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Abstract

Closed Itemset mining is a major task both in Data Mining and Formal
Concept Analysis. It is an efficient way to determine patterns which are
hidden in raw data. These patterns may be expressed as association rules
which capture relations between variables in databases. In the case of Formal
Concept Analysis, Closed Itemsets form the basis of formal concepts. A
concept consists of an extent and intent. It turns out that the intent is
exactly a closed itemset whose support is the cardinality of extent. With
the increasing application of Data Mining and Formal Concept Analysis in
knowledge discovery, Closed Itemset mining is fast becoming an attractive
research area.

While many prominent algorithms have been developed to mine closed
itemsets in both Formal Concept Analysis and Frequent Closed Itemset min-
ing area, they are typically unsuitable for distributed implementation. The
root cause is that the theoretical foundation of closed itemset mining is
based on a centralized data representation. By examining the features of
closed itemset, we propose distributed closed itemset computing theories for
Formal Concept Analysis and Frequent Closed Itemset mining in a distrib-
uted environment. Additionally, taking the MapReduce framework as our
inspiration we propose a general distributed approach for performing closed
itemset mining. We then provide representative exemplars of how the clas-
sic centralized algorithms in Formal Concept Analysis and Frequent Closed
Itemset mining can be implemented in a distributed fashion using our meth-
odology and present a family of MR∗ algorithms, where the abbreviation
stands for MapReduce and * stands for the underlying algorithm that has
been adapted. To analyse the factors which impact a distributed algorithm’s
performance, we compare our MR∗ algorithms with the state-of-the-art. Ex-
periments conducted on real datasets demonstrate that the MR∗ algorithms
for Formal Concept Analysis are efficient and scalable. The MR∗ algorithm
and theory for Frequent Closed Itemset mining of this work set the scene for
future developments. We analyze our experimental results and discuss the
bottlenecks which we will focus on in future work.



Chapter 1
Introduction

This master thesis addresses the data mining area known as closed item-
set mining. The work programme involved implementing a number of well-
known algorithms from the literature, and then modifying these algorithms
in order to optimize their performance. The modifications were primarily
directed towards allowing the resulting algorithms to run in parallel, as a
distributed processing task.

This chapter starts by describing the current open problems in closed
itemset mining for distributed data. A crucial problem is the lack of distrib-
uted computing theories for Closed Itemsets (CIs). A second problem is how
to extend distributed principles to existing algorithms to obtain distributed
algorithms. These problems are becoming more prominent due to the follow-
ing reasons. Modern datasets are rapidly increasing in size and are typically
located on groups of servers. Many existing algorithms may not be suited
to these scenarios. The aim of this thesis is to exploit the power of closed
itemset mining techniques in scenarios where the algorithms deal with data
which is distributed across multiple locations. Further objectives include de-
veloping formal computing theories and efficient distributed algorithms. Our
research is focused on mining formal concepts and frequent closed itemset
respectively.

1.1 Research Motivation
In recent years, there has been great increase in the requirement for data
analysis [2], knowledge discovery [3] [4] and information retrieval [5]. This is
because mobile operators, service providers etc. realize that their products
can be potentially improved by learning and exploiting information from

1



1.1 RESEARCH MOTIVATION 2

customer datasets [3], for example, through personalization and prediction
services. Among numerous techniques, Association Rules Mining (ARM) [6,
7], which defined by Agrawal et al., is usually used to search groups between
variables, attributes. Association algorithms are used for recommendation
engine that originally suggests products to customers based on what they
bought earlier. To construct graph between people, events and places, people
normally adopt Formal Concept Analysis (FCA) developed by Wille [8, 9]
which refers to both an unsupervised machine learning technique and, more
broadly, a method of data analysis. In FCA, a concept refers to a pair
containing a closed attributes set and a closed objects set. Closed itemset [10]
mining is a crucial technique for generating association rules and Formal
Concepts (FC) and can be found both in Data Mining (DM) and FCA. A
Closed itemset (closure) is a minimal present of a set of items. We use the
fraction of objects (support) which support the given closed itemset X to
measure how often X is applicable to a given dataset (See Section 2.3.1 for
more details). Naturally, a closed itemset is frequent when its support meets
a setting value. We present both ARM and FCA in this thesis because they
have the same mathematical foundation, i.e., closure mining. Note that in
ARM, we are interested in Frequent Closed Itemset (FCI), but pay attention
to all CIs in FCA. An important reason for this is that ARM aims to form
associated rules between attributes, while FCA places extra emphasis on
constructing the concept lattice by arranging the concepts by order. In other
words, ARM relies on support knowledge but FCA does not.

In the past 20 years, researchers have been focusing on distributed com-
puting [11] and have proposed many efficient FCA algorithms [12] and FCI
mining algorithms [13]. Much work has been done to develop novel distrib-
uted algorithms that suit very specific distributed settings (e.g. a cluster with
many nodes that do not need frequent communication [1]), while in compar-
ison very little effort has been expended on the basic theory for merging
frequent closed itemsets. Most existing closed itemset mining algorithms are
designed for centralized datasets and their performance degrades for large
datasets, that is, datasets with a large number of records [14]. Moreover,
social network research is becoming increasingly prominent. Many research-
ers have studied social networks in order to find potential patterns and
rules [15, 16, 17]. Both FCA and ARM have been used to find interest-
ing patterns. However, the data source of social network normally comes
from distributed servers. This scenario makes a case from a computing per-
spective for distributed closed itemsets mining algorithms some of which we
have to propose in this thesis. In short, the recent explosion in datasets size
and the distributed nature of the system that have been deployed to analyze
them, due to privacy protection concerns and increasing scale, suggests that
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efficient distributed algorithms are required.

1.2 Problem Statement
FCA is a discipline that studies the hierarchical structures induced by the
binary relation between a pair of sets [8, 9]. The structure is made up of closed
itemsets ordered by set-theoretical inclusion and the core of FCA lies in the
calculation for the closed itemsets. An efficient method to form association
rules is to use frequent closed itemsets, and this is also the key process of
ARM. From this point of view, ARM has the same sub-task as FCA, i.e.,
closed itemset mining. In fact, some FCA-based methods could be applied
on ARM and a lot of work has been done in this area [18, 19].

However, even to this day, it is still a challenge to compute closed itemsets
in a distributed environment. Due to increasing data size, existing FCA and
FCI mining algorithms are no longer able to process the huge datasets [12,
20, 21, 22, 23]. We list the following open problems:

• Most closed itemset mining algorithms are designed to operate on a
central database and normally they maintain the dataset in the memory
of a single machine. The increasing dataset size makes mining of closed
itemsets using one algorithm on a single machine a bottle neck.

• Distributed theories for computing (frequent) closed itemsets are not
well developed. There is little work on distributed FCA, whereas dis-
tributed FCI mining only has some elementary results.

• Traditional distributed architectures, such as client-server, peer-to-peer,
have to either access slave nodes or access each other to obtain necessary
information. This feature severely restricts algorithm performance.

• The iterative feature of FCA and some DM algorithms make it is even
harder to execute them in a distributed way, because decomposing an
iterative task is relatively difficult.

This thesis aims to address these problems. Our objectives are listed
below.

1.3 Thesis Objectives and Scope
Given the aforementioned description of current problems in distributed
closed itemset mining, the scope and objectives of this thesis can now be
defined.
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As an essential step in both FCA and ARM namely closed itemset mining
is discussed from both FCA and ARM perspectives in this thesis. The aim of
closed itemset mining is to obtain closely related items. One problem in dis-
tributed closed itemset mining stems from the lack of distributed computing
theories for closed itemset. Thus, the primary aims of this thesis are:

(1) To provide theories supporting distributed closed itemset computing. In
light of the lack of distributed theories for Formal Concept and Fre-
quent Closed Itemset mining, this thesis develops distributed theories
for them separately.

(2) To utilize the MapReduce Framework (MRF) to construct distributed
CI mining algorithms and to introduce a distributed architecture.

(3) To process large datasets in a distributed manner. Large data is normally
hard to deal with because it is too large to fit the single machine. The
methods proposed in this thesis divide the data into small partitions
and process the individual partition of data on different machines, so
that both distributed data and large datasets can be handled.

In this thesis, we emphasize the scalability of the MRF for redesign-
ing existing FCA and FCI mining algorithms and deploy new algorithms.
Specifically, we adopt the iterative MapReduce implementation, Twister,
as an infrastructure to underpin our approach. Although there are many
other MapReduce frameworks, such as Apache Hadoop MapReduce, we use
Twister because Twister is suitable for iterative algorithms [24]. Twister
takes care of the inter-process communications and the management of the
set of processes in distributed settings efficiently. The main advantage of
Twister is that Twister supports iterative MapReduce computations which
makes Twister particularly suited to the work in this thesis.

1.4 Thesis Structure
This thesis provides a basic overview of existing distributed frequent closed
itemset mining algorithms. It also provides a new solution based on the
MapReduce framework, which is an efficient programming tool to deal with
large and distributed datasets [20, 25]. The solution proposed in this thesis
modifies existing frequent closed itemset mining algorithms using the MapRe-
duce framework. This thesis is organized as follows.

Chapter 2 presents the background knowledge and the state-of-the-art of
closed itemset mining. By introducing the MapReduce framework and an
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iterative implementation: Twister, we show that Twister is a efficient way
to solve the problems highlighted in Chapter 1.

Chapter 3 presents the drawback of existing distributed closed mining
solutions. The methodology that this work follows is presented subsequently.
Distributed formal concept mining and distributed frequent closed itemset
mining theories are proposed respectively in Section 3.3.

Chapter 4 begins by describing the design of MRGanter. Then MRGanter+,
and MRCbo are introduced. A general merging model for distributed fre-
quent closed itemset mining, MRGeneral, is presented subsequently. These
algorithms are based on existing algorithms, thus detailed descriptions are
presented which explain how the existing approaches are improved. Results
from testing and analysis of these algorithms are then shown. This chapter
concludes with a brief discussion on the experimental results.

Chapter 5 describes some ancillary points of interest which arise during
the course of this research work, and explores some work which we intend to
undertake to improve the performance of these algorithms.

Chapter 6 summarizes the main points of this thesis and the rationale for
having performed this research. The contributions of this thesis are listed
here for the reader’s convenience.

Contributions

1. Proposed distributed Formal Concept and Frequent Closed Itemset
mining theories.

2. Developed two distributed versions for NextClosure and distributed
CloseByOne based on the iterative MapReduce framework Twister,
they are MRGanter, MRGanter+ and MRCbo.

3. Designed a general model MRGeneral for computing frequent closed
itemsets in distributed manner, and presented the application of Closet+
algorithm on this model.



Chapter 2
Background and Literature Review

2.1 Introduction
This chapter describes the background to techniques related to the approach
proposed in this thesis. We start by introducing the concepts behind Formal
Concept Analysis (FCA) and Association Rules Mining (ARM). ARM ori-
ginated from market basket analysis problem [26]. For example, a stake
owner might be interested in knowing if a customer who purchased bread
possibly chooses milk as well. Its theoretical foundation is based on FCA [7].
Some FCA techniques can be utilized in ARM [27].

In ARM, rules can be produced by finding Frequent Itemsets (FIs) and
Frequent Closed Itemsets (FCIs). A set of attributes is called a frequent
itemset if its occurrence is greater than the threshold which the user spe-
cifies for that dataset. A frequent closed itemset is a condensed set of some
frequent itemsets [26]. In recent years, finding closed itemsets has become
a popular research direction because FCI is more compact than FI and typ-
ically searching for the FCIs takes less time [28]. For very large datasets,
smaller CIs can be more computationally efficient [28, 29].

Two types of algorithms will be explored in this chapter so that we can
show how to extend the operation of closed itemset techniques to a dis-
tributed environment in the following chapters. The first type of algorithm
discussed are the formal concept mining algorithms. They will be discussed
in Section 2.2.3. The other type we called frequent closed itemset mining al-
gorithms, which have strong connection to FCA, and they will be discussed
in Section 2.3.2.

We adopt the MapReduce programming model when we modify common

6



2.2 FORMAL CONCEPT ANALYSIS 7

Table 2.1: Selected attributes from the Eircom dataset.

Movie Music Technology News Lifestyle FunGame Sport

closure mining algorithms. Hadoop MapReduce1 and Twister MapReduce
runtime2 will be introduced and the difference between them will also be dis-
cussed. We conclude that Twister is most suited to the iterative algorithms,
this is supported by the literation [24].

In this thesis, some examples are taken from the Software as a Service
Implementation of Predictive Analytics (SaaSiPA) system, developed by the
Telecommunications Software and Systems Group (TSSG) located in Water-
ford Institute of Technology (WIT).

2.2 Formal Concept Analysis

2.2.1 Definitions
In this chapter, we explain many concepts using a real example provided by
Eircom net3. Eircom net, a subsidiary of Eircom, provides Ireland’s largest
telecom’s website portal. Through their on-line portal, Eircom offer a range
of services and applications to their subscribers and regular internet users.
These services and applications range from a news and weather service, to
an email facility, crosswords, jokes and horoscopes. The users can discover,
personalize and use the best of Eircom’s content and services. They can
also take these services and share them across the Web, the PC desktop
and social networking sites such as Facebook. In the meantime, Eircom
keeps logs of user profiles, their activities and typical interactions, such as
application sharing, user application intersection and application views. This
type of data contains the users’ favorites and ARM is used to determine user
interests. Note that, ethical rules and privacy preservation are beyond the
scope of this thesis.

This data was formatted in the SaaSiPA system and after that only part
of the attributes were selected as showed in Table 2.1.

Formal Concept Analysis refers to an unsupervised machine learning
method. It was invented in the early 80s by Rudolf Wille [8] and takes

1Official website: http://hadoop.apache.org/mapreduce/
2Official website: http://www.iterativemapreduce.org/
3See the official website: http://widgets.eircom.net/
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Table 2.2: Real example from the Eircom dataset. This table indicates the
user preferences.

User Atrributes
1 Movie,Music,News,FunGame
2 Movie,Technology,Lifestyle,Sport
3 Music,Technology,News,FunGame,Sport
4 Music,News,Lifestyle
5 Movie,Music,News,Lifestyle,FunGame
6 Music,Technology,FunGame,Sport

as input a matrix specifying a set of objects and the attributes, and finds
all the clusters of attributes and objects in the input data. FCA is based on
computing closure, ie., mining closed itemset. For this reason we start by
introducing it as a method for finding closed itemset in this thesis.

