
Managing the Formation and

Interaction of Groups within Emerging

Social Networks

Leigh Griffin, BSc

Department of Computing, Mathematics and Physics

Waterford Institute of Technology

Thesis submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy

Supervisors: Dr. Dmitri Botvich and Mr. Eamonn de Leastar

September 2012

mailto:dbotvich@tssg.org
mailto:edeleastar@tssg.org

Dedication

To my parents

Bernadette & Gerard Griffin

and

To the memory of my grandmother

Madeleine Griffin

i

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy, is entirely my

own work and has not been taken from the work of others save to the extent that

such work has been cited and acknowledged within the text of my work.

Signed:. ID: 20006077

Date: September 2012

ii

Acknowledgements

I would first like to extend my thanks to my supervisor team of Dr. Dmitri Botvich

and Mr. Eamonn de Leastar for their guidance and support throughout my PhD. In

particular to Eamonn, for the hours of guidance, motivation and conversations since I

joined the TSSG and without whom this thesis would simply not exist.

I would also like to thank all the colleagues, both past and present, that I have

worked with in the TSSG, there are too many to name individually. I would like to

particularly acknowledge the support of my fellow students, especially Brian, Cathal,

Stepan and Julien whom I have shared an office and friendship with for many years,

thank you for any help offered along the way. I wish you all a speedy and successful

conclusion to your studies. To previous students, in particular Ray and Will, your

achievements motivated me and gave me the direction to drive on, for that I thank

you. I would also like to sincerely thank the broader research support within the

TSSG, both postdoctoral and administrative, for giving me the chance to pursue my

research. This thesis would not have been possible without the education received from

Mount Sion CBS and fostered within Waterford Institute of Technology. It was not

just an education, but a way of life and a chance to cement lifelong friendships.

To my parents, Bernadette and Gerard, who have supported me all my life, thank

you for giving me the opportunity to pursue my education to the highest level. I promise

I am done now and you can have the house to yourselves. To my brother Gerard and

his wife Jenny, thanks for the encouragement and belief over the years, just don’t put

Jack through all this. To my wider family and friends, thank you for being there when

I needed you. Finally, to Aisling, who met me at the start of this journey and who has

encouraged and stood by me through to the end. I couldn’t have asked for someone

more loyal and committed to share this journey, you have my gratitude and love.

iii

Publications

• Griffin, L., Ryan, K., de Leastar, E., Jennings, B. & Botvich, D. (2012). On

the Performance of Access Control Policy Evaluation. In Proceedings of the 2012

IEEE International Symposium on Policies for Distributed Systems and Networks,

POLICY ’12. Griffin et al. (2012b)

• Griffin, L., Ryan, K., de Leastar, E. & Botvich, D. (2012). Scaling Instant Mes-

saging Communication Services: A Comparison of Blocking and Non-Blocking

Techniques. International Journal of Ambient Computing and Intelligence, 4,

120. Griffin et al. (2012a)

• Griffin, L., de Leastar, E. & Botvich, D. (2011). Dynamic Shared Groups Within

XMPP: An investigation of the XMPP Group Model. In Proceedings of the 2011

IEEE Symposium on Integrated Network Management, IM ’11. Griffin et al.

(2011a)

• Griffin, L., Ryan, K., de Leastar, E. & Botvich, D. (2011). Scaling Instant Mes-

saging Communication Services: A Comparison of Blocking and Non-Blocking

Techniques. In Proceedings of the 2011 IEEE Symposium on Computers and

Communications, ISCC ’11. Griffin et al. (2011c)

• Foley, C., Power, G., Griffin, L., Chen, C., Donnelly, N. & de Leastar, E. (2010).

Service Group Management Facilitated by DSL Driven Policies in Embedded

Middleware. In Proceedings of the IEEE Symposium on Computers and Com-

munications, ISCC ’10. Foley et al. (2010)

iv

Additional Publications:

• Griffin, L., Elger, P. & de Leastar, E. (2011). Project Zeppelin: A Modern

Web Application Development Framework. In Proceedings of the International

Symposium on Formal Methods for Components and Objects, FMCO ’11. Griffin

et al. (2011b)

• Storni, C. & Griffin, L. (2009). Towards Future Health Social Networking: Patient

Generated Content And The Role Of Community Pharmacists. In Proceedings

of the The 4th Mediterranean Conference on Information Systems, MCIS ’09.

Storni & Griffin (2009)

• Griffin, L. & de Leastar, E. (2009). Social Networking Healthcare. In Proceed-

ings of the 6th International Workshop on Wearable Micro and Nanosystems for

Personalised Health, pHealth ’09. Griffin & de Leastar (2009)

• Griffin, L., Foley, C. and de Leastar, E. (2009). A Hybrid Architectural Style

for Complex Healthcare Scenarios. In Proceedings of the Communications Work-

shops, IEEE International Conference on Communication, ICC ’09. Griffin et al.

(2009)

• Griffin, L. & de Leastar, E. (2008). A Model for IM and Media Driven Communi-

cation Services, In Proceedings of the 8th International Conference on Information

Technology and Telecommunication, IT&T ’08. Griffin & de Leastar (2008)

v

Managing the Formation and Interaction of Groups within Emerging

Social Networks

Leigh Griffin, BSc.

Supervisors: Dr. Dmitri Botvich and Mr. Eamonn de Leastar

Abstract

The formation, evolution and management of groups within modern social networks pose

significant challenges and opportunities. Challenges arise from a combination of ubiquitous

connectivity coupled with innovative and inexpensive cloud infrastructure, yielding new usage

patterns which push existing service architectures, management infrastructure and technology

stacks to their limits. Opportunities for remedying this situation arise from re-thinking the for-

mation and management of social media groups and introducing innovative models, notations,

algorithms and implementation strategies. To this end, this work analyses emerging group for-

mation and interaction patterns, applies new approaches to current prominent protocols and

evaluates resultant behavior and performance characteristics. This analysis is applied to more

sophisticated usage patterns; models, notations and algorithms are devised to flexibly support

emerging scenarios, and specific implementations are discussed and analysed. Applying Policy

Based Network Management principles to manage the formation of, and interaction within,

groups is demonstrated to be viable, particularly if coupled with emerging technology stacks.

An innovative architecture model is evolved, which can flexibly match the performance and

scalability requirements likely to emerge in next generation social network platforms. In addi-

tion, an approach to policy language development is proposed and demonstrated, capitalising

on recent innovations in scripting language design and implementation. This is shown to de-

liver a considerably simplified, more flexible and more expressive alternative to current policy

languages, and offers significant scope for further research and innovation.

vi

Contents

Dedication i

Declaration ii

Acknowledgements iii

Publications iv

Abstract vi

List of Figures xiii

List of Tables xiv

List of Algorithms xv

List of Listings xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Hypothesis . 4

1.3 Research Questions . 4

1.4 Contributions . 5

1.5 Thesis Outline . 6

2 State of the Art 8

2.1 Group Formation . 8

2.1.1 Motivation for Group Membership 8

2.1.2 Groups: A Modern Analysis . 9

2.1.3 Group Formation . 11

vii

CONTENTS

2.1.4 Summary . 14

2.2 Group Communication Technologies . 14

2.2.1 Mailing Lists . 15

2.2.2 Message Boards . 16

2.2.3 Usenet Groups . 17

2.2.4 Peer To Peer Networks . 18

2.2.5 Internet Relay Chatrooms . 18

2.2.6 Instant Messaging Technologies 19

2.2.7 Web based Social Networking . 21

2.2.8 Semantically Enhanced Groups 24

2.2.9 Summary . 27

2.3 Interaction Management Within Groups 27

2.3.1 Interaction Management . 27

2.3.2 Policy Based Network Management 28

2.3.3 XACML . 29

2.3.4 Summary . 32

2.4 Design and Implementation Strategies for Scalable Solutions 32

2.4.1 Design Patterns . 32

2.4.2 Language Paradigms . 34

2.4.3 Concurrency . 35

2.4.4 Domain Specific Languages . 36

2.4.5 Representation Formats . 37

2.4.6 Deployment Platforms . 38

2.4.7 Summary . 39

2.5 Summary . 39

3 Group Membership: Formation and Management 41

3.1 Roster Group Formation . 43

3.1.1 XMPP . 43

3.1.2 Roster Explored . 44

3.1.3 Group Formation Styles . 47

3.1.4 Criteria for Group Formation and Management 51

3.2 Group Roster Design . 52

3.2.1 Strengthening the XMPP Group Model 53

3.2.2 Server Load Analysis . 55

3.2.3 Observations . 56

viii

CONTENTS

3.2.4 Managing Roster Groups within XMPP 58

3.2.5 Summary . 60

3.3 Scalability and Performance of Groups 60

3.3.1 Large Group Management . 61

3.3.2 Mass Group Management . 72

3.4 Summary . 83

4 Group Interaction: Managing Performance 85

4.1 Architecting Management Platforms . 85

4.1.1 Candidate Components . 86

4.1.2 Group Specific PDP . 87

4.1.3 Distributed PDPs . 88

4.1.4 Advanced Management Potential 88

4.1.5 Performance Benefits . 89

4.1.6 PDP Design Patterns . 90

4.2 Policy Informed Domains . 92

4.2.1 Policy Algorithm and Implementation 94

4.2.2 Policy Results . 97

4.2.3 Summary . 98

4.3 Performance of Policy Evaluation . 98

4.3.1 Motivation . 98

4.3.2 Architecture . 99

4.3.3 JSON based Policy Representation 102

4.3.4 Evaluation . 104

4.3.5 Results . 108

4.3.6 Policy-Request Scenario Comparison 112

4.4 Scalable Group Management . 115

4.4.1 Analysing CoffeeScripts Performance 117

4.4.2 Summary . 119

4.5 Summary . 120

5 Towards a Unified Model for Group Formation and Interaction Man-

agement 121

5.1 Model Responsibilities . 121

5.1.1 Group Formation . 122

5.1.2 Group Management . 126

5.1.3 Group Policy . 128

ix

CONTENTS

5.1.4 Group Roster . 131

5.1.5 Combined UML Model . 135

5.2 Implementation Recommendations . 138

5.2.1 Handling Concurrency: Language Level 138

5.2.2 Underlying Platform . 138

5.2.3 Storage Solutions . 139

5.2.4 Policy Component Representation 140

5.3 Summary . 142

6 Conclusions and Future Work 143

6.1 Conclusion . 143

6.1.1 Thesis Summary . 143

6.1.2 Contributions . 144

6.1.3 Conclusions . 147

6.2 Future Work . 147

6.2.1 Humanitarian Relief: Disaster Management Applications 147

6.2.2 Fine Grained Management through SLAs 148

6.2.3 Policy Continuum . 148

References 169

List of Acronyms 171

A Domain Specific PDP 172

B CoffeeScript Glossary 179

C XACML Glossary 182

x

List of Figures

3.1 XMPP Roster Schema Design View . 45

3.2 Sample Roster with optional Group elements 46

3.3 XMPP Roster Addition Sequence Diagram 47

3.4 Administrative view of Pub-Sub Groups on an Openfire XMPP server . 49

3.5 Packets Per Minute of RIE and Normal Operations Vs Number of Users 54

3.6 Client-Server Traffic Analysis . 56

3.7 Component Architecture View . 58

3.8 Packets Per Minute of RIE and Normal Operations and GID Resource

based Groups Vs Number of Users . 59

3.9 Overview of XMPP Plugin Internals . 66

3.10 Experimental Setup . 67

3.11 Dual throughput performance of Blocking I/O plugins 69

3.12 Dual throughput performance of plugins 70

3.13 User View of Checkin Solution . 73

3.14 Overall Architecture View . 75

3.15 Initial Check-in Distribution Heatmap 78

3.16 Map of initial Centralised classification and associated Heatmap 79

3.17 Centralised Approach to Rescuer Allocation 80

3.18 Map of initial Distributed classification and associated Heatmap 80

3.19 Distributed Approach to Rescuer Allocation 81

3.20 FIFO Approach and Combined View . 82

4.1 Candidate Components based on XACML data flows 86

4.2 PDP Factory Design Pattern . 90

4.3 PDP Builder Design Pattern . 91

4.4 Overall Architecture View with Policy Component 94

4.5 Sequence Diagram for Policy Changes 97

xi

LIST OF FIGURES

4.6 Policy Approach to Rescuer Allocation 98

4.7 XACML data flows and components relevant to this work 101

4.8 JSONPL Policy Excerpt. The original XACML-encoded policy had 1473

characters versus 454 characters for the JSONPL encoding. 103

4.9 njsrPDP policy×request scenarios; scenario conditions are defined in Ta-

ble 4.3.4.2. 107

4.10 Comparative service time histograms for hosts bear and inisherk and

PDP implementations SunXACML and njsrPDP, for Scenario 1A. 109

4.11 njsrPDP request service times on hosts bear and inisherk. 109

4.12 CPU usage for selected host × pdp combinations. Hosts are bear and

inisherk and PDPs are SunXACMLEnterpriseXACML (sxex) and njsr-

PDP (njsr). 111

4.13 Memory usage for different host × pdp combinations 112

4.14 Service times for Scenarios 1A, 1B, 2A, 2B 113

4.15 Service time comparison. Ranked in decreasing order of performance

(left to right in the figure above), they are: njsrPDP Scenario 1A, 2B;

SunXACML; njsrPDP Scenario 3B, EnterpriseXACML. 114

4.16 CSPDP request service times on hosts bear and inisherk. 117

4.17 csPDP request service times on hosts bear compared with other PDP

implementations . 118

5.1 Abstract Group Formation and Management Model 122

5.2 Group Formation Model . 123

5.3 Group Formation Sequence Diagram . 124

5.4 Group Management Model . 126

5.5 Group Management Sequence Diagram 127

5.6 Group Policy Model . 129

5.7 Group Roster Model . 132

5.8 Extended Group Roster Model . 133

5.9 Group Roster Sequence Diagram . 134

5.10 Group Formation and Management Model Combined 136

5.11 Group Formation and Management Model Combined with Packages . . 137

B.1 CoffeeScript Quick Reference 1 reproduced from Hoigaard (2011) 180

B.2 CoffeeScript Quick Reference 2 reproduced from Hoigaard (2011) 181

C.1 XACML Access Control Glossary 1, reproduced from Moses (2005) . . . 183

xii

LIST OF FIGURES

C.2 XACML Access Control Glossary 2, reproduced from Moses (2005) . . . 184

xiii

List of Tables

2.1 Traditional and Modern comparison of popular development choices . . 40

3.1 Single Load Generator results in messages per second delivered 68

3.2 Dual Load Generator results in messages per second delivered 68

3.3 Dual Load Generator Message Accuracy 71

3.4 Simulation Inputs . 77

3.5 Check-in database set rates . 82

3.6 Check-in database get rates . 83

4.1 Service time measurements and their context. 105

4.2 Scenario conditions . 106

4.3 Analysis of Variance: host, pdp, host:pdp effects are very significant—α

probability underflows machine epsilon ε. 108

4.4 Analysis of Means: host inisherk has better performance than bear. . 108

4.5 Analysis of Means: PDP njsrPDP has better performance than the other

PDPs. 108

4.6 Analysis of Variance for Scenario service times 114

4.7 Mean service times for each of the Scenarios 115

4.8 Mean service times for each of the PDPs 118

6.1 Research Question Core Section Reference Table 146

xiv

List of Algorithms

3.1 Triage Algorithm for Triage 1 classification 74

4.1 Time for processing a request . 89

4.2 Time for evaluating a request . 89

4.3 Optimal searching algorithm . 90

4.4 Distributed Group Rescuer Allocation Algorithm 95

5.1 Probability of an SLA violation . 141

5.2 Max Economic Value . 141

xv

Listings

3.1 Edited View of the XML Roster Schema 44

3.2 Group set IQ message . 47

3.3 Structure of an RIE recommendation . 50

4.1 Closure Representation of Rescuer Allocation 94

4.2 Distributed Group Formation Function 95

4.3 Function simplification . 96

4.4 Policy Document Sample 1 . 96

4.5 Policy Document Sample 2 . 96

4.6 CoffeeScript Policy Request . 116

5.1 Group Formation Algorithm . 124

5.2 Group Profile Algorithms . 125

5.3 Group Management Algorithm . 127

5.4 Group Policy Algorithm . 130

5.5 Group Policy Requests . 131

5.6 Group Roster Algorithm . 134

5.7 RT check for SLA Violations . 141

5.8 Max Economic Value Algorithm . 141

A.1 PDP Specification . 172

xvi

Chapter 1

Introduction

1.1 Motivation

Usage patterns for Internet services and applications have evolved dramatically in the

first decade of this century. In the earlier years, usage was dominated by person-to-

service interaction, most often via browsing conventional static web sites, accessing

email or using Internet Relay Chat (IRC) or Instant Messaging (IM) communication

services. Rapid advances in network and computer infrastructure, and particularly the

evolution of mobile, smart, always-connected devices, have produced a dramatic shift

in usage patterns. This has culminated in the phenomenal rise of social networks.

These represent a significant change in the nature of how users view and access services

and applications. Conventional person-to-service interaction is now matched and often

superseded by services that offer person-to-person and person-to-group experiences.

Groups have long been a natural meeting point for individuals to share experiences,

make new connections and work towards a common goal. The evolution of groups

to an online medium is a natural progression with the advent of new communication

technology, allowing real-world interactions to take place in a virtual manner. For

the purpose of this thesis I define a virtual community to be an online community

facilitated by applications and services to allow people to make a connection with others

and interact via some computer mediated mechanism. Additionally, I define a group

to be a subset of a virtual community with a membership base predominantly made

up of people, but capable of hosting services and devices, with associated membership

criteria. Communities of interest, centered on groups, now have a larger and more active

membership than previously possible. This has ensured significant new dynamics within

a group. With the removal of physical requirements and associated costs, groups could

1

1.1 Motivation

now becoming larger than was previously manageable. Interestingly, groups could also

become smaller, but more numerous, yet still function and attain their set goals. Groups

can also becoming more specialised and their membership more diverse. The lifecycle

of a group could fluctuate to extremes, with transient groups numbering as many as

persistent groups. The combination of changes with respect to size and lifecycle has

also changed the usage patterns associated with groups. Group members have grown

accustomed to requesting and retrieving information on the move, accessing services

and regularly sharing experiences within their social network. Service providers have

responded with new forms of services that support highly dynamic social networks.

Groups can be thought of as a subset of a virtual community populated by members

of a given social network. Often this is facilitated by group communication technologies,

empowering users with the capability of connecting and communicating with others.

These technologies can represent standalone groups, with each user evolving their own

grouping mechanisms to permit interactions and support membership of a group. The

most popular and visible groups are those that exist within social networking media,

particularly messaging platforms. Allowing users to segment their connections into

logical groupings, joining individuals in interest based groups and creating events are

some of the ways that groups are currently modeled. The concept of a group is evolving

with applications and services driving the creation of small communities with internal

grouping. As such, groups are becoming more popular and more visible, further driv-

ing their adoption by users. Group communication through social networks not only

provides a medium for useful public announcements but a means to reach an audience

that previously would not have been possible. To this end, social networks, have been

used as a mass communication medium for significant social, political, economic and

natural disasters in recent years (Potts (2009)). Acknowledging that rescue services

have responsibilities to the public to move information as quickly as possible, officially

endorsed groups became a means of information dispersal enabling members of the

public to make key decisions on informed and reliable data. Groups used within this

manner involve significant user interaction and information flow. However, this usage

may not be adequately provisioned within the design of host technology.

Groups in their current format face significant challenges. The current group sup-

port mechanisms center on ease of use and membership control. The actual interactions

are often designated to existing group communication technologies, with the role of the

group largely a facilitation mechanism, enabling this initial connection to be made.

As such, groups in current social networks could be described as organisational tools

for structuring a social network experience. However, groups are emerging as viable

2

1.1 Motivation

platforms for mass messaging, high volume communication, service access and service

consumption. Groups are thus moving beyond structural / organisational constructs

and now face challenges in two key domains:

Group Formation

For the purpose of this thesis, I define group formation to be a mechanism which

enables the establishment of a subset of a virtual community, while taking into ac-

count an appropriate set of constraints. Currently group formation mechanism can be

described as being weakly modeled, not yet attaining to any clear set of criteria, stan-

dards or commonly held best practice. The mechanisms are generally not influenced

by the purpose of the group, the requirements for interactions within the group or the

associated resources necessary to support the group. Additionally, as service deploy-

ments are increasingly becoming more flexible, service providers are empowering users

with a means to create and deploy their own services. In this context, services may be

poised to adopt group characteristics. Membership may thus consist of people, services

and devices, becoming a way of structuring the emerging Internet of Things (Atzori

et al. (2010)). How they interact will impact on the resources required to manage and

support the group throughout its lifecycle. If groups become a focal point for user

interaction in this manner, how the group forms will crucially dictate the resources

required, impact the performance profile of the group and ultimately the cost to the

provider. A new approach to managing the formation of groups that is flexible and

tailored towards individual groups will need to be devised.

Interaction Management

Interaction Management within groups is defined for the purpose of this thesis as

the management decisions required to govern the interaction of an entity with another

entity within the context of a group. Managing interactions among users and services

is a reasonably well researched and understood domain. However, management within

the context of a groups is relatively new and currently weakly modeled. A range of

management principles are at work within current social networks, providing various

mechanisms to manage privacy concerns (Jones & O’Neill (2010)). Groups, however,

are poised to become considerably more dynamic and diverse. The evolution of groups

to embody services, users and devices will test current management approaches and

technology stacks to their limits. A solution that will not impact on the performance

or timeliness of user interaction will be essential.

3

1.2 Hypothesis

1.2 Hypothesis

The principal hypothesis of this thesis is that a model can be evolved with accompa-

nying algorithms and implementation recommendations that can adequately support

the demands of group based interactions within emerging social networks. Specifically,

a lightweight management system, capable of handling emerging usage patterns, can

support group formation and management in a performant, cost effective and flexible

manner.

By adhering to such a model, a number of specific problems that currently limit the

usefulness and effectiveness of group based interactions can be addressed. By adapting

management principles and deploying them within the proposed architecture, complex

events can be handled in a timely manner, optimising the resource allocation, scalability

and flexibility of group formation and management.

1.3 Research Questions

This thesis addresses the following research questions split into two sections:

Research Questions on Group Formation and Management (RQ-GFM)

RQ-GFM1 What management mechanisms for Group Formation can be sufficiently

flexible to adapt to emerging usage patterns?

Users of existing social networking services and media are interacting with the

technology in a manner not envisioned within the original design. The scale of these

interactions can often be global, with the potential to be disruptive and costly to

manage.

RQ-GFM2 What platforms facilitate management of group interactions including

near real time1 interactions?

Managing the interactions within a group in a near real time manner requires a

management platform capable of processing and delivering a decision with near real

time precision.

1The term near real time is used to describe programs that must guarantee a response within strict

time constraints from receipt of an event to the systems response. The understanding of near real time

in the context of this thesis is without perceivable delay

4

1.4 Contributions

RQ-GFM3 What policy representations can facilitate group management?

A number of viable formats to represent the structure and semantics of rules that

govern a system are available. This thesis attempts to discover what representations

can facilitate group management and the associated requirements it might have.

Research Questions on Scalability (RQ-S)

RQ-S1 What is the scalability limits of the current solutions/approaches for group

formation and interaction management?

Discovering the scalability limits of current solutions and approaches to group for-

mation and interaction management can lead to recommendations based on solutions to

bottlenecks. This investigation is necessary to validate any model or recommendation

produced.

RQ-S2 What performance profiles can be expected in emerging group interactions?

Understanding the performance requirements for existing and future use cases within

group based interactions can better inform the underlying management platform.

RQ-S3 What techniques, tools or algorithms can be deployed to meet these scalabil-

ity and performance requirements?

Understanding the technology choices to help realise the scalability and performance

requirements set forth can accompany the model produced as guideline implementation

strategies.

1.4 Contributions

In this section, the contributions provided by this thesis are described. In line with the

research questions and hypothesis outlined above, the contributions have been sepa-

rated into three categories. First is the contribution towards the management of group

formation and then the management of group interactions already formed. The final

contribution is a potential application domain for group formation. These contribu-

tions are presented by models, algorithms and implementation recommendations ob-

5

1.5 Thesis Outline

tained through empirical testing and analysis of existing group management principles

in diverse domains.

• Management of Group Formation

– An outline model and accompanying algorithms for the management and

formation of groups within emerging social networks.

– Scalable components produced that realise key model characteristics and

validated in high throughput simulations

– An implementation stack, capable of managing varying extremes of group

and membership sizes, that can supplement or even replace aspects of con-

ventional management middleware

• Management of Group Interactions

– A management model capable of handling emerging usage patterns not cur-

rently provisioned for in existing group management domains

– A lightweight, responsive and highly scalable domain specific group man-

agement model capable of providing interaction management with minimal

overhead and designed specifically for an individual group.

– A novel policy representation format capable of syntactically being inter-

preted by non domain experts while retaining the management semantics

required.

• Application of Group Formation

– A case study was presented for humanitarian relief, forming and managing

groups as communication mediums for disaster management coordination.

1.5 Thesis Outline

Chapter 2 discusses the state of the art in a number of related areas of research. The

usage of groups and the communication mechanisms employed are highly relevant for

highlighting the changing usage and general expectations of the user base. As such, the

evolution of these approaches and their state of the art are described. As this thesis

focuses on management principles, research from the general network management

field within telecommunications is discussed. Additionally, a review of best practices

6

1.5 Thesis Outline

in software engineering is presented. This research helps motivate and inform the

experiments and subsequent outputs of this thesis.

In Chapter 3 approaches to group formation and management from the point of

view of group membership is presented. A representative social network is introduced

and analysed, with a set of criteria emerging for how groups should be managed going

forward. This analysis forms the basis of several empirical investigations within the

domain, discovering and exploring the limits of the technology. A set of principles and

general understanding of how to manage and represent group membership as well as

the formation of groups is abstracted out.

Chapter 4 explores the role of management platforms within interaction manage-

ment. An analysis of architecting management principles is presented and applied to a

group based domain which may benefit from interaction management. The results of

these observations drives an explorative analysis of current best practices. A competing

solution, architected from technological observations successful in web based deploy-

ments is presented. The performance and behavior of the competing solution against

the industry standard leads to a further revision, driven by best practices within the

software domain. This analysis forms the basis for how to structure and manage inter-

actions within a group as well as the supporting vocabulary required.

In Chapter 5, the work carried out in the previous chapters is used to inform an

architectural framework for managing the formation of groups and interactions within

the domain of emerging social networks. This framework is presented as a set of UML

models, complete with implementation fragments and associated commentary. A com-

plementary discussion on implementation recommendations to help realise this model

concludes the chapter.

Finally, Chapter 6 presents the conclusions drawn based on the research carried

out, the experiments undertaken and the analysis of the subsequent results. A number

of possible future areas of research which may lead to further interesting investigations

and studies are also discussed.

7

Chapter 2

State of the Art

In this chapter a review of the literature relevant to this thesis is presented for consid-

eration. Topics covered include Group Formation and Management, Group Commu-

nication Technologies, Interaction Management within Groups and Design and Imple-

mentation Strategies for Scalable Solutions.

2.1 Group Formation

First, the role of the group in modern society is presented using relevant historical liter-

ature. The state of the art in group formation within existing group based environments

is also presented.

2.1.1 Motivation for Group Membership

The ability of an individual to interact with other individuals is a fundamental social

behavior that is prevalent in all human societies (Ray & Liew (2003)). Traditionally,

individuals in a society, or group, interact with one another with an aim to improve

either the individual, the collective or both. Individuals do much better collectively

compared to the case when they forage on their own (Gazi & Passino (2004)). This

instinct to join and participate in a community environment has placed the concept

of a group at the core of research in many domains from psychology, to marketing,

to sociology and indeed nature. Each domain has evolved numerous models of group

behavior and performance, yet the majority of research assumes that the group exists

before the model is applied. Yet groups must form before they can achieve a goal,

with the formation stage establishing the framework necessary to act towards the goal

(Owens et al. (1998)). The formation of natural social groups emerged as an area

8

2.1 Group Formation

of research with the goal of improving the performance of groups within a working

environment. Levine & Mooreland (1991) and Moreland & Levine (1992) proposed a

group formation model that included three phases: evaluation, commitment, and role

transition. The evaluation phase serves as an investigative phase whereby the individual

looks for a group that can satisfy their personal needs and the group looks for individuals

to satisfy its goals. If commitment between the individual and group becomes strong

enough then a transition occurs, whereby the individual attains group membership.

Applications of this process can be seen in the formation of groups within environments

such as education or the workforce to tackle a specific task. In such domains, the

formation stage needs to identify personal traits such as experience and expertise and

use the formation to strategically meet goals. The success of the group and ultimately

its lifecycle, is thus linked closely to the formation stage. The lifecycle of a group can

play a part in the formation of other groups. The assumption that groups of various

sizes split or merge into other groups is valid when environmental conditions, encounters

with other groups and internal group dynamics are taken into consideration (Gazi &

Passino (2004)). Group evolution or migration is often driven by individuals. Leader

figures within groups, whether formally recognised or not, communicate and collaborate

externally with other leaders. While cooperation binds society into communities, it can

also divide communities (Hui et al. (2011)). Intersociety information exchanges often

lead to a leader figure migrating to, or forming, a new group, paving the way for a

critical mass that affects the lifecycle of several groups and becomes a catalyst for

new formations. Ray & Liew (2003) also discuss this migration feature with leaders

of societies attempting to attract other leaders. Leader migration may be achieved

through an information acquisition from a better-performing leader. This can have

knock on effects on the population of other groups, ultimately causing membership

migration and groups to expire.

2.1.2 Groups: A Modern Analysis

In modern society, the formation of a group, and its societal role, has centered around a

specific theme, topic or activity. The formation process in this instance is thematically

focused. Groups of this manner are still popular today for community meet ups in the

form of coffee mornings, book clubs, cinema clubs, sports groups etc. The popularity

and accessibility of modern computing has evolved this offline activity to have a longer

reach while retaining some of the characteristics already described. The requirement for

members to physically come together is removed, online groups may span beyond tra-

ditional geographic boundaries. The scale of formed groups is thus no longer limited by

9

2.1 Group Formation

physical boundaries and combined with the exponential rise in accessible information,

more diverse groups are forming while retaining a thematic focus. It could be argued

that a modern trend is to make the web more people focused. As a result, groups are

becoming focal points for users interacting with the wider world (Adams (2011)). The

model proposed by Levine & Mooreland (1991) and Moreland & Levine (1992) still

holds true for forming groups in an online capacity. Rapid advances within networking

infrastructure and the availability of affordable devices has meant people are dynami-

cally networked on the move. Assignment to groups, invitation to join groups as well

as free enrollment and confirmed enrollment (Haake et al. (2004)) dictate participation

levels and formation principles. The lowering and sometimes removal of procedures to

formally attain group membership is making the process a passive experience, often a

by product of an action or inaction on the behalf of the user. With an increase in the

number of group entry mechanisms, the style of group formed has deviated from the

original goal orientation of offline groups. The notion of bringing together individuals

to satisfy a goal or requirement still exists, but as the formation of groups has become

more ad-hoc and unplanned, a goal is often missing, or replaced entirely by a topic of

interest to bind the community together. Groups numbering in the thousands are now

forming which can be difficult to micro manage towards an end goal and much larger

than traditional interest based groups.

Digital groups have allowed for the development of non-participation, facilitated in

part by the current model for groups within a social networking context being passive

or read-only pages with minimal traffic. Non-participation is something that would

be difficult to achieve in a face-to-face group. The notion of being active or passive

within a group is now possible, with the latter term also known as lurking (Rafaeli

et al. (2004)). Participating in a group via communication media or contributing to

activities is central to the lifecycle of that group. However many people prefer lurking.

The reasons presented for lurking are varied, limited knowledge within the domain

and thus lurking for self improvement, character reasons (shyness, personality) or just

simply having nothing to say or contribute. Despite the interactive potential of the web,

much of the use of the web is in read-only mode so lurking is a natural activity in one

sense. With the evolution of groups poised to become more service centric, the effect

of a lurker might be more noticeable. If resource or service provisioning algorithms are

solely based on activity rather than membership, lurkers could significantly impact on

this. If the services offered are innovative or popular enough to be consumed by the

entire membership base, potentially an under-provisioning of resources could occur.

10

2.1 Group Formation

2.1.3 Group Formation

Group formation has different definitions depending on the domain, with the definition

dependent on the group purpose and behavior (Ounnas (2010)). For the purpose of this

thesis, in Section 1.1, group formation was defined as a mechanism which enables the es-

tablishment of a subset of a virtual community, while taking into account an appropriate

set of constraints. The area of research in computer group formation has focused almost

exclusively on this definition of creating a group, bounded by constraints that proves

to be a solution to a specific goal. These requirements can often be broken down into

mathematical terms, known as Constraint Satisfaction Problems (CSP), whereby the

characteristics of a set of objects must satisfy a number of constraints (Kolaitis & Vardi

(2000)). CSPs can be highly complex (Bulatov (2011)) and the requirements presented

in order to meet the goal, which in the context of a group is a successful formation,

can be difficult to meet. This is particularly true with conflicting requirements and

incomplete metadata surrounding the subjects within the community. The possibility

of an orphan problem can arise when members of the community are not allocated into

newly formed groups, requiring manual intervention to complete the formation and al-

location. In Ounnas et al. (2008) the author developed an ontology which extended the

popular Friend of a Friend (FOAF) metaphor as a means to describe people in order to

build communities and social groupings. FOAF was used extensively in semantic web

research in the field of community building through social relationships (Ding et al.

(2005), Staab et al. (2005)). Semantically representing the data allowed a disjunctive

logic programming style typically used within knowledge representation and reasoning

to be applied to the problem domain. Strong and weak constraints were inferred from

the requirements in order to solve the orphan problem. (Ounnas (2010)) outlined the

constraint satisfaction problem and offered an alternative heuristic approach, utilising

a clustering algorithm. Clustering is the assignment of objects into groups called clus-

ters, with group members within the same cluster being more similar to each other

than to members within another cluster. Clustering has successfully been used in so-

cial networks using content tagging (Lu et al. (2011)) in order to develop relationships

between users and content, enabling recommendations to bring users together and form

groups. Clustering is also relevant in domains where multiple layers of groups can form

naturally. Grouping within gaming communities, in particular Massively Multiplayer

Online (MMO) games (Sherlock (2007)), achieves different levels of grouping within

the one virtual world and in external tools associated with the game. Defining and

abstracting group membership within this context can be difficult without tools such

as clustering, to logically group players based around their role within the game.

11

2.1 Group Formation

Group formation mechanisms have emerged in the field of mobile computing due to

the availability of connected devices, which in a sense are socially aware and capable

of connecting to communities (Zhang et al. (2011b)). One such formation technique

involves geolocation, using mobile devices to form social networks based on the physi-

cal location of a person (Lubke et al. (2011)). Geofencing, a means of geographically

bounding an area with a virtual fence, is a simple means of generating a group around

a point of interest (Bareth et al. (2010)). Typically such points are chosen by service

providers as part of a social networking influenced marketing promotion, for example

forming a group near a shop to target potential customers. Huang & Liu (2009) notes

that geospatial services are used independently to the value added services. Indepen-

dently, the service acts almost in a passive manner with the information handed-off

to another application to deliver the user value in a collaboration service. The au-

thors propose that future geo-based services should be more integrated and capable

of handling a lot of traffic, with users sharing information dynamically with others.

This requirement can be difficult to provision for, with connectivity and resource based

challenges already existing within mobile groups. Mobile users can form what is called

an ad-hoc group, which is spontaneously deployed and established, generally with no

prior infrastructure or resource based requirement. Such groups can suffer from net-

work and service disruption due to the mobile nature of the group and the lack of

dedicated available resources to support potentially large numbers of interactions (My-

oupo et al. (2009)). Ad-hoc groups of a similar nature can also emerge within older

systems where the community evolves a metaphor of a group (Hallberg et al. (2007)),

where no group infrastructure is present. Lai & Turban (2008) note that within older

mega sites, such as online stores, there is no explicit group formation, but users per-

form operations, both as individuals or as groups, such as review assessment, using

techniques such as merchant and product reviews. These help form personal networks,

such as groups of friends and interest based groups. However the interaction is limited

and very much static in nature, with any real interactions handed-off to third party

applications, many of which are capable of being consumed on a mobile device. Facil-

itating and provisioning for collaboration services is an emerging challenge currently

not addressed adequately by existing infrastructure, particularly when deployed within

a mobile environment.

Backstrom et al. (2006) examined group formation in large social networks. Specif-

ically, they examined the membership and growth of social networks to discover what

makes individuals join social network groups. The first question the researchers pursued

concerned what influenced a person to join a group. Despite the different backgrounds

12

2.1 Group Formation

of the social networks examined, the authors discovered that the results were very

similar. Backstrom et al. (2006) with this research question, are seeking to tackle a

fundamental question about the evolution of communities, seeking to determine who

will join in the future. Diffusion of innovation is presented as a possible means to why

people join groups. People are most likely to join groups based on the number of friends

who are presently members of the group and the broad range of features (services, re-

sources, community aspects) that are available within the group. This analysis maps

to social networking trends with the decline of one social network often timed with the

explosive growth of another (Carlsson (2010)). Understanding the potential for growth

and usage patterns within the community is very important for future proofing and

ensuring a smooth scaling of the underlying hardware. Similarly, understanding the

relationships among users and the overall social structure of the group can dictate the

network performance within the group (Hui et al. (2011)). Formation analysis in that

respect is very much linked to the overall lifecycle of the group, and by extension, the

underling social network.

Online groups are a place for interaction and communication. That interaction is

facilitated by communication technologies which come with an associated overhead.

Service oriented computing is playing an important role in emerging social networks

with the inclusion of web driven services (Zeng et al. (2004), Maaradji et al. (2010)).

Manual tasks are being replaced by automated services, facilitating an ease-of-use for

the user across the social networking experience. Examples of such services include

searching for and connecting with a friend through recommendation services (Chen

et al. (2008)) and integrating calendar events mined from information submitted to so-

cial networks (Zhao et al. (2012)). The trend is making these services available through

cloud computing infrastructure, simply termed the cloud. Provisioning services in this

manner ensures complete availability and reliability for the consumer. Supporting these

services in a scalable manner is a challenge for administrators of large communities,

particularly when charging schemes are placing an increasing emphasis on resource util-

isation within the cloud. Under-provisioning communication related services, such as

available bandwidth, can have an adverse affect on the performance of the group and

the capability for group members to interact. Over-provisioning resources can similarly

cause adverse effects in other groups but can additionally cause spikes in costs, po-

tentially moving the group beyond an agreed Service Level Agreement (SLA) and into

another charging bracket. SLAs are designed to protect both consumer and provider,

controlling resource provisioning within clouds in order to minimise breaches and costs,

and maximise profit (Das (2012)). Buyya et al. (2011) notes that the next computing

13

2.2 Group Communication Technologies

paradigm is utility computing, with computing services offered whenever a user needs

them, transforming services into commodities. Cloud computing is poised to become

the deployment domain with SLAs protecting and guaranteeing the resources to be

provisioned. As service requirements for a group can change over time and may require

amendments from a management perspective, it is important to minimise breaches re-

lated to this. Classifying the group and preparing for eventual usage at the formation

stage can help mitigate costs, ensure stability and meet QoS targets and workload

demand patterns.

2.1.4 Summary

This section presented an overview of some of the reasons why people are drawn towards

groups. The evolution of groups into the digital realm has also changed how people

interact with groups and view their participation within groups. Behavior patterns,

such as non participation have not been addressed from a resource provisioning point

of view. Indeed formation itself is a secondary feature, with resources currently not a

factor when deploying groups in social networks. This oversight is due to how groups

are currently used, with the usage of groups often limited to being a passive experience.

Technology sets outside of social networks are encouraging more and more group based

communication and interaction which will ultimately lead to a shift in how groups

are viewed. Group platforms are not currently informed by user behaviour patterns.

The research question RQ-GFM1 tackles emerging usage patterns which can facilitate

answers to the Research Questions on Scalability (RQ-S).

2.2 Group Communication Technologies

Group communication has evolved dramatically since the turn of the century. What

emerged from fragmented technologies, used by a minority of internet users, has evolved

into consolidated applications with mass adoption. This platform allowed communica-

tion service driven applications to flourish and develop, with an ease of use that allowed

more users participate. The desire to stay connected proved compelling, as technol-

ogy caught up with expectations. This allowed groups and communities to transition

from the offline world into cyberspace, with suites of services capable of supporting and

encouraging grouping. This section identifies several group communication media.

14

2.2 Group Communication Technologies

2.2.1 Mailing Lists

The Simple Mail Transfer Protocol (SMTP) is the standard protocol for electronic

mail, or email, transmission and is specified in Klensin (2008). Mailing lists are a

special kind of email that allows for widespread distribution of information to many

subscribed users. An email list is a self enclosed group, with membership consisting of

individuals interested in the subject matter associated with the list. Email lists come

in two varieties, an announcement list and a discussion list. An announcement list is

a read only list with emails capable of being sent from selected users (Shihab et al.

(2010)). The discussion list on the other hand allows any member of the list to reply

to the general list, as well as direct a reply through the carbon copy mechanism to a

specific post, thus providing context to the response.

In both cases, emails sent to the list are distributed to the membership by a multi-

destination delivery of a single message, with threads of conversation possible by re-

plying to the subject. Such a community encourages focused discussions around topics

of interest, encouraging peer interaction and knowledge dissemination. The users of a

mailing list, in effect, form a social network. In this network, relationships among users

can be built up publicly and analysed (Chen et al. (2006)). What is noteworthy is the

low ratio of candidate experts in mailing lists in comparison to the number of subscribed

users. The experts are generally at the center of the community and relationships built

privately among experts, as well as topics discussed publicly, can provide the nucleus

for a new topic of discussion, with a new mailing list required. The migrations among

leaders, as discussed in Ray & Liew (2003), is very much observed within this domain.

A limitation of mailing lists, as a group communication medium, is the type of informa-

tion that can be exchanged. Mailing lists are designed for dynamic information sharing

among a community, with static content difficult to share and maintain. This leads

to supplementary technologies adopting the role of static information sources, such as

wikis (Eto et al. (2005)) which can be standalone or integrated, and knowledgebase

systems, which can be integrated with information derived from the lists (Watanabe

et al. (2004)).

Technology has empowered end users with the capability of forming mailing lists,

previously an operation that required domain knowledge and often administrative ac-

cess. Management of mailing lists, particularly large mailing lists (Westine & Postel

(1991)) has also simplified with technology. Message filtering and the administrative

checks on the veracity of messages have helped alleviate the amount of spam and

other disruptive mails designed to cause a denial of service or inconvenience to the

users. Improvements including automated membership through email headers and opt

15

2.2 Group Communication Technologies

in membership over time has drastically reduced the time required to manage the list

effectively. Mailing list scalability and reliability has also achieved technological solu-

tions derived from how users wish to consume their information, for example message

digests (Vuillemot et al. (2011)), a means of receiving messages in bulk at set intervals.

