2006c, p8)

 communication interface modules (e.g. LINIF, CANIF, and FlexRayIf)

 Transport Protocol modules (e.g. CAN TP, FlexRay TP)

58

 AUTOSAR Diagnostic Communication Manager (DCM) and Transport

Protocol modules (e.g. CAN TP, FlexRay TP)

 AUTOSAR COM and communication interface modules (e.g. LINIF,

CANIF, or FlexRayIf) or I-PDU Multiplexer

 PDU Multiplexer and communication interface modules (e.g. LINIF,

CANIF, or FlexRayIf)

Figure 2-25 shows the AUTOSAR communication structure.

Figure 2-25 Communication Structure

AUTOSAR COM is derived from OSEK/VDX COM (AUTOSAR GbR 2008b,

p9). However, AUTOSAR COM provides signal gateway functionality. It

forwards signals and signal groups in the one-many manner. Signal and signal

59

groups are assigned unique static names. The name indicates the destination of the

signal. This indication information configure in a table. The signal gateway use

this table to find the destination of the signal.

2.5 Event‐triggered	system	vs	time‐triggered	system	

In the automotive systems, the activation of ECU functions can either be event-

triggered (asynchronous) or time-triggered (synchronous) as well as ECU

networks (CAN and FLEXRAY). They all have their own advantages and

disadvantages. This section discusses these two systems.

2.5.1 Event‐triggered	system	

For the ECU functions, the event-triggered system activates the function by an

event e.g. message received, timer expires, and other function call etc.. The

events is possible to happen any time.

CAN is an event-triggered ECU communication network. Event-triggered means

that messages are transmitted to signal the occurrence of significant events (e.g., a

door has been closed).

In an event-triggered system, the scarce resources (CPU, memory, and network)

of real-time systems can be efficiently used. The resources are only used when the

event happen. The event-triggered system is easy to be designed, the application

runs when the event happens. The new function or new node can be easily

integrated to the system e.g. a new ECU can be easily plugged into a CAN

network.

60

Due to the arbitrary nature of the event-triggered system, it is difficult to ensure

deadlines are met over load conditions (many events occurring together). For the

event-triggered distributed system, such arbitrary and the unpredictable features

make the debug and test very difficult. In addition are safety consideration, for

example, if the event is missed it could have a safety impact.

2.5.2 Time‐triggered	system	

In the time-triggered system, there is master scheduler which defines the time

cycle of the execution. For each execution cycle the scheduler assigns the

processor to the tasks or transmits message in the configured time interval,

thereby the execution of the task or the message transmission is guaranteed (this

feature is ideal for the safety systems) and the resources required are easier

estimate and schedule. Another big advantage of the time-triggered system is that

it is easy to construct distributed system global states due to the synchronized

global clock as discussed at the beginning of section 2.3. It makes the testing and

debugging the distributed system easier.

Because all the network transmission or system processing scheduled ahead, it

makes the design process very intensive. It causes the future extension of the

system to be more difficult. If not enough time intervals are reserved for the future

design, the whole system may have to be redesigned.

2.6 ECU	calibration,	measurement	and	diagnostics	

To debug the distributed system, it is necessary to be able to read the local node

variables. For the automotive system, there are some ways to read the memory.

This section will describe the protocol to calibrate and measure the ECU variables.

61

The CAN Calibration Protocol (CCP) is a CAN network based application

protocol for calibration and measurement data acquisition of ECUs. The protocol

configures the hardware as master/slave structure as shown in Figure 2-26. The

master device sends the command to the slave device; slave device gives the

response back to master device. Therefore, CCP consists of two message objects:

1. Command Receive Object (CRO) is the message (command) that a master

device sends to slave device.

2. Data Transmission Object (DTO) is the message (response) that a slave

device replies to the master device.

Figure 2-26 CCP master/slave device configuration

Since the CCP protocol is based on the CAN protocol, these two objects are

defined in the data field of a CAN data frame. The structure of CRO is illustrated

in Figure 2-27. CMD is Command Code which is a byte. It is identifies the

command, e.g. 0x01 is CONNECT, the master device sends a connection

Master
Device

Slave
Device 3

Slave
Device 2

Slave
Device 1

CAN Bus

Logical CCP

62

command to the slave. CTR is Command Counter, which counts the command

message.

Figure 2-27 CRO structure

DTO includes three types of message:

 Command Return Message CRM, if the DTO is sent as an answer to a

CRO from the master device. CRM is shown in Figure 2-28. PID is Packet

ID, which is used to distinguish between different types of DTOs. The PID

255 is CRM. ERR is the error code. CTR is Command counter as received

in CRO with the last command.

 Event Message, if the DTO reports internal slave status changes in order

to invoke error recovery or other services. The structure of Event Message

is same to CRM, except its PID is 254.

 Data Acquisition Message (DAQ), if the DTO contains measurement

data. It contains the data in the memory of the ECU. The structure of a

Data Acquisition Message is illustrated in Figure 2-29. It only has PID

field, the rest are data area. The range of the PID is from 0 to 253.

CMD CTR

Byte 0 1 2 3 4 5 6 7

 Parameter Area

63

Figure 2-28 CRM structure

Figure 2-29 Data Acquisition Message structure

The DAQ contains data corresponding to an Object Description Table (ODT) that

maps the memory address of the ECU. Figure 2-30 illustrates an ODT. Each

address points the value stored in the memory of the ECU. ODT is assigned a

unique Packet Id PID to identify the corresponding DAQ (DAQ-DTO). The

contents of each element defined in a ODT are transferred into a DAQ-DTO to be

sent to the master device. Multiple ODTs form a DAQ list debugging

(H.Kleinknecht 1999;Rainer Zaiser 2011).

Figure 2-30 Object Descriptor Table

PID ERR

Byte 0 1 2 3 4 5 6 7

CTR Data Area

PID

Byte 0 1 2 3 4 5 6 7

 Data Area

64

2.7 Conclusion	

This chapter has introduced automotive application development. The application

task running on the ECU is managed by the automotive standard OS. The most

popular one is OSEK/VDX OS and AUTOSAR OS is becoming more widely

used. The application task needs to interact with other tasks. These tasks can

either run on the same processor (internal communication) or run on a different

processor (external communication). For the external communication tasks, the

message can be sent through different networks, e.g. CAN, FlexRay, etc. but

FlexRay networks has a global time, all nodes are synchronized by this global

time. However, for the predominant CAN automotive network system, there is no

such mechanism to synchronize all nodes. That’s also the difficulty for debugging

the distributed automotive system. Therefore, the research only focuses on the

CAN based network. For the portability and compatibilities of the tasks, the

communication layer services were developed by the OSEK/VDX and

AUTOSAR. Finally, the CCP protocol which measures and calibrates ECU was

introduced. The measurement and calibration is essential successful integration

and deployment of ECUs.

65

References

AUTOSAR GbR. requirements of RTE. 7-12-2006a.

AUTOSAR GbR. software component template. 6-26-2006b.

AUTOSAR GbR. Specification of PDU Router. 6-26-2006c.

AUTOSAR GbR. Layered Software Architecture. 2-14-2008a.

AUTOSAR GbR. Specification of Communication. 2-13-2008b.

AUTOSAR GbR. Specification of Operating System. 6-23-2008c.

AUTOSAR GbR. Specification of RTE. 9-22-2010.

BOSCH. CAN Specification. 1991. Robert Bosch GmbH, Postfach 30 02 40, D-

70442 Stuttgart.

Brendan Jackman. Basic Concepts. An overview of the distinguishing features of

the CAN network. 2004a. Waterford Institute of Technology, Ireland.

Brendan Jackman. CAN Frame Formats. 2004b. Waterford Institute of

Technology, Ireland.

Darren Buttle. What is an RTE. Introduction to AUTOSAR for RTE users. 12-5-

2005.

H.Kleinknecht. CAN Calibration Protocol Version 2.1. 2-18-1999.

66

Joseph Lemieux. Programming in the OSEK/VDX Environment. Berney

Williams, Robert Ward, Rita Sooby, and Michelle O'Neal. 2001. CMP Books.

LiveDevices Ltd. RTA-RTE User Guide. 2004.

Nicolas Navet & Françoise Simonot-Lion. Automotive Embedded Systems

Handbook. 2009. Taylor & Francis Group, LLC.

OSEK. OSEK/VDX Operating System Specification 2.2.3. 2-17-2005.

OSEK/VDX. OSEK/VDX Communication. 7-20-2004.

Rainer Zaiser. CCP. A CAN Protocol for Calibration and Measurement Data

Acquisition. 2011. Vector Informatik GmbH Friolzheimer Strasse 6 70499

Stuttgart,Germany.

Richard Zurawski. networked embedded systems. 2009. Taylor & Francis Group,

LLC.

Robert Warschofsky. AUTOSAR Software Architecture. 2011. Hasso-Plattner-

Institute fuer Softwaresystemtechnik.

Simon Fuerst & BMW AUTOSAR An open standardized software architecture

for the automotive industry, In 1st AUTOSAR Open Conference & 8th AUTOSAR

Premium Member Conference.

Stefan Bunzel. Overview on AUTOSAR Cooperation. 5-13-2010. Tokyo, Japan,

2nd AUTOSAR Open Conference.

67

Chapter	3 Automotive	Software	Testing	

3.1 Introduction	

Software testing is a very important part of the software development process. It

will cross entire development life cycle. If not enough testing has been done

before the software is delivered, it can cause many problems e.g. damage the

reputation of the company, bringing the danger to the customers and so on. A lot

of money is lost every year with vehicle recalls. However it is impossible to find

all the bugs during the development life cycle. For example Microsoft will update

windows after it has been published. “The goal of a software tester is to find bugs,

find them as early as possible, and make sure they get fixed.” (Patton 2005)

In the automotive industry, software testing is very important issue, because

nowadays all cars are controlled by the software, even some safety features.

Before the software can be used in a production; it must have been passed a huge

number of testing, even though it cannot be guaranteed that all possible test cases

can be tested.

This chapter combines the general software test and automotive software test

together, to describe the steps for automotive software testing, what kind of test

should apply to each development phase, and the industry tools are used for the

ECU integration.

3.2 V	model	

The V model was developed in the 1980s (National ITS Architecture Team 2007),

as the German industry standard. It is the most predominant development cycle in

the automotive industry (Schaeuffele and Zurawka 2005, p24).

68

The V model was developed from waterfall software development methods

(Schaeuffele & Zurawka 2005), and they have common disadvantages and

advantages; they are good for the project that is defined well, the requirements

are fully understood. Because of its sequential nature, it is not flexible; it

supposed to give a complete system at the end, but if the requirements change

during the development, it is difficult to go back (A.Al-Ashaab et al.

2009;Pressman 2001).

Figure 3-1 Overview of the core process for the development of electronic

systems and software

Figure 3-1 (Schaeuffele & Zurawka 2005, p24) is an overview of the V model

 Analysis of user requirements and specification of logical system
architecture

 Developers have meeting with users, to find the requirements from the

users. The user requirements are analysed. The uses case is defined. The

system to be developed depends on these use cases, also the acceptance

69

tests are defined. The requirements are linked and the technical system

architecture is designed. These can be expressed and modelled by using

diagrams (block diagram, UML etc.).

Logical system requirements are formulated based on two different

perspectives: functional and non-functional requirements.

Define the logical system architecture based on the requirements that have

been found. Logical system architecture is the model of the function

network, function interface and the communication among the functions. It

does not involve any technical implementation.

Decomposition of system function is used to determine the system

components, interface and functions. Function network describes the

relationship among the functions (e.g. dependency). The communication

networks describe how the functions communicate with each other (e.g.

CAN, LIN and FlexRay). The functions are grouped into components.

 Analysis of the logical system architecture and specification of
technical system architecture

The specification of the technical system is based on the logical system

architecture. To decide use what hardware (ECU) implement which

function or functions by considering constrains of ECU. Because some

ECU may not be suitable for the function, the ECU is better to implement

the function than the others or the price of ECUs ect.. The software

requirements are defined.

70

 Analysis of software requirements and specification of software
architecture

Define software boundaries and interface. The software boundaries which

items are part of the software system, and which items belong to the

periphery or environment. The software interface defines includes two

types interface, on board and off board. On board interface includes set-

point generators, sensors and actuators. Off board interface include

downloading and debugging tool, flash programming tool, diagnostic tool

and network development tool .

 Specification of software components

This step involves modelling software components, the implementation

detail is ignored. There are three types of model to be specified. They are

the data model, the behavioural model and the real-time model. The data

model defines the data to be processed by the software. The behavioural

model specifies the dynamic structure of software components. It includes

specification of data flow and control flow. Specification of data flow is a

processing flow of the data (input to output) among the software

components. It describes the paths of data transfer between software

components. Specification of control flow describes the control of the

instructions’ execution. There are four control structures: sequence,

branching, repetition (iteration) and call. The real-time model defines the

real-time requirements of the task that assign a process that implements

software component, such as deadlines for event handling.

 Design, implementation, and testing of software components

The design phase must define all specific implementation for the data,

behaviour and real-time model of the software components. Consideration

71

of the requested non-functional product properties (hardware cost,

reliability etc..). Design and implementation of the three models is based

on the specification of the software components. Every implementation is

tested by a corresponding test method during the development.

 Integration of software components and software integration tests

After all software components are completed and have passed the

corresponding test e.g. unit test, they are integrated into a software system

and integration testing can start.

 Integration of system components and system integration tests

This step installs all programs into the ECUs. All of these ECUs are

connected to the other electronic devices (setpoint generators, sensors, and

actuators).

 Calibration

This involves setting data point to give optimum system performance.

 System and acceptance test

This step checks that if the system satisfies the user requirements.

3.2.1 Multiple	V	models	

As in other transportation industries (train and aerospace), the automotive system

is a big project. It can't be built directly after it is designed. The model of the

system is built on a PC and is a simulation of the system. If the model is correct,

then the code is generated and embedded in a prototype. The hardware of the

prototype will be gradually replaced by the real hardware. Eventually the final

product will be formed in this way. The reason for building the model and

prototype is because changing a prototype is easier and cheaper than changing the

final product. Also at the beginning the user requirements are very hard to be fully

72

understood. The model can help the developers to better understand these

requirements. It also can be shown to the user to check if the model satisfies their

requirements. The validation of the system happens on the early stage and can

help reduce the risk.

In the multiple V models, each V development cycle develop the same required

functionality. But they are developed in the different physical versions of the

same system. This means the same functionality can be tested for the model as

well as for the prototype and the final product. The difference is the executing

environment.

Figure 3-2 Multiple V development life cycle

In a single V model method, the testing starts after all implementation is done. It

is not on adequate approach in today’s iterative software processes. It may work

for some small, simple and well understood project, however nowadays software

gets bigger and more complex each year.

73

Automotive software development involves both software and hardware, often

developed independently and in parallel. It is big risk to find that the software and

hardware don't work together at a very late stage of the development. The iterative

development method allows frequent communication, integration and testing

between them. The system is built little by little. After one small part of the

system functionality is built (hardware and software) and it is successfully

integrated and tested, the next small part of functionality is built and so on.

To develop some really large system a decomposition of the system is necessary.

The works are assigned to groups. Each group develops part of the system in

parallel. The multiple V process is applied to every group. The integration of the

different components happened many times in the development process. The early

stage integration is based on different component models or lab hardware. In the

end the final product is integrated together when all the components have been

fully developed.

3.2.2 Nested	V	model	

The multiple V process does not address the decomposition of complex systems

which are very common in the automotive industry. A high level process is

needed to decompose the system. Also at the end, a process is required to

recompose the system. As a matter of fact, a single V process can be applied to

achieve such process requirements. This is shown in Figure 3-3. The left side of

the V process is to decompose the complex system into the components. The

middle of V process is the development of these components in parallel. On the

right side of the V is the integration of all the components.

74

Figure 3-3 parallel development phases in V model

After the system is decomposed, since each component is not as complex as

before, a multiple V model can be applied to the component development. The

whole development process is like many multiple Vs nested in a V model as

Figure 3-4 illustrates.

Figure 3-4 system decomposition and development using nested and multiple V models

75

By using a nested V model, everything related to system testing can be addressed

at the right place and level as illustrated in Figure 3-5.

Figure 3-5 Higher-level test issues in the nested multiple V model

3.3 Test	planning	

A modern car contains a lot of hardware components and the associated software

control systems are extremely large. During the development many tests should be

done in the different stages; some of them test performance, others test component

integration, others test the user-friendlessness etc.. Lots of complex situation

appear, so plan are needed to control the testing process.

For complex systems, making a master plan can give an overview of the test

control process. There are two fundamental aspects to the master test plan: test

type and test level.

A system can be tested from different points of view; functionality, user

friendlessness, performance, etc. These attributes are essential for software quality

assurance. Some of the quality attributes are related so we can define them in the

76

test type. “A test type is a group of activities with the aim of evaluating a system

on a set of related quality attributes.”(Broekman and Notenboom 2003, p33). Test

types state what is going to be tested (and what is not). It gives a boundary for the

tester to test.

Table 3-1 lists some common test types (Broekman & Notenboom 2003, p34).

Test type

Description

Quality
characteristics

included
Functionality

Testing functional behaviour (includes dealing with
input errors)

Functionality

Interfaces Testing interaction with other systems Connectivity
Load and stress

Allowing large quantities of events and numbers to
be processed

Continuity,
performance

Support
(manual)

Providing the expected support in the system’s
intended environment (such as matching with the
user manual procedures)

Suitability

Production

Test production procedures

Operability,
continuity

Recovery Testing recovery and restart facilities Recoverability
Regression

Testing whether all components function correctly
after the system has been changed

All

Security Testing security Security
Standards

Testing compliance to standards

Security, user-
friendliness

Resources

Measuring the required amount of resources
(memory, data communication, power, …)

Efficiency

Table 3-1 Common Test Types

“A test level is a group of activities that is organized and managed as an entity.”

(Broekman & Notenboom 2003, p34). Test levels states who is going to perform

the testing and when. The test level can be defined as high-level tests and low-

level tests. The high-level tests are tests on the integrated system or subsystem,

they are more black-box oriented. The low-level tests are tests on isolated

components, they are more white-box oriented. In the nested V model

development process, the low-level test is at left side of V, the high-level test is at

right side of V. Table 3-2 list test level (Broekman & Notenboom 2003, p35).

77

Test level Level Environment Purpose

Hardware unit
test

Low

Laboratory

Testing the behaviour of hardware
component in isolation

Hardware
integration test

Low

Laboratory

Testing hardware connections and
protocols

Model in the loop

High/low Simulation
models

Proof of concept; testing control
laws; design optimization

Software unit
test, host/target
test

Low

Laboratory,
host + target
processor

Testing the behaviour of software
components in isolation

Software
integration test

Low

Laboratory,
host + target
processor

Testing interaction between software
components

Hardware/softwa
re integration test

High

Laboratory,
host + target
processor

Testing interaction between
hardware and software components

System test High Simulated
real life

Testing that the system works as
specified

Acceptance test

High

Simulated
real life

Testing that the system fulfils its
purpose for the user/customer

Field test

High

Real life

Testing that the system keeps
working under real life conditions.

Table 3-2 Test levels

At the begging of the project, a master plan (Figure 3-6) needs to be drawn up

which defines the tasks, responsibilities, and boundaries for each test level. A

master test plan describes how to combine the test type and test level together; test

type is what has to be tested and test level is who is going to perform the test.

Three areas are of main interest for the master test plan:

 Test strategic choices – what to test and how thorough;

 Allocation of scarce resources;

 Communication between the disciplines involved.

78

Figure 3-6 Master test plan

After the master test plan has been made, the detailed plan of each test level is

based on the master test plan. A typical test plan should include the following:

1. application(s)/system(s) to be tested

2. testing objectives and their rationale (risk and requirements)

3. scope and limitations of the test plan

4. sources of business expertise for test planning and execution

5. source of development expertise for test planning and execution

6. sources of test data

7. test environments and their management

8. testing strategy

9. <Repeated> testing details for each development phase

(a) development phase

(b) how can you tell when you are ready to start testing?

(c) how can you tell when you are finished testing?

(d) <Draft> test cases list (ID, title, and brief description)

(e) <Draft> test case writing schedule

(f)<Draft> test case execution schedule

(g) <Draft> test case execution results analysis and reporting schedule

10. <Draft> overall testing schedule

<Repeated> means that you should expect to repeat this item and all sub-items for as many times
as there are development phases.

<Draft> means that at the time the test plan is first written, there is insufficient information from
the development activities to fully document the <Draft> items.

79

3.4 Verification	and	Validation	

There are two types of fault in software products. They are specification faults and

implementation faults. The specification faults are predominant in most projects

from the research result (Michael Schneider et al. 1992), so the V model

differentiates between verification and validation.

Verification checks if the software satisfies the specification (Patton 2005). Was

the software built right?

Validation checks if the software satisfies the user requirements (Patton 2005).

Was the right software built?

The V model separated four test steps:

 Component test versus component specification.

 Integration test versus specification of the technical system architecture.

 System test versus specification of the logical system architecture.

 Acceptance test versus user requirements.

Figure 3-7 (Tian 2005, p31) shows the verification and validation activities

associated with V model

80

Figure 3-7 Verification and validation activities associated with the V model (Tian 2005,
p204)

3.4.1 Verification	

There are two methods for the software verification: static and dynamic method.

3.4.1.1 Static	testing	

Static testing is “a process of evaluating a system or component without executing

the test object.” (Broekman & Notenboom 2003, p331). It examines the

documentation that has been produced during the development. Static test is the

least expensive testing, giving a big opportunity to reduce defects that have been

written in the documentation.

There are three static testing techniques to review documents' content.

 Desk checking

 Inspections

 Walk troughs

81

Desk checking is done by the author. He (she) check his (her) own documents.

“Desk checking involves first running a spellchecker, grammar checker, syntax

checker, or whatever tools are available to clean up the cosmetic appearance of

the document. Then, the author slowly reviews the document trying to look for

inconsistencies and incompleteness. Problems detected in the contents should be

corrected directly by the author with the possible advice of the project manager

and other experts on the project. Once all corrections are made, the cosmetic

testing is rerun to catch and correct all spelling, grammar, and punctuation errors

introduced by the content corrections.” (Everett and McLeod 2007,p 97).

Inspections require more people to check the documents. The inspectors are more

senior members of the team. The document is read by the inspectors who discover

the content problems. When they read the document, it is better to avoid the

author, because human tendency is for the author may to influence the reviewer.

During the reviewing the inspector should record any problems that they see.

After they can have the discussion with project manager or someone who is senior

in the project to correct the problems.

“The walk-through is a scheduled meeting with a facilitator, the document author,

and an audience of senior technical staff and possibly business staff. The author

must scrub the document for cosmetic errors and send the document to all

participants in advance of the meeting. The participants read the document and

formulate questions about the document contents based on their own knowledge

of the new system or application. At the appointed time, the author presents his or

her document to the walk-through meeting. The facilitator becomes the

clearinghouse for questions by the audience and answers by the author. The

facilitator also ensures that the questions are posed in an objective, nonthreatening

82

way. The walk-through facilitator documents all suspected content problems and

author responses for later resolution by the project manager in a manner similar to

the inspection resolutions” (Everett & McLeod 2007, p98).

All the techniques previously introduced are the review techniques. But code

review only can find spelling or syntax errors; it is not very effective for logic

errors. So the static code analysis is another important part in the static test. There

are two main components: building a model and analysis algorithm.

3.4.1.2 Dynamic	test	

Dynamic test runs the program as a customer would. There are two test levels:

unit test and integration test, and two ways for testers to approach the test: black

box testing and white box testing.

3.4.1.2.1 Black	box	test	

In black box testing the tester does not need to know how the software works, it

checks if the software does what it is supposed to do. The input and the output is

the main thing to test. The process is ignored. For example, to test a vending

machine, the tester puts the coin to the machine, select an item and see if the

machine gives the right item. The tester does not care how the machine performs

the task.

3.4.1.2.2 White	box	test			

To do white box testing, the tester must have access to the program's code and be

able to observe the execution trace. The whole execution of the program is

monitored. For example, the vending machine will be disassembled; all operations

will be monitored from the time the coin has been put in to when the item gets out.

83

3.4.1.2.3 Component	(Unit)	test	

Figure 3-8 V model (Component test)

“The tests that are conducted on the module software are called unit tests or

module tests.” (Everett & McLeod 2007, p53) The unit test normally happens at

the function level. A unit test should apply to each function as they are developed.

It makes sure the individual function is working before integrating them together.

Procedure to implement unit testing (Dasso and Funes 2006, p76):

1. Prepare test environment.

2. Define input domain based on requirements and use cases.

3. Define, for every input, expected output based on requirements and use
cases.

4. Implement components to be tested.

5. Group unit tests in collections of components.

6. Implement unit tests.

84

7. Execute unit testing.

8. Fix component tested, if there is an error.

9. Execute step 8 while any error remains.

Unit testing consists basically of (Dasso & Funes 2006, p76):

1. Variable initialisation, including database population.

2. Business rules or input functions are applied.

3. Destruction of variables, including the cleaning up of data input to data
base.

4. Comparison between results of applied function with expected results,
failing in cases where they differ.

3.4.1.2.4 Hardware	in	the	loop	(HIL)	

HIL is a test level where real hardware is used and tested in a simulated

environment. (Broekman & Notenboom 2003, p329) In the real world, the ECUs

connect to actuators or sensors. But during the development, it is not very

convenient to establish these connections all the time. Some companies produce

simulated actuators and sensors to help testing the real ECUs. Vector is one of the

companies. One of their products called VT system that is connected to the ECU

instead of the actuators or sensors. Figure 3-9 (Vector Informatik GmbH 2010a)

shows a block diagram that Vector VT system tests an ECU.

85

Figure 3-9 Vector VT system

Benefits of HIL Simulation

 Systematic and Reproducible

HIL simulation is the method used to test the functions, system integration,

and communication of electronic control units (ECUs). The ECUs can be

applied in vehicle, aerospace, machine tools etc. All the parts (sensor,

actuator, etc.) that ECUs connect to are simulated in HIL. HIL is very

systematic and safe, even when critical thresholds are exceeded. The main

purpose of HIL is to detect errors (e.g. unconnected sensor etc.). If the

error has been detected, then this error can be produced again.

 Improving ECU Software Quality

HIL simulation helps to improve quality at an early development stage. A

major Japanese automobile manufacturer states that HIL simulation finds

90% of ECU errors, and almost all the errors can be found before the

calibration phase (dSPACE 2009, p102). This shortens the time to market

and avoids recall campaigns that damage a company’s image. The

investments made in HIL systems and in developing tests have usually

paid off after only a few months.

86

The following example is about HIL for a Three-Wheeler Scooter (dSPACE

GmbH 2007).

“Piaggio developed the three-wheeler scooter MP3 with two front wheels. The

innovative, electronically controlled locking system keeps the vehicle upright

without using the usual central stand. The complete system of networked

electronic control units (ECU) was tested by ELASIS using a dSPACE

hardware-in-the-loop (HIL) simulator.

Figure 3-10 Piaggio MP3 scooter

The new three wheeler scooter MP3 is better road holding in whatever grip

conditions and on bad surface roads. It has a parallelogram suspension

anchored to the frame that allows a tilt angle of up to 40°. The locking

mechanism for the front suspension mainly consists of the NST (Nodo

Stazionamento, Locking Mechanism Control Unit) and the engine control unit

NCM (Nodo Controllo Motore). The implementation of the NST is feasible

only if the electronic control unit (ECU) which controls it is connected to the

NCM via a CAN network.”

87

The new locking system NST allows “easy parking” without the kickstand;

When the driver pushes the lock request lever, the lock conditions have to be

simultaneously verified:

 Vehicle speed below a threshold which is a function of vehicle
deceleration

 Throttle closed and engine speed under a threshold

Figure 3-11 “easy parking” system block diagram

If these conditions are not reached after a certain time span, the lock request

is rejected. If the locking conditions are true, a lamp on the dashboard starts

flashing and is lit permanently when the suspension is locked. When the

driver is on the scooter, the suspension is unlocked on the driver’s request and,

for safety reasons, if one of the following conditions is verified:

 Engine speed above a threshold which assures that the clutch is
closed

 Vehicle speed above a threshold

NST NCM Actuator
Engine

Speed Speed display

Speed <threshold Throttle closed & Speed <threshold

&

Lock
rejected

False Lamp flashing True

Lock request lever

88

To test the NST thoroughly, needs a lot of severe testing conditions that are

difficult or even dangerous to reach, like cornering sharply or braking at top

speed on rain-soaked surfaces. Moreover, it is almost impossible to generate

exactly the same testing condition twice. ELASIS tested the NST and the

NCM simultaneously on the CAN network. The model of the engine runs in

real time to verify correct control system integration on the CAN network.

The simulation therefore had to provide a short turn-around time. They also

needed a test platform with closed-loop simulation, the facility for test

automation, and Fault Insertion Unit (FIU) capabilities. To make sure the

locking mechanism will be reliable even if other components fail, FIU is very

important. Having this in mind and working towards extending the same

development platform for different ECUs, ELASIS selected a dSPACE

Simulator Mid-Size as real-time hardware. They built the model for the

scooter behaviour in MATLAB®/Simulink® and computed it with a DS1005

PPC Board. The I/O signals were generated and measured by the DS2210

HIL I/O Board, which also performed the signal conditioning. This board

contains special functions for generating and reading ECU crank-angle-based

signals with high accuracy and convenience.

Figure 3-12 shows the set up for Piaggio MP3 scooter HIL test with dSPACE

tools (dSPACE GmbH 2007).

89

Figure 3-12 The hardware-in-the-loop setup with a dSPACE Simulator Mid-Size

3.4.1.2.5 Integration	test	

Figure 3-13 V model (Integration test)

The aim of integration testing is to make sure different parts of system are able to

correctly work together. (McGregor and Sykes 2001) “Integrated tests are

performed to test various parts of the system (components, modules, applications,

90

etc.) that were separately developed in a set.” (Dasso & Funes 2006, p76). The

integration test starts after each function is complete and passed its own unit test.

Procedure to implement integrated tests(Dasso & Funes 2006, p77):

1. Prepare test environment, using test data and test server, which are
configured to simulate the production environment.

2. Identify test cases based on requirements and architecture.

3. Detail procedures for each test case.

4. Implement integrated tests.

5. Execute integrated tests.

6. Analyse results. If errors are found, they must be registered in the problem
reports tool and associated with those responsible for the corresponding
corrections. If none are found codification may stop.

7. Fix problems encountered.

8. Execute tests again. After ending it, return to step 6.

The integration test covers the hardware and the software. Due to the dependency

of the different software components and different hardware parts. It is very

important and useful to make a strategy to do the integration test. There are three

fundamental strategies: Big bang, Bottom-up, and Top-down. They are not

mutually exclusive, so a variety of different strategies can be combined. The

choice of strategies depends on factors such as availability of the integration parts

(e.g. third party software or hardware); size of the system; whether it is a new

system or an existing system with added/changed functionality; and the system

architecture (Broekman & Notenboom 2003, p46).

Big bang integration

This strategy is quite simple, all modules are integrated together, the whole

system is tested. It can be successful if: a large part of the system is stable and

91

only a few new modules are added; the system is rather small; the modules are

tightly coupled and it is too difficult to integrate the different modules stepwise.

Bottom-up integration

This strategy starts with low level modules with the least dependencies, using

drivers to test these models. It can be applied to build a system step by step; the

subsystem is developed in parallel and then integrated together. The integration

can start very early in the development process. The advantage is this strategy can

detect interface problems early. The disadvantage is that many drivers are used,

and consume lots time because of the iteration of tests.