The input of FCA is a binary data table describing the relationship
between a set of objects and attributes. We obtain this kind of data table by
converting Table 2.2 to a Horizontal Item-Vector (HIV) layout, i.e., using ‘1’
and ‘0’ to denote the occurrence and absence of an attribute. More detail is
discussed in Section 2.3.3. Note that, if an object has an attribute, we mark
the corresponding entry using an × symbol, otherwise leave it blank. The
data shown in Table 2.3 is called a formal context4 and is typically presented
in the form of (T, P,R), where T is the set of all objects and P is the set of
all attributes, and R is the binary relation between T and P . In Table 2.3,
T = {1, 2, 3, 4, 5, 6}, P = {a, b, c, d, e, f, g}, and the object {2} has attributes
{a, c, e, g}.

Let t ∈ T and p ∈ P , for a formal context R ⊆ T × P . To introduce
the notion of a cluster in the formal context, we define a derivation operator.
For any Y ⊆ T and X ⊆ P we have:

Y ′ = {p ∈ P | ∀t ∈ Y : (t, p) ∈ R} (2.1)

X ′ = {t ∈ T | ∀p ∈ X : (t, p) ∈ R} (2.2)

The operation Y ′ generates the set of attributes which are shared by all
objects in Y . Similarly, X ′ generates the set of all objects which are common
to all attributes in X. A pair 〈Y,X〉 is called a formal concept of (T, P,R) if

4We use round brackets for arbitrary attribute-object pairs and the formal context,
and use angular brackets for formal concepts which are introduced below. Note that, the
key/value pair discussed in Section 2.4.2 is also in the form of round brackets.
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Table 2.3: An example of a Formal Context. The × symbol in each row
indicates that an object has the corresponding attribute.

a b c d e f g
1 × × × ×
2 × × × ×
3 × × × × ×
4 × × ×
5 × × × ×
6 × × × ×

and only if Y ⊆ T , X ⊆ P , Y ′ = X, and X ′ = Y , where Y and X are called
the extent and intent. The crucial property of a formal concept is that the
mappings Y 7→ Y ′′ and X 7→ X ′′ are closure operators. The itemset, Y ′′(X ′′),
is the closure of Y (X). The closure operator can be used to calculate the
extent and intent that form a formal concept.

We define an ordering of all concepts. Given Ti, Tj ⊆ T and Pi, Pj ⊆ P
the concepts of a context are ordered as follows:

(Ti, Pi) 6 (Tj, Pj) :⇐⇒ Ti ⊆ Tj ⇐⇒ Pj ⊆ Pi. (2.3)

The set of all formal concepts is denoted by B(T, P,R). The set B(T, P,R)
and ≤ (see section 2.2.3) form a complete lattice [9]. In the following sections
we introduce the traditional algorithms that are used to compute formal
concepts.

2.2.2 Related Work
Some of the best known algorithms for performing FCA include NextClos-
ure [30], Lindig’s algorithm [31] and CloseByOne [32, 33] and their vari-
ants [34, 35]. Ganter introduces lectic ordering so that all possible attribute
subsets do not have to be scanned when performing FCA. Ganter’s algorithm
computes concepts iteratively based on the previous concept without incur-
ring exponential memory requirements. In contrast, CloseByOne produces
many concepts in each iteration. Bordat’s algorithm which is described in
[36] runs in almost the same amount of time as Ganter’s algorithm, however,
it takes a local concept generation approach. Bordat’s algorithm introduces
a data structure to store previously found concepts, which results in consid-
erable time savings. Berry proposed an efficient algorithm based on Bordat’s
approach which did not require a data structure of exponential size, in [37].



2.2 FORMAL CONCEPT ANALYSIS 10

A detailed comparison between these algorithms and other algorithms can
be found in [12].

The main dis-advantage of the batch algorithms discussed above is that
they typically have to construct the lattice from scratch if the database
changes. Incremental algorithms address this problem by updating the lattice
structure when a new object is added to database. Incremental approaches
have been made popular by Norris in [38], Dowling in [39], Godin et al., in
[40], Capineto and Romano in[41], Valtchev et al., in [42] and Yu et al., in
[43]. In recent years some parallel and distributed algorithms have been pro-
posed. Petr Krajca proposed a parallel version based on CloseByOne in [35].
The first distributed algorithm [20] was developed by Krajca in 2009 using
the MapReduce framework [44]. To date, the theory underlying distributed
FCA has not been developed. In this thesis, we address this short-coming
and develop efficient distributed FCA algorithms.

2.2.3 Iterative Closure Mining Algorithm: Ganter’s Algorithm
Ganter’s algorithm, namely NextClosure, describes a method for generating
new closures which guarantees every closure is only generated once. Closures
are generated according to a pre-defined order. We continue by describing
this ordering, namely lectic ordering, in order to lay the foundations for
NextClosure. Let us arrange the elements of P in an arbitrary linear order
P = {p1 < p2 < . . . < pi < . . . < pm}, where m is the cardinality of the
attribute set P . Subsets of P are ordered linearly according to lectic ordering,
denoted by ≤. For example, given two subsets P1, P2 ⊆ P , P1 is lectically
smaller than P2 if the smallest element in which P1 and P2 differ from each
other belongs to P2. Formally,

P1 ≤ P2 :⇐⇒ ∃pi(pi ∈ P2, pi /∈ P1,∀j<i(pj ∈ P1 ⇐⇒ pj ∈ P2)). (2.4)

We can write this relationship in terms of the smallest element pi in which
P1 and P2 differ.

P1 ≤pi P2 :⇐⇒ pi ∈ P2, pi /∈ P1,∀j<i(pj ∈ P1 ⇐⇒ pj ∈ P2). (2.5)

For example, if the order is defined as P = {a < b < c < d < e < f < g},
P1 = {a, c, e, g} and P2 = {a, b, e, g} then P1 < P2 because the smallest
element in which the two sets differ is b and this element belongs to P2. Each
subset X ⊆ P gives a closure X ′′ ⊆ P . NextClosure attempts to find the
list of all closures: this is achieved according to lectic ordering. The basic
operation in NextClosure is the ⊕ construct which generates a new intent by
applying⊕ on an existing intent and an attribute. Note that (Eqn 2.5) is used
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to check if a new formal concept has been found. We compare the candidate
formal concept with the previous. If the condition in (Eqn 2.5) is satisfied,
we keep the candidate. The operator ⊕ consists of intersection, union and
closure operations. Let the ordering be P = {p1 < p2 < . . . < pi < . . . < pn},
and consider the subset X ⊆ P then the ⊕ construct is defined as:

X ⊕ pi := ((X ∩ {p1, . . . , pi−1}) ∪ {pi})′′,
where X ⊆ P and pi ∈ P.

(2.6)

(Eqn. 2.6) consists of two operations. First, computeX∩{p1, . . . , pi−1})∪{pi}
which entails removing all elements that are greater or equal to pi and then
adding the element pi to the set. Second, form the closure. Given an initial
closure X, let us go through how NextClosure produces new concepts by
Example 1.

We are going to calculate concepts for the formal context in Table 2.3. As-
sume we have a concept 〈{1, 5}, {a, d, f}〉 and X = {a, d, f}. Now let us
calculate X ⊕ e. First {a, d, f} ∩ {a, b, c, d} = {a, d}, then by appending
e we have {a, d} ∪ {e} = {a, d, e}. Performing {a, d, f} ⊕ e = {a, d, e}′′ =
{5}′ = {a, d, e, f}. Similarly, we have that X ⊕ c = {a, c, e}. According to
(Eqn. 2.5), {a, d, e, f} ≤c {a, c, e}. {a, c, e} is bigger and should be kept. By
repeating this process, NextClosure can determine 21 formal concepts totally
in this example as shown in Table 2.4.

Example 1: Calculate all concepts for the formal context in Table 2.3

Algorithm 1 First Closure

Input: Closure operator ′′;
Output: X.

1: X ← ∅′′;
2: return X

Algorithms 1-3 are NextClosure’s pseudo code. Algorithm 1 applies the
closure operator on an empty attribute set and outputs the first intent X,
which is the base to later concepts.

Algorithm 2 accepts P and subset X, as inputs. Note that, the base set
P is sorted in descending order. Line 3 in Algorithm 2 applies (Eqn. 2.6) and
produces all the concepts one by one and incurs most of computation cost.
Line 4 utilizes (Eqn. 2.5) to verify whether a new candidate should be kept.
An candidate satisfied the condition in (Eqn. 2.5) is eligible and is used to
replace X in the next iteration.
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Table 2.4: Formal Concepts mined from Table 2.3. Note that the empty
concepts are included for completeness.

F1: 〈{1, 2, 3, 4, 5, 6}, {}〉 F12: 〈{4}, {b, d, e}〉
F2: 〈{1, 3, 5, 6}, {f}〉 F13: 〈{3 6}, {b, c, f, g}〉
F3: 〈{2, 4, 5}, {e}〉 F14: 〈{3}, {b, c, d, f, g}〉
F4: 〈{1, 3, 4, 5}, {d}〉 F15: 〈{1, 2, 5}, {a}〉
F5: 〈{1, 3, 5}, {d, f}〉 F16: 〈{2, 5}, {a, e}〉
F6: 〈{4, 5}, {d, e}〉 F17: 〈{1, 5}, {a, d, f}〉
F7: 〈{2, 3, 6}, {c, g}〉 F18: 〈{5}, {a, d, e, f}〉
F8: 〈{1, 3, 4, 6}, {b}〉 F19: 〈{2}, {a, c, e, g}〉
F9: 〈{1, 3, 6}, {b, f}〉 F20: 〈{1}, {a, b, d, f}〉
F10: 〈{1, 3, 4}, {b, d}〉 F21: 〈{}, {a, b, c, d, e, f, g}〉
F11: 〈{1, 3}, {b, d, f}〉

Algorithm 2 Next Closure
Input: P , X;
Output: X.

1: for pi from pn down to p1 do
2: if pi /∈ X then
3: candidate ← X ⊕ pi;
4: if candidate ≤pi X then
5: X ← candidate;
6: break;
7: end if
8: end if
9: end for

10: return X

Algorithm 3 All Closure

Input: ∅: null attributes set;
Output: F .

1: First Closure;
2: while X is not the last Closure do
3: X ← Next Closure;
4: F ← F ∪X;
5: end while
6: return F
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Algorithm 3 takes charge of the calls for Algorithm 1 and 2. The set F
is the set of all formal concepts. The null set is passed to Next Closure as
an initial formal concept.The while loop from line 2 to line 5 generates new
concepts using the previous one until all concepts are found. As the intent is
extended with new attributes, the last one should include all attributes (line
2), this feature can be used to measure if the loop comes to the end.

CloseByOne works in a similar fashion to NextClosure, i.e., generating
new formal concept based on previous one(s) and verifying using ≤i operator.
The difference is that CloseByOne generates many concepts in each iteration
until there are no more concepts satisfying (Eqn. 2.5). While NextClosure
only finds the first qualified one. Thus CloseByOne requires much less iter-
ations.

2.3 Association Rule Mining Techniques
The origins of ARM can be traced back to market basket analysis, where
shop owners wanted to analyse the purchasing patterns of their customers
[26]. The resulting analysis illustrated interesting patterns which were used
to advise shop owners to engage in certain product placement strategies.
Furthermore, it has been applied to many other fields such as healthcare
[45, 46, 47] and social network analysis [48, 49] to determine potential rules.
The typical dataset for ARM consists of an ensemble of transactions. Rules
are derived between the sets of attributes shared by the transactions.

Algorithms for generating rules from transactional data might go as fol-
lows: (1) mine frequent itemsets; (2) generate strong association rules from
frequent itemsets [50]. Most of the computation involved is due to the first
step. The performance of the first step determines the overall performance of
association rule mining. A Frequent Itemset is the set of items (or attributes)
whose occurrence is greater than a user specified threshold. The threshold
determines interestingness for rules. In other words, the higher value causes
the fewer rules which have higher possibility. Since its introduction in 1993 by
Rakesh Agrawal in the paper [6], FI mining has been an active research topic.
To calculate complete frequent itemsets, the first algorithm: Apriori [50] was
proposed by Rakesh Agrawal in 1994. Many variants based on Apriori have
been developed. FI mining is quite straightforward in that it simply lists all
the frequent itemsets and forms rules using their subsets. However, a large
amount of evidence indicates that mining frequent pattern by finding all fre-
quent itemsets is not efficient when the dataset to be processed is large and
dense [28, 29]. The two drawbacks with this approach are summarized as
follows. First, the number of frequent itemsets mined from the transactional
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data can be large in practice [28]. Second, there is redundancy in the rules
particularly when the data is dense [51, 52, 53, 14]. These factors limit the
efficiency and effectiveness when generating rules from large datasets using
FIs.

Several useful condensed representations of frequent itemsets have been
designed over last 10 years, including maximal frequent itemset (MFI) [54],
CI [55, 56, 10], δ-Free itemset [57, 58], Disjunction-Free itemset [59, 60],
Generalized Disjunction-Free itemset [61], Non-Derivable itemset [62, 63] and
the unified framework presented in [64]. All of these alternatives reduce the
size of result set because they remove the redundant frequent itemsets.

Among the itemsets, some may have supersets which have the same sup-
ports with them. Normally, the itemsets like this can be included by their
supersets. Unlike itemset, a closed itemset does not have superset with the
same support. A closed itemset approach provides a minimal representation
of itemsets without any loss of the support information. Moreover, with
closed itemsets, one can directly generate a reduced set of association rules
without having to determine all frequent itemsets. Thus, the problem of
mining association rules is reduced to determining frequent closed itemsets.

In recent years, maximal frequent itemsets and frequent closed itemsets
mining algorithms have been improved in terms of performance and efficiency.
For instance, MAFIA in [65] proposed by Doug Burdick, CHARM in [66] by
Mohammed J. Zaki, CLOSET+ in [14] by Jianyong Wang, DCI CLOSED
in [13] by Salvatore Orlando. These algorithms are good for dealing with the
small size datasets. However, modern datasets are increasingly distributed
and large. Even for some centralized datasets, these algorithms struggle
because the datasets are increasingly too large to fit the memory. Hence,
it is necessary to develop efficient distributed algorithms to process datasets
come from different locations, so that the data does not have to be merged
in order to preserve privacy and security.