2.2.2 Message Boards

Bulletin boards were a place where members of the public could place notices and mes-

sages for others to see. This medium of communication proved useful and transferred

to the online world in the form of message boards or forums. The benefit of moving

this online was the possibility for users to reply to notices and messages left, effectively

creating a thread of conversation, in a time lapse manner, where replies could be left

at a users convenience. An online community space designed to foster conversations

in a public manner was a major selling point of this technology. Other members can

pick up on a conversational thread, in some sense, a recorded artifact, and join in the

conversation or start another thread from it (Churchill & Nelson (2007)). This makes

for an attractive feature set, with conversations being synchronous or asynchronous

and the audience intimate or vast.

Members of a message board also form a type of social network community, with

capabilities added over time to include a friend or foe list, capable of tracking or ig-

noring posts from the member base respectively. Enhancements to message boards

have included user customisation, integrating with other communication technologies

such as email lists and Instant Messaging and enriching content available within the

forum (Kinsella et al. (2010)). A user can list personal details, advertise their willing-

ness to communicate via other mediums and share content through a profile. Internal

grouping is possible within message boards, with forums representing individual groups

themselves. Membership identity is strong within such communities, with many users

identifying themselves as a member of a particular forum or subforum rather than the

global message board platform they belong to. This behaviour arises out of social iden-

tity and reputation among the user base, with a large number of users providing an

individual with the opportunity to interact with others, gaining reputation and recog-

nition from them in the process. The more valuable the contribution to the community

or individual forum, the more recognition their contribution receives, with the bonds

of identity and association with a particular thread or forum growing stronger (Jiang

& Carroll (2009), Chen et al. (2009)).

Message boards have also been used as low entry barrier to Information and Com-

munication Technologies (ICT) for connecting an older generation of adults with limited

16

2.2 Group Communication Technologies

computer skills. Work carried out in Gonzalez et al. (2008) showed how simplified in-

terfaces and implementation decisions can open up group communication mediums to

demographics previously unable to access such material. This introduction to ICT has

paved the way for educating a new user base by providing a purpose for communication

software and a goal, in this case connecting families.

2.2.3 Usenet Groups

Usenet is a worldwide distributed internet discussion system that predates the modern

internet by almost a decade (Kantor & Lapsley (1986)). The basic framework allows

the transfer of mail and files, with the ability for users to post articles and share with

others, with a standard for interchange of messages defined (Horton & Adams (1987)).

The articles posted are categorised topically and placed into newsgroups. These indi-

vidual groups are thematically focused and often moderated to ensure coherence. Role

identification is an important topic within Usenet. The membership base of a group re-

quires a mix of contributers, posters, lurkers, anonymous downloaders and moderators

in order to flourish. This provides a membership base which is difficult to quantify, as

the social network is effectively defined by the topical group. With minimal member-

ship criteria and the possibility of anonymous interactions, identifying relationships,

and thus the nucleus of a social network between users, is difficult within Usenet.

Usenets interaction model is slightly different to traditional group based communi-

cation technologies. A person does not reply directly to someone else, but rather posts

a message in response to another message. The distinction is subtle, but important,

as a person could post a follow up message to a thread without giving any thought

to the person who is being responded to (Fisher et al. (2006). Another limiting fac-

tor for Usenets evolution to a social network is the signal to noise ratio of valuable

content. The environment can easily become noisy and hard to navigate with poor

quality messages rendering the quest for valuable content too difficult or cumbersome

to pursue (Viegas & Smith (2004)). Despite this, Usenet was designed for a time when

networks were much slower and not always available. Strategies adopted saw messages

often delivered in bulk and thus easier to digest, or attempts to serve data faster, with

techniques such as caching used (Gschwind & Hauswirth (1999)). The prevalent prob-

lem of spam became apparent in latter years as transmission of usenet articles became

instant. Usenet has diminished in importance with respect to other group communi-

cation mediums but the architecture and principles behind it have paved the way for

how people communicate in a group oriented manner, influencing the design principles

behind modern web based interactions (Schwartz (2006)).

17

2.2 Group Communication Technologies

2.2.4 Peer To Peer Networks

Peer to Peer (P2P) is a term used in many contexts. The definition put forward within

Camarillo (2009) states that a system is P2P if the elements that form the system share

their resources in order to provide the service the system has been designed to provide.

From a group communication point of view, a popular implementation of the definition

put forward for the P2P paradigm is within the BitTorrent protocol (Cohen (2008)).

BitTorrent is a protocol used to distribute files by breaking them up into several pieces

and making pieces available for others to download and assemble on their client. In

this manner, files can be shared, with a request to assemble a file fulfilled by multiple

peers, each offering individual pieces of the overall file. This domain has a strong group

aspect associated with it, with groups forming around the availability and distribution

of content.

Efficiently searching for files, and thus reducing the noise within the overall network,

is a popular research topic to aid the scalability and efficiency of P2P interactions (Haw

et al. (2009), Lv et al. (2002)). Group management within such an environment is

weakly modeled due to the nature of files being the focal point of groups. Ownership

and management are thus hard to provision largely due to the anonymous and open

nature of the network. User driven management, with respect to content, has largely

focused on trust and reputation (Kamvar et al. (2003)) as a means of filtering out

peers and content which could be potentially harmful. Communities have built up

around the notion of content sharing, with popular websites and services having a

membership base, with group communication services including email lists, message

boards and Instant Messaging, facilitating a sense of community. Research has tried

to layer community principles within existing P2P communities (Cheng & Vassileva

(2005)) with mixed success. The anonymous nature, often associated with the copyright

and legal implication of what is shared (Pouwelse et al. (2008)), is a barrier to a complete

social network evolving out of the paradigm.

2.2.5 Internet Relay Chatrooms

Internet Relay Chat (IRC) is a form of client-server, real-time, synchronous, internet

text messaging chat, designed for group communication which came into widespread

use in the early 1990s (Oikarinen & Reed (1993)). Its original purpose was to facilitate

live group chat among message board communities, with one to one communication

and private messages allowed. As well as standard text based chat, data transfers

were also facilitated. An IRC network consists of several servers, which helps the

18

2.2 Group Communication Technologies

performance and resilience of the system. Users connect to a server and join existing

channels or create their own. Channels are used to facilitate the group conversation

and are typically identified by topical names in order to keep the conversations focused

somewhat. Search facilities to discover and index rooms were initially lacking but

were added over time as a response to the popularity and ease of use of the service

(Haveliwala (2002)).

The flexibility of the system is such that any user could create, or form a new

channel if it didnt exist already, allowing the service to evolve to meet current trends

and demands without the need for an external administrator to establish the chan-

nel. Social Networks evolve around popular channels, with users automatically joining

them on login, via their client, and thus becoming members. Membership however

is typically limited to the current session, bringing a dynamic fluctuating nature to

the group. Mutton (2004) mapped out a social network based on an IRC channel,

showing its evolution and decay over various time periods. Active users, the centrality

of knowledge generators and the relationships among users are possible to infer from

such analysis. Understanding such relationships and the importance of contributers to

groups can drive the creation of new channels and the destruction of existing channels.

IRC has minimal barriers to channel creation, with the process facilitated and enabled

by the protocol. Management within IRC is formally defined in Kalt (2000), specifying

namespaces for channels and a series of flags to provide administrative controls such as

invite only channels or limiting the number of users participating.

2.2.6 Instant Messaging Technologies

Instant Messaging (IM) is a form of near real time communication between two or more

people over a network such as the internet. IM enables short message exchanges between

online users (Chatterjee et al. (2005)) through a client server architecture. Early IM

implementations were text based, one to one chats between two users following the same

principles as IRC. A defining difference between IRC and IM was the integration of a

service known as presence. This provided users with the capability to advertise their

willingness to be contacted and interacted with. The technology grew in popularity,

particularly among the teenager demographic (Grinter & Palen (2002)) and advances

were made to the infrastructure, both server and client side, to meet current demands

and user expectations. Services inspired by other domains began integrating into the

paradigm such as Multi User Chat, allowing for several users to communicate in a

virtual room. Modern incarnations of IM have seen an increase in the functionality

offered to the user. The text transmitted can now be formatted in rich text or HTML

19

2.2 Group Communication Technologies

(HyperText Markup Language). File transfer functionality was implemented allowing

for large files to be transferred across the network from client to client. Clients were

capable of receiving and consuming multimedia, often via mobile devices (Patterson

et al. (2008)). This proved to be a significant upgrade on the file transfer offered by

message boards and became a standard service to facilitate. A vocabulary has also

developed around IM which users feel comfortable with. A user with an IM account

can send an invite to a friend for them to be their buddy. Buddies are stored in buddy

lists or rosters which are associated with the users account, allowing for them to log in

on any device and still have the same buddy list associated with them. These buddy

lists can be broken down into groups. A group will typically comprise of buddies with

a similar relationship to the user. Some examples might be a group of friends, a group

of family or a group of work colleagues.

Implementing protocols of interest include the Session Initiation Protocol (SIP)

(Rosenberg et al. (2002)), which specified a means for provisioning IM within the pro-

tocol (Campbell et al. (2002)). ICQ1 (Weverka (2001)) an Instant Messaging program

used by AOL2. MSNP (Microsoft Notification Protocol) an Instant Messaging protocol

developed by Microsoft and powering the MSN3and Windows Live4 suite of services.

The most popular implementation however is the Extensible Messaging and Presence

Protocol (XMPP), the driving protocol behind IM services such as GTalk5. XMPP is

often termed Jabber, and is specified by Saint-Andre (2004b). The remainder of this

section and aspects of this thesis will focus on XMPP. File transfer as a service was

formally integrated into the XMPP protocol, providing additional services within the

protocol for users to consume (Ludwig et al. (2009)). The capability for the protocol

to adapt and often amalgamate other group communication technologies, has allowed

Instant Messaging to evolve into a Social Network, with groups, relationships and inter-

actions all governed within the one technology suite. This advancement has seen non

human entities, in the form of devices and services, being represented on the roster (and

in groups) as buddies. This change to the usage pattern of the protocol, in addition

to advances described on the client side, has changed the traffic profile within Instant

Messaging. Xiao et al. (2007) notes that rosters are becoming larger, service interaction

is becoming more popular and the traffic generated from IM clients is quickly becoming

problematic for service providers

1The term ICQ is a homophone for the phrase ”I seek you”
2America Online (AOL) http://www.aol.com/
3MSN Messenger was the original IM client later rebranded and renamed Windows Live
4Windows Live Messenger http://windows.microsoft.com/en-us/messenger/home
5Google Talk Messenger http://www.google.com/talk/

20

2.2 Group Communication Technologies

2.2.7 Web based Social Networking

With the users perception of the internet evolving, a new technological savvy generation

had emerged into a world that was experiencing a computing paradigm change. High

speed broadband networks were emerging, mobile, ubiquitous and pervasive computing

brought hereto unseen penetration of connected devices. The original group communi-

cation technologies outlined in this section were being adapted and modified to meet

this new generations demands. The powerful resources available meant an overhaul of

the popular group mechanisms, while never straying far from their original purpose.

The modern evolution of group communication technologies is social networking, in

particular, web based social networking which takes on a number of forms.

Online Groups are provided by some websites as a place where a group of people

can come together and have discussions about common interests and meet like-minded

individuals, doing so in a public or private manner. Online Groups were in a sense

an evolution of traditional collaboration software, made available publicly and inher-

ently more usable. The term Groupware, another term for collaboration software, is

defined by Johnson-Lenz & Johnson-Lenz (1991), as intentional group processes plus

software to support them. Proprietary software products such as Lotus Notes1 and

Microsoft Exchange2 provided integrated collaboration functionality through a suite

of group communication technologies including email, group calendaring and instant

messaging. These communication platforms allowed individuals, largely those of a

professional nature, to effectively work in a coordinated manner towards a common

goal. Service providers such as Google3, Yahoo 4 and Windows Live 5, offered a free

combined group service, mirroring the features of traditional Groupware and making it

available to a larger membership. This grouping mechanism was the first such attempts

at large scale integrated group communication technologies. The sites offer countless

free groups around general topics such as health, sports and news with an abundance

of sub groups looking at particular themes. Registered users can join these groups

and avail of the outlined functionality, participating in a public manner. Users were

also allowed to establish their own private group to encourage participation. A private

group contains the exact same functionality as the public groups except membership is

limited and exclusive. The founder of the group can set up the criteria for joining it. It

might be limited to direct invites from the founder or a password to gain access. This

1Lotus Notes http://www-01.ibm.com/software/lotus/products/notes/
2Microsoft Exchange http://www.microsoft.com/exchange/en
3https://groups.google.com
4http://groups.yahoo.com/
5https://groups.live.com/

21

2.2 Group Communication Technologies

allows for a more personal experience within the group, with the membership base

generally being small and focused for the groups purpose. Such groups had limited

resources provisioned for file sharing, expanding in recent years as technology became

more affordable.

Web based social networking emerged from online groups with individuals con-

structing a public or semi-public profile within a bounded system, with the intention of

interacting on a more personal level with others. Identifying a list of other users with

whom they share a connection, users can view and traverse their list of connections

and those made by others within the system (Boyd & Ellison (2007)). Their social

network is in effect a self contained group realised through intelligent interfaces and

interactions. Timed with a more socially aware generation, several styles of social net-

working sites, appeared. These include what has come to be known as traditional social

networking sites, including Bebo 1, Facebook2, MySpace3 and Google+4. Blogging and

microblogging social networking sites, such as Twitter 5, Blogger6, Wordpress7 and

Friend Feed8. Service oriented social networking is also another style as characterised

initially by Gowalla9 and later by FourSquare10. The initial concepts of groups within

this generation of social networks was an extension of the standard profile with little

to no additional group services offered. The principle idea was to use these groups in

order to expand a persons direct contacts, a mechanism still achieved through their

profile, thus using the overall service suite at a profile, rather than group level. The

rationale behind keeping interactions at a profile leve,l rather than a group level, is not

quiet clear. Concerns about scalability is a possible explanation as the volume of users

social networking sites attract has caused disruptions in the past, which have had to

be technologically addressed (Eriksen (2010)).

Group communication through social networks not only provides a medium for use-

ful public announcements, but a means to reach an audience that previously would not

have been possible. To this end, social networks have been used as a mass communi-

cation medium for significant social, political, economic and natural disasters in recent

years (Potts (2009)). One of the early adopters of social networking by an Emergency

1http://bebo.com
2http://facebook.com
3http://myspace.com
4http://plus.google.com
5http://twitter.com
6http://blogger.com
7http://wordpress.com
8http://friendfeed.com
9Now working with Facebook as their check-in service

10https://foursquare.com/

22

2.2 Group Communication Technologies

Service is the Los Angeles Fire Department (LAFD). The LAFD has a twitter account

(LAFD (2011)) reporting status updates, via short messages known as tweets, of cur-

rent open cases to serve as a public warning system. Their reports include current fires,

road traffic accidents and environmental problems which might affect residents of the

city of Los Angeles. Resolutions of cases are also tweeted providing a reassurance for

the public. The LAFD used twitter successfully during wild fires in 2007 as a means of

distributing information for the public during an environmental disaster that threat-

ened the city. The LAFD began looking at Web 2.0 technologies after the devastation

of Hurricane Katrina in August 2005. They noted that those stranded in New Orleans

were in serious distress from a lack of information (Havenstein (2007)). Acknowledging

that rescue services have responsibilities to the public to move information as quickly

as possible, the LAFD adopted twitter as a means of information dispersal, enabling

residents to make key decisions on informed and reliable data. In recent natural dis-

asters, social networks took central stage as an information medium, this time driven

by the people. The Great Tohoku earthquake and subsequent devastating tsunami

that struck Japan on March 11th 2011 was the fifth biggest earthquake ever recorded.

Towns were wiped off the map, over 27,000 people died or were missing and a nuclear

crisis was averted by the authorities. In the immediate aftermath of the earthquake,

the emergency services blocked voice communication channels to prioritise their traffic

and co-ordinate the rescue effort. The data network however remained intact, with

the media reporting that Twitter was the only communication tool functional after the

earthquake. Users took to Twitter to report their location and seek help for themselves

and for others. A study carried out by Acar & Muraki (2011), whom analysed the us-

age of Twitter for crisis communication, highlights the lessons that were learned from

the Japanese usage of Twitter during this emergency. The emergency response teams

rescued people from information received via Twitter, however, effectively managing

and controlling this information is a difficult task, particularly when the usage was not

provisioned for within the design of the social network. A lack of formal groups to

facilitate, sanitise and present information was a noted limitation.

Using Facebook as an example, Facebooks initial attempts at group integration had

three distinct styles, two of which were officially supported and one of which evolved

from user behavior. Networks, where one could join based on profile information such

as location, educational institution or employer. These networks served little purpose

only to allow an additional means for users to connect with others. The second group

style promoted was the like page. Here users could create a page based on a topic or

concept and people could join the page by liking it, an act of publicly declaring an

23

2.2 Group Communication Technologies

interest in a topic such that it appears on the newsfeed of your buddylist. These pages

functioned the same as a profile page with the ability to post pictures and messages for

everyone to see. Users circumvented the lack of groups by creating a third style, the

profile group. In this instance a user would create a new profile, typically promoting

an event or business and add friends to their buddylist to create a community via

the newsfeed. Facebook responded by introducing events as a separate service and

introducing a formal representation for groups, as well as means to recommend groups

to others (Baatarjav et al. (2008)). Now users can create a formal group and invite

others into it. Groups can be public or private and full administrative control is possible.

Photos can be shared and private events organised within the group, with richer service

consumption not yet provisioned for.

The Social Networking domain is a competitive industry generating billions in rev-

enue annually (Rushe (2012)). The emergence of new platforms and subsequent migra-

tion of users tends to stem from technological problems and usability issues. Groups

were not defined and implemented coherently enough, as the Facebook style of one

giant buddylist and aiming updates en masse promoted Google to release Google Plus

(Google+). Observations by Adams (2011) showed how people are drawn towards small

groups and more focused groups of friends. The size of buddylists or rosters on existing

social networks was not sustainable and Google+ attempted to address that by bringing

in Circles. A Circle, effectively is a group, allows you to place friends into categories.

Interaction could then be tailored directly at small groups rather than an entire list

allowing tighter control of what you release and whom you release it to. Privacy and

security management within social networks has allowed fine grained access control for

content generated by users (Fang & LeFevre (2010), Jones & O’Neill (2010)). The

circle idea is an additional layer of privacy for sharing content.

2.2.8 Semantically Enhanced Groups

Group Communication was originally designed to facilitate participation and discus-

sions among members. Technological advances were made in supporting fields, allowing

group communication to leverage some of these features. The user base had also pro-

foundly changed, with the need for users to stay connected and informed of the status

and activities of others in their online address book. This desire for information led to

the development of applications with added contextual information, enhancing the user

experience. These semantic additions are present within existing group infrastructure

and will be more prevalent in emerging social networks as social applications. Social

applications refer to a class of applications that integrate with one or more social net-

24

2.2 Group Communication Technologies

works (Zolfaghar & Aghaie (2012)). Applications on social networks are increasingly

becoming a focal point for group formation and a means of generating a group full of

like minded individuals. Masked as community games and retaining the goal of groups,

that being a common purpose or task, applications are quickly becoming an additional

means of group formation within social networks. Social Applications are designed to

be cross platform, accessible on mobile devices, potentially provisioned in the cloud or

in standalone hardware and designed to emulate native applications. While the evo-

lution of this trend towards socialisation has added more incentive to participate in

groups it has potentially raised more questions about the structure of groups and their

long term scalability. The effect of socialisation is that it can cause some applications

to become very popular amongst a user base very quickly. This is often referred to as

viral spread because the application is passed from one user to others in their social

graph (Facebook (2012)) and then on to friends of friends. The impact of this viral

spread on an application is to cause sudden spikes in server load for a web application.

Presence, Location and Context are three such services deployed within semantically

enhanced groups, which are in turn impacting on how groups are used and how they

form.

Presence is a current status indicator showing the ability and willingness of a user

to communicate across a range of devices. The presence mechanism is designed to

allow a real time update for a person, keeping their friends informed. It is typically

employed in instant messaging applications to show a persons friends list what they are

doing. Typical default presence statuses include chatty, online, offline, busy, do not

disturb, and away. The presence feature can be used for custom messages and many

applications integrate with this feature. Messenger programs have developed plugins

allowing a users music or video choices be echoed as a presence status to the persons

buddylist. GPS technology on mobile phones can advertise the persons current location

through the presence mechanism. Presence is also at the core of enabling protocols such

as XMPP (Saint-Andre (2004b)) and can cause issues when used outside of the intended

scope of the protocol (Xiao et al. (2007)). Privacy concerns with the usage of presence

as a service medium (Wu (2007)) within the context of an entire buddylist is making

groups a more attractive place to direct presence and retain a form of control over the

privacy and security of the updates.

The desire of people to stay connected and inform friends and family of their current

activity and location has led to the integration of location based technology into devices.

Mobile phones, laptops and even watches have the capability to track their location.

Services have been built to take this data and use it to inform others, often through

25

2.2 Group Communication Technologies

a group communication medium such as social networks, posting the information to a

newsfeed. Location Based Services, termed Geospatial services (Granell et al. (2010) are

playing an increasing role in social networks, moving beyond personal usage to become a

marketing tool, a gaming mechanism as well as a formal outlet for handling emergencies

and announcements. The notion of a check-in is a geolocation announcement to a

social group advertising your presence at a particular location. Services have emerged

to support users who have registered their location (Hsu et al. (2012)), however, the

check-in notion has started to evolve away from the original geographic only usage.

Check-ing into events such as sports performances, cinema performances or TV shows1

has abstracted the core grouping centric logic from the requirement to physically be

present. This has seen a scalability profile not yet associated with mainstream check-in

services. It is conceivable, for a popular event, that the average daily check-in metrics

of a geographical based service (Belic (2012)) could be exceeded within the opening

credits of a popular TV show. That initial burst could potentially be handled by the

current suite of services and infrastructure in place, but adequate service provisioning

to target this newly created group is problematic. For example, layering a service on

top of that, such as sending a Quick Response (QR) code with a discount, in order

to deliver a marketing campaign, would create an enormous amount of strain on an

underlying system.

In recent years the notion of context awareness has emerged in communication re-

search, particularly in the field of ubiquitous computing (Beach et al. (2008), Raento

et al. (2005)). Devices became smarter and started to make assumptions about the

users current situation based on information being polled from the user and the envi-

ronment. Watches with built in heart monitors, GPS enabled devices (laptop, mobile,

watch), accelerometers on mobile phones and wireless health body kits (such as insulin

monitors) are examples of context aware devices. These devices are enabling tech-

nologies, providing data to services for translation. Services can take this data and

abstract understanding from it, providing a feature rich service for the end user. The

users social environment i.e. the co-location of others, their social interaction and group

dynamics, as outlined in Schmidt et al. (1999), plays a major role in context awareness.

It is often the end consumer of such information as well as a major provider. Intelli-

gence (Zhang et al. (2011a)) abstracted from the physical environment and community

groups is driving innovative services from environmental services to urban sensing, such

as traffic planning and public safety.

1For example http://getglue.com/ offers a means to check-in to TV, Movies and Music

26

2.3 Interaction Management Within Groups

2.2.9 Summary

Based on the work reviewed within the area of Group Communication Technologies

a number of conclusions can be drawn. Group communication tools and mechanisms

have facilitated user interaction in a scale that was not previously possible and RQ-S2

attempts to investigate this. Groups of contacts are now numbering in the hundreds and

thousands, creating a large social sphere from which users can access. The evolution of

supporting and access technologies has created a means by which people are comfortable

accessing information, however those technologies have quantifiable limits (RQ-S1).

Expectations from how to access and consume information, as well as the degree of

management that users have over their interactions has traditionally been at a level

just beyond the current scope of existing group communication technologies. This

has driven the evolution and functionality of the current mechanisms and the same

can be predicted for emerging social networks. Users have developed a social identity

and social activities surrounding groups further enhances that. Participation within

current social networking groups has declined to a more passive form, largely due

to their current implementation. As semantically enhanced applications and usage

patterns, possibly driven from marketing campaigns, turn towards active participation,

a scalability conundrum has to be addressed.

2.3 Interaction Management Within Groups

2.3.1 Interaction Management

For the purpose of this thesis, in Section 1.1 a definition for interaction management

was presented as the management decision required to govern the interaction of an

entity with another entity within the context of a group. Interaction Management is

dependent on the structure of the group and the nature of the group. The group

membership can be assigned roles within the group, placing responsibility and often

management roles on a number of users. One such role can be termed a moderator,

who presides over a group, adjudicating on the interactions of the users to ensure

that group rules are adhered to (Dennis & Wixom (2002)). Moderation is very much a

reactive process to interaction management, otherwise it may present a barrier to actual

interactions, particularly if messages or content has to be approved before publication.

Effective moderation should facilitate dialogue and interactions within the community

and not present a barrier to usability (Heinze & Procter (2006)). Interactions also

govern the access and consumption of content within the group. A traditional means of

27

2.3 Interaction Management Within Groups

controlling this interaction is the use of Role Based Access Control (RBAC) (Sandhu

et al. (1996)). Permissions are associated with roles, governing what a member of the

group is allowed to interact with. RBAC has been successfully deployed within group

communication technologies (Park & Hwang (2003), Maruoka et al. (2008)) and RBAC

rule generation has close ties into the formation stage of a community. Constraints

outlined at formation time can influence the rules that are required in terms of what

level of access the group participants might require (Ahn & Sandhu (2000)). Automated

versions of RBAC, such as granting roles through group delegation (Wang et al. (2009)),

have addressed some of the manual issues with deploying an RBAC system. Attempts

to move away from traditional RBAC models have seen management protocols emerge

as an alternative in order to effectively provide large group management in a scalable

manner, by customising the interaction media. Ponnusamy et al. (2003) investigated

managing a group of hosts and their network activities, managing the membership

of the group and the interactions that occur within it. Liu et al. (2005) similarly

investigated managing groups over mobile ad hoc networks. Both bodies of research

take a networking perspective on managing interactions, relying heavily on traditional

networking, failing to take into account user behavior and treating the domain as a

classical networking problem.

2.3.2 Policy Based Network Management

The management of interactions among entities within a network is often referred to

as Policy Based Network Management (PBNM). This section deals specifically with

access control within this domain, with respect to the access of services and content.

PBNM is a condition, action, response mechanism, designed to provide an automated

response to conditions within a network according to pre-defined rules encoded within

policies. The definition put forward by Strassner (2003), and supported by the wording

within RFC 3198 (Westerinen et al. (2001)), defines a Policy as a set of rules that

are used to manage and control the changing and/or maintaining of the state of one

or more managed objects. Westerinen et al. (2001) also defines responsibilities for core

elements that interact with Policies, namely the Policy Decision Point (PDP) and Policy

Enforcement Point (PEP). The definitions put forward and used within this thesis, are

as follows:

• PDP: The system entity that evaluates requests against applicable policies and

renders an authorisation decision

• PEP: The system entity that performs access control, by routing requests and

28

2.3 Interaction Management Within Groups

enforcing received authorisation decisions.

Policies are initially described in high level natural language and are capable of

describing a range of activities ranging from predefined tasks, which must occur, per-

formance related metrics, which may be protected by Service Level Agreements (SLA),

and simple access control rules. Examples include:

• Allow the admin group write access to the membership database

• Run backups at midnight

• Network availability must be 99% over the course of the week

Understanding the variety of requests that may be encoded within policies and that

may manifest itself as an access control request is important. The high level examples

above are all variants of an access control policy.

2.3.3 XACML

The eXtensible Access Control Modeling Language (XACML) is an OASIS (Organisa-

tion for Advancement of Structured Information Standards) standardised specification

for an access control policy language and request language. XACML is implemented

in the eXtensible Markup Language (XML), with an accompanying processing model

to evaluate access control requests according to the rules contained within the policies

(Moses (2005)). XACML extensively references Westerinen et al. (2001) ensuring com-

monality with respect to definitions and terminology used within the world. XACML

defines access control as controlling access in accordance with a policy returning an au-

thorisation decision, typically permit, deny or Not Applicable, derived from evaluating

the applicable policy with respect to the incoming request, as returned by the PDP to

the PEP. This tightly defined sequence of events has ensured that XACML has become

an industry standard for access control and the management of interactions, deployed

within multiple domains.

2.3.3.1 Policy Authoring and Conflict

Mapping XACML closer to the source domain which needs to be controlled has poten-

tial benefits. The researchers in Mourad et al. (2011) deployed an abstract language on

top of XACML in order to provider greater control over web service security. A user

friendly language deployed on top of XACML provides a layer of abstraction on top of

29

2.3 Interaction Management Within Groups

the heavy XML policies which can be difficult to read and interpret from an end user

perspective. Attempts to make policy authoring more transparent and user friendly

is a popular theme within XACML research. The price of simplifying the authoring

is often conflicts appearing within the policies. A conflict, in policy terms, is when

multiple policies are applicable to the same request, but result in different responses.

XACML provides combining algorithms such as permit-overrides, where the first per-

mit will override the overall decision, among other algorithms (Huonder (2010)). The

inbuilt combining algorithms can often be difficult to apply, particularly when XACML

has grown out beyond its initial intention of a single domain environment. Federated

domains and multiple layers of policies bring additional complications to detecting and

resolving conflicts (Barron et al. (2011)). A drawback of integrating ease of policy

authoring mechanisms and the associated infrastructure required to ensure conformity,

with respect to conflict analysis, is the size of the overall deployed system. The poten-

tial impact on the response times if policy conflict analysis has to run constantly can

be profound in a high volume request environment. In an environment with a large

number of policies, the time it takes to converge on a conflict can be in the order of

minutes (Wang et al. (2002)). The broader execution context, such as the impact on

CPU and memory resources, is often ignored when evaluating policy authoring and

conflict tools.

2.3.3.2 Policy Performance

The performance of a PDP is an important access control system requirement. It is rel-

atively easy to scale out the stateless PEP functionality, but the stateful PDP function

is difficult (Butler et al. (2010)). Therefore having an efficient and performant PDP

is a critical requirement, particularly in domains where a large volume of lightweight

requests are issued. Making XACML policy evaluation more efficient is difficult from

the point of view of the complex structures that are contained within XACML policies.

Liu et al. (2008) proposed a radical rethinking of XACML, converting policies and

requests from XML to a numerical format. A supporting prototype PDP, capable of

understanding the numerical format, showed dramatic performance improvements over

the traditional PDP implementations that used XML. It is difficult however to abstract

the performance gain from the representation format and the implementation logic be-

hind the PDP. Liu et al. (2011) examined the algorithms implemented within XACML

identifying problem scenarios which XACML currently struggles with. Additional so-

lution algorithms were presented as a means to empower the PDP with logical choices

that would represent a performance improvement when dealing with policy requests

30

2.3 Interaction Management Within Groups

from the problem domains identified.

Bindings to XACML are a popular way of increasing evaluation and performance by

making the PDPs more flexible and less reliant on external systems. Mirza (2011) pre-

sented a means of translating REST (Representational State Transfer) based requests

in order for a single PDP to be able to interpret requests from multiple PEPs. REST is

a popular style of software architecture for distributed systems supporting web services

(Fielding (2000)). The work carried out largely centered around SOAP (Simple Object

Access Protocol) (Box et al. (2000)) based PDPs receiving non SOAP queries which tra-

ditionally would have been an interoperability issue requiring an external translation,

pushing out the overall request-response time. Securing communication with group

environments (Sjöholm et al. (2008)) has also been explored within XACML. Available

research in this domain seems to focus on the surrounding architecture in low volume

transactions. The performance profile at larger levels of scale in a traditional social

network are quiet varied. Access control has not been deployed within this domain

largely due to a lack of privacy protection when dealing with third party applications

and a lack of interoperability among different Access Control Policy Languages (Car-

reras et al. (2009)). Considerations for response times within such an environment have

not been explored extensively as a consequence.

2.3.3.3 Policy Representation

Policy representation within XACML, by its specification, was bounded to XML. The

extensible nature of the specification allowed for the development of XACML within

diverse fields. The authors of Hsieh et al. (2009) embedded access control policies

within digital content using a XACML like document. This approach encoded the

item to be protected with the protecting policy. By encoding both resource and policy

information within one single XACML document, the PDP no longer requires a large

scale search of a policy store, as all relevant information is at hand. The research

carried out implemented a number of prototypes, largely focusing on the authoring of

the single XACML document. While no performance characteristics were recorded, the

approach showed that a rethink on the structure of a request and policy could bring

performance benefits from a PDP point of view.

Liu et al. (2008) took a numerical approach to policy representation as a means of

policy normalisation. The idea of policy normalisation is to develop a common policy

language or normal form to represent policies from any application. The major benefits

put forward include a normal form that has a simple logical structure and the reuse

of policy evaluation algorithms. The resulting representation however is opaque, non-

31

2.4 Design and Implementation Strategies for Scalable Solutions

symbolic and difficult to analyse. Presenting such a representation to domain experts

and XACML experts alike would be difficult, despite the performance benefits presented

in the research.

2.3.4 Summary

Strong management principles have relied extensively on classical networking approaches,

with a human centric mechanism a secondary requirement to securing the network. The

rulebases are difficult to interpret and establish, with administration often limited to a

number of individuals. XACML, one of the most successful access control management

platforms for management interactions is currently being deployed in domains outside

of the scope of the original intention of the specification. The heavyweight nature of

the design and the all encompassing specification, which must be met in its entirety, to

ensure conformance, can have a negative impact on the performance and scalability of a

system. Implementing a Group Management policy based system, as per RQ-GFM3, is

possible but has the potential to conflict with the requirements of RQ-GFM2. XACML

is not currently suitable for deployment within large social networks due to the sheer

number of requests and the requirement that interactions occur with near real time

precision, so as to not interrupt the user experience. The language and structure cur-

rently used within policy representation is difficult to understand for a non technical

expert. Added to this difficulty is the interpretation time and scaffolding required to

interpret the overall policy system. A rethink is therefore necessary to bring XACML

principles into the management of groups, in a performant manner (RQ-GFM1).

2.4 Design and Implementation Strategies for Scalable

Solutions

This section deals with implementation strategies widely adopted across a number of

domains within modern computing. As implementation strategies evolve, new uses

not previously considered within disparate domains might benefit from a change in

perspective. This section presents the current state of the art within implementation

strategies showing where they derived from.

2.4.1 Design Patterns

Programming is a rich discipline and practical programming languages are usually

quite comprehensive in breadth and terminology. Solving a programming problem re-

32

2.4 Design and Implementation Strategies for Scalable Solutions

quires choosing the right concepts, with knowledge about the structure and strengths

of programming languages vital (Abelson & Sussman (1996)). All but the smallest

problems require different sets of concepts to address aspects of the problem at hand.

This is why programming languages should support many paradigms. A programming

paradigm is an approach to programming a computer based on a mathematical theory

or a coherent set of principles. Each paradigm supports a set of concepts that makes

it the best for a certain kind of problem (Assayag (2009)). Complementing a language

paradigm is the concept of a design pattern, which is a general, repeatable solution to

a commonly occurring problem. Gamma et al. (1994) presents a collection of popular

design patterns tailored at solving the problems of object generation and interaction

rather than a global solution. The patterns are broken down into three categories;

Creational Patterns, used to provide ways to instantiate objects or groups of objects;

Structural Patterns which define relationships among objects and Behavioral Patterns

defining manners of communication among objects. Systems of patterns interacting

with each other helped achieve an overall solution architecture that was maintainable

over time. The POSA (Pattern-Oriented Software Architecture) movement began with

Buschmann et al. (1996) and subsequently followed up with four more volumes (POSA

2-5)1. The volumes published represent a catalogue of design patterns that addressed

core problems within software engineering, covering performance, availability and min-

imising risk to deployments. Developing software to pattern based specification provides

a documentation of the system at a design level. In modern design methodologies, such

as the Agile methodology (Cohn (2009)) or the Extreme (XP) Methodology (Beck &

Andres (2004)), documentation is key. The ability to interact with the end user in an

implementation independent manner is crucial for requirement gathering. The initial

requirement gathering is supplemented by iterations of requirement meetings with the

end user and responding to changes and requests in a timely manner. Design Patterns

help in faster and more effective design for software, with reduction in effort achieved

through making use of existing/standard patterns in design. Modern methodologies

are suited to the current demands of shorter time frames and easily adaptable software

(Dattatreya et al. (2012)). Marrying the two approaches has seen a greater understand-

ing in how to produce sustainable software within tighter timeframes.

1The POSA series of books:

POSA2: Patterns for Concurrent and Networked Objects (Schmidt et al. (2000))

POSA3: Patterns for Resource Management (Kircher & Jain (2004))

POSA4: A Pattern Language for Distributed Computing (Buschmann et al. (2007a))

POSA5: On Patterns and Pattern Languages (Buschmann et al. (2007b))

33

2.4 Design and Implementation Strategies for Scalable Solutions

2.4.2 Language Paradigms

An understanding of such design patterns, methodologies and paradigms was matched

at an implementation level. A case for object technology as a solution to many issues

within software engineering was investigated as far back as Simula 1 (Dahl (2002)),

Simular 67 (Simula (2007)) and Smalltalk (Goldberg & Robson (1983)), culminating

with the work of Meyer (1997). Object Oriented (OO) languages gained much traction

as a result, with complementary design patterns (Gamma et al. (1994)) emerging. OO

became one of the core reference paradigms due to the large uptake. The language style

brought alternative mechanisms, including inheritance, object composition and poly-

morphism to bear on problems. This fresh perspective and innovative way of thinking

was aided by the easier learning curve. Memory management (garbage collection), a

means of dereferencing memory automatically, is a simple example of a complex mech-

anism now handled by the language (Wilson & Hayes (1991)). OO languages such as

Java (Gosling et al. (2005)) gained widespread adoption. However, Java, among other

languages, gained such popularity that it was inevitably used in scenarios that were

outside the envisioned scope of the initial design. For example, Ostermann & Mezini

(2001) showed OO languages to be weak at modeling non standard composition sce-

narios. However, the language evolved over time and addressed flaws and weaknesses

(Nasseri & Counsell (2009)) to remain a staple language in modern implementations.

The code execution component of Java is termed the Java Virtual Machine (JVM)

with the specification freely available and documented (Lindholm & Yellin (1999)).

The JVM executes Java Byte code, an instruction set derived from the source lan-

guage, which was primarily compiled Java programs. As Java Byte code was simply an

instructional set, other languages availed of JVM compatibility by compiling down their

source code into Java Byte code. Scala (Odersky et al. (2011)) and Groovy (Koenig

et al. (2007)) are two such languages, although bindings exist for multiple languages

Alez (2012). JVM compatibility is attractive due to the portable nature of how the

code is executed, leading to the term write once, run anywhere (Sun Microsystems

(1996)). Taking this approach, languages such as Groovy allow for direct Java author-

ing within Groovy classes. As the compiled output is Java Byte code, this is a valid

approach. This allowed for a generation of programmers to adopt a new style, different

in many respects to Java but allowing that safety net of pure Java coding to integrate

with legacy systems. The JVM based languages that emerged brought with them a

new set of features which programmers could avail of. Dynamic typing, where the type

of a variable is not known until run time (van Noort et al. (2010)) and closures, where

a safely scoped function can execute while retaining captured variable state (Jeannin

34

2.4 Design and Implementation Strategies for Scalable Solutions

(2011)), emerged with these languages.

ECMAScript is a standardised object-oriented programming language for perform-

ing computations and manipulating computational objects within a host environment

(ECMAScript (2011)). JavaScript (JS) is the more traditional name for ECMAScript,

and JavaScript as a language is the most widely deployed programming language in

history, with every browser ever developed containing a JavaScript interpreter. Initially

regarded as a very limited language, its true nature and power had only recently been

appreciated in any depth (Crockford (2008)). Deployment on the server side has been

attempted in the past, (Husted & Kushlich (1999)), but the true power of the lan-

guage in that regard only emerged due to constructive thinking around the concept of

concurrency and the challenge of handling mass amounts of simultaneous connections.

2.4.3 Concurrency

The challenge of concurrency is made concrete by what is known as the C10K problem,

first posed by Kegel (1999). The C10K problem is this: how can you service 10,000

concurrent clients on one machine. The idea is that you have 10,000 web browsers,

or 10,000 mobile phones all asking the same single machine to provide a bank balance

or process an e-commerce transaction. The reverse of this problem is a similar chal-

lenge (Liu & Deters (2009)). While the number of connections is largely arbitrary, the

problem itself is a classical concurrency problem which saw attempts at programmatic

solutions emerge to provide safe access to resources. Threads, a lightweight process

termed a thread of execution, popular in some languages such as Java (Oaks & Wong

(2004)), emerged as a solution. Threads evolved as technology became multiproces-

sor and parallel execution was sought, allowing multithreading, furthering the efforts

to meet the C10K problem. In threaded systems, threads can share resources and

memory but locks are associated with specific data structures. Emerging languages

such as Scala took an alternative approach to memory management within threading,

termed Actors (Haller & Odersky (2009)), which avoids shared data structures and

consequently any resource locking. However, both approaches can be termed Blocking

Input/Output (I/O) as separate threads are created with their own stacks and program

counters. The opposite of Blocking I/O, termed Non-Blocking I/O is achieved through

extensive use of callbacks in API design and usage and has been shown to address

this C10K problem. In this instance, any possible opportunity for blocking, be it a

computational intensive task or accessing a resource, is replaced by passing a callback

parameter to be invoked on completion of the deferred task or I/O request. JavaScript

is a Non Blocking language designed around callback execution and the development

35

2.4 Design and Implementation Strategies for Scalable Solutions

of high performance network programs (Tilkov & Vinoski (2010)) is now a possibility.

The popularity and widespread availability of JavaScript execution environments, may

see an effort akin to the Byte Code compatibility of the JVM begin to emerge. Al-

ready some languages such as Smalltalk1 and Java2 can run on top of the JavaScript

Engine. While this cross compatibility among languages is attractive, languages such

as CoffeeScript (CS) have been designed specifically around compilation to Javascript

(MacCaw (2011)) .

2.4.4 Domain Specific Languages

A Domain Specific Language (DSL) is defined as a computer programming language

of limited expressiveness focused on a particular domain (Fowler (2010)). DSLs excel

at taking certain narrow parts of programming and making them easier to understand

and therefore quicker to write, quicker to modify, and less likely to breed bugs, overall

increasing the productivity of the programmer. An additional benefit goes beyond

programmers, to the field of domain experts or end users who can be exposed to the

end code and make more informed input on the structure and design of the solution.

Common to all DSLs is that they do this by making the data structures and operations

from their problem domain the basic building blocks of the language (Van Cutsem

(2008)). DSLs can come in two variants, an internal DSL and an external DSL (Fowler

(2005)). An internal DSL is written and embedded within an existing host language.

This can take the form of internal mini languages, where a subset of the overall language

is used, or language enhancements, where DSL techniques through metaprogramming

enhances the base language to make it look and feel like a DSL. The host language

should provide a feature set to facilitate a DSL, the closure capability, for example, is

a desirable feature. An external DSL has its own syntax with a full parser required

to process the language, the freedom attained is at the cost of extensive development

time. Valuable lessons were learned from initial DSL deployments and developments

(Wile (2004)) and best practices established and documented (Volter (2009)). DSLs

are much more mature with a support in the form of toolkits and design guidelines

(Zdun (2010)) available to end users.

