
Flexible Charging for Multi-provider
Composed Services using a Federated,

Two-phase Rating Process

Brendan Jennings and Paul Malone
Telecommunications Software & Systems Group,

Waterford Institute of Technology,
Waterford, Ireland

{bjennings, pmalone}@tssg.org

Abstract—We present a framework enabling charging for
composed services comprised of services offered by multiple
providers. In the framework rating engines may generate charge
information for individual services and provide this information
upon request to other rating engines when these services are used
as part of a composed service. Rating engines additionally employ
a two-phase rating process which allows potentially complex
business agreements between providers to be reflected in
composed service charges. Charges can vary depending on the
context in which a service is executed, for example, as part of a
composed service which includes services offered by a partner
provider. Crucially, the process allows rating engines to calculate
these varying charges without having to be manually
pre-configured with details of the structure of individual
composed services. In the paper we provide an overview of the
framework, specifying in detail the rating process and
inter-rating engine communications, and describe via an example
its deployment in a distributed environment supporting the
execution of composed services.

Keywords: Charging, Service Composition, Multi-provider
Composed Services, Federated Rating.

I. INTRODUCTION
Driven by the requirement to generate a return on their

recent investments in 3G licenses and network infrastructure,
telecommunications network operators are beginning to
promote the development of ecosystems of third party
application/service providers who will offer their services to
users via the operator’s network. Already, in the Internet world,
this vision is becoming a reality, with a vast array of providers,
large and small, both offering online services directly to users
and trading with each other in virtual ecosystems. Although the
markets for networked services are maturing rapidly, there are
a number of technical limitations that may prevent them
reaching their full potential. Among these are the challenges
associated with offering composed services – groupings of
services that are executed in an orchestrated manner in order to
deliver “added-value” functionality to a user.

Many in the research community see service composition,
in particular dynamic service composition – in which services
are composed on-the-fly to meet evolving needs – as essential
to aid users effectively interact with a service-rich networking

environment. However, the task of managing networks
supporting composition of user-facing services will be
complex. Existing management systems typically target
management of user-facing services on an individual basis;
they do not consider the possibility that such services can be
collectively orchestrated in an almost arbitrary manner to fulfill
changing requirements. It is unclear how these management
systems can be evolved to provide, for example, performance
assurance, service-level security, accounting or fault detection
for composed services. We consider service usage accounting
to be one of the most pressing issues, since the commercial
success of systems facilitating service composition will be
contingent on the ability of providers to charge and collect
appropriate fees for service usage. Our work has focused on the
development of an approach enabling flexible charging for
composed services comprised of services offered by multiple
providers. In this context, we believe the key challenge is to
realize a model reflecting the potentially complex business
agreements between multiple providers, one that can provide
automated charging for composed services of which the
accounting and charging system may have no a priori
knowledge.

This paper presents a charging framework targeting
composed, multi-provider networked services. The framework
is designed to grant service providers the ability to design and
deploy charging schemes for their services that govern both the
charges generated for usage of these services on a standalone
basis and the charges generated when the services are used in
conjunction with other services. Furthermore, these charging
schemes are generic, in the sense that they do not need to be
specified and deployed each time a service becomes part of a
composed service. The framework thus supports flexible
charging for composed services and, importantly, offers a
means for providers to incentivize the inclusion of their
services in service compositions by offering appropriate
discounts. This paper provides a full description of the
charging framework, incorporating a federated version of the
two phase rating process originally presented in [1], together
with specifications of communications protocols and error
handling functionality.

To motivate the need for the proposed charging framework
we first briefly review the state of the art in accounting and

charging for networked services. We then provide a
generalized view of the service composition environments in
which we envisage the framework being employed. The
framework is then specified in detail; it is comprised of
protocols for rating engine to workflow manager and rating
engine to rating engine communications, a novel two-phase
rating process, and associated error handling functionality. We
describe how the framework has been implemented as an
enhancement to a previously developed advanced rating engine
prototype and discuss its deployment in the Digital Business
Ecosystem business-to-business service execution environ-
ment. To illustrate the operation of the framework we examine
an example rating scenario for a mobile email service. Finally,
we draw conclusions and outline plans for further work.

II. ACCOUNTING AND CHARGING FOR NETWORKED
SERVICES

As shown in Fig. 1, accounting systems for (post-paid)
networked services typically incorporate facilities for metering,
mediation, rating and billing. Metering takes place within the
network infrastructure; it is concerned with the accurate
recording of service usage data and exposing collected
metering records to the mediation subsystem. Mediation
involves reliable collection of “metering records” from
metering devices; correlation of records relating to the same
service usage sessions; transformation of disparate metering
record formats into a common format suited to the needs of the
rating subsystem; and reliable transfer of processed records to
the rating subsystem. Rating involves the application of models
(“charging schemes”) for the mapping of usage data to
monetary units based on various criteria: each record received
from the mediation subsystem is examined and the appropriate
charging scheme is applied, resulting in the generation of a
“charge record” for the service session. Finally, the Billing
subsystem collates charge records for individual customers,
who are invoiced on the basis of these charge records, and any
additional subscription fees and discounts.

Accounting and charging for services, including composite
services whose structure are known in advance, is a relatively
mature area. For example, in the telecommunications domain
there is wide deployment of complex systems supporting
sophisticated usage- and content-based charging schemes for
pre-paid and post-paid, private and corporate, customers. Such
systems are typically optimized for reliability and speed, with
the components involved in the accounting process being
manually configured to account for specific services at the time
those services are initially deployed. However, even for

relatively simple, standalone services, configuration of
accounting operations is today a time consuming and costly
activity. Large businesses, such as telephone network
operators, invest considerably in complex systems to track
usage of their services and charge customers accordingly.

Given the critical importance of accounting and charging to
any business, numerous standardization bodies have specified
standards for accounting systems, processes and protocols for a
range of application domains. For example, the 3GPP SA5
working group has specified standards governing the
GPRS/UMTS mobile network entities involved in accounting,
whilst the IETF Authentication, Authorization and Accounting
(AAA) working group has specified protocols for the transfer
of accounting data in IP networks. A detailed survey of these
and other efforts can be found in [2]. We note that the resulting
standards universally assume that accounting and charging is
done on an essentially per-service basis; they do not consider
the complexities involved in charging for composed services in
a manner that can flexibly reflect business agreements between
multiple service providers.