Mining closed itemsets in distributed environment is still an undeveloped
field. Claudio Lucchese gave some preliminary research results in [1] and
[21] to combine FCIs from different locations. However, this approach can
only be applied with some limitations, for instance, the global FCIs must
be local frequent as well in every data partition. We will discuss this by
Example 3. Chunhua Ju proposed an algorithm to merge separate local
FCIs under different distributed settings in [67]. The drawback of Chunhua’s
approach lies in scanning datasets many times to find the global frequent
closed itemsets [67]. Chun Liu also proposed a novel algorithm to obtain
global FCIs with exact support counts (as you will see in the next subsection)
in [68] although the evaluation of efficiency was not presented. In the sequel,
we are going to introduce FI and FCI mining.
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2.3.1 Frequent Itemset Mining
Recall Table 2.2 which consists of user identification (ID) and the 7 names of
the attributes. Each row records all the attributes that have been accessed
by the corresponding user. The attributes (items) form a set P . An itemset
with m items is called m-itemset. Each row in Table 2.2 is called an object
and normally we use the user ID to refer the object. We denote T as the
set of objects (we use the same symbols to be consistent with FCA). In this
example, P={Movie, Music, Technology, News, Lifestyle, FunGame, Sport}
is the set of all items, and subset {Music, News, Sport} is a 3-itemset. There
are 6 objects in Table 2.2.

Given a dataset with N objects, the support5 for an itemset X, denoted as
sup(X), refers to the fraction of objects which contain X, i.e., sup(X)= N(X)

N
,

where N(X), is the number of objects which contain X. An association
rule has the form: A ⇒ B, and denotes the relationship between two
itemsets A and B where A,B ⊂ P , A ∪ B = X and A ∩ B = ∅. Take
the 3-itemset {Music, News, FunGame} as an example, A={Music, News},
B={FunGame}, A∪B = X, and A∩B = ∅, then a possible association rule
is {Music, News} ⇒ {FunGame}. The support of a rule is defined as the
percentage of the objects that contain both A and B, denoted as below:

sup(A⇒ B) = P (A ∪B) =
N(A,B)

N
, (2.7)

where N(A,B) is the number of object which contain both A and B at the
same time, and N is the number of objects. The confidence of the rule is
taken to be the conditional probability and denoted by

conf(A⇒ B) = P (B|A) =
N(A,B)

N(A)
, (2.8)

measures the percentage of objects containing A that also contain B. The
N(A) is the count number of the objects which contains A. For the associ-
ation rule above, the set X = {Music, News, FunGame} occurs in 3 objects
and 4 objects contain A = {Music, News}. This means that N(A,B) = 3
and N(A) = 4, in addition N = 6, as indicated by Table 2.2. Hence the
support and confidence of this rule are 50% and 75% respectively.

An itemset is frequent if and only if its support is more than or equal to
a user-specified minimal support value, σ, i.e., sup(X)> σ. A user prefers
setting a lower σ to obtain many more rules, and vice verse. In this case,
association rule mining can be viewed as a two-step process:

5The support is defined here as relative occurrence frequency to total number of objects.
Note that it is defined in some of literature as the absolute one, i.e., the support count.
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Table 2.5: Frequent itemsets and association rules mined from the data in
Table 2.2 when σ = 50% and ς = 75%. The support and confidence for each
association rule is listed in the two rightmost columns.

Frequent Itemsets Association Rules sup() conf()
({Movie}:3)
({Music}:4)

({Technology}:3) {Music}⇒{FunGame} 50% 75%
({News}:4) {FunGame}⇒{Music} 50% 75%

({Lifestyle}:3) {Technology}⇒{Sport} 50% 100%
({FunGame}:4) {Sport}⇒{Technology} 50% 100%

({Sport}:3) {News}⇒{FunGame} 50% 75%
({Music,Lifestyle}:3) {FunGame}⇒{News} 50% 75%

({Music,FunGame}:3)
({Technology,Sport}:3)
({News,FunGame}:3)

1. Frequent Itemsets Search: do exhaustive search all frequent itemsets.
An itemset is called a frequent itemset if its support is greater than or
equal to σ.

2. Rule Generation: for each frequent itemset X found, generate all as-
sociation rules A⇒ B, if its confidence is greater than or equal to the
confidence threshold ς. Like σ, the ς is also specified by users, and
it determines the confidence level of rules. Therefore ς is critical for
generating strong association rules which more probably occur in the
corresponding dataset.

Let us examine the example in Table 2.2. Assume σ = 50% and ς = 75%,
then we can obtain 11 frequent itemsets and 8 association rules as shown in
Table 2.5.

Note that there exists some redundancy in the frequent itemsets in Table 2.5,
for example, ({Technology} : 3) and ({Sport} : 3), which are subsets of
({Technology, Sport} : 3). In fact, frequent itemset mining often generates a
huge number of itemsets satisfying the minimum support threshold σ, espe-
cially when σ is set low. This is because the subsets of a frequent itemset is
frequent as well. For a n-itemset, the number of its subsets up to

(
n
1

)
+

(
n
2

)
+ . . .+

(
n
n

)
= 2n − 1.
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Hence, the computational requirements for frequent itemset generation are
generally more expensive than those of rule generation [6, 69]. The overall
performance of mining association rules is determined by the first step. So,
we mainly discuss the algorithm for mining frequent itemsets. However, as
the reader will see soon, finding frequent closed itemset is more efficient
for rules generation than the traditional frequent itemset mining, we start
introducing it in the following section.

2.3.2 Frequent Closed Itemset Mining
Recall the closure operator introduced in Section 2.2.1, which provides a
method to calculate closure. Normally, the result of closure operation is
known as closure in FCA, while we call it closed itemset in ARM. The closure
operation in FCA is the theoretical foundation of frequent closed itemset,
however, FCA does not consider support information of the closed itemsets
which is needed by FCI. In the following, we restate the definition of FCI,
denoted by I, and introduce some of its properties.

Definition 1 An itemset X is closed if none of its immediate supersets has
exactly the same support count as X.

In this definition, an immediate superset refer to the most closed superset
when there are many supersets. Assume X1 and X2 are subset and immediate
superset of X respectively. According to the support definition, the support
of an itemset is never greater than the support of its subsets. So we have
sup(X1) > sup(X) > sup(X2). When the support of X is greater than the
support of all X’s immediate supersets, i.e., sup(X) > sup(X2), we call X
closed itemset. Naturally, X is not closed if at least one of its immediate
supersets has the same support as X.

Definition 2 An itemset is a Frequent Closed Itemset if it is closed and its
support is greater than or equal to the minimal support σ.

Formally we have that:

Theorem 1 An itemset I is said to be closed if and only if

I ′′ = (I ′)′ = I

where I ′′ is the Galois operator or closure operator.

Theorem 1 shows that, if an itemset I goes through the closure operator and
returns the same itemset, then I is closed.
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2.3.3 General Process for Mining FCI
Our approach for mining frequent closed itemset in a distributed way is on the
basis of centralized FCI mining algorithm. The performance and structure of
adopted centralized FCI mining algorithms effect the distributed algorithm
partially. Naturally, it is necessary to know general process for mining FCIs
in centralized dataset. We divide the process of mining frequent pattern into
5 sub problems and describe them below. They are:

1. Database Representation and Compressed Structure;

2. Searching Strategy;

3. Projecting Method;

4. Checking and Pruning Techniques;

5. Results Storing.

Database Representation and Compressed Structure

The first problem we have to face when mining frequent patterns from a
given database is how to represent them. The representation format of a
dataset influences the performance of the mining algorithm. In practical
applications, objects can be presented in Horizontal Item-List (HIL), Vertical
TID-List (VTL), HIV and Vertical TID-Vector (VTV) form. The HIL layout
stores one object in each row. It is an intuitive method of bookkeeping for
the objects. Each object is recorded as a list of items, as shown in Table
2.2. HIL is adopted by most association rule mining algorithms, such as
Apriori, CLOSET, and CLOSET+. The VTL layout stores the list identifiers
associated with each item, instead of recording the transactions explicitly
[70], as shown in Table 2.6. VTL were- proposed by Holsheimer and Savasere
on 1995 and it is adopted in CHARM and Eclat [71] algorithms. HIV is
similar to HIL, except that a bit-vector is used to represent the presence
or absence of each item in each row respectively, as shown Table 2.7. In
Table 2.8, the VTV layout is similar to VTL except that a bit-vector is used
to represent the presence or absence of each item in terms of objects. The
difference between HIV and VTV is that the later organizes the data as a
set of columns.

When the dataset is huge, it should be compressed and only the inform-
ation related to the mining is kept. The compressed structure can be array-
based [72, 73], tree-based [14, 28, 72, 74], which is the key factor in the
efficiency of the projection operation and the counting operation. Among of
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Table 2.6: The data in Table 2.2 arranged by vertical TID-list layout.

Movie Music Technology News Lifestyle FunGame Sport
1 1 2 1 2 1 2
2 3 3 3 4 3 3
5 4 6 4 5 5 6

6 5 6

Table 2.7: The data in Table 2.2 arranged in horizontal item-vector layout.

User Movie Music Technology News Lifestyle FunGame Sport
1 1 1 0 1 0 1 0
2 1 0 1 0 1 0 1
3 0 1 1 1 0 1 1
4 0 1 0 1 1 0 0
5 1 0 0 1 1 1 0
6 0 1 1 0 0 1 1

Table 2.8: The data in Table 2.2 arranged in vertical TID-vector layout.

User Movie Music Technology News Lifestyle FunGame Sport
1 1 1 0 1 0 1 0
2 1 0 1 0 1 0 1
3 0 1 1 1 0 1 1
4 0 1 0 1 1 0 0
5 1 0 0 1 1 1 0
6 0 1 1 0 0 1 1
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the data representations, the tree-based structure is often used and is efficient
for projection. We will discuss FP-tree in detail in Section 3.1.

Searching Strategy

Mining frequent closed itemsets is actually a process of searching for FCIs
from a lattice structure. The search strategy employed by an algorithm
dictates how the lattice is traversed during the frequent itemset generation
process. Three types of strategies often used are:

• General-to-specific and Specific-to-general: In the general-to-
specific (GTS) approach, candidate closed itemsets are obtained by
merging pairs of frequent (k-1)-itemsets, and then checking candidate
k-itemsets to see if they are frequent. The first algorithm which adop-
ted this kind of traversal was Apriori.

• Equivalent Classes: This approach partitions the lattice into disjoint
group nodes first and then processes each part in turn. As an example,
the level-wise strategy used in Apriori partitions the lattice on the basis
of itemsets size, i.e., the algorithm discovers all frequent 1-itemset first
before proceeding to larger-sized itemsets. See Figure 2.1, the prefix-
tree and suffix-tree belong to this type.

• Breadth-first and Depth-first: The Apriori algorithm also can be
implemented in a breadth-first manner traversal. It first discovers all
frequent 1-itemsets, followed by the frequent 2-itemsets, and so on,
until no new frequent itemsets are generated.

Projecting Method

The projecting operation is a process of filtering and reorganizing datasets,
which could be stored in database or compressed structure, into different
smaller sub sets. When the original database is large, it maybe unrealistic
to read the dataset into memory or even construct a memory-based storing
structure, such as a tree and an array. Moreover, when we adopt pattern-
growth and depth-first approach to mining frequent patterns, it is also needed
to project the dataset recursively to find out local frequent itemsets. Hence,
we need to first partition the database into a set of projected databases.

The existing projecting methods could be classified into three categories
according to the way the datasets are stored: database projection [28, 75],
tree projection [14, 73], and array projection [72, 76].
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Figure 2.1: Equivalent classes based on prefix label (left) and suffix label
(right) of itemsets. The itemsets having the same prefix label and suffix
label (circled by dashed lines) are explored first.

Checking and Pruning Techniques

We may need to check the candidate itemset in order to recognize one FCI
quickly. Although we can achieve this by directly counting its support, some-
times it is not necessary because there are some basic properties that can be
used. For instance, pruning techniques can be used to eliminate the itemset
which is never used to generate FI (MFI, or FCI). This is useful for further
pruning the search space and speeding up mining.

Results Storing

Most existing algorithms store the frequent (closed) itemsets in memory or
disk immediately without the need for special compressed structures, because
they do not use the results. Apriori, FP-growth, A-close, CLOSET, etc. are
particularly good examples of this type of algorithm.

There also exist some algorithms which mine frequent pattern by con-
structing a Frequent Item Sets Tree (FIST) [73]. Once constructed, all fre-
quent itemsets can be obtained by reading the path of the FIST.

CHARM [66] improves mining efficiency by exploring an item based tree
structure and only the frequent closed itemsets can be kept in the tree. To
some degree, we can view this approach as a tree based results storing ap-
proach. CLOSET+ adopts two techniques to store the results and assist
subset-checking: Two-level hash-indexed result tree and Pseudo-projection
based upward checking. Two-level hash-indexed result tree, which is a spe-
cial hybrid structure, can provide the ability to store results and verify the
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closure of frequent itemsets when they are imported. In contrast, pseudo-
projection based upward checking removes the requirement of maintaining
the set of closed itemsets in memory for subset-checking. It uses only the
global FP-tree to check if a newly found frequent itemset is closed. Hence,
the results, FCIs, can be directly stored in an output file.

This thesis uses CLOSET+ as a representation for recursive FCI mining
algorithm because it can choose different mining strategies to handle sparse
and dense data. The detail will be discussed in the following subsection.

2.3.4 Recursive Closure Mining Algorithm: CLOSET+
CLOSET+ follows the popular divide-and-conquer paradigm and the depth-
first search strategy. It uses FP-tree as the compression technique.

Figure 2.2 shows a flowchart of CLOSET+. In the tree building pro-
cess, we compute the average count of an FP-tree’s nodes. After the tree
has been built, we judge whether the dataset is dense or sparse accord-
ing to the average count of an FP-tree node. At this moment, we use
a hybrid tree-projection method to construct its projected databases. For
dense datasets, the algorithm chooses a bottom-up physical tree-projection
method; whereas for sparse datasets, the algorithm uses top-down pseudo
tree-projection method. Closet+ deals with FP-tree in a top-down manner
for sparse datasets, and in a bottom-up manner for dense datasets. During
the mining process, use the item merging, item skipping, and sub-itemset
pruning methods to prune search space. For each candidate frequent closed
itemset, use the two-level hash indexed result tree method for dense datasets
or pseudo-projection based upward checking method for sparse datasets to
do closure checking. When all the items in the global header table have been
mined the algorithm stops.

