
Policy Based Management for Security in Cloud
Computing

Adrian Waller1, Ian Sandy1, Eamonn Power2, Efthimia Aivaloglou3,
Charalampos Skianis3, Antonio Muñoz4, Antonio Maña4

1 Thales UK, Research and Technology, Reading, UK
2 TSSG, Waterford Institute of Technology, Waterford, Ireland

3 Department of Information and Communication Systems Engineering,
University of the Aegean, Samos, Greece

4 University of Málaga
{ adrian.waller, ian.sandy}@thalesgroup.com, epower@tssg.org,

{ eaiv, cskianis}@aegean.gr, {amunoz, amg}@lcc.uma.es

Abstract. Cloud computing is one of the biggest trends in information technol-
ogy, with individuals, companies and even governments moving towards their
use to save costs and increase flexibility. Cloud infrastructures are typically
based on virtualised environments, to allow physical infrastructure to be shared
by multiple end users. These infrastructures can be very large and complex, with
many end users, making their configuration difficult, error-prone and time-
consuming. At the same time, the fact that diverse end users share the same
physical infrastructure raises security concerns, and can lead to a significant im-
pact from misconfiguration or being slow to react to attacks. In this paper, we
focus on the use of Policy Based Management techniques to manage cloud infra-
structure, identifying the requirements, surveying the state-of-the-art, identifying
the challenges and proposing potential solutions.

Keywords: Policy Based Management; Virtualisation; Cloud Computing

1. Introduction

Cloud computing is one of the biggest trends in Information Technology (IT) today.
By enabling data and services to reside on outsourced and shared computing plat-
forms, significant cost savings and more flexibility can be achieved compared to de-
ploying and maintaining one’s own infrastructure. For this reason, companies and
even governments are moving towards their use, but the potential sensitivity of their
data means that cloud providers must manage their large and complex infrastructures
in a robust way. Current trends in IT suggest that software systems will become very
different from their counterparts today, due to a greater adoption of Service-Oriented
Architectures (SOAs), the wider deployment of Software as a Service (SaaS), and the
increased use of wireless and mobile technologies [1][2]. In line with these trends,
cloud computing platforms are built on top of large-scale, heterogeneous infrastruc-
tures that are made available to a large number of end users with very disparate needs.

In this setting, the management of non-functional properties such as security and pri-
vacy will be of an increased and critical importance. In this paper we look at the use
of Policy Based Management (PBM) techniques to securely manage cloud infrastruc-
ture. In section 2, we describe the background to cloud management, the use of PBM
in this context, and the requirements for a solution based on PBM. In section 3, we
survey the state-of-the-art and identify the key challenges for such a solution. Finally,
in section 4 we outline some potential solution approaches and future work that we
are pursuing in the PASSIVE project [3].

2. Background and requirements

The NIST definition of cloud computing [4] refers to a model of resource manage-
ment that enables convenient access to a shared pool of configurable computing re-
sources that can be easily provisioned and released with minimal effort from the ser-
vice provider. It goes on to categorise the service models as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). IaaS allows the
provisioning of servers (using virtual machines (VM)), storage and network resources
rapidly using either a console interface or an API. The goal of this paper is to outline
a component that resides beneath the console/API and spans the underlying resources
to enable fine-grained resource control and provide assurance regarding the integrity
of the resources being managed. We propose an approach using PBM of the virtual-
isation resources for cloud providers. In essence, PBM is a technique for specifying
the behaviour of a system under different circumstances. The use of policies allows
the response of the system to a given situation to be changed quite simply, by chang-
ing the policy, without the need to modify the underlying software. In a dynamic sys-
tem such as presented by cloud computing, the system must handle changing policies
as the system runs, which gives rise to a number of issues that have to be solved in
order to create an effective system:

- The PBM system has to take in policies covering a variety of topics in addition to

security (e.g. resource allocation), and from a variety of sources. These policies
may be expressed in multiple languages at different levels of abstraction, and must
be translated into a common language for use at the point decisions are made.

- The decision making process using the defined policies must be correct, and the
implementation of the policy actually has to happen (i.e. be enforced, and be con-
sistent throughout the cloud). This implies the need for assurance in both the PBM
decision making, as well as the selection, reconfiguration and composition of the
components that are used to implement the decision.

- Having multiple policies from multiple sources will almost certainly result in a
conflict at some stage, which will need to be resolved.