The European Commission funded IST FP5 project FORM
recognized that the emergence of the business-to-business
e-Commerce market was influencing how telecommunications
and Internet services were being provided, charged and billed
for. One of the challenges addressed by the project was that of
providing a service bill that integrated charges for individual
service usage of those services constituting a composed
service. As a solution the project introduced the concept of an
Inter-Enterprise Service Provider (IESP), a business entity that
acts as a broker between a service consumer and the third party
service providers, consolidating the charges relating to third
party service providers and presenting the service consumer
with a single bill. The IESP is responsible for the service
composition and the management of relationships, contracts,
usage data and financial transactions between the service
providers and consumers. This approach has been termed
Federated Accounting [3] in that it specifically supports the
requirement for service providers to cooperate in the provision
of composed services in a federated manner and share the
generated revenue. However, the approach addresses only
statically composed services – an IESP will need to have
pre-configured the accounting process for a composed service
well in advance of deployment of that service.

Agarwal et al. [4] propose a method for metering and
accounting for composite e-services, which is not dependent on
a-priori knowledge of the service composition. However, their
approach supports only two specific service charging models
(flat rate per amount of resource used and flat rate per
transaction). More significantly, the charge for an invocation of
a composed service will always be the summation of the
charges associated with standalone invocations of the
constituent services; as discussed previously, this will not
always reflect the business relationships between the service
providers. For example, providers may wish to offer discounts
if their services are used in conjunction with services offered
by a partner, or conversely charge a premium if they are used
with services of a competitor. The intention of these measures
would be to provide cost incentives for the use of particular

Mediation Rating Billing

Accounting
Business Logic

Mediation Rating Billing
charge
records invoices

Accounting
Business Logic

pre-configured

correlated,
formatted
records

metering
records

Service
Plane

Network
Plane

Mediation Rating Billing

Accounting
Business Logic

Mediation Rating Billing
charge
records invoices

Accounting
Business Logic

pre-configured

correlated,
formatted
records

metering
records

Service
Plane

Network
Plane

Figure 1. Accounting System for Networked Services.

service combinations over other combinations providing the
same, or similar, functionality.

III. MULTI-PROVIDER SERVICE COMPOSITION
ENVIRONMENT MODEL

Our model of a commercial multi-provider composed
service execution environment is illustrated in Fig. 2. This
environment contains services that can be composed together
and various components that support the service composition,
execution and accounting processes. The Service Composer is
responsible for constructing service compositions to meet
specific requirements, whilst the Workflow Manager is
responsible for coordinating the execution of composed service
invocations. Accounting and charging functionality is provided
by a Rating Engine and a Billing System. For simplicity we
omit other accounting related components, such as mediation
systems, CRM systems, and fraud management systems. As
individual services are consumed, metering records, detailing
service utilization patterns, are generated and forwarded to a
Rating Engine, which is responsible for applying charging
schemes that map service usage data contained in those
metering records to monetary charges. The Billing System
accepts charge records from the Rating Engine and
consolidates them to generate customer invoices. We assume
that all services are offered on a post-paid basis.

From the accounting perspective, service providers can
adopt a number of approaches in offering services, specifically:

• Services are offered as atomic services (e.g. service B in
Fig. 2):
In this approach services appear as individual (non-
composed) services for which metering records
identifying the service type in question are generated, and
for which specific charging schemes are available. Note
that these services may actually be realized by the
provider as compositions of other services, but for
operational or commercial reasons the provider wishes to
mask this;

• Services are registered as atomic services and the
provider itself controls generation of charge information
for the service (e.g. service D in Fig. 2):
In this approach services again appear as atomic services,
even if they are actually realized as service compositions.

However, the provider also takes responsibility for
generating charge information for the service, either by
maintaining its own rating engine, or by using a rating
engine provided by a trusted third party. Thus, if the
service is itself used as part of a “higher-level” service
composition, its rating engine would be queried by the
rating engine responsible for the higher level service;

• Services are registered as composed services and the
services comprising that composed service are identified
(e.g. service A in Fig. 2):
In this approach the structure of the offered composed
service is visible to the execution environment. Metering
records are generated by the (atomic) services comprising
the composed service, and the accounting components
identify these records as relating to an invocation of the
composed service. The composed service may or may not
have a specific charging scheme associated with it; if not,
the rating engine must be able to calculate charges on the
basis of the collection of charging schemes associated
with its individual constituent services.

For the purpose of accounting we model composed services
as hierarchical collections of atomic and composed services, as
illustrated in Fig. 3. The service at the top level of the hierarchy
is the master composed service – the service to be rated.
Services at the bottom of the hierarchy are all atomic services
(they cannot be further decomposed for accounting purposes).
We call a group of service directly composed together a
composition group.

All Service instances have associated with them a
providerID, which uniquely identifies, across the entire
environment, the business entity offering that service. They
have a serviceID, which uniquely identifies the service type
within the set of service types provided by the business entity
with the service instance’s providerID. They also have an
instanceID, which uniquely identifies an instance of a service
type within the set of instances of services with the same
serviceID and providerID. This reflects the fact that a service
provider may maintain multiple instances of the same service
type, and the potential need to distinguish between these
instances for rating purposes. Therefore, the tuple of
(providerID, serviceID, instanceID) uniquely identify a service
instance across the entire environment.

In order to accurately rate dynamically composed services
it is of critical importance is able to detect the context in which
an atomic service it is rating is being executed – as a

Composed Service Execution Environment

Compose

Service
Composer

Workflow
Manager

Rating
Engine

Billing
System

Rating
Engine

Provider C

Provider B

Provider A

Execute

services

invoices

A

B C
D

Composed Service Execution Environment

Compose

Service
Composer

Workflow
Manager

Rating
Engine

Billing
System

Rating
Engine

Provider C

Provider B

Provider A

Execute

services

invoices

A

B C
D

Figure 2. Generalized Composed Service Execution Environment.

master composed
service

atomic service composed service

composition group

master composed
service

atomic service composed service

composition group

Figure 3. Composed Service Model for Accounting Purposes.

standalone atomic service, or as part of a particular composed
service. Our approach is to have the workflow manager assign
a unique transactionID to every invocation of a composed
service. The transactionID uniquely identifies the invocation of
the master composed service during the timeframe between
initial invocation and the completion of all processing
associated with that invocation. It is passed to every service
comprising that composed service and is included in all
metering records relating to those services. This approach has
the advantage that services do not need to be aware of their full
execution context (at least for accounting purposes).
Furthermore, every service instance executed within the
context of a composed service is passed an invocationID which
uniquely defines that invocation of that service instance within
the context of the master composed service. Thus, if a master
composed service involves two or more independent
invocations of the same instance of a given service these
invocations can be distinguished by a rating engine.