CLOSET+ works well on single machine to process data which fit the
memory. However, CLOSET+ and other similar algorithms could not handle
the data distributed on different places because all information it needs, such
as the list of frequent itemsets, are relative to the whole dataset. We figure
this issue out in section 3.3.2.

2.4 Distributed Closed Itemset Mining Algorithm

2.4.1 Related Work
The current work on distributed frequent closed itemset mining is still at an
early stage in its development [21]. The traditional distributed data mining
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First scan DB for f_list

Second scan DB to build FP-Tree
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End
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Figure 2.2: Flowchart of CLOSET+. CLOSET+ handles dense data and
sparse data in a bottom-up physical tree-projection and a top-down pseudo
tree-projection respectively, and adopts different closure checking strategies.
For dense data, the mined FCIs are stored in a result tree. They are stored
in a file in the case of sparse data.
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Figure 2.3: Traditional distributed data mining framework: the same al-
gorithm works on each data site and the outputs are aggregated in a central
site.

framework shown in Figure 2.3 was applied in an early distributed ARM
algorithm in [77]. In this framework, the same algorithm operates on each
distributed data site concurrently, producing one local model per site. Sub-
sequently all local models are aggregated to produce the final model. Each
local model represents the local itemsets but lacks details that may be re-
quired to induce globally meaningful knowledge. Moreover, the traffic from
a Local Model to the Final Model may be heavy. Therefore, data transfer
and synchronization are the most important considerations for this kind of
approach. Two existing distributed FCI mining algorithms based on this
framework are given in [67, 68]. In order to focus on algorithm design, we in-
troduce the MapReduce framework to deal with distributed communication
and management. The details of MapReduce are discussed in Section 2.4.2.

The other crucial problem that must be addressed when designing distrib-
uted FCI mining algorithms is the process of merging the local FCIs. Local
FCIs from every part of distributed data are supersets of the global FCIs.
Some important information such as support, which is required by global
FCIs, hide in the local Infrequent Closed Itemset (IFCI)s and is prone to be
lost when the merging procedure is performed. To explain this by Example 2,
we divide the data in Table 2.3 into 2 parts D1 and D2 , as shown in Table
2.9.

Consider a distributed database D consisting of n partitions Di, where
i = 1, . . . , n.

Property 1 If I is a globally frequent closed itemset, then I must be locally
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Table 2.9: Distributed data partitions D1 and D2 derived from Table 2.3.
D1

a b c d e f g
1 × × × ×
2 × × × ×
3 × × × × ×

D2

a b c d e f g
4 × × ×
5 × × × ×
6 × × × ×

Here are two closed itemsets I1 = ({b, d, f} : 2) and I2 = ({b, c, f, g} : 1)
determined from D1 and D2 respectively in Table 2.9. Given a minimal
support σ = 50%, then ({b, c, f, g} : 1) is infrequent and should be discarded.
However, ({b, c, f, g} : 1) can contribute support information to itemsets {b}
and {f}, and result in a global FCI I3 = ({b, f} : 3). I3 can be found in F9

in Table 2.4.
Example 2: Support information loss of IFCIs when merging local FCIs

frequent in at least one partition Di.

Proof. This property can be proved by contradiction. Suppose a globally
frequent closed itemset I is infrequent in every partition. That means I’s
support count is lower than the minimal support count in every partition.
Then the total support count of I must be smaller than σ, so I is infrequent
with respect to the whole data. The hypothesis does not hold.

There are some preliminary methods for merging FCIs. The authors of
[1, 21] presented an operation denoted by the symbol, �, to compute global
FCIs6 in a distributed manner as shown in the following definitions.

Definition 3 Given the two sets of frequent closed itemsets C1 and C2, mined
respectively from the two partitions D1 and D2, we have that:

C = C1 � C2 =

(C1 ∪ C2) ∪ {I1 ∩ I2 | (I1, I2) ∈ (C1 × C2)} ≡ C.
6The authors of [1, 21] adopted ⊕ instead of �. We use � to distinguish from ⊕-

structure in Section 2.2.3 in order to avoid notational confusion



2.4 DISTRIBUTED CLOSED ITEMSET MINING ALGORITHM 26

For example in Table 2.9, we set the support σ to 33% so that C1 =
{({b, d, f} : 2), ({a} : 2)} and C2 = {({a, d, e, f} : 1)}, then the global
solution will be C = {({b, d, f} : 2), ({d, f} : 3), ({a} : 3), ({a, d, e, f} : 1)}.

Definition 3 is trivially extended to n partitions.

Definition 4 Given the sets of closed itemsets C1,· · · ,Cn, mined respectively
from n disjoint horizontal partitions D1,· · · ,Dn, we have that:

C = (· · · ((C1 � C2)� · · ·� Cn) · · · ).

Definitions 3 and 4 suggest that we may have to perform many intersec-
tion and union operations between the local closed itemsets. However, the
� operation only works when all local FCIs are also globally frequent. The
Example 3 shows an exception:

Consider the data in Table 2.9, and let σ = 66%. We can find that ({c, g} : 2)
is a local frequent closed itemset in D1. According to Definition 3, ({c, g} : 2)
is included in global FCIs. However, ({c, g} : 2) is infrequent in terms of the
whole data.

Example 3: An exception for Definition 3

The author of [68] develops another method which fully utilizes the infre-
quent closed itemsets in each data source. As a supporting lemma, Lemma
7 in [68] considers the relation between global FCIs and local IFCIs. It has
only been proved for a special case, i.e. when distributed data consists of two
partitions. We propose a novel method which utilizes infrequent itemsets to
achieve the same aim. The details are discussed in Section 3.3.2.

The existing distributed work on FCA is mentioned in Section 2.2.2. We
continue by introducing the MapReduce framework in the following sections.

2.4.2 MapReduce Framework
MapReduce adopts a divide-conquer strategy to deal with huge datasets on
various kinds of problems which can be tackled in a distributed manner by a
large number of computers, collectively referred to as a cluster. The benefit
of using MapReduce lies in running an algorithm in its ability to tackle the
problem in a distributed way.

MapReduce is inspired by the map and reduce functions commonly used
in functional programming, such as Lisp. It was introduced by Google [44]
and then implemented by Google, Yahoo! and Twister, and organizations
such as Apache. These implementations provide automatic parallelization
and distribution, fault-tolerance, I/O scheduling, status and monitoring. The
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Figure 2.4: MapReduce data flow: the blocks refer to nodes and the arrows
indicate the directions the data flows in. The map and reduce functions
normally lie on the same node and deal with the data partition in that node.
The reduce function combines the outputs of the map phases.

only thing that needs to be done by the user is to design the map and reduce
functions for the specific problem.

The map function7, or map(), takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library provides the ability
to acquire an input pair from files or databases which are stored in a distrib-
uted way. Additionally, the map function can group all intermediate values
associated with the same intermediate key K and pass them to the same
reducer.

The reduce function, or reduce(), accepts an intermediate key K and a
set of values associated with K. It merges these values to form a possibly
smaller set of values.

Figure 2.4 depicts how MapReduce works. The flow of control of MapRe-
duce is described as follows.

1. The MapReduce library splits the input files into M = 3 partitions in
Figure 2.4. It then runs many copies of the program on a cluster of
machines (nodes). One partition may be allocated to many nodes.

7Note that, we often use mapper and reducer to stand for map function and reduce
function respectively.
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2. One of the nodes is assigned to be the master, and the rest of the
nodes are common workers nodes or slaves. In this example, node 0 is
assigned to act as the master. The master assigns the map and reduce
tasks to idle slaves and it is also responsible for managing the slaves and
all communication. All the slave nodes must response to the master
once they have finished or returned a faulted so that the master is able
to take further actions.

3. A mapper parses the (key,value) pairs produced from the input data
and then processes them by the user-defined map function. New inter-
mediate (key,value) pairs are produced and buffered in memory.

4. Periodically, the buffered pairs are written to local disk. The locations
of these buffered pairs are passed back to master, who is responsible
for forwarding this information to each of the reducers.

5. Once the mappers are finished, the master sends the mappers’ loca-
tions to the reducers and uses remote procedure calls to read the data
buffered by the mappers. Normally, the intermediate keys are sorted
in order to group the same keys.

6. A reducer then iterates over the sorted intermediate data and handles
the key and the corresponding values using the user’s reduce function.
The output is stored in a local file.

7. The master wakes up the user main program once all map tasks and
reduce tasks have been completed.

When the MapReduce framework was designed by Google, it followed the
principles above. However, MapReduce implementations have been modified
to solve particular problems. Note that, Twister is particularly suitable for
iterative tasks.

2.4.3 Twister MapReduce
Twister [24] was designed in order to make MapReduce suitable for iterative
algorithms. Normally, there are two types of data in iterative algorithms,
static and dynamic data. The static data is the distributed data in a local
machine, while dynamic data is produced by the last iteration. For some
data mining tasks, static data is needed during each iteration in conjunction
with dynamic data to generate fresh dynamic data. The requirement for both
static and dynamic data is the crucial difference between Twister and other
MRF implementations. The static data can be set up in the “configure”



2.5 DISTRIBUTED CLOSED ITEMSET MINING ALGORITHM 29

User-defined functions 

key/value pairs

1 2 n

1 2 n

runMapReduce()

map()

reduce()

mapper

reducer

combine()

Data 1 Data 2 Data n

while(condition) {

} // end while

updatecondition()

configureMaps()

configureReduce()

Configure mapper and
reducer with static data

feedback with dynamic  data

Iterations

Results

Figure 2.5: Iterative MapReduce programming model supported by Twister.
This model introduces static and dynamic data and iteratively executes the
tasks.

phase for the map and the reduce task. The “configure” phase allows the
user to specify the source for static data and how to send the dynamic data
back to mappers at the same time, as shown in Figure 2.5.

In order to avoid reading static data in each execution of MapReduce,
Twister designs the MapReduce as long running tasks which last for the
life of the whole computation. All of the communication between the nodes
and between the mappers and the reducers is handled by a broker network.
Twister supports NaradaBrokering which is described in [78] and ActiveMQ8.
Figure 2.6 shows Twister architecture.

Apart from the iterative feature, Twister provides a combining phase
(combine()) which can further merge the outputs from reducers, and gives
user the ability to customize the broker networks in order to manage com-
munication as need.

8More details can be found at http://activemq.apache.org/
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Figure 2.6: Architecture of Twister MapReduce. Twister maintains pools to
cache mappers and reducers, and to read the input from the local disk of each
node. The third party broker network is used to manage the communication
between the worker nodes.
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2.5 Summary
Closed itemset mining is an important concept in both ARM and FCA, and
a novel MapReduce framework can be applied on it. Section 2.3 defined key
words and terminologies, such as frequent itemset, frequent closed itemset.
The background knowledge, related work and classic frequent closed item-
set mining algorithms were also presented. Section 2.2 first defined formal
concept analysis and its related properties, and then discussed recent related
work including centralized and distributed algorithms. The NextClosure and
CloseByOne algorithms were introduced at the end of this chapter. Cent-
ralized algorithms were discussed in detail in order to set the sense for the
following chapters. in following sections. Section 2.4 covered concepts re-
lated to distributed implementations, such as the existing distributed fre-
quent closed itemset mining methods, MapReduce framework and Twister
MapReduce runtime. In the next chapter we will discuss some techniques for
distributed implementation of these algorithms.



Chapter 3
Theoretical Basis

In Chapter 2 we described the origin and current status of distributed closed
itemset mining. We now list some open problems to clarify the situation and
introduce potential solutions.

3.1 Domain Related Issues
To achieve distributed computation of Frequent Closed Itemsets (FCIs), a
first approach might be to develop or modify existing algorithms, and then
to deploy them over different network architectures. This approach is im-
practical because:

1. Most frequent closed itemset mining algorithms are not suitable for
execution in a distributed environment. This is because FCI mining
requires support and occurrence information for the whole dataset for
some itemsets as the procedure progresses. That is to say, the al-
gorithms need to access and search the dataset several times. It is
inefficient to do so in distributed settings.

2. The existing FCI mining algorithms are good at processing datasets
with certain characteristics: some are good for dense data, and some
are good for sparse data. It is unfeasible to modify them to suit dif-
ferent structures and implementations as discussed in Section 2.3.3.
Moreover, they differ from each other in the way the problem is mod-
elled and solved, consequently it may reduce their performance if they
are made distributed without due consideration of the characteristics
of the approach.

32
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Figure 3.1: FP-tree structure for data in Table 2.3, which consists of diverse
itemsets and is linked with an ordered head table which is located on the left.
The same item from different itemsets forms an item node which is labelled
by the item and its support count in the path. All nodes are linked ordered
by descending frequency as indicated in the head table.

To understand the problems above, we analyze some prominent FCI min-
ing algorithms.

Case 1: FP-growth, OP, CLOSET and CLOSET+ are FP-tree (FP refers
to Frequent Pattern) based algorithms [74, 79], which project the whole data-
set into a tree structure and then recursively mine the FCIs in the tree.
The FP-tree contains all information of the original dataset and is stored in
memory, as shown in Figure 3.1. In distributed cases, we may have to acquire
knowledges from each data partition in order to construct the FP-tree which
could be very large. It is a challenge to store it in (distributed) memory
because of the size of the dataset.

Thinking in another way, we can obtain global FCIs by combining the
local FCIs. Recall Definitions 3 and 4, we must ensure that all the local FCIs
are also globally frequent. In fact, it is hard to do so. A globally frequent
closed itemset I might be infrequent on a given partition Di, so I will not
be returned as frequent closed itemset by the ith node. As consequence of
this, the master node can not count the support of I because of the missing
knowledge on Di. Till now, we have to re-access all datasets to achieve the
goal above.
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Case 2: In practice, in the distributed settings some choices must be made
with regard to trading off the number of nodes, the bandwidth between the
nodes, given the characteristics of the datasets. To obtain good perform-
ance, we need to look for a workaround. In addition, as discussed in [28, 74],
FP-growth is suitable for sparse datasets, while CLOSET is good for dense
datasets. In other words, even using the same algorithm, differences in data-
set characteristics will result in the variation of the communication flow.
The main bottleneck, in practice, is that large amounts of data have to be
transmitted among different work nodes because items have to be shared.

3.2 Methodology
We adopt the following methodology to address these issues:

1. Assumptions

• We use the Twister distributed infrastructure in this thesis. We
assume the bandwidth in the network is large enough.

