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Abstract

We examine a result of Basor and Ehrhardt concerning Hankel and Toeplitz plus
Hankel matrices, within the context of the Riordan group of lower-triangular matrices.
This allows us to determine the LDU decomposition of certain symmetric Toeplitz plus
Hankel matrices. We also determine the generating functions and Hankel transforms
of associated sequences.
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1 Introduction

In [1] Basor and Ehrhardt studied the transformation

bn =
n−1∑
k=0

(
n− 1

k

)
(a1−n+2k + a2−n+2k), (1)

defined for sequences {an}∞n=−∞ in the context of relating the determinants of certain Toeplitz
plus Hankel matrices to the determinants of related Hankel matrices.

In this note, we shall study an equivalent transformation, which we will construct with
the aid of Riordan arrays [9]. We call this the B-transform. We shall then use our results to
examine the LDU decomposition of the resulting Toeplitz plus Hankel matrices.

In the next section, we shall detail the notations that will be used in this note, and
give a basic introduction to the relevant theory of Riordan arrays. We shall follow this
with a section which defines the B-transform, studies some of its properties, and shows its
equivalence the Basor and Ehrhardt transform. In particular, we derive an expression for
the generating function of the image sequence, which for instance allows us to determine
the Hankel transform of image sequence in many cases. A final section then looks at the
LDU decomposition of the related Toeplitz plus Hankel matrices, with examples involving
Riordan arrays.
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2 Notation and basic Riordan array theory

Although many of our results will be valid for sequences an with values in C, we shall in
the sequel assume that the sequences we deal with are integer sequences, an ∈ Z. For an
integer sequence an, that is, an element of ZN, the power series f(x) =

∑∞
k=0 akx

k is called
the ordinary generating function or g.f. of the sequence. an is thus the coefficient of xn in
this series. We denote this by an = [xn]f(x). For instance, Fn = [xn] x

1−x−x2 is the n-th

Fibonacci number, while Cn = [xn]1−
√
1−4x
2x

is the n-th Catalan number. We use the notation

0n = [xn]1 for the sequence 1, 0, 0, 0, . . . Thus 0n = [n = 0] = δn,0 =
(
0
n

)
. Here, we have used

the Iverson bracket notation [3], defined by [P] = 1 if the proposition P is true, and [P ] = 0
if P is false.

For a power series f(x) =
∑∞

n=0 anx
n with f(0) = 0 we define the reversion or composi-

tional inverse of f to be the power series f̄(x) such that f(f̄(x)) = x. We sometimes write
f̄ = Revf .

The Hankel transform [6] of a sequence an is the sequence hn = |ai+j|ni,j=0. If the sequence
an has a g.f. that has a continued fraction expansion of the form

a0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− · · ·

,

then the Hankel transform of an is given by [5]

hn = an+1
0 βn

1 β
n−1
2 · · · β2

n−1βn = an+1
0

n∏
k=1

βn+1−k
k . (2)

The LDU decomposition of Hankel matrices has been studied in [7, 8].
Some of the lower-triangular matrices that we shall meet will be coefficient arrays of

families of orthogonal polynomials. General references for orthogonal polynomials include
[2, 4, 11].

At will denote the transpose of the matrix A, and we will on occasion use A ·B to denote
the product of the matrices AB, where this makes reading the text easier. This also conforms
with the use of “·” for the product in the Riordan group (see below).

The Riordan group [9, 10], is a set of infinite lower-triangular integer matrices, where
each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x

2 + · · · and
f(x) = f1x + f2x

2 + · · · where f1 ̸= 0 [10]. We assume in addition that f1 = 1 in what
follows. The associated matrix is the matrix whose i-th column is generated by g(x)f(x)i

(the first column being indexed by 0). The matrix corresponding to the pair g, f is denoted
by (g, f) or R(g, f). The group law is then given by

(g, f) · (h, l) = (g, f)(h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .
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A Riordan array of the form (g(x), x), where g(x) is the generating function of the se-
quence an, is called the sequence array of the sequence an. Its (n, k)-th term is an−k. Such
arrays are also called Appell arrays as they form the elements of the Appell subgroup.