Figure 3-14 is a module call graph. A bottom up integration is illustrated in Figure

3-15.

Figure 3-14 module call graph

main

A B C

D E F

92

Figure 3-15 bottom-up integration

Top-down integration

This strategy offers the ability to integrate the modules top-down starting with the

top-level control module. The top-level module is tested at beginning and the

lower level modules progressively added one by one. The lower level modules

normally are simulated by stubs. The advantage of top-down integration is that it

can give an overview of the entire system. The disadvantage is that a change of

requirements, that will affect the low level modules, may lead to changes in top-

level modules. A large number of stubs are needed to test every integration step.

For the call graph in Figure 3-14, top-down integration can be illustrated in Figure

3-16.

test
D

test
main, A, B, C

D, E, F

test
D,E,A

test
E

test
F

test
C,F

test
B

driver

93

Figure 3-16 top-down integration

In the automotive industry, the integration test involves hardware and software.

Often the system works in the simulated model or prototype, but won't work for

the hardware integration. Hardware-In-The-Loop can also be used for integration

testing. The ECUs may be connected to different networks (e.g. CAN, FlexRay,

and LIN etc.). They communicate with each other by message passing. During the

message transmission, many things could happen to affect the message arriving at

the destination, so we need some mechanism to record the whole system's

behaviour which includes local ECUs and network. There are some tools to help

to monitor the network of ECUs, e.g. CANoe, CANalyzer etc., but they only

record the data on the network and cannot record any synchronised information

about the local ECUs. So a method is needed to be able to record whole system

state (global state). In a later chapter is decribed more detail about how to build

and analyse the global system state.

3.4.2 Validation		

Validation is the process confirming that it meets the user's requirements. It

checks if the system meeting the users’ need.

test
main

test
main, A, B, C

D, E

test
main, A, B,C

test
main, A, B, C

D, E, F

94

Figure 3-17 V model (system test)

The early system validation will be checked by using some animation techniques:

formal specification, modelling and simulation techniques, and using software to

simulate the system. These techniques are used in the early design and

development phases. Computer algorithms can be used to mathematically prove

that the system specifications are consistent.

3.4.2.1 Formal	specifications	validation		

“A formal specification is simply a description of a system using a mathematical

notation.” (Bowen 2003, p4). Formal specification can clearly explain the system,

without any confusion as the mathematics is precise. After the developer acquires

the requirements from the user, they can build a system specification with the

mathematical notation. This specification is able to describe exactly the system to

apply on the requirements. In order to check if the system is satisfies the users'

requirements, after the system formal specification is built; the developer needs to

meet the users again to show them this specification. This should be the first

validation of the system.

95

There are different mathematical notations. The notation widely used by the

computer is the Z notation. Z notation that is has been developed at Oxford

University since the late 1970’s by members of the Programming Research Group

(PRG) within the Computing Laboratory (Bowen 2003, p4). For example, {n : Z

• 2 * n} means a set of all even integer. n is a variable, Z represents integer type,

any integer multiplies by 2, the result will be an even integer. This is an easy

example about denoting sets by using Z notation. It also can denote logic, types,

structure, relations, functions, etc.. The big advantage of using Z notation to

represent the requirements of the user reduces the ambiguity, as the nature of the

formal specification. It helps the earlier system validation and enhances the

validation of the system.

3.4.2.2 Model	based	development	

“Modelling is the process of producing a model; a model is a representation of the

construction and working of some system of interest. A simulation of a system is

the operation of a model of the system.” (Maria 1997) Model is the static

“shape/body” of the system. The simulation is the dynamic “activities” of the

system model. The model test is known as Model In the Loop (MIL).

A system model is built of the behaviour and the structure of the system. System

structure defines the interaction among the components. System behavior defines

the how the components change state, it may be caused by the communication

among themselves.

Figure 3-18 is an example of the structure of a car speed control system. If the

driver presses the accelerate pedal or the button to set a constant speed; the force

96

sensor that is connected with the pedal or button sends a signal to the speed

controller; the speed controller tells fuel controller. How much fuel to feed, and

this is shown in the diagram as the “accelerate” relationship. This is the system

structure.

Figure 3-18 Basic structure for an car speed control system

In automotive system design, the system and platform on which system is being

implemented (e.g. ECU is a platform in the automotive industry) both need to be

considered, because they are developed in parallel . But the platform plays less or

no role in the normal software design. This is the main difference between normal

software design and automotive software design. The combination of platform

model with system model forms one huge unified model. The platform model

could offer some guarantees which could be used in the debugging/validation of

the system model. The problem is how to relate the platform validation and

system model validation? In the car speed control system, system model describes

speed controller, fuel controller, and brake controller running on the different

ECUs and communicating each other via a network. The platform model describe

all the ECUs' connection architecture(processing elements connected via network)

and the communication behaviour (in the form of the network protocol through

Cruise

Fuel

controller

Brake

accelerate

deaccelerat

97

which the processing elements communicate). The platform model of a car speed

control system is described in Figure 3-19

In this case, the guarantees to validate the protocol for system model are:

 the network should be always connected

 The messages in the channel should have the correct priority. (Brake
controller should have highest priority safety resons.)

 The message should be passed in a limited/useful time.

Figure 3-19 Physical diagram for a car speed control system.

Normally the model design depends on the requirements of the user. The

requirements are analysed by the developers. The model design should have

following properties:(Roychoudhury 2009, p11)

 Complete—The model should be a complete description of system
behaviour.

 Based on well-accepted modelling notations/standards.

 Preferably executable—ideally the model is equipped with execution
semantics, so that simulations can be run on the model itself.

After building the model, it should be operated to see how it works. Simulating a

model can discover some unexpected behaviour by random simulation. The

requirements of user are implemented in the model, to find out if the system

operates as expected. Even the user can be asked to operate the model and check

ECU
Cruise

ECU
Fuel

ECU
Brake

98

out if any problems. It is the main reason why model simulation is used. Model

simulation validates if the system model satisfies the requirements of user.

A simulation model builds a link between informal requirements and the system

model. Also there should be a link between the model and the real system; this

can be done by code generator. The source code of system can be generated by the

model compiler and compiled by the compiler toolset. After the source code is

compiled, the binary code is generated. The binary code is flashed into the

hardware. The hardware can be tested against the model, see if the hardware

implementation matches the model. This process is called model based system

development. It is illustrated in Figure 3-20 (Roychoudhury 2009, p51)

Figure 3-20 model based system development

In automotive software development, math works Simulink is commonly used for

model based development. Simulink is an important component of the MATLAB.

99

It offers dynamic system modelling, simulation, and comprehensive analysis

integration environment.

Simulink offers all mathematically simulated models. Each Simulink model is a

block diagram. After the system is modelled by the block diagram, the model can

be run on Simulink. Therefore it gives the initial overview of the system execution

situation. Figure 3-21shows Simulink library browser.

Figure 3-21 Simulink library browser

Based on Simulink, dSPACE developed TargetLink that is integrated with

Simulink. The following example is a company called “Delphi Electronics &

Safety” using dSPACE tools to develop new algorithms for power window

functions (dSPACE GmbH 2010).

“The entire functionality of the power window control was designed in

Simulink/TargetLink and then autocoded with TargetLink. The generated

code was highly efficient and clearly structured. Moreover, simulation in

MIL and SIL modes proved extremely useful in advancing controller

design and fixed-point software development. For offline simulation,

100

signals recorded in rapid control prototyping were reused, and additional

test vectors were also developed (Figure 3-22). To specify the position

control’s software interfaces, the TargetLink Property Manager was used

frequently to convert the Stateflow sections of the anti-pinch protection

into production-ready C code. TargetLink’s ability to flexibly generate

code for look-up tables was harnessed to autocode the stall detection,

making it possible to use different types of search and interpolation

routines, to partition the code into different files, etc.” (dSPACE GmbH

2010)

Figure 3-22 Simulation environment in Simulink/TargetLink.

3.4.2.3 Rapid	prototype	validation	

The prototype embedded system is tested while connected to the real environment.

This is the ultimate way of assessing the validity of the simulation model. Figure

3-23 shows the process for the rapid prototype development.

101

Figure 3-23 rapid prototype development

The system test and acceptance test are used to validate if the system satisfies the

requirements of the user by installing the software in the real hardware.

Performance testing can be carried out which focuses on the performance of the

software system in realistic operational environments. Many such systems are

real-time systems, where timely completion of computational tasks and overall

workload handling are of critical importance (Tian 2005, p213).

Stress testing, which is a special form of performance testing can also be done,

where software system performance under stress is tested. This type of testing is

also closely related to capacity testing, where the maximal system capacity is

assessed (Tian 2005, p213).

The prototype validation also involves system parameters evaluation. In the

automotive industry there are some tools developed for the rapid prototyping

hardware; CANape is a tool that is developed by Vector, it is available for ECU

development, calibration, and diagnostics as well as for measurement data

acquisition.

Initial requirements

proto typing

Design

Review & updation

Customer evaluation

DevelopmentTestMaintain

Customer satisfied

102

The primary application area of CANape is in optimizing parameterization

(calibration) of electronic control units. It can calibrate parameter values and

simultaneously acquire measurement signals during system runtime. The physical

interface between CANape and the ECU might be made via the CAN bus with

CCP, for example, or via FlexRay with XCP. Additionally, with its Diagnostic

Feature Set CANape offers symbolic access to diagnostic data and services. As a

result it has all relevant integrated functions for measurement, calibration, flashing

and diagnostics. Its reliance on standards makes CANape an open and flexible

platform for all phases of ECU development. Figure 3-24 shows CANape

measurement configuration window.

Figure 3-24 CANape measurement configuration

3.5 Automotive	distributed	system	integration	

There are some companies that develop the tools for the automotive distributed

system integration test. The most popular two companies are Vector and dSPACE.

Vector offers the CANoe, CANalyzer, CANdela, CANape, etc. for the network

analysis, ECU diagnostic and calibration. CANoe is a very powerful development

tool for the distributed automotive system; it offers the service to do the ECUs

103

integration and the restbus simulation is supported. It connects all or part of ECUs

(simulated or/and real) together to implement the integration test. During the test

CANoe logs all communication messages to the CANoe log file. To use CCP (see

section 2.6), the local state of each node also can be logged into the CANoe log

file. Therefor the CANoe log file records all communication messages and the

local states of each node. However from this log file, the variable relationship

between the nodes cannot be clearly observed, e.g. if the node A send message M,

how M is going to affect the other nodes or have no affect at all because M does

not satisfy the threshold of the nodes, or what happens if M delayed. The message

delay, halt and modification (bits lost during the transmitting) is the major

problem for the distributed systems. Some of them are very easy to be observed,

e.g. termination: the whole system just shut down, deadlock: all nodes are in the

waiting state. However, failure of distributed systems is not easy to be observed

(unpredictable), because of the arbitrary of the distributed system. Every time

starting the distributed system, it may go through different execution states (global

states). In the automotive system, some of global states may reduce the safety of

the vehicle, increases the other risks and be uncomfortable for the customers etc.,

so to find fault global states is essential for the ECU integration. The global states

of the system are more about the global view of all local states of all ECUs.

CANoe does not have a function to construct the global states of the system;

however, it offers potential abilities to construct the global states. The next section

is going to talk about how the software integration testing is done by the industry.

3.5.1 Automotive	Software	integration	testing	

The automotive software integration test can be done by two approaches: top-

down integration or bottom-up integration. Both approaches are supported by the

104

most popular automotive development tool companies Vector and dSPACE. The

CANoe tool of Vector can run the whole system in which all nodes are simulated

as soon as whole system is specified or partly specified. Each time after the real

ECU is developed, replace the simulated node with the real node on the restbus

simulation. The system will be integrated progressively by replacing the ECUs

one by one. The top-down integration of CANoe is shown in Figure 3-25(Vector

Informatik GmbH 2010b, p23).

Figure 3-25 CANoe top-down integration

Phase 1: Requirements analysis and design of the network system.
Phase 2: Implementation of components with simulation of remainder of the bus
Phase 3: Integration of the overall system

105

Also the bottom up approach can be done by using CANoe. Every time when the

least dependency ECU is developed, integrating the ECU to the CANoe, the

system can be integrated one by one.

dSPACE uses the HIL simulation to do the system integration testing (dSPACE

GmbH 2009, p102). They also offer the restbus simulation as well as CANoe. The

difference is CANoe using program code to simulate the ECU nodes, the dSPACE

simulation using the hardware simulator to simulate the ECU. The dSPACE

simulator is illustrated in Figure 3-26.

Figure 3-26 dSPACE simulator

3.5.2 Integrating	time‐triggered	system	

As discussed in section 2.5.2, the timer-triggered system has the global clock that

synchronized the system, the global states can be easily constructed or the system

can be paused in the same global time. It makes the integration of the time-

triggered system is much easier.

106

3.5.3 Integrating	event‐triggered	system	

Because the event-triggered system does not have global clock as time-triggered

system has or the shared memory, it makes the integration test much harder than

the time-triggered system. The system execution global states trace is

unpredictable; it may change on the different running. The unexpected global

states are very hard to be detected by the current development tools. There are no

such tools in the automotive industry to construct global execution states for the

ECU network.

3.6 Conclusions	

Testing is very important during software development, also for the automotive

software; it goes through entire development life cycle. This chapter described the

V model that is the fundamental development methodology, and the variants of

the V model (multiple V and nested V). The test plan states how to apply the

different tests to the corresponding development phase in the V model.

In general there are two types of faults in the software product; specification and

implementation fault; specification faults fail the requirement of the user, it does

not do the thing that user expect properly, so developers need to validate the

specification that is delivered from requirements of the user. Implementation fault

fails the specification that has been written, it does not correctly implement the

function that has been specified, so developers needs to verify if the function

satisfies the specification. The validation of a system requires a global overview

of the system to check if it works as it expected. Verification checks the detailed

implementation of the system. The different test types are applied to check these

two fault types. A number of common automotive system integration problems

were discussed as well as the difficulties in detecting them.

107

References

A.Al-Ashaab, S.Howell, A.Gorka, K.Usowicz, & P.Hernando Anta Set-Based

Concurrent Engineering Model for Automotive Electronic/Software Systems

Development, In CIRP Design Conference 2009, p. 464.

Bowen, J. 2003. Formal Specification and Documentation using Z: A Case Study

Approach Thomson Publishing.

Broekman, B. & Notenboom, E. 2003. Testing Embedded Software.

Dasso, A. & Funes, A. 2006. Verification, Validation and Testing in Software

Engineering Idea Group Publishing.

dSPACE GmbH. HIL for a Three-Wheeler Scooter. 2007. dSPACE .

dSPACE GmbH. dSPACE Catalog 2009. 2009. dSPACE.

dSPACE GmbH. Making Power Windows safe. 2010. dSPACE GmbH,

Paderborn, Germany, dSPACE Magazine.

dSPACE, G. dSPACE Catalog 2009. 2009. dSPACE,GmbH.

Everett, G.D. & McLeod, R. 2007. Software Testing Testing Across the Entire

Software Development Life Cycle Wiley-IEEE Computer Society Press.

Maria, A. Introduction To Modeling And Simulation. 1997. ACM.

McGregor, J.D. & Sykes, D.A. 2001. A practical guide to testing object-oriented

software Addison-Wesley.

108

Michael Schneider, Johnny Martin, & W.T.Tsai. An Experimental Study of Fault

Detection In User Requirements Documents. 1, 188-204. 1992. ACM

Transactions on Software Engineering and Methodology.

National ITS Architecture Team 2007, System Engineering for Intelligent

Transportation Systems.

Patton, R. 2005. Software Testing Sams Publishing.

Pressman, R.S. 2001. Software Engineering, 5th ed. Thomas Casson.

Roychoudhury, A. 2009. Embedded Systems and Software Validation Morgan

Kaufmann.

Schaeuffele, J. & Zurawka, T. 2005. Automotive Software Engineering Principles

Processes Methods and Tools SAE International.

Tian, J. 2005. Software Quality Engineering Testing, Quality Assurance, and

Quantifiable Improvement John Wiley & Sons, Inc., Hoboken, New Jersey.

Vector Informatik GmbH. Product Catalog. Development of Distributed Systems

ECU Testing. 2010a. Vector Informatik GmbH.

Vector Informatik GmbH. User Manual CANoe Version 7.5. 2010b.

 	

109

Chapter	4 Logical	Time	

4.1 Introduction	

Time is important to determine the order or causality of events. The clock is the

mechanism used to record time. The causality (order) of events is a very important

issue in distributed system and is a fundamental concept for analysing and

debugging the system state. Physical time is used to track the causality of events

using synchronized clocks. However it is impossible to apply a global physical

time in distributed system made up of many separate CPUs devices. This is

because the devices, which can be either the same or different types, may have

different CPU clock frequencies, the accuracies of which can vary with

temperature, moisture and manufacturing tolerances. Accurate clock

synchronization is therefore impossible to achieve over a period (Nicola Santoro

2007, p333).

For example Figure 4-1 shows 4 nodes, all connected by a bus line. Each node has

its own local time above it. If node2 sends message to node1 at local time 3:55

and node1 receives the message at local time 3:35, it looks very confusing that the

receiving message event happens before the sending event. Such unsynchronized

time is not good for distributed system analysis or testing; so a common time

(Global time) is needed for the purpose of distributed system analysis and testing.

110

Figure 4-1 Four node distributed system with physical clocks

Although there can be no common synchronized global physical time in a

distributed system there are some mechanisms (clocks) that can help us to

approximately realize global physical time. This chapter introduces these

mechanisms and describes their principles of operation.

4.2 Logical	time	

In general a logical clock can measure the causalities of events. In a distributed

system, every node has its own local clock that is advanced using a set of rules.

Each event is assigned a timestamp and the causalities of events can be inferred

from the timestamps. The timestamp follows the basic monotonic property; if an

event a causally effects event b, then the timestamp of event a should be smaller

than the timestamp of event b.

A system of logical clocks consists of a time domain T and a logical clock C.

Elements in T are an ordered set over a relation <. This relationship can be called

“happens before” or causal precedence (denoted by →) and is also the same as the

“earlier than” relationship provided by physical time. The logical clock is a

Node1 Node4Node3Node2

111

function that maps the event e in a distributed system to an element, denoted as

C(e) and called the timestamp of e in the domain T. The clock is defined as

 C: H ↦ T

To satisfy the property

 e1→e2 C(e1) < C(e2)

This monotonic character is called the clock consistency condition.

If for event e1 and e2

 e1→e2 ≡ C(e1) < C(e2)

then the system of clocks is strongly consistent. (Ranal and Singhal 1996)

There are two requirements for implementing logical clocks

1. A data structure for the local process to represent its logical time;

2. A protocol (set of rules) to update the data structure and ensure the protocol

follows the consistency condition.

A data structure for each process has two functions:

 As a local logical clock, denoted by lci, that helps process pi measure its

own progress.

 As a logical global clock, denoted by gci, that is a representation of

process pi’s local view of the logical global time. It allows this process to

assign consistent timestamps to its local events. Typically, lci is a part of

gci.

The protocol ensures that a process’s logical clock, and thus its view of the global

time, is managed consistently. The protocol consists of the following two rules:

112

 R1 - This rule governs how the local logical clock is updated by a process

when it executes an event (send, receive, or internal).

 R2 - This rule governs how a process modifies its global logical clock to

update its view of the global time and global progress. It dictates what

information about the logical time is piggybacked in a message and how

this information is used by the receiving process to update its view of the

global time.

Different systems may use different data structures to represent the logical time

and different protocols to update the data structure. However, all logical clock

systems should implement R1 and R2 and consequently ensure the fundamental

monotonicity property associated with causality. Moreover, the different logical

clock systems may provide some additional properties to its user.

4.3 Scalar	time	

Scalar time was proposed by Lamport (Leslie Lamport 1978) and attempts to

totally order events in the distributed system. In the scalar time system, time is

represented by positive natural numbers. The logical local clock of a process P

and its local view of the global time are expressed by one integer variable C.

Rules R1 and R2 to update the clocks are as follows:

 R1 - Before executing an event (send, receive, or internal), process Pi

executes the following:

Ci := Ci + d (d>0)

In general, every time R1 is executed, d can have a different value, and this value

may be application-dependent. However, typically d is kept at 1 because this is

113

able to identify the time of each event uniquely at a process while keeping the rate

of increase of d to its lowest level.

 R2 - Each message piggybacks the clock value of its sender at sending

time. When a process Pi receives a message with timestamp Cmsg, it

executes the following actions:

1. Ci := max(Ci, Cmsg);

2. execute R1;

3. deliver the message.

The sequencing of scalar clocks between three communicating processes is

illustrated in

Figure 4-2. The events of each process are shown on horizontal timelines with

their local scalar timestamps. Messages transmission events between processes

are shown using arrows.

Figure 4-2 scalar time

Gap Detection:

Sometimes because of the delay of the message transmission the receiving

message timestamp may be smaller than the current scalar time of the receiving

Process 1

Process 2

Process 3

1 2

1

1

3

3 4 5 6

2

4 5 6

6 7

8

114

process. This is because scalar time lack of the overview of the global time, what

is called the gap detection property. The gap detection can be used to detect the

message delay or the message undelivered; they are the main problems that could

happen on the distributed system, so the gap detection is a very important issue

for the distributed system.

Gap Detection(Ozalp Babaoglu and KeithMarzullo 1993):

Given two events e1 and e2 along with their clock values C(e1) and C(e2) where

C(e1)<C(e2), determine whether some other event e3 exits such that

C(e1)<C(e3)<C(e2).

To account for the lack of logical time gap detection, the system needs to set an

allowable delay time; if the received message has a timestamp smaller than the

allowable delay time, we can call this received message stable. Stable means: A

message m received by process p is stable if no future messages with timestamps

smaller than TS(m) can be received by p.(Ozalp Babaoglu & KeithMarzullo 1993)

Properties of Scalar Clocks:

Scalar clocks exhibit the following properties.

Consistency property:

Scalar clocks are monotonic and therefore consistent.

 For events e1 and e2 e1→e2 C(e1) < C(e2)

No strong consistency:

Although the scalar clocks are consistent, they are not strongly consistent which is

for two events e1 and e2 means that if C(e1)<C (e2) then this does not necessarily

mean that e1→e2.

115

Total ordering:

All timed system events can be put in an ordered set; the whole set being ordered

by the timestamps. However, the problem is that there may be two or more events

in the different processes that have the same timestamps. The notation < expresses

any arbitrary ordering of the processes. If event ei occurs in process pi and event ej

occurs in process pj, then ei ej if and only if

 (i) either C(ei) < C(ej) or

(ii) C(ei) = C(ej) and pi < pj.

Because events can occur at the same logical scalar time independently, they can

be ordered in any arbitrary criterion without violating the causality relation. A

total order is generally used to ensure liveness properties in distributed system.

Liveness means a message that arrives at a process must eventually be delivered

to the process.

 Event counting:

If the timestamp of events always increases by a known number (normally 1) and

event e has a timestamp te, then the minimum event logical duration can be

calculated by te-1. This is the number of events handled by the process before

event e occurs.

4.4 Vector	Time	

In the previous section, the causal history of events in distributed system was

measured by a scalar time, which is a local view of the global time condensed into

one integer variable. Scalar time combines the global time and local time together,

116

using one non-negative integer to measure global and local time; it lacks the

global view of the system.

Alternatively, a fixed-dimensional vector can represent the causal history. The

mechanism of vector clocks was developed individually by Fidge (Colin Fidge

1991) and Mattern (Friedemann Mattern 1998). Vector time assigns the times of

processes in a vector; each process has a vector time which contains other

processes’ local time, so every process the global view of the whole system.

The implementation of Vector time is as follows:

Each process pi maintains a vector time VTi. If the total number of processes is n,

the vector time of a process can be expressed as VTi[1..n] where

(i) The element VTi[i] is local clock of the process pi;

(ii) VTi[j] (j ∈x:N | x ∈0..n x ≠i }) is the latest knowledge that Pi has of the

local clock of process Pj.

Process pi uses the following two rules R1 and R2 to update its clock:

R1 - Before executing an event, process pi updates its local logical time as

follows:

VTi[i] := VTi[i] + d (d > 0, normally is 1).

R2 - Each message m is piggybacked with the vector clock VT of the sender

process at sending time. On the receipt of such a message (m,VT), process pi

executes the following sequence of actions:

 update its global logical time as follows:

1 ≤ k ≤ n : VTi[k] := max(VTi[k], VT[k]);

 execute R1;

 deliver the message m.

117

Figure 4-3 shows an example of vector time.

Figure 4-3 vector time

Properties of Vector Time

This section describes the useful properties of Vector clocks and illustrates

practical uses of these properties.

Given two n-dimensional vectors V and V' of natural numbers, we define the “less

than” relation (written as <) between them as follows

V < V' = (V ≠ V') (k:1 k n: V[k] V'[k])

Property 1 Strongly Consistent Clock Condition

If event e happens before event e' then vector time of e is smaller than vector time

of e'. Another way of putting this is if the vector time of e is smaller than vector

time of e' then e happened before e'.

 e e' VT(e) < VT(e').

(1,0,0) (2,0,0) (3,0,0) (4,3,4) (5,4,4)

(0,1,2) (2,2,2) (2,3,2) (2,4,2)

(0,0,1) (0,0,2) (2,3,3) (2,3,4)

Process1

Process2

Process3

C1
C2

118

It is not necessary to know on which processes the two events were executed. If

this information is available, causal precedence between two events can be

verified through a single scalar comparison.

Property 2 Simple Strong Clock Condition

Given event ei of process pi and event ej of process pj, where i ≠ j

ei → ej ≡ VT(ei)[i] ≤ VT(ej)[i]

VT(ei)[i] = VT(ej)[i] represents that ei is the latest event of pi which causally

precedes ej of pj, so ei must be a send event.

Property 3 Concurrency

Given event ei of process pi and event ej of process pj

ei || ej ≡ (VT(ei)[i]>VT(ej)[i]) ˄ (VT(ej)[j]>VT(ei)[j])

the two events in different processes happen at the same time.

In the example process1 event with vector time (4,3,4) and process2 event with

vector time (2,4,2) are concurrent events.

Property 4 Pairwise Inconsistent

Event ei of process pi is pairwise inconsistent with event ej of process pj, where i ≠

j, if an only if

 (VT(ei)[i]<VT(ej)[i]) (VT(ej)[j]<VT(ei)[j])

 “A cut is a line joining an arbitrary point on each process line that slices the

space–time diagram into a PAST and a FUTURE.” In Figure 4-3, cut C1 is a

pairwise inconsistent. In this situation happens, the cut includes at least one

receive event without the corresponding send events.

119

A consistent cut contains no pairwise inconsistent events. In vector clock terms,

the property becomes

Property 5 Consistent Cut

A cut defined by (c1;. . . cn)is consistent if and only if

 i, j : 1 i n, 1 j n : VT(ei
ci)[i] VT(ej

cj)[i]

This expression means if the cut is consistent, then all events in the cut can track

back to the previous events which precede current event without losing any send

event. In Figure 4-3 the cut C2 is a consistent cut.

Property 6 Counting

Given event ei of process pi and its vector clock value VT(ei), the number of

events e such that e → ei (equivalently, VT(e) < VT(ei)) is given by #(ei).

Property 7 Weak Gap Detection

Given Event ei of process pi is pairwise inconsistent with event ej of process pj, if

VT(ei)[k] < VT(ej)[k] for some k ≠ j, then there exists an event ek such that

 (ek → ei) (ek → ej)

Three random events ei, ej and ek, so it cannot be concluded these events forms a

causal chain ei→ej→ek.

4.5 Matrix	Time	

The logical time can be represented by a set of n×n matrices of non-negative

integers. A process pi maintains a matrix mti[1..n, 1..n] where,

 mti[i,i] denotes the local logical clock of pi and tracks the progress of the

computation at process pi;

120

 mti[i,j] denotes the latest knowledge that process pi has about the local

logical clock, mtj[j,j], of process pj (note that row, mti [i,.] is nothing but

the vector clock vti[.] and exhibits all the properties of vector clocks);

 mti[j,k] represents the knowledge that process pi has about the latest

knowledge that pj has about the local logical clock, mtk[k,k], of pk.

The matrix clock of mti contains the local view of the global time. The matrix

timestamp of an event is the value of the matrix clock of the process when the

event is executed.

Process pi uses the following rules R1 and R2 to update its clock:

 R1: Before executing an event, process pi updates its local logical time as

follows:

mti[i,i]:=mti[i,i]+d (d>0, normally d is 1).

 R2: Each message m is piggybacked with matrix time mt. When pi

receives such a message (m,mt) from a process pj , pi executes the

following sequence of actions:

1. update its global logical time as follows:

a) 1 ≤ k ≤ n : mti[i,k]:=max(mti[i,k], mt[j,k]), (that is, update its row

mti[i,*] with pj's row in the received timestamp, mt);

b) 1 ≤ k, l ≤ n: mti[k,l]:=max(mti[k,l], mt[k,l]);

2. execute R1;

3. deliver message m.

121

An example of matrix clocks is given in Figure 4-4.

Figure 4-4 Matrix time example

A system of matrix clocks was first informally proposed by Michael and Fischer

(M.J.Fischer and A.Michael 1982) and has been used by Wuu and Bernstein

(M.J.Fischer & A.Michael 1982) and by Sarin and Lynch (G.T.J.Wuu and

A.J.Bernstein 1984) to discard obsolete information in replicated databases.

4.6 Conclusions	

Logical Time
Mechanism

Storage Complexity Global
Over
View

Scalar Time Only use a positive
integer for each

process

Easy to update None

Vector Time Each process stores
one dimension

vector clock that
contains Ɵ(n)
components.

Harder Good

Matrix Time Each process stores
two dimension

vector clock, each
dimension vector

contains Ɵ(n2)
comports.

Hardest Very Good

Table 4-1 clock system comparison

n is the total number of process on the network.

122

Each one of these logical time measurements have their advantages and

disadvantages. Scalar time consumes less resource to process the logical time, but

the lack of the global view of the other processes. Vector time gives more detail

about other processes, but consumes more resources. Matrix time includes current

global time and past global time, but it can consume extremely large resources

depends on how many process in the distributed system. Table 4-1 compares the

clock systems in their complexity, storage, and global view.

For automotive system testing, to find the relationship of the causality of events in

the system can be a good help. All Electronic Control Units (ECUs) in the

automotive system are distributed on a network and communicate with each other

by message passing. There is no global clock for them to synchronize their local

clock; the only way is to use the logical clock to synchronize all the ECUs. By

using the global logical clock, the events causality can be defined, and can help to

track the execution path of the system.

It seems the vector time is more suitable for the automotive integration because it

is more descriptive than scalar time and more efficient than matrix time.

123

References

Colin Fidge. Logical time in distributed computing systems. 28-33. 1991. IEEE

Computer.

Friedemann Mattern. Virtual time and global states of distributed systems. 215-

226. 1998. Proceedings of the Parallel and Distributed Algorithms Conference.

G.T.J.Wuu & A.J.Bernstein. Efficient solutions to the replicated log and

dictionary problems. 233-242. 1984. Proceedings of 3rd ACM Symposium on

PODC.

Leslie Lamport. Time clocks and the ordering of events in a distributed system.

558-564. 1978. Communications of the ACM.

M.J.Fischer & A.Michael. Sacrifying serializability to attain hight availability of

data in an unreliable network. 70-75. 1982. Proceedings of the ACM Symposium

on Principles of Database Systems.

Nicola Santoro. Design And Analysis Of Distributed Algorithms. 2007. John

Wiley & Sons, Inc., Hoboken, New Jersey.