We assume that when the workflow manager is about to
execute a master composed service it knows the location of a
rating engine capable of rating this service. A rating engine is
capable of rating a master composed service if charging
schemes associated with all the atomic services making up that
composed service can be accessed, directly or indirectly, by
that rating engine. Direct access to a charging scheme implies
that the scheme is deployed on the rating engine, whereas
indirect access implies that the scheme is deployed on another
rating engine that can be queried by the rating engine. The
rating engine that is responsible for generating a charge for the
master composed service is termed the master rating engine;
other rating engines it queries in the course of ascertaining this
charge are termed slave rating engines.

We also assume that all rating engines (and indeed
workflow managers / service composers) are themselves
viewed as services in the composed service execution
environment, hence they are assigned a unique (providerID,
serviceID, instanceID) tuple which allows them to be identified
and located within the environment. A potential advantage of
this approach is that use of rating engines themselves could be
charged for by rating engine providers – by having them treat
themselves as a constituent services of the master composed
service.

IV. CHARGING FRAMEWORK DESCRIPTION
In our model the key controlling entity is the Workflow

Manager, which manages the execution of the composed
services. In particular, it will be responsible for coordinating
the charging process, selecting one or more rating engines to
which services will forward metering records. The model
facilitates federated rating – the ability for rating engines to
communicate with each other in order to ascertain a charge for
the execution of a (composed) service. We believe that support
for federated rating will be crucial if the type of multi-provider
composed services envisaged are to be made available
commercially, since many providers would otherwise be very
reluctant to have their charging schemes deployed on rating
engines they don’t control. Given the above, there is a clear
requirement for our charging framework to support
communications interfaces between both the workflow

manager and rating engines, and between rating engines
themselves. The protocols to facilitate these communications
are described in §IV.A/B below.

A key design goal of our framework is to limit the amount
of manual configuration of rating engines necessary to allow
them generate charges for composed services. Once charging
schemes are available for all the atomic services constituting a
master composed service it should not be necessary to
manually configure individual rating engines so that these
charging schemes can be applied together. We therefore
conclude that rating engines should not be pre-configured with
knowledge of the structure of individual master composed
services, rather that this information be supplied to them
on-the-fly by a workflow manager. Note that this approach
opens the way for supporting charging for dynamically
composed services – services which are composed on-the-fly to
fulfill some new requirement.

Generating a charge for a master composed service of
which a rating engine will have no a-priori knowledge creates
a significant challenge: how can we produce a charge that
accurately reflects the potentially complex business agreements
between different service providers? It would be relatively
straightforward to generate charges for all the individual
atomic services, and then simply sum these to produce a charge
for the master composed service. However, providers are likely
to wish that their services are charged at different rates
depending on the context in which they are executed. For
example, a provider may offer a percentage discount of two or
more of its services are used together within the same master
composed service. To facilitate this kind of flexible charging
for composed services we propose a two-phase rating process,
in which atomic services comprising a master composed
services can be each initially rated as if they were executed
standalone; and subsequently, the generated “interim”
individual service charges can be modified based on rules
embodied in the service’s charging scheme. Alternatively,
composed services can have charging schemes that supersede
those associated with the atomic and composed services that
constitute them, thereby allowing the provider to apply
charging models for a composed services that are completely
independent of the underlying services. This process is
specified in detail in §IV.C.

Finally, in §IV.D, we discuss how errors in execution of
composed services can be handled from the charging
perspective.

A. Workflow Manager – Rating Engine Communication
A workflow manager about to execute a master composed

service must select the rating engine(s) responsible for rating
that service execution instance. There will be one master rating
engine and zero or more slave rating engines depending on the
make up of the master composed service. The workflow
manager passes a message to each rating engine embodying
information regarding the service(s) they will be required to
rate, and indicating the transactionID that will be assigned to
the session. The rating engines ascertain if they have access to
the required charging schemes and inform the workflow
manager if they do.

The workflow manager then commences execution of the
master composed service, resulting in metering records being
passed to the appropriate rating engines. Once the master
composed service execution session completes the workflow
manager sends a message to the master rating engine indicating
how the session completed (successfully or unsuccessfully);
this acts as a trigger for the master rating engine to start phase 2
of the rating process, which, once completed, results in a final
charge for the master composed service execution session. To
support this behavior the following four message types are
passed between the workflow manager and the master and
slave rating engines: rateRequest, rateResponse,
executionComplete, and ratingComplete.

1) rateRequest Message
The rateRequest message contains the transactionID that

will be contained in all metering records relating to all atomic
service invocations for the master composed service
invocation. It contains the ratingEngineRole which is set to
“Master” or “Slave” depending on whether the workflow
manager wishes the rating engine to act as the master or as a
slave rating engine.

In the case where the workflow manager is requesting the
rating engine to act as the master the message will include the
providerID, serviceID, instanceID for the master composed
service itself; and a description of the underlying service
composition hierarchy in terms of each service’s providerID,
serviceID, instanceID and invocationID. For those atomic
services that will be rated by a slave rating engine the message
will also contain the providerID, serviceID and instanceID of
that slave rating engine. In the case where the workflow
manager is requesting the rating engine to act as a slave the
message will include the providerID, serviceID, instanceID for
each of the atomic services (there may be more then one) that
the slave rating engine will be required to rate. It will also
include the providerID, serviceID and instanceID of the master
rating engine (the slave will only pass charge information to its
master).

The structure of the rateRequest message is illustrated in
Fig. 4. The representation in this figure is generated from an
XML schema for convenience and conciseness of presentation
– our framework does not require the use of XML messaging –
only that the specified information is reliably transferred
between the entities in question.