- Last but not least, a PBM system’s activities will, of course, need to be performed
in such a way so as not to impact on the performance and cost of the cloud.

In the following section, we consider the relevant state-of-the-art and major chal-

lenges in developing a PBM solution to meet these requirements.

3. State-of-the-art and challenges

3.1 Policy Based Management

A common theme in the state-of-the-art is the use of formal or logic-based methods.
Systems with a rigorous formal foundation both for the specifications and for the se-
mantics of authorisation allow rigorous guarantees of the security policies [5]. A
problem is that the policy to be applied may actually be a composite of different re-
quirements from different sources. One proposed solution in access control is an alge-
bra with formal semantics which allows a number of simple policies to be combined
into the required complex policy [6]. A significant challenge remains to develop a
formal policy language which is suitable for expressing policies for a range of areas
such as security, access control, monitoring and resource management. Part of the
challenge would be to make the language as easy to use as possible without compro-
mising its formal properties, which may require the development of a natural-
language front-end with associated translation, such as proposed for the PERMIS edi-
tor [7]. Another potential benefit of a formal language would be in making the detec-
tion and resolution of conflicts between policies easier, which is in itself a challenge
that needs addressing [8]. A recent survey of conflict resolution techniques found
them to be mostly unsuitable for live management systems [9]. Algorithms and tech-
niques for conflict detection and resolution are needed both when the policies are be-
ing created or edited and when they are being evaluated. The best approach to con-
flicts may be to avoid them altogether by paying close attention to writing policies to
ensure that they cannot conflict (e.g. [9]) but this is unlikely to be a successful strat-
egy in an environment as complex and dynamic as a cloud. Within a cloud, Virtual-
ised Environments (VEs) are typically used, and PBM has been proposed for manag-
ing them. Performance for such an approach is a key challenge within VEs, and an
example of work in this area is to transfer the security enforcement and program
analysis roles to a policy-directed FPGA [10].

3.2 Cloud PBM Architectures

Policies can be enforced at various layers of the systems architecture of cloud com-
puting environments. Policies controlling resource access or inter-VM communication
can be enforced at the hypervisor layer, while more fine-grained policies can be en-
forced at the VM operating system layer. Policies controlling the formation of coali-
tions of VMs or setting restrictions on their collocation may be defined on a central
management VM instead of on each host of the infrastructure. The sHype security ar-
chitecture [11] enables the enforcement of policy based access control for the shared
virtual resources and the information flows between operating systems hosted on
common hardware platforms. Following the FLASK access control architecture [12],
sHype keeps the access control policy separate from access control enforcement. The
policy management function offers the means to create and maintain policy instantia-
tions that are efficient to use at the hypervisor level. The OpenTC architecture [13]

enables the definition and enforcement of a wide range of security policies. It includes
a trusted virtualisation layer, a Trusted Platform Module (TPM) with strong isolation
properties between virtual machines, and a security services layer. Similar to the
sHype architecture, the definition and management of the security policies is per-
formed at the application layer, in a dedicated management virtual machine. A lay-
ered architecture for access control in virtualised systems running sHype for manda-
tory access control (MAC) was proposed in [14]. The operating system kernel
(SELinux) layer implements MAC to confine data received from the other VMs. The
Shamon shared reference monitor [15] that has been proposed for enforcing MAC
policies across a distributed set of VMs also implements a layered approach. It en-
forces MAC reference monitoring from the hypervisor (Xen) and the operating sys-
tem (SELinux) and IPsec network controls. Shamon offers support for coalitions of
VMs on multiple physical hypervisors. In more recent proposed solutions enabling
trusted multi-tenant virtual datacentres [16], the notion of coalitions of VMs has
evolved to the concept of Trusted Virtual Domains (TVDs) [17] that allow the group-
ing of VMs that collaborate. The Trusted Virtual Datacentre (TVDc) security solution
[16] groups VMs into TVDs and relies on the enforcement of MAC policies by sHype
for isolating them. While the architectures that enable the formation of coalitions [15]
or TVDs [16] allow the enforcement of fine-grained policies for controlling coopera-
tion among the coalitions, one challenge that remains is the flexible organisation and
management of the coalition members which could be useful for scenarios with fre-
quent VM membership changes, such as for cloud infrastructures hosting virtual desk-
tops. An additional challenge for controlling VM placement and collocation is to en-
able the definition of placement rules based on both static and dynamic attributes of
the hosts and the VMs, and the security characteristics supported by the platform.