• We assume that the datasets used for the experiments are even
distributed across the nodes, i.e., the closed itemsets are well-
distributed. We divide the data randomly and the data partitions
have the same size and similar density.

• There are many techniques, such as closure pruning, to optimize
the closure computation for itemsets. We do not focus on these
techniques in order to make our algorithms more scalable and
applicable to a wide variety of scenarios.

• All algorithms in this thesis execute closure mining rather than
rules generation or concept lattice construction. This is because
rules generation and concept lattice construction consumes extra
time.

2. Analysis Plan

• We have surveyed the status of frequent closed itemset mining
and implemented some prominent algorithms. By analysing them,
we identified some similarities and differences between them, and
grouped them into two categories.

• We consider distributed FCI mining and distributed formal concept
mining separately because FCI mining relies on support but formal
concept mining does not.
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• We use the CPU time of our algorithms to measure their perform-
ance. Different types of datasets are tested over various numbers
of machines to determine the algorithms’ overall performance and
scalability. For example, the types of different datasets are charac-
terized by their density, the number of attributes (dimension) and
the number records (data size). The number of nodes was varied
from 1 to 10. The comparisons between distributed algorithms,
and distributed versions and the corresponding centralized ver-
sions are given as a result.

• All algorithms are implemented in the Java programming language
and executed as Java applications in the Twister runtime, in the
same hardware environment to ensure that all experiments are
comparable.

3.3 Distributed Closed Itemset Mining Algorithms
In light of the issues mentioned in Section 3.1, we adopt the MapReduce
framework to support both distributed formal concept mining and FCI min-
ing. Note that, we do not suggest that all the problems can be solved by
simply implementing map and reduce functions. On the contrary, we classify
the centralized algorithms using two categories, so that they can be treated
by different approaches. Basically, the prerequisite for applying MapReduce
is that the task must be amenable to decomposition in to a map function and
a reduce function. Thus, according to this criterion, we classify the common
closure mining algorithm into two categories.

• Category 1: algorithms which work in a non-recursive manner, and can
be decomposed into two or more tasks. For this type of algorithm, we
need to adapt them to the MapReduce framework by modifying the
inner functions.

• Category 2: recusive algorithms.

The FCA algorithms in this thesis belong to Category 1, while most of FCI
mining algorithms belong to Category 2. To develop distributed algorithms,
we are going to introduce some theories to support this process for the two
categories respectively.

3.3.1 Distributed Formal Concept Mining
In Section 2.2.3 we said that the computing resource consumed by the ⊕
construct will increase significantly as the dataset size grows. A potential
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solution to this problem is to deploy this task on different computing units.
The approach taken by MapReduce. Naturally, the question is how to de-
compose NextClosure, so that each component can be executed in parallel.
This section talks about this in detail.

Given a dataset D, we partition its objects into n subsets and distribute
the subsets over n different nodes. Without loss of generality, it is convenient
to limit n = 2 here. We denote the partitions by D1 and D2. Alternatively we
can think in terms of formal contexts and write the formal context, (T, P,R),
in terms of the partitioned formal contexts (TD1 , P,RD1) and (TD2 , P,RD2).
To fix ideas, we use the dataset in Table 2.9 as an exemplar. The partitions
are non-overlapping: the intersection of the partitions is the null set, D1 ∩
D2 = ∅ and their union gives the full dataset D = D1 ∪ D2. It follows that
the partitions, D1, D2, have the same attributes sets, P , as the entire dataset
S, however, the set of objects is different in each partition, e.g. TD1 and TD2 .

Let XD, XD1 and XD2 denote an arbitrary attribute set X with respect
to the entire dataset S, and each of its partitions D1 and D2 respectively.
By construction they are equivalent: XD ≡ XD1 ≡ XD2 . Similarly, X ′D, X ′D1

and X ′D2
are the sets of objects derived by the derivation operation in each

of the partitions D1, D2 and the entire dataset D respectively.
In this subsection, we use FX

Di
to denote the formal concept derived from

itemset X in terms of Di, and use FDi
to denote the set of formal concepts

mined from Di. We now propose some basic properties for distributed FCA
in the following content.

Property 2 Given the formal context, (T, P,R), the two partitions (TD1 , P, RD1)
and (TD2 , P, RD2) and an arbitrary itemset, X ⊆ P , the property X ′D =
X ′D1
∪X ′D2

holds: the union of the sets of objects generated by the derivation
of the attribute set X in each of the partitions is equivalent to the set of ob-
jects generated by the derivation of the attribute set over the entire dataset,
D.

Proof. Appealing to the definition of the derivation operator proposed by
Wille in [8], the set, X ′S, is a subset of T , X ′D ⊆ T . Moreover, X ′D1

⊆ TD1

and X ′D2
⊆ TS2 . Given D1 ∪ D2 = D and D1 ∩ D2 = ∅, it follows that,

TD1 ∪ TD2 = T and TD1 ∩ TD2 = ∅; Therefore, X ′D1
⊆ X ′D and X ′D2

⊆ X ′D.
Finally, X ′D1

∪ X ′D2
≡ X ′D. As a counterexample, an object t that exists

in X ′D, but not in X ′D1
or X ′D2

, cannot exist because TD1 ∪ TD2 = T and
TD1 ∩ TD2 = ∅ and XD = XD1 = XD2 . If t is in X ′D it must appear in X ′D1

or
X ′D2

.

In short, Property 2 allows us to process all objects independently: the
objects can be distributed and processed in an arbitrary order and this will
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For an itemset X={b,d} in Table 2.9, we have that X ′D1
= {1, 3} and X ′D2

=
{4}. We consider X ′ in terms of the data in Table 2.3 X ′D = {1, 3, 4}. Thus
X ′D = X ′D1

∪X ′D2
.

Example 4: An example for Property 2

not affect the result of X ′. Property 2 is trivially extended to the case of
n partitions. Now we describe how formal concepts can be combined from
different partitions.

Property 3 Given the formal context, (T, P,R), the two partitions (TD1 , P, RD1)
and (TD2 , P, RD2) and an arbitrary itemset, X ⊆ P , the property X ′′D =
X ′′D1

∩ X ′′D2
holds: The intersection of the closures of the attribute set, X,

with respect to each of the partitions S1 and S2 is equivalent to the closure of
the attribute set, X, with respect to the entire dataset D.

Proof. By the definition of the partition construction method above, D1 ∪
D2 = D, which implies that, D1 ⊂ D and D2 ⊂ D. Recall that, X ′D1

⊂
X ′D and X ′D2

⊂ X ′D, and from Property 2 we have that X ′S = X ′D1
∪ X ′D2

.
Appealing to the properties of the derivation operators, in [8], we have, X ′′D1

⊇
X ′′D and X ′′D2

⊇ X ′′D. It is clear that X ′′D1
and X ′′D2

need not equal X ′′D, but by
the definition of a closure (X ′D1

∪X ′D2
)′ = (X ′D)′ = XD, thus, (X ′D1

∪X ′D2
)′ =

X ′′D1
∩ Y ′′D2

follows trivially from the definition of the derivations operators.

Taking itemset X ={b,d} as an example. We have X ′′D1
={b,d,f} in terms of

D1, X
′′
D2

={b,d,e} in terms of D2, and X ′′D ={b,d} in terms of D. Therefore
X ′′D = X ′′D1

∩X ′′D2
.

Example 5: An example for Property 3

For a distributed dataset having two partitions, we propose Theorem 2 and
give proof following it.

Theorem 2 Given a set of attributes X, X ⊂ P . Let FXD1
and FXD2

be the
sets of closure based on X in relation to D1 and D2 respectively. Then the
closure of X in relation to D can be calculated from: FXD = FXD1

∩ FXD2
.

Proof. This is simply a consequence of Property 3, FXD = X ′′D = X ′′D1
∩X ′′D2

=
FXD1
∩ FXD2

and XD ≡ XD1 ≡ XD2 by definition of the partition.

We are going to extend Theorem 2.
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For an itemset X={b,d} from Table 2.9, we calculate its closure in terms
of D1 so that FXD1

= {b,d}′′D1
= {b,d,f}, and then its closure in terms of

D2 is FXD2
={b,d}′′D2

= {b,d,e}. According to Theorem 2 we have FXD =
FXD1
∩ FXD2

= {b,d,f} ∩ {b,d,e}={b,d}.
Example 6: An example for Theorem 2

Theorem 3 Given the closures FXD1
, · · · , FXDn

from n disjoint data parti-
tions, we have that: FXD = FXD1

∩ . . . ∩ FXDn
.

Proof. A trivial inductive argument establishes that Theorem 3 is true.
Theorem 2 provides the n = 2 case. A sketch of the proof of Theorem 3
follows by recognizing that the dataset D at the (i− 1)-th step of the proof
can be though as of consisting of two partitions only, the partition Supposing
that Theorem 3 holds for the case of (n − 1), we would like to show that it
holds for the case of n as well. By hypothesis we know that the closures
in the first (n − 1) partitions D1 ∪ · · · ∪ Dn−1 and the second partition Dn.
Recall, Theorem 2 proves the n = 2 case.

Calling on nothing more complex than the properties of the derivation
operators, and by constructing the partitions in a non-overlapping manner
we can now leverage Theorem 3 in order to apply the MapReduce framework,
specifically the Twister variant, to calculate closures from arbitrary number
of distributed nodes sure knowledge that the thoroughness of NextClosure is
preserved.

3.3.2 Merging Model for Distributed Frequent Closed Itemset Mining
The difference between FCA and FCI is that FCI mining algorithms, such as
CLOSET+, are harder to decompose into map and reduce functions, because
they run recursively. An alternative approach is to treat the whole algorithm
as a map. Each mapper deals with a partition of the dataset and produces
local FCIs as intermediate results. The reduce function contains the merging
function which is able to process local FCIs and to produce global ones by
merging them together, as depicted in Figure 3.2, Which is a merging model
for distributed FCI mining we propose in this work.

As introduced in Definition 3, the � operation applied on two local fre-
quent closed itemsets results in information loss for some frequent closed
itemsets. That is to say, a global FCI, I, will not appear in some partitions
Di if it is infrequent locally. As a consequence, the frequent closed itemsets
cannot be mined completely. Researchers have proposed two solutions to
address this issue. The first solution is to re-access the data partitions to
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Figure 3.2: Frequent Closed Itemsets merging model based on the MapRe-
duce framework. The map functions process each partition with the same
FCI mining algorithm. The merging function combines the outputs of all
sites.

acquire the information which is lost. The amount of lost information de-
pends on the data distribution. The more information that is lost, the more
computations needed to find the information. This is a potential waste of
time and resources. The second solution is to retrieve the lost information
for IFCIs [68]. This avoids re-accessing data partitions as long as both the
FCIs and IFCIs are mined at a previous step. This thesis adopts the second
approach to prevent information loss in distributed environments. The fol-
lowing theorems and properties support this from a mathematical point of
view.

Suppose there are n data partitions. For the purpose of this example,
we take a dataset and form n = 3 partitions, Di where i = 1, 2, 3, as shown
in Table 3.1 The minimal support is defined before head as σ = 40%. The
minimal support is used to make a distinction between FCIs and IFCIs. In
other words, all closed itemsets which have supports below σ are IFCIs.

In the following discussion, we denote Ci, C̃i as the sets of frequent closed
itemsets and the set of IFCIs in terms of Di, and C as the set of global
frequent closed itemsets. The set of local FCIs and the set of local IFCIs
corresponding to each data partition, and the set of global FCIs are listed in
Table 3.2. The number to the right of “:” is the support count of the current
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Table 3.1: Distributed datasets for Frequent Closed Itemset Mining. Each
dataset has 3 objects which have several attributes (the numbers).

D1 D2 D3

2,3,5,6,7 1,3,4,6 2,5,6,7
1,3,4,7 1,3,5,7 2,3,5
1,2 3,4,7 1,2,3,5,6

Table 3.2: Local FCIs and IFCIs mined from datasets in Table 3.1. The
entries in the rightmost column are the corresponding global FCIs.

C1 C2 C3 C
({3,7}:2) ({3,7}:2) ({2,5,6}:2) ({6}:4)

({2}:2) ({3,4}:2) ({2,3,5}:2) ({7}:5)

({1}:2) ({1,3}:2) ({2,5}:3) ({3,7}:4)

({3}:3) ({5}:5)

C̃1 C̃2 C̃3 ({3,5}:4)

({2,3,5,6,7}:1) ({1,3,4,6}:1) ({2,5,6,7}:1) ({2,5}:4)

({1,3,4,7}:1) ({1,3,5,7}:1) ({1,2,3,5,6}:1) ({2}:5)

({1,2}:1) ({3,4,7}:1) ({1}:5)

({1,3}:4)

({3}:7)

itemset.
According to Property 1, the following Property 4 can be reached. Many

researchers have discussed Property 4, such as [68].

Property 4 A global frequent closed itemset must be a local frequent closed
itemset or included by the itemsets in Ci, i = {1, . . . , n}.

Proof. Recall Property 1, a global frequent closed itemset I is frequent in
one partition at least. Therefore I must be in one of Ci, i = {1, . . . , n}. In
the rest of partitions, I either appears as infrequent or never appear in order
to meet the global support count. In other words, I appears in the form of
a subset of other locally frequent closed itemset.
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Property 4 indicates that there are two cases for the existence of a global
FCI. We define them as following:

• The first case is that we shall denote a global FCI by Iα, which occurs
exactly in some sets of local FCIs, Ci. For example, the global FCI
({3}:7) in Table 3.2 is located in 3 of the sets of local FCIs, i.e. C1,
C2 and C3. The local FCIs, ({3,7}:2), ({3}:3) and ({2,5,3}:2) could be
intersected to form ({3}:7). For this case, we can obtain the global FCI
by intersecting all the related Ci directly. We denote the set of Iα-like
FCIs by Cα.

• The other case is that a global FCI, which we denote by Iβ, both occurs
in some sets of local FCIs and also in some sets of infrequent closed
itemsets C̃i. For instance, ({5}:5) is subsumed in ({2,5}:3) in C3, but

appears as infrequent itemsets, ({2,3,5,6,7}:1) and ({1,3,5,7}:1), in C̃1
and C̃2 respectively. To acquire the global FCI in this case, one needs
to compute the related Ci, in the meantime, looking for the missing
support of Iβ in C̃i. We denote the set of Iβ-like FCIs by Cβ.