1Amber and Squeak are implementations of the Smalltalk language that runs on top of the

JavaScript runtime: http://amber-lang.net/ and http://squeak.org respectively
2The Google Web Toolkit allows the authoring of JavaScript front end applications in Java:

https://developers.google.com/web-toolkit/

36

2.4 Design and Implementation Strategies for Scalable Solutions

2.4.5 Representation Formats

JavaScript Object Notation (JSON), (Crockford (2006a)) is a lightweight, text-based,

language-independent data-interchange format, derived from the object literals of the

ECMAScript programming language standard. JSON objects are analysed as string

arrays, permitting higher parsing efficiency and easier preparation than heavier trans-

port formats such as XML (Downes et al. (2010)). Crockford (2006b) describes JSON

as the fat-free alternative to XML arguing that XML is not as well suited to data

interchange as XML is much more verbose than JSON and rarely matches the data

model of its host programming language. By contrast, JSON is built on just two data

structures, a collection of name-value pairs and an ordered list of values. Having a data

format that is interchangeable with a programming languages built in data structures

eliminates translation time and reduces complexity and processing time. Furthermore,

Wang (2011) notes that the strengths of XML are also present within JSON and the

two are functionally equivalent.

Schemas are another means of representing metadata, in this instance a way of

defining the structure, content and semantics of a system. Schemas are used to both

validate the data entered into the system and document the design decisions of the

administrator at the time of creation. Databases were one of the original domains

where schemas were deployed. The structure of a database and the representation of the

facts that can enter the database (Imielinski & Lipski (1982)) are contained within the

schema, termed Document Type Definition (DTD) schemas. Schemas to represent XML

based documents became popular with a number of styles developed such as Content

Assembly Mechanism (CAM) (OASIS (2007)) and the Document Definition Markup

Language (DDML) (Kimura (1998)). XML based Schemas (Campbell et al. (2003))

that are capable of documenting and validating themselves as well as XML documents

became the de facto manner for Schema representations. However, XML Schemas

have a high complexity (Martens et al. (2006)) which can present a barrier to users not

familiar with XML syntax. Familiarity with XML does not guarantee an understanding

of the schema, with large schemas becoming very verbose and difficult to interpret from

a human point of view, as the language itself is XML and not readily human readable.

Supplementary documentation and comments are often required to achieve a degree

of understanding within a document. With the transition of languages, particularly

DSLs, to become more readable in nature, representation formats are currently lagging

behind. A re-imagination of representation formats has been attempted (van der Vlist

(2007)) but a full syntax change and move away from static representation formats

to a more dynamic model of representing and capturing schema semantics is still not

37

2.4 Design and Implementation Strategies for Scalable Solutions

available. It may be the case that markup languages might not be suitable to describe

meta data in a user centric manner.

2.4.6 Deployment Platforms

Cloud computing is one of the key drivers compelling the current wave of innovation

(Liang et al. (2011)). For the first time, corporations are moving their sensitive data

and operations outside of the building. They are placing mission critical systems into

the cloud with computing capacity now metered by usage. Technology challenges are

not solved by sinking more capital into powerful computing infrastructure. The model

is moving away from the costly Infrastructure as a Service (IaaS), where companies

provide physical host machines, to the more economical Platform as a Service (PaaS)

(Garcia & Ketel (2012)). When Ruby on Rails (RoR) was launched it was a highly

innovative development framework (Maximilien (2006),Viswanathan (2008)). The key

driver for mass adoption of RoR was hugely increased developer productivity through

convention over configuration, an approach which has now certainly entered the zeit-

geist and which has been adopted by almost all of the current development stacks: for

example Pythons Django3 or PHPs Cake4. The predominant application deployment

model for most organisations during the rise of RoR was owned server infrastructure:

i.e. make some capital investment in server hardware on which to deploy applica-

tions. Under this model, operational expenditure was relatively static and was based

on monthly costs for colocation and bandwidth. Operational efficiency of deployed,

in the field, applications was not so important for anyone but the really large sites,

as long as the application could scale horizontally to some degree, capacity could be

added by purchasing more hardware and making appropriate infrastructural changes,

such as clustering or simply buying faster machines (Wong et al. (2007)).

With the mass adoption of cloud computing, this model is superseded by PaaS as a

more affordable solution. Deploying to the cloud requires little or no capital investment;

however, operational expenditure is now directly tied to the efficiency of deployed appli-

cations. There is now a clear economic driver for efficient web applications, services and

deployment platforms. Addressing the latter allows a platform for the applications and

services of the future to run on. Google required fast JavaScript so that its services like

Gmail 5 and Google Calendar 6 would work efficiently and render quickly for end-users.

3https://www.djangoproject.com/
4http://cakephp.org/
5http://gmail.google.com
6https://www.google.com/calendar/

38

2.5 Summary

To do this, Google developed the V8 JavaScript engine (Google (2010)), which com-

piles JavaScript into highly optimised machine code on the fly. Google open-sourced

the V8 engine and it has been adapted by the open source community for cloud com-

puting. The cloud computing version of V8 is known as Node.js (Dahl (2009)), a high

performance JavaScript environment for servers (Lerner (2011)). In the PaaS model,

an entire computing platform including operating system, execution environments such

as Node.js and Vert.X7 and storage mechanisms are provided in a manner capable of

scaling to match the demand. The customisation and modularity of offering such as

Heroku8 and Amazon Web Services (AWS)9 offer support stacks for applications with

complementing language and application choices. With this new costing model, per-

formance becomes important as the operating expense dominates, driving the need for

highly efficient, lightweight solutions. Architectural choices can thus dictate whether a

domain is viable or non-viable, from a cost point of view.

2.4.7 Summary

The evolution of languages and best practice approaches to problem solving are driven

by consumer requirements and consumer usage patterns (RQ-GFM1). Suites of soft-

ware tools and complementing techniques are available to tackle a number of problem

domains (RQ-S3). The industry momentum is currently coming from cloud and mo-

bile computing, with this support structure only now beginning to facilitate emerging

social networks through innovative and highly scalable services. The conceptual move-

ment towards more event-based systems and the cultural movement towards accepting

JavaScript as a serious language has helped achieve a possible new paradigm shift, along

the lines of the major acceptance of OO. This shift can only be defined and identified

with retrospective analysis, however, what is clear is the pace of software evolution to

meet the current demands is exhibiting all the characteristics of a paradigm shift.

2.5 Summary

This section presented a historical overview and state of the art of the current chal-

lenges facing the design and management of a group formation and interaction manage-

ment platform. The challenges identified have failed to address the Research Questions

7Vert.X is an alternative asynchronous application development framework to Node.js:

http://vertx.io/
8http://www.heroku.com/
9http://aws.amazon.com/

39

2.5 Summary

outlined in Section 1.3. Summarising the questions in relation to the literature, the

following aspects are of interest to Group Formation and Interaction Management:

• Group are weakly modeled

• User behaviour is changing

• Micro second execution is challenging

• Strong management not deployed within group environments

• Services using group communication as a deployment medium

This thesis will demonstrate that when investigated and addressed, these observa-

tions will satisfy the Research Questions on Group Formation and Management (RQ-

GFM). Addressing these observations required a complementary analysis on the current

state of the art in Software Engineering. Advances have occurred allowing for the de-

sign and implementation of highly scalable solutions, with Table 2.5 summarising the

modern approaches that developers are adopting in comparison to the traditional tech-

nological stacks that would have been used.

Development Choice Traditional Modern

Language Paradigm based DSL

Representation Format XML JSON

Deployment Platform Dedicated, Bespoke Cloud

Table 2.1: Traditional and Modern comparison of popular development choices

This knowledge will help to address the Research Questions on Scalability (RQ-S)

and support the contributions provided to the domain of successfully managing the

formation and interaction of groups within emerging social networks.

40

Chapter 3

Group Membership: Formation

and Management

This chapter presents challenges surrounding Group Membership, particularly focusing

on Formation and Management across domains of interest which are representative

of emerging social networks. The first section of this chapter describes XMPP and

analyses how the XMPP Roster can be used to form and manage groups. The current

group models are critiqued and principles required for stronger group management

are presented and analysed. The second section of this chapter deals with emerging

user driven styles of groups forming, from large scale groups with mass membership

to multiple small groups. The challenges of forming and managing these groups are

explored firstly in the context of XMPP. A second experiment focuses on a case study

for an application of large scale group management within the context of humanitarian

relief.

The topics outlined within this chapter attempt to address some of the properties

of emerging social networks. Such properties can be inferred from the state of the art

analysis in Chapter 2, and are described as follows:

• Dynamic memberships within groups

• Unified view of the social network

• Lightweight, responsive service provisioning and consumption

• Efficient applications from a client resource perspective

To investigate these issues, a group communication mechanism was required for ex-

perimentation. A number of viable implementations were considered and touched upon

41

briefly within Section 2.2.6, with SIP and XMPP two strong contenders. Both protocols

are open, with multiple language bindings allowing implementation and experimenta-

tion. SIP and XMPP attempt to solve two different problems and are designed for two

different architectures. The SIP protocol was designed primarily for session negotiation

and media transport, such as voice and video. The XMPP protocol was designed pri-

marily for text based message exchange among a group of clients. SIP is inherently a

P2P protocol whereas XMPP is inherently client-server. The XMPP protocol is chosen

as it has a number of advantages which would facilitate the experimentations required

within this thesis. Features such as shared state and roster storage are easily facilitated

in a client-server architecture and while possible within a P2P protocol, it would incur

an overhead. Additionally, as the protocol is designed around short messages among

multiple participants, the style of groups, the diversity of the group model and the

interactions that could occur matched the behavior and attitude towards groups that

was observed within Chapter 2. XMPP is also more than a protocol, it is an example

of an emerging social networking platform1.

This thesis proposes examining the limits of existing group models both in terms

of functionality and performance as presented on the XMPP Roster. By extending

the group model new usages might emerge and a greater understanding of the princi-

ples required to effectively manage groups be abstracted from the investigated domain.

Of particular interest is the handling of dynamic groups, which this thesis defines as

Groups with a membership base that is prone to fluctuation. The membership levels

change rapidly and often without notice. The membership turnover is high with the

groups generally being barrier free, with users joining and leaving at will. This defini-

tion is based on related work in Hallberg et al. (2007) and is representative of the style

of groups emerging with respect to the behavior and attitudes of users, explored in

depth in Section 2. Additionally, the popularity of the protocol is a contributing factor

to the emerging usages which has seen XMPP deployed in a manner not envisioned

within the original design. The scalability limits of the protocol, as well as candidate

architectural solutions are subsequently investigated. User interaction with social net-

working services, such as geolocation based check-in applications, is an emerging social

network previously discussed in Section 2.2.7. A candidate case study is presented

which might benefit from a managed group formation platform. The components de-

signed, influenced by the interactions investigated within XMPP, are validated in a

1For example, the BuddyCloud Social Network: https://buddycloud.org. Buddycloud is a Social

Network designed on channels of communication (groups) and built on principles outlined in XMPPs

core protocol

42

3.1 Roster Group Formation

high scale scenario.

3.1 Roster Group Formation

3.1.1 XMPP

The eXtensible Messaging and Presence Protocol (XMPP) is an open source, XML

based protocol tailored specifically to provide extensible instant messaging and presence

information (Saint-Andre (2004b)). XMPP assumes a client-server architecture, with

multiple clients able to connect to an XMPP server over the TCP/IP protocol. A

client is an entity that establishes a virtual XML stream with a server, over TCP/IP

sockets, by authenticating using the user credentials and binding itself to the connecting

resource. The stream, as denoted by the </stream> tag, acts as a container for XML

stanzas which provision for both upstream and downstream communication. An XML

stanza is a discrete semantic unit of structured information that is sent from one entity

to another over an XML stream. The three stanzas defined are:

</message> A stanza to facilitate the transmission of a message from a sender to a

recipient.

</presence> Used to broadcast the availability, and thus willingness to be contacted,

of a user to anyone subscribed.

</iq> The Info/Query (IQ) tag is a request/response mechanism

The streams allow for the delivery of stanzas from client to client via the server.

The servers responsibilities include storing and managing XML data used by the clients

and managing the delivery of XML streams to local clients. The routing and delivery

of streams to foreign clients is possible through local service policies allowing server

to server federation. The protocol clearly outlines how communication should occur

over an XML stream. Adhering to the key tags and XML semantics outlined, the

entire stream can be viewed as one valid XML document. This highly structured

means of communication allows for core extensions to be integrated without breaking

the design rules and functionality of the protocol. Extensions take the form of XML

schemas, describing the structure, constraints and content of the document. This shared

vocabulary allows servers and clients to understand the requests received and formulate

an appropriate response

43

3.1 Roster Group Formation

3.1.2 Roster Explored

The XMPP Communication mechanism outlines the process in which groups of contacts

are managed. A contact list, or roster, is used to manage a set of users, termed buddies,

and to optionally group them together. The roster is stored on the server side and

upon a user authenticating successfully, a request is sent to the server, by the client, to

retrieve the users roster. The roster is specified formally in the roster schema and an

edited version, showing entities relevant to this discussion, can be seen below in Listing

3.1. The full schema is available from XMPPRosterSchema (2012).

<xs:schema xmlns:xs="http :// www.w3.org /2001/ XMLSchema" xmlns="jabber:iq:

roster" targetNamespace="jabber:iq:roster" elementFormDefault="

qualified">

...

<xs:element ref="item" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence >

<xs:attribute name="ver" type="xs:string" use="optional"/>

...

<xs:element name="item">

<xs:complexType >

<xs:sequence >

<xs:element ref="group" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence >

<xs:attribute name="approved" type="xs:boolean" use="optional"/>

<xs:attribute name="ask" use="optional">

...

<xs:enumeration value="subscribe"/>

...

<xs:attribute name="jid" type="xs:string" use="required"/>

<xs:attribute name="name" type="xs:string" use="optional"/>

<xs:attribute name="subscription" use="optional" default="none">

...

<xs:enumeration value="both"/>

<xs:enumeration value="from"/>

<xs:enumeration value="none"/>

<xs:enumeration value="remove"/>

<xs:enumeration value="to"/>

...

<xs:element name="group" type="xs:string"/>

</xs:schema >

Listing 3.1: Edited View of the XML Roster Schema

44

3.1 Roster Group Formation

Figure 3.1: XMPP Roster Schema Design View

Figure 3.1, shows a visualisation of the XMPP roster schema1. The item element

is a representation of a roster entry. The attributes within the item store important

information about this contact. The Jabber Identifier (JID), is a unique means to

identify an individual. The syntax is based on the structure of an email address, with

a username associated to a domain name, which represents their home server. An op-

tional resource mechanism is associated with a JID, specified by a slash suffix, allowing

multiple simultaneous logins by the user with the XMPP server able to route the mes-

sages appropriately. The subscription attribute of the request is used to establish the

type of presence subscription that will exist between the two entities, the sender and

the recipient, or user and contact respectively. The allowable values for this attribute

are:

None The user does not want to subscribe to the contacts presence information and

does not wish for the contact to have a subscription to the users updates

To The user wishes to have a subscription to the updates of the contact but does not

offer a reverse subscription.

From The contact will have a subscription to the users presence updates but the user

will not subscribe to the contacts presence updates

Both Both the user and the contact are subscribed to each others presence information

1This visualisation is obtained using the XML viewer on the Altova product which can infer a

visualisation of an XML schema (http://www.altova.com/)

45

3.1 Roster Group Formation

The optional attribute, ask, can have the value subscribe, which means that an

acknowledgement from the recipients server must be received to verify the connection.

When the ask attribute is present, the presence subscription is then set to none, by

default, until the response is received. The name attribute is an optional nickname to

associate with the roster entry. The schema allows for the formation or population of

groups during a subscription request. The group attribute is used to store the text based

name of the group associated with the roster entry. This group attribute is optional

and if it is not included in a request the contact will still be stored and rendered in

the user client. Figure 3.2 shows the XML representation of a user roster including the

optional group element.

Figure 3.2: Sample Roster with optional Group elements

Users can add new contacts to their roster through a roster set message. The user

can send a request to another user requesting a friendship link be established. Figure

3.3 shows the sequence of messages involved in establishing a presence relationship

using the roster set mechanism.

46

3.1 Roster Group Formation

Figure 3.3: XMPP Roster Addition Sequence Diagram

3.1.3 Group Formation Styles

XMPP facilitates group formation through three key mechanism :

• User Generated Groups

• Publish-Subscribe Groups

• Item Exchange Groups

3.1.3.1 User Generated Groups

A user generated group is created by a user from within their own client. The group is

created through a simple interface on the client device and populated by the creator.

This action prompts a roster set message being sent to the server, as the optional group

attribute has been updated. This modification occurs so the client, on future logins,

understands what groups to place roster items in. Listing 3.2 shows the structure of

the IQ request sent to modify the group entry.

<iq from=’user@example.org’

id=’rs123 ’

type=’set’>

<query xmlns=’jabber:iq:roster ’>

<item jid=’user2@test.com’ name=’user2 ’>

47

3.1 Roster Group Formation

<group >My Group </group >

</item >

</query >

</iq>

Listing 3.2: Group set IQ message

Some observations about user generated groups will now be discussed:

• Membership is anonymous

Users placed into a group are passive participants, completely unaware they have

possessed membership of this group. The group is thus private and serves no

purpose other then the logical placement of buddies within an end users client.

• Membership is not enforced or shared

Once a user has authorised a friend request and presence subscription, they have

bi-directional visibility on their IM clients. Any groups created by either user are

not enforced across the buddy lists and no membership notification occurs.

• A 1:1 relationship exists between users and groups

With user generated groups a buddy can only exist once and once only. Thus,

a buddy can only have membership of one user generated group at a time on a

users roster. Moving a buddy from one group to another causes them to lose their

existing membership in order to be associated with the new group.

3.1.3.2 Publish-Subscribe Groups

The second means of managing and creating groups within XMPP is a variation of the

publish-subscribe (pub-sub) model as described in XEP-0060 (Millard et al. (2002)).

This extension provides a framework for subscription nodes and event notification that

is compatible with XMPP. A variety of applications dependent on event notifications,

such as network management systems, can then benefit from the integration of XMPP.

An adapted version of this model can be implemented server side, allowing an admin-

istrator the capability of creating groups and subscribing contacts to them. Figure 3.4

show the creation of a publish subscribe group from the administrative point of view

within a popular XMPP server (Openfire (2012)).

48

3.1 Roster Group Formation

Figure 3.4: Administrative view of Pub-Sub Groups on an Openfire XMPP server

These pre-populated groups can then be published to end user rosters, effectively

bypassing the process described in Figure 3.3. Entities, groups and presence subscrip-

tions can be forced onto end users rosters. This is an effective way of subscribing users

to default groups, with all editing attributes removed to ensure the group structure

remains intact. Some observations of group formation in this manner include:

• Membership is enforced completely

The end user has no say in their participation of a pub-sub group and do not have

the choice of declining the invitation or leaving the group at will. The membership

is completely enforced and the group cannot be modified by members who do not

possess server administrator access.

• Overloaded Rosters

The creation of a pub-sub group which has roster sharing enabled causes all mem-

bers of that group to replicate the groups structure on their roster. This means

the addition of the groups population onto the end users roster. The compli-

cations arising from such a scenario are the enforced subscriptions, potentially

generating a large amount of additional presence updates. As it stands, Saint-

49

3.1 Roster Group Formation

Andre (2009) identifies presence as accounting for 90% of XMPP traffic, with

the majority of it being redundant broadcasts. Generating additional presence

broadcasts is thus an expensive side effect of enforcing memberships.

• Administrative Interaction required

To create a pub-sub group administrative access to the XMPP server is required.

The creation and management of the groups needs to be performed by an admin-

istrator due to the modifications required to end users rosters

3.1.3.3 Item Exchange Groups

This XMPP community recognised that shared groups should have a place within

XMPP, with an extension proposal submitted accordingly (Saint-Andre (2004a)). The

principles behind the extension eventually came into the XMPP protocol through the

Roster Item Exchange (RIE) extension, as outlined in XEP-0144 (Saint-Andre (2005)).

This extension proposed a means to recommend additions to another users roster which

can in turn be used to form groups. The extension provides a mechanism for a user

to share elements of their roster with another user, recommending additions, deletions

and modification. The roster items sent can range from individual entries, whereby

a single contact is shared, to sharing a roster group or indeed an entire roster. The

extension allows a recommendation of which group the roster item should be placed.

A sample XML fragment can be seen in Listing 3.3:

<message

from= user1@example . o r g

to= afriend@sample . o r g

<body >Add Jdoe from soccer !!</body >

<x xmlns= ja bb er .org/ rosterx >

<item action= a d d

jid= jdoe@sample .org

name= J o h n >

<group >Friends </group >

</item >

</x>

</message >

Listing 3.3: Structure of an RIE recommendation

A number of observations about creating and sharing groups in this manner include:

• Draft Format

The extension remains in draft format and its authors acknowledge that the

50

3.1 Roster Group Formation

requirements set forth by the community for shared groups and synchornisation

of rosters are not provisioned for completely within this extension but will be

addressed in future work.

• Not Optimised

The extension is currently not optimized for group management and group mem-

ber distribution. For groups of size N, an RIE request must be sent to N-1

accounts, containing recommendations for N-1 changes to be made.

• Recommendations not enforced

The changes sent are purely recommendations, which are free to be rejected by

the recipient of the RIE request. If the recommendation is accepted, a standard

friendship request is issued by the recipient to the recommended entity. This

request in turn can be denied.

• No acknowledgment

The requests sent are potentially blind, as no notification is returned to the orig-

inator of the request if the IQ mechanism is not utilised.

With two possible points of failure, the extension is not stable enough to guarantee

a shared and unified roster view across group participants.

3.1.4 Criteria for Group Formation and Management

The observations presented in Section 3.1.3 represent an analysis of the present group

models as implemented within XMPP. Some of the issues highlighted between the ex-

isting models are conflicting when compared directly, but represent potential extension

points. The following are therefore considered as criteria for extending and better in-

forming the group model, to ultimately empower a roster to better manage and facilitate

groups and end users.

End user created groups that can be shared and validated The end user should

have the functionality to create, share and populate private groups while ensuring

that membership across the group is consistent and optional. To extend the cur-

rent model this responsibility needs to be entrusted to the end user rather than

an administrator.

The ability to search for a group Taking other forms of group communication, par-

ticularly in the social networking domain, the ability to search for a group of

51

3.2 Group Roster Design

interest is a key cornerstone for connecting people. This functionality is not

provisioned for in the current group models.

Lightweight rosters The users roster should reflect subscription requests and friend-

ships that they have made. The addition of groups to a users roster should not

overburden the roster with additional entries for group members. To enhance

the group models performance, the roster should be clean and lightweight, while

maintaining the necessary group information.

Group directable presence Presence updates in XMPP are delivered to those with

the appropriate subscription requests. The current model for presence updates

allows users to direct their presence updates towards the entire subscribed roster

rather then a specific group. Presence for large interconnected groups can be

expensive. An extended group model should provision for presence to be directed

at a group rather than an entire roster.

Such requirements are representative of user behavior and expectations emerging

from current usage of social networks and are representative of the type of behavior

that emerging social networks will encounter. The rest of this chapter examines how

this criteria can be realised within XMPP by examining the scalability bottlenecks that

might prevent this realisation within the technology. Section 3.2 attempts to investigate

how end user created groups can be shared and validated to maintain a lightweight

roster. Section 3.3 examines the case for group directable presence by looking at the

effect that presence has on large scale rosters. Overburdened rosters are used to justify

the requirement for lightweight rosters. The ability to search for a group is a standard

feature that should be present within a group formation environment. Implementing

this feature is trivial but is noted for completeness around the criteria and not examined

within this thesis.

3.2 Group Roster Design

The weakly modeled group management principles within XMPP has prompted an

investigation into how a group roster could be designed. This body of work is an

attempt to investigate how the XMPP Roster can facilitate end user groups that can

be shared and validated. An investigation into designing a group roster is also presented

and critiqued.

52

3.2 Group Roster Design

3.2.1 Strengthening the XMPP Group Model

An XMPP server was configured, with Openfire (Openfire (2012)) the chosen server.

The Smack client library (Smack (2012)) was used to communicate with the XMPP

server and the Groovy programming language used to create and control the messages

generated by the clients within the simulation. In order to simulate the activity from

the clients, traffic breakdown characteristics outlined by Xiao et al. (2007) are used. A

poisson process is used with additional implicit assumptions about the independence

between clients activities. A working day, of eight hours, was simulated, with the

weightings changed for start of day, lunch time and end of day, as per the observations

of Xiao et al. (2007). The start and end of the working day sees more activity in terms

of service control as users login/logout. Lunch time is a quiet period of inactivity

with messaging ranked highest. The normal operation represents all other times with

presence being dominant. With these weightings, the first simulations were carried out

to give a normal operation view of an XMPP server across varying population sizes

with groups enforced through the pub-sub mechanism. Presence, messaging, login

events and roster maintenance were weighted accordingly within the simulation. The

second set of simulations represented how dynamic shared groups could be represented

within XMPP.

As per our dynamic group definition, groups should be barrier free. The pub-

sub model examined in Section 3.1.3.2 is thus not viable for managing groups. The

administrative overhead of requesting a group to be created is not realistic and would

lead to the system being circumvented, with any benefits the system could offer being

ignored and under utilised. Properties of the pub-sub model are still useful though,

particularly the unified view of a group across all member accounts. Similarly the user

generated group model does not meet the requirements, but the ease of end user group

creation is desired. As such, the examination of dynamic shared groups within XMPP

will look at the only current means of distributing a group, Roster Item Exchange, in

conjunction with User Generated Groups. For this simulation, the pub-sub enabled

groups were turned off, with RIE taking control of the management of the groups.

This simulation considered messaging, roster updates (via RIE), presence and login

events, with the simulation weighted accordingly. Any updates to a group would be

replicated out via RIE to ensure the group view remained intact. The breakdown of

events generated by the client over the course of all the simulations averaged out at the

following percentages. For normal operations the generated traffic breakdown was; 74%

presence messages; 21% IM chats; 4% for login/logout and 1% for roster maintenance.

In comparison, the RIE simulations saw 44% messaging, 28% roster item exchange

53

3.2 Group Roster Design

messages, 25% presence and 3% login/logout generated.

The simulations were carried out on initial population sizes of 10, 20, 30, 40, 50, 100,

200, 300, 400 and 500 accounts. In each instance, the individual accounts had a roster

size equal to the population size, with full bi-directional presence subscription for each

simulation population. The roster for each user was divided into groups possessing 10

members each and the group view replicated across all accounts at simulation start. As

the simulation population size increased the number of groups per roster subsequently

increased, with 50 groups per roster in the 500 population run. An additional 10

accounts, with no relationship to the data set were made available for roster requests

within both simulations. The metrics gathered included the Packets Per Minute (PPM)

that the server had to process for each simulation run at varying community sizes.

Figure 3.5 below shows this data.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400 450 500

P
a

c
k
e

t
P

e
r

M
in

u
te

 (
P

P
M

)

Users

RIE
Normal

Figure 3.5: Packets Per Minute of RIE and Normal Operations Vs Number of Users

The load generated and memory consumed by the server were recorded for the

larger runs. It must be noted that the results obtained for server load and memory

consumption have a number of variables which can affect the measurement, including

but not limited to, the hardware employed, the programming of the simulations and

the nature of the Just In Time (JIT) compilation (Inagaki et al. (2003)). Additionally,

due to the sensitivity of the monitoring plugin runs below 300 users were not recorded

and have thus been excluded:

• At 300 users, a load of 15.64% and memory consumption of 11.01% was recorded

for the normal simulation. This compares to 24.36% load and 25.96% memory

consumption for the RIE simulation.

54

3.2 Group Roster Design

• At 400 users, the load generated by a normal simulation run placed a load of

20.61% on the server with memory consumption at 12.97%. This compares to a

load of 24.20% and 29% memory consumption for the equivalent RIE run.

• At 500 users for a normal run, the load was recorded at 22.21% with memory

consumption at 25%. The same run for RIE saw 27.40% load on the server and

28.23% memory consumed.

3.2.2 Server Load Analysis

An XMPP server has identifiable stress points with traffic capable of being distinctly

broken down into client generated traffic and server generated traffic. The server has

to manage normal client related activities, including messaging and presence traffic as

well as the traffic profile generated by the resulting action, typically the propagation

of messages or presence updates. Even at low levels of traffic the split is noticeable.

Figure 3.6(a) below shows the breakdown of traffic within an XMPP server loaded with

500 inter connected users rapidly changing their presence. The orange traffic within

this figure is a result of the client generating a presence change and pushing it to the

server. The blue traffic is the resulting server side operation which updates the user

rosters and pushes the resulting new view down to the inter connected clients. This

traffic profile can be described as bursty, with sharp presence spikes incurring a lot of

server side overhead with the problem more evident at high levels of concurrent usage.

Figure 3.6(b) shows a typical usage scenario where the end users are not interconnected

presence wise. The overhead the server has to deal with in this capacity is the process-

ing of end user messages and the correct routing of the message. The split in client

generated overhead and server side generated overhead is much closer in this scenario.

Our problem domain envisions a mixture of both, accurately reflecting real world server

usage where a mixture of messaging and intense presence traffic is evident.

55

3.2 Group Roster Design

(a) Client-Server for Presence (b) Client-Server for Messaging

Figure 3.6: Client-Server Traffic Analysis

3.2.3 Observations

Scalability of Presence: The packets per minute generated by the normal traffic

profile, which is weighted towards presence and messaging scales linearly as expected.

The more accounts connected that have subscription relationships the higher the load,

memory footprint and PPM that the server has to deal with. From a scalability point

of view, presence distribution represents one of the biggest challenges that designers

of services that utilise the presence mechanism for broadcasting will have to tackle.

By oversubscribing the rosters through enforced group subscription this problem is

magnified unnecessarily.

RIE is costly: Roster Item Exchange as a means for distributing groups is very

expensive, particularly at low community levels. Up to a community level of 100 users,

RIE is still comparable with normal presence and messaging operations in terms of

Packets generated for the server to deal with. The load placed on the server and

memory consumption for RIE simulations in direct comparison to the normal presence

weighted simulations is an interesting statistic. Despite a PPM difference of up to 2500

in some runs, RIE has a larger footprint and resource drain on the server. In a live use

case scenario, the figures and client-server throughput would be a lot higher for RIE

then recorded, as more presence broadcasts would come through the server with real

world usage. The experiments recorded centered on the viability of RIE as a means

to distribute dynamic shared groups with messaging also a priority. Presence was a

relatively small component, but one that offers a more consistent and predictable cost.

The simulations did not consider varying group sizes, with the controlled setting of the

group size initially starting at 10 users but allowed to change independently. This was

56

3.2 Group Roster Design

to prevent a scalability bottleneck by starting with artificially high groups, far removed

from the scenario outlined. An initial group size of 50, for example, would see a lot more

RIE requests required to retain the shared aspect, something which might have caused

problems with timing and packet loss as the server had the potential to get overwhelmed

with such large groups. It is worth noting the breakdown of traffic observed from client

to server in both simulations. In the largely presence based simulation, the majority

of the traffic flows from server to client, as presence updates are broadcast to the

subscribed population. For roster item exchange the client generates over half of the

traffic as roster item exchange messages are broadcast to other users. Within the

scenario outlined, smart phones and similar ubiquitous devices would be required. A

large client to server traffic stream would place significant strain on client resources

and create an additional scalability problem where group size and number of groups

per client device would have to be considered.

RIE disadvantages: A number of guarantees were required within the RIE based

simulation to ensure that the groups would be distributed accordingly. Simultaneous

RIE requests were not allowed in order to preserve the integrity of the group structure.

Two RIE requests from different sources had the potential to create different inter-

pretations of the group structure. Additionally, presence subscriptions were forcibly

injected into the simulation. RIE, by design, does not include a presence subscription

when adding a new user to a group. When adding a new user it could not be assumed

that the intended account to be recommended to other users already had a presence

relationship with the RIE recipients. As such, an additional subscription packet had

to be sent. All rosters also had an auto accept enabled for presence and RIE subscrip-

tions, something which the RIE specification strongly advises against due to legitimate

security concerns. It would be possible for a Denial of Service (Mirkovic et al. (2005))

attack to occur by pushing through a large volume of RIE requests that conflict in a

short amount of time. If this feature were turned off, it would be possible for individ-

ual recipients to simply reject the RIE request and therefore not have a shared group

view. The usage of RIE deletion requests is not provisioned for in the simulation. The

behavior of forcing the permanent deletion of a roster entry through a recommendation

system was deemed a security vulnerability and one which could adversely effect the

results of the simulation.

57

3.2 Group Roster Design

3.2.4 Managing Roster Groups within XMPP

The deployment of dynamic shared groups within XMPP, while possible, has too many

assumptions associated with it and no formal management provisioned. A working

implementation is possible with clever programming and a community willing to stick

rigidly to the guidelines, but a long term, scalable management solution would allow

XMPP evolve group based applications in a controlled manner. The group management

structure is dated but serves faithfully the original purpose of XMPP. The management

of groups is important enough to be abstracted away from XMPP, to provide more

control for group management and formation. The experimental architecture proposed

to investigate the viability of managing groups external to XMPP is shown in Figure

3.7.

<<component>>

Client

<<component>>

Server

<<component>>

Interceptor

<<component>>

Strong Group Manager

Inject Strong Groups

Check for Strong Groups

Retrieve Roster

Roster Request

6. Return Roster

5. Inject Strong Groups

4. Check For Strong Groups

3. Return Roster

2. Lookup Roster
1. Send Roster Request

1. Send Roster Request

1. Send Roster Request

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 3.7: Component Architecture View

Using the notion of a JID, the authors extend this concept to a Group ID, or

GID for short. A GID would be used to hold a reference to a Group which would

reside on a group server and would structurally take the same format as a JID address:

group name@group server domain

The group server in this case is an unmodified XMPP server. A standard XMPP

server would also be used to handle normal operations. A modified client would create

one connection to the standard XMPP server and download the users roster. The client

would make multiple connections to the GID server, with each connection representing

a group that the clients owner is a member of. The interceptor is a modified connection

manager, modeled on Openfire (2009), which traditionally would be used to alleviate

scalability by operating as an anonymous proxy. The nature of the interceptor allows

58

3.2 Group Roster Design

the user to intercept and view packets and route them appropriately. The interceptor

would be associated with the group server and would communicate with an internal

data-structure to assist in the routing decisions Experimentally the viability of this

setup was tested by using a novel approach. Two XMPP servers were established, with

one designated the GID server. A set of accounts were created on the GID server, each

one representing a group. Client devices held a connection to their own JID server and

several connections to GID accounts. The multiple connections to the GID accounts

were facilitated by the novel use of the resource mechanism. A sample GID account

name and resource could be group1@groupserver/jid@normalserver

By making the resource equal to the JID of the owning account, modifications

in the interceptor allowed the routing of messages to the appropriate account. The

simulations carried out in Section 3.2.1 were repeated for population sizes of 10, 20, 30,

40, 50, 100 and 200, population sizes where RIE was close, if not more expensive than

the equivalent presence overhead. The populations were connected to the JID server

with their roster sizes varying. No roster sharing occurred on the JID server accounts.

The GID server had 10 groups populated with members of the JID server, with each

connected JID account logging into several GID accounts through the resource system

described. The simulation was run using the same weighing as the RIE simulations.

The graph in Figure 3.8 shows the results in terms of aggregated PPM. The results

show that using the resource mechanism in this manner drastically reduces the number

of PPM required to share groups out in a dynamic manner.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400 450 500

P
a

c
k
e

t
P

e
r

M
in

u
te

 (
P

P
M

)

Users

RIE
Normal

GID resource

Figure 3.8: Packets Per Minute of RIE and Normal Operations and GID Resource

based Groups Vs Number of Users

59

3.3 Scalability and Performance of Groups

The approach taken was experimental but it shows that shared groups through

multiple servers are possible and viable for small groups. Taking the resource approach

is not a long term solution with group account credentials shared out among users being

an obvious security concern. The impact on client and server side hardware will also

be a barrier as multiple stream management causes a resource drain on the hardware

deployed. Due to such limitations, the experiments could not scale safely beyond 200

accounts due to threading and memory management issues. The results are useful

however, in that they do show a significant improvement at low population levels.

3.2.5 Summary

This experimental work highlighted the inefficiency of the XMPP protocol to share

and distribute groups. RIE is a very costly mechanism to distribute groups with too

many guarantees to ensure the groups are accurate. The attempts at engineering a

Group Server, using a GID mechanism showed that XMPP could benefit from an

external entity managing groups. Group Management through a Roster mechanism is

possible within XMPP but ultimately in a limited capacity. The design is hindered by

scalability issues within existing clients and by virtue of using the protocol outside of

the scope of the inital protocols intention. Abstracting the Group Roster from the in

built communication mechanisms group management principles is the only logical way

a group can be maintained in a safe, scalable manner. A unified view of a dynamically

changing social network, in an efficient manner is beyond the current state of the

art within the protocol. This partly satisfies RQ-GFM1 while also establishing some

results to discover additional scalability limits which RQ-S1 set out to examine. The

next section will examine the viability of the existing roster to manage large scale group

communication in an efficient and lightweight manner.

3.3 Scalability and Performance of Groups

This section deals with emerging usage patterns, centered around content delivery and

the formation of large groups. These usage patterns are representative of how people

are interacting with technologies in ways that were not predicted. The effect this has

on the Roster and the case for minimising the presence footprint and for maintaing

light rosters is initially investigated. A complementary investigation outside of XMPP

is also carried out, investigating how a domain, with no limitations or boundaries with

respect to a protocol, can perform group formation on a roster style mechanism.

60

3.3 Scalability and Performance of Groups

3.3.1 Large Group Management

Scaling messaging services beyond the levels for which they were originally architected

is the motivation for this analysis. In particular, the large scale delivery of individual

messages, based on presence, to traditional Instant Messaging clients. Typically, IM

systems assume that a users buddy list is scaled to human dimensions. So a roster

might typically have 50-100 contacts (buddies). However, in some circumstances it

might be interesting to propose a usage pattern whereby a given user appears as a

contact (buddy) on thousands, or tens of thousands of rosters. This could be for

emergency services, direct marketing, customised alerts or other forms of usage that

leverage presence of messaging on a large scale. In functional terms, reliable, scalable

short message broadcasting means being able to account for every message sent, and to

be able to deliver messages quickly and efficiently, even as the number of users attached

to the XMPP roster increases. It could be argued that this use-case for XMPP was

not envisaged, i.e. the normal use-case, is a private individual with a few hundred

or less contacts on his/her roster where reliability and scalability are not crucial. As

with many other technologies, actual use-cases cannot always be predicted with business

requirements dictated by user needs. Mass presence handling and message broadcasting

built on top of XMPP is attractive for both publisher and consumer. Implementing this

use-case seems possible, but is certainly not trivial. Efficiently handling the concurrency

from a language perspective can help facilitate such use cases.

3.3.1.1 Concurrency Programming Paradigms

Diverse approaches to programmatically coping with concurrency have long been a

source of contention among software developers. The evolution of the various ap-

proaches to concurrency is well illustrated in the C like languages, particularly Java.

Although Java was designed with thread based concurrency in mind (unlike C and

C++), its concurrency support has evolved signicantly since its inception, with adjust-

ments made to the core syntax, the libraries and the recommended approaches. The

fundamental mechanism (synchronised keyword to serialise method access), has been

supplemented with concurrent data structures, more expressive annotations, and an

extensive rework of the concurrency model in Java 5 to incorporate a new executor

framework (Long & Long (2003)). However, concurrent programming in Java is still

regarded as complex and error prone, with non-determinism an ever present worry,

even for systems long deployed in the eld.

The java concurrency model is founded on the shared state semantics of a single

61

3.3 Scalability and Performance of Groups

multi-threaded process, whereby threads can share resources and memory, but with

locks associated with specic data structures. Alternatives to this model have gained

some ground. The actors model rules out any shared data structures (and their resource

hungry locks), with concurrency achieved by message passing between autonomous

threads. Each thread, termed an actor, has exclusive access to its own data struc-

tures. In functional languages derived from Java (Scala, Clojure), immutability itself

is elevated to be the default programming model. This requires wholesale adoption

of functional approaches (or object-function hybrids in the case of Scala), with the

consequent profound change in programming style and heritage. With all of these

approaches there is one common characteristic. Separate threads are created, with

their own stacks and program counters. Although the opportunities for inter-thread

synchronisation vary, such synchronisation must occur at some stage, with consequent

overhead associated with task switching, memory usage and general processor load.

There is an alternative, which has its origins in an era that predates the general

acceptance of multi threaded infrastructure. Evolved to meet the requirements for re-

sponsive I/O in single processor systems, it sometimes takes the term Non Blocking

I/O, although this term has also been applied to threaded designs. Originally devised

as a set of interrupts and associated daisy chained interrupt handlers, in the modern

sense, Non-Blocking I/O implies an extensive use of callbacks in API design and us-

age. In this context, all opportunities for blocking are replaced by passing a callback

parameter, to be invoked on completion of the deferred task or I/O request. A some-

what counter-intuitive programming style, it has been criticised for its verbosity and

general awkwardness. In certain programming languages it is indeed verbose, Java in

particular is encumbered with a high ceremony anonymous inner class syntax which

makes callbacks quite difficult to orchestrate. Also, in Java and other languages of that

generation, the callbacks are limited in scope and place severe restrictions around the

context they can access. What they lack is a closure capability - essentially a form of

delegate/callback/function handle - which also carries (encloses) a well defined context

that can be safely accessed when it is activated. A closure thus allows a function and

associated reference environment safely access non local variables even when they are

invoked outside of its immediate lexical scope. Essentially, it enables the introduction

of Lambda expressions within algorithms, enabling a degree of expressiveness and con-

ciseness difficult to match with more conventional approaches. Closures have become a

hot topic in programming language recently, and Java itself is slated to this capability

in future versions. JVM derived languages such as Scala and Groovy have this capa-

bility, as does Closjure, via its Lisp heritage, and JavaScript. In fact the term closure

62

3.3 Scalability and Performance of Groups

originates from these functional languages.

3.3.1.2 Experimental Approach

For the purposes of this investigation an XMPP server was required. Openfire (Open-

fire (2012)), an open source Java based XMPP server was chosen for the tests. The

extensible nature of the server, delivered in the form of plugins and components, along

with the availability of its core API facilitated this investigation. The service scenar-

ios of interest, such as direct marketing campaigns or emergency communication had

the potential to involve tens of thousands of users. In comparison to the previous in-

vestigations within the XMPP domain, this scenario assumes the groups are already

formed and the performance of such large groups is under investigation. Such a scenario

will further the justification that group management is a discipline in its own right and

needs enhancements and instrumentation to function. The messages sent would be time

sensitive and only distributed to those in a position to receive the message, dictated

by their presence status. Consulting a roster with thousands of users was not possible

to implement within existing XMPP servers without the aid of a plugin. Rosters of

that size are unwieldy and have the potential to cripple the performance of the server.