3.3 Assurance in decision making

To achieve high assurance, policies need to be precisely and unambiguously speci-
fied, and accurately implemented. Policies may also conflict, and therefore these con-
flicts need to be detected and resolved if correct behaviour is to be observed. The
ideal approach to achieve this would be the use of a logic-based formal language, al-
lowing the correctness of the policies to be mathematically proven. Unfortunately,
there appear to be no readily available formal policy languages suitable for an envi-
ronment such as cloud computing, where policies cover a range of activities from ac-
cess control to resource management. DHARMA [18] is a formal language, but since
it is principally a reference monitor it is not really suitable or easily adaptable to meet
these needs. More general purpose policy languages such as APPEL [19] and
PONDER [20] do exist, as do more specialised ones such as XACML [21] for access
control or UCON [22] for usage control. However, none of these are formal. Another
difficulty with formal languages, or indeed any language that can be implemented in
an automated policy system, is that they require a lot of skill to be used effectively,
which is unlikely to be found in a user who is not a programming or technical expert
(or, indeed, a formal methods expert). A potential solution would be a natural lan-
guage front-end as the interface to the user. This would, by necessity, have a restricted
vocabulary and grammar and would need to be translated into the underlying ma-

chine-readable language. Ideally, there would only be one translation step, built on
formal methods, that would generate machine instructions from user input and be
provably correct. This is unlikely to be realised in the short-term and intermediate
stages will be needed, with a consequent greater difficulty in showing that the policy
has been correctly interpreted and enforced. Verification and validation of the low-
level policies is also needed, and should include detecting and resolving conflicts be-
tween policies. In the absence of a formal language with its inherent property of proof
of correctness, testing will have to be more rigorous and more extensive to provide
this. Even so, it is not possible to provide the same level of confidence with any real-
istic testing regime, although this approach can be less expensive as it does not re-
quire specialist staff to be available.

3.4 Software Security Certification

In addition to assurance in policy decision making, assurance in the security and pri-
vacy properties of the modified system resulting from a policy decision is also
needed. In principle, certification appears a plausible, practical and well-established
solution for increasing users’ trust and confidence, where a certificate attests security
properties of entities (software and hardware products, systems and services). How-
ever, looking more closely at the specific characteristics of cloud computing scenar-
ios, we see that current software system certification schemes are not appropriate.
Software certification is currently based on evaluation processes carried out by ex-
perts following pre–defined and publicly accepted criteria that analyse the software
using different techniques, ranging from testing to formal modelling. These processes
are mostly manual and require considerable amounts of effort, and thus time and in-
vestment. The relying party of a certificate needs not only to trust the authenticity of
the certificate, but also the experts, and the certification scheme. This trust is estab-
lished by the scheme being run by accredited authorities, the accreditation of the ex-
perts themselves, and the certificate being officially approved. In current schemes cer-
tificates are awarded to traditional, monolithic software systems and become invalid
when a system performs run time selection and composition of components [23].
However, in a cloud computing scenario, several independently produced applications
may coexist on a virtualised environment, which in turn is supported by a distributed
computing architecture. Clearly, this approach of providing certificate–based assur-
ance of security does not scale well to scenarios that are characterised by dynamism,
high degrees of distribution, and ever–changing environments. The main reasons for
this are that existing schemes produce certificates and explanations intended for hu-
man users and aim to help them decide whether or not to use/buy the system. Also,
certificates refer to a particular version of the product or system. In general, changes
in the system structure require a process of re–certification. Certification schemes like
the Common Criteria (CC)[24] contain an assurance class on flaw remediation, but it
is rarely used and does not provide methodological support for analysing the security
impact of system changes. An additional challenge is the need to cover both individ-
ual software services and the environment in which they operate at execution time.
Some support exists in CC to deal with composite systems (i.e. derive a system certi-
fication from certificates of its components), but a perfect match between assumptions

and component guarantees is required, which is still too restrictive to be practical in
our scenarios. An important aspect of cloud scenarios is dynamism. Unfortunately,
current software certification schemes do not support dynamic replacement of com-
ponents or runtime binding of systems. Even in CC v3.1 [24], changing components
requires new evaluator/expert interaction and repetition of (or parts of) the evaluation
and certification. Moreover, current certificates lack a machine-readable, semantics-
aware format for expressing security properties. Thus, they cannot be used to support
and automate run time security assessment, although this issue of providing machine-
readable versions of security certifications is being addressed in the ASSERT4SOA
project [25]. As a result, today’s certification schemes simply do not provide, from an
end user perspective, a reliable way to assess the trustworthiness of a composite ap-
plication in the context where (and at the moment when) it will be actually executed.