2) rateResponse Message
Upon receipt of a rateRequest message, a rating engine

ascertains whether it has access to charging schemes for the
required services. In the case of the master rating engine this
access may be indirect (via slave rating engines). It responds
with a rateResponse message indicating the transactionID and
containing a list of all the atomic services in question. For each
service readyToRate is set to “Yes” if the rating engine has
direct/indirect access to the required charging scheme, and
“No” otherwise. Explicit knowledge of which services a rating
engine may not be currently able to rate may allow the
workflow manager to seek another rating engine for these
services. Once the workflow manager receives positive
rateResponse messages from the master and slave rating
engines (indicating that all the required services can be rated) it
will proceed with execution of the master composed service.
Fig. 5 provides a representation of the rateResponse message
format.

3) executionComplete Message
The workflow manager sends the master rating engine an

executionComplete message once the master composed
service execution session completes. This message contains the
transactionID and completionStatus, the latter indicating that
the session as a whole was “successful” or “unsuccessful”. If
the session was successful the master rating engine can proceed
with phase 2 of its rating process as described in §IV.C. If not,
the message also contains a list of all the atomic services in the
master composed service, specifying their providerID,
serviceID, instanceID, invocationID, and executionStatus. The
executionStatus indicates whether that invocation of that
service instance was “completedSuccessfully”, “notStarted” or
“completedPartially”, before the error condition occurred. The

Figure 4. rateRequest XML Schema Representation.

Figure 5. rateResponse XML Schema Representation.

Figure 6. executionComplete XML Schema Representation.

master rating engine then proceeds with the error handling
version of phase 2 of its rating process, as described in §IV.D.
Fig. 6 illustrates the executionComplete message format.

4) ratingComplete Message
The ratingComplete message is sent by the master rating

engine to the workflow manager upon completion of phase 2 of
the rating process. As shown in Fig. 7 it contains the
transactionID and the ratingStatus, with the latter being
“successful” or “unsuccessful”.

B. Rating Engine – Rating Engine Communication
As discussed above, master rating engines must be able to

request charge information from slave rating engines who are
responsible for rating one or more of the atomic services
comprising the master composed service. To achieve this we
introduce chargeRequest and chargeResponse messages, as
follows:

1) chargeRequest Message
Upon receipt of an executionComplete message from the

workflow manager the master rating sends a chargeRequest
message to the relevant slave rating engine for each of the
atomic services it has not itself rated. As shown in Fig. 8 these
messages contain the transactionID; the providerID, serviceID,
instanceID and invocationID for the service instance
invocation for which the charge is being requested; and also a
list of the other services (“partnerServices”) that constitute that
service’s composition group in the master composed service
(this list specifies the providerID, serviceID, instanceID and
invocationID for each such service). Inclusion of the
composition group information allows the slave rating engine
execute phase 2 of the rating process, in which the charge for
the service instance invocation may be modified (see §IV.C).
The receiving slave rating engine will confirm that the
chargeRequest originates from the expected master rating
engine (as indicated in the original rateRequest message it
received from the workflow manager); if it does it runs phase 2
of the rating process for the service instance invocation in
question.

2) chargeResponse Message
Upon completion of phase 2 of the rating process the slave

rating engine transfers the resulting charge in a
chargeResponse message to the master rating engine. As
illustrated in Fig. 9 the chargeResponse message contains the
transactionID; the providerID, serviceID, instanceID and
invocationID for the service instance invocation; the
chargeUnitType and the chargeValue

C. Two-phase Rating Process Specification
In this section we specify the two-phase rating process for

composed services. During the process atomic services
comprising a composed service are each initially rated as if
they were executed standalone; then, in the second phase, a
charge for the composed service reflecting modifications to
atomic service charges is generated. To facilitate this process
we use charging schemes consisting of two distinct parts: part 1
dictates how charges are to be calculated when the service is
invoked in isolation (not as part of a composed service); whilst
part 2 dictates any modifications to charges generated by
application of part 1 in cases where the service is invoked in
the context of a composed service.

Charging schemes can be associated with composed
services as well as with atomic services. For composed services
these schemes can consist of a part 1 only, a part 2 only, or a
part 1 together with a part 2. Where a part 2 is present it
dictates how charges associated with an invocation of that
composed service are modified if that composed service is
itself invoked as a constituent of a composed service. If a part 1
is present it is assumed to contain information necessary to
process all of the metering records associated with all of the
atomic services directly comprising that composed service, and
will effectively replace the charging schemes associated with
these services. In this way the charging model applied for the
composed service can be made completely independent of the
charging models associated with the services that constitute
that composed service. Note however, that the charging
schemes associated with the constituent services may still be
applied in parallel with that of the composed service, so that
providers of these services can be informed of the level of
service usage undertaken – this information may be an
important means of verifying that the payment they receive for
this service invocation is correct.

We now outline the process in terms of both phases,
assuming for simplicity that composed services do not have
charging schemes containing a part 1 associated with them:

Figure 7. ratingComplete XML Schema Representation.

Figure 8. chargeRequest XML Schema Representation.

Figure 9. chargeResponse XML Schema Representation.

1) Phase 1: rating atomic services as standalone services
As the atomic service instances comprising the composed

service are invoked and executed metering records relating to
them are transferred to the rating engine (in the cases where the
rating engine has direct access to the associated charging
scheme). Every such metering record received by the rating
engine is rated using part 1 of the charging scheme associated
with that service, with the first one resulting in the generation
of an interim charge record for the associated invocation of the
atomic service instance. As well as the chargeUnitType and
chargeValue, interim charge records include the transactionID,
providerID, serviceID, instanceID and invocationID.

Subsequent metering records for this service instance
invocation result in the generation of a charge delta and the
chargeValue in the interim charge record is updated
accordingly (note that in the vast majority of cases this delta
will be an increment, not a decrement, but both are possible).
The rating engine continues processing metering records in this
manner until the service execution is complete. Note that many
service instance invocations may result in the generation of
only a single metering record.

2) Phase 2: modification of interim charges and overall
charge calculation

In phase 2 the interim charges generated in phase 1 are
modified in accordance with the part 2 of the services’
charging schemes. Part 2 contains rules specifying how much a

charge is to be incremented or decremented by if other services
are present within the same composition group in the service
composition hierarchy. (As discussed in §IV.D part 2 may
actually be comprised of two separate rule sets: for successful
and unsuccessful execution of the master composed service).
The motivation for these rules is to allow providers specify
discounts or penalties to incentivize or disincentivize
composition of their services with other services. This is based
on our expectation that service cost will be used as one of the
primary criteria used by a service composer when choosing
between services that provide similar functionality.