In the first case, all the global FCIs can be tracked from local frequent
closed itemsets in two steps. First, we need to find the targeted sets of local
frequent closed itemsets. And then we apply the � operator on them. The
basic operation of � is composed of the intersection on two itemsets. The
operation � returns the common itemset with the sum of supports. Formally,
combining Definition 4 and Property 4 we propose the following theorem:

Theorem 4 If the FCIs in a set of global frequent closed itemsets C exist
only in Ci, i = 1, . . . , n, then C ⊆ C = (· · · ((C1 � C2)� · · ·� Cn) · · · ).

Proof. Continue the discussion in Definition 4, we see that C is a superset
of all globally frequent closed itemsets which are also locally frequent. For
the case 1, we have C = Cα ⊆ C, so then C ⊆ C.

Theorem 4 can be used to find all the global FCIs which are only in Cα. How-
ever, there is still one remaining problem, that is, the result from Theorem
4 contains also some FCIs which belong to Case 2. This is a consequence of
the fact that we are not able to exactly identify the Ci which contain(s) the
corresponding global FCI. For example, when applying Theorem 4 on Table
3.2 we have that C ={({3}:7), ({3,7}:4), ({1}:4), ({2}:5)}. You can see that
({1}:4) is not a global FCI due to the missing support information. This

means that the itemset, {1}, appears in a set of IFCIs, C̃i, but not in the
corresponding Ci. The other important reason is that Iα and Iβ appear in
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common Ci often so that they are mixed together. Our solution is to classify
the global FCIs according to their distributions and then to utilize an elimin-
ation procedure. For the example in Table 3.2, the itemset ({7}:5) exists in
the sets of FCIs, C1 and C2, while ({1,3}:4) occurs only in C2. One can distin-
guish between them by the ID of the partitions in which they are involved.
To consider all the possibilities, it is needed to compute the combination of
arbitrary number of the set of FCIs in terms of the data partition i, Ci, out
of n. Thus, there are C2

n + C3
n + . . .+ Cn

n = 2n − n− 1 possibilities.
From another perspective, for a distributed dataset with n partitions,

there exists 1 + 2 + . . .+n = n(n+ 1)/2 possibilities for the distribution of a
global FCI, I. I could lie in 1, 2, . . . , n− 1 or n of the partitions. According
to this property, we can classify all global FCIs into n groups and give them
names such as Si, i = 1, . . . , n. which refers to the set of FCIs which are
only frequent on i out of n data partitions. Specifically, I could appear in
either Cα or Cβ. In the case of I ∈ Cα, we can utilize Theorem 4 to find out
a superset of Cα.

We propose the following proposition and define some notations for it:
S1 refers to an union of the sets of FCIs, Ci; Si denotes the collection of the
intersections between elements from Si−1 and from S1; Function Γ(Si−1,S1)
applies the � operation on arbitrary two different FCIs from Si−1 and S1
separately and combines their result FCI into a set.

Proposition 1 Given a distributed dataset which consists of n partitions
where the minimal support count is σ, the global frequent closed itemsets Cα,
which appears only in Ci, i = 1, . . . , n, must satisfy the following equations:

S1 = {C1, . . . , Cn} (3.1)

Si = Γ(Si−1,S1) =

X 6=Y⋃

X∈Si−1,Y ∈S1

(X � Y )σ,where 1 < i 6 n (3.2)

Cα ⊆
n⋃

i=1

Si (3.3)

Proof. According to the discussion on Cα in conjunction with Theorem 4,
we know that Cα ⊆ C. As the definition of Si indicates, it is clear that
C ⊆ ⋃n

i=1 Si. Naturally, (Eqn. 3.3) holds.

In Proposition 1, S1 is initialized as a collection of Ci, i = 1, · · · , n, as
shown in (Eqn. 3.1). All the global FCIs, which are included by one of the
Ci, i = 1, · · · , n, will be grouped to form a set Sn. (Eqn. 3.2) can produce
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Si by intersecting S1 with Si−1 which is produced in last iteration, and the
results are filtered with minimal support threshold. Note that, the itemsets
from Si only intersect with unequal itemsets in different data partition could
not with itemsets in its own partition. Finally, (Eqn. 3.3) forms a union of
the sets S1 through to Sn.

In fact, Proposition 1 traverses all of the global FCIs with a forced tra-
verse, and Si contains some FCIs which belong to Cβ. So it is necessary to
detach, Cα, from the union of

⋃n
i=1 Si in order to find out the FCIs which

belong to Cβ. Consider Sn−1 which comes from (n−1) of all Ci, i = 1, · · · , n.
In other words, there is only one Ci (suppose i = x) does not contribute to

Sn−1. To extract the FCIs that might be partly in C̃x, we need to remove Sn
from Sn−1 because Sn is a subset of Sn−1, and then intersect Sn−1 −Sn with
C̃x. Before going into deep, we define two operators

⊎
and ⊗ in Definition

5.

Definition 5 Let us define a set of FCIs {Ci, Cj, Ck} and a set of IFCIs

{C̃i, C̃j, C̃k}, whose elements are from the data partitions i, j, k respectively,
then:

Ci ⊗ C̃j = Ci ∪ {X ∩ Y |(X, Y ) ∈ (Ci × C̃j)}.

{Ci, Cj, Ck}
⊎
{C̃i, C̃j, C̃k} = (Ci ⊗ C̃j ⊗ C̃k) ∪ (Cj ⊗ C̃i ⊗ C̃k) ∪ (Ck ⊗ C̃i ⊗ C̃j)

The symbol ⊗ first makes an intersection between the set of FCIs and the
set of IFCIs, after that the results are united with the first set and finally
returned as output1.

The operator
⊎

is introduced to compute the global FCIs by intersecting
the set of FCIs in the i-th partition, Ci, with the set of IFCIs in the j-th
partition. The lost support information of FCIs in Ci can be re-acquired
from related C̃i. Formally, we define Si, a set of frequent closed itemsets
which appear in i out of n partitions and have the following principle. Note
that, Si is a super set of Si.

Proposition 2 Given a distributed dataset which consists of n partitions.
With the minimal support count σ, the global frequent closed itemsets C can
be generated by the following steps:

1Note that, the ⊕ symbol which was used in NextClosure algorithm is different from
the operator ⊗ here.
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Sn = C1 ∩ . . . ∩ Cn (3.4)

Si = Υ(Si,Sn,S(i+1)∩n, C̃1∪n)

= {Si − (Sn + Si+1 + . . .+ Sn−1)}
⊎
{C̃1, . . . , C̃n}σ

where 1 6 i < n (3.5)

C = Sn +
n−1⋃

i=1

Si (3.6)

Proof. Proposition 2 can be easily deduced from Proposition 1 which was
discussed above. Sn is a special set among Si, i = 1, . . . , n, its essence is the
intersection of all Ci but does not contain any FCI belonging to Cβ. Hence,
(Eqn. 3.4) has the same sense with (Eqn. 3.2) when i = n. In (Eqn. 3.5), the
FCIs found in Si+1, . . . ,Sn need to be pruned away from Si. Subsequently,
the reduced Si will intersect with some C̃i to obtain Si. Note that, the
computation of Si begins from the i = n − 1 and ends at i = 2. The
aggregation of Si and Sn is exactly complete set of global FCIs because Si
and Sn cover all scenarios where frequent closed itemsets could be.

The contribution made here is that Proposition 2 does something different
from the theorem by Chun Liu in [68]. For example, Proposition 2 works for
general case, while the Liu’s approach turns out to be valid for a special case,
i.e., the distributed dataset has few partitions. A real example is shown in
Example 7.

In the remaining work, we apply these properties, theories, and proposi-
tions to common FCI mining algorithms and design an algorithms based on
the MapReduce framework. To mine FCIs in parallel, the dataset is divided
into many disjoint parts, and each part is processed by a frequent closed
itemsets mining algorithm. Actually, it is possible that different data parts
can be processed with different FCIs mining algorithms. For simplicity, this
thesis is going to adopt the same FCI mining algorithm (CLOSET+) for each
data part.

Notice that at this stage, all the closed itemsets produced are local fre-
quent only because they are from a part of the whole dataset. Based on
Proposition 1 and 2 a merging function can be used to obtain global frequent
ones. There are several steps need to do in the merging function. They will
work in sequence to get global FCIs from local ones:

1 generate Si using Ci produced by each data partition according to Pro-
position 1.
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Figure 3.3: Parallel execution of MapReduce: the map function packages the
outputs in the form of (key,value) pairs. The (key,value) pairs are sorted and
grouped by the key in the reduce phase and are then processed by the reduce
functions.

2 filter Si with global FCIs which have already been found and com-
bine (

⊎
) with Ci in order to generate Si, according to (Eqn. 3.5) in

Proposition 2.

3 combine the set of Si with Sn to form the final result, C.

3.4 Algorithm Adaptation
Irrespective of whether or not distributed FCA or distributed frequent closed
itemset mining is considered, they need to be adapted to fit the MapReduce
framework. As introduced in Section 2.4.2, MapReduce generally consists
of two functions, map() and reduce(). The first important thing we need to
ensure is that the algorithm we are going to use is not a recursive one. The
benefit of MapReduce model lies in executing algorithms in parallel, and it
cannot call itself, as depicted in Figure 3.3.

To begin we set local computation to be the map phase. For example, for
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FCA, computing closure(s) for each data partition is the local computation of
map phase, whereas for distributed frequent closed itemset mining, the map
phase should consist of the common FCIs mining algorithm, for instance
Closet+. MapReduce requires that the inputs and the intermediate data
produced by map() should be in the form of (key, value). In practice, the
output of the map phase is set as (keyElement, newLocalV alue), where

- newLocalValue is a new FCI produced by map();

- keyElement is the corresponding attribute which contributes to the
generation of newLocalValue.

In this example, the key, keyElement, will be required in the reduce phase.
In general, however, the use of the key is optional and determined by the
application’s demand. The set is to constant map and reduce functions with
subroutines which are based on the original centralized algorithm that is
being adapted.

Now, we can summarize the general procedure for filling algorithms to
the MapReduce framework.

1. Ensure that the target algorithm is non-recursive and can be decom-
posed. Note that in some special cases, even recursive algorithms can
be converted into non-recursive one [20], such as the CloseByOne al-
gorithm. Otherwise, we have to consider using the general model as
discussed in Section 3.3.2.

2. Decompose the algorithm into two functions to satisfy the requirements
of the MapReduce framework;

3. Design the (key,value) pairs for the map and reduce functions;

4. Implement the map and reduce functions with functions derived from
the original algorithm.

In this thesis, we are going to implement the distributed versions of
NextClosure, CloseByOne, and a merging model for distributed FCI min-
ing by following this procedure. The concrete adaptation steps are shown in
Section 4.

3.5 Summary
This chapter started by listing the domain related issues. It then proposed
a methodology for this research. In Section 3.3, the common closed item-
set mining algorithms were grouped into two categories, and, for each case,
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the corresponding distributed theories were developed. By analysing the
MapReduce framework, general adaptation rules were proposed in Section
3.4.
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Let us mine the data in Table 3.1 according to Proposition 1 and 2. First
apply Proposition 1 on Ci in Table 3.2, we have:

S2 ={C12 : {{3, 7} : 4, {3} : 5, {1} : 4}, C13 : {{2} : 5}, C23 : {{3} : 5}}
S3 ={C123 : {{3} : 7}}

Then with the support of Proposition 2 plus C̃i in Table 3.2, we calculate S2
and S1 in turn. Note that, the operator ⊗ is always applied on Ci and C̃j
which come from different and non-overlap partitions. S2 contains only FCIs
appeared on 2 data partitions.

S2 =(S2 − S3)
⊎

(C̃1, C̃2, C̃3)
={C12 : {{3, 7} : 4, {1} : 4}, C13 : {{2} : 5}}

⊎
(C̃2, C̃3)

=(C12 ⊗ C̃3)
⋃

(C13 ⊗ C̃2)
={{{3, 7} : 4, {1} : 4} ⊗ {{2, 5, 6, 7} : 1, {1, 2, 3, 5, 6} : 1}}

⋃

{{{2} : 5} ⊗ {{1, 3, 4, 6} : 1, {1, 3, 5, 7} : 1, {3, 4, 7} : 1}}
={{3, 7} : 4, {2} : 5, {7} : 5, {3} : 5, {1} : 5}

S1 includes only FCIs appeared on 1 data partition.

S1 =(S1 − S3 − S2)
⊎

(C̃1, C̃2, C̃3)
={C1 : {{3, 7} : 2, {2} : 2, {1} : 2}, C2 : {{3, 7} : 2, {3, 4} : 2,

{1, 3} : 2, {3} : 3}, C3 : {{2, 5, 6} : 2, {2, 3, 5} : 2, {2, 5} : 3} − {{3} : 7}−
{{7} : 5, {3} : 5, {1} : 5}}

⊎
(C̃1, C̃2, C̃3)

={C1 : {{3, 7} : 2, {2} : 2}, C2 : {{3, 7} : 2, {3, 4} : 2, {1, 3} : 2},
C3 : {{2, 5, 6} : 2, {2, 3, 5} : 2, {2, 5} : 3}}

⊎
(C̃1, C̃2, C̃3)

=({{3, 7} : 2, {2} : 2} ⊗ C̃2 ⊗ C̃3)
⋃

({{3, 7} : 2, {3, 4} : 2, {1, 3} : 2}
⊗ C̃1 ⊗ C̃3)

⋃
({{2, 5, 6} : 2, {2, 3, 5} : 2, {2, 5} : 3} ⊗ C̃1 ⊗ C̃2)

={{3} : 4, {5} : 5, {6} : 4, {1, 3} : 4, {2, 5} : 4}

Finally, all scenarios should be covered to collect all FCIs.

C =S3 +
2⋃

i=1

Si

={{3} : 7, {1} : 5, {2} : 5, {5} : 5, {7} : 5, {6} : 4, {1, 3} : 4,

{2, 5} : 4, {3, 7} : 4}

Example 7: Calculating global FCIs with Proposition 1 and 2 support.



Chapter 4
Implementation and Validation

In Chapter 3, we discussed that candidate algorithms need to be decomposed
into map and reduce functions in order to run them using the MapReduce
framework. In this chapter, we give examples of classic closed itemset min-
ing algorithms and show how to make them distributed. The centralized
algorithms in this thesis are renamed using a prefix “MR”, specifically, we
rename the algorithms and call them, MRGanter, MRGanter+, MRCbo and
a general merging model for frequent closed itemset mining algorithms based
on the MapReduce framework (MRGeneral).