4. Future Work and Acknowledgements

The work in this paper arises from the PASSIVE project [3]. PASSIVE is developing
a policy-based security architecture for cloud computing which will address many of
the challenges raised in this paper. PASSIVE is a Specific Targeted Research Project
(STREP) supported by the European 7th Framework Programme, Contract number
ICT-2.1.4-257644, Project starting date 1st June 2010 (duration 24 months).

Fig. 1. Options for multiple redundant implementations in PBM

One approach we are pursing to providing high-assurance is the provision of mul-
tiple independent implementations of important components, whose outputs are com-
pared and must agree. Unanimity will ensure that only the correct output is obtained
or an error condition will be raised. Majority voting can allow continued operation,
albeit with a perhaps less than ideal output with the discrepancy flagged for urgent in-
vestigation. The implementations need to be as independent as possible (e.g. carried

out by different teams possibly using different programming languages), giving much
greater confidence that the outcome is correct. Potentially, the whole section between
the user natural language-based interface and the resulting machine instructions (i.e.
the whole policy system) could be done this way. This would suggest a need for mul-
tiple policy languages in addition to the code that makes decisions based on the poli-
cies, and that which enforces those decisions. There are different ways of exploiting
the duplication, the two extremes being that the different implementations run sepa-
rately and only the final outcomes are compared or that the outcomes of each step are
compared as the process runs. The diagram illustrates this as well as the situation with
only one part duplicated (the Policy Decision Point, (PDP)).

Another approach we will take is the so-called ‘policy continuum’ [26]. This ap-
proach provides a means to represent the various constituency languages needed to
support security policy definition at various levels. It also supports the mapping of
high-level goals to low-level tasks and actions. This mapping is supported by the use
of a common information model, which seeks to represent, in an abstract way, the be-
haviour and characteristics of a system without regard to details such as platform,
language etc. Such information models have been used and demonstrated in projects
such as AutoI [27] where virtual infrastructure and associated management policies
were modelled and used to manage, monitor and orchestrate Internet services. The in-
formation model allows data to be harmonised between constituencies. This permits
access to information gathered from outside of the constituency to be associated with
current constituency entities. This, in turn, allows more useful information to be in-
ferred and used. An example here would be the use of intrusion detection system data
on a given node to decide how resources are allocated in surrounding nodes by provi-
sioning systems. This ability for common information sharing between diverse com-
ponents such as those described above in the duplicated decision point approach
would support such a solution. Both components could have their output represented
in common terms and thus compared or prioritised. PASSIVE is currently designing a
solution and a demonstrator will be available at the end of the project (Summer 2012).

References

1. Software as a Service Market Will Expand Rather than Contract Despite the Economic
Crisis, IDC Finds, http://www.idc.com/getdoc.jsp?containerId=prUS21641409, January
2009 accessed March 2010

2. Robinson J.J., Demand for software-as-a-service still growing, http://www.information-
age.com/channels/commsand-networking/perspectives-and-trends/1046687/demand-
forsoftwareasaservice- still-growing.thtml, May 2009, accessed March 2010

3. PASSIVE project, http://ict-passive.eu/
4. http://csrc.nist.gov/groups/SNS/cloud-computing/ , July 10, 2009
5. Chapin, P.C., Shalka, C., Wang, X.S.: Authorization in Trust Management: Features and

Foundations. ACM Comput. Surv., 40, 3, Article 9 (August 2008) (2008)
6. Bonatti, P., De Capitani Di Vimercati, S., Samarati, P.: An Algebra for Composing Access

Control Policies. ACM Trans. Inf. Syst. Secur., 2002, 5(1) pp. 1-35 (2002)
7. Inglesant, P., Sasse, M.A., Chadwick, D., Shi, L.L.: Expressions of Expertness: The Virtu-

ous Circle of Natural Language for Access Control Policy Specification. Symposium On
Usable Privacy and Security (SOUPS) 2008, July 23-25, 2008, Pittsburgh, PA, USA (2008)