Additionally, no guarantee is provided that the message sent was received by the server

and processed for delivery. The approach taken saw the design of three plugins to be

tested with the Openfire server. These results could then be compared to a fourth

plugin, the default or legacy plugin within Openfire. The XMPP plugins extend the

functionality of the Openfire XMPP Server, interacting with the server, the roster and

the end-user in the form of a buddy. The plugins under investigation receive messages

through a Java Message Service (JMS) (Richards et al. (2009)) queue for delivery to

the roster recipients. The plugins under investigation are described below:

Legacy Plugin The Legacy Java plugin was not developed with a realisation of the

concurrency issues that would come into play, especially under load conditions. The

approach employed is to wait for an event on the XMPP or JMS interfaces and to

process the event to completion on the event thread. The main class employed was not

thread-safe due to access to a shared hash-map and the approach was monolithic rather

than decomposed into tasks. This plugin is included for completeness and as a point

of reference for one set of experiments. The plugin could be classified as non-blocking

by virtue of not using threads, but no attempts are made to optimise the performance.

63

3.3 Scalability and Performance of Groups

Java Plugin The Java plugin uses a fixed size thread pool with a tunable thread

parameter encapsulated by a custom demultiplexer abstraction. Each type of event is

modeled as a Task which performs a discrete unit of work, or calls on other Tasks to

perform work. In each case the Task is submitted into an Executor for queueing and

execution by the next available thread from the thread pool. This plugin uses the Java

Executor framework. There are two such thread pools employed in this plugin, one for

JMS events produced by the application server and the other for XMPP events. Each

one may produce new tasks for the other. For example, a JMS message request from

the application server will produce an XMPP message event to an XMPP end-user.

Reliable access to shared data was identied as a problem for the system in this study

owing to the use of a shared presence map. With thread safety a crucial requirement

for the plugin, it was necessary to implement a reliable thread safe data structure. The

current best-practice mechanism would be to use Javas concurrent collections (Bloch

(2008)). The existing non thread-safe HashMap implementation was replaced by a

Concurrent HashMap1. This implementation employs its own thread-safe concurrency

mechanisms, is highly efficient and is already thoroughly tested.

Scala Plugin The third plugin uses the Scala language (version 2.8) and Scala Actors.

Five actors are employed: a PresenceActor, MessageActor, ControlActor, JMSActor

and an XMPPActor. The MessageActor routes XMPP chat messages to the outgo-

ing JMS queues via the JMS Actor. The ControlActor processes requests from the

application server, as well as XMPP Query packets, and routes outgoing messages to

the XMPP interface. The JMSActor sends control, chat and presence messages over

the JMS queues to the application server, and the XMPPActor sends XMPP packets

out via the XMPP server. Each actor uses the react() method rather than receive()

method which is well suited to event-based applications, and ne-grained tasks where

the work scheduler can employ work-stealing techniques (Haller & Odersky (2009)).

The PresenceActor provides guaranteed thread-safe presence lookups on a Scala Map.

This presence facility was an important aspect of the design of the plug-in. Since the

data contained in this map is shared between objects, the default choice for a Java de-

veloper would be a synchronised or concurrent HashMap. This choice was deliberately

avoided in favour of an ordinary Scala HashMap free of any locking and simultaneous

access. The consequence of this choice is that the lookup becomes asynchronous. The

only practical way for the calling actor to know which presence result belongs to which

1Within the java.util.concurrent package is a Concurrent HashMap Class. The API is available on

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/ConcurrentHashMap.html

64

3.3 Scalability and Performance of Groups

message, and without maintaining state information in the calling Actor, is to pass the

message along with the lookup and to have the PresenceActor return it along with the

result. The possible disadvantage here is the additional data transferred between the

entities but since Instant Messages are generally short the tradeoff seems acceptable.

The use of Case Classes and pattern matching keeps the code short and easy to read.

Node.js Component With the Node.js framework (Dahl (2009), JavaScript is no

longer just a language supporting user interaction within browsers (client-side). Based

on the Google initiated, open source V8 JavaScript engine, JavaScript, or languages

that can compile down into JavaScript, can be be compiled into highly optimised server-

side machine code on the fly. The Non-Blocking nature of JavaScript is present within

Node.js with all requests gradually executed in sequence through the usage of callbacks.

Node.js allows an elegant solution to be engineered for traditional scalability problems.

A different approach was taken to create a non blocking plugin. The open source com-

munity developed xmpp.js (Wild (2010)), a useful Node.js library enabling access to

an XMPP server as a component. An XMPP component (Saint-Andre (2012)) be-

haves in the same manner as a plugin, implementing new features but with the added

benefit of not being tied to a specific server implementation, thus making it portable

and reusable. The component binds to the XMPP server domain and becomes a part

of the server in the same manner as a plugin. It is addressable and has its own JID

in the form of a domain name making it accessible e.g. component1.myserver.com.

All incoming stanzas addressed to that domain or to entities on that domain e.g.

buddy@component1.myserver.com will be routed to the component base code where

they can be subsequently analysed and delivered. Outgoing stanzas can be sent on

behalf of any user on the domain giving the component full control of message delivery.

Using the power of this library a simple component which would deliver the same func-

tionality as the Java and Scala plugin discussed above was created. This Non-Blocking

design resulted in the component having two functions, an onPresence() and an on-

Message() function which would be used for callbacks to handle presence and message

events respectively.

The role of each plugin was to accept presence messages from contacts on the servers

roster, record the presence state and deliver chat messages to designated recipients who

were online and available to receive them. Messages to users with a presence indication

that they were not in a position to chat would not be sent. Figure 3.9 shows the internal

structure of the XMPP plugins.

65

3.3 Scalability and Performance of Groups

Figure 3.9: Overview of XMPP Plugin Internals

Figure 3.10 shows the architecture used for the scalability and reliability experi-

ments. It shows the Openre XMPP plug-ins (shaded in yellow) and the role they play

within the architecture. The plugins interacts with the XMPP server, the XMPP Ros-

ter, the end-user in the form of a buddy, and with a JMS Broker. The application

server represents an external service that requires mass message delivery to online and

available contacts. This service maintains groups of JIDs with the end user capable of

sending a message to a specific group or groups. For the purposes of these experiments

the application servers message load and recipient list is generated by the simulator

and fed to the JMS message queue. JMS Messages can also be created by the plugin if

required, such as when presence changes occur. These messages are checked to measure

accuracy i.e. correctness of the plugins behavior.

66

3.3 Scalability and Performance of Groups

Figure 3.10: Experimental Setup

A customised Botz library (Botz (2007)) was developed to enable users to rapidly

create user accounts and authenticate with the system. The experiments performed saw

a load generator assume the role of the application server. The load generators role was

to login 10,000 users, and produce 10,000 messages to be distributed to the user base,

a single message per user. These messages would be fed to the JMS and subsequently

handled by the plugins. A second set of tests was also devised to investigate how the

plugins throughput would be affected by a heavy presence load. A second load generator

was set up using the Botz library with 5000 users set to login and logout rapidly.

This action produced Available and Unavailable presence statuses upon connecting

and disconnecting with the server, respectively. This kind of rapid flooding of presence

messages is designed to replicate a busy XMPP server and provide a more realistic

performance evaluator of each plugin as they attempted to deal with the messages sent

from the original generator. For each series of tests, the plugins were attached to the

same server independent of each other and every effort was made to ensure accuracy

and independence in the results gathered. The machine used for all tests was a 2.13GHz

Intel Xeon powered 8.04 Ubuntu Server with 2Gb of RAM. Openfire version 3.6.4 and

JVM version 1.6.020 were also used. Tests were run 20 times and the results gathered

67

3.3 Scalability and Performance of Groups

for analysis are presented below

3.3.1.3 Message Throughput

Table 3.1 shows the single load generator results. All figures below are in terms of

messages per second that the plugin dealt with.

Plugin Min Mean Max

Java Exec 109 270 322

Scala 214 249 267

Node.js 1360 1485 1608

Table 3.1: Single Load Generator results in messages per second delivered

The Java Plugin showed a trend of decreased throughput most noticeable as the

thread pool size increased. The Scala plugins performance was comparable with the

Java plugin but only at the higher end thread-pool settings. For the smaller thread

pool settings the Java plugin was on average 15% faster. The Node.js components Non

Blocking approach saw considerably higher throughput. The peak results are of an

order of magnitude higher than the Java equivalent. Table 3.2 shows the results of the

dual load generator with the Legacy plugin included as a baseline comparison

Plugin Min Mean Max

Legacy 8 21 69

Java Exec 14 76 151

Scala 29 82 108

Node.js 518 621 745

Table 3.2: Dual Load Generator results in messages per second delivered

The Legacy plugin was used in this series of tests to provide a base figure for

how a standard Openfire server would perform while trying to deliver messages in an

environment with a lot of background presence noise generated by the second load

generator. As to be expected the plugin performed poorly, dropping to as low as

8 messages per second. The Java Exec plugin had the highest peak throughput of

the Blocking I/O based plugins but performance was somewhat erratic. The more

controlled nature of the Scala plugin led to more predictable results with a marginal

improvement on average throughput. Figure 3.11 below shows the three Blocking I/O

plugins performance and the variability observed within test runs.

68

3.3 Scalability and Performance of Groups

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(M

e
s
s
a

g
e

s
 p

e
r

s
e

c
o

n
d

)

Test Run

Throughput of Blocking I/O plugins with Dual Load Generator"

Legacy Plugin
Java Plugin

Scala Plugin

Figure 3.11: Dual throughput performance of Blocking I/O plugins

The Non Blocking I/O component did not suffer the same percentage drop in aver-

age throughput when it was faced with the noise of the rapid user logins and presence

updates. Figure 3.12 shows the results gathered over the 20 runs and compared with

the Blocking I/O based plugins

69

3.3 Scalability and Performance of Groups

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(M

e
s
s
a

g
e

s
 p

e
r

s
e

c
o

n
d

)

Test Run

Throughput of plugins with Dual Load Generator

Legacy Plugin
Java Plugin

Scala Plugin
JavaScript Plugin

Figure 3.12: Dual throughput performance of plugins

3.3.1.4 Memory Footprint

Memory usage was relatively light for all four plugins with some noticeable differences

depending on the load scenarios. For the single load generator tests, the Scala profile

was less then 50% of the Java profile. This situation was reversed when the second load

generator became active. Scalas memory footprint increased from an average of 20Mb

to over 180Mb. This was to be expected in an environment where shared memory is

kept to an absolute minimum. The memory overhead was eventually enough to cause

throughput degradation and eventually heap space errors on the Openfire JVM. The

Legacy, Java and Node plugins had roughly the same memory footprint of around 70Mb

across all tests.

3.3.1.5 Observations

The CPU utilisation for the tests was also recorded. The Blocking I/O based plugins

rarely troubled the CPU and did not consume many CPU cycles. The Node.js compo-

nent however consumed 100% of available CPU resources when run on the single load

generator tests. The multiple callbacks to handle events and deliver messages required

a lot of CPU usage but delivered a far superior throughput for this trade off. On the

dual load generator tests the throughput of the node.js plugin was directly related to

the available CPU. The average CPU usage for the Node.js process was 68% with the

70

3.3 Scalability and Performance of Groups

min and max results outlined earlier having a corresponding CPU usage of 54% and

79% respectively. The chance to take more CPU cycles was denied by the prioritisation

of the roster updates by the XMPP server. This costly, but necessary action limited

the potential of the Node.js component. Running the Node.js process on a separate

machine to the XMPP server would increase the performance but was not within the

scope of this work due to the nature of the other plugins developed.

3.3.1.6 Message Accuracy

Table 3.3 shows the message and presence delivery accuracy of the plugins within the

dual load generator tests.

Packet Type Legacy Java Scala Node.js

Messaging 70% 90% 100% 100%

Presence 100% 100% 100% 100%

Table 3.3: Dual Load Generator Message Accuracy

The legacy plugin became overwhelmed quiet quickly and the resulting loss of 30%

represents a serious QoS problem for using a default XMPP server within a high load

scenario. The Java plugin was a marked improvement in terms of accuracy but at times

of high contention the concurrency issues were reflected by the number of messages lost.

The Scala and Node.js plugins resulted in 100% message delivery. It is interesting to

note the prioritisation of presence, which is directly related to roster management. The

100% presence delivery is required to guarantee the accuracy and integrity of the roster.

3.3.1.7 Summary

This experimentation of emerging usage showed viable scenarios where existing infras-

tructure struggles to complete the task at hand (RQ-GFM1, RQ-S1). Delivering mass

messages to groups in a short time span needs to be performed in a timely manner with

complete accuracy. This experimentation puts forward a case for Non-Blocking I/O as

core components in any deployed system that has to manage group communication ser-

vices in a near real time manner (RQ-GFM2). The criteria presented in Section 3.1.4

shows that lightweight rosters are desirable as large scale rosters, particularly those of

interconnected users, can create a scalability bottleneck on the server side. Presence in

this instance is also very expensive, causing a sizeable performance drop that program-

matically can be handled but should be avoided. The case for being able to limit and

direct presence at groups rather then the group membership should yield performance

71

3.3 Scalability and Performance of Groups

benefits, even in cases where Non-Blocking I/O is used, as per the results in the single

load generator tests.

3.3.2 Mass Group Management

The investigations carried out within the XMPP protocol have proved useful for the

understanding of how to form, structure and record a group within a roster. However,

the protocol in many respects is limited by its own roster specification. In particu-

lar, the presence aspect of the protocol has limited the potential to investigate mass

group management. This is due to the priority of presence messages to preserve the

integrity of the roster and the scalability issues surrounding presence in highly con-

nected rosters. The previous section highlighted the impact that presence can have on

the performance of a relatively straightforward user requirement. Moving away from

XMPP, lessons can be learned which can facilitate the structure and design of a group

formation and group roster model. A social networking system can be designed from

the bottom up with scalability in mind, thereby facilitating a greater understanding

of where bottlenecks might emerge. A candidate for this is the notion of a check-in, a

term described earlier in Section 2.2.8 which is capable of having groups form around it

and thus represents a domain of interest. The usage profile of check-in based services is

significantly different from XMPP based groups. The current style of a check-in group

typically follows a gamification trend (Deterding et al. (2011)) with respect to locations.

However, the check-in concept allows for richer, more serious applications to emerge.

One such domain of interest is Disaster Management, a domain where social network-

ing applications can play an important role for accessing and consuming information,

this was highlighted in Section 2.2.7. This section presents a case study within the

humanitarian relief domain, where group formation and management principles could

be applied in the future.

First Responders, the medical personnel that make Triage decisions to prioritise care

when vastly outnumbered can structure and co-ordinate their rescue efforts by efficiently

parsing this information. However, the current means of using social networks is in an

unofficial capacity, with potential drawbacks including the granularity of information

available, misinformation, timeliness of information and which information to prioritise.

By using the check-in route, the possibility of empowering the end user to make choices

during their check-in process can alleviate some of these issues. Information can be

more structured, precise and possibly leverage contextual information contained within

devices or the environment. Information can be abstracted and parsed from the checkins

which might better educate potential first responders before they reach the scene. This

72

3.3 Scalability and Performance of Groups

scenario takes checkins encoded within JSON and parses the metadata to dynamically

form groups based on the included metadata. This experimentation examines how mass

group management can facilitate first responders in dealing with an emergency scenario

and prioritising care through a triage algorithm. The experimentation is designed to

validate technological choices with a naive view of rescue management in an idealised

world.

A user centric view of the domain under investigation is visible in Figure 3.13.

Figure 3.13: User View of Checkin Solution

The Triage system in place within the system takes user inputted information and

places it within an algorithm. The users within their check-in inform the system of their

ailment which has a weighting associated with it. The application also uses a scale of

1-7 to describe how serious their injury is, with 1 being minor and 7 being severe.

The values 1 to 7 were chosen based on a comparative injury scale which can classify

injuries into minor, moderate and severe (Stewart et al. (2004)). Minor implies that

their injury does not interfere with most activities, moderate interferes with a lot of

activities and severe is unable to engage in activities. As pain and illness tolerance vary,

the subjective nature of the descriptive words tend for patients to gravitate around the

middle of the scale, distorting the assessment somewhat. With a known shortage of

medical personnel, people would tend to gravitate towards the far end of the moderate

scale or into the severe in order to prioritise their health care. By using a combination of

weighting with respect to the injury type and removing the traditional base 10 weighted

scale, the end user has to make a conscious decision on where they think their injury

73

3.3 Scalability and Performance of Groups

fits in. Combining these inputs within an algorithm (see Algorithm 3.1 for a sample) a

3 step Triage system based on priority can be achieved.

Algorithm 3.1: Triage Algorithm for Triage 1 classification

if checkin.userTriage ≥ 5 then
We have a high user entered value, now check their injury

if checkin.injuryType ∈ seriousInjurySet then
Their injury is on our defined list, genuine Triage 1 case.

if Triage1Group ∈ currentActiveGroups then
Triage1Group = Triage1Group ∪ {checkin}
return Triage1Group

By applying such an algorithm to the received check-ins, the group formation system

is better informed as to what category to associate each check-in and consequently what

groups to form. Triage 1 represents patients that are most in need of immediate care

and need to be engaged by medical personnel as fast as possible. Triage 2 patients have

injuries which are not currently life threatening but would need to be treated sooner

rather then later. Triage 3 patients are designated walking wounded and their care is

not prioritised until more serious patients are dealt with first.

3.3.2.1 Simulation Discussion

Figure 3.14 shows the architectural view of the simulation.

74

3.3 Scalability and Performance of Groups

Device Applications
JSON

Encoded
Check-in

Allocate

Active
Group

Rescuers

Group
Formation

Group
ModificationMetadata

Parsing

Check-in
Filter

Reverse
Checkin

Information
Queue

Health
Queue

Check in

Group
Manager

Resource
Assignment

Group DB

Tuesday 7 August 2012

Figure 3.14: Overall Architecture View

The following components were specified and authored within Javascript using the

Node.js platform. The throughput capabilities of a Non-Blocking I/O architecture

would be required to meet the concurrent check-ins envisioned within this simulation.

Group Manager The Group Manager has the responsibility of establishing and

modifying groups. Fed directly by the output of the check-in component and with

access to the underlying data store, the group manager generates several groups from

the metadata contained within the check-in. The Group Manager also passes on rescue

groups to the rescue assignment component, dictated by the current strategy outlined

by the rescue coordinator. In addition to creating the groups, the group manager

associates a management object with each group. This object, a closure with defined

context, acts as a means to update the group membership at the programmatic level,

via callbacks. Allowing the groups a degree of self management reduces the overall

strain on the system.

Rescue Assignment Component Designed around management documents dic-

tating the strategy for rescuing people, the Rescue Assignment component requests a

relevant group from the Group Manager. The component contacts the rescue teams

and care givers passing them relevant information obtained from the check-ins including

injury descriptions and location. A geolocation marker is pushed to the rescue teams

75

3.3 Scalability and Performance of Groups

devices showing the location of people in need of care. A reverse check-in is sent to the

patient device updating their map with the current geolocation of the rescue team and

an estimated ETA based on historical evidence gathered throughout the rescue process

Check-in Component The check-in component is the main entry point for check-ins

into the system. Designed with scalability in mind, this component makes the greatest

use of the capability of spawning a replica child process and migrating process to

another machine in times of extremely high load. The main function of this component

is to strip the check-in information into information capable of being understood by the

system as a whole. The check-ins are passed on to a database component for storage

as well as directly to the group manager.

Database: Redis The database chosen complements the language and architectural

decisions made in the upper layers. Redis, a NoSQL database with a Node.js interface

was chosen. NoSQL databases are non-relational, distributed databases that deliver

horizontal scalability. Redis is a data structure orientated storage system, providing

a storage mechanism that complements the in built language data structures. This

not only removes the mental disconnect from a development point of view, but also

reduces friction between the core components. Redis additionally brings an in built

publish subscribe mechanism, allowing a user register their interest in being notified

of key events. Complementing the in built pub-sub system of Node.js and the Hook.io

enabled distributed pub-sub, it ensures the system is reactive and constantly undergoing

self monitoring.

Additional Libraries: Hook.io All components are enabled with the Hook.io li-

brary (Nodejitsu (2011)) allowing for a Spoke and Wheel Pattern for communication

within the architecture. This allows components to be split across several processes

and indeed machines, distributing the core components of the system for redundancy

and security reasons. At the core of the library is a distributed publish-subscribe mech-

anism allowing cross process communication. Interestingly, the library can adapt any

Javascript based legacy systems into a hook enabled component with a few short lines

of code. The library has a useful, UNIX inspired feature, which allows the spawning

of child processes, identical copies of the running program. This mechanism is used to

great effect during times of high load.

The architecture was designed around components built and tested for resilience

using the Node.js infrastructure and encoded within Javascript. A Group Manager

76

3.3 Scalability and Performance of Groups

component was responsible for receiving the check-ins and processing them into appro-

priate groups. The groups created included Triage Groups, injury specific groups and

location specific groups. The component was responsible for the lifecycle of the rescue

groups, allocating groups as resources to be assigned to available rescuers. The actors

within this simulation are patients trying to inform first responders of their current

location and medical condition in order to facilitate a more efficient rescue response.

The term simulation environment is misleading as the components produced are

in fact implementable and robust. The inclusion of the Hook.io library allows the

system to scale out appropriately, replicating functionality in order to alleviate strain

on the system. As such, the simulation environment would reflect the timing and speed

of a real world working system with guarantees in place to protect what would be a

mission critical system. The architecture was hosted on an Intel dual-core machine with

2Gb of RAM, running recently patched Ubuntu 10.10. Table 3.4 shows the simulation

paramaters and their associated values:

Paramaters Value

Number of Users 30,000

check-in Rate Poisson Process λ = 100 per second

Rescuer Number 100

Time for Attending Patient Mean Time based on Injury Type, SD: 10 mins

FIFO Buffer Size Infinity

Time to Travel for Rescuer 20kmp/h

Patient Condition Types 3

User Location on Map Random Placement

Table 3.4: Simulation Inputs

Figure 3.15 shows the results of the randomised distribution of checkins and the

initial point from which the simulations begin.

77

3.3 Scalability and Performance of Groups

Figure 3.15: Initial Check-in Distribution Heatmap

For timing reason, simulation time used in the running of the tests was set at

1000ms = to 1min, with graphics reported in the latter. The graphics, for readability

purposes, include every 250th point. The check-in set generated had a random chance,

seeded by the system clock within the GNU Scientific Library (GNU (2012)), of having

a triage classification weighted towards both ends of the scale, an equal chance of one

of three injury types (each with associated times to fix) and a randomised geolocation

within a city map grid. The rescuers were located from a central unit and after any

patient has been dealt with, their geolocation would update to reflect their new location

before moving to the next patient within their active group. Group formation plays

a key role in this experimentation, groups form from the first checkin onwards, with

groups having members added and removed dynamically. As such the system needs

to coherently manage a group ensuring that no checkin is lost or that first responders

are not allocated checkins that have already been dealt with. The results presented

in the following subsections focus on the Triage 1 and Triage 2 cases, the users whom

need identifying and treatment the most. It must be stated that the simulation is naive

from the rescue management point of view. Environmental factors, which would slow

progress, are not considered within the simulation. Attending to a patient is based on

a mean time based on injury with a standard deviation built in. Additionally, rescuers

ignore Triage 2 patients after the core grouping logic completes, with the simulation

78

3.3 Scalability and Performance of Groups

entering a triage based rescue. Within a real life disaster management scenario, tough

decisions would need to be made with regards Triage 1 patients as time goes on.

3.3.2.2 Centralised Simulation

The first set of results adopted a centralised approach to grouping strategy. The densest

location was chosen with a 20km radius established around it. All medical personnel

travelled to the grid and systematically worked through the Triage 1 and Triage 2 cases

within the area. Figure 3.16(a) illustrates the victims on the map of the medial officers.

Figure 3.16(b) shows the same map based on density of check-ins.

(a) Initial Map. (b) Initial Heatmap

Figure 3.16: Map of initial Centralised classification and associated Heatmap

The approach then switches to a triage based rescue operation, where rescuers focus

on remaining Triage 1 patients initially. Triage 2 patients are then dealt with after the

Triage 1 patient group has exhausted and then finally Triage 3 patients are seen to. In

terms of performance within the system Figure 3.17 show the group size with respect

to time for the Centralised, Triage weighted approach.

79

3.3 Scalability and Performance of Groups

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200 1400 1600 1800

G
ro

u
p
 S

iz
e

Time (in mins)

30000 users with centralised and triage groups (100 medical)

Triage Level 1

(a) Central Group for Triage 1.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000 2500

G
ro

u
p
 S

iz
e

Time (in mins)

30000 users with centralised and triage groups (100 medical)

Triage Level 2

(b) Central Group for Triage 2.

Figure 3.17: Centralised Approach to Rescuer Allocation

The performance of the Triage 1 group during the initial centralised grouping is

stronger than the Triage 2 performance due to a larger number of Triage 1 patients

involved in the catchment area. The plateau on the Triage 1 group is minimal compared

to that experienced for the Triage 2 group. This is when the centralised group is cleared

out and the rescue givers disperse to other parts of the map. In the case of the Triage 2

group the plateau lasts as long as the Triage 1 group has members. When the priority

group is exhausted the rescuers switch to the Triage 2 group.

3.3.2.3 Distributed Simulation

(a) Initial Map. (b) Initial Heatmap

Figure 3.18: Map of initial Distributed classification and associated Heatmap

80

3.3 Scalability and Performance of Groups

An alternative approach to the initial strategy was sought. Centralising the rescuers

in order to deal with the densest area had a negative effect on the Triage 2 patients. A

fairer approach to dividing up the check-ins received was sought with a more Distributed

approach to grouping investigated. The simulation specifications, as outlined in Table

3.4 remained the same and the map was this time divided up by check-in density with

a number of hot spots chosen as candidates for a distributed grouping. Three groups

were formed as a result, with varying radius of 3km, 6km and 9km which can be seen

in Figure 3.18. The rescuers are divided equally among the three groups and when

the individual groups clear out the associated rescuers switch to the Triage model. As

with the centralised approach the same metrics were recorded and they can be seen in

Figure 3.19:

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200 1400 1600

G
ro

u
p
 S

iz
e

Time (in mins)

30000 users with distributed and triage groups (100 medical)

Triage Level 1

(a) Distributed Group for Triage 1.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000 2500

G
ro

u
p
 S

iz
e

Time (in mins)

30000 users with distributed and triage groups (100 medical)

Triage Level 2

(b) Distributed Group for Triage 2.

Figure 3.19: Distributed Approach to Rescuer Allocation

The distributed grouping in this manner strongly favors Triage 1 due to multiple

groups pulling in more Triage 1 check-ins initially. Triage 2 however is the trade off,

with a lower presence in the distributed groups. It however has no plateau as the

rescuers within the larger group still work through it. Any of the rescuers that clear

out the smaller groups switch to the Triage approach. This sees Triage 1 take some

sharper drops as more medical personnel switch to this approach. The objective for

this simulation was achieved, to attempt a fairer distribution of limited resources and

the additional distributed grouping mechanism incurred no measurable overhead.

3.3.2.4 FIFO Simulation

The third simulation run saw a first come, first served approach to the check-in alloca-

tion using a FIFO (First In, First Out) queue. No intelligent groups were formed and

81

3.3 Scalability and Performance of Groups

rescuers worked through the backlog in an inefficient manner with travel distances not

taken into account. Equal weighting was thus given to Triage 1, Triage 2 and Triage 3

patients.

The graph in Figure 3.20(a) shows the FIFO approach for Triage 1 patients and

Figure 3.20(b) a comparison of Triage 1 patients using the three approaches.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500

G
ro

u
p
 S

iz
e

Time (in mins)

30000 users with FIFO strategy (100 medical)

Triage Level 1

(a) FIFO Approach for Triage 1.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500

G
ro

u
p
 S

iz
e

Time (in mins)

Combined view of Triage 1 approaches

Centralised
Distributed

FIFO

(b) Combined Approaches for Triage 1

Figure 3.20: FIFO Approach and Combined View

The FIFO approach is almost a doubling the amount of time to reach patients that

are in a critical condition, many of which have time sensitive injuries.

3.3.2.5 Group performance

Table 3.5 shows the SET rate recorded from Redis for a payload of size 398 bytes, the

size of a JSON encoded check-in, for 1000 concurrent connections. The infrastructure

was tested and scaled up to 1,000,000 checkins. Crucially, the retrieval rate (GET)

from the Redis database was equally performant, with no noticeable loss in terms of

speed visible for retrieving groups. Table 3.6 shows these results.

Requests Sent Time Completed (second) Messages (per second)

1000 0.07 14,285

10,000 0.47 21,052

30,000 1.48 19,381

100,000 5.35 18,677

1,000,000 54 18,519

Table 3.5: Check-in database set rates

82

3.4 Summary

Requests Sent Time Completed (second) Messages (per second)

1000 0.07 13,698

10,000 0.53 18,975

30,000 1.63 18,164

100,000 5.59 17,885

1,000,000 53.99 18,522

Table 3.6: Check-in database get rates

3.3.2.6 Summary

This simulation work showed how to efficiently manage large scale groups that had dy-

namic properties. 30,000 users were supported within the system with groups changing

on the fly, giving an indication of the kind of performance profiles emerging usage will

see (RQ-S2). This scenario showed that the technology choices of Node.js, Redis and a

Non Blocking style can effectively handle mass group formation expanded beyond the

C10K analysis previously carried out. This work was a validation of the underlying

technology choices.

The scenario described showed that effectively grouping injured patients can possi-

bly improve the response times for rescuers charged with assessing and providing first

response care. However, the scenario could be further improved with greater intelligence

dictating the management decisions and subsequent group formation. With respect to

the criteria outlined in Section 3.1.4, this work examined a domain external to XMPP,

showing how group management, stored on a roster style representation, could facili-

tate large scale groups. End user groups can be shared and distributed freely within

such a system. The requirement for lightweight rosters is not an issue at the scales

investigated within this experimentation. The group rosters contained the necessary

group information in addition to metadata associated with each user check-in, allowing

further group inferrals in the future.

3.4 Summary

In this section, group formation and management techniques were critiqued in domains

of interest, particularly dealing with group formation and management with various

levels of scalability. Recommendations were put forward that address some of the

shortcomings within the respected domains and programmatically tackled. A case

83

3.4 Summary

was established for the limitations of group management within XMPP for handling

emerging usage patterns. Analysis of new styles of group formation (RQ-GFM1) and

the impact it has on the underlying management system were presented. By probing

the scalability limits (RQ-S1), and establishing performance profiles (RQ-S2) a number

of techniques and tools were presented which can be deployed in order to meet the

requirements established, as per RQ-S3. The tools chosen are well suited to the task at

hand as the Non-Blocking I/O style present within JavaScript and the Node.js platform

is designed with handling high levels of concurrency, a task other platform and language

combinations were shown to struggle with. Any future deployment will need to adhere

to a concurrency model that has the characteristics of a Non-Blocking I/O approach

in order to efficiently handle the volume of services that could be deployed on a global

scale. The outputs of this section are used in Section 5 to inform a model on Roster

Design and elements of Group Formation and Group Management. The next chapter

looks at the latter problem in more detail, in particular how to provision intelligent

management to a group level that will not impact on the performance of the group in

a negative manner.

84

Chapter 4

Group Interaction: Managing

Performance

The previous chapter examined issues surrounding Group Formation and the required

principles and architectures that can facilitate large scale interactions. Managing this

formation and managing the interactions that occur within groups in a manner which

does not impact on performance requires a more detailed analysis. This chapter deals

with performance and scalability issues in current scenarios involving the management

and formation of groups. A number of domains are chosen for analysis which exhibit

principles of emerging social networks currently deployed in existing solutions. The

approach taken is empirical, with the results presented for analysis.

4.1 Architecting Management Platforms

The Policy Based Network Management (PBNM) domain is used to control the be-

haviour of nodes within a network, typically controlled by policies. Policies are used to

describe behaviour, usage patterns and appropriate responses to network based stimu-

lus. Policies are generally defined and deployed to protect a system and govern interac-

tions. In recent years PBNM approaches have been successfully deployed in increasingly

diverse domains. The technological and cost barriers to creating and sharing content

are much lower than in previous decades, facilitating this deployment. Direct communi-

cation between people is also easier, particularly when participants share their presence

information. However, some communication events, with or without intermediate con-

tent, are considered “harmful”. Consequently, access control mechanisms are used to

prevent such harmful communication. For example

85

4.1 Architecting Management Platforms

• A parent might wish to share family photographs with their relatives, but not

with the wider user community of a photograph-sharing site;

• In an organisation, corporate governance procedures impose restrictions on staff

using communication tools across groups, both internal and external.

Such scenarios require simple but robust and performant access control procedures that

are informed by access control policies. Implementing such control procedures requires

an elegant architecture with separation of concerns among the components.

4.1.1 Candidate Components

The eXtensible Access Control Markup Language (XACML) as specified by OASIS

XACML-TC (2005) and reviewed in Section 2.3.3 defines an access control policy lan-

guage and associated processing model. The specification covers in detail how to eval-

uate authorization requests according to rules defined in policies. The interest of this

thesis in the XACML model lies in the associated processing model and the formal

terminology used to describe the rules contained within the encoded policy. XACML

specifies a number of core components that make up the processing model. The interest

from a group management perspective focuses on three of those components with their

interactions visible in Figure 4.1

Access
Request

PEP

Context
HandlerPDP

PRP

2. Request

1. Policy Loaded

6. Response Context

4. Request notification

3
. R

e
q

u
e

st

7
. R

e
sp

o
n

se

8. Decision
Communicated

5. Evaluation

Figure 4.1: Candidate Components based on XACML data flows

The responsibilities associated with each component is as follows:

• Policy Decision Point (PDP) The PDP is a run time component that evaluates

incoming request with appropriate policies requested from a PRP. The PDP is

86

4.1 Architecting Management Platforms

the core logic within the system, charged with interpreting the semantics encoded

within a policy set and matching them against the request passed in. The PDP

has the power to make recommendations on whether a request is to be accepted

or rejected and any additional processing that needs to be carried out, termed

obligations.

• Policy Enforcement Point (PEP) The PEP is the gateway to the policy system,

intercepting requests and passing them to the PDP for adjudication. The PEP is

also responsible for enforcing the PDPs decision and carrying out any obligations

that the PDP has identified.

• Policy Retrieval Point (PRP) The PRP acts as a gateway to a policy repository.

A set of requests for a specific policy set is passed in by the PDP and the PRPs

sole responsibility is to retrieve the requested policy set and return the bundle

for evaluation.

Having a clearly defined role, responsibility and message flow per component allows

for a degree of freedom with respect to architectural design decisions. One such design

decision is discussed in the next section.

4.1.2 Group Specific PDP

A XACML compliant PDP has to implement, understand and remain compliant with

the full XACML suite. In Network Management, this approach is viable, with the cost

of arriving at a decision, measurable in milliseconds, well within reasonable consider-

ation. However, in the realm of near real time service access, it can often take longer

to arrive at the decision whether to allow the request access (or not), then it does to

actually process the logic behind the request. In such instances deploying a fully im-

plemented PDP can be overly complex, with this complexity causing potential delays,

delays which are unavoidable if the PDP has to be fully compliant. A case can be made

for tailoring the logic behind a PDP to closely match the semantics captured by the

Policy Sets associated with a domain or in the case of this thesis, a group. A terse

PDP, would not suffer the structural overhead associated with traditional PDPs and

would arguably be more portable and easier to maintain. Creating a specific PDP that

is semantically equivalent to the core principles that XACML documents is possible,

with the development effort potentially reduced. Authoring such a PDP in a DSL that

is tailored towards the group can also bring additional benefits. Interpreting a technical

vocabulary, already imbued with architectural semantics can be a daunting experience

87

4.1 Architecting Management Platforms

for a domain expert. By expressing the solution space as a readable DSL, an important

bridge between the domain expert and the system is established. An added benefit of

developing a customised DSL is the lightweight nature of the design, making it an ideal

candidate language for deployment within this problem domain.

4.1.3 Distributed PDPs

Distributing the PDP architecture through smaller domain specific PDPs makes groups

and their management more portable. This makes logic easy to distribute to multiple

management nodes housed locally or distributed across a network. Every network node

that runs an interpreter capable of understanding the language the PDP is encoded in

can potentially assume the role of a PDP. By implementing in portable code, one that is

specified in a text base format that is easily distributed, a new PDP can be created and

managed at run time. Inflating a PDP in this manner and subsequently tearing it down

would allow the management system evolve in a scalable manner, with redundant PDP

functionality naturally removed as the lifecycle of the groups come to their conclusion.

By distributing the PDP intelligence, the management system becomes more fault

tolerant. The impact of a failure, be it physical or logical, to a central PDP can

be very costly from a management point of view. A single PDP failure will have

consequences for an individual group but the overall management platform remains

resilient and functional. Additionally, by adopting a distributed PDP approach, PDPs

can physically reside on multiple machines within the networks. As scale increases,

the likelihood of a hardware failure increases. By abstracting PDP responsibility to a

distributed model, it should be possible for a PDP under intense load to migrate to a

more powerful host, thus limiting the potential for a hardware failure on a particular

machine.

4.1.4 Advanced Management Potential

Social media deployments are increasingly turning to cloud based solutions to host their

services. As services are deployed into third- party clouds the cost of operating these

services change in their profile to become more opex (operational expenditure) based,

as they typically incur monthly, recurring fees based on their usage of cloud resources.

Charging profiles are often used against service providers with Service Level Agreements

(SLA) protecting and guaranteeing aspects of the service including uptime, response

time and resource utilisation such as bandwidth or CPU cycles. SLA breaches can be

expensive and understanding the probability of an SLA violation can offset potential

88

4.1 Architecting Management Platforms

costs before they become an issue. An intelligent management system, capable of

representing group specific SLA semantics within a group specific policy system has

inherent advantages for service providers over existing techniques.

4.1.5 Performance Benefits

Request evaluation within a PDP typically takes the form of Algorithm 4.1. With Treq

the total time taken to process a request equal to the time it takes to evaluate the

request, Teval and the time it takes to respond, Tresponse.

Algorithm 4.1: Time for processing a request

Treq = Teval + Tresponse

The PDP itself has complete control over the Teval metric which is broken down

into Algorithm 4.2. The time required to search the policy sets for the specific policy,

Tsearch(policy) added to the time required to process the policy Tprocess(policy)

Algorithm 4.2: Time for evaluating a request

Teval = Tsearch(policy) + Tprocess(policy)

Minimising the time taken to search the policy sets is the key to minimising the

overall evaluation as the time taken to process the policy should be uniform with respect

to the complexity of the request. Policy sets for generic PDPs can encode thousands

of rules and processing time to traverse the tree and identify the correct policy can be

costly. In a domain specific PDP, the policy sets would be tailored towards the specific

domain. While large policy sets for an individual group or domain are still possible,

in general, the policy sets will be smaller due to not having to capture and encode

the semantics of the overall system. Consequently the time taken to traverse the tree

should be minimised. Additionally, if the encoding language of the underlying PDP

takes the form of a Domain Specific Language (DSL), the traversal of data structures,

of which policies are often stored upon retrieval, can be greatly improved. Algorithm

4.3 represents the optimal goal of any PDP and policy set combination, minimising the

time taken with respect to the number of Policies, P and the time taken to find the

correct policy, Tsearch(policy)

89

4.1 Architecting Management Platforms

Algorithm 4.3: Optimal searching algorithm

min{Tsearch(policy)}

Where Tsearch(policy) = F (#P) and P is the set of all policies at the PDP whose

performance is being evaluated PDP: P = {piεPPDP }
What the basic algorithms outlined does not factor in is additional benefits that a

domain specific PDP will bring to the overall system. The cost of operating the PDP

should be considerably less then supporting a generic PDP ecosystem. The PDPs will

have a smaller code base due to being tailored for the particular task at hand. This

translates to tangible benefits relating to CPU cycles and power output required to

maintain the PDP.

4.1.6 PDP Design Patterns

The overall management system could be described as a cluster of loosely connected

PDPs, working together to manage the groups contained within the system. Manag-

ing the lifecycle of multiple individual PDPs requires a design influenced by classical

software engineering design patters. The Factory and Builder design patterns fit this

requirement.

A Factory design pattern for PDPs is shown in 4.2. The definition put forward by

Gamma et al. (1994) for a Factory is as follows: Define an interface for creating an

object, but let the classes that implement the interface decide which class to instantiate.

The Factory method lets a class defer instantiation to subclasses.

+FactoryMethod()

Creator

+FactoryMethod()

ConcreteCreator

PDP

ConcretePDP

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 4.2: PDP Factory Design Pattern

90

4.1 Architecting Management Platforms

Where the PDP element defines the interface of objects the factory method creates,

in this instance a PDP. ConcretePDP implements the PDP Interface. Creator declares

the factory method, which returns an object of type PDP. A default implementation of

the factory method may also define a default ConcretePDP. ConcreteCreator overrides

the factory method to return an instance of ConcretePDP.

Skeleton PDP implementations have to follow the same logical structure and imple-

ment a minimal set of functionality. A factory style approach should be able to produce

a domain tailored PDP by receiving a specification for the type of PDP to be produced

and consequently creating it around the default skeleton structure already established.

The factory logic should be able to influence changes to individual PDPs during their

lifecycle, adding and removing functionality as well as terminating the PDP when the

group naturally expires. The responsibility of the factory might be embedded within an

existing PDP or multiple PDPs which have the resources and capability to sustain the

entire PDP ecosystem. As the PDP style put forward is distributed, it stands to reason

that a Factory approach should also be distributed with any PDP capable of adopt-

ing the role, providing another layer of resilience and protection to the management

system.

An alternative design pattern is the Builder Pattern, defined by Gamma et al. (1994)

as follows: The intent of the Builder design pattern is to separate the construction of

a complex object from its representation. By doing so, the same construction process

can create different representations.. Figure 4.3 shows a Builder oriented approach to

creating PDPs.

+Construct()

Drector

+BuildPart()

Builder

+BuildPart()

+GetResult()

ConcreteBuilder PDP

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 4.3: PDP Builder Design Pattern

91

4.2 Policy Informed Domains

Where the Builder element specifies an abstract interface for creating parts of a

PDP object. ConcreteBuilder constructs and assembles parts of the PDP by imple-

menting the Builder interface, additionally keeping track of the representation it creates

and providing an interface for retrieving the PDP. Director constructs an object using

the Builder interface. PDP represents the object under construction, with Concrete-

Builder building the PDPs internal representation. A Builder design pattern would

again decouple default behavior associated with a PDP, allowing a repository of logical

components to be built up. Selecting individual components and wiring them together

to form a domain specific PDP could still be distributed. Running PDPs could act as

a means to access the core parts required to build a new domain specific PDP. Simi-

larly to the factory based approach, logic would be required to influence changes to an

individual PDP during its lifecycle. Both approaches are not mutually exclusive and

design patterns are used to guide an implementation, with often a hybrid approach

more suited.

The Factory Pattern is chosen due to the emphasis on creating a family of product

objects, be they simple or complex. In this case the product produced is a functional

PDP, with the Factory pattern offering more customisation. The ability to create the

PDP in one step, as opposed to the multiple steps required within a Builder pattern,

is also an attractive feature, minimising the additional overhead required to create and

instantiate the PDP.

4.2 Policy Informed Domains

Adopting Node.js and related technology has offered substantial opportunities in de-

vising a robust simulation and viable deployment environment as discussed in Section

3.3.2. The approach also offers a very specific advantage uniquely applicable to this

work, namely the ability to bring Policy Based Network Management (PBNM) tech-

niques into play. This is a mature and well-understood field, with substantial systems

in the field managing some of the most complex and reliable communications infrastruc-

ture ever constructed. In such systems, Policies enable critical systems to be controlled

in a secure manner, enabling services to be flexibly configured without interruption.