Ozalp Babaoglu & KeithMarzullo . Consistent Global States of Distributed

Systems: Fundamental Concepts and Mechanisms. 1993. Italy, Laboratory for

computer science university of bologna.

Ranal, M. & Singhal, M. Logical Time: Capturing Causality in Distributed

Systems. 1996. IEEE Computer.

124

Chapter	5 Global	State	and	Snapshot	

5.1 Introduction				 	

Global state is very useful for system analysis, testing or verifying properties

associated with distributed executions. For a single machine, the global state is its

own local state; but for a distributed system, each node has running its own

process. These processes do not have shared memory, they communicate with

each other asynchronously by sending messages. Each component of the

distributed system has its own state; the state of a node is defined by its local

memory and the active history. The state of network is defined by the sets of

messages that pass on the communication channel. The global state is a collection

of the local states and the network state.

Recording the global state of a distributed system is a very important issue and

can be used in distributed system design in some aspects for example, detecting

the stability of a system, deadlocks (Rahul Garg et al. 1994) and termination

(K.M.Chandy and L.Lamport 1985), using the global state. In system recovery,

each global state can be used as a failure recovery point, just as in windows XP

the user can set the recovery point; if the system crashed, it can go back the

recover point, or in a database if the transaction crashed, the whole system can roll

back to the state before the transaction. For testing the distributed system, the

global states can be recorded with a time stamp (logical time normally), ordering

them by the time stamp. The execution trace of the distributed system can be built

up and the tester can analyse the execution trace to find error.

125

The snapshot algorithm is used to record the global state. It is very important to

have efficient ways to records the global state for the distributed system; but

unfortunately there is no shared memory or global physical time.

If there were a shared memory in the distributed system, all processes would have

the same view of the data and the entire system states could be considered as one

state. If global time were available (each node has the same local clock), the

snapshot could record the global state at the same time, and the order of the global

state would be absolutely consistent. However, since different node may use the

different type of microprocessors, it is impossible to synchronise the clocks of

each microprocessor. Even using the same microprocessor the clock cannot be

synchronised as it can be affected by the environment (temperature, humidity etc.)

and power voltage, particularly for the microprocessors that are used in the

automotive industry.

However the shared memory or global physical time is not available for the

distributed system. Some snapshot algorithms are developed to help record the

global state. Some of them use more memory, some use more channel capacity,

the snapshot algorithms have a trade-off between the memory and channel

capacity, it mostly depends on the hardware. As there are different

communication modes, such as FIFO (First In First Out) and non-FIFO

communication channels, the different snapshot algorithm is applied. This chapter

introduces some of the snapshot algorithms.

126

5.2 Snapshot	algorithm	for	FIFO	

Originally K. Mani Chandy and Leslie Lamport developed the first snapshot

algorithm called Chandy-Lamport algorithm, since then other snapshot

algorithms have been derived from Chandy-Lamport algorithm.

5.2.1 Chandy‐Lamport	algorithm	

Chandy-Lamport algorithm (K.M.Chandy & L.Lamport 1985) uses a control

message, called a marker. It is used as a state save request signature. The

algorithm is only suitable for FIFO systems. There are two rules for processes to

implement the algorithm, the marker sending rule and the receiving rule.

Marker sending rule for process pi

 process pi records its own state.

 pi broadcast marker to all process that are connected with pi .

Marker receiving rule for process pi

 If pi has not saved its state then execute the “marker sending rule”.

 Else

save the channel state between the last time state saved to the time

pi received the marker.

(The channel state can be the message send or receive between the time of pi

sending and receiving the marker.)

127

Figure 5-1 Chandy-Lamport algorithm

After the Chandy-Lamport algorithm was developed, some other algorithms were

developed variants from it. For example, the Spezialetti-Kearns algorithm

(Madalene Spezialetti and Phil Kearns 1986) collects snapshot of concurrent

initiation and efficiently distributes the recorded snapshot.

5.2.2 Spezialetti–Kearns	algorithm		

In the Spezialetti-Kearns algorithm (Madalene Spezialetti & Phil Kearns 1986),

each node has unique colour(id_colour) that identifies the node, and local

colour(local_colour) that represents the current colour of the node in the particular

snapshot.

At the beginning, the local colour for every node is initiated as white. If a initiator

node records its local snapshot, then change its local colour to its id_colour, and

broadcast snapshot request messages with its id_colour to other nodes. When a

white node receives a coloured snapshot request, changes its local colour to the

request message colour, and forwards the message to its neighbour nodes. When

a non-white node receives a different colour request messages to it local message,

it knows there are more than one snapshot initiator on the network; the different

initiator can be inferred from the colour of the request message. The coloured

128

node adds the id_colour of the other initiator to a list called border_list. After a

node has received all requests from its incident edges, the colouring phase is

finished. The node ni sends its border_list to the node nj that sent the first snapshot

request message to ni. When a node receives a border_list from its neighbours, it

union the border_list with its own border_list and updates its own border_list with

the resultant list. Finally, the initiator node that caused this request message gets

this list. Figure 5-2 shows the phase when colouring has completed.

Figure 5-2 Colouring completed

In the colouring phase, the system is divided into different regions by different

id_colours of initiators; the initiator knows its neighbouring initiators by

border_list. The initiators exchange the partial snapshots of the nodes in their

region. The exchanges occur in rounds, in each round of exchange, an initiator

sends to its bordering initiator any new state information that it obtained during

the previous round of message exchange. After the initiator state information

exchange phase, each initiator has the consistent snapshot.

129

Figure 5-3 gives the example of the Spezialetti and Kearns’ snapshot algorithm.

There are three nodes on the network, process 1(P1), process 2(P2), and process

3(P3) are running on corresponding nodes. Node P2 initiates a snapshot collection

by taking its local state, sends green mark to other nodes. Concurrently node P3

initiate a snapshot by taking its local state with red marker, send the marker to

other nodes; the cut is the global snapshot. In Spezialetti and Kearns’ snapshot

algorithm P3 takes its snapshot in response to P2; P1 ignores P2’s request. The

global snapshot thus collected is shown by the cut.

Figure 5-3 Spezialetti and Kearns’ snapshot algorithm

All algorithms above are only suitable for the FIFO system, when the messages

after the marker are sure to be sent. But for non-FIFO systems, the messages after

marker cannot be sure to be sent. For example the CAN network is a priority

based network communication channel, the message only can be sent by the node

that has the highest priority; so it won’t guarantee the message sends after the

marker.

For the non-FIFO system different algorithms have been developed. Lai-Yang

algorithm is the first non-FIFO snapshot system. It is based on the Chandy-

130

Lamport algorithm, and does not need markers to control other process to take

snapshots.

5.3 Snapshot	algorithm	for	non‐FIFO	

5.3.1 Lai–Yang	algorithm	

The Lai-Yang snapshot algorithm (T.H.Lai and T.H.Yang 1987) for non-FIFO

does not send markers to request the other processes to record their local state;

instead it colours messages red and white. If the sender has not recorded its state

the sent message colour is white, if the sender has recorded its state the sent

message colour is red. The messages are appended by the red or white colour.

Processes are allowed to record their local state by itself (Sukumar Ghosh 2007).

The algorithm can be stated as followed:

1. Every process is initially white and if it takes a snapshot, it turns to red.

2. Every message sent by a white (red) process is coloured white(red); so the

white (red) message is sent before (after) the sender process record its local

state.

3. Each process can record its local state at any time, but before possibly

receives a red message.

To make it possible, if the destination process (white) receives a red message,

the destination process needs to record its local state before processing the

message. By doing this, can make sure that there is no message sent after

recording its local state, and also the marker is not required.

4. Each white process records a history of white messages that it sent or

received by the channel.

131

5. If a process turns to red, then it sends all these white message histories and its

local state to the initiator process.

6. The initiator process computes the channel state by evaluating transit (LSi,

LSj), LSi is local state of process i, LSj is local state of process j.

SCij = white message sent by Pi on Cij

 White message received by Pj on

Cij = {mij|send(mij)∈LSi} − {mij|rec(mij) ∈LSj}

Although the algorithm needs no control message, it needs to compute the channel

state by the differences of histories of message and thus needs large storage for

each process to store the message histories. The control message is used for the

sake of recording a consistent snapshot, but the Lai-Yang algorithm does not use

such control message, so the snapshot won’t be consistent, unless the complete

snapshot is taken. However the problem is if a process terminates, it will record its

own state following its last action, but it won’t tell the other processes, so the

other processes won’t record their state and the snapshot won’t be consistent.

5.3.2 Mattern’s	algorithm	

Mattern’s algorithm (Friedemann Mattern 1993) works for both system FIFO and

non-FIFO. The basic idea of Mattern’s algorithm uses two colours to indicate

whether a process has recorded its local state and whether a message is sent before

or after the local state is recorded in a process. The algorithm is based on the

vector clock that was discussed in section 4.4. The dimension of vector time

equals the number of process, each dimension records the corresponding process

local time. But the vector clock that is applied for Mattern’s algorithm, is different

132

from previous vector clock; it is used to make sure all messages that are sent

before the snapshot reach their destination before taking the snapshot. By doing

this the vector time works as a counter, vector counter system allows to use a

negative integer to count the time of message.

In the vector counter method any process pi has a counting system for white

messages (the message before the snapshot taking place). If pi sent message to pj

(ij) on the j-th component of a local vector Vi of length of number of processes,

then Vi [j]= Vi [j]+1. If pi receives a message, then Vi [i]= Vi [i]-1; so if all

messages arrive at the destination process, the all components of vector clock

should be zero.

Figure 5-4 the vector counter method (Friedemann Mattern 1993)

Mattern’s algorithm can be implemented with the following rules

1. At the beginning, every node colour is white. If a node sends (or receives) a

white message, then it implements vector counting algorithm; message header

133

includes colour and timestamp, the timestamp is equal to or greater than the

local time of sending node. If a red node sends a message, the red message

timestamp updates to the minimum of this red message timestamp and the

local time; the red message sent or received does not implement vector

counter rules.

2. If an initiator node takes a snapshot, then the initiator colours itself as red,

sends a marker to next node, the marker delivery is implemented as a token

ring network; a marker contains minimum of local clocks, minimum

timestamp, and local vector counter called count.

3. If a node ni receives a marker, it takes a local snapshot, colours itself as red,

the ni waits V[i]+count[i]0 (where V is the local vector counter); by doing

this can prove there is no white message that was sent to current node on the

network, if the value smaller than zero the message can be ignored, otherwise

it is not consistent; repeat rule 2.

4. If an initiator node ninit receives a marker, ninit wait until V[init]+count[init]0,

if the count=0; then a value called Global Virtual Time (GVT)

Approximation (GVT_approx) is generated. If the first round finishes with

count 0, then the second round will start. But after second round marker

pass the count is guaranteed to be zero vector and the GVT approximation is

found. The main idea of GVT approximation is to use two cuts and to make

sure that no messages cross both cuts. Hence, the minimum of the timestamps

of all messages which cross the second cut can easily be determined by

considering all messages which are sent between the two cuts. The snapshot

134

process is finished (Friedemann Mattern 1993). The message across the

second cut is the state of the channel.

Figure 5-5 Example Mattern’s algorithm

Figure 5-5 is an example of Mattern’s algorithm; the last cut C’ is the final

snapshot, there are no message to cross the two cuts, the message received before

C’ but sent after C’ is ignored, otherwise it is not consistent. The left part of C’ is

the global state of the system.

The Mattern’s algorithm does not record the whole history of the channel state,

but it needs to wait for the white message to finish delivery, so it delays the

termination of the snapshot. It also uses a marker to check if any node terminated

by accumulating the vector counter, a message counter per channel.

 	

135

5.4 Comparison	of	snapshot	algorithms	

Algorithm Feature

Chandy–Lamport(K.M.Chandy &
L.Lamport 1985)

Original algorithm, only apply for FIFO
channel. Using n(n-1) markers
generated on the network.

Spezialetti–Kearns(Madalene Spezialetti
& Phil Kearns 1986)

Improvements over (K.M.Chandy &
L.Lamport 1985): supports concurrent
initiators, efficient assembly and
distribution of a snapshot. Assumes
bidirectional channels. O(e) messages to
record, O(rn2) messages to assemble and
distribute snapshot.

Lai–Yang(T.H.Lai & T.H.Yang) Works for non-FIFO channels. Markers
piggybacked on computation messages.
Message history required to compute
channel states.

Mattern(Friedemann Mattern 1993) Works for both type of channels. Similar
to (T.H.Lai & T.H.Yang) No message
history required. Termination detection
(e.g., a message counter per channel)
required to compute channel states.

Table 5-1 snap shot algorithm comparison
n = # processes, u = # edges on which messages were sent after previous snapshot,
e = # channels, d = diameter of the network, r = # concurrent initiators.

Chandy–Lamport algorithm is the first snapshot algorithm, it only suitable for the

FIFO system, it consumes large channel resources to broadcast the marker as

Table 5-1 shows, it does not include the algorithm to assemble the global state.

Spezialetti–Kearns algorithm optimizes the Chandy–Lamport algorithm, it is not

only sending the marker to record the state, it also uses messages to assemble the

snapshots. The Chandy–Lamport algorithm only works for the FIFO channel,

Lai–Yang is developed for non-FIFO channel and is easy to implement. It does

not need send any mark on the channel, but each node has to store whole history

of messages. The Mattern algorithm works for both types of channel, it does not

136

need to store the history of message, but for the termination detection it needs to

compute the channel state.

5.5 Conclusions	

This chapter introduced some snapshot algorithms that records the global state of

the distributed system; these algorithms are very useful for the system analysis,

testing or verifying properties associated with distributed executions.

In the automotive software testing, the global snapshot can be very useful to

analyse the particular state that the system could be in the snapshot gives a global

view of entire system state that includes states of every electronic control unit

(ECU) and channel, so we can know what happened at the point of the snapshot

by checking the value of each ECU variable and the messages on the network.

However the snapshot algorithms only compute the instantaneous system global

state, not a history of states. Some way of computing the whole history of system

global states would be more useful for validating system behaviour over a period

of time.

137

References

Friedemann Mattern. Efficient Algorithms For Distributed Snapshots And Global

Virtual Time Approximation. 18, 423-434. 1993. Journal Of Parallel And

Distributed Computing.

K.M.Chandy & L.Lamport. Distributed Snapshots: Determining Global: States Of

Distributed Systems. 3. 1985. ACM Transactions On Computer Systems.

Madalene Spezialetti & Phil Kearns. Efficient Distributed Snapshots. 382-388.

1986. Proceedings Of The 6th International Conference On Distributed

Computing Systems.

Rahul Garg, Vijay K.Garg, & Yogish Sabharwal. Efficient Algorithms For Global

Snapshots In Large Distributed Systems. 1994. IEEE Transactions On Software

Engineering.

Sukumar Ghosh. Distributed Systems An Algorithmic Approach. 2007. Taylor &

Francis Group, LLC Chapman & Hall/CRC.

T.H.Lai & T.H.Yang. On Distributed Snapshots. 25, 153-158. 1987. Information

Processing

Letters.

138

Chapter	6 Global	State	Evaluation	

6.1 Introduction:

Global Predicate Detection (GPD) is used to map all or part of the states that

system goes through. A predicate is a requirement or standard, e.g. a comfortable

room temperature is 20 Celsius to 29 Celsius, using this standard to check if the

room temperature is comfortable. The predicate can be predefined by specification

language (interval approach), or defined after correct executions (state approach).

To define a predicate on the system state is very important to specify, observe,

and detect the behaviour of a system. predicate specification and detection are

very useful for distributed system analysis and testing.

In the automotive industry, networked ECUs are distributed systems and ECU

integration testing is a hard and complex process during the automotive software

development. GPD may help the ECU integration. As an example in the

automotive industry, some cars have the auto-window wiper, when it is raining

(the water toggles the rain sensor), the window wiper should work. As another

example, an application might be interested in detecting the predicate engine

temperature under 120 degrees Celsius and fuel use under 7 L/100 km.

Analysis of GPD is different from the global snapshot; the global snapshot is only

one possible state that can be gone through during the whole execution of the

system. GPD is the collection of whole execution path that has been executed; a

snapshot is a one predicate value of a GDP. If the GDP is a map data structure, the

snapshot is an element of the map; the map can be ordered by the time of the

snapshot that has been taken, the logical time can be used as such time to order

the snapshots in the GDP.

139

6.2 Stable and unstable Predicates

6.2.1 Stable predicate

Predicates can be either stable or unstable, a stable predicate is a predicate that

remains true once it becomes true (K.M.Chandy & L.Lamport 1985); there are

two properties in the stable predicate, termination and deadlock.

6.2.1.1 Termination

The termination (Friedemann Mattern) predicate is stable (persistent), because if

such state has been reached, it will never change. A process can be executed in

two states, active and passive. An active state can be automatically changed to

passive state (waiting), if there is no further work to do. A passive process can

become active when it receives a message from another process. If a passive

process receives a message it becomes active, it may send a message back to

another process or processes; so the processes communicate by message passing.

This is the basic communication style of the distributed system; all processes

work together as one system, they interact with each other by message passing, an

execution terminates if each process is passive, until it receives more messages.

There are two conditions of the termination state, local and global:

 Local condition: Each process in a passive state

 Global condition: there is no message on the communication channel.

Assuming that the local condition can be characterized by a local state, the global

condition can be characterized by a channel state; so it can be related with the

system global snapshot, any channel state can be observed by the process local

states that have been taken by two endpoints of the channel.

140

6.2.1.2 Deadlock

Deadlock (GARY S.HO and C.V.RAMAMOORTHY 1982) is another property

of the stable predicate. Two or more processes are waiting for the resources of

each other, but none of them can release the resource unless one of them release

the resource to the other, such situation cause the deadlock; it just as the situation

as “chicken or egg”.

Figure 6-1 deadlock

Figure 6-1 shows a system that in the deadlock situation; node 1 waits on the

resource from node 3, node 3 waits on the resource from node 2, node 2 waits on

the resource from node 1. Each process in the node is blocked by waiting for the

request from another node, also the deadlock process cannot receive a reply from

some process(es); the deadlock just like a circular chain, if any link is broken, the

deadlock is solved, or any node release the resources, the deadlock is also solved.

141

6.2.2 Unstable predicate

The unstable predicate only holds the predicate instantaneously(Keith Marzullo

and Gil Neiger 1991;Robert Cooper and Keith Marzullo 1991). There are some

difficulties to detecting unstable predicates:

 The message transmitting times and scheduling of the various processes on

the processors under various load conditions, they are all unpredictable; the

execution is not deterministic, the distributed system may have gone through

different global states; the predicate may be true in some executions, but fails

in others.

 Instantaneous time in a distributed system is not available; if a predicate is

true in a global state, it may not have held in the execution; if a predicate is

true in the transmitting period, it may not be detected by a consistent

snapshot. So the periodic monitoring of the execution is not enough.

There are two difficulties for the unstable predicate; one is the snapshot algorithm

to be used to record the global state; another is the methodology to evaluate

collected data.

To overcome these difficulties, two important observations can be made (Keith

Marzullo & Gil Neiger 1991;Robert Cooper & Keith Marzullo 1991).

1. The entire execution monitoring is necessary, so all states that appeared

in the execution can be examined.

2. The execution of a distributed system may go through different states

every time it is executed; some predicate may be true in one execution

but not in another; so it is very useful to define all the observations of the

execution path not just one.

142

6.3 Possibly and definitely Predicates

Possibly (Ф): There exists a consistent observation of the execution such that

predicate Ф holds in a global state of the observation.

Definitely (Ф): For every consistent observation of the execution, there exists a

global state of it in which predicate Ф holds.

6.4 Relational Predicate

“A relational predicate is of the form x1+x1+x2+…+xn relop k, where each xi is an

integer variable on process pi and relop ∈{=, < , > , ≤ , ≥}” (Neeraj Mittal and

Vijay K.Garg 2001). The relational predicates are useful for detecting potential

problems in a distributed system. For example, two processes: pi and pj each have

a variable x and y, and communicate by passing messages, the predicate (x+y<9)

may indicate a potential error (Alexander I.Tomlinson and Vijay K.Garg 1993).

The centralized relational GPD algorithms (Keith Marzullo & Gil Neiger

1991;Robert Cooper & Keith Marzullo 1991) for detecting possibly Ф and

definitely Ф are based on the same data structure.

The data structure is built as lattices, the lattice is a possible execution path,

ordered by the vector time and every subsequent point in the path is increased by

one. The lattices are arranged by level that is the sum of components of the vector

time, all states in the same level will not affect each other, because they are the

potential states that are reached from the previous level, so they are concurrent.

Figure 6-2 is the example of the lattices of global predicate states, S is the global

state the execution is going through, and the numbers on the right corner is the

vector clock of that global state. This example only has two processes, so the

vector time only has two components.

143

Figure 6-2 the lattices of global predicate state

The centralized algorithms are able to assemble the local state to the global state,

order the global state into the lattices. There is a central process P0 and each local

process Pi sends its local state trace, each state with its vector time, to P0; P0

contains n queues, Q1…Qn . Qi contains Pi’s states trace; each local state of a

process are stored in the queue. Figure 6-3 illustrates the queues where Pi stores

each local state trace of each process.

Figure 6-3 Local trace of states in the queues of central process

A global state is assembled from the local states; all these local states are selected

from one element of each queue; but which local state should be selected from

...(S2,V2)(S1,V1)Q1 Process 1

Q3 Process n

Q2 Process 2(S2,V2)(S1,V1)

...(S2,V2)(S1,V1)

(local state, vector Time)

144

each queue? The question can be answered by the following rules, based on the

vector time. Each local state in the queue is labelled with its vector time V(Si), Si

is a local state of Pi . A valid global state has to satisfy (Robert Cooper & Keith

Marzullo 1991, p170)

 i,j : 1 i,jn : V(Si) [i]V(Sj)[i]

This condition states that a message cannot be received before it is sent. The

newest update of the vector time is only known by the corresponding process

itself, other processes only hold the earlier time than or the same time as the

process.

For each local state Si of a process Pi there is exists a minimum global state Smin(Si)

that contains Si and a maximum global state Smax(Si) that contains Si. The global

states are (Robert Cooper & Keith Marzullo 1991, p170):

Smin (Si)=(S1, S2, … , Sn) : V(Sj)[j]=V(Si)[j] and

Smax(Si)= (S1, S2, … , Sn) : V(Sj)[i] V(Si)[i] S’
j : Sj S’

j V(S’
j)[i] > V(Si)[i]

These two rules constrain the selection of the levels that Si occurs; the minimum

level containing Si is very easy to compute, it is the sum of components of the

vector timestamp V(Si); for each sequence Qi , P0 can construct the set of states at

each level; the sum of the components of timestamp of the last element of Qi is the

last level. For any level that is greater than the last level (Smax(Si)), P0 removes Si

from Qi .

Given the states of level lvl, the set of states at level lvl+1 can be constructed as

follows; for each global state GS(S1, S2, … , Sn), construct the n global state (S1+1,

S2, … , Sn) (S1, S2+1, … , Sn)…(S1, S2, … , Sn+1).

145

Figure 6-4 gives the example how to construct the lattices from the corresponding

execution.

(a)

(b)

Figure 6-4 Example to show the states build into the lattices, the level to the corresponding
lattices. (a) Corresponding state lattice of the execution of figure. (b) the state lattice for the
execution.

(4,0)

(0,0)

(1,1)

(0,1)

(2,0)

(4,2)

(4,3)

(3,3)

(4,1) (3,2)

(2,2)(3,1)

(2,1)(3,0)

(1,0)

(4,6)(5,5)(6,4)

(4,5)(5,4)

(4,4)

(3,4)

Levels

6

4

3

5

2

7

8

9

10

11

0

1

State lattice labelled using event numbers

146

6.4.1 Algorithms	to	detect	possibly	predicate	and	definitely	predicate	

After the state lattice is built, detecting predicate can proceed. The algorithm for

detecting a relational predicate by examining the state lattice can be describe as

following:

Variables:

Set of global states current Ф, next Ф GS(0,0,...,0)

int level 0

Possible(Ф):

While (no state in current Ф satisfies Ф) do

If (current Ф={final state}) then return false;

lvl lvl+1;

current Ф {states at level lvl};

return true.

Definitely(Ф):

remove from current Ф those states that satisfy Ф

lvl lvl+1;

while (current Ф not empty) do

next Ф {states of level lvl reachable from a state in current Ф };

remove from next Ф all the states satisfying Ф;

if next Ф = {final state} then return false;

lvl lvl+1;

current Ф next Ф;

return true.

147

possibly(Ф): To detect possibly predicate, an exhaustive search of the state lattice

is performed; any one state that satisfies Ф the search can be terminated; the

algorithm examines the lattice level by level. It starts from level 0, ends at the

final state; each level is examined to find a state that satisfiesФ; if such state exists

the algorithm terminates.

Definitely(Ф): For definitely to be true, there should exist a set of states that

satisfy Ф, every path of execution going through one of these states. It is not

necessary that all these states are at the same lattice level. Figure 6-5 is the

example of the set of states that are not at the same level, but all the states in the

set satisfy the predicate and every execution path goes through one of these

states(4,6), (5,5), (6,5), (7,4).

Because definitely (Ф) may be true but the sets of states may not at the same level,

the Possibly (Ф) algorithm approach cannot be applied to the Definitely (Ф)

predicate; definitely approach detects the states that not satisfy predicate Ф

(satisfy ¬Ф); rather than track the state in which Ф is true, it tracks the states in

which Ф is not true, the set of states tracked at different level should be reachable

from the previous level; variable next Ф is used to check any states in the next

level that do not satisfy predicate; the states that do not satisfy predicate are stored

into the next Ф, next Ф go through all the level from initial to final, if the next Ф is

empty the algorithm terminated successfully, otherwise it terminates

unsuccessfully.

148

Figure 6-5 Example to show that states in which Definitely Ф is satisfied need not be at the same
level in the state lattice. (a) Execution. (b) Corresponding state lattice.

6.5 Conjunctive	Predicate	

Up to now, the predicates introduced are relational; the predicate can be specified

in the system, after all execution paths are constructed. Another predicate is called

a conjunctive predicate, where a predicate Ф will be given first, and the states that

satisfy Ф are recorded. A predicate Ф is a conjunctive predicate if and only if Ф is

the logical “AND” of local predicates. It can expressed as the conjunction i,j∈nФi,

where Фi is a predicate local to process i, n is the total number of process. The

predicate of interest can be modelled as a conjunctive predicate; there are two

main algorithms for the conjunctive predicate: centralized algorithm (Figure 6-6)

and distributed algorithm (Figure 6-7). The difference between centralized and

distributed algorithm is that the centralized algorithm support offline GDP

evaluation and the predicates can be specified after system execution; the

distributed algorithm evaluates the predicate in the real-time and the predicate has

to be specified ahead. This section will describe the algorithms for conjunctive

predicate.

149

Figure 6-6 centralized algorithm

Figure 6-7 distributed algorithm

6.5.1 Interval‐based	centralized	algorithm	for	conjunctive	predicate	

In the interval based approach, the local predicate changes between false and true;

for some periods the local predicate is true in a process, some periods it is false;

the local predicate shifts during the execution, and is illustrated in Figure 6-8.

Process 1 Process 2 Process 3

Observer process Predicate specification &
evaluation

Specify predicates

Process

Evaluate
predicates

Process

Evaluate
predicates

Process

Evaluate
predicates

All predicates are true
store to the log

150

Figure 6-8 for a conjunctive Predicate the shaded durations indicate the periods when the local
Predicates are true.

For two processes Pi and Pj, when the local predicate Фi and Фj are true, the

intervals of these processes are denoted Xi and Yj. Let the start and end of interval

X be denoted as min(X) and max(X), for interval Y is the same. Assume the

global state predicate is defined on these two processes, then Definitely (Ф) and

possibility (Ф) can be defined as:

Equation 6-1 Definitely(Ф):min(X) ≺ max(Y) min(Y) ≺ max(X);

Equation 6-2 ¬Possible(Ф) :max(X) ≺ min(Y) max(Y) ≺ min(X);

where ≺ means an irreflexive partial ordering representing the causality relation

on the event set(Ajay D.Kshemkalyani 2003), for example if event e ≺ e’ T(e)

< T(e’), T is the timestamp. Figure 6-9 shows the condition for two processes.

Figure 6-9 Illustrating conditions for Definitely(Ф) and ¬Possible(Ф), for two processes.

151

The conjunctive predicate for more than two processes (Ajay D.Kshemkalyani

2003) are defined as

Equation 6-3 Definitely(Ф) if and only if i,j∈n Definitely(ФiФj);

Equation 6-4 Possibly(Ф) if and only if i,j∈n Possibly(ФiФj);

Interval-based centralized algorithm runs the algorithm on a central server P0 to

monitor possibly or definitely conjunctive predicate Ф (Punit Chandra and Ajay

D.Kshemkalyani 2005;Vijay K.Garg and Brian Waldecker 1994;Vijay K.Garg

and Brian Waldecker 1996). When a local predicate is true, the process can send

its vector timestamp of start and end events of an interval to P0, the interval is part

of the log. Another element of the log is a queue of events in the interval, called

the process log; P0 stores the log of a process to a queue; each queue contains a set

of intervals of one process. Figure 6-10 is the data structure of the data structure

for an interval queue of P0.

Figure 6-10 data structure for an interval queue of central process P0

If any message send or receive event between start of previous interval and the

end of later interval, then an interval needs to be sent to central process, each

Interval

Start
Vector time

End
Vector time

Queue for a process

Process log

log

152

execution need send most 4 messages, two from sender and another two from

receiver.

There are two queues in the algorithm, updatedQueues and newUpdatedQueues.

The updatedQueues stores the indices of the queues whose heads got updated; the

newUpdatedQueues is a temporary variable to update updatedQueues. There are

two situations to update the queue of a log of a process; when a new log is added

to the head of the queue, or the head of the queue is deleted, as determined by

Equation 6-1. After the queue is updated, the new head is the candidate log, the

interval of the log is the candidate interval. Each new candidate interval is

examined with the head of all other queues by Equation 6-1. In each comparison,

if it does not satisfy the Equation 6-1, one of the two intervals examined is marked

for deletion and the queue is updated by doing the deletion.

queue of Log: Qi, Q2, … Qn
set of int: updatedQueues, newUpdatedQueues {}
On receiving interval from process Pz at P0:
(1) Enqueue the interval onto queue Qz
(2) if (number of intervals on Qz is 1) then
(3) updatedQueues {z}
(4) while (updatedQueues is not empty)
(5) newUpdatedQueues {}
(6) for each i ∈ updatedQueues do
(7) if (Qi is non-empty) then
(8) X head of Qi
(9) for j = 1 to n do
(10) if (Qj is non-empty) then
(11) Y head of Qj
(12) if (¬(min(X) ≺ max(Y))) then // Definitely
(13) newUpdatedQueues {j}∪newUpdatedQueues
(14) if (¬ (min(Y) ≺ max(X))) then // Definitely
(15) newUpdatedQueues {i}∪newUpdatedQueues
(12’) if (¬ (max(X) ≺ min(Y))) then // Possibly
(13’) newUpdatedQueues {i}∪newUpdatedQueues
(14’) if (¬ (max(Y) ≺ min(X))) then // Possibly
(15’) newUpdatedQueues {j}∪newUpdatedQueues
(16) Delete heads of all Qk where k ∈ newUpdatedQueues
(17) updatedQueues newUpdatedQueues
(18) if (all queues are non-empty) then
(19) solution found. Heads of queues identify intervals solution.

 means empty

153

The algorithm above is a centralized algorithm, it detects a conjunctive for

possibly or definitely predicate; lines 12-15 are for definitely predicate, lines 12’-

15’ is for possibly.