If M is the matrix (g, f), and a = (a0, a1, . . .)
′ is an integer sequence with ordinary generat-

ing function A (x), then the sequence Ma has [9] ordinary generating function g(x)A(f(x)).
This result is often called “the Fundamental Theorem of Riordan arrays”. The (infinite)
matrix (g, f) can thus be considered to act on the ring of integer sequences ZN by multi-
plication, where a sequence is regarded as a (infinite) column vector. We can extend this
action to the ring of power series Z[[x]] by

(g, f) : A(x) 7→ (g, f) · A(x) = g(x)A(f(x)).

Example 1. The so-called binomial matrix B is the element ( 1
1−x

, x
1−x

) of the Riordan

group. It has general element
(
n
k

)
, and hence as an array coincides with Pascal’s triangle.

More generally, Bm is the element ( 1
1−mx

, x
1−mx

) of the Riordan group, with general term(
n
k

)
mn−k. It is easy to show that the inverse B−m of Bm is given by ( 1

1+mx
, x
1+mx

).

For a sequence a0, a1, a2, . . . with g.f. g(x), the “aeration” of the sequence is the sequence

a0, 0, a1, 0, a2, . . . with interpolated zeros. Its g.f. is g(x2). We note that since c(x) = 1−
√
1−4x
2x

has the well-known continued fraction expansion

c(x) =
1

1−
x

1−
x

1− . . .

,

c(x2) has the continued fraction expansion

c(x2) =
1

1−
x2

1−
x2

1− . . .

. (3)

The aeration of a (lower-triangular) matrix M with general term mi,j is the matrix whose
general term is given by

mr
i+j
2

, i−j
2

1 + (−1)i−j

2
,

where mr
i,j is the i, j-th element of the reversal of M:

mr
i,j = mi,i−j.

In the case of a Riordan array (or indeed any lower triangular array), the row sums of the
aeration are equal to the diagonal sums of the reversal of the original matrix.
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Example 2. The Riordan array (c(x2), xc(x2)) is the aeration of the Riordan array

(c(x), xc(x)) = (1− x, x(1− x))−1.

Here

c(x) =
1−

√
1− 4x

2x

is the g.f. of the Catalan numbers. Indeed, the reversal of (c(x), xc(x)) is the matrix with
general element

[k ≤ n+ 1]

(
n+ k

k

)
n− k + 1

n+ 1
,

which begins 

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 2 0 0 0 . . .
1 3 5 5 0 0 . . .
1 4 9 14 14 0 . . .
1 5 14 28 42 42 . . .
...

...
...

...
...

...
. . .


.

Then (c(x2), xc(x2)) has general element(
n+ 1
n−k
2

)
k + 1

n+ 1

1 + (−1)n−k

2
,

and begins 

1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 2 0 1 0 0 . . .
2 0 3 0 1 0 . . .
0 5 0 4 0 1 . . .
...

...
...

...
...

...
. . .


.

We have

(c(x2), xc(x2)) =

(
1

1 + x2
,

x

1 + x2

)−1

.

3 The B-transform
We let

L =

(
1− x

1 + x2
,

x

1 + x2

)−1

,
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where we recall that the Riordan matrix (g, f) is the lower triangular matrix whose k-th
column has generating function g(x)f(x)k, for suitable g and f . Then L has (n, k)-th term(

n

⌊n−k
2
⌋

)
,

and L−1 =
(

1−x
1+x2 ,

x
1+x2

)
is the coefficient array of the generalized Chebyshev polynomials

defined by
Pn(x) = xPn−1(x)− Pn−2(x), P0(x) = 1, P1(x) = x− 1.

The matrix L begins

L =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
3 3 1 1 0 0 . . .
6 4 4 1 1 0 . . .
10 10 5 5 1 1 . . .
...

...
...

...
...