Discounts or penalties can be applied, for example, as fixed
amounts, percentages, or as varying fixed amounts /
percentages based on the absolute value of the interim charge.
The rules can specify that they be applied based on the
presence of services with specified combinations of
providerID, serviceID and instanceID. Thus, a charging
scheme part 2 could specify that a service is discounted by a
percentage value if it is used with another service offered by
the same provider, or that a fixed penalty be applied if the
service is used with a service offered by a competitor.

The initial step for the master rating engine in phase 2 is to
contact the relevant slave rating engines to ascertain the
charges generated for those service instance invocations for
which the rating engine did not itself perform phase 1 rating
(see §IV.B). The slave rating engines then apply a slightly

TABLE I. NOTATION FOR COMPOSED SERVICE CHARGING ALGORITHM.

Notation Constraint Definition

ms The master composed service

}{ MS The set of all services of which ms is
comprised.

M 2≥M The number of all services of which ms is
comprised

}{ DS The set of services of which ms is directly
comprised (i.e. the top level set of services
which are combined together to realise

ms)

D MD ≤≤2 The number of services that directly
comprise ms

}{ OS }{}{ MO SS ⊂

The subset of services comprising ms that
are rated by other rating engines

is }{ Mi Ss ∈ an arbitrary service of which ms is
comprised

}{
is

S The set of services of which is is
comprised

in 20 −≤≤ Mni

The number of services that service is is
comprised of

ic The charge associated with service is in
the relevant interim charge record

ic∆ The change in ic as a result of phase 2 of
the rating process

mc The final charge associated with ms

Inputs: }{ MS , }{ DS

Output: mc

1: Function: ratePhase2CompServ(}{ XS)
2: {
3: For all }{ Xi Ss ∈ such that 0>in do:

4: ratePhase2CompServ(}{
is

S)

5: For all }{ Xi Ss ∈ such that 0=in and }{ Oi Ss ∉ do:

6: For all services }{ Xj Ss ∈ , where ji ss ≠ do:

7: Calculate),(jiij ccfc =∆ , where ijc∆ is the change

 in ic mandated by the presence of js in }{ XS .

8: Set ijii ccc ∆+∆=∆

9: Set iii ccc ∆+=

10: Set ikk ccc += , where kc is the charge associated with

 the service ks for which }{}{ Xs SS
k
=

11: }
12:
13:
14: Start
15:
16: Set 0=mc

17: For all }{ Mi Ss ∈ do:

18: Set 0=ic
19: Set ∆ci = 0
20:
21: ratePhase2CompServ(}{ DS)

22: return mc

Figure 10. Composed service charging algorithm.

adapted version of the algorithm discussed below to modify the
charges for these service instance invocations (they treat the
composition group as the overall composed service, but only
modify the charge for the service instance invocation they
themselves rated).

Once the master rating engine receives charge information
for all the atomic services that were rated by slave rating
engines it executes the recursive algorithm specified in Fig. 10
to calculate discounts/penalties and ascertain the overall charge
for the invocation of the master composed service. The
notation used to describe this algorithm is described in Table 1.
The algorithm employs recursion, with the master composed
service composition hierarchy being traversed so that charges
related to composition groups lower in the hierarchy are
processed before those at higher levels. Charges for these
groups need to be calculated first, as they are in turn needed for
calculation of charges at the higher levels.

When executed by the master rating engine, the algorithm
produces a charge for the invocation of the master composed
service. This charge is put into a charge record for the
invocation, along with the providerID and serviceID of the
master composed service, the transactionID, and any other
information taken from the metering records that is required by
the billing system, for example, the consumerID associated
with the service consumer. At this point the master rating
engine also sends a ratingComplete message to the workflow
manager. The charge record is subsequently transferred to the
billing system for further processing (depending on the
implementation it may be streamed immediately, or send as
part of a batch at a later time).

D. Error Handling
In this section we address how errors in the execution of a

composed service potentially impact on the charging process
and describe how our framework handles critical errors.
Clearly, during any service execution there is potential for both
critical errors that force immediate halting of the service
execution, and less serious errors that can be recovered from.
The latter are less likely to impact directly on the charging
process, since they can be expected to be reflected within the
metering records relating to the service invocations in question.
For example, an error that results in a lower level of delivered
Quality-of-Service (QoS) to the user will be reflected in the
metering records and handled accordingly by the service
charging scheme, typically resulting in a reduced charge when
that metering record is rated (in the normal manner).

On the other hand, errors that halt service execution
severely effect how a composed service is to be charged for.
Consider the case where a service halts due to error in the
middle of a larger composed service execution: a number of
(unrelated) services may have already completed fully or be
partially completed, and a number of (unrelated) services may
not have yet been invoked. The end user is unlikely to wish to
be charged (even partially) for a composed service that, taken
as a whole, failed; however, providers of services that were
invoked and completed successfully will expect to receive
payment as normal. To overcome this potential conflict of
interest it can be considered essential that the providers and

customer agree in advance a service level agreement (SLA) for
the master composed service, specifying in detail how services
will be charged for when critical errors occur.

When a critical error does occur during the execution of a
particular service instance invocation other service instance
invocations will be in one of the following states: (1)
completed, (2) partially completed, or (3) not started. Clearly
no charges will be applied for service instance invocations not
started. However, for completed and partially completed
invocations an number of options are possible:

1. charge for these services instance invocations as normal,
i.e. based on the metering records received to date and the
rules specified in the relevant charging schemes;

2. charge for these service instance invocations, but applying
some form of discount (this may be realized by an
alternative set of charging scheme rules to those normally
applied);

3. do not charge for these service instance invocations.

Which of these options is to be applied to which service
instances must be detailed in the master composed service
SLA, and reflected in the corresponding charging schemes.
Crucially, option 2 requires that the master rating engine is
made aware that the error occurred, that is, that the master
composed service did not complete execution successfully. As
is evident from §IV.A.3) this is achieved by setting the
completionStatus of the executionComplete message to
“unsuccessful” and including a list of the executionStatus of
each of the services.

Upon receipt of an executionComplete message indicating
a critical error the master rating engine requests charge
information from slave rating engines for services that were
partially or fully completed. It then runs the phase 2 algorithm,
flagging the error condition, so that the discount/penalty
charging scheme part 2 rule set for error conditions are applied
instead of the standard part 2 rule set. Note that these rules may
allow providers specify discounts/penalties on the basis that
their (successfully executed) service was composed together
with one or more services that were not yet invoked when the
error condition occurred.