The set updatedQueues stores the indices of all the queues whose heads get

updated. In each iteration of the while loop, the index of each queue whose head

is updated is stored in set newUpdatedQueues (lines 12–15 or 12’–15’); In lines

16 and 17, the heads of all these queues are deleted and indices of the updated

queues are stored in the set updatedQueues. Thus, an interval gets deleted only if

it cannot be part of the solution. Now observe that each interval gets processed

unless a solution is found using an interval from each process. According to

Def5.5.3 and Def5.5.4, if each queue is not empty and their head cannot be

deleted, then the set of logs at the head of each queue forms the global state that

satisfy the conjunctive predicate.

6.5.2 Distributed algorithms for conjunctive predicate

6.5.2.1 	Distributed	state	based	token	algorithm	for	possibly	conjunctive	

predicate	

In the distributed state based token algorithm, the queue Qi stores the local vector

times of process Pi. Qi is maintained locally at Pi; there is a token passing through

whole network. The token contains a vector time (Vtime) which is the newest

update of each process and a set of Boolean values (Valid) that are flag for the

validation of local state of a process. If the local state is validated (predicate is

true) the value becomes to true. The data structure for a token can be expressed as:

154

struct token{

interger: Vtime[1…n];
boolean: Valid[1…n];

 }

where n is the total number of process.

When algorithm starts, program initialized as:

queue of array of integer: Qi ;

Token can be randomly initialized by a process;

when a process Pi receives a token it does following:

1. while(token.Valid[i])=0 do Check if the current local state of process Pi is
validated.

2. await (Qi to be nonempty) Waiting till at least one vector timestamp is stored into
the Pi

3. if((head(Qi))[i]>token.Vtime[i]) then Earliest timestamp of Pi may be part of vector
timestamp of the token, it depends on if the earliest
timestamp is greater than the timestamp of token.

4. token.Vtime[i] (head(Qi))[i]
5. token.Valid[i] 1;
6. else dequeue head(Qi); Delete the inconsistent vector timestamp
7. for j=1 to n (ij) do Checking if the timestamps of other process of the

local vector time consist with the vector timestamps of
token.

8. if ij and (head(Qi))[j] token.Vtime[j] then
9. token.Vtime[j] (head(Qi))[j];
10. token.Valid[j] 0;
11. dequeue (head (Qi));
12. if for some k, token.valid[k]=0 then
13. send token to pk;
14. else return (1);

When a process Pi can receive a token, only token.Valid[i]=0. line 3 to 6

compares the ith vector time of earliest timestamp of Qi with the token.Vtime[i]

(the earliest timestamp in Qi is head(Qi)); if head(Qi) greater than token.Vtime[i],

then the token.Vtime[i] updated to head(Qi)[i], the token.Valid[i] set to true, the

next step need to check if other vector time components of head(Qi) consistent

with corresponding components of vector time of token, line 7 starts such a

checking loop; if line 8 is true the state of Pj is not consistent (Figure 6-11(a)),

token.Valid[j] is reset, the token is sent to Pj before termination of the algorithm

155

and Pj needs to check its Qj that is consistent with all the other states in

token.Vtime; otherwise the state of Pj is consistent (Figure 6-11(b)).

Figure 6-11 two possibilities assigns head(Qi)[i] to a token

If all values of Valid of the token, then a solution is found; otherwise the

algorithm is going to repeat, the code goes back to line 1 as line 14 stated.

6.5.2.2 	Distributed	interval‐based	token	algorithm	for	Definitely	

conjunctive	predicate	

The interval-based token algorithm for definitely conjunctive predicate is based

on the “Distributed algorithm to detect strong conjunctive Predicates” (Punit

Chandra and Ajay D.Kshemkalyani 2003) . Define Ii ↳ Ij as min(Ii) ≺ max(Ij)

Problem statement. In a distributed execution, identify a set of intervals I

containing one interval from each process, such that

(i) the local predicate Фi is true in Ii ∈ I, and

(ii) (ii) for each pair of processes Pi and Pj , Definitely(Фi,j) holds, i.e., Ii

↳ Ij and Ij ↳ Ii.

Before explaining the algorithm, the data types that are used in the algorithm

should be stated. The type of Log contains start (Vi
-) and end (Vi

+) vector

156

times of the interval. Each process has a queue to store the logs. An interval

Y at Pj is deleted if on comparison with some interval X on Pi, ¬X↳Y , i.e.,

Vi
-(X)>Vj

+(Y)[i]. Thus the interval(Y) being deleted or retained depends on

its value of Vj
+(Y)[i]. The value Vj

+(Y)[i] changes only when a message is

received. Hence an interval needs to be stored only if a receive has occurred

since the last time a Log of a local interval was queued. The Table 6-1 shows

the local process data type used in the algorithm.

type Log

start: array[1 . . .n] of integer;

end: array[1 . . .n] of integer;

type Q: queue of Log;

When an interval begins:

Logi.start Vi
-

When an interval ends:

Logi.end Vi
+

if (a receive event has occurred since the last time

a Log was queued on Qi) then Enqueue Logi on to the local queue Qi .

Table 6-1 Tracking intervals locally at process Pi.

There are three types of message in the algorithm; request message of type

REQUEST, reply message of type REPLY, token message of type TOKEN, they

are denoted as REQ, REP, and T, respectively Table 6-1 shows the message type

for the algorithm.

type REQUEST //used by Pi to send a request to each Pj

start: integer; //contains Logi.start[i] for the interval at the queue head of Pi

end: integer; //contains Logi.end[j] for the interval at the queue head of Pi , when sending to Pj

type REPLY //used to send a response to a received request

updated: set of integer; //contains the indices of the updated queues

type TOKEN //used to transfer control between two processes

updatedQueues: set of integer; //contains the index of all the updated queues

Table 6-2 Message Type

157

1 Process Pi initializes local state
 Qi is empty.

2 Token initialization
 A randomly elected process Pi holds the token T.
 T.updatedQueues {1,2,…,n}.

3 RcvToken: When Pi receives a token T:
 Remove index i from T.updatedQueues
 wait until (Qi is nonempty)
 REQ_start Logi.start[i], where Logi is the log at head of Qi
 for j = 1 to n do
 REQ_end Logi.end[j]
 Send the request REQ to process Pj
 wait until (REPj is received from each process Pj)
 for j = 1 to n do
 T.updatedQueuesT.updatedQueues ∪REPj.updated
 if (T.updatedQueues is empty) then
 Solution detected. Heads of the queues
 identify intervals that form the solution.
 else
 if (i ∈ T.updatedQueues) then
 dequeue the head from Qi
 Send token to Pk where k is randomly

 selected from the set T.updatedQueues.
4 RcvReq: When a REQ from Pi is received by Pj :

 wait until (Qj is non-empty)
 REP.updated Ø
 Y head of local queue Qj
 Vi

-(X)[i] REQ.start and Vi
+(X)[j] REQ.end

 Determine X ↳ Y and Y ↳ X
 if(¬(Y ↳ X)) then REP.updated REP.updated∪ {i}
 if(¬(X ↳ Y)) then
 REP.updated REP_updated ∪ {j}
 Dequeue Y from local queue Qj
 Send reply REP to Pi.
Table 6-3 Distributed algorithm to detect Definitely(Ф).

In the algorithm only the token-holder can send REQs and receive REPs to all

other processes (line 3f), Logi.start[i] and Logi.end[j] for the interval at the head

of the queue Qi are piggybacked on the request REQ sent to process Pj lines (3c–

3e). On receiving a REQ from Pi , process Pj compares the piggybacked interval

X with the interval Y at the head of its queue Qj (line 4e). The comparisons

between intervals on process Pi and Pj can result in these outcomes. (1)

Definitely(Фi,j) is satisfied. (2) Definitely(Фi,j) is not satisfied and interval X

can be removed from the queueQi . The process index i is stored in REP.updated

(line 4f). (3) Definitely(Фi,j) is not satisfied and interval Y can be removed from

158

the queue Qj . The interval at the head of Qj is dequeued and process index j is

stored in REP.updated (lines 4g, 4h). Note that outcomes (2) and (3) may occur

together. After the comparisons, Pj sends REP to Pi. Once the token-holder

process Pi receives a REP from all other processes, it stores the indices of all the

updated queues in the set T.updatedQueues (lines 3h, 3i). A solution, identified by

the set I formed by the interval Ik at the head of each queue Qk , is detected if the

set updatedQueues is empty. Otherwise, if index i is contained in

T.updatedQueues, process Pi deletes the interval at the head of its queue Qi (lines

3m, 3n). As the set T.updatedQueues is non-empty, the token is sent to a process

selected randomly from the set (line 3o). The correctness of the algorithm is based

on Equation 6-1 and Equation 6-3. The following observations can be made:

 If Definitely(Фi,j) is not true for a pair of intervals Xi and Yj , then either i or

j is inserted into T.updatedQueues.

 An interval is deleted from queue Qi at process Pi if and only if the index i is

inserted into T.updatedQueues.

 When a solution I is detected by the algorithm, the solution is correct, i.e., for

each pair Pi,Pj ∈ N, the intervals Ii = head(Qi) and Ij = head(Qj) are such that

Ii ↳ Ij and Ij ↳ Ii (and hence by Equation 6-1 and Equation 6-2, Definitely(Ф)

must be true).

 If a solution I exists, i.e., for each pair Pi,Pj ∈ N, the intervals Ii, Ij belonging

to I are such that Ii ↳ Ij and Ij ↳ Ii (and hence from Equation 6-1 and Equation

6-2, Definitely(Ф) must be true), then the solution is detected by the

algorithm.

159

6.6 Predicate	detection	in	automotive	system	

Comparing to the desk computer, the automotive distributed systems have less

CPU power, less memory, and different network protocols. Therefore to apply

GPD on the automotive system has to satisfy the following requirement:

 No interference with application software so as not to effect its real-time

characteristics.

 The local state cannot be recorded into the local ECU memory.

 As less as possible to use the processor power to implement the GPD

functions.

 CAN bus is non-FIFO and event triggered network (the message are

transmitted in priority order.).

The above requirements for the automotive system are used to compare and

contrast the alternative GPD options

6.6.1 Distributed	algorithm	vs.	centralized	algorithm	

The distributed GPD algorithms need to specify the predicate ahead and each

node only evaluates its own predicates (it only knows its local variable’s value).

Therefor the specified predicate cannot express the logical relationship between

the variables that are in the different nodes, e.g. x in node1 and y in node2, for the

distributed algorithm it is impossible to give the predicate like “x=y”, because

node1 does not know node2’s variable. Each node has to evaluate the predicates

locally (more process are needed).

The centralized GPD algorithms use extra process to observe each local process.

The predicate can be specified after the system execution and the evaluation can

160

be done offline. It does not use much local processor power. Almost all heavy

work can be done by the extra process.

6.6.2 Conjunctive	vs.	relational	predicate	

The conjunctive predicates need to specify the predicate ahead. Each node need to

evaluate its own local predicates, the evaluation results are connected by logical

“AND”. If the conjunction is true, the local states construct the validated global

state for the predicate. The global state is stored in a log. This way makes the

storage is smaller, due to it only logs the validated predicate states. However it

does not give the whole execution trace.

The relational predicate can be done by the offline. All global states are captured

and the execution lattice is built up. The predicates can be specified after the

execution. It gives a global over view of the execution; however comparing to the

conjunctive predicate it consumes more memory.

6.6.3 GPD	algorithm	choice		

Finally putting all together the requirements of the automotive systems, the

comparison of distribute GPD algorithm and centralized GPD algorithm, and the

comparison of conjunctive predicate and relational predicate, the centralized and

relational algorithm is the better choice. They do not consume too much local

process power, an extra process can be used to do the heavy work; this extra

process may be done by a desktop computer which is much more powerful than

an ECU. Also the global state can be recorded into the hard disk of the desktop

computer; it won’t consume any storage of the ECU. Because the GPD algorithms

do not record the communication channel states, the network protocol is not big

issue for it.

161

6.7 Conclusion

The global state capture is a fundamental problem in the asynchronous distributed

system; this has been discussed in chapter 4. The extension of this problem is to

observe global states that satisfy a given predicate of variables of the system. If

the Predicates remain true once they become true, it is called a stable predicate;

dead lock and termination detection are based on the settable predicate detection.

Another predicate is unstable predicate which is very hard to detect, because the

values of variables that make the predicate true can change and falsify the

predicate.

The unstable predicate can be defined as possibly and definitely, Possibly means

the execution may go through the global states that satisfy the predicate,

Definitely means all executions must go through a global state that is in the set of

global states that satisfy the predicate.

There are two ways to specify predicates, relational and conjunctive. Relational

predicate detection collects entire execution states, and uses these global states to

build execution lattices, the predicate can be specified after the lattices are built.

From the execution lattices, the definitely and the probably predicate can be found.

The conjunctive predicate detection needs to specify the Predicates ahead of

execution; only the global states that satisfy this conjunctive predicate can be

captured.

The global predicate detection could be applied to automotive distributed system

testing, using the predicate detection to verify if the system is in the right states

given by predicate. In order find the failure states of the system, the failure

variable can be used as Predicates. For some important issues of a car such as

162

security, e.g. the brake or airbag. Predicate detection can be used to detect unsafe

system states. Finally a centralized relational predicate algorithm is chosen to

apply on the automotive distributed system testing.

163

References

Ajay D.Kshemkalyani. A Fine-Grained Modality Classification for Global

Predicates. 14, 807-816. 2003. IEEE Transactions.

Alexander I.Tomlinson & Vijay K.Garg. Detecting relational global predicates in

distributed system. 28[12]. 1993. ACM New York, NY, USA.

Friedemann Mattern. Algorithms for distributed termination detection. 2, 161-175.

Distributed Computing.

GARY S.HO & C.V.RAMAMOORTHY. Protocols for Deadlock Detection in

Distributed Database Systems. 8. 1982. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING.

K.M.Chandy & L.Lamport. Distributed Snapshots: Determining Global: States of

Distributed Systems. 3. 1985. ACM Transactions on Computer Systems.

Keith Marzullo & Gil Neiger. Detection of Global State Predicates. [LNCS 579],

254-272. 1991. Proceedings of the 5th Workshop on Distributed Algorithms.

Neeraj Mittal & Vijay K.Garg. On Detecting Global Predicates in Distributed

Computations. 3-10. 2001. International Conference on Distributed Computing

Systems.

Punit Chandra & Ajay D.Kshemkalyani. Distributed algorithm to detect strong

conjunctive predicates. 87, 243-249. 2003. Information Processing Letters.

Punit Chandra & Ajay D.Kshemkalyani. Causality-Based Predicate Detection

across Space and Time. 54, 1438-1453. 2005. IEEE Transactions on Computers.

164

Robert Cooper & Keith Marzullo. Consistent Detection of Global Predicates.

163-173. 1991. Proceedings of the ACM/ONR Workshop on Parallel and

Distributed Debugging.

Vijay K.Garg & Brian Waldecker. Detection of weak unstable predicates in

distributed programs. 5, 299-307. 1994. IEEE Transactions on Parallel and

Distributed Systems.

Vijay K.Garg & Brian Waldecker. Detection of Strong Unstable Predicates in

Distributed Programs. 7, 1323-1333. 1996. IEEE Transactions on Parallel and

Distributed Systems.

 	

165

Section	Three:	Methodology	

 	

166

Chapter	7 	Methodology	

7.1 Introduction	

This research investigates the theoretical methods to validate CAN network based

distributed automotive control systems. A validated system should satisfy the

requirements from the users. The approach taken is to build a prototype global

predicate evaluation system to check if the system under test validated. The

approval is shown in Figure 7-1 . The prototype takes the data from the ECU

network descriptions, evaluates the predicate according to these data and

generates the validation result. In order to validate this result, a global predicate

evaluation result should be generated manually. The result of the prototype

evaluation should match the result that is evaluated manually; otherwise the

prototype is not validated. This chapter will conceptually introduce the prototype.

Figure 7-1 Global validation of distributed automotive control systems prototype

167

7.2 	Construct	global	state	lattice	

The lattice that is evaluated by the predicate is constructed from the global states

of the system. The global state is constructed from the local states of each node in

the system. The global state has to be consistent otherwise it won’t make any

sense. For example, a message won’t be received before it is sent; this never

happens in the distributed system. As there is no physical global time in the

system, to decide if the global state is consistent, the prototype needs to assign the

logical time to each local state. The logical time used in the prototype is a vector

clock. The whole procedure to build the lattice is shown in Figure 7-2 . Next

sections are going to go through these three steps.

Figure 7-2 the procedure to build the lattice

7.2.1 Vector	time	assignment	

The vector clock assignment depends on the local process event. When an internal

event happens the node only increases its own clock. If it receives a message it

updates all other node clocks from the sender’s vector clock(Leslie Lamport

1978). The local state consists of node variables of interest in predicate evaluation.

It can be logged by the XCP protocol.

The XCP measurement and the real network communication channel can be either

on the same CAN channel or a different channel. The CANoe application records

the whole network information. All messages on the network are synchronized by

Assign local vector times

Identify consistent global

states assign the global

vector time

Build the lattice

168

CANoe real-time clock. The result is written into a log file, its format is shown in

Table 7-1.

Real
Time

CAN
Channel

Message
identifier

Message
type

Frame
type

Data
length

Data

Table 7-1 CANoe log file format

Figure 7-3 is an example of the CANoe log file

Figure 7-3 CANoe log example

The log file also has other different formats, but they won’t be used in the

prototype, so it is not necessary to introduce them.

There are two ways to record local state using XCP; one is time triggered that will

send its local state continuously; another one is event triggered where the node

only sends its state when the state changes. Each method has its own advantages

and disadvantages; the comparison of them is shown in Table 7-2 .

 0.000236 1 1 Tx d 8 0B 0B 0B 0B 0B 00 00 00
 0.000478 1 2 Tx d 8 15 15 15 15 00 00 00 00
 0.000728 1 3 Tx d 8 1F 1F 1F 00 00 00 00 00
 0.100248 1 1 Tx d 8 0C 0C 0C 00 00 00 00 00

0.100496 1 101 Tx d 8 01 01 02 00 00 00 00 00

Real time

CAN
channel

Message ID

Transmission
type

 Data length

 Data

 Frame type

Transmission type:
TX = Transmit message,
RX = Response message,
TXRQ = Transmit request.

Frame type:
d = data frame,
r = remote frame.

169

 Communication
traffic

Storage
requirement

ECU application
code modification

Time triggered High High none

Event triggered Low Low little

Table 7-2 time triggered and event triggered local state record mode

After the log file is generated, the local vector time needs to be assigned to the

local state. There are two kinds of event that can cause the local state change:

internal event and receiving event. An internal event is the event that only affects

the its own local variable, and only updates its corresponding vector time

component, e.g. timer triggered, panel button pressed, etc.. Receiving event

occurs when the node receives a message. It causes the receiving node local

variable change, as well as updating its corresponding vector time component. It

also needs to update other vector time components based on the sender’s vector

clock. Therefore the sending event causes the other nodes vector time to change.

7.2.2 Identify	consistent	global	state	(CGS)	

After all local states are assigned vector times; the next step is to construct the

global state from these local states. An inconsistent global state is not meaningful

in the sense that a distributed system can never be in an inconsistent state. To

decide if the global state is consistent, the prototype needs to evaluate its local

states’ vector time; the algorithm to evaluate if the global state is consistent is

(Ozalp Babaoglu & KeithMarzullo 1993) as follows:

i, j : 1 i n, 1 j n : VT(ei)[i] VT(ej)[i]

Equation 7-1 consistent cut

170

In the specification i, j represents the component (node) index in the vector time, n

represents the total number of nodes, VT represents vector time, e represents

event; it means if a global state is consistent, its local state vector time ith

component of node i (local time) has to greater than or equal to local state vector

time ith component of node j. Each node in the consistent global state has to have

its latest corresponding vector clock component value. When the sending event

happens, the receiving node knows the latest vector clock component of the

sender, that’s the situation VT(ei)[i] VT(ej)[i].

The following example demonstrates how to evaluate consistent global state.

Figure 7-4 illustrates two processes’ execution with vector time. Table 7-3 shows

how to find consistent global state from the execution. The subscript number of e

is the node number and the superscript number of e is the event counter (scalar

time or local time). The numbers in the bracket is the vector time, first number is

the scalar time of node 1 and second number is the scalar time of node 2. In the

Table 7-3, the vector time of e1
1 compares to the vector time of e2

x; the red

coloured number is the local time of node1 and the green coloured number is the

local time of node 2. According to Equation 7-1 in the red numbers and the green

numbers comparisons, both of them have to be true, for the global state to be

consistent. The global state which is constructed by e1
2 and e2

3 is consistent in the

case of VT(ei)[i] VT(ej)[i].

171

Figure 7-4 Two processes execution with vector time.

Node 1 event Node 2 event Vector time

comparison

result

e1
1 e2

1 (1,0) (0,1)

1>0 and 0<1

Consistent

e1
1 e2

2 (1,0) (0,2)

1>0 and 0<2

Consistent

e1
1 e2

3 (1,0) (2,3)

1>2 and 0<3

Inconsistent

Table 7-3 evaluate CGS example.

The example only shows a two nodes network, for three or more nodes the system

need to compare each node to all the other nodes.

If the global state is consistent, then the global vector time can be assigned to this

CGS. Each component of the global vector time is the highest value of each

node’s corresponding vector time component, e.g. for the CGS {e1
1, e2

1}, its

global vector time is (1,1) .

172

7.2.3 Build	the	lattice	

After all consistent global states are built; the next step is to build the lattice.

Figure 7-5 is an example of a two node execution lattice. The level on the right of

the lattice is defined as the sum of the global vector time (Keith Marzullo & Gil

Neiger 1991). In the same level, it is possible to have different CGS, it means at

the same time the system can be in any one of the same level consistent global

states; depending on the actual execution run.

Figure 7-5 Two node execution lattice example

The execution goes through levels; each CGS may have a corresponding

reachable CGS, it has to increase one corresponding vector time component by

one to reach the next CGS, e.g. in Figure 7-5 from S02 to S12 and S02 to S03 is

reachable, but it is not reachable from S02 to S21.

From the example lattice it can see that one application can go through different

consistent global state sequences. It is non-deterministic, so the next step needs to

evaluate if it goes through expected or unexpected states by specifying a predicate.

173

7.3 Evaluate	predicate		

For a given predicate (Ф) there are two modalities: Possibly predicate and

Definitely predicate. They are defined as (Robert Cooper & Keith Marzullo 1991)

Possibly predicate: “For all executions consistent with the observed behaviour,

there was some point in real time at which the global state of the system satisfied

Ф.”

Definitely predicate: “For all executions of P consistent with its observed

behaviour, Ф was true at some point.

Predicates are evaluated on the local states of nodes.

The prototype system should be able to take any combination of ECUs’ values to

evaluate if it is definitely or possibly true.

7.4 Validation	tests	

After the prototype is built, it is necessary to validate it. The method to validate

the prototype program is

1. Specify a predicate

2. Evaluates the test when system execution lattice by manually checking if

the global states in lattice satisfies the specified predicate.

3. Evaluate the under test system execution lattice by prototype.

4. Compare the manually generated result against the prototype result; if they

are match the prototype is validated, otherwise it is invalidated.

174

7.5 Conclusion		

The common problem for distributed system debugging is no physical global time

and shared memory exists. Some research on solutions has been done, but they are

mostly for the Ethernet (Kenneth P.Birman 1995, p288-292), not for the

distributed automotive system.

For the moment, the most reasonable method to debug the distributed automotive

system is to evaluate the predicate of the system execution lattice, which is

constructed by the consistent global states. A consistent global state is built using

the local state of each node, the selection of the local state is based on the

causality or logical time (vector time).

This research will build prototype software based on the GPD method to validate

CAN network based distributed automotive control system. The effectiveness of

the prototype in achieving system validation goals will be evaluated.

175

References

Keith Marzullo & Gil Neiger. Detection of Global State Predicates. [LNCS 579],

254-272. 1991. Proceedings of the 5th Workshop on Distributed Algorithms.

Kenneth P.Birman. Building Secure and Reliable Network Applications. 1995.

Department of Computer Science Cornell University Ithaca, New York 14853.

Leslie Lamport. Time clocks and the ordering of events in a distributed system.

558-564. 1978. Communications of the ACM.

Ozalp Babaoglu & KeithMarzullo . Consistent Global States of Distributed

Systems: Fundamental Concepts and Mechanisms. 1993. Italy, Laboratory for

computer science university of bologna.

Robert Cooper & Keith Marzullo. Consistent Detection of Global Predicates.

163-173. 1991. Proceedings of the ACM/ONR Workshop on Parallel and

Distributed Debugging.

176

Section	Four:	Implementation	

and	Testing	

177

Chapter	8 Prototype	Development	

8.1 Introduction		

The methodology to validate the CAN network based distributed automotive

control system has been given in the previous chapter. This chapter will describe

the design of the prototype software.

The first section gives an overview of the design of the prototype. The second

section describes the data requirement for the prototype. The third section talks

about how to generate the test cases for the prototype. The fourth section is the

detail of the prototype design.

8.1.1 Design	overview	

There are two main parts for the prototype software design.

1. The test case generation system uses UML to interpret the structure of the

test case and uses software to generate the test case described by the UML.

2. The prototype software evaluates execution lattice of CAN network ECUs.

8.1.1.1 Test	case	generation	system	

For the purpose of conveniently validating the prototype; the test cases can be

generated as CAPL code that simulates the ECUs. The CAPL code acts as a state

machine, any internal or receiving events happening will cause a state change.

The overall process of generating the test case can be illustrated as Figure 8-1

178

Figure 8-1 test case generating progress

The sequence for test case generation is

1. Using UML to model the test case which is described in a state machine

diagram.

2. Using a state machine template creates the XML file for each node.

3. Using CANoe to compile these CAPL codes.

4. Running the CAPL code, using CANoe to log messages passed on the

CAN network.

8.1.1.2 Prototype	software	

Based on the methodology that has been identified in Chapter 7, the prototype

structure can be generally illustrated as Figure 8-2.

Test case modelling
(State machine UML)

Interpreting state
machine in XML

CAPL generator
generate CAPL code

CANoe compiles CAPL
codes

Run CANoe generate
CANoe log

179

Figure 8-2 prototype design overview

The diagram shows: CANoe records the CAN messages and environment

variables of the system under test to the CANoe log file. The node of system

under test can be real ECUs and/or simulated ECUs using CAPL code. To run the

simulation also needs to create a CANdb database that describes the bus data in

symbolic terms. CANdb contains the communication matrix that describes the

senders and receivers of all messages. After the CANoe log is generated, the

prototype subsystem canoeDataProcessor reads this log file and encapsulates log

CANoe log Communication matrix

System under test

Real ECUs
CANoe (simulation node)

Prototype subsystems

Input predicate

Predicate evaluation result

(Possibly & Definitely)

canoeDataProcessor

+ CanMessage

+ CanoeLogReader

+ CanoeVectorClock

+ Measurement

state

+ GlobalState

+ LocalState

+ VectorClock

gpd

+ LatticeBuilder

+ Predicate

+ VectorTimeBuilder

180

data into classes. The subsystem state is used as data structures to encapsulate the

state element. The subsystem gpd assembles the encapsulated measurement data

from CANoe log and associated vector time as a local state. It evaluates

assembled local states to construct the consistent global states and assigns global

vector times to these consistent global states. According to the global vector time

of the consistent global state gpd builds the system execution lattice. For a given

predicate, gpd can evaluate if it is a definitely or a possibly predicate. The gpd

package is the core package of the whole prototype. Most of the processing is

done by gpd. There are also other packages for convenient operation of the

prototype and representing the result. They will be introduced in a later section.

The next sections will give the detail of how the prototype is designed, but first of

all it is necessary to introduce the data required for the prototype.

8.2 Implementation	tools	

For the prototype design, the following tools are used.

 Enterprise architecture (EA): modelling the state machines of the node.

 Visual studio: CAPL code generator (C#).

 CANoe: it is a comprehensive software tool for the development, testing

and analysis of entire ECU networks and individual ECUs. It runs CAPL

code, monitors CAN bus, generates CANoe log file.

 Eclipse: all predicate evaluation programs are coded in java. Eclipse offers

a powerful Integrated Development Environment (IDE) for Java.

181

8.3 Data	requirements	

There are four types of file required for the test case and the prototype. Data used

by test case generation are UML (test case modelling), XML (test node template).

Data used by prototype are asc (CANoe log file), XML (communication matrix).

They will be introduced in this section one by one.

8.3.1 UML	test	case	modelling		

The UML diagram is used to model the test case with state machine diagrams; it

gives a clear conceptual view of the test case. The test case is constructed as state

machines, because the real ECU works similar to state machine as well. Figure

8-3 is an example of a simple state machine; there are three states in this state

machine, the state1 sets timer t_n1_1 as 50 milliseconds, when the timer t_n1_1

expires the transition happen, the state machine will be in the state2; in state2, it

sends message msg_n1_1 and set t_n1_2. When the timer t_n1_2 expires, the

transition happens, the state machine goes to state3; there is no action in state3;

when the state machine receives message msg_n2_1 (message ID is hex 102), the

transition makes the state machine go to state1; the state machine will repeat the

process.

Figure 8-3 state machine example

State1

+ set / t_n1_1(50)

State2

+ send / msg_n1_1(101)
+ set / t_n1_2(50)

State3

[rec msg_n2_1]
/msg_n2_1(102)

[on t_n1_2]

[on t_n1_1]

182

In any state, the state machine can set timer and/or send message; the timer name

is as t_n1_1, the n1 means node 1, the following 1 means state 1. The message

name is similar to the timer name, the only different is the message variable starts

with msg. The transitions can be caused by timer expiring, receiving message, and

environment variable changes (the variable on the CANoe panel changes. e.g.

button pressed etc.). The transitions timer expiring and environment variable

changing uses “on” before the timer variable and environment variable; The

transition receiving message uses “rec” before the message variable.

Based on Figure 8-3, the corresponding CAPL code is shown in Figure 8-4.

CAPL program manual is (Vector CANtech 2004). To use CANoe/CAPL to

simulate test case nodes is quicker than programming individual ECUs.

Figure 8-4 CAPL code

183

8.3.2 CAPL	code	generator	XML	schema	

The UML specification of the state machine node can be manually saved in XML

format. This XML file is used as a template to generate the CAPL code which

simulates the ECU on the CAN network. The XML file structure can be described

by the XML schema. The state machine XML template will be constructed by

using this schema. A state machine node can be described as Figure 8-5 .

Figure 8-5 state machine node (from Eclipse UML2.1 plug-in)

There are four components in a state machine node; states, initialState, transition,

metadata. They are instances of four different types that is illustrated in Figure

8-2

184

Figure 8-6 state machine node component types

These four types also contain subtypes; the following subsections will

individually describes all types of data used by the state machine schema.

8.3.2.1 StatesType	

StatesType consists of one or more State type elements. A state type element is a

local state of the state machine node. Each state type has its state number (state

index) and variables (local states). The StatesType structure illustrates as Figure

8-7

Figure 8-7 StatesType

185

8.3.2.2 InitialState	

InitialState type element describes the initial state and event of the state machine.

It is illustrated in Figure 8-8

Figure 8-8 Initial state type

The initialStateNum is the initial state number (state index); the events that

possibly happen in the initial state are send message and set timer.

ini_send_message and ini_setTimer is instances of Message type and Timer type.