...
. . .


.

We now define B to be the matrix

B = L · (1 + x, x)t. (4)

This matrix begins

B =



1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
2 3 2 1 0 0 . . .
3 6 4 2 1 0 . . .
6 10 8 5 2 1 . . .
10 20 15 10 6 2 . . .
...

...
...

...
...

...
. . .


.

Since the matrix (1 + x, x)t is given by

(1 + x, x)t =



1 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 1 1 0 . . .
0 0 0 0 1 1 . . .
0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .



=



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .


+



0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
0 0 0 0 0 1 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


,
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we see that the (n, k)-th element of B is given by

bn,k =

(
n

⌊n−k
2
⌋

)
+

(
n

⌊n−k+1
2

⌋

)
−
(

n

⌊n
2
⌋

)
· 0k.

Now let {an}n≥0 be a sequence. We define the B transform of an to be the sequence {bn}n≥0

given by

bn =
n+1∑
k=0

bn,kak (5)

where B = (bn,k)n,k≥0.

Example 3. The B-transform of the Fibonacci numbers is given by

bn =
n+1∑
k=0

bn,kFk =
n+1∑
k=0

(

(
n

⌊n−k
2
⌋

)
+

(
n

⌊n−k+1
2

⌋

)
−
(

n

⌊n
2
⌋

)
· 0k)Fk.

This sequence starts

1, 3, 7, 17, 39, 91, 207, 475, 1075, 2445, 5515, . . . .

It has the interesting property that its Hankel transform is (−2)n.

Proposition 4. We have

B =

(
1

1 + x2
,

x

1 + x2

)−1

· T, (6)

where T is the matrix

T =

(
1

1− x
, x

)
· (1 + x, x)t. (7)

Proof. We have

B = L · (1 + x, x)t = L ·
(

1

1− x
, x

)−1

·
(

1

1− x
, x

)
· (1 + x, x)t.

Now

L ·
(

1

1− x
, x

)−1

=

(
1− x

1 + x2
,

x

1 + x2

)−1

·
(

1

1− x
, x

)−1

=

((
1

1− x
, x

)
·
(

1− x

1 + x2
,

x

1 + x2

))−1

=

(
1

1 + x2
,

x

1 + x2

)−1

.

6



We recall that the matrix
(

1
1+x2 ,

x
1+x2

)−1
= (c(x2), xc(x2)), where c(x) = 1−

√
1−4x
2x

is the g.f.
of the Catalan numbers, has general element(

n+ 1
n−k
2

)
k + 1

n+ 1

1 + (−1)n−k

2
.

In addition,
(

1
1−x

, x
)
· (1 + x, x)t is the matrix T given by

T =



1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 2 2 1 0 0 . . .
1 2 2 2 1 0 . . .
1 2 2 2 2 1 . . .
1 2 2 2 2 2 . . .
...

...
...

...
...

...
. . .


.

Now note that

T =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 1 1 1 0 0 . . .
1 1 1 1 1 0 . . .
1 1 1 1 1 1 . . .
...

...
...

...
...

...
. . .


+



0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 1 1 0 0 . . .
0 1 1 1 1 0 . . .
0 1 1 1 1 1 . . .
0 1 1 1 1 1 . . .
...

...
...

...
...

...
. . .


,

and hence the action of T on a sequence an is to return the sequence with n-th term equal
to

n∑
k=0

ak +
n+1∑
k=1

ak = 2
n∑

k=0

ak + an+1 − a0.

Thus we have

Proposition 5. We have

bn =
n∑

k=0

(
n+ 1
n−k
2

)
k + 1

n+ 1

1 + (−1)n−k

2
(

k∑
j=0

aj +
k+1∑
j=1

aj),

or equivalently,

bn =
n∑

k=0

(
n+ 1
n−k
2

)
k + 1

n+ 1

1 + (−1)n−k

2
(2

k∑
j=0

aj + ak+1 − a0).