V. CHARGING FRAMEWORK IMPLEMENTATION
In this section we describe a prototypical implementation of

the proposed charging framework. This implementation has
involved the enhancement of a previously developed rating
engine prototype called the Rating Bureau Service (RBS), and
its deployment as part of the Digital Business Ecosystem
(DBE) – a distributed, open-source business-to-business
environment supporting advanced service recommendation and
service composition.

A. Rating Bureau Service Enhancement
The Rating Bureau Service was developed during the IST

FP5 AlbatrOSS project [5] as rating engine exposed via a web
services interface and adhering to the IPDR NDM-U protocol
[6], a standard for describing and conveying rateable events for
IP services in XML format (though it can be readily applied to

arbitrary non-IP service types). The RBS also includes a web
services implementation of the IPDR document transfer
protocol for exchange of IPDRs between mediation and rating
components. It performs mediation of metering records into
IPDR records, rating of these records via a spreadsheet engine
that employs charging schemes represented as Microsoft Excel
compliant worksheets, and performs basic billing functionality
through the generation of web-based customer invoices.

The RBS exposes an interface which allows for service
elements or mediation systems to push IPDR usage data for
subsequent charging. Several records, each detailing usage
events of an atomic service instance, can be passed to the RBS
per data transfer. For each of these records the RBS first stores
the data record in a ‘unrated’ table in a database and then
determines the appropriate charging scheme for the usage
instance, extracts relevant values from the usage data and
inserts these into the charging scheme. Charging schemes in
the RBS are realized as worksheets containing named cells
denoting which elements of the usage data should be inserted.
The appropriate parameters are read from the record and
inserted into the worksheet. The charge is calculated by a
spreadsheet engine and then read from a ‘charge’ named cell.
This resulting charge is inserted into the record in a charge
element. Full details of the process are provided in [7].

The original RBS, as described above, provides the base
functionality to realize phase 1 of the proposed rating process.
To be compliant with our charging framework it was enhanced
to support communication with the workflow manager and
other rating engines (as either the master or slave), and, more
significantly, the existing stateless rating process was enhanced
to support stateful, two-phase rating. Finally, for deployment as
a DBE service, the RBS was enhanced with a DBE service
proxy wrapper to support communication with other DBE
entities. The high-level system architecture of the enhanced
RBS is shown in Fig. 11; shaded boxes represent the new sub-
systems required for compliance with the proposed charging
framework.

B. Deploying the enhanced RBS in the Digital Business
Ecosystem
The DBE project [8] is developing an open-source

distributed environment (“the DBE”) that can support the
spontaneous creation of applications through the composition

of (not necessarily open-source) software services and
components. In doing so the project is adopting an approach
based on business modeling techniques, complemented by
evolutionary algorithms inspired by biological processes; the
latter are intended to provide bottom-up incremental
improvement of business models through run-time feedback on
service performance. The DBE is being targeted primarily
towards small businesses, which will be able to concatenate
their offered services within service chains (compositions)
formulated on a pan-European basis. By offering access to a
large pool of service providers and consumers, and itself
providing advanced recommendation systems and evolutionary
algorithms, the DBE will support continued global
optimization of service compositions, benefiting all of its
participants [9].

From an architectural perspective the DBE can be viewed
as consisting of a service factory environment and a service
execution environment. Clients of the DBE will use the service
factory environment to specify business models and generate
associated software artifacts for subsequent implementation,
composition and use. The service execution environments hosts
implemented services, managing the process of registering,
deploying, searching for, recommending, composing,
retrieving and consuming services.

Fig. 12 illustrates the main component types constituting
the DBE service execution environment. The Service
Composer (SC) component is responsible for constructing
service compositions to meet specific requirements captured in
the DBE service factory environment. The Recommender
component provides the service composer with ranked lists of
services that could fulfill specific functions within a service
composition. To rank services in this manner it uses historical
data relating to service use and performance, which are stored
in the Knowledge Base repository. This information is
organized as a “fitness landscape,” with fitness levels being
assigned to services on the basis of a range of criteria; the
fitness landscape is also used as the main input into the
evolutionary algorithms that optimize service compositions
throughout their lifetimes. Once service compositions are
constructed, their actual execution is coordinated by the
Transaction Workflow Manager (TWFM), which also
coordinates the charging process.

During the execution of individual DBE services metering
records detailing their utilization patterns are generated and
forwarded to an accounting system (itself realized as a standard
DBE service). The enhanced RBS, which realizes the charging
framework presented in this paper, is incorporated into the
DBE as the default accounting system service. At the time of

DBE
Service
Proxy

Wrapper

Phase 1
Rating

Phase 2
Rating

FormulaONE
Spreadsheet

Engine

Web-based
Invoice

Generator

Mediation

Unrated
IPDRs

Interim
IPDRs

Charging
Schemes

Rated
IPDRs

Invoices

WFM / RE
Communication

Handler

Metering
Records

Other
Rating

Engines

Manual
Deployment

Workflow
Manager

Rating Bureau Service

DBE
Service
Proxy

Wrapper

DBE
Service
Proxy

Wrapper

Phase 1
Rating

Phase 2
Rating

FormulaONE
Spreadsheet

Engine

Web-based
Invoice

Generator

Mediation

Unrated
IPDRs

Unrated
IPDRs

Interim
IPDRs
Interim
IPDRs

Charging
Schemes
Charging
Schemes

Rated
IPDRs
Rated
IPDRs

InvoicesInvoices

WFM / RE
Communication

Handler

Metering
Records

Other
Rating

Engines

Manual
Deployment

Workflow
Manager

Rating Bureau Service

Figure 11. Enhanced RBS System Architecture.

Services
(iv) metering

records

(i) Compose
(ii) Deploy Accounting

Business Logic

Service ComposerRecommenderKnowledge
Base

Transaction
Workflow Manager

Mediation Rating Billing

Accounting System

(iii) Coordinate
Execution

Services
(iv) metering

records

(i) Compose
(ii) Deploy Accounting

Business Logic

Service ComposerRecommenderKnowledge
Base

Knowledge
Base

Transaction
Workflow Manager

Mediation Rating Billing

Accounting System

Mediation Rating Billing

Accounting System

(iii) Coordinate
Execution

Figure 12. DBE service execution environment.

writing the DBE effort is ongoing, thus, full distributed trials of
the operation of the environment have not yet occurred.
However, in the next section we will discuss initial validation
tests of the functional efficacy of the enhanced RBS in
realizing our charging framework in the context of the DBE.