The structure of Message type is similar to a CAN message. msgName records the

name of the message. messageId is type of MessageType that is a selection type:

it can either be a standard message which uses standard CAN message ID or an

extended message which uses extended message ID. The MessageType type is

illustrated in Figure 8-9 ; dataLength describe the length of the data frame.

msgData records the message data that can contain 0 to 8 bytes, MsgData type is

illustrated in Figure 8-9

186

Figure 8-9 Message type

The structure of Timer type records the name of the timer (timerName) and the

duration of the timer (msTimer); it is illustrated in Figure 8-10

Figure 8-10 Timer type

8.3.2.3 Transition	

The transition type data records current state number, the event that causes the

state change and next state number. Figure 8-11 shows the structure of the

Transition type. Variable currentStatNum and nextStateNum is the number of a

state and event is an instance of eventData type.

Figure 8-11 Transition type

187

eventData type consists of eventTag, action, send_message, setTimer. It is

illustrated in Figure 8-12. eventTag is instance of ActionType that is a selection

type, it records event tag that is used as boundary in the CAPL code to separate

different events, the ActionType is illustrated in Figure 8-12. Action type records

the variable that is triggered by event, it is used as handler to handle the event e.g.

a timer variable t_n1_1 is set to 100 milliseconds, when t_n1_1 expires, the

handler “on t_n1_1” will handle the timer expiry event. In the handler, the local

states are changed and the messages can be sent and/or the timers can be set as

well. The Message and Timer types have been introduced in 8.3.2.2 .

Figure 8-12 eventData type

8.3.2.4 Metadata	

Metadata is used to record the information about the test case and the node name

in the case. It is illustrated in Figure 8-13

188

Figure 8-13 Metadata type

8.3.3 CANoe	log	file	

The CANoe log file is generated by CANoe. It logs the information about

transmitted CAN messages and environment variables. The structure of the file

has been described in section 7.2.1.

The local state of ECUs (simulated and/or real) will be recorded by the CCP

(CAN Calibration Protocol) either on the same or different network. CCP is also

CAN messages, thereby the CANoe logs the local states of each nodes in a single

CANoe log file. The CANoe timestamp will be used to order local ECU state and

inter ECU messages. The local states can be stored by CCP either continually or

triggered by the state change. For continually log the local states, the frequency of

CCP data logging is important to ensure that all internal events changes are

detected.

8.3.4 Communication	matrix		

Communication matrix describes the information about the sender and receivers

of the corresponding CAN message ID. The CAN message ID has to be unique on

the same CAN network: only one node can send a specific ID message, but it can

be received by different nodes.

189

The communication matrix is contained in CANdb, but it is in the different format

that is not convenient to use by prototype program. For the prototype system, it is

manually migrated to XML format.

The communication matrix schema contains zero or more message type elements;

a message type element contains the attributes of the message id and the number

of the sender node, it also contains a list of the receiving node numbers. The

structure of the communication matrix illustrates in Figure 8-14

Figure 8-14 Communication Matrix structure

All the data required by test cases and the prototype has been introduced in this

section. The next section will describe the design of the test cases and the

prototype.

8.4 Test	case	program	design	

8.4.1 CAPL	code	generator	

CAPL code generator is used to convert the XML state machine node description

to CAPL code. It is programed in C#. There are two main classes of the CAPL

code generator: Form and CodeGenerator.

190

8.4.1.1 Form	class	

The Form’s class diagram is shown in Figure 8-15, it has two main event

operations; CAPL code XML template selection button selXML_btn_click gives a

file selection dialog to let users select the XML template file. CAPL code

generation button generateBtn_Click opens a saving path dialog to let the user

choose the saving path of the CAPL code.

Figure 8-15 Form class diagram

Next is an example how to use the GUI. The GUI of the code generator is shown

in Figure 8-16

Figure 8-16 CAPL code generator GUI

The select XML button lets the user select the state machine XML template as

shown in Figure 8-17

Form

Form

+ Form()
- Form_Load(object, EventArgs) : void
- generateBtn_Click(object, EventArgs) : void
- selXML_btn_Click(object, EventArgs) : void

191

Figure 8-17 CAPL code generator select XML template dialog

After the XML template file is selected, click the Generate button to choose the

desired path and give the name of the CAPL code file to be saved. This is shown

in Figure 8-18 .

Figure 8-18 saving CAPL code dialog

8.4.1.2 CodeGenerator	class	

The CodeGenerator class does the actual job of converting the XML template to

the CAPL code. Figure 8-2 is the class diagram of the CAPL code generator. It is

more like procedure program; it takes the input CAPL code template XML file

and generates the CAPL code. The red texts in the diagram are the variables of the

192

class, and the green texts are the functions of the class. The main function in the

program is generateCode. It takes as parameter the string of the XML template

path to generate the CAPL code.

Figure 8-19 CAPL code generator class diagram

The main procedure in the generateCode function is illustrated in Figure 8-20. It

starts with generating the initial state code that includes the code to define the

variables, initial state, and initial actions for the state machine node. Next activity

is a loop to generate the rest of the states codes; the final activity writes the CAPL

function code to record the state. There are also subordinate activities in the

“generate initial state” and “generate state” activities.

CodeGenerator

+ currentStateNum: int
+ message: Message
+ states: List<State>
- xDoc: XmlDocument

+ CodeGenerator(String)
+ generateCode(String) : void
+ generateInitialState() : String
+ generateStates() : String
+ getStateByStaNum(string) : State
+ recordState() : String
+ writeMessage(XmlNode) : String
+ writeOnMessage(XmlNode) : String
+ writeStart() : String
+ writeState(XmlNode) : String

193

Figure 8-20 CAPL code generator main procedure

The activities procedure to generateInitialState is illustrated in Figure 8-21 . The

activity generate variable writes the variable declaration for the CAPL code; the

activity writeStart codes the initial state and actions.

Figure 8-21 activities procedure generate initial state

act generateCode

«structured»
generateInitialState

«loop»
generateStates

recordState

act generateInitialState

generate v ariable

writeStart

194

In order to generate state, the generateStates activity contains a loop to call the

writeState function. The writeState function codes the state and transition events

of the state machine. The activities procedure in the writeState fucntion is shown

in Figure 8-22. The procedure updates states first, after checking for any send

message and/or set timer events. If any of them are recorded in the XML template,

they will be coded in the CAPL code.

Figure 8-22 activities procedure in the writeState function

After all CAPL nodes codes are generated, they are compiled and run by CANoe.

CANoe generates the CANoe log file for the later processing. The following

sections will describe the design of the GPD prototype.

8.5 GPD	prototype	program	design		

This section introduces the design of the prototype. There are three main packages

(canoeDataProcessor, state, and gpd) to implement the predicate evaluation as

act writeState

update states

check if any send message or set timer event send message

set timer

write send message code

write set timer code

[no]

[yes]

[no] [yes]

[yes]

[no]

195

shown in Figure 8-2. Each package contains classes. These classes collaborate

together to achieve the predicate evaluation result. Figure 8-23 is the class

diagram to describe the relationship between the classes.

Figure 8-23 Prototype class diagram (only main classes)

In the class diagram, the packages are separated by the dashed rectangle. The

following sections describe these packages.

8.5.1 canoeDataProcessor	package	

canoeDataProcessor package is used to read CANoe log file and encapsulate

CANoe log data. There are four classes in this package. Their relationships are

shown in Figure 8-24.

LatticeBuilder::
LatticeBuilder

Predicate::
Predicate

VectorTimeBuilder::
VectorTimeBuilder

Comparable

T

GlobalState::
GlobalState

Serializable

T

LocalState::
LocalState

Serializable

VectorClock::
VectorClock

CanMessage::
CanMessage

CanoeLogReader::
CanoeLogReader

CanoeVectorClock::
CanoeVectorClock

Comparable

Measurement::
Measurement

gpd

state

canoeDataProcessor

-vectorTimerBuilder

-vectorClock

-GSclock-currentClocks

-canoeLogReader

-message

196

Figure 8-24 class diagram of canoeDataProcessor package

8.5.1.1 CanoeVectorClock	class	

The CanoeVectorClock class is a child class of VectorClock that is an abstract

class contained in state package. It specializes the VectorClock class. The

CanoeVectorClock class inherits the attribute vectorClock that is Long type of

ArrayList from the VectorClock class. The attribute vectorClock is the data

structure to store the vector clock. A CanoeVectorClock has operations to increase

a given component of its own vectorClock, compare its own vectorClock with

another vectorClock, update its own vectorClock from another vectorClock, and

check if its own vectorClock is consistent with another vectorClock. All attributes

and functions of the CanoeVectorClock class are shown in Figure 8-24.

CanMessage::CanMessage

- CAN_Channel: int
- Data: long ([]) = new long[8]
- Data_length: int
- Message_ID: char

+ CanMessage()
+ CanMessage(int, char, String, long[])
+ dataEquals(byte[]) : boolean
+ getDataToString() : String

«property get»
+ getCAN_Channel() : int
+ getData() : long[]
+ getData_length() : int
+ getMessage_ID() : char

«property set»
+ setCAN_Channel(int) : void
+ setData(long[]) : void
+ setData_length(int) : void
+ setMessage_ID(char) : void

CanoeLogReader::CanoeLogReader

- CanoeLog: Vector<Measurement>

+ CanoeLogReader(String, int)
+ findTotalNodeNum(char) : int
+ isInteger(String) : boolean

«property get»
+ getCanoeLog() : Vector<Measurement>

VectorClock

CanoeVectorClock::CanoeVectorClock

- serialVersionUID: long = 1L {readOnly}

+ CanoeVectorClock(VectorClock)
+ CanoeVectorClock(ArrayList<Long>)
+ CanoeVectorClock(int)
+ CanoeVectorClock(int, int)
+ increment(int) : void
+ isTwoNodeConsistent(int, VectorClock, int) : boolean
+ notLessThan(VectorClock) : boolean
+ update(VectorClock) : void

Comparable

Measurement::Measurement

- event: Event
- message: CanMessage
+ msgNum: long
- timer: double

+ compareTo(Measurement) : int
+ equals(Object) : boolean
+ getEvent() : Event
+ getMessage() : CanMessage
+ getMsgNum() : long
+ getTimer() : double
+ Measurement()
+ Measurement(double, CanMessage, Event)
+ Measurement(Measurement)
+ setEvent(Event) : void
+ setMessage(CanMessage) : void
+ setMsgNum(long) : void
+ setTimer(double) : void
+ toString() : String

+CanoeLog

-message

197

8.5.1.2 CanMessage	class	

The CanMessage class encapsulates the CAN message. It has attributes:

CAN_Channel, Message_ID, Data_length, and Data. CAN_Channel defines the

CAN bus channel used. Message_ID defines message ID. Data_length defines the

length of the data. Data defines the message data.

8.5.1.3 Measurement	class	

The Measurement class encapsulates the item in the CANoe log. A CANoe log

item contains the real time of the message sent and the CAN message frame

(described in Chapter 7). The Measurement class contains attribute of the

CanMessage type and attribute of the Double type (real time). The CANoe log

item stores the node state in the format of the CAN frame. But it does not have

any knowledge about the type of the event that can be found by the other

functions. So it is necessary to have an attribute of Event type. The Event is an

enum type, it has three elements: receiveMsg, sendMsg, and internalEvent. They

are the three possible events: receive message, send message, and internal event.

8.5.1.4 CanoeLogReader	class	

The CanoeLogReader class reads the CANoe log to extract the data. Depending

on these data, it creates the Measurement objects and stores these objects into a

Vector. The only attribute in the CanoeLogReader class is the Measurement

Vector called CanoeLog.

8.5.2 state	package	

The state package defines the elements and the structures of the states (global and

local). There are three classes in the state package: VectorClock, LocalState, and

GlobalState. Their relationships are illustrated in Figure 8-25.

198

Figure 8-25 class diagram of state package

8.5.2.1 VectorClock	class	

The VectorClock class is an abstract class. It generalizes the type of vector clock.

The VectorClock class defines the structure and the behaviors of the vector time.

It is specified by the CanoeVectorClock class. More detail can be found in section

8.5.1.1 .

8.5.2.2 LocalState	class	

The LocalState class defines the local node structure. It is a generic class, so it can

hold objects of any state class. For the prototype, the state class used is the

Measurement class. A LocalState class contains three attributes; nodeIndex, state,

and vectorClock. The nodeIndex is an integer. It records the index of the node.

Comparable

T

GlobalState::GlobalState

- defPredicateFlag: boolean
- globalState: Vector<LocalState<T>>
- GSclock: VectorClock
- level: long
- predicateFlag: boolean

+ addState(LocalState<T>) : boolean
+ compareTo(GlobalState<T>) : int
+ getGlobalState() : Vector<LocalState<T>>
+ getLevel() : long
+ getVectorClocks() : Vector<VectorClock>
+ GlobalState()
+ GlobalState(Vector<LocalState<T>>)
+ GlobalState(GlobalState<T>)
+ isDefPredicateFlag() : boolean
+ isGSconsistent() : boolean
+ isPredicateFlag() : boolean
+ printVectorClockOrder() : String
+ setDefPredicateFlag(boolean) : void
+ setGlobalState(Vector<LocalState<T>>) : void
+ setPredicateFlag(boolean) : void
+ toString() : String
+ vectorClockToString() : String

«property get»
+ getGSclock() : VectorClock

«property set»
+ setGSclock(VectorClock) : void

Serializable

T

LocalState::LocalState

- nodeIndex: int
- state: T
- vectorClock: VectorClock

+ equals(Object) : boolean
+ getNodeIndex() : int
+ getState() : T
+ getVectorClock() : VectorClock
+ LocalState()
+ LocalState(int, VectorClock, T)
+ setNodeIndex(int) : void
+ setState(T) : void
+ setVectorClock(VectorClock) : void
+ toString() : String

Serial izable

VectorClock::VectorClock

- serialVersionUID: long = 1L {readOnly}
vectorClock: ArrayList<Long>

+ equals(Object) : boolean
+ getVectorClock() : ArrayList<Long>
+ increment(int) : void
+ isTwoNodeConsistent(int, VectorClock, int) : boolean
+ notLessThan(VectorClock) : boolean
+ setVectorClock(ArrayList<Long>) : void
+ toString() : String
+ update(VectorClock) : void
+ VectorClock(int)
+ VectorClock(ArrayList<Long>)
+ VectorClock(VectorClock)

+globalState

-vectorClock

-GSclock

199

The nodeIndex minus 1 is its corresponding vector clock component index. The

attribute state can is a generic type, it holds the state value of the node.

8.5.2.3 GlobalState	class	

The global state is the collection of the local states, and has its own global vector

clock. The GlobalState class has the attributes of LocalState Vector type and

VectorClock type. For the purpose of detecting the possibly predicate, the

attribute predicateFlag is used as a flag to indicate if the global state satisfies the

predicate. Also another attribute defPredicateFlag is used to find definitely

predicate. It indicates the global state that does not satisfy the predicate is

reachable from the initial state. If the unsatisfied predicate global state is

reachable, then the value of defPredicateFlag of all global states in the path has to

be false. The attribute level is used to present which level the global state

belonged to. There is a function called isGSconsistent. It is used to check if the

global state is consistent. isGSconsistent implements the algorithm in section 7.2.2.

8.5.3 gpd	package	

The gpd package is the core package of the prototype. All logical GPD processes

are implemented by the classes in this package. There are three classes in gpd

package; Predicate class, VectorTimeBuilder class, and LatticeBuilder class.

Their relationships are illustrated in Figure 8-26.

200

Figure 8-26 class diagram of gpd package

8.5.3.1 Predicate	class	

The Predicate class is a structure to hold a predicate. A predicate consists of a

state variable, relational operator, constraint value, and logical connective which

can connect to another predicate (e.g. “||” and “&&”). The corresponding

attributes of the Predicate class are valueIndex which is the index of the local

state array, operator, predicate, and relation. The attribute nodeNumber indicates

the index of the node. An example of a predicate is “node[1].stateArray[0]>21 ||” .

LatticeBuilder::LatticeBuilder

- lattice: HashMap<Integer,Vector<GenericTreeNode<GlobalState<Measurement>>>>
- vectorTimerBuilder: VectorTimeBuilder

- ascendOrderTotalLocalState() : Vector<Integer>
+ buildLattice() : void
+ checkPredicateFalseReachable(GenericTreeNode<GlobalState<Measurement>>) : boolean
+ definitelyPredicate(Vector<Predicate>) : boolean
+ getCGSs() : Vector<GlobalState<Measurement>>
+ getLattice() : HashMap<Integer, Vector<GenericTreeNode<GlobalState<Measurement>>>>
+ getVectorTimerBuilder() : VectorTimeBuilder
+ isReachable(GenericTreeNode<GlobalState<Measurement>>, GenericTreeNode<GlobalState<Measurement>>) : boolean
+ LatticeBuilder(VectorTimeBuilder)
+ possiblyPredicate(Vector<Predicate>) : boolean
+ printAllParentChild() : void
+ printAllParentChildWithGlobalVectorClock() : void
+ setLattice(HashMap<Integer, Vector<GenericTreeNode<GlobalState<Measurement>>>>) : void
+ setVectorTimerBuilder(VectorTimeBuilder) : void

Predicate::Predicate

nodeNumber: int
operator: String
predicate: long
relation: String
varIndex: int

+ getNodeNumber() : int
+ getOperator() : String
+ getPredicate() : long
+ getRelation() : String
+ getVarIndex() : int
+ Predicate()
+ Predicate(int, int, String, long, String)
+ setNodeNumber(int) : void
+ setOperator(String) : void
+ setPredicate(long) : void
+ setRelation(String) : void
+ setVarIndex(int) : void
+ toString() : String

VectorTimeBuilder::VectorTimeBuilder

- canoeLog: Vector<Measurement>
- canoeLogReader: CanoeLogReader
- commMatrix: HashMap<Character,Vector<Integer>>
- currentClocks: VectorClock ([])
- messageCount: long
- nodesLocalStateMap: HashMap<Integer, Vector<LocalState<Measurement>>>
- threshold: char = 0x100 {readOnly}

+ buildVectorTime() : void
- findSendingNodeNum(char) : int
+ getCanoeLog() : Vector<Measurement>
+ getCanoeLogReader() : CanoeLogReader
+ getNodesLocalStateMap() : HashMap<Integer, Vector<LocalState<Measurement>>>
+ loadCommMatrix(String) : void
+ setCanoeLog(Vector<Measurement>) : void
+ setCanoeLogReader(CanoeLogReader) : void
+ setNodesLocalStateMap(HashMap<Integer, Vector<LocalState<Measurement>>>) : void
+ VectorTimeBuilder(String, String, int)

-vectorTimerBuilder

201

8.5.3.2 VectorTimeBuilder	class	

The VectorTimeBuilder class assigns the vector time to the local state. It uses

attribute canoeLogReader to read the CANoe log file, stores the data of the

CANoe log into a Measurement Vector (the attribute canoeLog), loads

communication matrix data, and goes through the Measurement Vector to assign

the value to the instance of the LocalState. The order of assigning the vector clock

is illustrated in Figure 8-27.

Figure 8-27 sequence diagram to assign vector time

 A HashMap type data structure (the attribute nodesLocalStateMap) is used to

store the local states of different nodes. The key of the nodesLocalStateMap is the

index of the node, and the value of the nodesLocalStateMap is a LocalState

Vector. Each node has its corresponding list of local states. Another HashMap

type data structure (the attribute commMatrix) is used to store the data of the

communication matrix. The key of the commMatrix is the CAN message ID. The

value of the commMatrix is an Integer Vector. The first element of the vector is

the index of the sending node; the other elements are the indexes of the receiving

VectorTimeBuilder::VectorTimeBuilder

CanoeLogReader::CanoeLogReader
CanoeLogReader(String, int)

loadCommMatrix(String)
CanoeLogReader(String, int)

getCanoeLog() :Vector<Measurement>

buildVectorTime()

202

nodes. Because the real system communication and CCP uses the same CAN

channel, the attribute threshold works as a separator to separate them. If the CAN

message ID is smaller than threshold, then the message is a CCP message.

Otherwise it is a real system communication message.

The process to build the vector time from the Measurement Vector is quite

complex. The whole process is done by buildVectorTime() function as shown in

Figure 8-27. The working flow of the function buildVectorTime() is illustrated in

Figure 8-28.

Figure 8-28 working flow of the function buildVectorTime()

i=0

i++

int logSize=this.canoeLog.size();

add a new key(nodeNum) to
the nodesLocalStateMap

add localState to
nodesLocalStateMap.get(nodeNum)

increase
localState.v ectorClock[nodeNum-1]

increase
localState.v ectorClock[nodeNum-1]

update
localState.v ectorClock

add the localState to
nodesLocalStateMap.get(nodeNum)

get the
sender node

index
(nodeNum)

get node index (nodeNum)

localState.state =
canoeLog.get(i)

localState.nodeIndex =
nodeNum

initialize localState.v ectorClock

increase
localState.v ectorClock[nodeNum-1]

localState.nodeIndex
= nodeNum

[i<logSize]

[else]

[it is the initial state
of the
node[nodeNum]]

[it is a CCP message]

[else]

[it is a receiving event]

[else]

[else]

203

As shown in the activity diagram (Figure 8-28), the buildVectorTime() function is

based on a big for-loop. The variable i is the counter of the loop. Each time

through the loop a new LocalState object called localState is created. The variable

localState does not exist in the real code. It is only used for explanation purposes

and makes it easier to understand the diagram. At the start of the loop iteration the

state of the localState is assigned to the ith canoeLog element. The loop goes

through the canoeLog evaluating each measurement, to find which node local

state it belongs to and to assign the vector time to the local state. There are a few

condition statements to implement such evaluation. The first condition statement

is to separate the CCP message and the real system communication message.

They are separated by the threshold. If it is a real system communication message,

then the sending node index (nodeNum) will be found by searching the

communication matrix; the nodeNum is assigned to the variable state of the

localState; the (nodeNum – 1)th vector clock of the localState increases one; the

localState is added to the LocalState Vector in the nodesLocalStateMap mapped

by the key which is the nodeNum. If the message is a CCP message, then it will

meet the second condition statement. But before the second condition statement,

the nodeNum is found by the message ID (the message Id is the node index). The

second condition statement separates the initial state and the non-initial state. To

judge if the localState is the initial state of a node, it needs to check if the value of

the nodeNum mapped in nodesLocalStateMap is null. If null it is an initial state,

otherwise it is a non-initial state. If it is an initial state, then the following process

will be pretty simple. The process is initializing the vector clock of the localState,

adding the new key nodeNum to the nodesLocalStateMap and adding the first

element to this key mapped LocalState Vector. If the localState is non-initial state,

204

then it goes to the third condition statement. The third condition statement

separates the event types which causes the state change. Here the event types are

internal and receiving events, the sending event has been filtered out by the first

condition statement. If the localState is caused by an internal event, then

(nodeNum – 1)th vector clock of the localState increases by one; the localState is

added to the LocalState Vector in the nodesLocalStateMap mapped by the

nodeNum. If the localState is caused by a receiving event, the process is similar to

the internal event. The only difference is after the vector clock increased, it needs

to update the vector clock of the localState from the vector clock of the sender.

The index of the sender can be found by searching the communication matrix. The

vector clock of the last state of the node pointed by this index is the vector clock

that the localState should update from.

8.5.3.3 LatticeBuilder	class	

The LatticeBuilder class evaluates the consistent global states, constructs lattice

and detects the predicate. It consists of two attributes: vectorTimeBuilder and

lattice. The type of the vectorTimeBuilder is VectorTimeBuilder. The type of the

lattice is a HashMap, the type of the key of the HashMap is Integer. The key

indicates the level of the lattice. The value type of the HashMap is

GenericTreeNode Vector. The GenericTreeNode class is a tree type of the data

structure. In the lattice, a node may have child nodes and/or parent nodes. A

GenericTreeNode holds a global state, and also maps the child and parent

relationships. The structure of the lattice is illustrated in Figure 8-29.

205

Figure 8-29 lattice structure

The diagram demonstrates: The current level is n. The first element of level n has

one parent node and two child nodes. The second element of level n has only one

parent node.

The procedure to evaluate the predicate in the LatticeBuilder class has three steps.

1. Constructing consistent global states

2. Building lattice

3. Predicate evaluation

These steps are separated to different functions.

The getCGSs function evaluates the local states and constructs consistent global

state with validated local states. It returns a GlobalState Vector. All consistent

global states are stored in this vector. Figure 8-30 is the work flow of the

getCGSs function.

level

n-1

n

n+1

Vector< GenericTreeNode > GenericTree

GlobalState

206

Figure 8-30 the getCGSs function activity diagram

Before explaining Figure 8-30, an important algorithm needs to be explained. The

getCGSs function needs to go through all possible combinations of the local states

to evaluate if they are consistent global states. In order to search all local states of

all nodes, a “counting” algorithm is used. The “counting” algorithm is similar to

counting numbers. It uses an array to store the digits; each element in the array

can be considered as a digit. The size of the array is the total number of nodes.

Each element of the array is an index counter to go through its corresponding

node LocalState Vector. A base of a binary system is 2, a base of a octal system is

8 etc. Here the base of each digit (element of the array) is variable. The base of a

digit is the total number of local states of the node. If the lower level digit exceeds

its base, then the higher level digit increases one. By using such counting system,

all possible global states of the combination of local states will be checked.

result = new
Vector<GlobalState<Measurement>>()

localStatesMap =
vectorTimeBuilder.getNodesLocalStateMap()

stateCounters = new
int[keys.length]

firstNodeLocalStateSize =
localStatesMap.get(keys[(stateCounters[0])]).size()

currentGS= new
GlobalState<Measurement>()

return result

keys =
localStatesMap.keySet()

currentGS.addState(localStatesMap
.get(keys[0]) .get(stateCounters[0]))

«loop»
evaluate consistent

global state

[stateCounters[0] !=
firstNodeLocalStateSize]

207

In Figure 8-30, the variable result is the returned GlobalState Vector. The

HashMap localStateMap stores all local states of all nodes. The array keys stores

all node indexes. The array stateCounters is used as a counter as described above

(“counting” algorithm) to go through all possible global states constructed by

local states. The Integer firstNodeLocalStateSize is the size of the LocalState

Vector mapped by key[0] in the localSTateMap. It is the base of the highest digit

of the counting system. All these variables are initialized or assigned at the start of

the work flow. The counting system is implemented by two loops. The first loop

is used to control the counting flow. The second loop is used to add the local state

of each node to a temporary global state and evaluates this global state.

Figure 8-31 counting system structure

The structure of the counting system is illustrated in Figure 8-31. The component

stateCounters[0] is the highest digit in the counter array. The first loop keeps

iterating, when stateCounters[0] does not equal to firstNodeLocalStateSize.

208

stateCounters[0] reaching the firstNodeLocalStateSize means that the counting is

finished. In this loop, a temporary GlobalState object currentGS is created to hold

the local state of each node. After currentGS created, the first local state is added

to it. The second loop that is an internal loop of the first loop adds the remaining

local states to currentGS, and evaluates if currentGS is consistent. The work flow

of this loop is shown in Figure 8-32. It is a for-loop. The counter i counts the node

index.

Figure 8-32 work flow of the consistent global state evaluation

The second loop is a for-loop. The counter i count the node index. The number of

local states in the global state is checked at beginning. If the number of nodes

held by currentGS is smaller than the total number of nodes

(i<stateCounters.length), then the loop keeps iterating. There are three conditions

in the loop. The first condition (stateCounters[i] ==

localStatesMap.get(keys[(i)]).size()) checks if the digit counter reaches the base, if

stateCounters[i-1]++ i++stateCounters[i]=0

i=0

currentGS
.addState(localStatesMap

.get(keys[i]).get(stateCounters[i]))

result.add(currentGS) stateCounters[i]++

currentGS
.addState(localStatesMap

.get(keys[i])
.get(stateCounters[i]))

[the currentGS is consistent]

[i ==
stateCounters.length-1]

[stateCounters[i] ==
localStatesMap.get(keys[(i)]).size()]

[i<stateCounters.length]

209

it is true, then this digit will be reset to zero (stateCounters[i]=0) and the higher

level counter increases by one (stateCounters[i-1]++). The second condition

checks if currentGS gets all local states, if it is true, then currentGS is checked by

its own function isGSconsistent, if it consistent, then it is added to result. If

previous two conditions fail, the third condition adds the local state to currentGS.

Depending on the combination equation, the total number of combinations of

local state of global state can be as much as

l1×l2×l3 …ln

l is the total number of local states of a node. n is the index number of the node.

The combinations depend on the number of nodes and number of local states.

Suppose if the node number is 10 and 100 local states are collected for each node,

it is 10010 possible combinations. The combinations to be evaluated can be a very

large number, and also the validated CGSs may need large storage.

After all consistent global states are defined; the execution lattice can be built.

The main process to build the execution lattice is shown in Figure 8-33.

Figure 8-33 main process of building execution lattice

«loop»
build lev els

«loop»
build relationships

CGSs=this.getCGSs() levelCounter=0
sameLevelCGSs=new

Vector<GenericTreeNode<GlobalState<Measurement>>>()

210

The main process to build the execution lattice is: store all consistent global states

to an GlobalState Vector, assigning a variable levelCounter to count the level,

creating a temporary GenericTreeNode Vector called sameLevelCGSs that is used

to store the same level CGSs, a loop building the levels of the lattice, and a loop

building the relationship between levels.

The work flow of the loop to build the levels is illustrated in Figure 8-34. The

loop goes through CGSs to add the CGS to corresponding level GenericTreeNode

Vector of the class variable lattice. The exit condition of this loop is when the

CGSs is empty. In each loop iteration, the level of the CGS is checked

(CGSs.firstElement().getLevel()==levelCounter) . If the level of the CGS equals

to levelCounter, then the CGS is removed from CGSs and wrapped in a temporary

GenericTreeNode object GSnode that is added to sameLevelCGSs. Otherwise a

new level and the corresponding GenericTreeNode Vector is added to lattice;

sameLevelCGSs is emptied, so the next level GenericTreeNode Vector can be

stored.

Figure 8-34 work flow build lattice levels

GSnode = new
GenericTreeNode<GlobalState<Measurement>>

(CGSs.remov e(0))

sameLev elCGSs.add(CGSnode)

sameLev elCGSs.remov eAllElements()

this.lattice.put(lev elCounter, new
Vector<GenericTreeNode<GlobalState<Measurement>>>

(sameLevelCGSs))

lev elCounter++

[!CGSs.isEmpty()]

[CGSs.firstElement().getLevel()==levelCounter]

211

The work flow of the loop to build relationships between parent nodes and child

nodes is illustrated in Figure 8-35. The loop goes though each level to relate

parent nodes to child nodes. The loop starts with level one (i=1), so level i-1 holds

all parent nodes (parentLevel=i-1) (parentSize =

this.lattice.get(parentLevel).size()) and level i holds all child nodes. There is a

loop (parent loop) in this loop. The parent loop goes through the parent level

nodes to relate the node to its child nodes. There is an inner loop (child loop) in

each round of the parent loop. The child loop goes through the child level nodes to

relate the node to its parents.

Figure 8-35 work flow to build relationships between parent nodes and child nodes

After the lattice builds up, the predicate evaluation can start. There are two

evaluation types of the predicate. They are possibly predicate and definitely

predicate. The corresponding implementation functions are

possiblyPredicate(Vector<Predicate> inputs) and

definitelyPredicate(Vector<Predicate> inputs). Both of them take Predicate

Vector (inputs) as parameter. A library Jep (Nathan Funk 2011) is used for the

purpose to compare the state values to the predicate. After the program is

compiled, it is hard to evaluate mathematical expressions that are dynamically

i=1

parentLev el=i-1

parentSize =
this.lattice.get(parentLevel).size()

«loop»
go through the parent CGSs

«loop»
go through child node,
check if the child node

reachable from the parent

i++

[i<levelSize]

212

defined; particularly if the expression contains the internal variables and external

values. Jep parses mathematical expression strings and generates the result.