In the following, we will be interested in determining the g.f. of the image of an. We
have the following result.
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Proposition 6. Let f(x) be the g.f. of an. Then bn =
∑n+1

k=0 bn,kak has g.f. given by(
1

1 + x2
,

x

1 + x2

)−1

·
(
(1 + x)f(x)− a0

x(1− x)

)
. (8)

Equivalently, the g.f. of bn is given by(
1− x

1 + x2
,

x

1 + x2

)−1

·
(
(1 + x)f(x)− a0

x

)
. (9)

Proof. The result follows from the fact that the generating function of
∑n

k=0 ak +
∑n+1

k=1 ak
is given by

1

1− x
f(x) +

1

1− x

(
f(x)− a0

x

)
=

(1 + x)f(x)− a0
x(1− x)

.

Corollary 7. The g.f. of bn =
∑n

k=0 bn,kak is given by(
(1 + xc(x2))f(xc(x2))− a0

x(1− xc(x2))

)
.

Proof. This follows from the fundamental theorem of Riordan arrays since(
1

1 + x2
,

x

1 + x2

)−1

= (c(x2), xc(x2)).

Example 8. The g.f. of the B-transform of the Fibonacci numbers Fn is given by

1 + xc(x2)

x(1− xc(x2))

xc(x2)

1− xc(x2)− x2c(x2)2
.

This follows since
Fn = [xn]

x

1− x− x2

and F0 = 0. This g.f. may be simplified to

1− 4x2 + x
√
1− 4x2

1− 2x− 5x2 + 10x3
=

1− 4x2 + x
√
1− 4x2

(1− 2x)(1− 5x2)
.

By solving the equation

u =
1

1− 3x+
x2

1 + x− x2c(x2)

,
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we see that this g.f. may be expressed (using Eq. (3)) as the continued fraction

1

1− 3x+
2x2

1 + x−
x2

1−
x2

1−
x2

1− . . .

,

which shows that the the Hankel transform of the B-transform of the Fibonacci numbers is
(−2)n.

We have defined the B matrix using the Riordan array
(

1
1+x2 ,

x
1+x2

)
. This matrix is

associated with the Chebyshev polynomials of the second kind Un(x) (it is the coefficient

array of Un(x/2)). The matrix
(

1−x2

1+x2 ,
x

1+x2

)
is related to the Chebyshev polynomials of the

first kind Tn. We have

Proposition 9. We have

B =

(
1− x2

1 + x2
,

x

1 + x2

)−1

· (1 + x, x) · (1 + x, x)t. (10)

Proof. We have

B = L · (1 + x, x)t = L · (1 + x, x)−1 · (1 + x, x) · (1 + x, x)t

= L ·
(

1

1 + x
, x

)
· (1 + x, x) · (1 + x, x)t

=

(
1− x

1 + x2
,

x

1 + x2

)
·
(

1

1 + x
, x

)
· (1 + x, x) · (1 + x, x)t

=

(
1− x2

1 + x2
,

x

1 + x2

)−1

· (1 + x, x) · (1 + x, x)t.

We can decompose (1 + x, x) · (1 + x, x)t as the sum of two matrices:

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 1 1 0 . . .
0 0 0 0 1 1 . . .
...

...
...

...
...

...
. . .


+



0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 1 1 0 . . .
0 0 0 0 1 1 . . .
0 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .


,
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which is the sum of (1 + x, x) and a shifted version of (1 + x, x). To obtain B we multiply

by
(

1−x2

1+x2 ,
x

1+x2

)−1

. This gives us, once again

B =



1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 1 1 0 0 0 . . .
3 3 1 1 0 0 . . .
6 4 4 1 1 0 . . .
10 10 5 5 1 1 . . .
...

...
...

...
...

...
. . .


+



0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 2 1 1 0 0 . . .
0 3 3 1 1 0 . . .
0 6 4 4 1 1 . . .
0 10 10 5 5 1 . . .
...

...
...

...
...

...
. . .