However, network management policies are conventionally constructed in XML using

the XACML standard. These have some specific characteristics which have been doc-

umented in Chapter 2 which would inhibit their deployment in certain contexts. Such

contexts include highly scalable, short burst scenarios such as the one under considera-

tion here. Taking this well understood policy-based approach and architecture into our

92

4.2 Policy Informed Domains

system in order to provide a degree of control and management over how check-ins are

processed and consequently how groups are formed offers potential benefits. The tra-

ditional approaches as embodied by XACML specify an architecture and approach to

deploy management policies. Encouraged by the performance gains visible by changing

the representation format, we decided to rework the traditional approaches to exploit

unique opportunities within the Node.js technology stack. Specifically, this work uses

JSON and JavaScript itself as the policy language, with supporting components and

patterns. This facilitates a highly expressive notation that can be further tuned into

a full Domain Specific Language (DSL) over time with the aid of rescue organisations.

Thus a number of group formation policies which can be adapted, modified or replaced

on the fly can be expressed in a highly expressive notation. This notation is terse, al-

lowing for domain experts, with minimal programming experience, a means to influence

the strategy deployed on the ground. We exploit JSON principles, language features

such as closures, and prototypical object creation, to produce what is effectively a pol-

icy language for group formation strategies. Policies expressed in this language are

directly executed within the simulation environment, enabling the elicitation of valu-

able experimental data on the viability of alternative approaches to group formation

within the scenarios we have selected. Figure 4.4 shows where a policy component can

fit into the overall architecture of the simulation.

93

4.2 Policy Informed Domains

Device Applications
JSON

Encoded
Check-in

Allocate

Active
Group

Rescuers

Group
Formation

Group
ModificationMetadata

Parsing

PDP

PRP PEP

Check-in
Filter

Reverse
Checkin

Information
Queue

Health
Queue

Check in

Group
Manager

Resource
Assignment

Policy DB

Group DB

Tuesday 7 August 2012
Figure 4.4: Overall Architecture View with Policy Component

Inspired by the XACML architecture OASIS XACML-TC (2005) and best practices

for division of responsibility as outlined in the reference documentation, a light weight,

JavaScript authored Policy Management environment was added to the system. A

Policy Decision Point was implemented along with a Policy Enforcement Point (PEP).

The PEP was responsible for handling incoming policy requests and relaying the de-

cision to the relevant components, typically the Rescue Assignment Component and

the Group Manager. A Policy Retrieval Point (PRP) was also implemented to com-

municate directly with the policy repository. The policies themselves, were authored

in JSON, providing a lightweight, readable policy capable of being authored by non

domain experts on the fly without requiring the system to stop.

4.2.1 Policy Algorithm and Implementation

Policy Algorithms encoded within JavaScript are used within the system. Algorithm

4.4 describes the process for the Distributed strategy of grouping patients and rescuers.

This algorithm is implemented logically within a JavaScript closure, visible in List-

ing 4.1, which can subsequently be associated with a group Object within the system.

94

4.2 Policy Informed Domains

Algorithm 4.4: Distributed Group Rescuer Allocation Algorithm

if checkins.size ≥ currentStrategyGroup.size then
We still have people who need help in our current group:

if policy.name == distributed then
We match Patient p1 with Rescuer r1:

if a ∈ currentStrategyGroup && r ∈ availableRescueGroup then
Create group {p1, r1}
currentStrategyGroup = strategyGroup \ p1
availableRescueGroup = availableRescueGroup \ r1
return {p1, r1}

return _.groupBy(currentStrategyGroup ,

function(checkin ,rescuer){return

allocateRescuer(checkin.name ,rescuer)});

Listing 4.1: Closure Representation of Rescuer Allocation

This allows powerful and complex policy algorithms be realised in a short few lines

of DSL style code. Taking this concept further then simple grouping algorithms, which

are effectively paramaterised control structures, the prototypical inheritance within

JavaScript can be leveraged. A Policy Object, encoded against a paramaterised control

structure, which is human readable, can be attached to groups and modified on the

fly. The Object created can be modified at run time, effectively allowing a strategy be

pushed to it by an end user without physically changing the source code or stopping

the system. The code in Listing 4.2 is a working Distributed Policy document:

function Distributed () {

return {

primary: "distributed",

secondary: "triage",

location: "true",

numGroups: 3,

groupCreation: function (checkins) {

return _.groupBy(checkins , function (checkin) {

return checkin.location;

});

},

allocateRescuer: function (name , rescuer) {

return newRescueGroup(name , rescuer);

}

};

95

4.2 Policy Informed Domains

}

Listing 4.2: Distributed Group Formation Function

This essentially renders the previous closure example to a more simplified level:

Distributed.allocateRescuer(name ,rescuer);

Listing 4.3: Function simplification

More importantly it allows a JSON encoded document, such as the example in

Listing 4.4, to be authored by non programming experts. This can directly influence

the properties of an Object, and by extension the strategy dictated.

{

"primary" : "centralised",

"secondary" : "FIFO",

"location" : "true",

"numGroups" : 1,

}

Listing 4.4: Policy Document Sample 1

With associated program level listeners, invoking a policy change of direction in an

external JSON file, the primary and secondary approaches of a Distributed object could

change. More programmatic medical domain experts could associate new constructs in

an external manner by appending functions such as the example in Listing 4.5

{

"primary" : "centralised",

"secondary" : "FIFO",

"location" : "true",

"numGroups" : 1,

},

triageWeighting: function (checkins){

return _.groupBy(checkins ,

function("triage1 , "triage2"){return checkin.triage ;});

}

Listing 4.5: Policy Document Sample 2

In this case, a new function is associated with the Distributed object and available

to it immediately. This would allow a trained domain expert to micro manage a rescue

operation in a manner currently not envisioned. The results could dramatically affect a

running operation and ensure that the system has the flexibility to manage in different

disaster domains. The sequence diagram in Figure 4.5 shows the message flow that an

external policy change could make on a live system, filtering down to the rescuer level.

96

4.2 Policy Informed Domains

: Rescuer

: RescueGroup

"GroupManagement: PDP: PEP: PolicyRequest

17.1: Success Ack
17: Notify Groups Formed

18: Process Group
16.1: Allocate

16: Group Formed

15: Form Groups

14: Finish Active Patient
13.1: Inform Rescuer

13: Disband Current Group

10.2: New Strategy

12: Permit

11: Policy Eval
10.1: Strategy Change

10: JSON doc

9: Process Group

7: Success Ack
6: Notify Groups Formed

8: Allocate

5: Group Formed

3: Permit

4: Form Groups
1.2: Initial Strategy

2: Policy Eval
1.1: Initial Strategy Request

1: JSON doc

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 4.5: Sequence Diagram for Policy Changes

4.2.2 Policy Results

Applying this language level feature to the simulation used in the previous Chapter

results in a different behaviour pattern for the rescuers. The ability is now in the

hands of the rescue coordinator to make changes on the fly according to incoming

reports. Changing the strategy on a live operation produces some interesting results.

A simulation was designed where the approach started as Centralised before switching

to a combined triage level. The combined level is initially weighted to favor Triage 1

but including some Triage 2 patients. As the triage 1 numbers exhaust the weighting is

flipped, pushing more triage 2 patients out of the system as the active group ratio now

favors their rescue. The policy changes occur at timestamp 900 when the central group

expires, at this point the combined Triage approach kicks in. Again at timestamp 1300

the Triage weighting is changed by an external policy call. Figure 4.6 shows this effect:

97

4.3 Performance of Policy Evaluation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200 1400 1600 1800

G
ro

u
p
 S

iz
e

Time (in mins)

30000 users with policy enforcement I

Triage Level 1

(a) Policy Group for Triage 1.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
ro

u
p
 S

iz
e

Time (in mins)

30000 users with policy enforcement I

Triage Level 2

(b) Policy Group for Triage 2.

Figure 4.6: Policy Approach to Rescuer Allocation

The approach benefits both Triage 1 and Triage 2 patients and passively affects

Triage 3. With the decreased service time, Triage 3 indirectly benefits by triggering

earlier in the scenario.

4.2.3 Summary

The deployment of DSL style policies within the simulation showed a marked improve-

ment on providing strategic responsiveness to a disaster management scenario. It also

showed that management policies could be deployed in a manner that could potentially

improve overall performance. However, the representation of the policies and the design

of a policy execution environment is a challenging task. The next section attempts to

addresses this and expand upon the design of DSL simulations.

4.3 Performance of Policy Evaluation

4.3.1 Motivation

Simple but robust and performant access control procedures that are informed by ac-

cess control policies are required to manage the interactions within emerging social

networks. Any access control mechanism used to protect group communications must

provide a decision in near real time in order to preserve usability of the underlying com-

munication medium. Much of the public literature on access control policies focuses

on techniques to ensure that sets of deployed policies are consistent with high level

security requirements. This section instead examines how to optimise the policy eval-

98

4.3 Performance of Policy Evaluation

uation performance at the Policy Decision Point (PDP) in order to meet performance

objectives.

In related work by Butler et al. (2011) the performance characteristics of two open

source PDP implementations were analysed. Based on this analysis, the following

features could lead to improved PDP evaluation performance:

• Policies and requests should be encoded more efficiently

– policies and requests should be relatively terse, to reduce the string handling

overhead per request

– policies and requests should be encoded in a way that minimizes the parsing

overhead.

– policies should be directly implementable.

• PDP implementations should be more efficient

– policies and requests should be stored in ways that make retrieval more

flexible and efficient

– the PDP should scale outwards, to enable more efficient use of available

resources.

This work attempts to address some of these issues by examining policy represen-

tations and the impact this has on performance.

4.3.2 Architecture

With the Node.js framework Dahl (2009), an elegant solution can be engineered for tra-

ditional scalability problems and an alternative approach taken for domains that might

benefit from a non-blocking IO approach. In addition to using Node.js, a comple-

mentary data persistence system is required. Maintaining the low-friction objective, a

NoSQL database Cattell (2011) with a Node.js interface was sought. NoSQL databases

are non-relational, distributed databases that deliver horizontal scalability. Several

options were considered, with each having bindings to Node.js ensuring compatibility.

The data structure-oriented Redis server Lerner (2010) was chosen because of its speed

(in 1 minute, on one instance of the experimental platform, it averaged 11300 answered

requests per second) and its data structures directly supported sets, lists and hashes,

easing policy management.

99

4.3 Performance of Policy Evaluation

4.3.2.1 Advantages for access control

Node.js provides a number of advantages that benefit the design of the access control

system.

• It uses the CommonJS standard for APIs and best practices Kowal (2009).

• It provides many useful features without extra coding.

• It supports better modular design through component-based programming, bene-

fiting from specifications supporting interoperability between server modules and

even between server-side and client-side modules.

• The Non-Blocking architecture facilitated by JavaScript callbacks makes more ef-

ficient use of CPU resources than traditional systems that sit idle while a complex

IO request is executing. In a Node.js deployment, the spare CPU cycles can be

used more productively, e.g., to handle the next request or prepare the response.

• It uses events to trigger callback execution. A benefit of the event model is a

publish/subscribe mechanism built into the environment. This promotes greater

flexibility, since the access control system can include listeners (handlers) for

particular events, such as obligations.

• The absence of complicated blocking semantics simplifies development.

In the PBNM world this lends itself to tackling high input requests or requests

with near real time processing characteristics, while also endearing itself to greater self

checking and management. The spare processor cycles while waiting for the policy

algorithm to reach a conclusion could be put to better use, without impacting on

the response times as all requests ultimately execute in parallel. This opens up the

possibility of the architecture becoming self monitoring and regulating, with a suite of

conformance and conflict analysis tests passively ensuring the validity of the system.

100

4.3 Performance of Policy Evaluation

Access
Request

PEP

Context
HandlerPDP

PRP

2. Request

1. Policy Loaded

6. Response Context

4. Request notification

3
. R

e
q

u
e

st

7
. R

e
sp

o
n

se

8. Decision
Communicated

5. Evaluation

Figure 4.7: XACML data flows and components relevant to this work

The OASIS XACML TC defined data flows, as previously highlighted in Figure

4.1, formed the basis of the architecture. Figure 4.7 shows this diagram again for

clarity. The flows required for a minimal installation of XACML were implemented in

a Node.js supported Policy Execution Point (PEP), Policy Decision Point (PDP) and

Policy Retrieval Point (PRP).

The other characteristics identified in Section 4.3.1 relate to implementation ef-

ficiency. The prototype PDP uses Redis to ensure flexibility and high performance

when processing policy data structures, and the non-blocking I/O coding style fostered

by the Node.js framework makes more efficient use of computing resources. The sim-

plicity arising from streamlining policy evaluation should not be underestimated: the

domain (policy) model is based on events, so if the execution model is likewise, there

is better alignment between the two. The PDP conforms to the CommonJS standard

specification for module development. This standard ensures the interoperability of a

module and allows for integration with existing systems or future systems with syntax

extensions. It also ensures that any Node.js modules will have the minimum features

required to provide interoperability within the PDP. The PDP itself is composed of

several functions governing both general and policy set specific behavior, mostly re-

lating to style and formatting issues within XACML. The design is flexible with the

ability to handle various policy and request combinations. This is evident throughout

the njsrPDP scenario testing with multiple input types supported. The PDP is thus

a fully independent generic PDP, with a core set of generic functions to interpret and

successfully parse specific policy sets.

101

4.3 Performance of Policy Evaluation

4.3.3 JSON based Policy Representation

A JSON representation was chosen to represent the policies. As discussed in 2.4.5 JSON

as a direct replacement for XML loses nothing syntactically. Having already opted for

a JavaScript implementation for the policy engine, and opted for a no-SQL database,

with a JavaScript binding, a JavaScript interpretable representation format ensures a

low-friction environment for policy evaluation. The term JSONPL, or JSON Policy

Language, is used to reference the policy language represented in the JSON format.

4.3.3.1 Conversion of existing XML policies or requests to JSON

Several attempts (such as BugLabs (2012)) to automate conversion between XML and

JSON formats have emerged, thus enabling interoperability between XML policies/re-

quests and a PDP that handles JSON natively. The conversion process makes structural

changes to how data might traditionally be represented within JSON. For example,

XML is designed as a language independent data representation format, which means

metadata is associated with elements in order to ensure correct interpretation at a lan-

guage level. Translation from XML to JSON indirectly brings this metadata, which

is unnecessary within a JSON compliant language such as JavaScript. The result is

a “bloated” JSON format. Additionally, XML can contain sibling elements with the

same outer identifier. However, JSON is a key:value storage mechanism, so it cannot

have the same name for two keys. The solution, when translating, is the extensive

use of arrays in JSON. While the JSON produced from a translation process is valid

and semantically identical, it is harder to read and extra programmatic safeguards are

needed to ensure correct interpretation.

4.3.3.2 JavaScript Object Notation Policy Language: JSONPL

Examining the output of the translated XML to JSON policy sets, the predefined

vocabulary and encoded semantics expressed in the XACML 2.0 specification was ap-

parent. Stripping away the redundant metadata and cleaning up the array translation

process produced a policy vocabulary encoded in JSON that semantically was iden-

tical to the original XML policy. The resulting representation is termed JSONPL

(JavaScript Object Notation Policy Language) and Figure 4.8 highlights a policy rep-

resented within this language. As with XML, deep nesting of arrays and objects is

possible within JSON, allowing complex hierarchical structures to be represented. The

dot notation is the most natural way to access data within a JSON document. For ex-

ample, in Figure 4.8, the value associated with role can be accessed directly by calling

102

4.3 Performance of Policy Evaluation

"Policy":{
"id":"RPSlist.7.0.1",

"target":{
"subjects":{

"subject":{
"role":"admin"

}
},
"resources":{

"resource":{
"isPending":"false"

}
},
"actions":{

"action":{
"action-type":"write"

}
}

},
"rule":{

"id":"RPSlist.7.0.1.r.1",

"effect":"permit"

}
}

Figure 4.8: JSONPL Policy Excerpt. The original XACML-encoded policy had 1473

characters versus 454 characters for the JSONPL encoding.

Policy.target.subjects.subject.role, yielding the value admin.

The hierarchical structure of JSONPL mirrors that of XACML so a comparison is

instructive. As with XQuery/XPath processing of XML documents, the execution time

for retrieving a value from a known location in a JSON data structure is independent

of the size of that structure. Policy and/or rule combining algorithms can be applied

in JSONPL in the same way as in XACML. The policy language is as expressive as

an XML based XACML policy, is arguably more human-readable and provides native

compatibility with many programming languages, easing authoring and interpretation

issues. To the best of our knowledge, a JSON-based access control policy language

has not been attempted before and as such represents a novel contribution. All the

desirable features relating to policy and request specification and encoding identified

in Section 4.3.2.1 are provided.

103

4.3 Performance of Policy Evaluation

4.3.4 Evaluation

4.3.4.1 Comparison of PDPs

Experiments were performed to compare the JSON/Node.js/Redis implementation de-

scribed above with more traditional XACML/Java implementations of SunXACML and

EnterpriseXACML. A set of XACML policies and their related requests was chosen and

were translated manually to their JSONPL equivalents. The two Java-based PDP im-

plementations were placed in STACS (Scalability Testbed for Access Control Systems)

Butler et al. (2011) so that service times per request could be recorded in a repeatable

fashion. The prototype Node.js implementation was instrumented in the same way,

taking advantage of the Node.js eventing model to collect service times based on the

same triggering events that were used in STACS:

• PDP Policy Read start

• PDP Policy Read end

• Request arrives at PDP

• Response leaves PDP.

A simplified queueing discipline was employed, namely, when response n from the PDP

arrived at the PEP, it triggered the submission of request n + 1 from the PEP to the

PDP. This sequential processing was easily achieved in STACS using loops and in the

njsrPDP harness using callbacks. The entire experiment was replicated Nrep = 100

times, in random order, for each set of host × pdp conditions. When measuring

elapsed times in the PDP, we do not have full control over other processes that can use

computing resources needed by the PDP. Thus the measured service times generally

have a positive bias. More formally, assume that service time t̂ measured by ti, i =

1, . . . , Nrep is subject to additive nonnegative error ei according to

ti = t̂+ ei, where ei ≥ 0, i = 1, . . . , Nrep. (4.1)

The best estimate of t̂ is given by mini{ti}, i = 1, . . . , Nrep.

The measured service time data was standardized to use the same labels and time

units to ensure that data features were consistent between STACS and non-STACS

sources.

104

4.3 Performance of Policy Evaluation

Name Type Possible Values

policy Common continue

reqGrp Common single

host Factor bear, inisherk

pdp Factor SunXACML, EnterpriseXACML, njsrPDP

duration Response Numeric

Table 4.1: Service time measurements and their context.

The factors considered in our main experiment are shown in Table 4.1. The

continue policy and single request group are published (in XACML form) as part of

the test suite for XEngine Liu et al. (2008), and were translated to JSON format as

described earlier. This policy set and associated requests was used in the experiments

and models access control rules and requests for a Conference Paper Management Sys-

tem. While that domain does not require microsecond evaluation times, the policy set

contains reasonably complex business rules such as separation of duties constraints and

other features representative of real-time corporate communications. The two host in-

stances are Intel 64-bit dual-core machines, each with 2GB RAM but differing in other

computing resources, running Ubuntu 11.04.

The primary experiment compares njsrPDP with two existing XACML PDP im-

plementations. The secondary experiment examines how njsrPDP achieves increased

performance.

4.3.4.2 Experimental Scenarios

Six experimental scenarios are considered, as described in Table 4.3.4.2 and visible

in Figure 4.9, and were used to compare the effects of different policy and request

formulations for a given PDP (in this case, the njsrPDP prototype).

105

4.3 Performance of Policy Evaluation

Manually Generated

Policies

Auto generated

Policies (bloated)

Manually generated Requests Scenario 1a Scenario 1b

Auto generated requests

(bloated, pre prepared)

Scenario 2a Scenario 2b

Auto generated requests

(bloated, on the fly)

Scenario 3a Scenario 3b

Table 4.2: Scenario conditions

Summarising, the scenarios under investigation:

• the A scenarios formulate the policies as JSON in ways that are “optimised” for

evaluation performance, while the B scenarios use the policies as translated by a

generic XML to JSON converter.

• the “1” scenarios formulate the requests as JSON in ways that are “optimised”

for evaluation performance.

• the “2” and “3” scenarios use the requests as translated by a generic XML to

JSON converter. They differ in respect of when the translation occurs: before

reaching the PEP for “2”, or within the PEP itself for “3”.

Note that the experimental conditions in Scenario 1A are those used when comparing

njsrPDP with the SunXACML and EnterpriseXACML PDPs, see Section 4.3.4.1.

In summary, all of the policies and request artifacts were originally encoded as

XACML and so benefit from the XACML ecosystem. However the artifacts are con-

verted to JSON by different methods and at different stages of policy evaluation. The

performance improvements arising from each research contribution can be estimated

by comparing the timing results.

106

4.3 Performance of Policy Evaluation

PEP PDP

JSON
Request

JSON
Policy

(a) Scenario 1A: Manual×Manual

Xml2json
translation

PEP PDP

JSON
Request

JSON
Policy

XML
Policy

(b) Scenario 1B: Manual×Auto

Xml2json
translation

PEP PDP

JSON
Request

XML
Request

JSON
Policy

(c) Scenario 2A: Prepared-Auto

×Manual

Xml2json
translation

Xml2json
translation

PEP PDP

JSON
Request

XML
Request

JSON
Policy

XML
Policy

(d) Scenario 2B: Prepared-Auto×Auto

Xml2json
translation

PEP PDP

XML
Request

JSON
Policy

(e) Scenario 3A: Inflight-Auto×Manual

Xml2json
translation

Xml2json
translation

PEP PDP

XML
Request

XML
Policy

(f) Scenario 3B: Inflight-Auto×Auto

Figure 4.9: njsrPDP policy×request scenarios; scenario conditions are defined in Ta-

ble 4.3.4.2.

107

4.3 Performance of Policy Evaluation

4.3.5 Results

4.3.5.1 Comparing njsrPDP with its peers

Dfa SumSq MeanSqb F valuec Pr(>F)

host 1 1.97e-05 1.97e-05 2.24e+04 < ε

pdp 2 1.15e-04 5.75e-05 6.55e+05 < ε

decision 2 1.00e-09 5.00e-10 5.14e-01 0.60

requestIndex 190 1.61e-07 1.00e-09 9.67e-01 0.61

host:pdp 2 7.50e-06 3.75e-06 4.27e+03 < ε

Residualsd 954 8.37e-07 1.00e-09

a(Number of) degrees of freedom
bSumSq/Df
cF ratio: MeanSq/MeanSq Residuals
dOther, unspecified factors

Table 4.3: Analysis of Variance: host, pdp, host:pdp effects are very significant—α

probability underflows machine epsilon ε.

host bear inisherk

time 6.3e-04 3.7e-04

#replicates 576 576

Table 4.4: Analysis of Means: host inisherk has better performance than bear.

pdp SunXACML EnterpriseXACML njsrPDP

pdp 5.56e-04 8.61e-04 9.3e-05

#replicates 384 384 384

Table 4.5: Analysis of Means: PDP njsrPDP has better performance than the other

PDPs.

108

4.3 Performance of Policy Evaluation

seconds

d
e

n
s
it
y
 (

s
c
a

le
d

 s
o

 t
h

a
t

e
a

c
h

 h
is

to
g

ra
m

 a
re

a
 =

 1
)

0.00000 0.00015 0.00030 0.00045 0.00060 0.00075

0
3

0
0

0
0

6
0

0
0

0
9

0
0

0
0

1
2

0
0

0
0

1
5

0
0

0
0

inisherk−njsr bear−njsr inisherk−SX bear−SX

Figure 4.10: Comparative service time histograms for hosts bear and inisherk and

PDP implementations SunXACML and njsrPDP, for Scenario 1A.

on host 'bear' using 'njsrPDP'

seconds

d
e
n
s
it
y
 (

s
c
a
le

d
 s

o
 t
h
a
t
T
o
ta

l
H

is
to

g
ra

m
 A

re
a
 =

 1
)

0.000105 0.000115 0.000125 0.000135

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

(a) njsrPDP on bear

on host 'inisherk' using 'njsrPDP'

seconds

d
e
n
s
it
y
 (

s
c
a
le

d
 s

o
 t
h
a
t
T
o
ta

l
H

is
to

g
ra

m
 A

re
a
 =

 1
)

6.8e−05 7.2e−05 7.6e−05 8.0e−05

0
5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

(b) njsrPDP on inisherk

Figure 4.11: njsrPDP request service times on hosts bear and inisherk.

109

4.3 Performance of Policy Evaluation

Figure 4.10 shows histograms of the service times for SunXACML, a reference Java-

based XACML PDP, compared with the service times for njsrPDP, the implementation

introduced in this paper. The influence of the host and pdp factors can be seen clearly.

Indeed, the new implementation has noticeably better performance when other factors

are equal.

The Node.js/Redis prototype PDP implementation, labeled njsrPDP in Figure 4.11

has the following performance features:

1. The mean service time per request is much less (one sixth that of SunXACML,

one eighth that of EnterpriseXACML), see Table 4.3.5.1.

2. The performance profile for njsrPDP is bell-shaped; for EnterpriseXACML it is

approximately uniformly distributed; for SunXACML it is a skewed mixed distri-

bution.

3. The implementation on the two hosts shows a similar profile (see Figure 4.11)

though different performance levels, see Table 4.3.5.1 because inisherk has a

faster CPU and more L1 cache. This suggests that performance scales verti-

cally on a single host and also that the performance profile and observations are

reproducible.

It should be noted from Table 4.3.5.1 that these differences are statistically signifi-

cant Dalgaard (2008) and hence are highly unlikely to arise by chance. The challenge

is to show how the design principles outlined in Section 4.3.1 and implemented in the

JSONPL prototype described in Section 4.3.3 contribute to the statistically significant

performance improvements summarized in Table 4.3.5.1.

110

4.3 Performance of Policy Evaluation

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
ll

l
l
l

l
ll

l

l

l

l
llll

bear.njsr inisherk.njsr bear.sxex inisherk.sxex

0
2

0
4

0
6

0
8

0
1

0
0

%
 u

s
a

g
e

l

l

l

l

l
l

l

l

l

l

l
l

l
ll

l

l

l

l

l

l

l

0
2

0
4

0
6

0
8

0
1

0
0

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l
l
ll

l

l

l

ll

ll

0
2

0
4

0
6

0
8

0
1

0
0

user wait idle

Figure 4.12: CPU usage for selected host × pdp combinations. Hosts are bear and

inisherk and PDPs are SunXACMLEnterpriseXACML (sxex) and njsrPDP (njsr).

The system resources used by the JSON and XACML implementations were cap-

tured using dstat, which collects resource statistics (cpu, memory, disk usage, etc) on

a timed basis while the experiments run in the testbed. Figure 4.12 shows that njsrPDP

uses far less CPU (10% versus 60%, say). The cpu wait time is generally low, suggest-

ing that both Node.js and the JVM are quite efficient. However, the user cpu cycles

are much greater for the Java/XACML implementations. The CPU has to work much

harder to evaluate policies in Java/XACML PDP implementations. Furthermore, the

idle cpu usage is much higher for njsrPDP, suggesting there is much more capacity

available for increased throughput.

111

4.3 Performance of Policy Evaluation

lll

llll

l

l
lll
l

ll
llll

l

l

l

bear.njsr inisherk.njsr bear.sxex inisherk.sxex

4
5

0
5

0
0

5
5

0
6

0
0

6
5

0
7

0
0

7
5

0

M
B

 o
f

m
e

m
o

ry
 u

s
e

d

Figure 4.13: Memory usage for different host × pdp combinations

The memory usage was also recorded, supporting the contention that njsrPDP makes

particularly efficient use of computing resources, including 35% less memory. Figure

4.13 shows this comparison.

4.3.6 Policy-Request Scenario Comparison

Scenario 3 incurs significant overheads. Firstly, the converter requires 83% of the total

time needed to make the access decision. Secondly, translation introduces a large

object that needs to be maintained at the top of the callback chain. When the PDP

evaluates and wishes to pass its decision to the PEP it must “walk” back up the callback

chain. The top level callback needs to retain a link including the context of the request

and its arguments throughout the whole chain. By placing such a large object in

the top callback, translation imposes greater overheads down the callback chain, so

the computation time is increased. Therefore the next step is to investigate how the

system would perform if the penalty for translation, which increases evaluation time in

two ways, were removed.

By pre-translating the requests the overhead incurred in translating the requests at

run time is removed as well as the added overheads in the callback chain. The challenge

becomes that of guaranteeing safe and accurate policy evaluation. Some approaches,

identified in Section 4.3.3, impose performance losses while traversing arrays, with other

112

4.3 Performance of Policy Evaluation

losses emerging when developing the PDP. One complication is that, depending on the

XML schema, the ordering of some child elements may be unspecified. Consequently the

position of sibling child elements in policies within the same policy set can be different.

A XACML PDP’s XML parser has no difficulty in this regard but the translating

program makes no allowance for consistency in the generated JSON. Thus njsrPDP has

to account for this, handling all ordering permutations so as to operate correctly. While

these problems also occur in Scenario 3, the additional translation overhead masked

this feature. A minor performance gain was identified when using a combination of pre

translated JSON requests and optimized (JSONPL-formatted) policies, as there is less

overall bloat.

ll l

lll l

ll ll

l ll ll

s
c
e
n
a
ri

o
1
A

s
c
e
n
a
ri

o
2
A

s
c
e
n
a
ri

o
1
B

s
c
e
n
a
ri

o
2
B

6.0e−05 6.5e−05 7.0e−05 7.5e−05 8.0e−05 8.5e−05 9.0e−05

service time (seconds)

Figure 4.14: Service times for Scenarios 1A, 1B, 2A, 2B

The boxplot in Figure 4.14 indicates that the best performance is obtained when

optimized (JSONPL) policies and requests are used (Scenario 1A) and that performance

degrades as bloated/more complex automatically translated JSON is used to represent

polices and requests (Scenario 2B).

113

4.3 Performance of Policy Evaluation

seconds

d
e

n
s
it
y
 (

s
c
a

le
d

 s
o

 t
h

a
t

e
a

c
h

 h
is

to
g

ra
m

 a
re

a
 =

 1
)

0.00000 0.00015 0.00030 0.00045 0.00060 0.00075

0
4
0
0
0
0

8
0
0
0
0

1
2
0
0
0
0

Scenario1A Scenario2B SunXacml Scenario3B EnterpriseXacml

Figure 4.15: Service time comparison. Ranked in decreasing order of performance (left

to right in the figure above), they are: njsrPDP Scenario 1A, 2B; SunXACML; njsrPDP

Scenario 3B, EnterpriseXACML.

The service time histograms in Figure 4.15 show how different njsrPDP scenarios

compare with “traditional” PDP implementations. Clearly there is no net performance

benefit of the JSON implementation when requests are translated on the fly: mean

services times for njsrPDP Scenario 3A are greater than those for SunXACML, but

njsrPDP has much greater performance potential (see Scenario 1A).

Df Sum Sq Mean Sq F value Pr(>F)

scenario 5 6.4e-05 1.27e-05 7.43e+05 < ε

decision 2 1.0e-09 4.00e-10 2.54e+01 1.8e-11

requestIndex 190 8.0e-09 0.00e+00 2.32e+00 < ε

Residuals 954 1.6e-08 0.00e+00

Table 4.6: Analysis of Variance for Scenario service times

114

4.4 Scalable Group Management

1A 6.4e-05 1B 7.4e-05

2A 7.8e-05 2B 7.8e-05

3A 57.8e-05 3B 56.5e-05

Table 4.7: Mean service times for each of the Scenarios

Table 4.6 confirms that factors such as scenario type, decision and request type

are significant variables when modeling service times. The comparison of mean service

times for each Scenario in Table 4.7 shows how different Scenario 3 is to the others,

and how much request format optimization affects performance (compare Scenario 1A

and 2A).

4.4 Scalable Group Management

The CoffeeScript language (MacCaw (2011)), which transcompiles to JavaScript offers

syntactic advantages over JS. The code produced by CoffeeScript is invariably cleaner,

more direct and produces highly optimized JavaScript. The JavaScript PDP with

JSONPL inputs offered a sizeable increase in terms of performance over rival PDPs.

Further optimizing this process would bring the Management potential for groups well

within near real time requirements.

4.4.0.1 CoffeeScript PDP

Designing a PDP in CoffeeScript brings a number of advantages over a JavaScript

implementation.

A more intuitive Class system: While Classes are possible within JavaScript they

are complex to establish and manage. CoffeeScript masks this functionality with

exposed keywords, lending a PDP system class based features such as inheritance

and a more intuitive and fluid design.

Scope handling: CoffeeScript takes care of properly scoping your variables, all Coffee-

Script output is wrapped inside an anonymous function, ensuring global variables

will not leak.

Reduced Developer Effort: A CoffeeScript implementation will deliver a semanti-

cally equivalent solution at a fraction of the code base size and developer effort.

Domain readable code: The language used within CoffeeScript is much more human

readable to the point it is self documenting code.

115

4.4 Scalable Group Management

In Appendix A a CoffeeScript PDP is created. This PDP is semantically the same

as the njsrPDP created within JavaScript and used in the previous experiments. The

PDP is 200 lines long and 6,168 bytes in size, this compares to the njsrPDP which is

1020 lines long and 21,821 bytes. While code size and length are not significant factors,

they do highlight the reduced development effort and the potential portability of the

produced code as discussed in Section 4.1.2.

4.4.0.2 CoffeeScript Policy Representation

The scenarios highlighted in Section 4.3.6 showed that a complementing policy rep-

resentation format and PDP can yield powerful results. Representing policies within

traditional representation formats still requires a translation to occur for the host lan-

guage to interpret them. In the case of XML, this is a heavy process requiring external

libraries1. In the case of JSON, this process is simpler with an appropriate host lan-

guage, and very much measurable with respect to the size of the document. In the case

of the scenarios considered, a JSON document was taking 8µs to process. This thesis

considered CoffeeScript as a potential representation format for requests and policies

for the following reasons:

Human Readable: The syntax of JSON is brackets which need to be nested correctly,

this can be difficult to troubleshoot.

Directly interpretable within a CoffeeScript PDP: No translation is required,

once the request is received in the system the PDP has full visibility of all elements

contained within it.

Turing Complete Functions and algorithms could be encoded within the request or

policy documents. As CoffeeScript is a Turing complete language, any computa-

tionally feasible algorithm can be expressed within it (Turing (1936-7)2).

A sample request in Listing 4.6 shows the structure and syntax that a CoffeeScript

Request could take.

class Request

@subject:

category: "access -subject"

1For example dom4j (http://dom4j.sourceforge.net/) within Java or Node-XML within JavaScript

(https://github.com/robrighter/node-xml/).
2This paper was the initial research carried out around the problem. For a more relevant and

historical viewpoint the work of Petzold (2008) is recommended.

116

4.4 Scalable Group Management

isConflicted : true

@resource:

class: "paper_review_content_commentsAll_rc"

id: "DEFAULT RESOURCE"

@action:

type: "create"

exports.Request = Request

Listing 4.6: CoffeeScript Policy Request

4.4.1 Analysing CoffeeScripts Performance

The CoffeeScript PDP (csPDP) and request combinations were run in the same manner

as the njsrPDP simulations carried out earlier. The same assurances and simulation

setups were used and carried out on identical machines.

Service times on bear using csPDP

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 T

ot
al

 H
is

to
gr

am
 A

re
a

=
 1

)

4.0e−06 6.0e−06 8.0e−06 1.0e−05 1.2e−05 1.4e−05

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

(a) CSPDP on bear

Service times on inisherk using csPDP

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 T

ot
al

 H
is

to
gr

am
 A

re
a

=
 1

)

4e−06 6e−06 8e−06 1e−05

0e
+

00
2e

+
05

4e
+

05
6e

+
05

(b) CSPDP on inisherk

Figure 4.16: CSPDP request service times on hosts bear and inisherk.

Figure 4.16 shows the average request service times. The service times are clustered

with three visible clusters identifiable in Figure 4.16(a) on host bear and similarly three

clusters in Figure 4.16(b) with some overlap visible in a compressed manner. The host

machine factor is not as significant within the CSPDP results showing that the same

117

4.4 Scalable Group Management

performance profile is possible regardless of server type, making the results repeatable.

From a scale up point of view this repeatability and predictable grouping of service

requests makes response time provisioning easier to facilitate.

Table 4.8 shows the mean service times for all PDPs under investigation in this

section.

csPDP 4.95 e-06

njsrPDP 4.66 e-05

SunXacmlPDP 5.35 e-05

EnterpriseXacmlPDP 8.33 e-04

Table 4.8: Mean service times for each of the PDPs

Figure 4.17 shows a comparison between csPDP and its peers.

Service time histograms for selected pdp x host combinations

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 e

ac
h

hi
st

og
ra

m
 a

re
a

=
 1

)

2.0e−06 1.7e−05 3.2e−05 4.7e−05 6.2e−05

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05 bear−NCS bear−NJSR

(a) CSPDP on bear

Service time histograms for selected pdp x host combinations

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 e

ac
h

hi
st

og
ra

m
 a

re
a

=
 1

)

0.000002 0.000152 0.000302 0.000452 0.000602

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00 bear−NCS bear−NJSR bear−SX

(b) csPDP compared with njsrPDP and SunXACML

Figure 4.17: csPDP request service times on hosts bear compared with other PDP

implementations

The csPDP has a clear performance increase over the njsrPDP, visible in Figure

4.17(a). With both platforms based on Node.js, the performance increase is attributed

to a more optimised JavaScript and the representation format used. Having the policy

and request accessible without an interpretation step, as is the case with JSON, offers

a measurable performance increase, with the interpretation time of a JSON document

typically static with respect to the size of the input document. Additionally, using class

118

4.4 Scalable Group Management

based data structures that can be directly accessed, removes an element of searching

and looping that would be required in a traditional representation format. In terms

of improving the njsrPDP to bring the performance closer to csPDP, the PDP code

base could be further optimised and the representation of data within the JSONPL

documents improved upon. This would yield minor performance improvements as a

significant performance improvement is not possible with traditional data representa-

tion formats. Figure 4.17(b) shows the service times of the SunXacmlPDP with respect

to the Node.js based PDPs. In this instance, Node as a deployment platform is com-

pared to a non optimsed JVM. There is some scope for improving the JVM, with a

deeper understanding of the semantics contained within the JVM (Belblidia & Deb-

babi (2007)), various approaches can be taken such as tackling memory management

(Velasco et al. (2012)) or how methods are dispatched (Takeuchi et al. (2012)). Opti-

mzing the JVM for Access Control requests should bring the response times down, but

nowhere near the level of the Node.js based execution platforms.

4.4.2 Summary

Access Control management in a near real time manner is currently difficult to pro-

vision and was identified in RQ-GFM2. A change in implementation technology and

representation format, while retaining direct mapping to XACML encoded policies and

requests is possible. No performance gain emerges from this, however, removing the

verbose metadata which accompanies XML to produce a concise representation shows

a significant improvement. Further research has shown that removing the dependency

on XACML semantics and encoding policy requests and documents directly within a

programming language can yield response times not capable of being reproduced in

traditional XACML. The cost is interoperability but the result is a policy language

representation capable of scaling beyond current state of the art and capable of man-

aging high volume requests and potentially emerging usage patterns (RQ-GFM1). As

XACML is currently not deployed within social networks, abstracting the principles

and information flow behind the access control mechanism can inform an access con-

trol deployment. A resulting access control implementation that is complementary to

emerging social network architectures can thus be architected, something which is an

achievement of this thesis.

119

4.5 Summary

4.5 Summary

This section presented a discussion on the performance characteristics of managing

Group Interactions within emerging social networks. A contribution is presented in

the form of a discussion and design surrounding a case for Group Specific PDPs imple-

mented within CoffeeScript. The current state of the art was shown to not satisfy the

real time requirements required within emerging scenarios and solutions to RQ-GFM2,

RQ-GFM3 and RQ-S3 were presented. The understanding of this Management poten-

tial and Policy structure will be utilised within the next section, assisting in the design

of an output model.

120

Chapter 5

Towards a Unified Model for

Group Formation and Interaction

Management

This section presents the model abstracted from the experimental work carried out in

the previous sections. A unified model is evolved, informed by experiences in analysing

and implementing the range of scenarios discussed in Chapter 3 and Chapter 4. Addi-

tionally, further refinements of selected algorithms are presented in CoffeeScript.. These

algorithms support and illustrate the behavior of the evolved model. CoffeeScript is

chosen as a representation format, as it usefully embodies Domain Specific Language

capabilities and features.

5.1 Model Responsibilities

A conceptual model, visible in Figure 5.1, encompassing Group Formation, Roster,

Management and Policy domains, serves as a useful starting point for elaborating and

exploring the model further. Each domain within this model is examined individually,

with focus on core responsibilities, relationships and key algorithms.

121

5.1 Model Responsibilities

Group Formation

Group Management

Group Roster Group Policy

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.1: Abstract Group Formation and Management Model

5.1.1 Group Formation

Group Formation is the public facing interface allowing users to request groups and

receive requests to query existing groups. Figure 5.2 highlights the elements of the

model and the relationships they contain. This model was arrived at from the analysis

carried out in Chapter 3 on the formation of groups within the XMPP domain and in

the domain of Disaster Management.

122

5.1 Model Responsibilities

Communicat ion Group Factory

Group Profi le

Membership

(Group Roster)

Group

(Group Roster)

PolicySet

(Group Policy)

PDP Factory

(Group Management)

1..*

create PDP from spec

1

1

retrieves config

interrogates

creates

accesses

Receives requests

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.2: Group Formation Model

The core elements of the model are described as follows:

Communicator : The Communicator assumes the role of the public interface to

the system. Requests are received including membership requests and group

membership queries, both forwarded to the Group Rosters Membership entity.

Requests to form a new group are received here also and sent to the Group

Factory for realisation.

Group Factory : The Group Factory is responsible for interpreting the request to

form a group and subsequently the formation of that group. This element inter-

acts with a Group Profile, retrieving a candidate profile containing references to

the associated policy configuration of PDP and PolicySet. This configuration ref-

erence is subsequently validated by the Group Policy entity. The Group Factory

then writes the newly created Group to the Group Roster. The Group Factory

concludes by passing the PDP specification, retrieved in the validation of the

PolicySet, and passes it into the PDP Factory, a Group Management component.

Group Profile : A Group Profile is a schematic representation of a Group which can

be used to infer a particular style for a group. By having a profile the underlying

management system can better provision resources and customise the manage-

ment principles associated with the group. The profile includes a reference to

an appropriate PolicySet, resource recommendation and group specific structures

123

5.1 Model Responsibilities

such as hierarchies and role specification.

The associated sequence diagram, visible in 5.3, describes the interaction of the

Formation mode.