As shown in section 6.4.1 to evaluate possibly predicate is easier than evaluating

definitely predicate. For detecting the possibly predicate, it only needs to be

proven one global state in the lattice satisfies the predicate. The Predicate function

tags all global states that satisfy the predicate. Its execution order is demonstrated

in Figure 8-36.

Figure 8-36 the Predicate function sequence diagram

At the beginning of the sequence, the Predicate function calls the buildLattice()

function to build the lattice. A new object of JEP j is created. The steps from 1.3

to 1.5 in Figure 8-36 are initializing j. The following two loops go through lattice

: LatticeBuilder

j : org.nfunk.jep.JEP

loop

[for each new TreeSet<Integer>(this.lattice.keyS

loop

[for each this.lattice.get(key)]

1: possiblyPredicate()

1.1: buildLattice()

1.2:

1.3: addStandardConstants()

1.4: addStandardFunctions()

1.5: addComplex()

1.6: parseExpression(expression)

1.7: getValueAsObject()

1.8:

213

to evaluate if the global state satisfies the predicate. The external loop goes

through the different level. The internal loop goes through the global state vector

that is mapped by the level. The step 1.6 shows j evaluates the predicate and the

step 1.7 is get result from the evaluation. The detail of the work flow in internal

loop is demonstrated in Figure 8-37.

Figure 8-37 work flow of the internal loop of the Predicate function

After the evaluation the result is assigned to value. The value of value is checked.

If the value is 1.0 then it means the global state satisfies the predicate. The return

value result and the value predicateFlag will be set to true. Otherwise it means

the global state does not satisfy the predicate. There is a decision here to check if

the non-satisfied global state is reachable from the initial state. If it is reachable

then the defPredicateFlag of the global state is set to true. Otherwise it is set to

false. This decision is used for the definitely predicate for later. So the Predicate

function can be used as the sub-function of the Predicate function (Figure 8-38).

appending predicate
to expression

j .parseExpression(expression)

v alue =
j .getValueAsObject()

cgs.data.setPredicateFlag(true)

result=true cgs.data.setDefPredicateFlag(true) cgs.data.setDefPredicateFlag(false)

[value.equals(1.0)]

[checkPredicateFalseReachable(cgs)||key==0]

214

Figure 8-38 sequence diagram for the Predicate function

After the possiblyPredicate function is invoked, all global states that do not

satisfy predicate and is reachable from initial global state are marked

(defPredicateFlag). As shown in section 6.4.1 the definitely predicate detection

algorithm, a loop is used to check each level to see if any of them do not contain a

global state reachable from initial state without predicate being true.

Figure 8-39 the definitelyPredicate function work flow

: LatticeBuilder

1: definitelyPredicate()

1.1: possiblyPredicate()

1.2:

definitelyPredicate

«loop»

lev el=1 count=0

«loop»

cgs:
lattice.get(lev el)

count++

result=false

result=true

return result

[i<lattice.keySet().size()]

[cgs!=null]

[cgs.getData().isDefPredicateFlag()]

[count==0]

215

The work flow of the definitelyPredicate function is shown in Figure 8-39. The

external loop goes through the level. A variable count is assigned to zero. It is

used to count how many global states marked with defPredicateFlag. The

internal loop goes through the global states in the level to check if the global state

marked with defPredicateFlag. If the global state marked with defPredicateFlag,

then count increases one. After the internal loop, count is checked. If it is zero,

then the predicate is definitely true; the function terminates and returns value

result assigned true. Otherwise it goes to check next level. If all levels checked,

and there is no count is zero, then the predicate is not definitely true. result is

returned as false.

8.5.4 GraphicGPD	

The GraphicGPD package gives a GUI to control the predicate evaluation tool

and also generates the evaluation result in a graph. It makes the control of the tool

easier and the graphic view of the execution lattice makes it more understandable.

There are five classes in the GraphicGPD package. They are CGScell,

LatticeImageTraslator, GSlatticeFrame, GPDtoolController, and

InputValueSelector. Their relationships are demonstrated in Figure 8-40.

Figure 8-40 GraphicGPD package class diagram

CGScell

A

JFrame

GSlatticeFrame

LatticeImageTranslatorGPDtoolController

JFrame

InputValueSelector

-translator

-gsFrame

-inputSelector +imageLattice

216

The CGScell class holds a global state, positioning it on the graphic view of the

lattice. It uses different colors to demonstrate if the state satisfies the predicate and

the reachable non-satisfied predicate global state from the initial global state. The

circles that are shown in Figure 8-41 illustrate the CGScell objects.

The LatticeImageTranslator class reassembles each level mapped GlobalState

Vector to CGScell Vector. It generates a BufferedImage of the lattice.

The GSlatticeFrame class draws the image depending on the BufferedImage of

the lattice. Figure 8-41 shows a lattice frame with a BufferedImage embedded.

Figure 8-41 Lattice frame

The GPDtoolController class gives a GUI to configure the file paths (CANoe log

and communication matrix) and select the predicate evaluation type. A

GPDtoolController dialog is illustrated in Figure 8-42.

The InputValueSelector class gives a graphic table to set up the predicates. A

InputValueSelector dialog is illustrated in Figure 8-43.

217

Figure 8-42 GPDtoolController dialog

Figure 8-43 InputValueSelector dialog

8.6 Conclusion	

This chapter described the GPD prototype program design. The prototype

includes two main parts: test case generating and global predicate evaluation. For

the purpose of rapidly and clearly generating test cases, UML modelling language

is used. Depending on the state machine modelled, the state machine can be

described in xml format. This xml file is read by a CAPL code generator to parse

the XML to CAPL code which simulates the ECU. Running these CAPL codes on

CANoe, CANoe logs the CAN messages of the system for the prototype program

to evaluate.

The global predicate evaluation program reads the CANoe log file; selects the

local state from the file, assigning the vector time; finds out the consistent global

states, builds the lattice with these CGSs, and evaluates the predicate. Depending

on the total number of node and the local states logged in the CANoe log, the

218

evaluation process takes a different time. The more node and/or local states, the

more time taken. The storage of the CGSs also depends on the communications

between the nodes. The more communications, the less CGSs are stored, because

more communications make more constraints to evaluate the CGSs.

The result of the evaluation can be graphically viewed. The execution lattice is

drawn in a java frame. The predicate situation is demonstrated in different colours.

219

References

Nathan Funk. Jep Java Math Expression Parser. 2-8-2011.

Vector CANtech, I. Programming With CAPL. 12-14-2004.

220

Chapter	9 Prototype	Testing	

9.1 Introduction

This chapter describes test cases to test the prototype global predicate evaluation

software. These test cases will verify the functions of the prototype and finally

validate the prototype. Each test case includes ECU state diagrams, the values of

different states, and the communication matrix. These test cases test simulated

ECUs running on the simulated bus and real bus. On the simulated bus, all

simulated ECUs run on one computer and they share the single CPU clock; so

their clocks are synchronized by the clock of the computer. On the real bus, some

simulated ECUs are moved to another computer. They communicate with each

other through the real CAN bus. Because these ECUs are running on different

computers, the ECUs use different CPU clocks, they are not synchronized by a

single clock.

The terms and structures used by the different test cases are very similar, so they

will be described first. For better understanding, the first test case will be

described with some assistant texts. The terms and structures used by the

following test cases will be as same as the first one, so it is not necessary to

explain them again.

There are seven test cases in this chapter. Test cases 1 to 4 verifies and validates

the prototype. The last three test cases test the performance of the prototype.

In order to make the execution lattice more understandable, some of the results of

the test cases are graphically presented.

Table 9-1 gives a general overview of all test cases.

221

Test case Number of nodes Purpose

1 2 Verify and validate prototype

2 3 Verify and validate prototype

3 2 Verify and validate prototype

4 3 Verify and validate prototype

5 4 Test prototype Performance

6 4 Test prototype Performance

7 6 Test prototype Performance

Table 9-1 overview of test cases

The first four test cases are used to verify and validate prototype. Because the

verification and validation is done manually, the quantity of nodes is less than

three. Otherwise, it is hard to accurately verify and validate the prototype. The

first test case verifies the vector clock assignment and building lattice functions.

Test case 2 tests high dependence system. Test case 3 tests the effect of

environment variables in the state machine. Test case 4 is randomly generated.

The last 3 test cases test the performance of the prototype. Test case 5 tests 4-

nodes system performance (randomly chosen). Test case 6 tests non-

communication system performance. Test case 7 tests 6-nodes system (randomly

chosen).

Due to the time constraints of this research, these test cases cannot fully test the

prototype. However, they verify the basic functions, e.g. vector time assignment,

consistent global state verification, and building the execution lattice. They also

validate the predicate evaluation.

222

9.2 Term explanation

9.2.1 Terms used on state machine diagram

On the state of the state machine diagram, “set” is for the action set timer. Its

following variable is the timer variable in the CAPL code. The timer variable

always starts with letter “t”. “send” is for the action send message. The message

variable starts with “msg”.

Each “t” or “msg” is followed by letter “n” with number, which means the node

with node number. The last number of the variable is the counter of the timer

variable or the message variable. For example the variable “msg_n1_2” means it

is a message variable and it is the second message sent by node one. There are

also another variable starting with “env” which indicates the variable is an

environment variable. It is not on the state. It only appears on the transition.

The guard of the transition on the state machine diagram, “on” means timer

expired triggers the transition or an environment variable triggers the transition;

“rec” means when a message is received the transition is triggered. The variable

following “on” or “rec” is the trigger variable.

Figure 9-1 demonstrates the state machine diagram of node 1. There are three

state in the node 1 and four transitions. timer t_n1_1 is set up to 50 milliseconds

in state1. State 2 sends message msg_n1_1 with ID hex 100, sets up timer t_n1_1,

and sets up timer t_n1_2. State 3 sends message msg_n1_2. The initial state of the

state machine is state 1. When the timer t_n1_1 expires the state machine moves

to state 2. When the timer t_n1_2 expires the state machine moves to state 3.

When state3 receives the message msg_n2_2 the state machine moves to state 2.

When the timer t_n1_1 expires the state machine move to state 1.

223

9.2.2 Terms used on communication matrix

The first column (MessageID) of the communication matrix records the CAN

message ID. The second column (SendNodeNum) records the index of the sending

node. The third column (receive: nodeNum) records the index of the receiving

node.

Table 9-2 is the communication matrix for the test case 1. There are four

messages on the CAN bus. The message with ID 100 is sent by node 1 and

received by node2. The message with ID 300 is sent by node2 and received by

node1. The message with id 101 is sent by node1 and received by no node. The

message with ID 200 is sent by node2 and received by no node.

9.2.3 Terms on local state table

A local state table shows the different state values of the state machine. The first

column (stateNum) of the local state table is the index of the state. The other

columns (var1..var10) are the values of the state variables.

Table 9-3 shows the local state values of each state. In state 1, the value of

variable 1 (var1) is 11; the value of variable 2 (var2) is 11 etc..

9.3 Test case 1

This test case only includes two nodes. Depending on the UML specification, it is

easier to manually figure out the time line of the execution. So it is possible to

verify if the right vector clock is assigned to the local state. Also it is easier to

manually find out the consistent global states and to build the lattice. Using this

lattice against the lattice generated by the prototype verifies if the prototype builds

the right lattice.

224

9.3.1 Model explanation

9.3.1.1 State machine diagram

Test case 1 contains two nodes.

Figure 9-1 test case 1 state machine 1

Figure 9-2 test case 1 state machine 2

 stm node1

State1

+ set / t_n1_1(50)

State2

+ send / msg_n1_1(100)
+ set / t_n1_1(100)
+ set / t_n1_2(50)

State3

+ send / msg_n1_2(101)

on
/
t_n1_1(50)

on
/t_n1_1(100)

rec
/msg_n2_2(300)

on
/t_n1_2(50)

 stm node2

State1

State2

+ send / msg_n2_1(200)
+ set / t_n2_1(100)

State3

+ send / msg_n2_2(300)
+ set / t_n2_2(200)

on
/t_n2_2(200)

rec
/msg_n2_1(200)

rec
/msg_n1_1(100)

225

9.3.1.2 Communication matrix

MessageID SendNodeNum receive: nodeNum

100 1 2

300 2 1

101 1

200 2
Table 9-2 test case 1 communication matrix

9.3.1.3 Local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 11 11 11 11 0 0 0 0 0

2 12 12 12 12 12 0 0 0 0 0

3 13 13 13 13 13 13 0 0 0 0
Table 9-3 test case 1 node 1 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 21 21 21 21 21 0 0 0 0 0

2 22 22 22 22 22 22 0 0 0 0

3 23 23 23 23 23 0 0 0 0 0
Table 9-4 test case 1 node2 local states

9.3.2 Test different inputs

9.3.2.1 Predicate 1

Predicate expression:

node2.var2 > 21 && node1.var2 == 11

var2 of the node2 is greater than 21 and var1 of node 1 equals to 11

226

9.3.2.1.1 Simulated system test result

 Local states of each node 9.3.2.1.1.1

This section shows part of local states of each node.

Vector time Real time State Event
<0,0> 2.36E-04 11 11 11 11 11 0 0 0 internalEvent
<1,0> 0.050246 12 12 12 12 12 0 0 0 internalEvent
<2,0> 0.050398 12 12 12 12 12 0 0 0 sendMsg
<3,0> 0.100234 13 13 13 13 13 13 0 0 internalEvent
<4,0> 0.100368 13 13 13 13 13 13 0 0 sendMsg
<5,5> 0.35105 12 12 12 12 12 0 0 0 receiveMsg
<6,5> 0.351202 12 12 12 12 12 0 0 0 sendMsg
<7,5> 0.45104 11 11 11 11 11 0 0 0 internalEvent
<8,5> 0.55105 12 12 12 12 12 0 0 0 internalEvent
<9,5> 0.551202 12 12 12 12 12 0 0 0 sendMsg

<10,5> 0.601038 13 13 13 13 13 13 0 0 internalEvent
Table 9-5 node1 local states

Vector time Real time State Event
<0,0> 4.76E-04 21 21 21 21 21 0 0 0 internalEvent
<2,1> 0.050634 22 22 22 22 22 22 0 0 receiveMsg
<2,2> 0.150636 23 23 23 23 23 0 0 0 internalEvent
<2,3> 0.150766 23 23 23 23 23 0 0 0 sendMsg
<2,4> 0.350638 21 21 21 21 21 0 0 0 internalEvent
<2,5> 0.350804 21 21 21 21 21 0 0 0 sendMsg
<6,6> 0.351438 22 22 22 22 22 22 0 0 receiveMsg
<6,7> 0.45144 23 23 23 23 23 0 0 0 internalEvent
<6,8> 0.45157 23 23 23 23 23 0 0 0 sendMsg

<11,9> 0.651442 21 21 21 21 21 0 0 0 receiveMsg
<11,10> 0.651608 21 21 21 21 21 0 0 0 sendMsg
<13,11> 0.652242 22 22 22 22 22 22 0 0 receiveMsg
<13,12> 0.752244 23 23 23 23 23 0 0 0 internalEvent

Table 9-6 node2 local states

227

 Consistent global states 9.3.2.1.1.2

This section shows part of consistent global states found by the prototype. The

global states are separated by the blank row.

Global vector time Local vector time Real time State Event

<0,0> <0,0> 2.36E-04 11 11 11 11 11 0 0 0 internalEvent

<0,0> 4.76E-04 21 21 21 21 21 0 0 0 internalEvent

<1,0> <1,0> 0.050246 12 12 12 12 12 0 0 0 internalEvent

<0,0> 4.76E-04 21 21 21 21 21 0 0 0 internalEvent

<2,0> <2,0> 0.050398 12 12 12 12 12 0 0 0 sendMsg

<0,0> 4.76E-04 21 21 21 21 21 0 0 0 internalEvent

<2,1> <2,0> 0.050398 12 12 12 12 12 0 0 0 sendMsg

<2,1> 0.050634 22 22 22 22 22 22 0 0 receiveMsg

<3,0> <3,0> 0.100234 13 13 13 13 13 13 0 0 internalEvent

<0,0> 4.76E-04 21 21 21 21 21 0 0 0 internalEvent

<2,2> <2,0> 0.050398 12 12 12 12 12 0 0 0 sendMsg

<2,2> 0.150636 23 23 23 23 23 0 0 0 internalEvent

<3,1> <3,0> 0.100234 13 13 13 13 13 13 0 0 internalEvent

<2,1> 0.050634 22 22 22 22 22 22 0 0 receiveMsg

<4,0> <4,0> 0.100368 13 13 13 13 13 13 0 0 sendMsg

<0,0> 4.76E-04 21 21 21 21 21 0 0 0 internalEvent

<2,3> <2,0> 0.050398 12 12 12 12 12 0 0 0 sendMsg

<2,3> 0.150766 23 23 23 23 23 0 0 0 sendMsg

<3,2> <3,0> 0.100234 13 13 13 13 13 13 0 0 internalEvent

<2,2> 0.150636 23 23 23 23 23 0 0 0 internalEvent

<4,1> <4,0> 0.100368 13 13 13 13 13 13 0 0 sendMsg

<2,1> 0.050634 22 22 22 22 22 22 0 0 receiveMsg

<2,4> <2,0> 0.050398 12 12 12 12 12 0 0 0 sendMsg

<2,4> 0.350638 21 21 21 21 21 0 0 0 internalEvent

<3,3> <3,0> 0.100234 13 13 13 13 13 13 0 0 internalEvent

<2,3> 0.150766 23 23 23 23 23 0 0 0 sendMsg
Table 9-7 global state

228

 General result (possibly predicate) 9.3.2.1.1.3

Total local states of node1: 61

Total local states of node2: 44

Total number global states: 234

Possibly predicate: true

Running time cost: 346ms

Figure 9-5 shows the graphic result of the test case 1 predicate 1 simulated bus

possibly predicate detection. The red and the green circles are the global states of

the execution lattice. The red circle means the global state satisfies the predicate.

The green circle means the global state does not satisfy the predicate. The

numbers on the circle is the vector time of the global state. The numbers on the

right of the lattice are the level of the lattice. Figure 9-3 shows the global state

with the global vector time <2,3>. The dialog above the lattice is the detail about

the global state; it tells the predicate flag is false, so the colour of this global state

is green. Figure 9-4 shows the example of the colour of the global state that

satisfies the predicate is red (predicate flag is true).

Figure 9-3 the global state of the lattice does not satisfy the predicate.

229

Figure 9-4 the global state of the lattice satisfies the predicate.

For the graphic result of the definitely predicate detection, the global state which

is reachable from initial state without predicate being true is coloured yellow as

shown in Figure 9-6.

To use graph can clearly show the predicate detection algorithm and result of the

predicate evaluation. The more consistent global state the bigger of the graph.

Figure 9-5 test case 1 predicate 1 simulated bus possibly predicate detection graphic result

230

 General result (Definitely predicate) 9.3.2.1.1.4

Total local states of node1: 61

Total local states of node2: 44

Total number global states: 234

Definitely predicate: false

Running time cost: 311ms

Figure 9-6 test case 1 predicate 1 simulated bus possibly definitely detection graphic result

231

9.3.2.1.2 Real system test result

Figure 9-7 test case1 predicate 1 real bus configuration

For the real bus running the test case, the configuration of CANoe is show in

Figure 9-7. In the diagram, node2 is paler than node1. This means node2

simulated by CANoe is deactivated from the CAN bus. node2 should be replaced

by the same function ECU on the real CAN bus.

node1 runs on laptop with CANoe . node2 is moved to another laptop which runs

CANalyzer. CANalyzer is the universal analysis tool for networks and distributed

systems. It is pretty similar to CANoe. The CAPL code (node2) can be run by

CANalyzer as well as CANoe. In order to send CAN messages on the real bus,

CANalyzer has to be used with a PC card CANcardXL. This card is connected to

the real bus and sends the CAN message generated by node2 to the real bus.

232

 Local state of each node 9.3.2.1.2.1

Vector time Real time State Event
<0,0> 0.075945 11 11 11 11 11 0 0 0 internalEvent
<1,0> 0.076207 12 12 12 12 12 0 0 0 internalEvent
<2,0> 0.076375 12 12 12 12 12 0 0 0 sendMsg
<3,0> 0.100968 13 13 13 13 13 13 0 0 internalEvent
<4,0> 0.101118 13 13 13 13 13 13 0 0 sendMsg
<5,5> 0.37795 12 12 12 12 12 0 0 0 receiveMsg
<6,5> 0.378118 12 12 12 12 12 0 0 0 sendMsg
<7,5> 0.477358 11 11 11 11 11 0 0 0 internalEvent
<8,5> 0.577498 12 12 12 12 12 0 0 0 internalEvent
<9,5> 0.577666 12 12 12 12 12 0 0 0 sendMsg

<10,5> 0.62741 13 13 13 13 13 13 0 0 internalEvent
Table 9-8 node1 local states

<0,0> 0.075707 21 21 21 21 21 0 0 0 internalEvent
<2,1> 0.076778 22 22 22 22 22 22 0 0 receiveMsg
<2,2> 0.176898 23 23 23 23 23 0 0 0 internalEvent
<2,3> 0.177051 23 23 23 23 23 0 0 0 sendMsg
<2,4> 0.376839 21 21 21 21 21 0 0 0 internalEvent
<2,5> 0.377027 21 21 21 21 21 0 0 0 sendMsg
<6,6> 0.378454 22 22 22 22 22 22 0 0 receiveMsg
<6,7> 0.478898 23 23 23 23 23 0 0 0 internalEvent
<6,8> 0.47905 23 23 23 23 23 0 0 0 sendMsg

<11,9> 0.678916 21 21 21 21 21 0 0 0 receiveMsg
<11,10> 0.679104 21 21 21 21 21 0 0 0 sendMsg
<13,11> 0.680489 22 22 22 22 22 22 0 0 receiveMsg
<13,12> 0.780937 23 23 23 23 23 0 0 0 internalEvent

Table 9-9 node2 local states

233

 Consistent global states 9.3.2.1.2.2

Global vector time Local vector time Real time State Event

<0,0> <0,0> 7.59E-02 11 11 11 11 11 0 0 0 internalEvent

<0,0> 7.57E-02 21 21 21 21 21 0 0 0 internalEvent

<1,0> <1,0> 0.076207 12 12 12 12 12 0 0 0 internalEvent

<0,0> 7.57E-02 21 21 21 21 21 0 0 0 internalEvent

<2,0> <2,0> 0.076375 12 12 12 12 12 0 0 0 sendMsg

<0,0> 7.57E-02 21 21 21 21 21 0 0 0 internalEvent

<2,1> <2,0> 0.076375 12 12 12 12 12 0 0 0 sendMsg

<2,1> 0.076778 22 22 22 22 22 22 0 0 receiveMsg

<3,0> <3,0> 0.100968 13 13 13 13 13 13 0 0 internalEvent

<0,0> 7.57E-02 21 21 21 21 21 0 0 0 internalEvent

<2,2> <2,0> 0.076375 12 12 12 12 12 0 0 0 sendMsg

<2,2> 0.176898 23 23 23 23 23 0 0 0 internalEvent

<3,1> <3,0> 0.100968 13 13 13 13 13 13 0 0 internalEvent

<2,1> 0.076778 22 22 22 22 22 22 0 0 receiveMsg

<4,0> <4,0> 0.101118 13 13 13 13 13 13 0 0 sendMsg

<0,0> 7.57E-02 21 21 21 21 21 0 0 0 internalEvent

<2,3> <2,0> 0.076375 12 12 12 12 12 0 0 0 sendMsg

<2,3> 0.177051 23 23 23 23 23 0 0 0 sendMsg

<3,2> <3,0> 0.100968 13 13 13 13 13 13 0 0 internalEvent

<2,2> 0.176898 23 23 23 23 23 0 0 0 internalEvent

<4,1> <4,0> 0.101118 13 13 13 13 13 13 0 0 sendMsg

<2,1> 0.076778 22 22 22 22 22 22 0 0 receiveMsg

<2,4> <2,0> 0.076375 12 12 12 12 12 0 0 0 sendMsg

<2,4> 0.376839 21 21 21 21 21 0 0 0 internalEvent

<3,3> <3,0> 0.100968 13 13 13 13 13 13 0 0 internalEvent

<2,3> 0.177051 23 23 23 23 23 0 0 0 sendMsg

<4,2> <4,0> 0.101118 13 13 13 13 13 13 0 0 sendMsg

<2,2> 0.176898 23 23 23 23 23 0 0 0 internalEvent
Table 9-10 global states

234

 General result (possibly predicate) 9.3.2.1.2.3

Total local states of node1: 141

Total local states of node2: 104

Total number global states: 542

Possibly predicate: true

Running time cost: 356ms

Figure 9-8 test case 1 predicate 1 real bus possibly predicate detection graphic result

235

 General result (Definitely predicate) 9.3.2.1.2.4

Total local states of node1: 420

Total local states of node2: 302

Total number global states: 1626

Definitely predicate: false

Running time cost: 637ms

Figure 9-9 test case 1 predicate 1 real bus definitely predicate detection graphic result

236

9.3.3 Result analysis

The vector clock is the fundamental element for the GPD. So at the beginning, the

verification of the function to assign the vector clock is essential.

For assigning the vector clock, if the event does not affect the node state change,

the vector clock won’t increase. The only exception is the event of sending

message. Based on this rule, the vector clock is assigned.

As shown in the state diagram in section 9.3.1.1, the execution of the test case is

manually generated as shown in Figure 9-10. In the diagram, the arrow is the

message passing on the CAN bus. Dashed blue arrow message is a message that

does not affect any change of any node. E.g. msg_n1_ 2 is not received by any

node, so it won’t affect any node’s state changing. msg_n1_1 is received by node2.

But if node2 is not in State1, node2 won’t change its state.

Figure 9-10 test case 1 execution

As shown in the result in section 9.3.2.1.1.1 , the order of vector times of node1is

<0,0>, <1,0>, <2,0>, <3,0>, <4,0>, <5,5>, <6,5>, <7,5>, <8,5>, <9,5>, <10,5>.

This order matches the order of the execution diagram, and the events that these

 (1,0) (2,0) (3,0) (4,0) (5,5) (6,5) (7,5) (8,5) (9,5) (10,5)

 (2,1) (2,2) (2,3) (2,4) (2,5) (6,6) (6,7) (6,8) (11,9)

msg_n1_1

msg_n2_1

msg_n2_2

msg_n1_1

msg_n1_2 msg_n1_1

msg_n2_1

node1

node2

237

vector times relate to match the events on the execution diagram. For node2, all its

vector time order and events match the execution diagram. So for this test case,

the function of assigning vector clocks is verified.

The next step is to verify if the global state in the lattice is consistent. Depending

on section 7.2.2 and the data in section 9.3.2.1.1.2 that shows the consistent global

states that are evaluated by the prototype, the consistent global state evaluation

function can be verified. The following example is how to manually verify the

function of evaluating global state. The global states with vector time <4,1> on

Table 9-7 includes two local states. The vector times of these local states are <4,0>

and <2,1>. <4,0> is the vector time of node1. <2,1> is the vector time of node2.

The first element of the vector time records the time of node1. The second element

of the vector time records the time of node2. Manually doing the comparison 4>2 and

0<1, the result is true, so the global state is consistent. The other global states are

manually checked by the same method. For this test case, the result of verifying the

function of evaluating the consistent global state is success.

The lattice can be visually checked by the lattice diagram (e.g. Figure 9-5, Figure 9-7).

For two reachable global states, only one component of the vector time of the parent node

is one smaller than the corresponding component of the vector time of the child node. All

global states in the lattice diagram match this rule.

The last step is to validate prototype software. To validate the prototype involves going

through the global state table, to manually check if the global state satisfies the predicate

and to manually mark each check result to the global state. Using this checking result

against the result generated by the prototype, if two results match each other, then the

prototype is validated; otherwise the prototype is not validated.

238

 In this test case, the expression of predicate 1 is node2.var2 > 21 && node1.var2 ==

11. Going through Table 9-7, in the first global state of the table, node2.var2 is 21.

It does not satisfy the first expression. node1.var2 satisfies the second expression.

Because the predicate is a conjunction of the two expressions, the global state

does not satisfy the predicate. This global state should be marked as false. The

following global states are checked in the same way. After the whole table is

checked, each global state is marked with a true or false flag. Using this checked

table against Figure 9-5 and Figure 9-6 validates the prototype. The result of the

validation is successful for this test case.

To verify the result of the real system, the same result is achieved as for the simulated

system. For this test case, it is proved that the prototype can be applied on both systems

(simulated and real).

 	

239

9.4 Test	case	2	

This test case consists of 3 state machine nodes. One state machine depends on

another’s message. Each state machine is tightly related to each other.