VI. EXAMPLE USE SCENARIO
In this section we show how an example multi-provider

composed service is rated in our charging framework. The
example service, depicted in Fig. 13, realizes an email client
accessed via a GPRS-enabled mobile device when a user is
roaming and cannot access their home email system. At the top
level of the composition hierarchy the master composed service
is comprised of a web-based email client GUI service, a
functional email service, a virtual storage drive service (for
storage of draft/received email attachments), and the GPRS
data transfer service offered by the visited network operator.
The functional email service is itself a composed service,
comprised of a service offering access to the user’s home
IMAP server and a service offering access to an SMTP server
in the visited domain.

As can be seen from Fig. 13 there are four separate
providers involved in the composed service. The GPRS data
transfer is provided by the visited network operator
(provider D), which rates for this service using its own rating
engine. The SMTP service is provided by a partner
(provider C) of the user’s home IMAP service provider
(provider B); both offer a discount for using services of the
other. The client GUI and virtual storage drive services are
both provided by provider A and are assumed to have been
selected for inclusion in the service composition based on a
particular user preference. This is in spite of the fact that
provider D imposes a penalty for the use of these two services
(since it itself offers similar services). All provider A, B and C
services are rated by a master rating engine, the use of which is
not charged for. Fig. 14 summarizes the charging schemes
associated with each of these services, specifying the
discounts/penalties as outlined above.

To validate how the mobile email service is rated by our
framework all the services except for GPRS were realized as
prototype DBE services, for whom metering data is collected
by DBE service proxy and forwarded to an instance of the RBS

– the master rating engine. As shown in Fig. 15 a second RBS
instance – the slave rating engine, was used to rate GPRS
metering data, which was generated by a simple simulator to
emulate the GRPS data transfer relating to a small set of usage
patterns of the other four services. A prototype of a simplified
DBE transaction workflow manager was used to ensure that the
charging process was initiated and completed as expected.

Let us assume that in the course of a single day the user is
logged into the mobile email service for 8 hours continuously,
sending 25 emails and receiving 40 emails, corresponding to a
total GPRS data transfer of 7.5 Mb, of which the user placed
3.5Mb of attachments on the virtual storage drive. The
calculations during phase 1 and phase 2 of the rating process
executed by the master and slave rating engines are:

Phase 1 – Master Rating Engine
 GUI Interim Charge = 8 * €0.10 = €0.80
 SMTP Interim Charge = 25 * €0.06 = €1.50
 IMAP Interim Charge = 40 * €0.04 = €1.60
 Storage Interim Charge = 1 * €1.00 = €1.00

Phase 1 – Slave Rating Engine
 GPRS Interim Charge = 7.5 * €1.00 = €7.50

Phase 2 – Slave Rating Engine
 GPRS Delta = +(€7.50 * 0.02) = €0.15
 GPRS Final Charge = €7.50 + €0.15 = €7.65

Phase 2 – Master Rating Engine
 Bottom Level (SMTP and IMAP)
 SMTP Delta = -(€1.50 * 0.10) = -€0.15
 IMAP Delta = -(€1.60 * 0.10) = -€0.16
 Func. Email Charge = €1.50 - €0.15 +
 €1.60 - €0.16 = €2.79
 Middle Level (GUI, storage, func. email, GPRS)
 GUI Delta = -(€0.80 * 0.20) = -€0.16
 Storage Delta = = €0

mobile email
service

functional email serviceweb-based client GUI

IMAP serviceSMTP service

virtual storage drive

GPRS

MASTER RATING ENGINE

SLAVE
RATING ENGINE

provider A provider B composed serviceprovider C provider D

mobile email
service

functional email serviceweb-based client GUI

IMAP serviceSMTP service

virtual storage drive

GPRS

MASTER RATING ENGINE

SLAVE
RATING ENGINE

provider A provider B composed serviceprovider C provider Dprovider A provider B composed serviceprovider C provider D
Figure 13. Example multi-provider composed mobile email service.

ProviderID: C ServiceID: SMTP
Part 1: Charge = <NumberOfEmailsSent> * €0.06

Part 2: If providerID(<OtherService>) = B then:
 Discount = Charge * 0.10

ProviderID: B ServiceID: IMAP
Part 1: Charge = <NumberOfEmailsReceived> * €0.04

Part 2: If providerID(<OtherService>) = C then:
 Discount = Charge * 0.10

ProviderID: A ServiceID: Web-based Client GUI
Part 1: Charge = <HoursOfUsage> * €0.10

Part 2: If providerID(<OtherService>) = A
 and serviceID(<OtherService) = VirtualStorageDrive
 Discount = Charge * 0.20

ProviderID: A ServiceID: Virtual Storage Drive
Part 1: Charge = <Num10MbBlocksPartiallyUsed> * €1.00 per week

Part 2:

ProviderID: D ServiceID: GPRS
Part 1: Charge = <AmountOfDataTransferred> * €1.00 per Mb

Part 2: If Provider(<OtherService>) = A then:
 Penalty = Charge * 0.02

Figure 14. Charging scheme summaries for composed service example.

 Func. Email Delta = = €0
 Master Composed Service Level:
 Charge = €0.64 (GUI) + €2.79 (func. email) +
 €1.00 (storage) + €7.65 (GPRS) = €12.08

For this case the final charge is €12.08, compared to an
amount of €12.40 were the initial service charges simply
summed (i.e. no application of discounts or penalties in phase 2
rating). The difference in final charge is relatively small in this
case, however, we note that the main intention of the
discounts/penalties would be to incentivize the composition of
the services together in the first place.

VII. CONCLUDING REMARKS
Traditional network accounting and charging systems are

manually configured and rigorously tested prior to the
activation of a service offering – a time consuming and
expensive process. In many cases such service offerings are
realized by compositions of a number of services, sometimes
provided by different providers. However, since the nature and
structure of these relatively small number of statically-defined
service compositions is negotiated in advance, it is possible to
configure accounting systems appropriately. In networks
supporting ecosystems in which third party user-facing services
can be arbitrarily composed together this will no longer be the
case. Accounting and charging systems will have to be
configured automatically and it will not be possible to predict
the structure of service compositions. We argue that accounting
logic, in particular charging schemes, relating to individual
services should incorporate information relating to how these
services are to be treated when composed with other services,
and that accounting and charging systems must have the ability
to automatically synthesize and apply this information as
services are composed and consumed.