Group ManagementGroup Roster Group

Policy

Group

Profile

Group

Factory

CommunicatorUser

6.1.2.2.1: Return Ack

6.1.2.1: Create PDP

1.1: Interrogate

6.1.2.2: Form Group

6.1.2: Return PDP Specifcation

6.1.1: Validation

6.1: Validate PolicySet

6: Returned Profile

5: Retrieve Profile

4: Request Profile

3: Analyse Requirements
2.1: Formation Request

2: Formation Request

1.2: Response

1: Info Request

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.3: Group Formation Sequence Diagram

5.1.1.1 Group Formation Algorithms

The Group Formation Algorithm, encoded within CoffeeScript and visible in Listing

5.1, represents the three main actions of receiving a request, querying the roster for

information and forming a group. For convenience, Appendix B contains a reference

guide for the terminology and syntax used within CoffeeScript

receiveRequest: (context) ->

queryRoster(context) if context query?

formGroup(context) if context formation?

formGroup(paramaters ,ack) ->

retrieveProfile(paramaters.requirements , profile) ->

retrievePolicyConfiguration(profile.policyConfig , policyBundle) ->

groupManagement.injectPDP(policyBundle.PDP , paramaters.groupName)

Roster.createGroup(profile.resources , paramaters.groupName ,

paramaters.owner , policyBundle.policySet)

ack("Group successfully created")

124

5.1 Model Responsibilities

queryRoster(query.response) ->

interpretRequest(query) ->

Roster.retrieveInformation(query , data) ->

response(data)

Listing 5.1: Group Formation Algorithm

The algorithm in Listing 5.2 shows a generic Group Profile and two sample profiles

for Dynamic Groups and for Ad-Hoc Groups.

class Profile

constructor: (@name , @visibility = "public") ->

maxSize: (@maxSize) ->

minSize: (@minSize) ->

membershipBarrier: (logic) -> @barrier = logic

numAdministrators: (@numAdmins) ->

containsServices: (logic) -> @services = logic

requiresResources: (logic) -> @resources = logic

fileSharing: (logic) -> @ l e s = logic

PolicyConfig: (bundle) ->

@PDP = bundle.PDP

@PolicySet = bundle.PolicySet

class Dynamic extends Profile

super("football")

membershipBarrier :(value = no) -> super value

containsServices: (value = no) -> super value

requiresResources: (value = yes) -> super value

fileSharing: (value = no) -> super value

bundle.PDP = "dynamic sport"

bundle.PolicySet = "dynamic sport"

class AdHoc extends Profile

super("rugby","private")

membershipBarrier :(value = no) -> super value

containsServices: (value = yes) -> super value

requiresResources: (value = no) -> super value

fileSharing: (value = yes) -> super value

bundle.PDP = "private adhoc sport"

bundle.PolicySet = "private adhoc sport"

Listing 5.2: Group Profile Algorithms

125

5.1 Model Responsibilities

5.1.2 Group Management

The design of the model is inspired by the performance profiles associated with the

management principles derived in Chapter 4. It presents a means to manage the re-

quests and activities associated with high traffic modern groups, with custom logic

implemented per group. Figure 5.4 describes the overall architecture.

PEP PRP

PDP Factory

PDPMembership

(Group Roster)

PolicySet

(Group Policy)

Group

(Group Roster)

1

1..*

1

1

1

1

1..*

1

retrieves

Receive Requests

request PolicySet

forward requests

Enforces Decision

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.4: Group Management Model

PEP : The Policy Enforcement Point has a number of responsibilities within the Man-

agement system. Firstly, the retrieval of requests from within the membership of

the group. These requests are interpreted and evaluated before being passed onto

a specific PDP for which the request is targeted.. On receipt of an evaluation

decision from the PDP, the PEP is charged with the responsibility of enforcing

the decision made by the PDP, informing the original requester of the decision.

PRP : The Policy Retrieval Point is responsible for retrieving a PolicySet or aspects

of a PolicySet from the Group Roster and passing it to the PDP for evaluation.

PDP Factory : The PDP Factory allows management and administration decisions

to be taken across a selection of PDPs. The Factory additionally functions as

a point where new PDPs can be created, taking the required specification and

instantiating a fully functioning PDP.

126

5.1 Model Responsibilities

PDP The PDP is tailored at a language level to manage a specific group. A tailored

PDP maps one to one with a group within the system providing an evaluation

engine to make an informed decision on whether an action within the group is

allowed. Retrieving a message from the PEP, the PDP interfaces with the PRP

to retrieve the required PolicySet, or aspects of it, and makes an evaluation with

the data at hand. A decision is returned to the PEP.

Figure 5.5 shows a Sequence Diagram highlighting the interactions and message

passing among the core elements of the Management System.

PRPPDPPEPRequest

1.3.1: Request Policies

1.3: Route to PDP

4.2: return decision and effect 4.1: Enforce Decision

4: Inform decision

3.1: Make Decision

3: return PolicySet

2: Retrieve PolicySet

1.2: Identify PDP

1.1: Identify Request

1: Intercepted by

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.5: Group Management Sequence Diagram

5.1.2.1 Group Management Algorithms

The Group Policy Algorithm includes the PEP and the PRP within Listing 5.3. An

extensive example of a PDP can be found in Listing A.1 within Appendix A. The PRP

has a function to retrieve the PolicySet for the group that the request is associated

with. The policySet is stored on the Roster with the group, which may be a database

or in memory storage.

class PEP

receiveRequest (request , decision) ->

interpret(request , interpretedRequest) ->

if interpretedRequest isnt "NotApplicable"

interpretedRequest.group.PDP.evaluate(interpretedRequest , result)

->

127

5.1 Model Responsibilities

obligations(result.obligations)

decision(result.decision)

class PRP

onRequest = (request , callback) ->

policySet = GroupRoster.retrieveGroup(request.group).policySet

if request.type is "fullSet" then callback(policySet)

else

callback(parsePolicySet(request.paramaters))

class PDPFactory

activePDPs = []

createPDP (name , PDPspec) ->

configurePDP(PDPspec)

activePDPs.push([name ,PDP])

Listing 5.3: Group Management Algorithm

5.1.3 Group Policy

The Group Policy component is represented in Figure 5.6 and shows the core enti-

ties making up the model. The model is influenced by the structure of the XACML

specification for policies, available in Appendix C, and by the experimentation on the

performance of access control within Chapter 4. The simplified version of the access

control implementations used within the experiments carried out shows that additional

metadata surrounding the policy structure is not required. The simplified structure

presented facilitates both domain readable code and faster execution by specifying the

minimal information required.

128

5.1 Model Responsibilities

Policy Rule

Policy Repository

Subjects

Condit ions

Act ions

Subject

Condit ion

Act ion
ID Target

Resources Resouce

Effects Effect

Obl igat ion

PolicySet PDP

(Group Management)

1..*

1..*

1..*

1..*

0..1

1..*

0..1

1..*

1..*

1..*

1

1..*

1

1

1..*1..*

1..*

1..*
0..1

1..*
1..*

1..*

0..1

1..*

0..*

1..*

1

1

1..*

1..*

1..*

1..*

1..*

1..*

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.6: Group Policy Model

The following entities are described:

Policy Repository The overall structure, typically a data storage mechanism, is the

Policy Repository. This contains several PolicySets.

PolicySet The PolicySet represents a grouping for policies. A PolicySet is made up

of multiple individual Policy elements and a specific PDP tailored towards the

PolicySet.

Policy : A policy is a collection of rules, associated with a specific target.

ID : A unique identifier to identify the particular policy

Target : The target resource or action that the policy is designed to protect.

Rule : A Rule is a combination of elements, optionally containing a mix of Subjects,

Conditions, Resources and Actions.

Subjects represents a set of individual Subjects with whom the rule is targeting. For a

successful deliberation the subject or subjects presented in the interaction request

must match those contained within the Rule.

Conditions are logical gateways protecting the overall rule. Typically if a condition

or conditions are met it satisfies the constraints placed on the firing of the rule,

provided the Subjects, Resources and Actions also match.

129

5.1 Model Responsibilities

Resources are the items, be they physical or virtual, that the Rule is designed to

protect.

Actions are the intended interactions with which a Subject wishes to invoke on a

Resource, provided the right Condition is met.

Effects represent the answer and optional obligations which the PDP must deliver

based on the Rule being evaluated with respect to the Subjects, Conditions,

Resources and Actions. Effects are typically Permit or Deny.

Obligations are additional conditions that the policy authors wish to impose on the

interaction that has been approved (or denied).

5.1.3.1 Group Policy

Group Policies are specified by the generic Policy outlined in Listing 5.4. The individual

policy examples also specified in Listing 5.4 represent the PolicySet described for the

experiments in Section 4.4.

class Policy

constructor: (@id , @mastertarget) ->

Subject: (@subjects ...) ->

Resource: (@resources ...) ->

Action: (@actions ...) ->

Effect: (@effects) ->

RPSlist000 = new Policy("RPSlist .0.0.0","conference_rc");

RPSlist000.Subject (["role", "admin"])

RPSlist000.Action("read","write")

RPSlist000.Effect("permit")

RPSlist001 = new Policy("RPSlist .0.0.1","conference_rc")

RPSlist001.Subject (["role","pc -chair"])

RPSlist001.Action("read")

RPSlist001.Effect("permit")

RPSlist002 = new Policy("RPSlist .0.0.2","conference_rc")

RPSlist002.Subject (["role","pc -member"],["isMeeting", true])

RPSlist002.Action("read")

RPSlist002.Effect("permit")

RPSlist003 = new Policy("RPSlist .0.0.3","conference_rc")

RPSlist003.Effect("deny")

130

5.1 Model Responsibilities

conference_rc = [RPSlist000 ,RPSlist001 ,RPSlist002 ,RPSlist003]

policySet = [conference_rc]

Listing 5.4: Group Policy Algorithm

For completeness, Listing 5.5 shows a number of sample requests, highlighting the

structure associated with an access control request.

class Request

@subject:

category: "access -subject"

role : "pc-chair"

@resource:

isPending: false

id: "abc123"

@action:

type: "write"

class Request

@subject:

category: "access -subject"

subjReviewsThisResPaper : true

@resource:

class: "paper_rc"

id: "abc1234"

@action:

type: "delete"

class Request

@subject:

category: "access -subject"

isMeeting : true

@resource:

class: "paper_review_content_commentsAll_rc"

id: "abc12345"

@action:

type: "read"

Listing 5.5: Group Policy Requests

5.1.4 Group Roster

The Group Roster is represented in two models, Figure 5.7 shows a minimal Group

Roster and Figure 5.8 shows a Group Roster with a Social Network modeled. Analysis

131

5.1 Model Responsibilities

of the XMPP roster in Chapter 3 motivated the design of this model.

Person
Service

DeviceContext

GroupRoster

PolicySet

(Group Policy)

Membership

Group

1

1..*

0..*

1..*

1

1

1

1..*

0..*

0..*

1

1..*1

1..*

0..*

0..*

1

owner

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.7: Group Roster Model

132

5.1 Model Responsibilities

Membership

Person Service

DeviceContext

GroupGroupRoster

Users

Social Network

PolicySet

(Group Policy)

1..*

1
1..*

0..*

0..*

1..*

1

1

0..*

1

1..*

1..*

0..*

1..*

1..*
1

1

1..*

1

0..*

1

0..11

owner

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.8: Extended Group Roster Model

The core elements of Figure 5.7 are described below:

Group Roster : The Group Roster is a data set which contains the list of all Groups

within the system.

Group : A Group is a logical representation of a community of interest containing the

membership set and the associated PolicySet to govern the group. Groups can

contain subgroups.

Membership : The membership of the Group including metadata about the members

is stored as an internal Group Roster.

Service : A Service is a non living entity that is classed as a member of the group,

and thus accessible and available for interaction.

Person : A Person is a living entity who claims membership of the Group. At least

one person is classified as the owner of the Group.

Context : Additional information is available about the Person including contextual

information that they may wish to release.

Device : The device or devices associated with the Person from which they typically

access the group.

133

5.1 Model Responsibilities

Figure 5.8 has the same definition and role identity as the above sections, with

the addition of two elements.

Social Network : A Social Network represents the fact that a Group Formation and

Management System may hook into existing networks.

Users : The userbase of a Social Network, which may contain People or Services. The

Membership of the Group takes a subset of the Users as its membership.

Figure 5.9 shows a Sequence Diagram highlighting the interactions and message

passing among the core elements of the Roster for a group addition.

GroupRequest GroupRoster

7.1: Ack

7: Ack

6: Associate Policy
5.1: Associate PolicySet

5: Ack

4: Populate Membership
3.1: Add Owner

3: Ack
2: Create Group

1.1:
1: Create Group (Bundle)

Visual Paradigm for UML Standard Edition(Waterford Institute of Technology)

Figure 5.9: Group Roster Sequence Diagram

5.1.4.1 Group Roster

The Group Roster is represented in Listing 5.6. Included is the specification of a Group.

class Roster

groups = [Group ...]

retrieveInformation (query ,response) ->

retrieveGroup(groupName) ->

createGroup (resources , name , owner , policySet) ->

group = new Group(name ,owner)

group.membership.push(owner)

group.setPolicySet(policySet)

134

5.1 Model Responsibilities

group.setResources(resources)

groups.push(group)

class Group

constructor: (@name ,@owner) ->

@membership = []

setPolicySet: (input) -> @policySet = input

setResources: (input) -> @resources = input

Listing 5.6: Group Roster Algorithm

5.1.5 Combined UML Model

The individual models outlined in the previous sections are combined and shown in

Figure 5.101. Additionally, Figure 5.11 shows the same diagram with a package overlay.

Combining the model clarifies the relationships among the entities and may help identify

bottlenecks within potential deployments. Section 5.2 outlines some implementation

recommendations to accompany the model. These recommendations primarily address

suitable deployment platforms, storage solutions, presentation formats and strategies

for programmatically handle concurrency. Taken in their entirety, the recommendations

complement one another, proving a friction-free environment for handling the formation

and management of groups and their interactions.

1Both Figure 5.10 and Figure 5.11 are presented in landscape format for readability purposes

135

5.1 Model Responsibilities

C
o

m
m

u
n

ic
a

ti
o

n

G
ro

u
p

G
ro

u
p

 F
a

c
to

ry
G

ro
u

p
 P

ro
fi

le

M
e

m
b

e
rs

h
ip

P
D

P
 F

a
c
to

ry

P
o

li
c
y
S

e
t

P
D

P

P
o

li
c

y
 R

e
p

o
s

it
o

ry

P
o

li
c

y

ID

T
a

rg
e

t

R
u

le

S
u

b
je

c
ts

C
o

n
d

it
io

n
s

A
c

ti
o

n
s

R
e

s
o

u
rc

e
s

E
ff

e
c

ts

A
c

ti
o

n

R
e

s
o

u
c
e

S
u

b
je

c
t

E
ff

e
c

t

C
o

n
d

it
io

n

O
b

li
g

a
ti

o
n

P
E

P
P

R
P

G
ro

u
p

R
o

s
te

r

P
e

rs
o

n
S

e
rv

ic
e

C
o

n
te

x
t

D
e

v
ic

e

0
..

1

1
..

*

1
..

*
1

..
*

1
..

*

1
..

*

1
..

*

1
..

*

1
..

*

1
..

*

1
..

*

1
..

*

1

1

0
..

*

1
..

*

1
..

*

0
..

*

0
..

1
1

..
*

0
..

*

1

1
..

*

c
re

a
te

 P
D

P
 f

ro
m

 s
p

e
c

1

1

1
..

*

1
..

*

1

1

0
..

*

1

1
..

*

1
..

*

1
..

*

1
..

*

0
..

1

1
..

*

1

1
..

*

0
..

*

1
..

*

1
..

*

1
..

*

1

1
..

*

1
..

*
1

1

0
..

1

1
..

*
1

1
..

*

1
..

*

1

0
..

*

1

o
w

n
e

r

re
tr

ie
v
e

s

re
q

u
e

s
t

P
o

li
c
y
S

e
t

R
e

c
e

iv
e

 R
e

q
u

e
s
ts

E
n

fo
rc

e
s
 D

e
c
is

io
n

fo
rw

a
rd

 r
e

q
u

e
s
ts

re
tr

ie
v
e

s
 c

o
n

fi
g

in
te

rr
o

g
a

te
s

a
c
c
e

s
s
e

s

c
re

a
te

s

R
e

c
e

iv
e

s
 r

e
q

u
e

s
ts

V
is

u
a

l
P

a
ra

d
ig

m
 f

o
r

U
M

L
 S

ta
n

d
a

rd
 E

d
it

io
n

(W
a

te
rf

o
rd

 I
n

s
ti

tu
te

 o
f

T
e

c
h

n
o

lo
g

y
)

F
ig

u
re

5.
10

:
G

ro
u

p
F

or
m

at
io

n
an

d
M

an
ag

em
en

t
M

o
d

el
C

om
b

in
ed

136

5.1 Model Responsibilities

G
ro

u
p

 F
o

rm
a

ti
o

n

G
ro

u
p

 R
o

s
te

r

C
o

m
m

u
n

ic
a

ti
o

n

G
ro

u
p

G
ro

u
p

 F
a

c
to

ry
G

ro
u

p
 P

ro
fi

le

M
e

m
b

e
rs

h
ip

G
ro

u
p

 P
o

li
c

y

G
ro

u
p

 M
a

n
a

g
e

m
e

n
t

P
o

li
c
y
S

e
t

P
D

P

P
o

li
c

y
 R

e
p

o
s

it
o

ry

P
o

li
c

y

ID

T
a

rg
e

t

R
u

le

S
u

b
je

c
ts

C
o

n
d

it
io

n
s

A
c

ti
o

n
s

R
e

s
o

u
rc

e
s

E
ff

e
c

ts

A
c

ti
o

n

R
e

s
o

u
c
e

S
u

b
je

c
t

E
ff

e
c

t

C
o

n
d

it
io

n

O
b

li
g

a
ti

o
n

P
E

P

P
R

P

G
ro

u
p

R
o

s
te

r

P
e

rs
o

n
S

e
rv

ic
e

C
o

n
te

x
t

D
e

v
ic

e

P
D

P
 F

a
c
to

ry

c
re

a
te

 P
D

P
 f

ro
m

 s
p

e
c

1

1
..

*

0
..

*

1

1
..

*

1
..

*

1
..

*

1

1
..

*
1

..
*

1
..

*

1
..

*

1

1

1
..

*

1
..

*

0
..

1

1
..

*

1

1

1
..

*

0
..

1
1

..
*

1

1
..

*
0

..
1

1
..

*

1

1

0
..

*

1
..

*

1
..

*

1
..

*

1
..

*

1
..

*

1
..

*

1
..

*

0
..

1

1
..

*

1
..

*

0
..

*

1
..

*

1
..

*

1

1
..

*

0
..

*

1
..

*

1

1

1
..

*

1
..

*

0
..

*

0
..

*

1

1
..

*

1

o
w

n
e

r

re
q

u
e

s
t

P
o

li
c
y
S

e
t

re
tr

ie
v
e

s

fo
rw

a
rd

 r
e

q
u

e
s
ts

R
e

c
e

iv
e

 R
e

q
u

e
s
ts

E
n

fo
rc

e
s
 D

e
c
is

io
n

re
tr

ie
v
e

s
 c

o
n

fi
g

in
te

rr
o

g
a

te
s

a
c
c
e

s
s
e

s

c
re

a
te

s

R
e

c
e

iv
e

s
 r

e
q

u
e

s
ts

V
is

u
a

l
P

a
ra

d
ig

m
 f

o
r

U
M

L
 S

ta
n

d
a

rd
 E

d
it

io
n

(W
a

te
rf

o
rd

 I
n

s
ti

tu
te

 o
f

T
e

c
h

n
o

lo
g

y
)

F
ig

u
re

5.
11

:
G

ro
u

p
F

or
m

at
io

n
an

d
M

an
ag

em
en

t
M

o
d

el
C

om
b

in
ed

w
it

h
P

ac
ka

ge
s

137

5.2 Implementation Recommendations

5.2 Implementation Recommendations

The following implementation recommendations to help realise the above models were

derived from extensive simulations and observations. They include a discussion on

handling concurrency with language recommendations that can help attain scalability

and improve response times within the domain of group based interactions in emerging

social networks. A section on recommended architectures including both platform and

backend systems is also presented. Representing the management domain in an effective

language and manner is also very important to the overall usefulness of managing

high volume requests within the group environment. Candidate representations are

recommended based on the investigations carried out and on future uses of the system.

5.2.1 Handling Concurrency: Language Level

Diverse approaches to programmatically coping with concurrency have long been a

source of contention among software developers. This thesis has shown that within

the context of emerging social networks, a Non-Blocking I/O approach to concurrency

can facilitate more responsive and scalable services. This thesis used two Non-Blocking

languages, JavaScript and CoffeeScript, to highlight how they can facilitate the require-

ments outlined within the current state of the art, as described within the Research

Questions. In the future, new approaches to programmatically handling concurrency

will emerge. These approaches will be challenged by the volume of requests and ad-

ditionally the potential global membership base that groups will contain. The contri-

butions of this thesis to the understanding of the current challenges facing groups can

inform future approaches within this domain.

5.2.2 Underlying Platform

With the Node.js framework, JavaScript is no longer just a language supporting user

interaction within browsers (client-side). Based on the Google initiated, open source V8

JavaScript engine, JavaScript, or languages that can compile down into JavaScript, can

be be compiled into highly optimised server-side machine code on the fly. The Non-

Blocking nature of JavaScript is present within Node.js with all requests gradually

executed in sequence through the usage of callbacks. Node.js allows an elegant solution

to be engineered for traditional scalability problems and an alternative approach for

domains that might benefit from a Non-Blocking I/O approach. Node.js provides a

number of advantages that benefit the design of management system.

138

5.2 Implementation Recommendations

• It supports better modular design through component based programming, bene-

fiting from specifications supporting interoperability between server modules and

even between server and client side modules

• The system design is extensible with the possibility of swapping out modules and

including modules created in the future.

• The non-blocking architecture facilitated by JavaScript callbacks makes more ef-

ficient use of CPU resources than traditional systems that sit idle while a complex

IO request is executing. In a Node.js deployment, the spare CPU cycles can be

used more productively, e.g., to handle the next request or prepare the response.

• It uses events to trigger callback execution. A benefit of the event model is a

publish/subscribe mechanism built into the environment. This promotes greater

flexibility, since the system can include listeners (handlers) for particular events

of interest.

• The absence of complicated blocking semantics simplies development.

Competing platforms have emerged within the Non-Blocking domain including

Vert.x1 which offers support for multiple languages including JavaScript, Ruby, Python,

Groovy and Java. Aspects of the experiments carried out within this thesis could be

realised within Vert.x and may yield performance improvements due to the multicore2

support within Vert.x. However, at the time the experiments within this thesis were

carried out, the Vert.x platform and supporting ecosystem was not in a mature enough

state to investigate the scale of experiments under consideration. The technology is

currently at a point where it could be considered a viable candidate platform for an

implementation of the model produced as part of this thesis.

5.2.3 Storage Solutions

The dominance of the relational database is no longer a given. The NoSQL movement

is gathering pace with many open implementations of this broader, and perhaps more

scalable architecture for the data store (MongoDB, CouchDB, Redis). More highly

capable and intelligent systems can be constructed at a fraction of the cost of traditional

1Vert.x is an asynchronous application development platform for modern web applications.

http://vertx.io/
2Node.js cannot officially support multiple processors. However the open source community have

successfully demonstrated this is possible, for example Multi-Node (https://github.com/kriszyp/multi-

node). This functionality is slated for future integration within the official Node.js release.

139

5.2 Implementation Recommendations

relational systems. Costing aside, the style of database can often map nicely to the

problem at hand. Redis, for example, is a data structure oriented database that directly

supports sets, lists and hashes. Having a storage mechanism that host language data

structures understands not only removes the mental disconnect of the developer but

also reduces the amount of code required to facilitate parsing data from storage. In

domains where near real time execution is a requirement, minimsing the translation

time of accessing and inferring data is critical.

5.2.4 Policy Component Representation

A case was put forward for moving traditional access control based policy representa-

tions away from the XML style that is so closely associated with the XACML specifica-

tion. Attempts to use JSON and CoffeeScript as policy representation formats showed

that a performance gain could be achieved while used with a complementing architec-

ture. This thesis recommends CoffeeScript as a policy representation format to encode

both policy documents and requests catering for both access control policies and SLA

policies. As a representation format, CoffeeScript has all the necessary semantics to

encode the constraints of a policy language that would traditionally be represented

within XML or JSON. CoffeeScript can use object literals in the same form as JSON,

representing name:value pairs and arrays within its syntax. Anything that is possible

to represent within traditional policy documents is capable of being represented within

CoffeeScript with additional context. In fact, CoffeeScript can be viewed as enhancing

the object literal syntax of JSON with richer types, such as string supplemented with

booleans and numerical types.

Using CoffeeScript the resulting compiled code is JavaScript, allowing execution

within any JavaScript interpreter, essentially facilitating a portable representation. A

limitation, not investigated within the simulations carried out of the JSONPL language

is that policies and requests expressed in JSON are limited to the JSON specification.

Indeed this is also true for XML based policies. As such, JSON and XML as represen-

tation formats cannot directly contain functions or algorithms directly encoded within

the policy language. CoffeeScript is a programming language and as such is Turing

Complete. Any computationally feasible algorithm can be expressed within it and thus

can be encoded as a policy. Such a capability would provide more fine grained manage-

ment, for example within SLA management from a service providers perspective. Take

the calculation to check for the probability of an SLA violation using a very optimistic

technique which assumes no penalties, as highlighted in Algorithm 5.1.

140

5.2 Implementation Recommendations

Algorithm 5.1: Probability of an SLA violation

Pr(V iolation) = Pr(RT > SLA(max(RT))

Where RT is the mean response time. Listing 5.7 shows how this algorithm could

be represented within CoffeeScript.

calculateSLAViolation: (requests) ->

averageRT = mean requests

if averageRT >= maxSLA_RT then yes else no

mean = (array) ->

return 0 if array.length is 0

sum = array.reduce(s,i,0) -> s += i

sum / array.length

Listing 5.7: RT check for SLA Violations

By calculating the number of requests by the probability that they don’t violate an

SLA threshold, the ability to decide which services to prioritise based on their economic

value is possible. Algorithm 5.2 shows a naive Max Economic Value algorithm for

Service s in time t. A sample implementation is visible in Listing 5.8.

Algorithm 5.2: Max Economic Value

∀ s ∈ ServiceGroup (max(
∑

(V al(s, t)))

economicValue ->

serviceValues = calculateMaxValue service , timestamps for service in

serviceGroup

Math.max.apply null , serviceValues

calculateMaxValue: (service , timeframe) ->

Listing 5.8: Max Economic Value Algorithm

Encoding such algorithms in CoffeeScript is trivial, with the max value calculations

provided by the service provider capable of being changed at run time. CoffeeScript is

ideally suited to representing such policy specifications and such applications of policy

management. As such, this thesis recommends CoffeeScript as a representation format

for encoding policies.

141

5.3 Summary

5.3 Summary

This chapter presented the output models associated with the work carried out within

this thesis. A set of UML based models capturing the relationships and responsibilities

of core components necessary for optimised and scalable management of groups within

emerging social networks. A set of implementation recommendations are also included

and presented, showcasing current state of the art technologies and recommendations

which complement the models produced.

142

Chapter 6

Conclusions and Future Work

In this chapter the thesis is concluded, following which some potential areas for future

work are outlined.

6.1 Conclusion

6.1.1 Thesis Summary

Chapter 2 presented an overview of the literature involved in group formation and

management, including group communication technologies and current approaches to

implementation strategies. The area of Group Formation was first discussed in the

context of why people are attracted to groups. An analysis of the current role that

groups play in modern telecommunications was presented with the changes within user

behavior presented as a challenge for future formation mechanisms. A comprehensive

review of group communication technologies was then discussed, showing the history

and evolution of group based communication. The improvements offered by each new

technology suite was driven in part by changing user requirements and expectations.

Managing the interactions within groups is an important feature with emerging us-

age patterns exposing more and more information. A review of the best practices in

PBNM was presented within this context and some of the challenges within this do-

main presented for consideration. The final section discussed how to programmatically

design and implement a solution that will scale to address the challenges of emerging

social networks and user interaction. A best practice approach to design patterns, de-

ployment platforms, representation formats and some relevant language paradigms was

presented.

In Chapter 3, approaches to Group Formation and Management with respect to

143

6.1 Conclusion

Group Membership around a core domain of interest was investigated. The XMPP

protocol, a group communication service that has evolved into a fully functioning social

network, had its grouping functionality, as handled by the roster, examined. A set of

criteria for strengthen group management was put forward and analysed further. The

flexibility of the roster within XMPP was used to evolve a Group Roster entity. The

scalability limits of this approach were quickly reached and the performance limitations

of the roster was then examined. The capability of XMPP to handle large scale groups

was quickly established with recommendations put forward to programmatically handle

this requirement. Moving beyond XMPP, mass group management was investigated

within the context of a case study surrounding group formation driven by a reactive

event. A thorough investigation of technologies and architectures to evaluate mass

group formation was presented.

Chapter 4 looked at the performance and scalability of current group interaction

mechanisms. This chapter began with a discussion on architecting management plat-

forms to tailor them more closely to the target domain. A case was presented for group

specific PDPs to fulfill this role instead of trying to manage an entire system. This

tailored approach would be domain specific and highly responsive. Emerging usage

patterns of interest were revisited, showing that a management layer could offer perfor-

mance improvements within certain contexts. The performance of policy evaluations for

controlling basic access control interactions within groups was then examined. An im-

plementation based on a modern web development stack was shown to offer significant

performance gains against the industry standard XACML. Additional experimentation

investigated encoding policy representations within a modern programming language.

The results are beyond current state of the art capabilities, in both response times and

overall performance.

Chapter 5 presents the first steps towards creating a unified model for manag-

ing groups. The responsibilities of the model are presented individually before being

presented as a unified model. Complementary implementation algorithms supplement

the models presented. The chapter concludes with implementation recommendations

for handling groups, including recommendations for storage, platforms and handling

concurrency.

6.1.2 Contributions

The popularity and usage of social networking will continue to expand. A significant

driver for this increased popularity will be mobile consumption of services and content.

144

6.1 Conclusion

In this regard, groups will become a focal point for user interaction. In order to provide

a better quality of service through formation and management principles, this thesis

has proposed an outline architecture and model for groups. This approach contains

a number of novel contributions, arrived at from directly answering relevant Research

Questions posed:

• An Outline Model for Group Formation and Interaction Management: This rep-

resents a contribution to the understanding and structure required to successfully

facilitate groups in emerging social networks. Research Questions RQ-GFM1 and

RQ-GFM2 were addressed by this contribution.

• CoffeeScript Policies: Policy representations that are capable of encoding algo-

rithms and functions, with a performance improvement that satisfies near real

time requirements. RQ-GFM3 prompted this investigation.

• Scalable Component Design:. The individual components of the model were im-

plemented as a proof of concept, realising the key model characteristics. The

performance of the models were validated in high throughput simulations. Ad-

dressing RQ-S1 and understanding the load posed by RQ-S2 allowed for an un-

derstanding of components that could facilitate RQ-GFM2.

• Group Specific PDPs: In order to provision adequate management structures for

a group, this thesis proposes that a group specific PDP should be associated

with each group. The lightweight, portable design of the PDPs presented within

this thesis facilitates rapid deployment without the cost of semantics or overhead.

Discovering the correct toolset to satisfy RQ-S3 allowed an understanding develop

to tackle RQ-GFM2 and RQ-GFM3. The resulting analysis contributed to RQ-

GFM1.

• Modern Stack for Communications Management: Modern cloud service devel-

opment principles have been applied to PBNM middleware, demonstrating this

highly innovative technology stack can supplement and even replace aspects of

conventional application server technology in this context. The stack is capable of

handling emerging usage patterns not currently provisioned for in existing group

management domains. Understanding the limits within RQ-S1 allowed a solution

stack emerge to satisfy RQ-S3.

• Group Formation Case Study: A case study for the application of group forma-

tion in a global domain was put forward. It was shown that group formation

145

6.1 Conclusion

and management techniques could cope with the load such a use case would

bring. Additionally, the results are sufficiently encouraging enough to warrant

further study. This scenario was an example of the scalability profile that RQ-S2

documented. The solution management mechanisms and representation formats,

developed to satisfy RQ-GFM1 and RQ-GFM3, respectively, evolved through

addressing this Research Question.

Table 6.1 provides a reference to the core sections and peer reviewed publications

where Research Questions were investigated. In many instances, solutions to Research

Questions emerge throughout multiple chapters and supporting publications, for clarity

the table presents core sections and publications surrounding each question.

Research Question Thesis Section Publication

RQ-GFM1 Section 3.2.1 and

Section 3.3

Griffin et al. (2011a), Griffin et al. (2011c)

Griffin et al. (2012a)

RQ-GFM2 Section 3.3.1 and

Section 4.3

Foley et al. (2010), Griffin et al. (2011c),

Griffin et al. (2012b)

RQ-GFM3 Section 4.3
Foley et al. (2010), Griffin et al. (2012b)

RQ-S1 Section 3.3.1 and

Section 4.3

Griffin et al. (2011c), Griffin et al. (2012a),

Griffin et al. (2012b)

RQ-S2 Section 3.3
Griffin et al. (2011c),Griffin et al. (2012b)

RQ-S3 Section 5.1.5 and

Section 5.2

Griffin et al. (2011c), Griffin et al. (2012a),

Griffin et al. (2012b)

Table 6.1: Research Question Core Section Reference Table

146

6.2 Future Work

6.1.3 Conclusions

The aim of this thesis was to demonstrate how the management of group formation

and its interactions could be provisioned in emerging social networks. In line with this,

a model was designed and presented to provide a scalable means of managing groups

and their interactions. Through the simulations and results presented, this thesis has

shown that current state of the art mechanisms are not meeting the requirements set

out within this thesis, and the derived model and recommendations attempts to address

this. Specifically, in terms of the original research questions posed:

• Case studies were presented showing emerging usage patterns which current group

mechanisms cannot facilitate, showing a scalability bottleneck (RQ-S1 and RQ-

S2)

• A novel management design was presented to handle large scale group based

interactions (RQ-GFM1 and RQ-GFM2)

• A technology stack and associated best practices were used to derive a model to

support group formation and management. (RQ-S3 and RQ-GFM3)

6.2 Future Work

Many fertile areas worth investigating have been identified and a number are listed here

as possible extension points:

6.2.1 Humanitarian Relief: Disaster Management Applications

While investigating emerging usage patterns, the area of Disaster Management offered

interesting and relevant use cases. Currently Social Networks plays an informal role

in Disaster Management communication, a structured attempt to better inform First

Responders was investigated, with the emphasis placed on stress testing the underlying

infrastructure. A further investigation of the technology and outputs of this thesis in

the realm of disaster management with respect to service deployment would help better

inform and refine the model produced. The components produced will be available as

Open Source (Griffin (2012)) allowing for a more rigorous testing. The technology is

highly scalable and could benefit from a domain expert insight into how the communica-

tion channels should be organised and how a real world response would be coordinated.

147

6.2 Future Work

Contributions have already been made to a research projects, SOCIETIES1, which is

investigating the facilitating role of Social Networking within Disaster Management

(Roussaki (2011)).

6.2.2 Fine Grained Management through SLAs

Complex algorithms are used to check for SLA violations (Das (2012)) which could be

encoded into policy documents and checked on each access request. This is particularly

useful when it comes to prioritising services within a group, particularly when maximis-

ing revenue from the service provider is a factor. From a service providers perspective,

maximising revenue with limited resources might involve prioritising specific services at

a cost of reducing the response time of another service (Macias et al. (2009)). Through

calculating the number of requests by the probability that they don’t violate an SLA

threshold, the ability to decide which services to prioritise based on their economic

value is possible. Maintaining this balance for as long as possible could maximise profit

overall. From a computational point of view, executing an algorithm that calculates

the probability that a response time associated with a service request is in breach of

an SLA, with respect to the complexity of the calculation, is minimal for individual

requests. In high volume request scenarios, the number of response time calculations

over a time period could have a negative impact on the system, particularly if the

system has to deal with other standard access control requests alongside the SLA vi-

olation checks. Encoding SLA breach checking algorithms at a PDP level rather then

a third party tool allows for a more flexible polling algorithm. The CoffeeScript policy

representation and supporting environment is a potential candidate for delivering SLA

checking in a manner that does not impact on the timeliness of the response, allowing

a service provider maximise the revenue generated from service provisioning on their

platform.

6.2.3 Policy Continuum

The flexibility of the CoffeeScript Policy representation lends itself to analysis within

the overall Policy Continuum (Davy et al. (2008)), with the DSL nature of the rep-

resented policies allowing potentially clearer abstractions and hierarchies to be built.

From a policy authoring point of view the clarity and simplification of the CoffeeScript

1Self Orchestrating CommunIty ambiEnT IntelligEnce Spaces (SOCIETIES) http://www.ict-

societies.eu/

148

6.2 Future Work

language could support more terse specifications. The language semantics and policy

representation could additionally yield a performance gain on the basic operations that

are performed within the continuum, particularly for searching and combining policies.

The performance benefits over a JVM and XML based implementation could also al-

low for a more efficient utilisation of computing resources. The free CPU cycles could

perform consistency checks, an important feature within the conflict analysis domain.

However, the CoffeeScript PDP performed analysis on simple access control policies.

The full power of the PDP would be realised when tackling a more complicated set.

Access and availability to policy requests and documents are limited by security and

privacy concerns regarding the data they contain. As such access to real policies is

difficult. A refinement of the policy language would only be possible with access to

more rigorous sets.

149

References

Abelson, H. & Sussman, G.J. (1996). Structure and Interpretation of Computer

Programs - 2nd Edition (MIT Electrical Engineering and Computer Science). The

MIT Press. 33

Acar, A. & Muraki, Y. (2011). Twitter for Crisis Communication: Lessons Learned

from Japan’s Tsunami Disaster. International Journal of Web Based Communities,

7, 392–402. 23

Adams, P. (2011). Grouped: How Small Groups of Friends are the Key to Influence

on the Social Web (Voices That Matter). New Riders Press. 10, 24

Ahn, G.J. & Sandhu, R. (2000). Role-Based Authorization Constraints Specification.

ACM Transactions on Information and System Security , 3, 207–226. 28

Alez, G. (2012). Java Virtual Machines: Introduction, JVM Languages, Bytecode

Verifier, Secure Execution of Remote Code, and More. Webster’s Digital Services.

34

Assayag, G. (2009). New Computational Paradigms for Computer Music. Editions

Delatour France. 33

Atzori, L., Iera, A. & Morabito, G. (2010). The Internet of Things: A survey.

Computer Networks, 54, 2787–2805. 3

Baatarjav, E.A., Phithakkitnukoon, S. & Dantu, R. (2008). Group Recom-

mendation System for Facebook. In Proceedings of the 2008 OTM Confederated In-

ternational Workshops and Posters on On the Move to Meaningful Internet Systems,

OTM ’08, 211–219, Springer-Verlag, Berlin, Heidelberg. 24

Backstrom, L., Huttenlocher, D., Kleinberg, J. & Lan, X. (2006). Group For-

mation in Large Social Networks: Membership, Growth, and Evolution. In Proceed-

150

REFERENCES

ings of the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining , KDD ’06, 44–54, ACM, New York, NY, USA. 12, 13

Bareth, U., Kupper, A. & Ruppel, P. (2010). geoXmart - A Marketplace for

Geofence-Based Mobile Services. In Proceedings of the 2010 IEEE 34th Annual Com-

puter Software and Applications Conference, COMPSAC ’10, 101–106, IEEE Com-

puter Society, Washington, DC, USA. 12

Barron, J., Davy, S. & Jennings, B. (2011). Conflict Analysis During Authoring

of Management Policies for Federations. In Integrated Network Management (IM),

2011 IFIP/IEEE International Symposium on, 1180 –1187. 30

Beach, A., Gartrell, M., Akkala, S., Elston, J., Kelley, J., Nishimoto,

K., Ray, B., Razgulin, S., Sundaresan, K., Surendar, B., Terada, M.

& Han, R. (2008). WhozThat? Evolving an Ecosystem for Context-aware Mobile

Social Networks. Network, IEEE , 22, 50 –55. 26

Beck, K. & Andres, C. (2004). Extreme Programming Explained: Embrace Change,

2nd Edition (The XP Series). Addison-Wesley. 33

Belblidia, N. & Debbabi, M. (2007). A Dynamic Operational Semantics for JVML.

Journal of Object Technology , 6, 71–100. 119

Belic, D. (2012). Foursquare Surpasses 20 Million Users, 2 Billion Check-

ins http://www.intomobile.com/2012/04/21/foursquare-surpasses-20-million-users-

2-billion-checkins/ Last accessed: 16/07/2012. 26

Bloch, J. (2008). Effective Java (2nd Edition). Addison-Wesley. 64

Botz (2007). Botz: Internal Bot Library for Openfire

http://community.igniterealtime.org/docs/DOC-1130/version Last accessed:

16/07/2012. 67

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,

Nielsen, H.F., Thatte, S. & Winer, D. (2000). Simple Object Access Proto-

col (SOAP) 1.1. 31

Boyd, d.m. & Ellison, N.B. (2007). Social Network Sites: Definition, History, and

Scholarship. Journal of Computer-Mediated Communication, 13, 210–230. 22

BugLabs (2012). Node XML2JSON https://github.com/buglabs/node-xml2json Last

accessed on 10-08-2012. 102

151

REFERENCES

Bulatov, A.A. (2011). Complexity of Conservative Constraint Satisfaction Problems.

ACM Transactions Computational Logic, 12, 24:1–24:66. 11

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. (1996).

Pattern-oriented Software Architecture: A System of Patterns. John Wiley & Sons,

Inc., New York, NY, USA. 33

Buschmann, F., Henney, K. & Schmidt, D.C. (2007a). Pattern-Oriented Software

Architecture Volume 4: A Pattern Language for Distributed Computing (v. 4). Wiley.

33

Buschmann, F., Henney, K. & Schmidt, D.C. (2007b). Pattern Oriented Software

Architecture Volume 5: On Patterns and Pattern Languages. Wiley. 33

Butler, B., Jennings, B. & Botivch, D. (2010). XACML Policy Performance

Evaluation Using a Flexible Load Testing Framework. In Proc. 17th ACM Confer-

ence on Computer and Communications Security (CCS 2010), 648–650, ACM, short

paper. 30

Butler, B., Jennings, B. & Botvich, D. (2011). An Experimental Testbed to Pre-

dict the Performance of XACML Policy Decision Points. In IM 2011 - TechSessions,

Dublin, Ireland. 99, 104

Buyya, R., Garg, S. & Calheiros, R. (2011). SLA-oriented Resource Provisioning

for Cloud Computing: Challenges, Architecture, and Solutions. In Cloud and Service

Computing (CSC), 2011 International Conference on, 1 –10. 13

Camarillo, G. (2009). Peer-to-Peer (P2P) Architecture: Definition, Taxonomies, Ex-

amples, and Applicability. RFC 5694 (Informational). 18

Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C. & Gurle, D.