9.4.1 Model explanation

9.4.1.1 State machine diagram

Figure 9-11 test case 2 state machine 1

Figure 9-12 test case 2 state machine 2

Figure 9-13 test case 2 state machine 3

 stm node1

State1

+ set / t_n1_1(100)

State2

+ send / msg_n1_1(101)

rec
/msg_n3_1(103)

on
/t_n1_1(100)

 stm node2

State1

+ send / msg_n2_1(102)

State2

+ set / t_n2_1(100)

on
/t_n2_1(100)

rec
/msg_n1_1(101)

 stm node3

State1

+ send / msg_n3_1(103)

State2

+ set / t_n3_1(100)

on
/t_n3_1(100)

rec
/msg_n2_1(102)

240

9.4.1.2 Communication matrix

MessageID SendNodeNum receive: nodeNum

101 1 2

102 2 3

103 3 1
Table 9-11 test case 2 communication matrix

9.4.1.3 Local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 11 11 11 11 0 0 0 0 0

2 12 12 12 0 0 0 0 0 0 0
Table 9-12 test case 2 node 1 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 21 21 21 21 0 0 0 0 0 0

2 22 22 22 0 0 0 0 0 0 0
Table 9-13 test case 2 node2 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 31 31 31 0 0 0 0 0 0 0

2 32 32 32 32 0 0 0 0 0 0
Table 9-14 test case 2 node 3 local states

9.4.2 Test different inputs

9.4.2.1 Predicate 1

node2.var2==11|| node3.var2==33

241

9.4.2.1.1 Simulated system test result

 Local states of each node 9.4.2.1.1.1

Vector time Real time State Event
<0,0,0> 2.36E-04 11 11 11 11 11 0 0 0 internalEvent
<1,0,0> 0.100248 12 12 12 0 0 0 0 0 internalEvent
<2,0,0> 0.100382 12 12 12 0 0 0 0 0 sendMsg
<3,3,3> 0.30138 11 11 11 11 11 0 0 0 receiveMsg
<4,3,3> 0.401392 12 12 12 0 0 0 0 0 internalEvent
<5,3,3> 0.401526 12 12 12 0 0 0 0 0 sendMsg
<6,6,6> 0.602524 11 11 11 11 11 0 0 0 receiveMsg
<7,6,6> 0.702536 12 12 12 0 0 0 0 0 internalEvent
<8,6,6> 0.70267 12 12 12 0 0 0 0 0 sendMsg
<9,9,9> 0.903668 11 11 11 11 11 0 0 0 receiveMsg

<10,9,9> 1.00368 12 12 12 0 0 0 0 0 internalEvent
Table 9-15 node1 local states

Vector time Real time State Event
<0,0,0> 4.78E-04 21 21 21 21 0 0 0 0 internalEvent
<2,1,0> 0.100626 22 22 22 0 0 0 0 0 receiveMsg
<2,2,0> 0.200624 21 21 21 21 0 0 0 0 internalEvent
<2,3,0> 0.20076 21 21 21 21 0 0 0 0 sendMsg
<5,4,3> 0.40177 22 22 22 0 0 0 0 0 receiveMsg
<5,5,3> 0.501768 21 21 21 21 0 0 0 0 internalEvent
<5,6,3> 0.501904 21 21 21 21 0 0 0 0 sendMsg
<8,7,6> 0.702914 22 22 22 0 0 0 0 0 receiveMsg
<8,8,6> 0.802912 21 21 21 21 0 0 0 0 internalEvent
<8,9,6> 0.803048 21 21 21 21 0 0 0 0 sendMsg

<11,10,9> 1.004058 22 22 22 0 0 0 0 0 receiveMsg
<11,11,9> 1.104056 21 21 21 21 0 0 0 0 internalEvent

Table 9-16 node2 local states

Vector time Real time State Event
<0,0,0> 7.28E-04 31 31 31 0 0 0 0 0 internalEvent
<2,3,1> 0.201008 32 32 32 32 0 0 0 0 receiveMsg
<2,3,2> 0.30101 31 31 31 0 0 0 0 0 internalEvent
<2,3,3> 0.301144 31 31 31 0 0 0 0 0 sendMsg
<5,6,4> 0.502152 32 32 32 32 0 0 0 0 receiveMsg
<5,6,5> 0.602154 31 31 31 0 0 0 0 0 internalEvent
<5,6,6> 0.602288 31 31 31 0 0 0 0 0 sendMsg
<8,9,7> 0.803296 32 32 32 32 0 0 0 0 receiveMsg
<8,9,8> 0.903298 31 31 31 0 0 0 0 0 internalEvent
<8,9,9> 0.903432 31 31 31 0 0 0 0 0 sendMsg

<11,12,10> 1.10444 32 32 32 32 0 0 0 0 receiveMsg
<11,12,11> 1.204442 31 31 31 0 0 0 0 0 internalEvent

Table 9-17 node3 local states

242

 Consistent global states 9.4.2.1.1.2

Global vector
time

Local vector
time

Real
time

State

Event

<0,0,0> <0,0,0> 2.36E-04
 11 11 11 11 11 0 0

0

internalEvent

<0,0,0> 4.78E-04 21 21 21 21 0 0 0 0

internalEvent

<0,0,0> 7.28E-04 31 31 31 0 0 0 0 0

internalEvent

<1,0,0> <1,0,0> 1.00E-01 12 12 12 0 0 0 0 0

internalEvent

<0,0,0> 4.78E-04 21 21 21 21 0 0 0 0

internalEvent

<0,0,0> 7.28E-04 31 31 31 0 0 0 0 0

internalEvent

<2,0,0> <2,0,0> 0.100382 12 12 12 0 0 0 0 0 sendMsg

<0,0,0> 4.78E-04 21 21 21 21 0 0 0 0

internalEvent

<0,0,0> 7.28E-04 31 31 31 0 0 0 0 0

internalEvent

<2,1,0> <2,0,0> 0.100382 12 12 12 0 0 0 0 0 sendMsg
<2,1,0> 1.01E-01 22 22 22 0 0 0 0 0 receiveMsg

<0,0,0> 7.28E-04 31 31 31 0 0 0 0 0

internalEvent

<2,2,0> <2,0,0> 0.100382 12 12 12 0 0 0 0 0 sendMsg

<2,2,0> 0.200624 21 21 21 21 0 0 0 0

internalEvent

<0,0,0> 7.28E-04 31 31 31 0 0 0 0 0

internalEvent

<2,3,0> <2,0,0> 0.100382 12 12 12 0 0 0 0 0 sendMsg
<2,3,0> 0.20076 21 21 21 21 0 0 0 0 sendMsg

<0,0,0> 7.28E-04 31 31 31 0 0 0 0 0

internalEvent
Table 9-18 global states

 General result (possibly predicate) 9.4.2.1.1.3

Total local states of node1: 36
Total local states of node2: 35
Total local states of node3: 34
Total number global states: 103
Possibly predicate: false
Running time cost: 484ms

243

Figure 9-14 test case 2 predicate 1 simulated bus possible predicate detection graphic result

 General result (Definitely predicate) 9.4.2.1.1.4

Total local states of node1: 36
Total local states of node2: 35
Total local states of node3: 34
Total number global states: 103
Definitely predicate: false
Running time cost: 296ms

244

Figure 9-15 test case 2 predicate 1 simulated bus definitely predicate detection graphic result

9.4.2.1.2 Real system test result

 Local states of each node 9.4.2.1.2.1

Vector time Real time State Event
<0,0,0> 4.76E-03 11 11 11 11 11 0 0 0 internalEvent
<1,0,0> 0.101 12 12 12 0 0 0 0 0 internalEvent
<2,0,0> 0.101134 12 12 12 0 0 0 0 0 sendMsg
<3,3,3> 0.304042 11 11 11 11 11 0 0 0 receiveMsg
<4,3,3> 0.40399 12 12 12 0 0 0 0 0 internalEvent
<5,3,3> 0.404124 12 12 12 0 0 0 0 0 sendMsg
<6,6,6> 0.607042 11 11 11 11 11 0 0 0 receiveMsg
<7,6,6> 0.706938 12 12 12 0 0 0 0 0 internalEvent
<8,6,6> 0.707072 12 12 12 0 0 0 0 0 sendMsg
<9,9,9> 0.90995 11 11 11 11 11 0 0 0 receiveMsg

<10,9,9> 1.00999 12 12 12 0 0 0 0 0 internalEvent
<11,9,9> 1.010124 12 12 12 0 0 0 0 0 sendMsg

Table 9-19 node1 local states

245

Vector time Real time State Event
<0,0,0> 0.003732 21 21 21 21 0 0 0 0 internalEvent
<2,1,0> 0.102022 22 22 22 0 0 0 0 0 receiveMsg
<2,2,0> 0.20227 21 21 21 21 0 0 0 0 internalEvent
<2,3,0> 0.202428 21 21 21 21 0 0 0 0 sendMsg
<5,4,3> 0.405028 22 22 22 0 0 0 0 0 receiveMsg
<5,5,3> 0.505278 21 21 21 21 0 0 0 0 internalEvent
<5,6,3> 0.505436 21 21 21 21 0 0 0 0 sendMsg
<8,7,6> 0.70804 22 22 22 0 0 0 0 0 receiveMsg
<8,8,6> 0.808287 21 21 21 21 0 0 0 0 internalEvent
<8,9,6> 0.808446 21 21 21 21 0 0 0 0 sendMsg

<11,10,9> 1.011046 22 22 22 0 0 0 0 0 receiveMsg
Table 9-20 node2 local states

Vector time Real time State Event
<0,0,0> 0.004526 31 31 31 0 0 0 0 0 internalEvent
<2,3,1> 0.203034 32 32 32 32 0 0 0 0 receiveMsg
<2,3,2> 0.302982 31 31 31 0 0 0 0 0 internalEvent
<2,3,3> 0.303122 31 31 31 0 0 0 0 0 sendMsg
<5,6,4> 0.50644 32 32 32 32 0 0 0 0 receiveMsg
<5,6,5> 0.606068 31 31 31 0 0 0 0 0 internalEvent
<5,6,6> 0.606202 31 31 31 0 0 0 0 0 sendMsg
<8,9,7> 0.809514 32 32 32 32 0 0 0 0 receiveMsg
<8,9,8> 0.908938 31 31 31 0 0 0 0 0 internalEvent
<8,9,9> 0.909072 31 31 31 0 0 0 0 0 sendMsg

<11,12,10> 1.112464 32 32 32 32 0 0 0 0 receiveMsg
Table 9-21 node3 local states

246

 Consistent global states 9.4.2.1.2.2

Global vector
time

Local vector
time

Real
time State Event

<0,0,0> <0,0,0> 4.76E-03
 11 11 11 11 11 0 0

0

internalEvent

<0,0,0> 3.73E-03 21 21 21 21 0 0 0 0

internalEvent

<0,0,0> 4.53E-03 31 31 31 0 0 0 0 0

internalEvent

<1,0,0> <1,0,0> 1.01E-01 12 12 12 0 0 0 0 0

internalEvent

<0,0,0> 3.73E-03 21 21 21 21 0 0 0 0

internalEvent

<0,0,0> 4.53E-03 31 31 31 0 0 0 0 0

internalEvent

<2,0,0> <2,0,0> 0.101134 12 12 12 0 0 0 0 0 sendMsg

<0,0,0> 3.73E-03 21 21 21 21 0 0 0 0

internalEvent

<0,0,0> 4.53E-03 31 31 31 0 0 0 0 0

internalEvent

<2,1,0> <2,0,0> 0.101134 12 12 12 0 0 0 0 0 sendMsg
<2,1,0> 1.02E-01 22 22 22 0 0 0 0 0 receiveMsg

<0,0,0> 4.53E-03 31 31 31 0 0 0 0 0

internalEvent

<2,2,0> <2,0,0> 0.101134 12 12 12 0 0 0 0 0 sendMsg

<2,2,0> 0.20227 21 21 21 21 0 0 0 0

internalEvent

<0,0,0> 4.53E-03 31 31 31 0 0 0 0 0

internalEvent
Table 9-22 global states

 General result (possibly predicate) 9.4.2.1.2.3

Total local states of node1: 469
Total local states of node2: 469
Total local states of node3: 469
Total number global states: 1405
Possibly predicate: false
Running time cost: 94938ms

247

Figure 9-16 test case 2 predicate 1 real bus possibly predicate detection graphic result

 General result (Definitely predicate) 9.4.2.1.2.4

Total local states of node1: 469
Total local states of node2: 469
Total local states of node3: 469
Total number global states: 1405
Definitely predicate: false
Running time cost: 106266ms

248

Figure 9-17 test case 2 predicate 1 real bus definitely predicate detection graphic result

9.4.3 Result analysis

The execution of this text case is shown in Figure 9-18. This test case is analysed

with the same method as the test case 1.

1. To verify the function that assigns vector clocks using Table 9-19 node1

local states, Table 9-20 node2 local states, and Table 9-21 node3 local

states against the execution Figure 9-18. The result of the verification is

success.

249

Figure 9-18 test case 2 execution

2. To verify the function that evaluates consistent global state. Going through

Table 9-22, using algorithm in section 7.2.2 manually verifying consistent

global states that are found by prototype. The result of the verification is

success.

3. Validate the result of predicate evaluated by the prototype. The result of

the validation is successes.

4. Visually checking the lattice diagram.

All steps also are applied on the real system. The same results are obtained.

<2,3,1>

<2,1,0>

<2,3,2> <2,3,3>Node3

Node2

Node1 <1,0,0> <2,0,0> <3,3,3> <4,3,3> <5,3,3> <6,6,6> <7,6,6> <8,6,6> <9,9,9> <10,9,9>

<2,2,0> <2,3,0> <5,4,3> <5,5,3> <5,6,3> <8,7,6> <8,8,6> <8,9,6>

<5,6,4> <5,6,5> <5,6,6> <8,97,> <8,9,8> <8,9,9>

msg_n1_1 msg_n1_1 msg_n1_1

msg_n2_1
msg_n2_1 msg_n2_1 msg_n3_1 msg_n3_1 msg_n3_1

250

9.5 Test case 3

Test case 3 tests the effect of the environment variable in the state machine.

Environment variables are data objects global to the CANoe environment, and are

used to link the functions of a CANoe panel to CAPL programs (Vector 2004,

p28).

9.5.1 Model explanation

9.5.1.1 State	machine	diagram	

Figure 9-19 test case 3 state machine 1

Figure 9-20 test case 3 state machine 2

 stm node1

State1

State2

+ set / t_n1_1(100)

State3

+ send / msg_n1_1(100)

[on env_n1_1] rec
/msg_n2_1(101)

on
/t_n1_1(100)

 stm node2

State1 State2

+ send / msg_n2_1(101)
+ set / t_n2_1(50)

on /t_n2_1(50)

rec
/msg_n1_1(100)

251

9.5.1.2 Communication matrix

MessageID SendNodeNum receive: nodeNum

100 1 2

101 2 1
Table 9-23 test case 3 communication matrix

9.5.1.3 Local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 1 1 1 1 11 0 1 1 0 0

2 0 2 2 2 2 0 2 0 0 0

3 3 3 3 3 3 3 3 3 0 0
Table 9-24 test case 3 node 1 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 21 21 21 21 21 21 21 21 0 0

2 22 22 22 22 22 22 22 0 0 0
Table 9-25 test case 3 node2 local states

9.5.2 Test different inputs

9.5.2.1 Predicate 1

node2.var1>node1.var2 || node1.var2<node2.var5

252

9.5.2.1.1 Simulated system test result

 Local states of each node 9.5.2.1.1.1

Vector time Real time State Event
<0,0> 2.44E-04 1 1 1 1 11 0 1 1 internalEvent
<1,0> 4.92E-04 0 2 2 2 2 0 2 0 internalEvent
<2,0> 0.100242 3 3 3 3 3 3 3 3 internalEvent
<3,0> 0.100378 3 3 3 3 3 3 3 3 sendMsg
<4,3> 0.150982 1 1 1 1 11 0 1 1 receiveMsg
<5,3> 1.142855 0 2 2 2 2 0 2 0 internalEvent
<6,3> 1.242849 3 3 3 3 3 3 3 3 internalEvent
<7,3> 1.242985 3 3 3 3 3 3 3 3 sendMsg
<8,6> 1.293589 1 1 1 1 11 0 1 1 receiveMsg
<9,6> 1.437584 0 2 2 2 2 0 2 0 internalEvent
Table 9-26 node1 local states

Vector time Real time State Event
<0,0> 7.22E-04 21 21 21 21 21 21 21 21 internalEvent
<3,1> 0.100612 22 22 22 22 22 22 22 0 receiveMsg
<3,2> 0.150608 21 21 21 21 21 21 21 21 internalEvent
<3,3> 0.150738 21 21 21 21 21 21 21 21 sendMsg
<7,4> 1.243219 22 22 22 22 22 22 22 0 receiveMsg
<7,5> 1.293215 21 21 21 21 21 21 21 21 internalEvent
<7,6> 1.293345 21 21 21 21 21 21 21 21 sendMsg
Table 9-27 node2 local states

253

 Consistent	global	states	9.5.2.1.1.2

Global
vector time

Local vector
time

Real time

State

Event

<0,0> <0,0> 2.44E-04 1 1 1 1 11 0 1 1 internalEvent
<0,0> 7.22E-04 21 21 21 21 21 21 21 21 internalEvent

<1,0> <1,0> 4.92E-04 0 2 2 2 2 0 2 0 internalEvent
<0,0> 7.22E-04 21 21 21 21 21 21 21 21 internalEvent

<2,0> <2,0> 0.100242 3 3 3 3 3 3 3 3 internalEvent
<0,0> 7.22E-04 21 21 21 21 21 21 21 21 internalEvent

<3,0> <3,0> 0.100378 3 3 3 3 3 3 3 3 sendMsg
<0,0> 7.22E-04 21 21 21 21 21 21 21 21 internalEvent

<3,1> <3,0> 0.100378 3 3 3 3 3 3 3 3 sendMsg
<3,1> 0.100612 22 22 22 22 22 22 22 0 receiveMsg

<3,2> <3,0> 0.100378 3 3 3 3 3 3 3 3 sendMsg
<3,2> 0.150608 21 21 21 21 21 21 21 21 internalEvent

<3,3> <3,0> 0.100378 3 3 3 3 3 3 3 3 sendMsg
<3,3> 0.150738 21 21 21 21 21 21 21 21 sendMsg

<4,3> <4,3> 0.150982 1 1 1 1 11 0 1 1 receiveMsg
<3,3> 0.150738 21 21 21 21 21 21 21 21 sendMsg

<5,3> <5,3> 1.142855 0 2 2 2 2 0 2 0 internalEvent
<3,3> 0.150738 21 21 21 21 21 21 21 21 sendMsg

Table 9-28 global states

 General result (possibly predicate) 9.5.2.1.1.3

Total local states of node1: 101
Total local states of node2: 76
Total number global states: 176
Possibly predicate: true
Running time cost: 506ms

254

Figure 9-21 test case 3 predicate 1 simulated bus possibly predicate detection graphic result

 General result (Definitely predicate) 9.5.2.1.1.4

Total local states of node1: 101
Total local states of node2: 76
Total number global states: 176
Definitely predicate: true
Running time cost: 369ms

255

Figure 9-22 test case 3 predicate 1 simulated bus definitely predicate detection graphic result

9.5.2.1.2 Real system test result

 General result (possibly predicate) 9.5.2.1.2.1

Total local states of node1: 597
Total local states of node2: 895
Total number global states: 1493
Possibly predicate: true
Running time cost: 1703ms

 General result (Definitely predicate) 9.5.2.1.2.2

Total local states of node1: 597
Total local states of node2: 895
Total number global states: 1493
Definitely predicate: true
Running time cost: 1342ms

9.5.3 Result	analysis	

The prototype is verified and validated for this test case as well as test case 1 and

test case 2.

256

1. To verify the function that assigns vector clocks using Table 9-26 node1

local states and Table 9-27 node2 local states against the execution Figure

9-23 test case 3 execution. The result of the verification is success.

2. To verify the function that evaluates consistent global state. Going through

Table 9-28, using algorithm in section 7.2.2 manually verifying consistent

global states that are found by prototype. The result of the verification is

success.

3. Validate the result of predicate evaluated by the prototype. The result of

the validation is successes.

4. Visually checking the lattice diagram.

All steps also are applied on the real system. The same results are obtained.

Figure 9-23 test case 3 execution

<3,1>

Node2

Node1
<1,0> <2,0> <3,0> <4,3> <5,3> <6,3> <7,3> <8,6>

<3,2> <3,3> <7,4> <7,5> <7,6>

<9,6>

msg_n1_1 msg_n2_1 msg_n1_1 msg_n2_1

257

9.6 Test case 4

This test case is randomly generated. node1 only sends messages. The transition

routes of the other nodes depend on these messages. The possibility of different

execution traces should be high.

9.6.1 Model explanation

9.6.1.1 State machine diagram

Figure 9-24 test case 4 state machine 1

Figure 9-25 test case 4 state machine 2

 stm node1

State1

+ set / t_n1_1(100)

State2

+ send / msg_n1_2(101)
+ set / t_n1_3(100)

State3

+ send / msg_n1_1(100)
+ set / t_n1_2(100)

State4

+ send / msg_n1_3(102)
+ set / t_n1_4(100)

on
/t_n1_4(100)

on
/t_n1_3(100)

on
/t_n1_2(100)

on
/t_n1_1(100)

 stm node2

State1

+ send / msg_n2_1(103)

State2

+ send / msg_n2_2(104)
+ set / t_n2_1(50)

State3

+ send / msg_n2_3(105)

State4

+ set / t_n2_2(50)

on /t_n2_2(50)

on /t_n2_1(50)

rec
/msg_n1_3(102)

rec
/msg_n1_2(101)

rec
/msg_n1_1(100)

258

Figure 9-26 test case 4 state machine 3

9.6.1.2 Communication matrix

MessageID SendNodeNum receive: nodeNum

100 1 2

100 1 3

101 1 2

101 1 3

102 1 2

103 2

104 2 3

105 2

106 3

107 3
Table 9-29 test case 4 communication matrix

9.6.1.3 Local states

stateNum var1 var2 0　 var4 var5 var6 var7 var8 var9 var10

1 11 11 11 11 11 0 0 0 0 0

2 12 12 12 12 12 2 0 0 0 0

3 13 13 13 13 13 0 0 0 0 0

4 14 14 14 14 14 14 0 0 0 0
Table 9-30 test case 4 node 1 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 21 21 21 21 21 0 0 0 0 0

2 22 22 22 22 22 0 0 0 0 0

3 23 23 23 23 23 0 0 0 0 0

4 24 24 24 24 24 0 0 0 0 0
Table 9-31 test case 4 node2 local states

 stm node3

State1

+ set / t_n3_1(100)

State2

+ send / msg_n3_2(107)

State3

+ send / msg_n3_1(106)

State4

+ set / t_n3_2(50)

rec
/msg_n1_1(100)

rec
/msg_n1_2(101)

on /t_n3_2(50)

rec
/msg_n2_2(104)

on
/t_n3_1(100)

259

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 31 31 31 31 31 0 0 0 0 0

2 32 32 32 32 32 32 0 0 0 0

3 33 33 33 33 33 33 0 0 0 0

4 34 34 34 34 34 34 0 0 0 0
Table 9-32 test case 4 node 3 local states

9.6.2 Test different inputs

9.6.2.1 Predicate 1

node2.var2>21 && node1.var2==11

9.6.2.1.1 simulated system test result

 General result (possibly predicate) 9.6.2.1.1.1

Total local states of node1: 10
Total local states of node2: 13
Total local states of node3: 8
Total number global states: 492
Possibly predicate: true
Running time cost: 345ms

Figure 9-27 test case 4 predicate 1 simulated bus possibly predicate detection graphic result

260

 General result (Definitely predicate) 9.6.2.1.1.2

Total local states of node1: 10
Total local states of node2: 13
Total local states of node3: 8
Total number global states: 492
Definitely predicate: false
Running time cost: 331ms

Figure 9-28 test case 4 predicate 1 simulated bus definitely predicate detection graphic result

261

9.6.2.1.2 Real system test result

 General result (possibly predicate) 9.6.2.1.2.1

Real time period of the log file: 0.001696-0.901011
Total local states of node1: 16
Total local states of node2: 14
Total local states of node3: 10
Total number global states: 833
Possibly predicate: true
Running time cost: 641ms

Figure 9-29 test case 4 predicate 1 real bus possibly predicate detection graphic result

262

 General result (Definitely predicate) 9.6.2.1.2.2

Total local states of node1: 16
Total local states of node2: 14
Total local states of node3: 10
Total number global states: 833
Definitely predicate: false
Running time cost: 482ms

Figure 9-30 test case 4 predicate 1 real bus definitely predicate detection graphic result

263

9.6.2.2 Predicate 2

Predicate expression:

node1.var2>21 && node3.var2>=11 || node1.var6<=11 &&

node3.var2==node2.var2 && node2.var2>node3.var7 &&

node1.var2!=node2.var5 || node3.var5>node1.var7 && node2.var2==node3.var3

9.6.2.2.1 simulated system test result

 General result (possibly predicate) 9.6.2.2.1.1

Real time period of the log file: 0.000236- 0.700626
Total local states of node1: 14
Total local states of node2: 16
Total local states of node3: 13
Total number global states: 1097
Possibly predicate: true
Running time cost: 515ms

Figure 9-31 test case 4 predicate 2 simulated bus possible predicate detection graphic result

264

 General result (Definitely predicate) 9.6.2.2.1.2

Total local states of node1: 14
Total local states of node2: 16
Total local states of node3: 13
Total number global states: 1097
Definitely predicate: true
Running time cost: 484ms

Figure 9-32 test case 4 predicate 2 simulated bus definitely predicate detection graphic result

265

9.6.2.2.2 Real system test result

 General result (possibly predicate) 9.6.2.2.2.1

Real time period of the log file: 0-0.701443
Total local states of node1: 14
Total local states of node2: 9
Total local states of node3: 10
Total number global states: 381
Possibly predicate: true
Running time cost: 312ms

Figure 9-33 test case 4 predicate 2 real bus possible predicate detection graphic result

266

 General result (Definitely predicate) 9.6.2.2.2.2

Total local states of node1: 14
Total local states of node2: 9
Total local states of node3: 10
Total number global states: 381
Definitely predicate: true
Running time cost: 328ms

Figure 9-34 test case 4 predicate 2 real bus definitely predicate detection graphic result

267

9.6.3 Result	analysis	

Due to this test case being generated randomly (previous test cases are designed),

the execution track is arbitrary. The method to analyze this test case is a little

different from the previous method. In the previous test cases, the execution

diagram which is used to verify the function assigning the vector clocks is

manually generated from the state diagram. But in this test case the execution

diagram is manually generated from the result of the prototype vector clock

assigning function. Using this execution diagram against the state diagram verifies

the vector clock assigning function. If the execution logically matches the state

diagram, then the function is verified. Otherwise it is not verified.

The execution diagram generated from the simulated system is different from the

diagram generated from real system. Two diagrams are illustrated in Figure 9-35

and Figure 9-36. The real system needs to start the node running on another

machine manually. It takes a longer delay than the simulated system. The

simulated system almost starts all nodes at the same time.

Figure 9-35 simulated system execution

<0,0,1>

<0,1,0>

<2,3,2> <2,3,3>Node3

Node2

Node1 <1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,0,0> <6,0,0> <7,0,0> <8,0,0> <9,0,0> <10,0,0>

<2,2,0> <2,3,0> <2,4,0> <2,5,0> <4,6,0> <4,7,0> <6,8,0> <6,9,0>

<2,3,4> <2,3,5> <4,3,6> <4,3,7> <9,3,8> <11,3,9>

<6,10,0>

<11,0,0>

msg_n1_1 msg_n1_1 msg_n1_2 msg_n1_3 msg_n1_2

msg_n2_1 msg_n2_1
msg_n2_2 msg_n2_2msg_n2_3

msg_n3_1 msg_n3_1 msg_n3_2

268

As shown in Figure 9-35, the sending event with vector time <4,0,0> in node1has

two arrows. These two arrows do not mean that two messages are sent. It is one

message (in CAN network, all messages are broadcast), two other nodes filter the

message. It can be that any number of nodes filters this message, so the sending

event vector clock does not increase.

Figure 9-36 real system execution

Using the execution diagrams against the state machine diagrams verify vector

times in the execution diagram. To verify the vector time need to manually

evaluate if the vector times match the state diagram. The evaluation needs to

consider the causality of events. These considerations are:

1. The transition caused by receiving event should happen after the sending

event.

2. Two states on two ends of the transition in the state machine diagram have

to match two corresponding events and transition on the execution

diagram. E.g. in Figure 9-24 between state1 and state2 is transition t_n1_1,

state1 move to state2 has to be when the timer t_n1_1 expired. Otherwise

the state move is not valid.

<0,0,1>

<0,1,0>

<0,0,2> <2,3,3>Node3

Node2

Node1 <1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,0,0> <6,0,0> <7,0,0> <8,0,0> <9,0,0> <10,0,0>

<2,2,0> <2,3,0> <6,4,0> <6,5,0> <11,6,0> <11,7,0>

<2,3,4> <9,3,5> <11,3,6> <11,3,7> 11,3,8> <11,3,9>

<11,0,0>

msg_n1_1 msg_n1_1 msg_n1_2
msg_n1_3

msg_n1_2

msg_n2_1
msg_n2_2 msg_n2_1 msg_n2_3

msg_n3_1 msg_n3_1msg_n3_2 msg_n3_2

269

After evaluating these two execution diagrams, they are all validated. So the

function that assigns vector times is verified.

The remaining steps are to verify the function evaluating consistent global state,

to validate the predicate evaluation result, and validate the lattice.

The above four test cases verify and validate the prototype. The next few test

cases will test the performance of the prototype.

270

9.7 Test case 5

This test case consists of 4 state machines. One of the state machines contains an

environment variable. The change of the environment variable may cause the

transition to a different execution state.

9.7.1 Model explanation

9.7.1.1 State machine diagram

Figure 9-37 test case 5 state machine 1

Figure 9-38 test case 5 state machine 2

 stm node1

State1

+ set / t_n1_1(50)

State2

+ send / msg_n1_1(101)
+ set / t_n1_2(50)

State3

rec
/msg_n2_1(102)

on
/t_n1_2(50)

on
/ t_n1_1(50)

 stm node2

State1

+ send / msg_n2_2(105)
+ set / t_n2_1(50)

State2

+ set / t_n2_2(100)

State3

+ send / msg_n2_1(102)
+ set / t_n2_3(100)

State4 rec
/msg_n3_2(103)

rec
/msg_n4_1(106)

[on t_n2_3]

[on t_n2_2]

[on t_n2_1]

271

Figure 9-39 test case 5 state machine 3

Figure 9-40 test case 5 state machine 4

 stm node3

State1

+ send / msg_n3_1(104)

State2

+ set / t_n3_1(30)

State3

+ set / t_n3_2(50)

State4

+ send / msg_n3_2(103)
+ set / t_n3_4(30)

State5

+ set / t_n3_3(40)

[on t_n3_4]

[on env_n3_1]

[on t_n3_3]

[on t_n3_2]
[on t_n3_1]

rec
/msg_n1_1(101)

 stm node4

State1

+ set / t_n4_1(20)

State2

+ send / msg_n4_1(106)
+ set / t_n4_2(50)

State3

State4

State5

+ set / t_n4_3(20)

State6

+ set / t_n4_4(30)

rec
/msg_n3_2(103)

[on t_n4_4]

[on t_n4_3]

rec
/msg_n2_2(105)

rec
/msg_n3_1(104)

[on t_n4_2]

[on t_n4_1]

272

9.7.1.2 Communication matrix

MessageID SendNodeNum receive: nodeNum

101 1 3

102 2 1

105 2 4

104 3 4

103 3 2

103 3 4

106 4 2
Table 9-33 test case 5 communication matrix

9.7.1.3 Local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 11 11 11 11 11 0 0 0 0

2 12 12 12 12 12 12 12 12 0 0

3 13 13 13 13 13 13 0 0 0 0
Table 9-34 test case 5 node 1 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 21 21 21 21 21 21 21 0 0 0

2 22 22 22 22 22 22 22 0 0 0

3 23 23 23 23 23 23 23 0 0 0

4 24 24 24 24 24 24 24 24 0 0
Table 9-35 test case 5 node2 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 31 31 31 31 31 31 31 0 0 0

2 32 32 32 32 32 32 32 32 0 0

3 33 33 33 33 33 33 33 0 0 0

4 34 34 34 34 34 34 34 0 0 0

5 35 35 35 35 35 35 35 35 0 0
Table 9-36 test case 5 node 3 local states

273

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 41 41 41 41 41 41 41 41 0 0

2 42 42 42 42 42 42 42 42 0 0

3 43 43 43 43 43 43 43 43 43 0

4 44 44 44 44 44 44 44 44 0 0

5 45 45 45 45 45 45 45 45 45 0

6 46 46 46 46 46 46 46 46 0 0
Table 9-37 test case 5 node 4 local states

9.7.2 Test different inputs

9.7.2.1 Predicate 1

node3.var1<node2.var2 || node4.var2<node1.var7 || node4.var7<= 0 &&

node2.var4==node1.var6

9.7.2.1.1 Simulated system test result

 General result (possibly predicate) 9.7.2.1.1.1

Real time period of the log file: 2.370622- 3.950638
Total local states of node1: 10
Total local states of node2: 12
Total local states of node3: 10
Total local states of node4: 9
Total number global states: 454
Possibly predicate: false
Running time cost: 383ms

274

Figure 9-41 test case 5 predicate 1 simulated bus possibly predicate detection graphic result

275

 General result (Definitely predicate) 9.7.2.1.1.2

Real time period of the log file: 0.000000- 0.400392
Total local states of node1: 8
Total local states of node2: 10
Total local states of node3: 12
Total local states of node4: 12
Total number global states: 566
Possibly predicate: false
Running time cost: 473ms

Figure 9-42 test case 5 predicate 1 simulated bus definitely predicate detection graphic result

276

 General	result	9.7.2.1.1.3

Real time period of the log file: 0.231044- 0.701058
Total local states of node1: 8
Total local states of node2: 10
Total local states of node3: 9
Total local states of node4: 8
Total number global states: 236
Possibly predicate: false
Running time cost: 424ms

Figure 9-43 graphic result

277

 General	result	9.7.2.1.1.4

Real time period of the log file: 0.000000- 0.400392
Total local states of node1: 12
Total local states of node2: 14
Total local states of node3: 12
Total local states of node4: 12
Total number global states: 772
Possibly predicate: true
Running time cost: 378ms

9.7.2.2 Predicate	2	

node1.var4==11

9.7.2.2.1 Simulated	system	

 General result (possibly predicate) 9.7.2.2.1.1

Real time period of the log file: 0.000000- 0.370622
Total local states of node1: 8
Total local states of node2: 8
Total local states of node3: 12
Total local states of node4: 12
Total number global states: 530
Possibly predicate: true
Running time cost: 302ms

278

Figure 9-44 graphic result

279

 General	result	9.7.2.2.1.2

Real time period of the log file: 1.071626- 1.571062
Total local states of node1: 8
Total local states of node2: 10
Total local states of node3: 9
Total local states of node4: 6
Total number global states: 800
Possibly predicate: true
Running time cost: 443ms

Figure 9-45 graphic result

 General result (definitely predicate) 9.7.2.2.1.3

Real time period of the log file: 0.000000- 0.370622
Total local states of node1: 8
Total local states of node2: 8
Total local states of node3: 12
Total local states of node4: 12
Total number global states: 530
Definitely predicate: true
Running time cost: 334ms

280

 General	result	9.7.2.2.1.4

Real time period of the log file: 1.071626- 1.571062
Total local states of node1: 8
Total local states of node2: 10
Total local states of node3: 9
Total local states of node4: 6
Total number global states: 800
Definitely predicate: true
Running time cost: 390ms

9.7.3 Result	analysis	

This test case includes four nodes. The CANoe log file used in this test case is

large. It stores about 12 minutes CANoe data. The total local states of each node

are 196, 245, 249, and 200. So the total number of consistent global state

evaluations is the product of these numbers. The result of the product is

2,391,396,000. So the prototype should be able to evaluate part of the log file.