The charging framework proposed in this paper provides a
model for how charging schemes can be dynamically
combined to generate service usage charges that reflect
business agreements between multiple providers in
environments supporting service composition. However,
support for the framework, requires that rating engine
architectures are significantly redesigned in order to introduce
support for communication with other entities and support for a
stateful, two-phase rating process. The framework is generic in
the sense that it does not depend on the presence of any
specific underlying implementation technologies – if the
services, workflow managers and rating engines realize the
charging functionality described in the paper the framework

could equally be applied in, for example, a web services
environment or a 3G IP Multimedia Subsystem.

As described in the paper we have validated the proposed
framework by enhancing the previously-developed RBS rating
engine and deploying in the context of the Digital Business
Ecosystem. Full trials with real DBE users are planned for
2006; these trials are expected to provide more concrete
feedback on the efficacy, performance and scalability of the
framework, in particular the two-phase rating process. Before
these trials the RBS will be further enhanced, for example, to
support automated deployment of charging schemes by the
DBE service composer (as opposed to manual deployment in
the current implementation). We also plan to address both the
potential role of rating engines in providing service cost
estimates that could be used in the DBE service composition
process. Beyond that, we hope to expand our framework to
incorporate facilities for flexible billing and payment for
composed services.

ACKNOWLEDGMENTS
This work has been funded in part by: Science Foundation

Ireland via the 2005 RFP grant no. CMS006; the Irish Higher
Education Authority via the PRTLI M-Zones research
program; and by the European Commission via the Digital
Business Ecosystems integrated project (IST integrated project
no. 507953). The authors wish to acknowledge the significant
input of Jonathan Brazil, Jason Finnegan, Gary Gaughan and
Frank Walsh into the implementation of the enhanced RBS.

REFERENCES
[1] B. Jennings, P. Malone and S. van der Meer, “A Two Phase Rating

Process for Dynamically Composed Services,” in Proc. 12th Workshop
of the HP OpenView University Association (HPOVUA 2005), B. F.
Marques, T. Nebe and B. F. Oliveira, Eds., pp. 155-171, 2005.

[2] M. Koutsopoulou, A. Kaloxylos, A. Alonistioti, L. Merakos, and
K. Kawamura, “Charging, accounting and billing management schemes
in mobile telecommunication networks and the Internet,” IEEE
Communications Surveys, vol. 6, no. 1, 2004, [Online], Available:
http://www.comsoc.org/pubs/surveys [2006, January 9].

[3] B. Bhushan, M. Tschichholz, E. Leray and W. Donnelly, “Federated
Accounting: Service Charging and Billing in a Business to Business
Environment,” in Proc. IFIP/IEEE Int’l Symp. on Integrated Network
Management (IM’2001), pp. 107-121, 2001.

[4] V. Agarwal, N. Karnik and A. Kumar, “Metering and accounting for
composite e-Services,” in Proc. 1st IEEE Int’l Conf. on E-Commerce,
pp. 35-39, 2003.

[5] AlbatrOSS IST project, “Architecture for Location Based Application of
Third generation Operation Support System,” [Online], Available:
http://www.ist-albatross.org/ [2006, January 9].

[6] IPDR.org, “Business Solution Requirements - Network Data
Management-Usage (NDM-U) For IP-Based Services,” [Online],
Available: http://www.ipdr.org/public/DocumentMap/
BSR-NDM-U3.5.0.1.pdf [2006, January 9].

[7] J. Brazil, E. de Leastar, C. Ryan and M. Ó Foghlú, “Workbook
Approach to Algorithm Design and Service Accounting in a Component
Orientated Environment,” in Proc. IEEE Workshop on IP Operations
and Management, 2002.

[8] Digital Business Ecosystems (DBE), EU IST Integrated Project No.
507953, [Online], Available: http://www.digital-ecosystem.org/
[2006, January 9].

[9] T. Heistracher, et al., “Pervasive Service Architecture for a Digital
Business Ecosystem,” in Proc. 1st Int’l Workshop on Coordination and
Adaptation Techniques for Software Entities (WCAT04), [Online],
Available: http://wcat04.unex.es/wcat04/index.htm [2005, April 27]

web-based client GUI

IMAP

SMTP

virtual storage drive

GPRS (Simulator)

Master
RBS

Slave
RBS

DBE TWFM

Invoice

web-based client GUI

IMAP

SMTP

virtual storage drive

GPRS (Simulator)

Master
RBS

Slave
RBS

DBE TWFM

Invoice
Figure 15. DBE based test-bed for charging framework validation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /Algerian
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BitstreamVeraSans-Bold
 /BitstreamVeraSans-BoldOblique
 /BitstreamVeraSansMono-Bold
 /BitstreamVeraSansMono-BoldOb
 /BitstreamVeraSansMono-Oblique
 /BitstreamVeraSansMono-Roman
 /BitstreamVeraSans-Oblique
 /BitstreamVeraSans-Roman
 /BitstreamVeraSerif-Bold
 /BitstreamVeraSerif-Roman
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /FelixTitlingMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OpenSymbol
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RodTransparent
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Stencil
 /STOMP_AlmonteWoodgrain
 /STOMP_Angostura
 /STOMP_BlueHighway
 /STOMP_BlueHighwayCondensed
 /STOMP_Bullpen
 /STOMP_Coolvetica
 /STOMP_CrystalRadioKit
 /STOMP_DirtyBakersDozen
 /STOMP_DreamOrphans
 /STOMP_Droid
 /STOMP_Duality
 /STOMP_EdenMills
 /STOMP_Effloresce
 /STOMP_ForgottenFuturist
 /STOMP_JoyCircuit
 /STOMP_LibelSuit
 /STOMP_Mexcellent3D
 /STOMP_Neuropol
 /STOMP_Pakenham
 /STOMP_PortCredit
 /STOMP_Pricedown
 /STOMP_Quadaptor
 /STOMP_RelishGargler
 /STOMP_Rina
 /STOMP_Sandoval
 /STOMP_Shlop
 /STOMP_Steelfish
 /STOMP_SuiGeneris
 /STOMP_Teen
 /STOMP_Vibrocentric
 /STOMP_ZackMan
 /STOMP_Zeroes
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