(2002). Session Initiation Protocol (SIP) Extension for Instant Messaging. RFC 3428

(Proposed Standard). 20

Campbell, C.E., Eisenberg, A. & Melton, J. (2003). XML Schema. ACM SIG-

MOD Record , 32, 96–101. 37

Carlsson, J. (2010). An Assessment of Social Media Business Models and Strategic

Omplications for Future Implementation http://tinyurl.com/c2z3b65 Last accessed:

16/07/2011. 13

152

REFERENCES

Carreras, A., Rodŕıguez, E. & Delgado, J. (2009). Using XACML for Access

Control in Social Networks. In W3C Workshop on Access Control Application Sce-

narios, W3C. 31

Cattell, R. (2011). Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record ,

39, 12–27. 99

Chatterjee, S., Abhichandani, T., Li, H., TuIu, B. & Byun, J. (2005). Instant

Messaging and Presence Technologies for College Campuses. Network, IEEE , 19, 4

– 13. 19

Chen, H., Shen, H., Xiong, J., Tan, S. & Cheng, X. (2006). Social Network Struc-

ture Behind the Mailing Lists: ICT-IIIS. In The Fifteenth Text REtrieval Conference

(TREC). 15

Chen, M., Gu, B. & Konana, P. (2009). Social Capital, Social Identity and Ho-

mophily Behavior in Virtual Communities: An Anaylsis of Interactions in Stock

Message Boards. 16

Chen, R.S., Tsai, Y.S., Yeh, K.C., Yu, D.H. & Bak-Sau, Y. (2008). Using Data

Mining to Provide Recommendation Service. WSEAS Transactions on Information

Science and Applications, 5, 459–474. 13

Cheng, R. & Vassileva, J. (2005). User Motivation and Persuasion Strategy for

Peer-to-Peer Communities. In Proceedings of the 38th Annual Hawaii International

Conference on System Sciences - Volume 07 , HICSS ’05, 193.1–, IEEE Computer

Society, Washington, DC, USA. 18

Churchill, E.F. & Nelson, L. (2007). Interactive Community Bulletin Boards as

Conversational Hubs and Sites for Playful Visual Repartee. In System Sciences, 2007.

HICSS 2007. 40th Annual Hawaii International Conference on, 76. 16

Cohen, B. (2008). The BitTorrent Protocol Specification, Version 11031.

http://www.bittorrent.org/beps/bep 0003.html Accessed on 10-Aug-2012. 18

Cohn, M. (2009). Succeeding with Agile: Software Development Using Scrum.

Addison-Wesley Professional. 33

Crockford, D. (2006a). The Application/JSON Media Type for Javascript Object

Notation (JSON). RFC 4627 (Informational). 37

153

REFERENCES

Crockford, D. (2006b). Json: The Fat Free Alternative to XML. 15th International

World Wide Web Conference. 37

Crockford, D. (2008). JavaScript: The Good Parts. O’Reilly Media, Inc. 35

Dahl, O.J. (2002). Software Pioneers. 78–90, Springer-Verlag New York, Inc., New

York, NY, USA. 34

Dahl, R. (2009). Node.js https://github.com/joyent/node Last accessed: 16/07/2012.

39, 65, 99

Dalgaard, P. (2008). Introductory Statistics with R. Statistics and Computing,

Springer. 110

Das, A. (2012). Maximizing Profit using SLA-aware Provisioning. In Network Opera-

tions and Management Symposium (NOMS), 2012 IEEE , 393 –400. 13, 148

Dattatreya, V., Rao, C. & Rayudu2, V. (2012). Agile Programming and Design

Patterns in Web Development - A Case Study. International Journal of Software

Engineering & Applications, 3, 37 – 45. 33

Davy, S., Jennings, B. & Strassner, J. (2008). The Policy Continuum-Policy

Authoring and Conflict Analysis. Compututer Communication, 31, 2981–2995. 148

Dennis, A.R. & Wixom, B.H. (2002). Investigating the Moderators of the Group

Support Systems Use with Meta-Analysis. Journal of Management Information Sys-

tems, 18, 235–257. 27

Deterding, S., Dixon, D., Khaled, R. & Nacke, L. (2011). From Game Design

Elements to Gamefulness: Defining ”Gamification”. In Proceedings of the 15th Inter-

national Academic MindTrek Conference: Envisioning Future Media Environments,

MindTrek ’11, 9–15, ACM, New York, NY, USA. 72

Ding, L., Zhou, L., Finin, T. & Joshi, A. (2005). How the Semantic Web is Being

Used: An Analysis of FOAF Documents. In System Sciences, 2005. HICSS ’05.

Proceedings of the 38th Annual Hawaii International Conference on, 113c. 11

Downes, S., Belliveau, L., Samet, S., Abdur Rahman, M. & Savoie, R. (2010).

Managing Digital Rights Using JSON. In 7th IEEE Consumer Communications and

Networking Conference (CCNC), 1–10. 37

ECMAScript (2011). ECMAScript Language Specification Version 5.1. 35

154

REFERENCES

Eriksen, M. (2010). Scaling Scala at Twitter. In ACM SIGPLAN Commercial Users

of Functional Programming , CUFP ’10, 8:1–8:1, ACM, New York, NY, USA. 22

Eto, K., Takabayashi, S. & Masui, T. (2005). qwikWeb: Integrating Mailing List

and WikiWikiWeb for Group Communication. In Proceedings of the 2005 Interna-

tional Symposium on Wikis, WikiSym ’05, 17–23, ACM, New York, NY, USA. 15

Facebook (2012). Facebook Graph API Specifcation

http://developers.facebook.com/docs/reference/api Last accessed: 16/07/2012.

25

Fang, L. & LeFevre, K. (2010). Privacy Wizards for Social Networking Sites. In

Proceedings of the 19th International Conference on World Wide Web, WWW ’10,

351–360, ACM, New York, NY, USA. 24

Fielding, R.T. (2000). Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis, aAI9980887. 31

Fisher, D., Smith, M. & Welser, H. (2006). You Are Who You Talk To: Detecting

Roles in Usenet Newsgroups. In System Sciences, 2006. HICSS ’06. Proceedings of

the 39th Annual Hawaii International Conference on, vol. 3, 59b. 17

Foley, C., Power, G., Griffin, L., Chen, C., Donnelly, N. & de Leastar, E.

(2010). Service Group Management Facilitated by DSL Driven Policies in Embedded

Middleware. In Proceedings of the 2010 IEEE Symposium on Computers and Com-

munications, ISCC ’10, 483–488, IEEE Computer Society, Washington, DC, USA.

iv, 146

Fowler, M. (2005). Language Workbenches: The Killer-App for Domain Specific Lan-

guages? Http://martinfowler.com/articles/languageWorkbench.html Last accessed:

18/07/2012. 36

Fowler, M.J. (2010). Domain-Specific Languages (Addison-Wesley Signature Series

(Fowler)). Addison-Wesley Professional. 36

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994). Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional. 33,

34, 90, 91

Garcia, Y.K. & Ketel, M. (2012). An Economical Approach to PaaS. In Proceedings

of the 50th Annual Southeast Regional Conference, ACM-SE ’12, 357–358, ACM,

New York, NY, USA. 38

155

REFERENCES

Gazi, V. & Passino, K. (2004). Stability Analysis of Social Foraging Swarms. Sys-

tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34, 539

–557. 8, 9

GNU (2012). GNU Scientific Library http://www.gnu.org/software/gsl/. 78

Goldberg, A. & Robson, D. (1983). Smalltalk-80: The Language and its Implemen-

tation. Addison-Wesley. 34

Gonzalez, V.M., Rodriguez, M.D. & Colsa, L.M. (2008). Connecting Families

with ICTs: A Board Messaging System for Older Adults and their Family Abroad.

In Technology and Society, 2008. ISTAS 2008. IEEE International Symposium on,

1–4. 17

Google (2010). Google V8 Javascript Engine http://code.google.com/p/v8/ Last ac-

cessed: 17/07/2012. 39

Gosling, J., Joy, B., Steele, G.L. & Bracha, G. (2005). The Java Language

Specification. Addison-Wesley, Upper Saddle River, NJ, 3rd edn. 34

Granell, C., D́ıaz, L. & Gould, M. (2010). Service-Oriented Applications for

Environmental Models: Reusable Geospatial Services. Environmental Modelling &

Software, 25, 182–198. 26

Griffin, L. (2012). Leigh Griffin Github Repository https://github.com/lgriffin Last

accessed: 09/08/2012. 147

Griffin, L. & de Leastar, E. (2008). A Nodel for IM and Media Driven Communica-

tion Services. In 8th International Conference on Technology and Telecommunication.

v

Griffin, L. & de Leastar, E. (2009). Social Networking Healthcare. In Wearable

Micro and Nano Technologies for Personalized Health (pHealth), 2009, 6th Interna-

tional Workshop on, 75 –78. v

Griffin, L., Foley, C. & de Leastar, E. (2009). A Hybrid Architectural Style for

Cmplex Healthcare Scenarios. In Communications Workshops, 2009. ICC Workshops

2009. IEEE International Conference on Communications, 1 –6. v

Griffin, L., de Leastar, E. & Botvich, D. (2011a). Dynamic Shared Groups

Within XMPP: An Investigation of the XMPP Group Model. In Integrated Network

Management , 634–637, IEEE. iv, 146

156

REFERENCES

Griffin, L., Elger, P. & de Leastar, E. (2011b). Project Zeppelin: A Modern

Web Application Development Framework. In Formal Methods for Components and

Objects, 2011, 10th International Symposium on. v

Griffin, L., Ryan, K., de Leastar, E. & Botvich, D. (2011c). Scaling Instant

Messaging Communication Services: A Comparison of Blocking and Non-Blocking

Techniques. In Proceedings of the 2011 IEEE Symposium on Computers and Com-

munications, ISCC ’11, 550–557, IEEE Computer Society, Washington, DC, USA.

iv, 146

Griffin, L., Ryan, K., de Leastar, E. & Botvich, D. (2012a). Scaling Instant

Messaging Communication Services: A Comparison of Blocking and Non-Blocking

Techniques. International Journal of Ambient Computing and Intellgience, 4, 1–20.

iv, 146

Griffin, L., Ryan, K., de Leastar, E., Jennings, B. & Botvich, D. (2012b).

On the Performance of Access Control Policy Evaluation. In Proceedings of the 2012

IEEE International Symposium on Policies for Distributed Systems and Networks,

POLICY ’12. iv, 146

Grinter, R.E. & Palen, L. (2002). Instant Messaging in Teen Life. In Proceedings

of the 2002 ACM Conference on Computer Supported Cooperative Work , CSCW ’02,

21–30, ACM, New York, NY, USA. 19

Gschwind, T. & Hauswirth, M. (1999). A Cache Architecture for Modernizing

the Usenet Infrastructure. In Proceedings of the Thirty-second Annual Hawaii In-

ternational Conference on System Sciences-Volume 8 , HICSS ’99, IEEE Computer

Society, Washington, DC, USA. 17

Haake, J.M., Haake, A., Schümmer, T., Bourimi, M. & Landgraf, B. (2004).

End-user Controlled Group Formation and Access Rights Management in a Shared

Workspace System. In Proceedings of the 2004 ACM Conference on Computer Sup-

ported Cooperative Work , CSCW ’04, 554–563, ACM, New York, NY, USA. 10

Hallberg, J., Norberg, M.B., Kristiansson, J., Synnes, K. & Nugent, C.

(2007). Creating Dynamic Groups using Context-Awareness. In Proceedings of the 6th

International Conference on Mobile and Ubiquitous Multimedia, MUM ’07, 42–49,

ACM, New York, NY, USA. 12, 42

Haller, P. & Odersky, M. (2009). Scala Actors: Unifying Thread-based and Event-

based Programming. Theoretical Computer Science, 410, 202–220. 35, 64

157

REFERENCES

Haveliwala, T.H. (2002). Search Facilities for Internet Relay Chat. In Proceedings of

the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’02, 395–395,

ACM, New York, NY, USA. 19

Havenstein, H. (2007). LA Fire Department all a Twitter over Web 2.0

http://tinyurl.com/6hlx24 Last accessed: 16/07/2012. 23

Haw, R., Hong, C.S. & Kim, D.S. (2009). Group P2P Network Organization in

Mobile Ad-Hoc Networks. In Proceedings of the 12th Asia-Pacific Network Opera-

tions and Management Conference on Management Enabling the Future Internet for

Changing Business and New Computing Services, APNOMS’09, 477–480, Springer-

Verlag, Berlin, Heidelberg. 18

Heinze, A. & Procter, C. (2006). Online Communication and Information Tech-

nology Education. Journal of Information Technology Education, 5, 235–249. 27

Hoigaard, E. (2011). Smooth CoffeeScript . xii, 179, 180, 181

Horton, M. & Adams, R. (1987). Standard for Interchange of USENET Messages.

RFC 1036, obsoleted by RFCs 5536, 5537. 17

Hsieh, G., Foster, K., Emamali, G., Patrick, G. & Marvel, L. (2009). Us-

ing XACML for Embedded and Fine-Grained Access Control Policy. In Availability,

Reliability and Security, 2009. ARES ’09. International Conference on, 462 –468. 31

Hsu, C.I., Chao, C.C. & Shih, K.Y. (2012). Dynamic Allocation of Check-in Facil-

ities and Dynamic Assignment of Passengers at Air Terminals. Computers & Indus-

trial Engineering , 63, 410–417. 26

Huang, Q. & Liu, Y. (2009). On Geo-social Network Services. In Geoinformatics,

2009 17th International Conference on, 1 –6. 12

Hui, P., Crowcroft, J. & Yoneki, E. (2011). BUBBLE Rap: Social-Based For-

warding in Delay-Tolerant Networks. Mobile Computing, IEEE Transactions on, 10,

1576 –1589. 9, 13

Huonder, F. (2010). Conflict Detection and Resolution of XACML Policies. Masters

Thesis, University of Applied Sciences Rapperswil. 30

Husted, R. & Kushlich, J.J. (1999). Server-side JavaScript: Developing Inte-

grated Web Applications. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA. 35

158

REFERENCES

Imielinski, T. & Lipski, W., Jr. (1982). A Systematic Approach to Relational

Database Theory. In Proceedings of the 1982 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’82, 8–14, ACM, New York, NY, USA.

37

Inagaki, T., Komatsu, H. & Nakatani, T. (2003). Integrated Prepass Scheduling

for a Java Just-In-Time Compiler on the IA-64 Architecture. In Proceedings of the

International Symposium on Code Generation and Optimization: Feedback-directed

and Runtime Optimization, CGO ’03, 159–168, IEEE Computer Society, Washing-

ton, DC, USA. 54

Jeannin, J.B. (2011). Capsules and Closures. Electronic Notes in Theoretical Com-

puter Science, 276, 191–213. 34

Jiang, H. & Carroll, J.M. (2009). Social Capital, Social Network and Identity

Bonds: a Reconceptualization. In C&T ’09: Proceedings of the Fourth International

Conference on Communities and Technologies, 51–60, ACM, New York, NY, USA.

16

Johnson-Lenz, P. & Johnson-Lenz, T. (1991). Rhythms, Boundaries, and Con-

tainers: Creative Dynamics of Asynchronous Group Life. The International Journal

of Man Machine Studies, 34, 395–417. 21

Jones, S. & O’Neill, E. (2010). Feasibility of Structural Network Clustering for

Group-based Privacy Control in Social Networks. In Proceedings of the Sixth Sympo-

sium on Usable Privacy and Security , SOUPS ’10, 9:1–9:13, ACM, New York, NY,

USA. 3, 24

Kalt, C. (2000). Internet Relay Chat: Channel Management. RFC 2811 (Informa-

tional). 19

Kamvar, S.D., Schlosser, M.T. & Garcia-Molina, H. (2003). The Eigentrust

Algorithm for Reputation Management in P2P Networks. In Proceedings of the 12th

International Conference on World Wide Web, WWW ’03, 640–651, ACM, New

York, NY, USA. 18

Kantor, B. & Lapsley, P. (1986). Network News Transfer Protocol. RFC 977 (Pro-

posed Standard), obsoleted by RFC 3977. 17

Kegel, D. (1999). The C10K Problem http://www.kegel.com/c10k.html Last ac-

cessed: 16/07/2012. 35

159

REFERENCES

Kimura, T. (1998). JTC 1SC 34 Document Description and Processing Lan-

guage http://www.iso.org/iso/iso technical committee.html/commid=45374 Last

accessed: 16/07/2012. 37

Kinsella, S., Passant, A. & Breslin, J.G. (2010). Using Hyperlinks to Enrich

Message Board Content with Linked Data. In Proceedings of the 6th International

Conference on Semantic Systems, I-SEMANTICS ’10, 1:1–1:9, ACM, New York, NY,

USA. 16

Kircher, M. & Jain, P. (2004). Pattern-Oriented Software Architecture Volume 3:

Patterns for Resource Management . Wiley. 33

Klensin, J. (2008). Simple Mail Transfer Protocol. RFC 5321 (Draft Standard). 15

Koenig, D., Glover, A., King, P., Laforge, G. & Skeet, J. (2007). Groovy in

Action. Manning Publications. 34

Kolaitis, P.G. & Vardi, M.Y. (2000). Conjunctive-Query Containment and Con-

straint Satisfaction. Journal of Computer and System Sciences, 61, 302 – 332. 11

Kowal, K. (2009). CommonJS Effort sets JavaScript on Path for World Domination.

100

LAFD (2011). LAFD Twitter Feed http://twitter.com/LAFD. 23

Lai, L.S. & Turban, E. (2008). Group Formation and Operations in the Web 2.0

Environment and Social Networks. Group Decision and Negotiation, 17 (5), 387–

402. 12

Lerner, R.M. (2010). At the Forge: Redis. Linux Journal , 197. 99

Lerner, R.M. (2011). At the Forge: Node.js. Linux Journal , 2011. 39

Levine, J.M. & Mooreland, R.L. (1991). Culture and Socialization in Work

Groups. American Psychological Association. 9, 10

Liang, H., Chen, W. & Shi, K. (2011). Cloud Computing: Programming Model and

Information Exchange Mechanism. In Proceedings of the 2011 International Confer-

ence on Innovative Computing and Cloud Computing , ICCC ’11, 10–12, ACM, New

York, NY, USA. 38

Lindholm, T. & Yellin, F. (1999). Java Cirtual Machine Specification. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edn. 34

160

REFERENCES

Liu, A.X., Chen, F., Hwang, J. & Xie, T. (2008). Xengine: a Fast and Scalable

XACML Policy Evaluation Engine. In Proceedings of the 2008 ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer Systems, 265–

276, ACM, New York, NY, USA. 30, 31, 105

Liu, A.X., Chen, F., Hwang, J. & Xie, T. (2011). Designing fast and scalable

xacml policy evaluation engines. IEEE Transactions on Computers, 60, 1802–1817.

30

Liu, D. & Deters, R. (2009). The Reverse C10K Problem for Server-Side Mashups.

International Conference on Service-Oriented Computing, ICSOC 2008 Workshops.

166–177, Springer-Verlag, Berlin, Heidelberg. 35

Liu, J., Sacchetti, D., Sailhan, F. & Issarny, V. (2005). Group Management for

Mobile Ad Hoc Networks: Design, Implementation and Experiment. In Proceedings

of the 6th International Conference on Mobile Data Management , MDM ’05, 192–

199, ACM, New York, NY, USA. 28

Long, B. & Long, B.W. (2003). Formal Specification of Java Concurrency to Assist

Software Verification. In Proceedings of the 17th International Symposium on Parallel

and Distributed Processing , IPDPS ’03, IEEE Computer Society, Washington, DC,

USA. 61

Lu, C., Hu, X. & ran Park, J. (2011). Exploiting the Social Tagging Network

for Web Clustering. Systems, Man and Cybernetics, Part A: Systems and Humans,

IEEE Transactions on, 41, 840 –852. 11

Lubke, R., Schuster, D. & Schill, A. (2011). MobilisGroups: Location-based

Group Formation in Mobile Social Networks. In Pervasive Computing and Commu-

nications Workshops (PERCOM Workshops), 2011 IEEE International Conference

on, 502 –507. 12

Ludwig, S., Beda, J., Saint-Andre, P., McQueen, R., Egan, S. & Hilde-

brand, J. (2009). Jingle. XEP 0166 (Proposed Standard). 20

Lv, Q., Cao, P., Cohen, E., Li, K. & Shenker, S. (2002). Search and Replica-

tion in Unstructured Peer-to-Peer Networks. In Proceedings of the 16th International

Conference on Supercomputing , ICS ’02, 84–95, ACM, New York, NY, USA. 18

161

REFERENCES

Maaradji, A., Hacid, H., Daigremont, J. & Crespi, N. (2010). Towards a Social

Network Based Approach for Services Composition. In Communications (ICC), 2010

IEEE International Conference on, 1 –5. 13

MacCaw, A. (2011). The Little Book on CoffeeScript . 36, 115

Macias, M., Smith, G., Rana, O., Guitart, J. & Torres, J. (2009). Enforcing

Service Level Agreements Using an Economically Enhanced Resource Manager. In

D. Neumann, M. Baker, J. Altmann & O. Rana, eds., Economic Models and Al-

gorithms for Distributed Systems, Autonomic Systems, 109–127, Birkhuser Basel.

148

Martens, W., Neven, F., Schwentick, T. & Bex, G.J. (2006). Expressiveness

and Complexity of XML Schema. ACM Transactions on Database Systems, 31, 770–

813. 37

Maruoka, M., Nemati, A., Barolli, V., Enokido, T. & Takizawa, M. (2008).

Role-Based Access Control in Peer-to-Peer (P2P) Societies. In Advanced Information

Networking and Applications - Workshops, 2008. AINAW 2008. 22nd International

Conference on, 495 –500. 28

Maximilien, E. (2006). Web Services on Rails: Using Ruby and Rails for Web Services

Development and Mashups. In Services Computing, 2006. SCC ’06. IEEE Interna-

tional Conference on, xxxix. 38

Meyer, B. (1997). Object-Oriented Software Construction (2nd ed.). Prentice-Hall,

Inc., Upper Saddle River, NJ, USA. 34

Millard, P., Saint-Andre, P. & Meijer, R. (2002). XEP-0060: Publish-Subscribe

http://xmpp.org/extensions/xep-0060.html Last accessed: 16/07/2012. 48

Mirkovic, J., Dietrich, S., Dittrich, D. & Reiher, P. (2005). Internet Denial

of Service: Attack and Defense Mechanisms. Prentice Hall. 57

Mirza, Q.K.A. (2011). Restful Implementation of Authorization Mechanisms. In In-

ternational Conference on Technology and Business Management . 31

Moreland, R.L. & Levine, J.M. (1992). The Composition of Small Groups, vol. 9.

JAI. 9, 10

Moses, T. (2005). eXtensible Access Control Markup Language TC v2.0 (XACML).

xii, xiii, 29, 182, 183, 184

162

REFERENCES

Mourad, A., Otrok, H., Yahyaoui, H. & Baajour, L. (2011). Toward an Ab-

stract Language on Top of XACML for Web Services Security. In Internet Technology

and Secured Transactions (ICITST), 2011 International Conference for , 254 –259.

29

Mutton, P. (2004). Inferring and Visualizing Social Networks on Internet Relay Chat.

In Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Con-

ference on, 35 – 43. 19

Myoupo, J.F., Naimi, M. & Thiare, O. (2009). A Clustering Group Mutual Ex-

clusion Algorithm for Mobile Ad-hoc Networks. In Computers and Communications,

2009. ISCC 2009. IEEE Symposium on, 693 –696. 12

Nasseri, E. & Counsell, S. (2009). An Empirical Study of Java System Evolution at

the Method Level. In Proceedings of the 2009 Seventh ACIS International Conference

on Software Engineering Research, Management and Applications, SERA ’09, 199–

206, IEEE Computer Society, Washington, DC, USA. 34

Nodejitsu (2011). Hook IO Library, https://github.com/hookio/ Last accessed:

05/08/2012. 76

Oaks, S. & Wong, H. (2004). Java Threads. O’Reilly Media, Inc. 35

OASIS (2007). OASIS Content Assembly Mechanism Specification V1.1. 37

OASIS XACML-TC (2005). XACML 2.0 http://docs.oasis-

open.org/xacml/2.0/XACML-2.0-OS-ALL.zip Last accessed on 18/08/2012.

86, 94

Odersky, M., Spoon, L. & Venners, B. (2011). Programming in Scala: A Com-

prehensive Step-by-Step Guide, 2nd Edition. Artima Inc. 34

Oikarinen, J. & Reed, D. (1993). Internet Relay Chat Protocol. RFC 1459 (Exper-

imental), updated by RFCs 2810, 2811, 2812, 2813. 18

Openfire (2009). Openfire Connection Manager,

http://www.igniterealtime.org/projects/openfire/connection manager.jsp Last

accessed: 16/07/2012. 58

Openfire (2012). Openfire XMPP Server 3.7.1,

http://www.igniterealtime.org/projects/openfire/l Last accessed: 16/07/2012.

48, 53, 63

163

REFERENCES

Ostermann, K. & Mezini, M. (2001). Object-Oriented Composition Untangled. In

Proceedings of the 16th ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA ’01, 283–299, ACM, New

York, NY, USA. 34

Ounnas, A. (2010). Enhancing the Automation of Forming Groups for Education with

Semantics. Ph.D. thesis, University of Southampton. 11

Ounnas, A., Davis, H. & Millard, D. (2008). A Framework for Semantic Group

Formation. In Proceedings of the 2008 Eighth IEEE International Conference on

Advanced Learning Technologies. 11

Owens, D.A., Mannix, E.A. & Neale, M.A. (1998). Strategic Formation of Groups:

Issues in Task Performance and Team Member Selection. Research On Managing

Groups and Teams, 1, 149165. 8

Park, J.S. & Hwang, J. (2003). Role-Based Access Control for Collaborative Enter-

prise in Peer-to-Peer Computing Environments. In Proceedings of the Eighth ACM

Symposium on Access Control Models and Technologies, SACMAT ’03, 93–99, ACM,

New York, NY, USA. 28

Patterson, D.J., Baker, C., Ding, X., Kaufman, S.J., Liu, K. & Zaldivar, A.

(2008). Online Everywhere: Evolving Mobile Instant Messaging Practices. In Pro-

ceedings of the 10th International Conference on Ubiquitous Computing , UbiComp

’08, 64–73, ACM, New York, NY, USA. 20

Petzold, C. (2008). The Annotated Turing: A Guided Tour Through Alan Turing’s

Historic Paper on Computability and the Turing Machine. Wiley. 116

Ponnusamy, V., Karuppiah, E. & Abdullah, R. (2003). Anycast Group Member-

ship Management Protocol. In Communications, 2003. APCC 2003. The 9th Asia-

Pacific Conference on, vol. 3, 1052 – 1056 Vol.3. 28

Potts, L. (2009). Peering into Disaster: Social Software use from the Indian Ocean

Earthquake to the Mumbai Bombings. In Professional Communication Conference,

2009. IPCC 2009. IEEE International , 1 –8. 2, 22

Pouwelse, J.A., Garbacki, P., Epema, D. & Sips, H. (2008). Pirates and Samar-

itans: A Decade of Measurements on Peer Production and their Implications for Net

Neutrality and Copyright. The International Journal of ICT Economy, Governance

and Society , 32, 701–712. 18

164

REFERENCES

Raento, M., Oulasvirta, A., Petit, R. & Toivonen, H. (2005). Contextphone: a

Prototyping Platform for Context-aware Mobile Applications. Pervasive Computing,

IEEE , 4, 51 – 59. 26

Rafaeli, S., Ravid, G. & Soroka, V. (2004). De-lurking in Virtual Communities:

a Social Communication Network Approach to Measuring the Effects of Social and

Cultural Capital. In System Sciences, 2004. Proceedings of the 37th Annual Hawaii

International Conference on, 10 pp. 10

Ray, T. & Liew, K. (2003). Society and Civilization: An Optimization Algorithm

based on the Simulation of Social Behavior. Evolutionary Computation, IEEE Trans-

actions on, 7, 386 – 396. 8, 9, 15

Richards, M., Monson-Haefel, R. & Chappell, D.A. (2009). Java Message

Service. O’Reilly Media. 63

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson,

J., Sparks, R., Handley, M. & Schooler, E. (2002). SIP: Session Initiation

Protocol. RFC 3261, updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626,

5630. 20

Roussaki, I. (2011). Societies Deliverable D2.2: Scenario Description, Use Cases and

Technical Requirements Specification. 148

Rushe, D. (2012). Facebook Shares Open at $42 as it Begins Trading on

Nasdaq http://guardian.co.uk/technology/2012/may/18/facebook-nasdaq Last ac-

cessed: 16/07/2012. 24

Saint-Andre, P. (2004a). XEP-0140: Shared Groups

http://xmpp.org/extensions/xep-0140.html Last accessed: 16/07/2012. 50

Saint-Andre, P. (2004b). Extensible Messaging and Presence Protocol (XMPP):

Core. RFC 9320 (Proposed Standard). 20, 25, 43

Saint-Andre, P. (2005). XEP-0144: Roster Item Exchange.

Http://xmpp.org/extensions/xep-0144.html Last accessed: 16/07/2012. 50

Saint-Andre, P. (2009). XMPP: Lessons Learned from Ten Years of XML Messaging.

Communications Magazine, IEEE , 47, 92 –96. 49

Saint-Andre, P. (2012). XEP-0114: Jabber Component Protocol.

Http://xmpp.org/extensions/xep-0114.html Last accessed: 05/08/2012. 65

165

REFERENCES

Sandhu, R., Coyne, E., Feinstein, H. & Youman, C. (1996). Role-Based Access

Control Models. Computer , 29, 38 –47. 28

Schmidt, A., Beigl, M. & Gellersen, H.W. (1999). There is More to Context

than Location. Computers & Graphics, 23, 893 – 901. 26

Schmidt, D., Stal, M., Rohnert, H. & Buschmann, F. (2000). Pattern-Oriented

Software Architecture Volume 2: Patterns for Concurrent and Networked Objects.

Wiley. 33

Schwartz, R. (2006). Web 2.0, Meet Usenet 1.0

http://www.stonehenge.com/merlyn/LinuxMag/col82.html Last accessed:

16/07/2012. 17

Sherlock, L.M. (2007). When Social Networking meets Online Games: The Activity

System of Grouping in World of Warcraft. In Proceedings of the 25th Annual ACM

International Conference on Design of Communication, SIGDOC ’07, 14–20, ACM,

New York, NY, USA. 11

Shihab, E., Bettenburg, N., Adams, B. & Hassan, A.E. (2010). On the Central

Role of Mailing Lists in Open Source Projects: an Exploratory Study. In Proceedings

of the 2009 International Conference on New Frontiers in Artificial Intelligence,

JSAI-isAI’09, 91–103, Springer-Verlag, Berlin, Heidelberg. 15

Simula (2007). Simula Historical Documentation, http://www.edelweb.fr/Simula/

Last accessed: 16/07/2012. 34

Sjöholm, A., Seitz, L. & Sadighi, B. (2008). Secure Communication for Ad-hoc,

Federated Groups. In Proceedings of the 7th Symposium on Identity and Trust on

the Internet , IDtrust ’08, 48–58, ACM, New York, NY, USA. 31

Smack (2012). Smack Client Library, http://www.igniterealtime.org/projects/smack/

Last accessed: 16/07/2012. 53

Staab, S., Domingos, P., Mike, P., Golbeck, J., Ding, L., Finin, T., Joshi,

A., Nowak, A. & Vallacher, R. (2005). Social Networks Applied. Intelligent

Systems, IEEE , 20, 80 – 93. 11

Stewart, B., Lancaster, G., Lawson, J., Williams, K. & Daly, J. (2004).

Validation of the Alder Hey Triage Pain Score. Archives of Disease in Childhood ,

89, 625–30. 73

166

REFERENCES

Storni, C. & Griffin, L. (2009). Towards Future Health Social Networking: Pa-

tient Generated Content and the Role of Community Pharmacists. In Mediterranean

Conference on Information Systems)MCIS), 2009 . v

Strassner, J. (2003). Policy-Based Network Management: Solutions for the Next

Generation (The Morgan Kaufmann Series in Networking). Morgan Kaufmann. 28

Sun Microsystems (1996). JavaSoft Ships Java 1.0

http://www.skytel.co.cr/sun/research/1996/0123.htm Last accessed on 20-08-

2012. 34

Takeuchi, M., Zakirov, S., Kawachiya, K. & Onodera, T. (2012). Fast Method

Dispatch and Effective use of Primitives for Reified Generics in Managed X10. In

Proceedings of the 2012 ACM SIGPLAN X10 Workshop, X10 ’12, 4:1–4:7, ACM,

New York, NY, USA. 119

Tilkov, S. & Vinoski, S. (2010). Node.js: Using Javascript to Build High-

Performance Network Programs. Internet Computing, IEEE , 14, 80 –83. 36

Turing, A.M. (1936-7). On Computable Number with an Application to the Entschei-

dugsproblem. Proceedings of the American Mathematical Society , 42, 230–265. 116

Van Cutsem, T. (2008). Ambient References: Object Designation in Mobile Ad Hoc

Networks. Ph.D. thesis, Vrije Universiteit Brussel, Faculty of Sciences, Programming

Technology Lab. 36

van der Vlist, E. (2007). Schematron. O’Reilly, 1st edn. 37

van Noort, T., Achten, P. & Plasmeijer, R. (2010). Ad-hoc Polymorphism and

Dynamic Typing in a Statically Typed Functional Language. In Proceedings of the

6th ACM SIGPLAN Workshop on Generic Programming , WGP ’10, 73–84, ACM,

New York, NY, USA. 34

Velasco, J.M., Atienza, D. & Olcoz, K. (2012). Memory Power Optimization of

Java-based Embedded Systems Exploiting Garbage Collection Information. Journal

of Systems Architecture: Embedded Software Design, 58, 61–72. 119

Viegas, F. & Smith, M. (2004). Newsgroup Crowds and AuthorLines: Visualizing the

Activity of OIndividuals in Conversational Cyberspaces. In System Sciences, 2004.

Proceedings of the 37th Annual Hawaii International Conference on, 10 pp. 17

167

REFERENCES

Viswanathan, V. (2008). Rapid Web pplication Development: A Ruby on Rails

Tutorial. Software Magazine, IEEE , 25, 98 –106. 38

Volter, M. (2009). Best Practices for DSLs and Model-Driven Development. Journal

of Object Technology , 8, 79–102. 36

Vuillemot, R., Petit, J.M. & Hacid, M.S. (2011). Generalizing Email Messages

Digests. In Proceedings of the 2011 Annual Conference on Human Factors in Com-

puting Systems, CHI EA ’11, 1933–1938, ACM, New York, NY, USA. 16

Wang, G. (2011). Improving Data Transmission in Web Applications via the Trans-

lation between XML and JSON. In 3rd IEEE International Conference on Com-

munications and Mobile Computing , CMC ’11, 182–185, IEEE Computer Society,

Washington, DC, USA. 37

Wang, H., Zhang, Y. & Cao, J. (2002). Design and Evaluation of XACML Con-

flict Policies Detection Mechanism. International Journal of Computer Science &

Information Technology , 2, 65 –74. 30

Wang, H., Zhang, Y. & Cao, J. (2009). Effective Collaboration with Information

Sharing in Virtual Universities. Knowledge and Data Engineering, IEEE Transac-

tions on, 21, 840 –853. 28

Watanabe, Y., Sono, K., Yokomizo, K. & Okada, Y. (2004). A Question An-

swer System using Mails Posted to a Mailing List. In Proceedings of the 2004 ACM

Symposium on Document Engineering , DocEng ’04, 67–73, ACM, New York, NY,

USA. 15

Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B.,

Herzog, S., Huynh, A., Carlson, M., Perry, J. & Waldbusser, S. (2001).

Terminology for Policy-Based Management. RFC 3198 (Informational). 28, 29

Westine, A. & Postel, J. (1991). Problems with the Maintenance of Large Mailing

Lists. RFC 1211 (Informational). 15

Weverka, P. (2001). Mastering ICQ: The Official Guide. Wiley. 20

Wild, M. (2010). Xmpp Javascript Component Library.

Https://github.com/mwild1/xmppjs Last accessed: 05/08/2012. 65

Wile, D. (2004). Lessons Learned from Real DSL Experiments. Science of Computer

Programming , 51, 265–290. 36

168

REFERENCES

Wilson, P.R. & Hayes, B. (1991). Garbage Collection in Object Oriented Systems.

ACM Special Interest Group on Programming Languages (SIGPLAN), Object Ori-

ented Programming Systems (OOPS) Messenger , 3, 63–71. 34

Wong, R.M., Dalmadge, C.L. & Fiedler, A.M. (2007). Managing eBusiness Con-

tinuity: Formulating an Appropriate Strategy to Manage System Scalability. In Sys-

tem Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on,

148b. 38

Wu, F. (2007). Presence Technology with its Security and Privacy Implications. In

Consumer Electronics, 2007. ISCE 2007. IEEE International Symposium on, 1 –6.

25

Xiao, Z., Guo, L. & Tracey, J. (2007). Understanding Instant Messaging Traffic

Characteristics. In Distributed Computing Systems, 2007. ICDCS ’07. 27th Interna-

tional Conference on, 51. 20, 25, 53

XMPPRosterSchema (2012). XMPP Roster Schema.

Http://xmpp.org/schemas/roster.xsd Last accessed: 19/07/2012. 44

Zdun, U. (2010). A DSL Toolkit for Deferring Architectural Decisions in DSL-Based

Software Design. Information and Software Technolgy , 52, 733–748. 36

Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J. & Chang, H.

(2004). Qos-Aware Middleware for Web Services Composition. Software Engineering,

IEEE Transactions on, 30, 311 – 327. 13

Zhang, D., Guo, B. & Yu, Z. (2011a). The Emergence of Social and Community

Intelligence. Computer , 44, 21 –28. 26

Zhang, D., Wang, Z., Guo, B., Zhou, X. & Raychoudhury, V. (2011b). A

Dynamic Community Creation Mechanism in Opportunistic Mobile Social Networks.

In Privacy, Security, Risk and Trust (PASSAT), 2011 IEEE Third International

Conference on Social Computing (socialcom), 509 –514. 12

Zhao, Z., Liu, J. & Crespi, N. (2012). Dig-Event: Let’s Socialize Around Events. In

Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work

Companion, CSCW ’12, 279–280, ACM, New York, NY, USA. 13

Zolfaghar, K. & Aghaie, A. (2012). A Syntactical Approach for Interpersonal Trust

Prediction in Social Web Applications: Combining Contextual and Structural Data.

Knowledge-Based Systems, 26, 93–102. 25

169

List of Acronyms

CS CoffeeScript

CSP Constraint Satisfaction Problem

DSL Domain Specific Language

FIFO First In, First Out

FOAF Friend of a Friend

GID Group ID

HTML HyperText Markup Language

I/O Input/Output

IaaS Infrastructure as a Service

ICT Information and Communication Technologies

IM Instant Messaging

IQ Info/Query

IRC Internet Relay Chat

JID Jabber Identifier

JS JavaScript

JSON JavaScript Object Notation

JSONPL JavaScript Object Notation Policy Language

JVM Java Virtual Machine

170

REFERENCES

OASIS Organisation for Advancement of Structured Information Standards

OO Object Oriented

P2P Peer to Peer

PaaS Platform as a Service

PDP Policy Decision Point

PEP Policy Enforcement Point

POSA Pattern-Oriented Software Architecture

RBAC Role Based Access Control

REST Representational State Transfer

RoR Ruby on Rails

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

STACS Scalability Testbed for Access Control Systems

XACML eXtensible Access Control Modeling Language

XML eXtensible Markup Language

171

Appendix A

Domain Specific PDP

Below is a sample of a Domain Specific PDP based off of the Continue set. This PDP is

200 lines long and compliant semantically with the equivalent PDPs tested in Chapter

4

PRP = require("./PRP")

microtime = require("microtime")

masterPolicy = require(’./ policy.coffee ’)

onPEPMessage = (event , callback) ->

timestamps = []

timestamps [0] = microtime.now()

PRP.onRequest "./ policy.coffee", (policySet , timings) ->

timestamps [2] = microtime.now()

timestamps [1] = timings [1]

callback policySet , timestamps

evaluate = (request , policySet , decision) ->

timestamps = []

timestamps [0] = microtime.now()

masterPolicy2 = policySet

processRequest request , (callback) ->

timestamps [1] = microtime.now()

172

processPolicy callback , (result) ->

timestamps [2] = microtime.now()

decision result , timestamps

processRequest = (request ,callback) ->

action = request.action.type

subject = "test"

resource = "test2"

subjectCheck request.subject , (val) ->

subject = val

resourceCheck request.resource , (value) ->

resource = value

callback ([subject ,resource ,action])

subjectCheck = (subject ,callback) ->

cb = []

i = 0

unless subject.subjReviewsThisResPaper is ‘undefined ‘

cb[i] = ["subjReviewsThisResPaper", subject.subjReviewsThisResPaper]

i++

if subject[’isEq -subjUserId -resUserId ’] is true

cb[i] = [’isEq -subjUserId -resUserId ’,subject[’isEq -subjUserId -

resUserId ’]]

i++

unless subject.isConflicted is ‘undefined ‘

cb[i] = ["isConflicted", subject.isConflicted]

i++

unless subject.role is ‘undefined ‘

173

cb[i] = ["role", subject.role]

i++

unless subject.isMeeting is ‘undefined ‘

cb[i] = ["isMeeting", subject.isMeeting]

i++

unless subject.isSubjectsMeeting is ‘undefined ‘

cb[i] = ["isSubjectsMeeting", subject.isSubjectsMeeting]

i++

callback(cb);

resourceCheck = (resource , callback) ->

unless resource.isPending is ‘undefined ‘

callback (["isPending",resource.isPending])

unless resource.phase is ‘undefined ‘

callback (["phase",resource.phase])

unless resource.isSeeUnassignedAllowed is ‘undefined ‘

callback (["isSeeUnassignedAllowed",resource.isSeeUnassignedAllowed])

unless resource.class is ‘undefined ‘

callback (["class",resource.class])

unless resource[’isEq -meetingPaper -resId ’] is ‘undefined ‘

callback (["isEq -meetingPaper -resId",resource[’isEq -meetingPaper -resId

’]])

processPolicy = (request ,callback) ->

identify_policySet request , (workingSet) ->

if workingSet is "NotApplicable" then callback("NotApplicable")

else

makeDecision request ,workingSet ,(decision) ->

174

callback(decision)

makeDecision = (request , policySet , decision) ->

action = request [2]

subject = request [0][0]

resource = request [1]

notApp = false

oneDeny = false

specialCase = false

for policy in policySet

if specialCase is true

break

subjectMatch = false

actionMatch = false

hasExtraRes = false

effect = "tempDeny"

correctSubjectWrongAnswer = false

subjectNotApplicable = false

specialSubjectMatch = false

endOfTheLine = false

undef = false

undefSwitch = false

noAct = false # we have no actions if this is true

if policy.subjects is ‘undefined ‘

if policy.actions is ‘undefined ‘

if policy.resources is ‘undefined ‘ and specialCase is false

oneDeny = false # reset

notApp = false # reset

specialCase = true

endOfTheLine = true

decision(policy.effects)

else

175

for act in policy.actions

if action is act

actionMatch = true

specialCase = true

oneDeny = false # reset

notApp = false # reset

decision(policy.effects)

break

else

if policy.actions is ‘undefined ‘

noAct = true # but we have a subject though

if policy.resources isnt ‘undefined ‘ and specialCase is false

if resource [0] is "class"

hasExtraRes = true

specialCase = true

decision("deny")

break

for sub in policy.subjects

if subject [0] is sub [0] and subject [1] is sub [1]

subjectMatch = true

undefSwitch = true # just in case we turn it off by accident

undef = false

else

if subject [0] is sub [0]

undef = true

specialSubjectMatch = true

else

undef = true # get outta dodge

subjectNotApplicable = true

if noAct is true and subjectMatch is true

specialCase = true

oneDeny = false

176

notApp = false

decision(policy.effects)

break

if noAct is false and undef is false

for act in policy.actions

if action is act

actionMatch = true

specialCase = true

oneDeny = false # reset

notApp = false # reset

decision(policy.effects)

break

else

oneDeny = true # right subject wrong action

if subjectMatch is true and actionMatch is false and specialCase is

false

oneDeny = true

if subjectMatch is false and specialCase is false

notApp = true

if specialSubjectMatch is true

oneDeny = true

if specialCase is false

if oneDeny is true

if notApp is true

decision("deny")

else

decision("deny")

else if notApp is true

decision("NotApplicable")

177

identify_policySet = (request ,callback) ->

action = request [2]

subject = request [0]

res_type = request [1][0]

res_val = request [1][1]

reply = []

if res_type is "class"

target = masterPolicy[res_val]

if target is ‘undefined ‘

callback(’NotApplicable ’)

else

callback(target)

else

findPolicy res_type ,(cb) ->

callback(cb)

findPolicy = (keyword ,callback) ->

found = []

for policy in masterPolicy.policySet

for p in policy when p.resources isnt ‘undefined ‘

if(p.resources [0][0] is keyword)

found.push(p)

callback(found)

exports.onPEPMessage = onPEPMessage

exports.evaluate = evaluate;

Listing A.1: PDP Specification

178

Appendix B

CoffeeScript Glossary

The quick reference guide visible in Figure B.1 and Figure B.2 are reproduced from

Hoigaard (2011).