4.1 Distributed Formal Concept Mining Algorithms

4.1.1 MRGanter
Reviewing Algorithm 2, it is clear that there are two stages involved in: 1)
computing new candidate closure, and, 2)making a judgment on whether to
keep it or not. Computing new closure corresponds to the map stage, and
making a judgment on whether or not to keep the closure corresponds to the
reduce phase.

Given that distributed datasets need to be computed independently, each
mapper produces local closures because its input is only a part of the entire
dataset. Accordingly, a merging operation is required to combine n local
closures computed by the mappers. Since the complete set of closures is
produced in the collaboration by all of the mappers, the merging operation
needs to be deployed on every reducer. The reducers are also responsible for
making a judgment on whether or not a closure should be kept. Figure 4.1
describes the data flow for generating a new closure.

49
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map
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Closures

Figure 4.1: MRGanter iteration: MRGanter computes local FCIs in the map
phase, generates global FCIs in the reduce phase and filters the global FCIs
using the check function.

For the purpose of discussion, in the following distributed FCA algorithms,
we only calculate the intent of a formal concept because the extent can be
calculated using intent. Some variables and constants for these algorithms
are shown in Table 4.1

The main operation in the merging function is the intersection operator,
∩, which is applied on the set of local closures L i generated at each node.
Algorithm 4 gives the pseudo code for the merging function based on Theorem
3. The merging function is deployed on the reduce phase and only processes
the local closures derived from the same attribute (line 1).

Algorithm 4 The merging Function for Distributed FCA Algorithms

Input: p i, L i, f.
Output: f.

1: l i← the local closure in L i in terms of p i
2: f ← Ψ(l i, f);
3: return f

The MapTask described in Algorithm 5 produces all local closures. The
output consists of the previous intent d and a set of local intents L i. Note
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Table 4.1: Table of variables and constants for distributed FCA algorithms.

Variables/Constants stands for

P the set of attributes in a given dataset

p i an attribute in P, where i = 1, · · · ,m
L i the set of local intents in data partition i

l i an intent in L i which is derived from p i

d the intent produced in previous iteration

f the newly generated intent

G an container in which storing the newly generated
intents

partitionFile a file contains full path for locating the datasets

numMap the number of mappers

numReduce the number of reducers

R an container where storing all found concepts

toMap an container for holding the local concepts and the
attributes used to form the concepts

Algorithm 5 MapTask in MRGanter

Input: d.
Output: (d, L i).

1: for p i from p m down to p 1 do
2: if p i is not in d then
3: l i ← d ⊕ p i;
4: associate l i with p i;
5: L i ← L i ∪ l i;
6: end if
7: return (d, L i);
8: end for
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that, in order to be used in the merging function the attribute which was
used to form local closures should be recorded and passed, as Line 4 does.
All pairs which have the same key, d, will be sent to the same reducer. After
this, all the local intents are used to form global intents and then filtered by
the closure validation condition, as shown by Line 7 in Algorithm 6.

Algorithm 6 ReduceTask in MRGanter

Input: (d,L i).
Output: f.

1: for p i in P do
2: f ← initialize new intent;
3: for i from 1 up to m do
4: f ← merging(p i, L i, f);
5: end for
6: set ← {0, p 1, · · · , p i};
7: if f ∩ set is equal to d ∩ set then
8: break;
9: else

10: continue;
11: end if
12: end for
13: return f

The Algorithm 6 accepts (d,L i) from the i-th mappers (see Section 2.4.3),
where i = 1, · · · , n. Recall that, for a reducer, only the pairs who have the
same key, d, are accepted. The line 4 generates an candidate closure f. After
that, line 7 verifies the candidate. Finally, the successful candidate will be
outputted as global closure f.

Figure 4.2 shows how MRGanter works iteratively. In Figure 4.2, the
lines marked with “S” import static data from each partition, while the lines
marked with “D” configure each map with the previous closure. The newly
generated closure is tested whether it is the last one which has the most
attributes. If it is not, the closure will be kept and MRGanter continues.
Otherwise while loop comes to an end and the algorithm returns all the
closures.

4.1.2 MRGanter+
In order to reduce redundancy, NextClosure calculates closures in lectic or-
dering to ensure every concept appears only once. This approach allows a
single concept to be tested with the closure validation condition during each
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Figure 4.2: MRGanter work flow: static data is loaded at the start of the
procedure (labeled by S) and the dynamic data (FCIs produce during each
iteration) is passed and used in the next iteration (labeled by D).
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iteration. This is efficient when the algorithm runs on a single machine. For
multi-machine computation, the extra computation and redundancy result-
ing from keeping only one concept after each iteration across many machines.
Hence, we modify NextClosure to reduce the number of iterations and name
the corresponding distributed version, MRGanter+.

Rather than using redundancy checking, we keep as many closures as pos-
sible in each iteration. In other words, all closures appearing for the first time
are maintained and used to generate the next batch of new closures. To do so,
we just need to change strategy used in Algorithm 6. The MapTask remains
the same as in Algorithm 5. Algorithm 7 indicates how the ReduceTask in
MRGanter+ works.

Algorithm 7 ReduceTask in MRGanter+

Input: (d, L i).
Output: G.

1: H ← initialize a two-level hash table;
2: for pi in P do
3: f ← initialize new intent;
4: for i from 1 up to m do
5: f ← merging(p i, L i, f);
6: end for
7: if f is not in H then
8: add f into H;
9: add f into G;

10: end if
11: end for
12: return G

The ReduceTask in MRGanter+ merges local closures first in Line 5, and
then recursively examines if they already exist in the set of global formal
concepts, H (Line 7). The set, H, is used to index and search for a specified
closure. It is designed as a two-level hash table to reduce searching costs. The
first level is indexed by the head attribute of the closure, while the second
level is indexed by the length of the closure. The new closures are stored in
the container G.

Algorithm 8 is the core of the main class, that manages the calls of the
MapTask and the ReduceTask. In Algorithm 8, inputs consist of partitionFile,
numMap and numReduce. Using partitionFile, mappers are able to locate
the corresponding datasets in the local nodes and load them for future use.
It is possible to assign the number of mappers and reducers using the vari-
ables, numMap and numReduce. Line 1 initializes the first concept with
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Algorithm 8 MRGanter+

Input: partitionFile, numMap, numReduce.
Output: R.

1: toMap ← initialize with ∅;
2: toMap ← set current attribute;
3: condition ← true;
4: while (condition is true) do
5: monitor ← driver calls runMapReduceBCast(toMap);
6: monitor calls monitorTillCompletion();
7: combiner ← driver calls getCurrentCombiner();
8: concepts ← combiner calls getConcepts();
9: if concepts is not empty then

10: add concepts to R;
11: toMap ← concepts;
12: else
13: condition ← false;
14: return R;
15: end if
16: end while

an empty attribute set. Lines 5, 6 and 7 call the methods provided by
the Twister runtime. The driver needs to be configured before use. The
runMapReduceBCast is responsible for broadcasting concepts found in the
last iteration to all mappers. The combiner can be used to further process
the outputs from all reducers and pass the results back to main class. Once
no new concept can be found (Line 9), the condition will be set as false
(Line 13) and algorithm exits.

Comparing to the distributed version of CloseByOne proposed by Krajca
Petr in [20], MRGanter+ generates more concepts in each iteration so that it
needs fewer iterations. A more detailing analysis can be found in Section 5.
We implement CloseByOne based on the MapReduce framework and give
a name, MRCbo. The performance comparison between MRGanter+ and
MRCbo are made in Section 4.3.2.

4.2 Distributed Frequent Closed Itemset Mining Algorithm:
MRGeneral

With the support of Theorem 1, 2 and Twister MapReduce, we can now
design a general model to mine FCIs from multiple data sources. Once we
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Figure 4.3: Frequent Closed Itemsets merging model, MRGeneral, which
mines local FCIs (Ci) and IFCIs (C̃i) using the same FCI mining algorithm.
In the reduce phase, the local FCIs, Ci, generate a super-set of global FCIs,
Si, (labeled by 3). The IFCIs C̃i are used to extract global FCIs Si from Si.

get the local FCIs using a traditional algorithm, the remaining work lies in
the merging phase. Figure 4.3 shows how MRGeneral works.

In Figure 4.3, the dataset which is waiting to be processed is partitioned
into n small parts which are distributed among of the different nodes. The
FCI mining algorithm in each node is the core component of the mappers
and handles the corresponding data partition in each local disk. In this
experiment, we use Closet+. In the map phase (see the lines marked by
1), Closet+ processes local data partitions and outputs local FCIs and IFCIs
(lines labeled by 2). Each mapper outputs local FCIs and IFCIs with the cor-
responding number of partitions to the reducer. This is required by Twister
model, and these numbers are needed in the reduce phase. By receiving local
FCIs from every mapper, a reducer is able to combine them together and to
produce an incomplete set of frequent closed itemsets, as indicated by the
lines labelled by 3. In order to determine other hidden FCIs and remove the
false ones, one has to further compute Si in the reducer. The set of IFCIs,
C̃i, is needed also to achieve this purpose. This procedure is indicated by
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Table 4.2: Table of variables for distributed FCI mining algorithms.

Variables/Constants stands for

count a counter for the number of data parti-
tions, and, count < n

S current a set of FCIs which are only frequent
on count-1 data partitions

set one set of Ci in S current

S tmp storing Sj−1 temporarily

lines 4. In this procedure, every infrequent closed itemset in each node can
contribute lost itemsets and support information. In last step we take an
union of the sets of Si and obtain a set of all FCIs, C, as shown by Line
5. In fact, there is a combiner in Twister, and the combiner can be used
to further merge the outputs from the reducers, but this is not necessary in
this example because we already obtain the global frequent closed itemsets
in reduce phase. The combiner only takes charge of passing the final result
to the main program.

As did for MRGanter and MRGanter+, we give pseudo for MRGeneral
algorithm. See Table 4.2 for the variables.

In this example, there is only one iteration. That is to say, Twister is used
like Hadoop MapReduce. We chose Twister because it is more light-weight.
Note that, only one reducer is used in this work.

4.3 Evaluation
We provide evidence of the effectiveness and scalability of our algorithms in
this section. Section 4.3.1 describes the experimental environment and the
dataset characteristics for the datasets used to validate performance in this
work. In Section 4.3.2, we present the experimental results and give analysis.

4.3.1 Test Environment and Datasets
In this work, all of the simulation work is done in Java. For the FCA al-
gorithms, we simulate NextClosure and its distributed versions MRGanter
and MRGanter+, and, CloseByOne and the corresponding distributed al-
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Algorithm 9 MRGeneral: Merging Model for Distributed FCI Mining Al-
gorithms
Input:
Ci: the sets of local FCIs from each node, where i = 1, . . . , n;
C̃i: the sets of local IFCIs from each node, where i = 1, . . . , n;

Output:
C: A set of all global FCIs.

1: Create S1 . . .Sn;
2: Initialize S1 with {C1, . . . , Cn};
3: counter ← 1;
4: while count < n do
5: S current ← Scount−1;
6: for set in S current do
7: initialize indexes with the identifiers of Ci;
8: for i from 1 upto n do
9: if indexes do not contain i then

10: newSet← Γ(set, Ci);
11: Scount ← Scount ∪ newSet;
12: end if
13: end for
14: return S count;
15: end for
16: end while
17: found ← Sn;
18: for j from n down to 1 do
19: S tmp← Sj−1;
20: Sj−1 ← Υ(S tmp, found, C1∪n);
21: found← found ∪ Sj−1;
22: C ← C ∪ Sj−1;
23: return C;
24: end for
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Table 4.3: UCI dataset characteristics: numbers of objects, attributes, and
density.

Dataset mushroom anon-web census-income

objects 8124 32711 103950

attributes 125 294 133

density 17.36% 1.03% 6.7%

gorithm MRCbo. For the FCI mining algorithms, we simulate the clas-
sic Closet+ algorithm, and its distributed implementation in conjunction
with MRGeneral. All distributed algorithms above are based on the Twister
runtime. To show the performance improvement, we provide a fair compar-
ison between the different distributed algorithms and compare them with
their centralized versions.

The experiment was run on the Amazon EC2 cloud computing platform.
We used High-CPU Medium Instances which have 1.7 GB of memory, 5 EC2
Compute Units (2 virtual cores with 2.5 EC2 Compute Units each), 350
GB of local instance storage, and 32-bit platforms. We selected 3 datasets
from the UCI KDD machine learning repository1, mushroom, anon-web2, and
census-income in our simulations. For the use in later experiment, some pre-
processes are needed. We counted all the items that appeared in the dataset
to be used as attributes and then give a ‘0’ or ‘1’ for the absence or occurrence
of individual attribute in every record. The datasets produced consist of
8124, 32711, 103950 records and 125, 294, 133 attributes respectively. The
percentage of 1s is used to measure the dataset density. See row 4 in Table 4.3
for more detail. We only test MRGeneral and Closet+ with mushroom at
2 different support. The CPU time is used as the metric for comparing the
performance of each of the algorithms. For distributed FCA algorithms, we
keep the CPU time from the algorithms initialization to all global intents are
found, and timing MrGeneral from CLOSET+ execution on every machine
to all global FCIs are generated. The number of iterations (IR) also impacts
the algorithms performance significantly and we counted them in Table 4.6.

1See more detail at http://archive.ics.uci.edu/ml/index.html
2See http://archive.ics.uci.edu/ml/machine-learning-databases/anonymous/ for the

original data.
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Table 4.4: Execution time (in seconds) of the centralized FCA algorithms on
the three datasets.

Dataset mushroom anon-web census-income

concepts 219010 129009 96531

NextClosure 618 14671 18230

CloseByOne 2543 656 7465

4.3.2 Results and Analysis
MRGanter, MRGanter+ and MRCbo

In Table 4.4 and 4.5, we present the tested results for centralized algorithms,
NextClosure and CloseByOne, and, distributed algorithms, MRGanter, MRCbo
and MRGanter+ respectively. As a quick overview, it is clear that MRGanter+
has the best overall performance for the mushroom, anon-web and census-
income datasets when 9 nodes and 11 nodes are used respectively. This is
indicated by bold in Table 4.5. In comparison with NextClosure, MRGanter+
saves 68%, 96.6% and 98% in time when processing mushroom, anon-web and
census-income dataset respectively. For census-income, MRGanter+ has the
best performance. MRGanter+ runs 102 times faster than MRGanter and
1.4 times faster than MRCbo. MRCbo runs much faster than CloseByOne
when 11 nodes are used. It presents a 90.5% saving in time when dealing
with the mushroom dataset compared with CloseByOne, but there is not
much of difference when the anon-web dataset is processed. MRGanter takes
the longest time to calculate the formal concepts for both the mushroom
and anon-web datasets. It is much slower than even the centralized version,
NextClosure. The census-income dataset is an exception because MRGanter
saves up to half the time with 11 nodes. Among the MR∗ algorithms and
centralized algorithms, MRGanter+ achieved the best performance.