8. Dunlop, N., Indulska, J., Raymond, K.: Methods for Conflict Resolution in Policy-Based
Management Systems. Proceedings of the 7th International Conference on Enterprise
Distributed Object Computing (EDOC 2003) pp. 1-12 (2003)

9. Chadha, R.: A Cautionary Note about Policy Conflict Resolution. Proc. IEEE Military
Comms Conference 2006, MILCOM 2006, 23-25 Oct 2006, Washington DC (2006)

10. Bratus, S., Locasto, M.E., Ramaswamy, A., Smith, S.W.: Traps, Events, Emulation, and En-
forcement: Managing the Yin and Yang of Virtualization-based Security. VMSEC'08, Octo-
ber 31, 2008, Fairfax, Virginia, USA pp. 49-58 (2008)

11. Sailer R., Valdez E., Jaeger T., Perez R., van Doorn L., Griffin J. L., Berger S.: sHype: Se-
cure Hypervisor Approach to Trusted Virtualized Systems. IBM Research Report RC23511,
2005 (2005)

12. Spencer R., Smalley S., Loscocco P., Hibler M., Andersen D., Lepreau J.: The flask secu-
rity architecture: system support for diverse security policies. Proceedings of the 8th confer-
ence on USENIX Security Symposium - Volume 8, 1999 (1999)

13. Kuhlmann D., Landfermann R., Ramasamy H. V., Schunter M., Ramunno G., Vernizzi D.:
An Open Trusted Computing Architecture - Secure Virtual Machines Enabling User-
Defined Policy Enforcement. OpenTC report, 2006 (2006)

14. Payne A. D., Sailer R., Cáceres R., Perez R., Lee W.: A layered approach to simplified ac-
cess control in virtualized systems. ACM SIGOPS Operating Systems Review, vol. 41, no.
7, p. 12-19, 2007 (2007)

15. McCune J. M., Jaeger T., Berger S., Caceres R., Sailer R.: Shamon: A System for Distrib-
uted Mandatory Access Control. Computer Security Applications Conference, p. 23-32,
2006 (2006)

16. Berger S., Cáceres R., Pendarakis D., Sailer R., Valdez E., Perez R., Schildhauer W., Srini-
vasan D.: TVDc: Managing Security in the Trusted Virtual Datacenter. ACM SIGOPS Op-
erating Systems Review, v. 42, no. 1, p. 40-47, 2008 (2008)

17. Bussani A., Griffin J.L., Jansen B., Julisch K., Karjoth G., Maruyama H., Nakamura M.,
Perez R., Schunter M., Tanner A., van Doorn L., Herreweghen E.V., Waidner M., Yoshi-
hama S.: Trusted Virtual Domains: Secure foundation for business and IT services, Research
Report RC 23792, IBM Research, November 2005 (2005)

18. Chander, A., Dean, D., Mitchell, J.C.: A distributed high assurance reference monitor. In:
Proceedings of the Seventh Information Security Conference Lecture Notes in Computer
Science vol. 3225, pages 231–244, Berlin, September 2004. Springer-Verlag (2004)

19. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-Based Detection of Conflicts in
APPEL Policies. FSEN 2007, LNCS 4767, pp. 257–271 (2007)

20. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: Ponder: A Language for Specifying Secu-
rity and Management Policies for Distributed Systems. The Language Specification Version
2.3. Imperial College Research Report DoC 2000/1, 20 October, 2000 (2000)

21. OASIS website, www.oasis-open.org , February 2011
22. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal Model and Policy Specification

of Usage Control. ACM Trans. Inf. Syst. Secur., 2005, 8(4) pp. 351-387 (2005)
23. Alvaro A., de Almeida E.S., de Lemos Meira S.R.: Software component certification: A

survey. In Proc. of 31st EUROMICRO Conference on Software Engineering and Advanced
Applications, Porto, Portugal, August–September 2005 (2005)

24. Common Criteria for Information Technology Security Evaluation, ISO/IEC Standard
15408, version 3.1, 2008 (2008)

25. ASSERT4SOA Project, http://www.assert4soa.eu/, March 2011
26. Davy S., Jennings B., Strassner J.: The Policy Continuum - A Formal Model, in Proc.

Modelling Autonomic Communications Environments, Multlicon Lecture Notes No. 6,
Multicon, Berlin, pp. 65-78 (2007)

27. AUTOI ICT-216404, Deliverable D4.1 - Initial Management Plane, December 2008. (2008)