This test case tests the data randomly selected from the CANoe log. These data

are different periods of the execution data in the CANoe log. They are tested by

different predicates and different types of predicate.

This test case finds that in the same predicate and different period execution data,

the results of possibly predicate evaluation are the same, so are the results of

definitely predicate evaluation. Comparing the graphic lattices of these executions,

they have very similar shape. All of them have two heaved curves. The bottom

heaved curve in Figure 9-44 is higher than the bottom heaved curve in Figure 9-45.

It is because of the different execution periods of each test case; however it should

not affect the predicate evaluation result.

281

9.8 Test case 6

This test case consists of four state machines. They do not communicate with each

other, so it does not matter if the test case is tested under the simulated bus or real

bus. The total number of the global states should be the product of the total local

state of each node.

9.8.1 Model explanation

9.8.1.1 State machine diagram

Figure 9-46 test case 6 state machine 1

Figure 9-47 test case 6 state machine 2

Figure 9-48 test case 6 state machine 3

 stm node1

State1

+ set / t_n1_!(50)

State2

+ set / t_n1_2(50)
on /t_n1_2(50)

on /t_n1_!(50)

 stm node2

State1

+ set / t_n2_1(50)

State2

+ set / t_n2_2(50)on /t_n2_2(50)

on /t_n2_1(50)

 stm node3

State1

+ set / t_n3_1(50)

State2

+ set / t_n3_2(50)

on /t_n3_1(50)

on /t_n3_2(50)

282

Figure 9-49 test case 6 state machine 4

9.8.1.2 Communication matrix

9.8.1.3 Local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 12 13 14 15 16 17 0 0 0

2 21 22 23 24 25 26 27 28 29 0
Table 9-38 test case 6 each node local states

9.8.2 Test different inputs

9.8.2.1 Predicate 1

9.8.2.1.1 Simulated system test result

node3.var1 < node2.var2 || node4.var2 < node1.var7 || node4.var7 <= 0

&& node2.var4==node1.var6

 General result (possibly predicate) 9.8.2.1.1.1

Real time period of the log file: 0-0.150926
Total local states of node1: 4
Total local states of node2: 4
Total local states of node3: 4
Total local states of node4: 4
Total number global states: 256
Possibly predicate: false
Running time cost: 368ms

 stm node4

State1

+ set / t_n4_1(50)

State2

+ set / t_n4_2(50)on /t_n4_2(50)

on /t_n4_1(50)

283

 General result (possibly predicate) 9.8.2.1.1.2

Real time period of the log file: 0-0.400956
Total local states of node1: 9
Total local states of node2: 9
Total local states of node3: 9
Total local states of node4: 9
Total number global states: 6561
Possibly predicate: false
Running time cost: 7157ms

 General result (possibly predicate) 9.8.2.1.1.3

Real time period of the log file: 0-0.750926
Total local states of node1: 16
Total local states of node2: 16
Total local states of node3: 16
Total local states of node4: 16
Total number global states: 65536
Possibly predicate: false
Running time cost: 273754ms

 General result (possibly predicate) 9.8.2.1.1.4

Real time period of the log file: 0-0.850926
Total local states of node1: 18
Total local states of node2: 18
Total local states of node3: 18
Total local states of node4: 18
Total number global states: 104976
Possibly predicate: false
Running time cost: 627407ms

9.8.3 Result	analysis	

This test case includes three nodes. They do not communicate to each other, so all

global states evaluated are consistent. The total global state should be the product

of total local states of each node. This is proven by the results of this test case.

The storage used by the lattice is extremely high. The Java virtual machine

crashed with such big memory usage and a memory out of boundary exception

was thrown.

284

9.9 Test case 7

This test case consists of six state machines. It tests the ability of the prototype to

evaluate large numbers of state machines.

9.9.1 Model explanation

9.9.1.1 State machine diagram

Figure 9-50 test case 7 state machine 1

Figure 9-51 test case 7 state machine 2

 stm node1

State1

+ set / t_n1_1(50)

State2

+ send / msg_n1_1(101)

State3

+ set / t_n1_2(50)

rec
/msg_n2_1(103)

on
/t_n1_2(50)

on /t_n1_1(50)

 stm node2

State1

+ send / msg_n2_1(103)
+ set / t_n2_1(50)

State2

+ set / t_n2_4(50)

State3

+ set / t_n2_2(50)

State4

+ send / msg_n2_2(102)
+ set / t_n2_3(50)

rec
/msg_n1_1(101)

on /t_n2_4(50)

on /t_n2_3(50)on
/t_n2_2(50)

on /t_n2_1(50)

285

Figure 9-52 test case 7 state machine 3

Figure 9-53 test case 7 state machine 4

 stm node3

State1

+ set / t_n3_1(50)

State2

+ send / msg_n3_1(104)
+ set / t_n3_2(50)

State3

rec
/msg_n1_1(101)

on /t_n3_2(50)

on /t_n3_1(50)

 stm node4

State1

+ send / msg_n4_1(106)
+ set / t_n4_1(50)

State2

+ set / t_n4_6(10)

State3

+ set / t_n4_5(10)

State4

+ send / msg_n4_2(105)
+ set / t_n4_4(10)

State5

+ set / t_n4_3(10)

State6

+ set / t_n4_2(10)

rec
/msg_n6_2(110)

on /t_n4_6(10)

on /t_n4_5(10)

on /t_n4_4(10)
on /t_n4_3(10)

on /t_n4_2(10)

on /t_n4_1(50)

286

Figure 9-54 test case 7 state machine 5

Figure 9-55 test case 7 state machine 6

 stm node5

State1

+ send / msg_n5_1(107)
+ set / t_n5_1(10)

State2

+ set / t_n5_2(10)

State3

+ set / t_n5_3(40)

State4

+ send / msg_n5_2(108)
[env_n5_1]

rec
/msg_n4_1(106)

on /t_n5_3(40)on /t_n5_2(10)

on
/t_n5_1(10)

 stm node6

State1

+ send / msg_n6_1(109)
+ set / t_n6_1(40)

State2 State3

+ send / msg_n6_2(110)
rec
/msg_n1_1(101)

rec
/msg_n5_1(107)

on /t_n6_1(40)

287

9.9.1.2 Communication matrix

MessageID SendNodeNum nodeNum

110 6 4

101 1 2

101 1 3

101 1 6

102 2

103 2 1

104 3

105 4

106 4 5

107 5 6

108 5

109 6
Table 9-39 test case 7 communication matrix

9.9.1.3 Local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 12 13 14 15 16 17 18 0 0

2 21 22 23 24 25 26 27 28 29 0

3 31 32 33 34 35 36 37 38 39 0
Table 9-40 test case 7 node 1 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 12 13 14 15 16 17 18 0 0

2 21 22 23 24 25 26 27 28 29 0

3 31 32 33 34 35 36 37 38 39 0

4 41 42 43 44 45 46 47 48 49 0
Table 9-41 test case 7 node2 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 11 11 11 11 11 11 11 0 0

2 21 21 21 21 21 21 21 21 0 0

3 31 31 31 31 31 31 31 31 31 0
Table 9-42 test case 7 node 3 local states

288

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 12 13 14 15 16 17 18 0 0

2 21 22 23 24 25 26 27 28 29 0

3 31 32 33 34 35 36 37 38 39 0

4 41 42 43 44 45 46 47 48 49 0

5 51 52 53 54 55 56 57 58 59 0

6 61 62 63 64 65 66 67 68 69 0
Table 9-43 test case 7 node 4 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 12 13 14 15 16 17 18 0 0

2 21 22 23 24 25 26 27 28 29 0

3 31 32 33 34 35 36 37 38 39 0

4 41 42 43 44 45 46 47 48 49 0
Table 9-44 test case 7 node 5 local states

stateNum var1 var2 var3 var4 var5 var6 var7 var8 var9 var10

1 11 12 13 14 15 16 17 18 0 0

2 21 22 23 24 25 26 27 28 29 0

3 31 32 33 34 35 36 37 38 39 0
Table 9-45 test case 7 node 6 local states

9.9.2 Test different inputs

node4.var2<=11 || node2.var4==node1.var6

289

9.9.2.1 Predicate 1

9.9.2.1.1 Simulated system test result	

 General result (possibly predicate) 9.9.2.1.1.1

Real time period of the log file: 0-0.070364
Total local states of node1: 2
Total local states of node2: 3
Total local states of node3: 3
Total local states of node4: 6
Total local states of node5: 6
Total local states of node6: 3
Total number global states: 1620
Possibly predicate: false
Running time cost: 1226ms

 General result (possibly predicate) 9.9.2.1.1.2

Real time period of the log file: 0-0.101776
Total local states of node1: 4
Total local states of node2: 5
Total local states of node3: 5
Total local states of node4: 9
Total local states of node5: 6
Total local states of node6: 4
Total number global states: 10800
Possibly predicate: false
Running time cost: 19570ms

 General result (possibly predicate) 9.9.2.1.1.3

Real time period of the log file: 3.960232-4.370364
Total local states of node1: 16
Total local states of node2: 20
Total local states of node3: 16
Total local states of node4: 34
Total local states of node5: 26
Total local states of node6: 20
Total number global states: 221017
Possibly predicate: false
Running time cost: 799612ms

290

9.9.2.1.2 Real system test result

 General result (possibly predicate) 9.9.2.1.2.1

Real time period of the log file: 43.459959-43.578460
Total local states of node1: 4
Total local states of node2: 5
Total local states of node3: 4
Total local states of node4: 10
Total local states of node5: 7
Total local states of node6: 2
Total number global states: 2352
Possibly predicate: false
Running time cost: 1767ms

 General result (possibly predicate) 9.9.2.1.2.2

Real time period of the log file: 43.459959-43.848486
Total local states of node1: 13
Total local states of node2: 16
Total local states of node3: 14
Total local states of node4: 31
Total local states of node5: 26
Total local states of node6: 15
Total number global states: 114014
Possibly predicate: false
Running time cost: 292335ms

9.9.3 Result	analysis	

This test case consists of six nodes. The possible number of combination of

consistent global state is the product of total number of these six nodes local state.

Even if node has a small number of local states, the product is going to be large.

Also it is possible to store lots of consistent global states. As in section 9.9.2.1.1.1

the total number of local state of each node is 2, 3, 3, 6, 6, and 3. The total number

of global state is 1620. In section 9.9.2.1.1.3, the total number of local states of

each node is 16, 20, 16, 34, 26, and 20. The total number of consistent global

states is 221017. It takes about 799612 million seconds (13.33 minutes). The

291

results show the storage and time consumption is very large for a large number of

nodes.

9.10 Prototype	Performance	Analysis	

9.10.1 Memory	consumption	

The prototype program is coded in Java language, which runs on the JVM (Java

Virtual Machine). During the test, the JVM crashed few times by the exception of

memory out of boundary. Therefore, it is necessary to analysis how much memory

that is taken by the lattice. Table 9-46 (Borland Software Corporation 2005, p8-9)

shows the Java memory consumption of each primitive data type.

Type Size (byte)

double 8

int 4

long 8

float 4

short 2

byte 1

char 2
Table 9-46 Java primitive data type memory consumption

Because a global state is constructed from the local states, to know the memory

size of a local state is essential. By comparing Table 9-46 and the attributes of the

LocalState class, a size of a local state is at least 114 bytes for a two nodes system

(the size of vectorTime depends on how many nodes on the system. The two

nodes system is the smallest distributed system). Let t_node denotes the total

number of nodes. The size of a local state can be calculated by using:

Memory_size_of _a_ local_state =

(98+ (t_node × 8))

292

If without the vectorTime the size of a local state is 98 bytes. Except the local

states and global vector time, a GlobalState class consists of other attributes, their

size is 8.25 byte (a Boolean value is one bit). It equals to 66 bits. The size for a

global state will be calculated by using:

Memory_size_of _a_ global_state =

((98 + (t_node × 8)) × t_node) + 8.25 + (t_node × 8)

A global state of a 10-node system will consume 1868.25 bytes. If 100 consistent

global states are found, the storage will consume 186825 bytes memory.

Because most memory is used by storing the consistent global states, it is

necessary to find what factors produce the consistent global states. Table 9-47

shows all memory consumptions for all test cases.

9.10.2 Factors	affecting	the	quantity	of	consistent	global	states	

Because a global state is constructed by the local states and all the consistent

global states are evaluated from these global states, the number of local states is

the main factor influences the quantity of consistent global states.

Depending on the results of the test cases, the quantity of consistent global states

affected by the following factors:

 The number of the nodes are an obvious factor that influences the quantity

of the consistent global states. The bigger system (more nodes) the more

consistent global states are generated. The bigger system, the more

complex of the execution condition of the system will be and the more

local states will be generated; thereby the more candidates global states

will be constructed by these local state. From the large population of

293

global state to evaluate the consistent global state, there is a big chance to

achieve the large number of consistent global states.

 The communications between the nodes are another factor. The more

communications the less consistent global states will be. Because

sometimes, a node moving state needs to receive a message, if the message

is not transmitted, the local state of the node will not be changed, thereby

it reduces the number of the local states. It reduces the candidates for the

consistent global state evaluation.

 The number of consistent global states also can depend on the interval of

the system running time. If the transition of local states is more depending

on the timer expiring, then the longer the system running, the more local

states will generated. If the transition more depends on the event happen,

then the time will not affect the quantity of local states, thereby it will not

affect the quantity of the consistent global state.

Figure 9-56 is generated from the results of the test cases (Table 9-47); the 3-

dimension plot shows how the number of nodes and number of communications

influence the number of consistent global state. Test case 5 and test case 6 has the

same number of nodes. Comparing the number of consistent global states between

them in Figure 9-57, the test case 6 is higher than the test case 5; because test case

5 has more communications than test case 6 as shown in Figure 9-58.

Test case 5 and test case 7 has the same number of communications. Comparing

the number of consistent global state between them in Figure 9-59, the test case 7

is higer than the test case 5; because test case 5 has less nodes than test case 7 as

shown in Figure 9-58.

294

Most test cases are based on the time triggering system (except test case 3),

thereby for the same test case in Figure 9-56, the longer system running the more

consistent global states are generated.

Figure 9-56 number of CGSs vs. number of communication & number of nodes

Figure 9-57 number of nodes vs. number of CGSs (X-Z view of Figure 9-56)

2
3

4
5

6

0
1

2
3

4
5

6
7

10
2

10
4

10
6

Number of nodes (X)

Number of communication (Y)

N
um

be
r

of
 c

on
si

st
en

t
gl

ob
al

 s
ta

te
s

(Z
)

2 3 4 5 6
10

1

10
2

10
3

10
4

10
5

10
6

N
u

m
be

r
of

 c
o

n
si

st
e

n
t g

lo
b

a
l s

ta
te

s
(Z

)

Test case 6

Test case 5

number of nodes

295

Figure 9-58 number of communications vs. number of nodes (X-Y view of Figure 9-56)

Figure 9-59 number of communications vs. number of CGSs (Y-Z view of Figure 9-56)

2 3 4 5 6
0

1

2

3

4

5

6

7

number of nodes

nu
m

be
r

of
 c

om
m

un
ic

at
io

ns

Test case 5

Test case 6

Test case 7

0 1 2 3 4 5 6 7
10 1

10 2

10 3

10 4

10 5

10 6

N
u

m
be

r
of

 c
o

n
si

st
e

n
t g

lo
b

a
l s

ta
te

s
(Z

)

number of nodes

Test case 5

Test case 7

296

Number of Communications Number of nodes Consistent Global States Memory consumption (byte)

2 2 234 59026.5

2 2 542 136719.5

2 2 1626 410158.5

3 3 103 41019.75

3 3 1405 559541.3

2 2 176 44396

2 2 1493 376609.3

6 3 492 195939

6 3 833 331742.3

6 3 1097 436880.3

6 3 381 151733.3

7 4 454 254353.5

7 4 566 317101.5

7 4 234 131098.5

7 4 772 432513

7 4 530 296932.5

7 4 800 448200

7 4 530 296932.5

0 4 256 143424

0 4 6561 3675800

0 4 65536 36716544

0 4 104976 58812804

7 6 1620 1510245

7 6 10800 10068300
7 6 221017 2.06E+08
7 6 114014 1.06E+08

Table 9-47 number of nodes, number of communications, number of CGS and memory
consuming from all test cases results

9.11 Conclusion		

This chapter describes seven test cases to test the prototype software. The first

four test cases verify and validate the prototype. The last three test cases test the

performance of the prototype. Analysing each test case result, for the verification

of the functions of the prototype is successful. The validation of the prototype is

also successful. The performance of the prototype depends on the

communications between nodes, the total number of nodes, and the total number

of each node’s local states.

297

References

Borland Software Corporation. Getting Started with Java? 2005.

Vector. Programming With CAPL. 12-14-2004. Vector CANtech, Inc.

298

Section	Five:	Research	Summary	

299

Chapter	10 	Research	conclusion		

10.1 Introduction		

The aim of this research is to investigate a method to test distributed automotive

system. To achieve this aim, the system global states are constructed and

evaluated by the specified predicates.

10.2 Research	summary	

There are some literatures investigated for testing the distributed system. The

logical time is used to order the distributed events. The snapshot algorithm

capture a global state of an execution, but it cannot continuously capture the

global states. However for distributed system testing the continuous history of the

execution is important, so it leads to the GPD algorithm.

By comparing and contrasting different GPD algorithms, the centralized relational

predicate is chosen to apply on the automotive distributed system. A prototype

program was developed to evaluate the global predicates. During the prototype

development, seven test cases were used to verify and validate the prototype. The

prototype was successfully verified and validated in these test cases.

10.3 Answer Research Questions

10.3.1 How can events occurring on separate ECUs be chronologically

ordered?

The events occurring on the different ECUs can be ordered by the vector clock as

in the prototype program. The prototype assigns the vector clock to each local

300

state of each ECU; the test cases verified the local vector clock assignment

working fine.

10.3.2 How can a snapshot of the global application state and application

execution traces be constructed based on test case execution cycles?

Depending on vector clock of each local state, the consistent global states can be

constructed. Each consistent global state also is assigned the vector clock, the

vector clock of the consistent global states assignment is verified by the test cases.

10.3.3 How to deal with the large number of global states of execution?

The global states include consistent global states and non-consistent global states.

More global states consume more CPU power to evaluate if these global states are

consistent. These consistent global states need to be stored in a data structure such

as the execution lattice. The data structure could consume lots of memory. All

problems stem from the large number of global states.

The total number of global states equals the product of total number of each node

local states. The number of nodes can’t be reduced. The entire system should be

evaluated. The only way is to reduce the local states of each node. The local states

are constructed by the CAN messages from the CANoe log file. The longer time

the system run, the more data are collected. So if the running time of the testing

system is reduced, it will reduce the total number of local states. If the system is

run for a short time, it may work well, but it won’t be certain if it works for a long

time running. So the prototype should have the ability to evaluate a period time of

the system running. It should allow the user to choose the part of the CANoe log

301

file to be evaluated. So the best way to deal with the large number of global states

is to evaluate the local states over a series of shorter intervals.

10.4 Area for further research

Due to the time constraint for the research, the prototype is not a sophisticated

product. Lots of optimizations and extensions can be developed in the further.

They are:

 In the prototype program, the algorithm used for evaluating the consistent

global state is checking every possible global state. In the situation, where

one or more global states caused by an inconsistent parent global state;

there is no need to evaluate its child global states. The time to evaluate the

consistent global states can be shortened. If an algorithm offers the ability

to cleverly skip all child global states of a non-consistent global state, it

will be very useful for large distributed automotive systems.

 For the execution lattice presentation, the prototype presents the lattice on

the JAVA frame; the user can browse the global state on the lattice by

double clicking. The lattice is also can be saved as PNG format, but the

PNG format cannot interact with the user, it only a picture. If too many

global states are on the lattice, the lattice cannot be presented on the frame

or PNG image. So finding a way to present large lattices in a different

format that can offer a good user interface would let the user easily browse

the global state information.

 For the performance analysis of the prototype program, some mathematic

al solution may be generated by the results data of massive test cases.

302

Because the number of consistent global states is affected by the number

of nodes, the number of communications, and maybe the system running

period (the local state transition depends on the timer); it is may be

possible to use the massive test results’ data to figure out the coefficient of

these factors and generate a formula.

	 	

303

Appendix	A	

Bibliography	

A.Al-Ashaab, S.Howell, A.Gorka, K.Usowicz, & P.Hernando Anta Set-Based

Concurrent Engineering Model for Automotive Electronic/Software Systems

Development, In CIRP Design Conference 2009, p. 464.

Ajay D.Kshemkalyani. A Fine-Grained Modality Classification for Global

Predicates. 14, 807-816. 2003. IEEE Transactions.

Alexander I.Tomlinson & Vijay K.Garg. Detecting relational global predicates in

distributed system. 28[12]. 1993. ACM New York, NY, USA.

AUTOSAR GbR. requirements of RTE. 7-12-2006a.

AUTOSAR GbR. software component template. 6-26-2006b.

AUTOSAR GbR. Specification of PDU Router. 6-26-2006c.

AUTOSAR GbR. Layered Software Architecture. 2-14-2008a.

AUTOSAR GbR. Specification of Communication. 2-13-2008b.

AUTOSAR GbR. Specification of Operating System. 6-23-2008c.

AUTOSAR GbR. Specification of RTE. 9-22-2010.

Borland Software Corporation. Getting Started with Java? 2005.

304

BOSCH. CAN Specification. 1991. Robert Bosch GmbH, Postfach 30 02 40, D-

70442 Stuttgart.

Bowen, J. 2003. Formal Specification and Documentation using Z: A Case Study

Approach Thomson Publishing.

Brendan Jackman. Basic Concepts. An overview of the distinguishing features of

the CAN network. 2004a. Waterford Institute of Technology, Ireland.

Brendan Jackman. CAN Frame Formats. 2004b. Waterford Institute of

Technology, Ireland.

Broekman, B. & Notenboom, E. 2003. Testing Embedded Software.

Colin Fidge. Logical time in distributed computing systems. 28-33. 1991. IEEE

Computer.

Darren Buttle. What is an RTE. Introduction to AUTOSAR for RTE users. 12-5-

2005.

Dasso, A. & Funes, A. 2006. Verification, Validation and Testing in Software

Engineering Idea Group Publishing.

dSPACE GmbH. HIL for a Three-Wheeler Scooter. 2007. dSPACE .

dSPACE GmbH. dSPACE Catalog 2009. 2009. dSPACE.

dSPACE GmbH. Making Power Windows safe. 2010. dSPACE GmbH,

Paderborn, Germany, dSPACE Magazine.

dSPACE, G. dSPACE Catalog 2009. 2009. dSPACE,GmbH.

305

Everett, G.D. & McLeod, R. 2007. Software Testing Testing Across the Entire

Software Development Life Cycle Wiley-IEEE Computer Society Press.

Friedemann Mattern. Algorithms for distributed termination detection. 2, 161-175.

Distributed Computing.

Friedemann Mattern. Efficient Algorithms for Distributed Snapshots and Global

Virtual Time Approximation. 18, 423-434. 1993. Journal of Parallel and

Distributed Computing.

Friedemann Mattern. Virtual time and global states of distributed systems. 215-

226. 1998. Proceedings of the Parallel and Distributed Algorithms Conference.

G.T.J.Wuu & A.J.Bernstein. Efficient solutions to the replicated log and

dictionary problems. 233-242. 1984. Proceedings of 3rd ACM Symposium on

PODC.

Gabriel Leen & Donal Heffernan. Expanding Automotive Electronic Systems.

88-93. 2002. IEEE.

Gary S.Ho & C.V.Ramamoorthy. Protocols for Deadlock Detection in Distributed

Database Systems. 8. 1982. IEEE Transactions On Software Engineering.

H.Kleinknecht. CAN Calibration Protocol Version 2.1. 2-18-1999.

Joseph Lemieux. Programming in the OSEK/VDX Environment. Berney

Williams, Robert Ward, Rita Sooby, and Michelle O'Neal. 2001. CMP Books.

K.M.Chandy & L.Lamport. Distributed Snapshots: Determining Global: States of

Distributed Systems. 3. 1985. ACM Transactions on Computer Systems.

306

Keith Marzullo & Gil Neiger. Detection of Global State Predicates. [LNCS 579],

254-272. 1991. Proceedings of the 5th Workshop on Distributed Algorithms.

Kenneth P.Birman. Building Secure and Reliable Network Applications. 1995.

Department of Computer Science Cornell University Ithaca, New York 14853.

Leslie Lamport. Time clocks and the ordering of events in a distributed system.

558-564. 1978. Communications of the ACM.

LiveDevices Ltd. RTA-RTE User Guide. 2004.

M.J.Fischer & A.Michael. Sacrifying serializability to attain hight availability of

data in an unreliable network. 70-75. 1982. Proceedings of the ACM Symposium

on Principles of Database Systems.

Madalene Spezialetti & Phil Kearns. Efficient Distributed Snapshots. 382-388.

1986. Proceedings of the 6th International Conference on Distributed Computing

Systems.

Maria, A. Introduction To Modeling And Simulation. 1997. ACM.

McGregor, J.D. & Sykes, D.A. 2001. A practical guide to testing object-oriented

software Addison-Wesley.

Michael Schneider, Johnny Martin, & W.T.Tsai. An Experimental Study of Fault

Detection In User Requirements Documents. 1, 188-204. 1992. ACM

Transactions on Software Engineering and Methodology.

Nathan Funk. Jep Java Math Expression Parser. 2-8-2011.

National ITS Architecture Team 2007, System Engineering for Intelligent

Transportation Systems.

307

Neeraj Mittal & Vijay K.Garg. On Detecting Global Predicates in Distributed

Computations. 3-10. 2001. International Conference on Distributed Computing

Systems.

Nicola Santoro. Design And Analysis Of Distributed Algorithms. 2007. John

Wiley & Sons, Inc., Hoboken, New Jersey.

Nicolas Navet & Françoise Simonot-Lion. Automotive Embedded Systems

Handbook. 2009. Taylor & Francis Group, LLC.

OSEK. OSEK/VDX Operating System Specification 2.2.3. 2-17-2005.

OSEK/VDX. OSEK/VDX Communication. 7-20-2004.

Ozalp Babaoglu & KeithMarzullo . Consistent Global States of Distributed

Systems: Fundamental Concepts and Mechanisms. 1993. Italy, Laboratory for

computer science university of bologna.

Patton, R. 2005. Software Testing Sams Publishing.

Pressman, R.S. 2001. Software Engineering, 5th ed. Thomas Casson.

Punit Chandra & Ajay D.Kshemkalyani. Distributed algorithm to detect strong

conjunctive predicates. 87, 243-249. 2003. Information Processing Letters.

Punit Chandra & Ajay D.Kshemkalyani. Causality-Based Predicate Detection

across Space and Time. 54, 1438-1453. 2005. IEEE Transactions on Computers.

Rahul Garg, Vijay K.Garg, & Yogish Sabharwal. Efficient Algorithms for Global

Snapshots in Large Distributed Systems. 1994. IEEE Transactions on Software

Engineering.

308

Rainer Zaiser. CCP. A CAN Protocol for Calibration and Measurement Data

Acquisition. 2011. Vector Informatik GmbH Friolzheimer Strasse 6 70499

Stuttgart,Germany.

Ranal, M. & Singhal, M. Logical Time: Capturing Causality in Distributed

Systems. 1996. IEEE Computer.

Richard Zurawski. networked embedded systems. 2009. Taylor & Francis Group,

LLC.

Robert Cooper & Keith Marzullo. Consistent Detection of Global Predicates.

163-173. 1991. Proceedings of the ACM/ONR Workshop on Parallel and

Distributed Debugging.

Robert Warschofsky. AUTOSAR Software Architecture. 2011. Hasso-Plattner-

Institute fuer Softwaresystemtechnik.

Roychoudhury, A. 2009. Embedded Systems and Software Validation Morgan

Kaufmann.

Schaeuffele, J. & Zurawka, T. 2005. Automotive Software Engineering Principles

Processes Methods and Tools SAE International.

Simon Fuerst & BMW AUTOSAR An open standardized software architecture

for the automotive industry, In 1st AUTOSAR Open Conference & 8th

AUTOSAR Premium Member Conference.

Stefan Bunzel. Overview on AUTOSAR Cooperation. 5-13-2010. Tokyo, Japan,

2nd AUTOSAR Open Conference.

Sukumar Ghosh. Distributed Systems An Algorithmic Approach. 2007. Taylor &

Francis Group, LLC Chapman & Hall/CRC.

309

T.H.Lai & T.H.Yang. On distributed snapshots. 25, 153-158. 1987. Information

Processing

Letters.

Tian, J. 2005. Software Quality Engineering Testing, Quality Assurance, and

Quantifiable Improvement John Wiley & Sons, Inc., Hoboken, New Jersey.

Vector. Programming With CAPL. 12-14-2004. Vector CANtech, Inc.

Vector CANtech, I. Programming With CAPL. 12-14-2004.

Vector Informatik GmbH. Product Catalog. Development of Distributed Systems

ECU Testing. 2010a. Vector Informatik GmbH.

Vector Informatik GmbH. User Manual CANoe Version 7.5. 2010b.

Vijay K.Garg & Brian Waldecker. Detection of weak unstable predicates in

distributed programs. 5, 299-307. 1994. IEEE Transactions on Parallel and

Distributed Systems.

Vijay K.Garg & Brian Waldecker. Detection of Strong Unstable Predicates in

Distributed Programs. 7, 1323-1333. 1996. IEEE Transactions on Parallel and

Distributed Systems.