Taking scalability into account, we tested MR∗ algorithms on a range of
nodes and plotted curves for each of them to demonstrate the ability of the
algorithms to decrease computation time by utilizing more computers. These
results are presented in Figure 4.4, 4.5 and 4.6 for each dataset.

In Figure 4.4, MRCbo is slower than MRGanter+ although the curve de-
creases faster than MRGanter+ when we increase the number of nodes. The
execution time of MRGanter+ is fast even on a single node and keeps decreas-
ing up to the maximum number of nodes, 11. The performance of MRGanter
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Table 4.5: Execution time (in seconds) of MRGanter, MRCbo and
MRGanter+ on the three datasets. These algorithms are tested on various
numbers of nodes respectively.

Dataset mushroom anon-web census-income

concepts 219010 129009 96531

MRGanter

1 Node 22222 85642 34980

2 Nodes 20781 38188 21666

3 Nodes 20693 20110 15691

5 Nodes 20269 21937 10612

7 Nodes 21315 25831 9891

9 Nodes 20913 30029 9976

11 Nodes 24530 34242 9654

MRCbo

1 Node 10576 4889 30193

2 Nodes 3481 1659 20944

3 Nodes 1588 1074 9384

5 Nodes 715 794 3437

7 Nodes 427 725 1795

9 Nodes 303 697 1121

11 Nodes 241 693 803

MRGanter+

1 Node 662 16603 16467

2 Nodes 399 3442 7687

3 Nodes 294 1092 6155

5 Nodes 227 626 909

7 Nodes 212 545 529

9 Nodes 198 496 446

11 Nodes 202 559 358
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Figure 4.4: Mushroom dataset: comparison of MRGanter+, MRCbo and
MRGanter. MRGanter+ outperforms MRCbo and MRGabter when dense
data is processed.
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Figure 4.5: Anon-web dataset: comparison of MRGanter+, MRCbo and
MRGanter. MRGanter+ is faster when more than 3 nodes are used.
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Figure 4.6: Census-income dataset: comparison of MRGanter+, MRCbo and
MRGanter. MRGanter+ is fastest when a large dataset is processed.

is not beneficially affected by increasing the number of nodes. When using
11 nodes, the execution time of MRGanter even increases again. One ex-
planation for this is the overhead incurred by distributing the computation,
for example network communication overhead. This is markedly different
from MRGanter+, because MRGanter+ produces substantially more inter-
mediate data than MRGanter and MRCbo. Moreover, there is additional
computation involved in the distributed algorithms in comparison with the
centralized versions of these algorithms. Consider, for instance, the extra
operation needed by the merging operation. The best number of nodes, in
terms of performance speed, depends on the density characteristics of the
dataset.

Figure 4.5 demonstrates that MRGanter+ outperforms MRGanter for
the anon-web dataset. One reason for this performance improvement is that
both algorithms produce different numbers of concepts during each iteration.
Table 4.6 indicates that MRGanter+ requires 12, 11 and 9 iterations fore
each of the datasets, whereas MRGanter requires 219010, 129009 and 96531
iterations to obtain all concepts. These additional iterations incur higher
network communication costs. Figure 4.6 demonstrates that this is also the
case for the census-income dataset. In addition, the curves in Figure 4.6 are
steeper than the curves in Figure 4.4 and 4.5. These figures give evidence
that the performance of the MR∗ algorithms is related to size and density of
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Table 4.6: Number of iterations required for each of the three datasets.

Dataset mushroom anon-web census-income

concepts 219010 129009 96531

NextClosure 219010 129009 96531

CloseByOne 14 11 11

MRGanter 219010 129009 96531

MRCbo 14 11 11

MRGanter+ 12 11 9

the data. Based on these results we posit that MR∗ algorithms scale well for
large and sparse datasets. This evidence suggests that MR∗ algorithms may
be a viable candidate tool for handling large datasets, particularly when it
is impractical to use a traditional centralized technique.

Classical formal concept computing methods usually act on, and have
local access to the entire database. Network communication is the primary
concern when developing distributed FCA approaches: Frequent requests to
remote databases incur significant time and resource costs. Performance im-
provements of the algorithms proposed in this paper may potentially arise
from preprocessing the dataset so that the dataset is partitioned in a more
efficient manner. One direction for improving these algorithms lies in mak-
ing the partitions more even, in terms of density, so that the complexity is
distributed more equably. In future work we intend to explore the effect of
data distribution between cluster nodes in more detail. We propose to ex-
tend this empirical study in a companion paper which examines algorithm
performance on larger dataset sizes. We will also study the affects the data
distribution has on the optimal number of nodes. In addition, we intend to
extend these methods so that they reduce the size of intermediate data pro-
duced in each iteration. We posit that further improvement of the methods
proposed here could motivate a more widespread adoption of FCA using the
MapReduce framework.

MRGeneral

Table 4.7 shows the execution time of Closet+ on the mushroom dataset for
different levels of support (50%, 20%). Table 4.8 and 4.9 list the results for
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Table 4.7: Execution time (in seconds) of Closet+ for the mushroom data for
a range of supports. The third row indicates the number of produced FCIs
for the corresponding support.

support 50% 20% 5% 0.5% 0.1%

Time 3.067 4.593 12.419 103.536 319.530

FCIs 45 1197 12843 76198 147905

Table 4.8: Execution time (in seconds) of MRGeneral for the mushroom data
when the support is 50%, when different numbers of nodes is used. Forty
five frequent closed itemsets are mined for each case.

Number of nodes Time

2 339

3 249

5 474

7 991

9 1589

MRGeneral for 50% and 20% support respectively.
In Table 4.7-4.9, we conclude that MRGeneral takes a much longer time

than Closet+. MRGeneral is 81 times slower than Closet+ even for the most
favourable set of results. In Table 4.8, the execution time has a large range.
Figure 4.7 exposes that MRGeneral consumes much more execution time
once more than 3 nodes are used. In other words, using more nodes does
not necessarily guarantee better performance. For example, running on only
3 nodes, MRGeneral is quite fast. Generally speaking, when the support is
low and more nodes are added, MRGeneral consumes more processing time
to process. In fact, it gets stuck on very low support such as 0.1%.

In addition, we recorded the number of local FCIs and local IFCIs pro-
duced in every local data partition. This helped to analyze the factors that
impacted the performance of MRGeneral. Let us observe the relationship
between the local FCIs and IFCIs. Before going further, we define an aver-
age ratio r = L1/L2, where L1 is the sum of local IFCIs and L2 is the sum
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Table 4.9: Execution time (in seconds) of MRGeneral for the mushroom
data when the support is 20%, when different numbers of nodes is used. One
thousand one hundred and ninety seven frequent closed itemsets are mined
for each case.

Number of nodes Time

2 16117

3 14881

5 26576

7 40029

9 52836
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Figure 4.7: Scalability of MRGeneral versus different supports.
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Figure 4.8: The ratios between the number of IFCIs and the number of FCIs.

of local FCIs respectively. The results are presented in Figure 4.8.
Figure 4.8 indicates that the radio decreases when more nodes are used,

which is what we expect to happen. The quantity of local IFCIs, L1, is nor-
mally much greater than the quantity of local FCIs, L2. When a dataset is
divided into more parts, more local IFCIs and local FCIs will be produced.
This is understandable seeing as the IFCIs and FCIs are dispersed over more
nodes. Although the number of both the local IFCIs and the local FCIs
increase, the number of the local FCIs increases more significantly. This
results in that the difference between them gets smaller thereby ratio de-
creases. Subsequently, more computation and longer time are required to
deal with extra local closed itemsets. On the other hand, mining with low
support will produce much more local FCIs but relative fewer local IFCIs,
hence the ratio, r, is smaller in the case of high support. In addition, the
ratio changes slower when more nodes are used as shown in Figure 4.8. This
characteristic is reflected well in Figure 4.7 as well: the curve denoting low
support approximately a constant. MRGeneral behaves better for low sup-
port. The important point to note is that MRGeneral has the ability to
process distributed dataset although a long time are required currently.

In a word, MRGeneral performs correctly with distributed datasets, al-
though it is not as scalable as MRGanter+. This is understandable because
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MRGeneral has too much extra operations which are executed after the cent-
ralized FCI mining algorithm. Thus MRGeneral is promising for low support
mining which is a difficult problem particularly for large distributed data, al-
though it is not as fast as centralized algorithms when processing normal-size
data. This is a useful property to have given the explosion in modern dataset
size.

4.4 Summary
This chapter described the process of implementing distributed FCA and FCI
algorithms All of the proposed distributed algorithms and their centralized
versions were tested on several datasets with various number of comput-
ing nodes. We analyzed the execution time and the scalability of proposed
algorithms, and a comparison was made between the proposed distributed al-
gorithms and an exiting distributed algorithm which was proposed by [20] in
the literature, and the original centralized versions of the algorithms. From
the experimental results, MRGanter+ shows the impressive performance and
scalability for the datasets in different size and density.



Chapter 5
Discussion

By observing the nature of global closed itemsets and exploiting the rela-
tion between global and local closed itemsets, this work developed distrib-
uted algorithms to mine formal concepts and frequent closed itemsets. We
redesigned some of the well known FCA algorithms in the literature and de-
signed a general model for mining FCIs based on the MRF. Experimental
results demonstrated that MRGanter+ was efficient, scalable and outper-
formed other distributed FCA algorithms. The merging model for distrib-
uted FCI mining proposed in this thesis is time-consuming, but we identified
ways to improve it. This improvement constitutes one possible avenue for
future work. Chapter 4 analysed the drawbacks in our approach and imple-
mentation, and indicated the steps for future improvement.

Theorem 3, distributed formal concept mining theory, is quite straight for-
ward. However, MRGanter is much slower than NextClosure and in particu-
lar MRCbo and MRGanter+. In Section 4.3.2, we attributed this processing
slowness to the fact that MRGanter only produces a single concept during
each iteration. The comparison between MRGanter and MRCbo(MRGanter+)
in Figure 5.1 demonstrated this.

Considering the three distributed FCA algorithms, MRGanter, MRCbo
and MRGanter+, we demonstrated that MRGanter+ produces the most con-
cepts in each iteration so that it needs the least number of iterations. How-
ever, for the same reason, MRGanter+ consumes the most communication
resource because many concepts need to be held and passed in the distrib-
uted memory. Communication overhead presents the main bottleneck for
MRGanter+ for large datasets.

Unlike Theorem 3, Proposition 1 and 2 have high complexity, they contain
many intersection and union operations. Some operations are redundant as
they duplicate effort. Proposition 1 and 2 could be better optimized, however,
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Cbo. MRGanter produces a single concept during each iteration, whereas
MRCbo produces many concepts.
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improvement may cause increased cost in terms of communication overhead.
A further improvement in the implementations of these algorithms could
include a refinement of methods for storing and accessing intermediate data
more rapidly. All of these factors explain the latency of MRGeneral. We
will address these issues and improve MRGeneral’s performance in future
work. For example, the merging model used in MRGeneral will be optimized
to reduce unnecessary computation such as the duplication of intersections
between local itemsets from different nodes.

We consider now the method used for preparing the data in this thesis.
The datasets used in this work were randomly divided into blocks of equal
number of records. In the real world, the distribution of data is not always
uniform. The datasets could be processed faster if the inequality of the data-
set was decreased, however, we did not consider the pre-processing of the
partitions in these experiments, but rather focused on algorithm develop-
ment. We will consider procedures for optimizing the pre-processing of the
datasets in future work. However, it may often be the case, in practice, that
due to the constraints of the application that re-organizing the data is not
feasible and that the algorithms will have run on the data in its original
partition.

Our future research directions are described as follows.

• We will consider optimizing the approach to reduce the creation of
unnecessary local FCIs and IFCIs;

• We will enhance Twister by adding the ability to store intermediate
data on a local disk rather than in distributed memory. This will help
to avoid communicating all intermediate data via a broker network and
reduce communication costs and time;

• We will consider the problem of eliminating inequality in the distribu-
tion of the dataset by partitioning the dataset evenly via preprocessing
step that balances the computation load over every node.

• We will test the distributed algorithms over a broaden range of datasets
and further extend the validation of these techniques.

• We will carry out more experiments for our algorithms on more com-
putation nodes and higher specification hardware.



Chapter 6
Conclusion

This thesis focuses on two types of closure mining in a distributed manner,
Formal Conceptss (FCs) mining and Frequent Closed Itemset (FCI) min-
ing. We explore the state of the art Formal Concept Analysis (FCA) and
Association Rules Mining (ARM) and analyze the pros and cons of existing
distributed solutions in FCA and FCI mining. We propose distributed FC
and FCI mining algorithms based on the MRF. The contributions of this
thesis include:

• Distributed Formal Concept and Frequent Closed Itemset mining the-
ories.

• Application of an iterative MRF, Twister, on distributed FC and FCI
mining.

• Two distributed Formal Concept mining algorithms, MRGanter and
MRGanter+, which are based on a classic FCA algorithm, NextClos-
ure in conjunction with Twister. Another distributed FCA algorithm,
MRCbo which is based on centralized algorithm CloseByOne, is presen-
ted using Twister framework.

• A general model for computing Frequent Closed Itemsets in a distrib-
uted manner based on Twister framework.

The experimentation conducted on real datasets verified that: 1)MRGanter+
is more efficient and scalable than MRGanter, MRCbo, NextClosure and
CloseByOne; 2) for MR? algorithms, using more nodes does not guarantee
better performance. There is an optimal number of nodes that gives the
best performance; 3) when the support is low and mode nodes are added,
MRGeneral consumes more processing time; 4) MRGeneral is promising for

72



6.0 73

low support mining which is difficult problem particularly for large distrib-
uted data. We believe the contribution made in this thesis will be of benefit
to the data mining practitioner, and will facilitate an increase in the usage
of Formal Concept Analysis and Frequent Closed Itemset mining methods in
distributed settings.
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