179

!"
##$
$%
&'(
)*

+,
(&-
./
$#
$'
$0
&$

&"
##$
$1
&'(
)*
2"
'3

4$
0$
'5
67 ·
!
"
#$
%&
'
()
%*
#&
*&
#+
,
#-
)(
,
$

·
.
,
/
#,
+
*(
*0
#,
%*
1
#0
0*
$%
23
#,
($
%*
%4
'
2%
&&
#5
,
&

6*
,
5
*,
%%
/
*$
5
*7
&%
*&
%3
#)
5
05
,
&

·
8
%3
#)
5
05
,
&*
)(
,
*9
%
*7
&%
/
*$
5
*-
$*
3
7
0$
#'
0%

%4
'
2%
&&
#5
,
&*
5
,
$5
*(
*&
#,
+
0%
*0
#,
%

·
:
&%
*#
,
/
%,
$(
$#
5
,
*#
,
&$
%(
/
*5
;*
)7
20
<
*9
2(
)%
&

!
"
$5
*&
7
22
5
7
,
/
*9
05
)=
&
*5
;
*)
5
/
%
*#
,

;7
,
)$
#5
,
&>

!
"
&$
($
%3
%,
$&
>
#
$
!
%
&
'
>
(,
/

%
(
)
#
&
*
%
&
'

·
?
5
3
3
%,
$&
*&
$(
2$
&*
1
#$
"
+
(,
/
*2
7
,
*$
5
*$
"
%

%,
/
*5
;*
$"
%*
0#
,
%

8,
0&
*("
01 ·
@
7
,
)$
#5
,
&*
(2
%*
/
%-
,
%/
*9
<
*(
,
*5
'
$#
5
,
(0
*0
#&
$

5
;*
'
(2
(3
%$
%2
&*
#,
*'
(2
%,
$"
%&
%&
>
(,
*(
22
5
1
>

(,
/
*(
,
*5
'
$#
5
,
(0
*;
7
,
)$
#5
,
*9
5
/
<A

B
"
%

%3
'
$<
*;
7
,
)$
#5
,
*0
5
5
=
&*
0#
=
%C

$
%

·
D
5
&$
0<
*,
5
*,
%%
/
*$
5
*7
&%
*'
(2
%,
$"
%&
%&
*$
5

#,
E
5
=
%
*(
*;
7
,
)$
#5
,
*#
;*
#$
*#
&
*'
(&
&%
/
*(
2+
7
6

3
%,
$&
A
B
"
%
*#
3
'
0#
)#
$*
)(
00
*1
2(
'
&*
;5
21
(2
/

$5
*$
"
%
*%
,
/
*5
;*
$"
%
*0
#,
%
*5
2*
9
05
)=
*%
4
'
2%
&6

&#
5
,
A

·
@
7
,
)$
#5
,
&*
3
(<
*"
(E
%
*/
%;
(7
0$
*E
(0
7
%&
*;
5
2

(2
+
7
3
%,
$&
A
F
E
%2
2#
/
%
*$
"
%
*/
%;
(7
0$
*E
(0
7
%

9
<
*'
(&
&#
,
+
*(
*,
5
,
6,
7
00
*(
2+
7
3
%,
$A

9:
;$
&*1
.5
0<
.5
''5
=1

·
F
9
G%
)$
&
*
(,
/
*
(2
2(
<
&
*
(2
%
*
&#
3
#0
(2
*
$5

H(
E
(8
)2
#'
$

·
!
"
%,
*%
()
"
*'
25
'
%2
$<
*#
&*
0#
&$
%/
*5
,
*#
$&
*5
1
,

0#
,
%>
$"
%*
)5
3
3
(&
*(
2%
*5
'
$#
5
,
(0

·
F
9
G%
)$
&*
3
(<
*9
%
*)
2%
($
%/
*7
&#
,
+
*#
,
/
%,
$(
6

$#
5
,
*#
,
&$
%(
/
*5
;*
%4
'
0#
)#
$*
9
2(
)%
&>
&#
3
#0
(2
*$
5

I
J
D
K

·
L
%&
%2
E
%/
*1
5
2/
&>
0#
=
%
&
,
*
#
#
>)
(,
*9
%*
7
&%
/

(&
*'
25
'
%2
$#
%&
*5
;*
(,
*5
9
G%
)$
*1
#$
"
5
7
$*
M
7
5
$6

#,
+
*$
"
%3
*(
&*
&$
2#
,
+
&

>$
?(
&5
6.%
&"
)(
03
.5
0<
.@
5'
(5
:6
$.
%5
#$
*=

·
N
(2
#(
9
0%
&*
(2
%
*/
%)
0(
2%
/
*#
3
'
0#
)#
$0
<
*1
"
%,

7
&%
/
*O
,
5
&
'
(
=
%<
1
5
2/
PA

·
B
"
%*
)5
3
'
#0
%2
*%
,
&7
2%
&*
$"
($
*E
(2
#(
9
0%
&*
(2
%

/
%)
0(
2%
/
*1
#$
"
#,
*0
%4
#)
(0
*&
)5
'
%A
J
,
*5
7
$%
2

E
(2
#(
9
0%
*#
&*
,
5
$*
2%
/
%)
0(
2%
/
*1
#$
"
#,
*(
,
*#
,
6

,
%2
*;
7
,
)$
#5
,
*1
"
%,
*#
$*
#&
*#
,
*&
)5
'
%

·
:
&#
,
+
*(
,
*#
,
,
%2
*E
(2
#(
9
0%
*)
(,
*,
5
$*
&"
(/
5
1

(,
*5
7
$%
2*
E
(2
#(
9
0%
>
5
,
0<
*2
%;
%2
*$
5
*#
$A
8
5

(E
5
#/
*2
%7
&#
,
+
*$
"
%
*,
(3
%
*5
;*
(,
*%
4
$%
2,
(0

E
(2
#(
9
0%
*#
,
*(
*/
%%
'
0<
*,
%&
$%
/
*;
7
,
)$
#5
,

·
?
5
;;
%%
8
)2
#'
$*
5
7
$'
7
$*
#&
*1
2(
'
'
%/
*#
,
*(
,

(,
5
,
<
3
5
7
&
*;
7
,
)$
#5
,
>
3
(=
#,
+
*#
$*
/
#;
-
6

)7
0$
*$
5
*(
))
#/
%,
$(
00
<
*'
5
00
7
$%
*$
"
%
*+
05
9
(0

,
(3
%&
'
()
%

·
B
5
*)
2%
($
%
*$
5
'
60
%E
%0
*E
(2
#(
9
0%
&
*;
5
2*
5
$"
%2

&)
2#
'
$&
>
($
$(
)"
*$
"
%3
*(
&
*'
25
'
%2
$#
%&
*5
,

)
*
+
,
-
)
>
5
2*
$5

.
/
0
-
(
1
2
#,
*?
5
3
3
5
,
H8
A

:
&%
C
.
/
0
-
(
1
2
3

%
'
!
#

%)
65
*1 ·
8
'
0(
$&

4
4
4
)(
,
*9
%
*7
&%
/
*#
,
&$
%(
/
*5
;*
$"
%

E
(2
#(
9
0%
*,
7
3
9
%2
*5
;
'
(
5
6
7
.
+
1
2
5
9
G%
)$

(,
/
*(
2%
*(
E
(#
0(
9
0%
*;
5
2*
9
5
$"
*;
7
,
)$
#5
,
*/
%;
6

#,
#$
#5
,
*(
,
/
*#
,
E
5
)(
$#
5
,

>"
")
1.5
0<
.!
"A
)'
$B
$0
1("
01

·
?
5
3
'
2%
"
%,
&#
5
,
&

"
-
(
4
4
4
!
.

1
5
2=

5
E
%2
*(
22
(<
&>
5
9
G%
)$
&>
(,
/
*2
(,
+
%&

·
?
5
3
'
2%
"
%,
&#
5
,
&
*
2%
'
0(
)%
*
;5
2
*
05
5
'
&>

1
#$
"
*5
'
$#
5
,
(0

$
'
/
.
+
7
(2
/
*)
0(
7
&%
&
*(
,
/

$"
%
*E
(0
7
%
*5
;
*$
"
%
*)
7
22
%,
$*
(2
2(
<
*#
,
/
%4
C

"
-
(
&
'
8
6
.
9
*
+
,
.
/
!
.
'
(
(
'
:

·
J
22
(<
*)
5
3
'
2%
"
%,
&#
5
,
&*
(2
%*
%4
'
2%
&&
#5
,
&>

(,
/
*)
(,
*9
%*
2%
$7
2,
%/
*(
,
/
*(
&&
#+
,
%/

·
?
5
3
'
2%
"
%,
&#
5
,
&
*
3
(<

*
2%
'
0(
)%

/
*
&
'
#
"
-
(
0
*
&
'
>
1
*
2
5
2
#
/
,
/
&
%
#
"
!
,
%
/
(

·
:
&%
*(
*2
(,
+
%*
1
"
%,
*$
"
%*
&$
(2
$*
(,
/
*%
,
/
*5
;*
(

05
5
'
*#
&*
=
,
5
1
,
*O
#,
$%
+
%2
*&
$%
'
&P

·
:
&%

3
)
$5
*&
$%
'
*#
,
*-
4
%/
6&
#Q
%*
#,
)2
%3
%,
$&

·
!
"
%,
*(
&&
#+
,
#,
+
*$
"
%*
E
(0
7
%*
5
;*
(
*)
5
3
'
2%
6

"
%,
&#
5
,
*$
5
*(
*E
(2
#(
9
0%
>
?
5
;;
%%
8
)2
#'
$*
)5
06

0%
)$
&*
$"
%
*2
%&
7
0$
*5
;*
%(
)"
*#
$%
2(
$#
5
,
*#
,
$5
*(
,

(2
2(
<

·
L
%$
7
2,

.
4
,
,
>
4
.
5
/
"
!
.
/
5
5
2
%
(
4
/
#;
*(

05
5
'
*#
&*
5
,
0<
*;
5
2*
&#
/
%6
%;
;%
)$
&

·
B
5
*#
$%
2(
$%
*5
E
%2
*$
"
%
*=
%<
*(
,
/
*E
(0
7
%
*'
25
'
6

%2
$#
%&
*#
,
*(
,
*5
9
G%
)$
>
7
&%

-
"

·
:
&%
C
"
-
(
-
)
+
;
.
:
9

&
'
8
6
.
-
"

-
<
=
.
>
1

$5
*#
$%
2(
$%
*5
E
%2
*$
"
%
*=
%<
&*
$"
($
*(
2%
*/
#2
%)
$0
<

/
%-
,
%/
*5
,
*(
,
*5
9
G%
)$

·
B
"
%
*5
,
0<
*0
5
1
60
%E
%0
*0
5
5
'
*#
&
*$
"
%
$
'
!
,
/

05
5
'
A
R$
*)
(,
*9
%
*7
&%
/
*(
&*
(,
*%
4
'
2%
&&
#5
,
>

2%
$7
2,
#,
+
*(
,
*(
22
(<
*)
5
,
$(
#,
#,
+
*$
"
%
*2
%&
7
0$

5
;*
%(
)"
*#
$%
2(
$#
5
,
*$
"
25
7
+
"
*$
"
%*
05
5
'

·
4
.
%
!
,
#&
*%
M
7
#E
(0
%,
$*
$5

$
'
!
,
/
.
-
%

·
,
-
-
2
#&
*%
M
7
#E
(0
%,
$*
$5

$
'
!
,
/
%
(
4
/

·
B
"
%
5
-
=
%<
1
5
2/
*#
,
&%
2$
&*
(*
)0
5
&7
2%
*1
2(
'
6

'
%2
>
;5
21
(2
/
&
*(
,
<
*(
2+
7
3
%,
$&
*(
,
/
*#
,
6

E
5
=
%&
*(
*'
(&
&%
/
*;
7
,
)$
#5
,

C'
=D
!5
*&B
D8
(0
56
6=

·
%
(
)
#
&
*
%
&
'

&$
($
%3
%,
$&
*
(2
%
*
(&
*
#,

H(
E
(8
)2
#'
$*
O(
0$
"
5
7
+
"
*%
4
'
2%
&&
#5
,
&P

E#F
G6
1$
FH
06
$1
1F
50
<.
!"
0<
(*(
"0
56
.I
11(
30
A
$0
*

·
!
"
#
/
,
#
/
)(
,
*9
%
*1
2#
$$
%,
*1
#$
"
5
7
$*
'
(2
%,
6

$"
%&
%&
*(
,
/
*)
7
20
<
*9
2(
)%
&

·
D
7
0$
#6
0#
,
%*
)5
,
/
#$
#5
,
(0
&*
(2
%*
/
%0
#3
#$
%/
*9
<

#,
/
%,
$(
$#
5
,

·
!
"
(,
/
4
.
,
/
#
#
)(
,
*9
%
*7
&%
/
*#
,
*'
5
&$
-
4

;5
23
*#
A%
A
($
*$
"
%*
%,
/
*5
;*
$"
%*
&$
($
%3
%,
$

·
!
"
&$
($
%3
%,
$&
*)
(,
*9
%
*7
&%
/
*(
&
*%
4
'
2%
&6

&#
5
,
&A
S
5
*,
%%
/
*;
5
2
3
?

!B
5(
0$
<.
!"
A
)5
'(1
"0
1

·
:
&%
*(
*)
"
(#
,
%/
*)
5
3
'
(2
#&
5
,
*$
5
*$
%&
$*
#;
*(

E
(0
7
%*
#&
*1
#$
"
#,
*(
*2
(,
+
%C

7
*
+
*
7
6
7
@
&
'
8
6
.
@
7
'
/
*
7
6
7

I'
'5
=.
%6(
&(0
3.
50
<.
%)
6(&
(0
3.
J(
*B
./
50
3$
1

·
L
(,
+
%&
*)
(,
*9
%
*7
&%
/
*$
5
*%
4
$2
()
$*
&0
#)
%&
*5
;

(2
2(
<
&

·
!
#$
"
*$
1
5
*/
5
$&

A
B
4
4
C
D
>
$"
%
*2
(,
+
%
*#
&*
#,
6

)0
7
&#
E
%*
OT
>
U
>
V
>
W
P

·
!
#$
"
*$
"
2%
%
*/
5
$&

A
B
4
4
4
C
D
>
$"
%
*2
(,
+
%
*%
4
6

)0
7
/
%&
*$
"
%*
%,
/
*O
T
>
U
>
V
P

·
B
"
%
*&
(3
%
*&
<
,
$(
4
*)
(,
*9
%
*7
&%
/
*1
#$
"
*(
&6

&#
+
,
3
%,
$*
$5
*2
%'
0(
)%
*(
*&
%+
3
%,
$*
5
;*
(,
*(
26

2(
<
*1
#$
"
*,
%1
*E
(0
7
%&
>
&'
0#
)#
,
+
*#
$

·
8
$2
#,
+
&
*(
2%
*#
3
3
7
$(
9
0%
*(
,
/
*)
(,
*,
5
$*
9
%

&'
0#
)%
/

GA
:$
<<
$<
.K5
L5
%&
'()
*

·
:
&%
*9
()
=
M
7
5
$%
&
E
E
$5
*%
3
9
%/
*H
(E
(8
)2
#'
$

)5
/
%*
1
#$
"
#,
*?
5
;;
%%
8
)2
#'
$

X
.
A*
Y
5
#+
((
2/
*Z
*[
V
V
U
\[
]
X
X
*L
%E
A
^

X

F
ig

u
re

B
.1

:
C

off
ee

S
cr

ip
t

Q
u

ic
k

R
ef

er
en

ce
1

re
p

ro
d

u
ce

d
fr

om
H

oi
ga

ar
d

(2
01

1)

180

!"
#$
%&
'(
)*
+(,
+-
)+
!.
/$
#,
,(0
)

·
!
"
#
$%
&'
#
()
*+
%"
*#
)%
,
+&
*)
-
#
./
)0
./
"
+

·
1
,
+
)*
+%
"
*#
)0
./
"
+
)&
(
)2
+%
$,
+3
)2
*'
4
)+
.$
,

5
*.
#
$,
)'
2)
+6
+$
"
%&
'
#

·
7
+%
"
*#
)+
.*
/8
)2
*'
4
).
)2
"
#
$%
&'
#
)5
'
3
8
)5
8

"
(&
#
9
).
#
)+
6
:
/&
$&
%
!
"
#
$
!
%

·
;
.*
&.
5
/+
)3
+$
/.
*.
%&
'
#
(
).
*+
).
%)
%,
+
)%
'
:
)'
2

%,
+
)(
$'
:
+<
('
).
((
&9
#
4
+#
%)
$.
#
)5
+
)"
(+
3

=
&%
,
&#
)+
6
:
*+
((
&'
#
(<
+0
+#
)2
'
*)
0
.*
&.
5
/+
(

%,
.%
),
.0
+)
#
'
%)
5
++
#
)(
++
#
)5
+2
'
*+

·
>
%.
%+
4
+#
%(
<
=
,
+#
)"
(+
3
).
()
:
.*
%)
'
2)
.#
)+
6
?

:
*+
((
&'
#
<
.*
+)
$'
#
0
+*
%+
3
)&
#
%'
)+
6
:
*+
((
&'
#
(

=
&%
,
).
)$
/'
("
*+
)=
*.
:
:
+*
@
1
,
&(
).
//
'
=
()
.(
?

(&
9
#
4
+#
%)
'
2)
%,
+
)*
+(
"
/%
)'
2)
.
)$
'
4
:
*+
,
+#
?

(&
'
#
)%
'
).
)0
.*
&.
5
/+

·
1
,
+
)
2'
//
'
=
&#
9
)
.*
+
)
#
'
%
)
+6
:
*+
((
&'
#
(A

&
!
"
'
(
<
)
*
%
#
+
%
$
"
<
.#
3
!
"
#
$
!
%

1/
#$
-&
0$
,+-
)2
+3
4(-
,#
,

·
B
'
22
++
>
$*
&:
%)
$'
4
:
&/
+(

!
!
&#
%'

!
!
!
<
.#
3

"
!
&#
%'

"
!
!
@
1
,
+*
+
)&
()
#
'
)+
C
"
&0
./
+#
%)
%'

%,
+)
D.
0
.>
$*
&:
%
!
!
'
:
+*
.%
'
*

·
1
,
+
).
/&
.(

+
,
&(
)+
C
"
&0
./
+#
%)
%'

!
!
!
<
.#
3

+
,
%
#
$'
**
+(
:
'
#
3
()
%'

"
!
!

·
E
'
9
&$
./
)'
:
+*
.%
'
*)
./
&.
(+
(A

'
%
-
&(
#
#
<
*
!
&(

$
$
.#
3
%
*
#
&(
).
#
).
/&
.(
)2
'
*
"

·
F#

.
/
+
0
"
<
+
1
%
"
0
,
"
.#
3

,
.
+
#
)
/
%
.
/
"
%

(%
.%
+4
+#
%(
)%
,
+

#
/
"
%
G
+8
=
'
*3
)$
.#
)5
+

"
(+
3
)%
'
)G
++
:
)%
,
+)
5
'
3
8
)'
#
)%
,
+)
(.
4
+)
/&
#
+

·
H
/&
.(
)2
'
*)
5
'
'
/+
.#

#
!
$
"
&(
*
%
.#
3
2
"
,
I.
(

&#
)J
H
K
E
L

·
H
/&
.(
)2
'
*)
5
'
'
/+
.#

1
'
0
,
"
&(
*
1
1
.#
3
%
*

·
!
'
*)
(&
#
9
/+
?/
&#
+
)(
%.
%+
4
+#
%(
<
$
%
0
"
,
,
$.
#

5
+)
"
(+
3
).
()
%,
+)
&#
0
+*
(+
)'
2
+
1

·
M
(+

&
'
(
)
'
*
(
+
,
'
*
&
-
*
+
.
)
/
&#
(%
+.
3
)'
2

#
/
+
,
0
1
)
-
*
+
.
2
3
4

·
M
(+

+
%
%'
)%
+(
%)
2'
*)
.*
*.
8
):
*+
(+
#
$+

·
M
(+

*
1
%'
)%
+(
%)
2'
*)
'
5
N+
$%
?G
+8
):
*+
(+
#
$+

!.
(,&
#)
&(-
4+1
/#
$-
&0
$

·
M
(+
)%
,
+)
+6
&(
%+
#
%&
./
)'
:
+*
.%
'
*
5
%'
)$
,
+$
G
)&
2

.
)0
.*
&.
5
/+
)+
6
&(
%(
@
5
*+
%"
*#
(
#
!
$
"
"
#
/+
((

.)
0
.*
&.
5
/+
)&
(
%
$
0
0
'
*
$
%
-
"
1
+
%
"
-

·
M
(+

5
!
2'
*)
(.
2+
*)
$'
#
3
&%
&'
#
./
).
((
&9
#
4
+#
%

%,
.#

$
$
!
=
&%
,
)#
"
4
5
+*
()
'
*)
(%
*&
#
9
(

·
1
,
+
).
$$
+(
('
*)
0
.*
&.
#
%)
'
2)
%,
+
)+
6
&(
%+
#
%&
./

'
:
+*
.%
'
*
5
0
$.
#
)5
+
)"
(+
3
)%
'
)(
'
.G
)"
:
)#
"
//

*+
2+
*+
#
$+
()
&#
).
)$
,
.&
#
)'
2)
:
*'
:
+*
%&
+(

·
M
(+

5
0
&#
(%
+.
3
)'
2)
%,
+
)3
'
%)
.$
$+
((
'
*
0
&#

$.
(+
()
=
,
+*
+)
%,
+)
5
.(
+)
0
./
"
+)
4
.8
)5
+
%
$
0
0

'
*
$
%
-
"
1
+
%
"
-
@
F2
).
//
)'
2)
%,
+)
:
*'
:
+*
%&
+(
)+
6
?

&(
%)
%,
+#
)%
,
+
)+
6
:
+$
%+
3
)*
+(
"
/%
)&
()
*+
%"
*#
+3
<

&2
)%
,
+)
$,
.&
#
)&
()
5
*'
G
+#
<
%,
+#

$
%
-
"
1
+
%
"
-
&(

*+
%"
*#
+3
)&
#
(%
+.
3

54
-,
,#
,6
7)
'#
$(&
-)
8#
6-
)2
+9:
/#
$

·
O
5
N+
$%
)'
*&
+#
%.
%&
'
#
).
()
&#
)4
'
(%
)'
%,
+*
)'
5
?

N+
$%
)'
*&
+#
%+
3
)/
.#
9
"
.9
+(

·
1
,
+
)
0
'
,
,
(%
*"
$%
"
*+
).
//
'
=
()
%'
)#
.4
+)
%,
+

$/
.(
(<
(+
%)
%,
+
)(
"
:
+*
$/
.(
()
=
&%
,
"
3
#
"
%
-
,
<

.(
(&
9
#
):
*'
%'
%8
:
./
):
*'
:
+*
%&
+(
<
.#
3
)3
+-
#
+

.
6
)
3
1
+
(
7
6
+
)
(
<
&#
).
)(
&#
9
/+
).
((
&9
#
.5
/+

+6
:
*+
((
&'
#

·
B
'
#
(%
*"
$%
'
*)
2"
#
$%
&'
#
()
.*
+
)#
.4
+3
).
()
%,
+

)
0
'
,
,
#
.4
+<
%'
)(
"
:
:
'
*%
)*
+P
+$
%&
'
#

·
E
'
=
+*
)/
+0
+/
)'
:
+*
.%
'
*(
A
1
,
+
"
3
#
"
%
-
,

'
:
+*
.%
'
*
),
+/
:
(
)=
&%
,
):
*'
:
+*
):
*'
%'
%8
:
+

(+
%"
:
@

8
8
9
&0
+(
).
$$
+(
(
)%
'
).
#
)'
5
N+
$%
Q(

:
*'
%'
%8
:
+@

,
$
4
"
!
9
:
$.
//
()
%,
+)
&4
4
+3
&.
%+

.#
$+
(%
'
*Q
()
4
+%
,
'
3
)'
2)
%,
+)
(.
4
+)
#
.4
+

·
H
$/
.(
(
)3
+-
#
&%
&'
#
)&
(
).
)5
/'
$G
)'
2)
+6
+?

$"
%.
5
/+
)$
'
3
+<
=
,
&$
,
)4
.8
)5
+
)"
(+
3
)2
'
*

4
+%
.)
:
*'
9
*.
4
4
&#
9
@

·
F#
)%
,
+
)$
'
#
%+
6
%)
'
2
).
)$
/.
((
)3
+-
#
&%
&'
#
<

#
/
+
,
&(
)
%,
+
)
$/
.(
(
)
'
5
N+
$%
)
&%
(+
/2
)
I%
,
+

6
)
3
1
+
(
7
6
+
)
(

2"
#
$%
&'
#
L<

('
)
(%
.%
&$

:
*'
:
+*
%&
+(
)$
.#
)5
+
).
((
&9
#
+3
)5
8
)"
(&
#
9

&
'
(
)
'
*
(
+
,
8

;
<
=
7
*
<
.#
3
)2
"
#
$%
&'
#
(
)3
+?

-
#
+3
)&
#
):
.*
+#
%)
$/
.(
(+
(
)$
.#
)5
+
)$
./
/+
3

=
&%
,
A
&
2
3
.
*
(
2
+
*
/
>
*
+
.
)
/
?
<
-
*
9
:

;#
,&$
:8
&:
$()
*+
3,
,(*
)<
#)
&

·
1
'
)4
.G
+
)+
6
%*
.$
%&
#
9
)0
./
"
+(
)2
*'
4
)$
'
4
?

:
/+
6
)
.*
*.
8
(
)
.#
3
)
'
5
N+
$%
(
)
$'
#
0
+#
&+
#
%<

B
'
22
++
>
$*
&:
%)
&4
:
/+
4
+#
%(
)3
+(
%*
"
$%
"
*&
#
9

.(
(&
9
#
4
+#
%

·
R
,
+#
).
((
&9
#
&#
9
).
#
).
**
.8
)'
*)
'
5
N+
$%
)/
&%
?

+*
./
)%
'
).
)0
./
"
+<
B
'
22
++
>
$*
&:
%)
5
*+
.G
()
"
:

.#
3
)4
.%
$,
+(
)5
'
%,
)(
&3
+(
).
9
.&
#
(%
)+
.$
,

'
%,
+*
<
.(
(&
9
#
&#
9
)%
,
+
)0
./
"
+(
)'
#
)%
,
+
)*
&9
,
%

%'
)%
,
+)
0
.*
&.
5
/+
()
'
#
)%
,
+)
/+
2%

·
1
,
+)
(&
4
:
/+
(%
)$
.(
+)
&(
):
.*
./
/+
/)
.(
(&
9
#
4
+#
%

@
<
A
B
C

!
@
B
A
<
C

·
F%
)$
.#
)5
+)
"
(+
3
)=
&%
,
)2
"
#
$%
&'
#
()
%,
.%
)*
+%
"
*#

4
"
/%
&:
/+
)0
./
"
+(

·
F%
)$
.#
)5
+
)"
(+
3
)=
&%
,
).
#
8
)3
+:
%,
)'
2)
.*
*.
8

.#
3
)'
5
N+
$%
)#
+(
%&
#
9
)%
'
)9
+%
)3
++
:
/8
)#
+(
%+
3

:
*'
:
+*
%&
+(
).
#
3
)$
.#
)5
+
)$
'
4
5
&#
+3
)=
&%
,

(:
/.
%(

=:
)8
&(0
)+
>(
)2
()
*

·
1
,
+)
2.
%)
.*
*'
=
!
D
$.
#
)5
+)
"
(+
3
)%
'
)3
+-
#
+)
.

2"
#
$%
&'
#
).
#
3
)5
&#
3
)&
%)
%'
)%
,
+)
$"
**
+#
%)
0
./
"
+

'
2
#
/
+
,

·
1
,
&(
)&
(
),
+/
:
2"
/)
=
,
+#
)"
(&
#
9
)$
./
/5
.$
G
?

5
.(
+3
)/
&5
*.
*&
+(
<
2'
*
)$
*+
.%
&#
9
)&
%+
*.
%'
*

2"
#
$%
&'
#
(
)%
'
):
.(
(
)%
'

"
'
)
/
'
*
)+
0
+#
%?

,
.#
3
/+
*)
2"
#
$%
&'
#
()
%'
)"
(+
)=
&%
,
&
+
%
-

·
!
"
#
$%
&'
#
()
$*
+.
%+
3
)=
&%
,
!
D
.*
+)
.5
/+
)%
'
).
$?

$+
((
):
*'
:
+*
%&
+(
)'
2)
%,
+
#
/
+
,
=
,
+*
+
)%
,
+8

.*
+)
3
+-
#
+3

9?
(&8
'@
A'
#)
@!
4,#

·
1
,
+
,
.
+
#
)
/
(%
.%
+4
+#
%)
3
'
)#
'
%)
#
++
3
).

&
!
"
'
(
.2
%+
*)
+0
+*
8
)$
.(
+

·
H
,
.
+
#
)
/
&(
).
)*
+%
"
*#
.5
/+
<
.(
(&
9
#
.5
/+
)+
6
?

:
*+
((
&'
#

·
1
,
+
)2
'
*4
.%
)&
(A

,
.
+
#
)
/
$'
#
3
&%
&'
#
<
.
/
"
%

$/
."
(+
(<
"
0
,
"
%,
+)
3
+2
."
/%
)$
.(
+

·
K
"
/%
&:
/+
)0
./
"
+(
<
$'
4
4
.
)(
+:
.*
.%
+3
<
$.
#

5
+)
9
&0
+#
)2
'
*)
+.
$,

.
/
"
%
$/
."
(+
@
F2
).
#
8
)'
2

%,
+)
0
./
"
+(
)4
.%
$,
<
%,
+)
$/
."
(+
)*
"
#
(

9&
$()
*+
7)
&#
$/
04
-&
(0
)6
B#
$#
20
8,6
-)
2+
C4
08
D+
50
<
<
#)
&,

·
>
&#
9
/+
?C
"
'
%+
3
)(
%*
&#
9
(
).
*+
)/
&%
+*
./
@
M
(+

5
.$
G
(/
.(
,
)2
'
*)
+(
$.
:
+)
$,
.*
.$
%+
*(

·
S
'
"
5
/+
?C
"
'
%+
3
)(
%*
&#
9
(
).
//
'
=
)2
'
*)
&#
%+
*?

:
'
/.
%+
3
)0
./
"
+(
<
"
(&
#
9
5
6

7
7
7
8

·
K
"
/%
&/
&#
+)
(%
*&
#
9
()
.*
+)
./
/'
=
+3

·
H
,
+*
+3
'
$
E
E
E
$.
#
)5
+)
"
(+
3
)2
'
*)
2'
*4
.%
%+
3

'
*)
&#
3
+#
%.
%&
'
#
?(
+#
(&
%&
0
+)
%+
6
%)
I'
*)
%'
).
0
'
&3

+(
$.
:
&#
9
)C
"
'
%+
()
.#
3
).
:
'
(%
*'
:
,
+(
L

·
1
,
+)
&#
3
+#
%.
%&
'
#
)/
+0
+/
)%
,
.%
)5
+9
&#
()
.)
,
+*
+?

3
'
$
)&
(
)4
.&
#
%.
&#
+3
)%
,
*'
"
9
,
'
"
%<
('
)%
,
+

%+
6
%)
$.
#
)5
+)
./
&9
#
+3
)=
&%
,
)%
,
+)
5
'
3
8
)'
2)
%,
+

$'
3
+

·
S
'
"
5
/+
?C
"
'
%+
3
),
+*
+3
'
$(

F
F
F
./
/'
=
)2
'
*

&#
%+
*:
'
/.
%&
'
#

·
T
/'
$G
)$
'
4
4
+#
%(

5
5
5
.*
+
)(
&4
&/
.*
)%
'

,
+*
+3
'
$(
<
.#
3
).
*+
):
*+
(+
*0
+3
)&
#
)%
,
+
)9
+#
?

+*
.%
+3
)$
'
3
+

!.
&#
)2
#2
+E
#*
:4
-$
+!
./
$#
,,(
0)
,

·
U
6
%+
#
3
+3
)*
+9
"
/.
*
)+
6
:
*+
((
&'
#
(
).
*+
)3
+?

/&
4
&%
+3
)5
8
%
%
%
.#
3
).
*+
)(
&4
&/
.*
)%
'
),
+*
+?

3
'
$(
).
#
3
)5
/'
$G
)$
'
4
4
+#
%(
@

·
1
,
+8
)&
9
#
'
*+
)&
#
%+
*#
./
)=
,
&%
+(
:
.$
+
).
#
3

$.
#
)$
'
#
%.
&#
)$
'
4
4
+#
%(

34
(-
,#
, '
%
-

8
#
#

*
!

8
$
$

%
*
#

8
"

+
,

8
!
!

+
,
%
#
8

"
!

2
"
,

8
#
!
$
"

%
*

8
1
'
0
,
"

*
%

8
#
!
$
"

*
1
1

8
1
'
0
,
"

F(
,8#
44-
)#
0:
,

·
1
=
&%
%+
*)
$'
4
4
+#
%(
)%
'
)V
."
%'
%+
/&
$"
4

,
%%
:
AW
W.
"
%'
%+
/&
$"
4
@9
&%
,
"
5
@$
'
4
W>
4
'
'
%,
?B
'
22
++
>
$*
&:
%W

X

F
ig

u
re

B
.2

:
C

off
ee

S
cr

ip
t

Q
u

ic
k

R
ef

er
en

ce
2

re
p

ro
d

u
ce

d
fr

om
H

oi
ga

ar
d

(2
01

1)

181

Appendix C

XACML Glossary

The Glossary from Moses (2005) is reproduced in Figure C.1 and Figure C.2.

182

access_control-xacml-2.0-core-spec-os 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 8 of 141

 227

1. Introduction (non-normative) 228

1.1. Glossary 229

1.1.1 Preferred terms 230

Access - Performing an action 231

Access control - Controlling access in accordance with a policy 232

Action - An operation on a resource 233

Applicable policy - The set of policies and policy sets that governs access for a specific 234
decision request 235

Attribute - Characteristic of a subject, resource, action or environment that may be referenced 236
in a predicate or target (see also – named attribute) 237

Authorization decision - The result of evaluating applicable policy, returned by the PDP to the 238
PEP. A function that evaluates to “Permit”, “Deny”, “Indeterminate” or “NotApplicable", and 239
(optionally) a set of obligations 240

Bag – An unordered collection of values, in which there may be duplicate values 241

Condition - An expression of predicates. A function that evaluates to "True", "False" or 242
“Indeterminate” 243

Conjunctive sequence - a sequence of predicates combined using the logical ‘AND’ operation 244

Context - The canonical representation of a decision request and an authorization decision 245

Context handler - The system entity that converts decision requests in the native request format 246
to the XACML canonical form and converts authorization decisions in the XACML canonical form 247
to the native response format 248

Decision – The result of evaluating a rule, policy or policy set 249

Decision request - The request by a PEP to a PDP to render an authorization decision 250

Disjunctive sequence - a sequence of predicates combined using the logical ‘OR’ operation 251

Effect - The intended consequence of a satisfied rule (either "Permit" or "Deny") 252

Environment - The set of attributes that are relevant to an authorization decision and are 253
independent of a particular subject, resource or action 254

Figure C.1: XACML Access Control Glossary 1, reproduced from Moses (2005)

183

access_control-xacml-2.0-core-spec-os 1 February 2005

Copyright © OASIS Open 2004. All Rights Reserved. Page 9 of 141

Named attribute – A specific instance of an attribute, determined by the attribute name and type, 255
the identity of the attribute holder (which may be of type: subject, resource, action or 256
environment) and (optionally) the identity of the issuing authority 257

Obligation - An operation specified in a policy or policy set that should be performed by the PEP 258
in conjunction with the enforcement of an authorization decision 259

Policy - A set of rules, an identifier for the rule-combining algorithm and (optionally) a set of 260
obligations. May be a component of a policy set 261

Policy administration point (PAP) - The system entity that creates a policy or policy set 262

Policy-combining algorithm - The procedure for combining the decision and obligations from 263
multiple policies 264

Policy decision point (PDP) - The system entity that evaluates applicable policy and renders an 265
authorization decision. This term is defined in a joint effort by the IETF Policy Framework 266
Working Group and the Distributed Management Task Force (DMTF)/Common Information Model 267
(CIM) in [RFC3198]. This term corresponds to "Access Decision Function" (ADF) in [ISO10181-3]. 268

Policy enforcement point (PEP) - The system entity that performs access control, by making 269
decision requests and enforcing authorization decisions. This term is defined in a joint effort by 270
the IETF Policy Framework Working Group and the Distributed Management Task Force 271
(DMTF)/Common Information Model (CIM) in [RFC3198]. This term corresponds to "Access 272
Enforcement Function" (AEF) in [ISO10181-3]. 273

Policy information point (PIP) - The system entity that acts as a source of attribute values 274

Policy set - A set of policies, other policy sets, a policy-combining algorithm and (optionally) a 275
set of obligations. May be a component of another policy set 276

Predicate - A statement about attributes whose truth can be evaluated 277

Resource - Data, service or system component 278

Rule - A target, an effect and a condition. A component of a policy 279

Rule-combining algorithm - The procedure for combining decisions from multiple rules 280

Subject - An actor whose attributes may be referenced by a predicate 281

Target - The set of decision requests, identified by definitions for resource, subject and action, 282
that a rule, policy or policy set is intended to evaluate 283

Type Unification - The method by which two type expressions are "unified". The type expressions 284
are matched along their structure. Where a type variable appears in one expression it is then 285
"unified" to represent the corresponding structure element of the other expression, be it another 286
variable or subexpression. All variable assignments must remain consistent in both structures. 287
Unification fails if the two expressions cannot be aligned, either by having dissimilar structure, or by 288
having instance conflicts, such as a variable needs to represent both "xs:string" and "xs:integer". 289
For a full explanation of type unification, please see [Hancock]. 290

Figure C.2: XACML Access Control Glossary 2, reproduced from Moses (2005)

184

	Dedication
	Declaration
	Acknowledgements
	Publications
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Research Questions
	1.4 Contributions
	1.5 Thesis Outline

	2 State of the Art
	2.1 Group Formation
	2.1.1 Motivation for Group Membership
	2.1.2 Groups: A Modern Analysis
	2.1.3 Group Formation
	2.1.4 Summary

	2.2 Group Communication Technologies
	2.2.1 Mailing Lists
	2.2.2 Message Boards
	2.2.3 Usenet Groups
	2.2.4 Peer To Peer Networks
	2.2.5 Internet Relay Chatrooms
	2.2.6 Instant Messaging Technologies
	2.2.7 Web based Social Networking
	2.2.8 Semantically Enhanced Groups
	2.2.9 Summary

	2.3 Interaction Management Within Groups
	2.3.1 Interaction Management
	2.3.2 Policy Based Network Management
	2.3.3 XACML
	2.3.4 Summary

	2.4 Design and Implementation Strategies for Scalable Solutions
	2.4.1 Design Patterns
	2.4.2 Language Paradigms
	2.4.3 Concurrency
	2.4.4 Domain Specific Languages
	2.4.5 Representation Formats
	2.4.6 Deployment Platforms
	2.4.7 Summary

	2.5 Summary

	3 Group Membership: Formation and Management
	3.1 Roster Group Formation
	3.1.1 XMPP
	3.1.2 Roster Explored
	3.1.3 Group Formation Styles
	3.1.4 Criteria for Group Formation and Management

	3.2 Group Roster Design
	3.2.1 Strengthening the XMPP Group Model
	3.2.2 Server Load Analysis
	3.2.3 Observations
	3.2.4 Managing Roster Groups within XMPP
	3.2.5 Summary

	3.3 Scalability and Performance of Groups
	3.3.1 Large Group Management
	3.3.2 Mass Group Management

	3.4 Summary

	4 Group Interaction: Managing Performance
	4.1 Architecting Management Platforms
	4.1.1 Candidate Components
	4.1.2 Group Specific PDP
	4.1.3 Distributed PDPs
	4.1.4 Advanced Management Potential
	4.1.5 Performance Benefits
	4.1.6 PDP Design Patterns

	4.2 Policy Informed Domains
	4.2.1 Policy Algorithm and Implementation
	4.2.2 Policy Results
	4.2.3 Summary

	4.3 Performance of Policy Evaluation
	4.3.1 Motivation
	4.3.2 Architecture
	4.3.3 JSON based Policy Representation
	4.3.4 Evaluation
	4.3.5 Results
	4.3.6 Policy-Request Scenario Comparison

	4.4 Scalable Group Management
	4.4.1 Analysing CoffeeScripts Performance
	4.4.2 Summary

	4.5 Summary

	5 Towards a Unified Model for Group Formation and Interaction Management
	5.1 Model Responsibilities
	5.1.1 Group Formation
	5.1.2 Group Management
	5.1.3 Group Policy
	5.1.4 Group Roster
	5.1.5 Combined UML Model

	5.2 Implementation Recommendations
	5.2.1 Handling Concurrency: Language Level
	5.2.2 Underlying Platform
	5.2.3 Storage Solutions
	5.2.4 Policy Component Representation

	5.3 Summary

	6 Conclusions and Future Work
	6.1 Conclusion
	6.1.1 Thesis Summary
	6.1.2 Contributions
	6.1.3 Conclusions

	6.2 Future Work
	6.2.1 Humanitarian Relief: Disaster Management Applications
	6.2.2 Fine Grained Management through SLAs
	6.2.3 Policy Continuum

	References
	List of Acronyms
	A Domain Specific PDP
	B CoffeeScript Glossary
	C XACML Glossary