,

where the first member of the sum is the Riordan array(
1− x2

1 + x2
,

x

1 + x2

)−1

· (1 + x, x) =

(
1− x2

(1 + x)(1 + x2)
,

x

1 + x2

)−1

= L.

Theorem 10. Let bn =
∑n+1

k=0 bn,kak where bn,k is the (n, k)-th element of B. Then

bn =
n∑

k=0

(
n

k

)
(an−2k + an−2k+1),

where we have extended an to negative n by setting a−n = an.

Proof. We have seen that B has general term(
n

⌊n−k
2
⌋

)
+

(
n

⌊n−k+1
2

⌋

)
− 0k ·

(
n

⌊n
2
⌋

)
.

Thus the B transform of an is given by

n+1∑
k=0

((
n

⌊n−k
2
⌋

)
+

(
n

⌊n−k+1
2

⌋

)
− 0k ·

(
n

⌊n
2
⌋

))
ak

which can also be written as

n+1∑
k=0

((
n

⌊n−k
2
⌋

)
(1− 0k) +

(
n

⌊n−k+1
2

⌋

))
ak

since 0k ·
(

n
⌊n
2
⌋

)
= 0k ·

(
n

⌊n−k
2

⌋

)
. We can also write this as

bn =
n+1∑
k=0

((
n

⌊k−1
2
⌋

)
(1− 0n−k+1) +

(
n

⌊k
2
⌋

))
an−k+1. (11)
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Now note that

n∑
k=0

(
n

k

)
(an−2k + an−2k+1) =

⌊n
2
⌋∑

k=0

(
n

k

)
(an−2k + an−2k+1) +

n∑
k=⌊n

2
⌋+1

(
n

k

)
(an−2k + an−2k+1)

=

⌊n
2
⌋∑

k=0

(
n

k

)
(an−2k + an−2k+1) +

n∑
k=⌊n

2
⌋+1

(
n

n− k

)
(a2k−n + a2k−n−1).

By gathering similar terms in the above expression, and considering the cases of n even
(n\2 = 0) and n odd, we arrive at

n∑
k=0

(
n

k

)
(an−2k+an−2k+1) =

⌊n−1
2

⌋∑
k=0

(
n

k

)
(an−2k+1+2an−2k+an−2k−1)+[n\2 = 0]

(
n

⌊n
2
⌋

)
(a0+a1).

(12)
By considering the separate sums for k even and k odd in Eq. (11), extending to negative n
and gathering terms we find that also

bn =

⌊n−1
2

⌋∑
k=0

(
n

k

)
(an−2k+1 + 2an−2k + an−2k−1) + [n\2 = 0]

(
n

⌊n
2
⌋

)
(a0 + a1).

Thus we have the following equivalent expressions:

bn =
n+1∑
k=0

bn,kak

=
n∑

k=0

(
n

k

)
(an−2k + an−2k+1)

=

⌊n−1
2

⌋∑
k=0

(
n

k

)
(an−2k+1 + 2an−2k + an−2k−1) + [n\2 = 0]

(
n

⌊n
2
⌋

)
(a0 + a1)

=
n∑

k=0

(
n+ 1
n−k
2

)
k + 1

n+ 1

1 + (−1)n−k

2
(

k∑
j=0

aj +
k+1∑
j=1

aj).

4 Symmetric Toeplitz plus Hankel matrices

We now recall result Proposition 2.1 from [1], which we state in the language used above.

Proposition 11. [1, Proposition 2.1]. Let (an)
n
n=−∞ be a sequence with an = a−n and let

bn =
n∑

k=0

(
n

k

)
(an−2k + an−2k+1).
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Also let H = (bi+j)i,j≥0 be the Hankel matrix of (bn)n≥0 and A = (ai−j + ai+j+1)i,j≥0 be
the Toeplitz plus Hankel matrix associated to (an)

n
n=−∞. Finally let L be the matrix with

(n, k)−th term
(

n
⌊n−k

2
⌋

)
. Then

H = L · A · Lt. (13)

An immediate consequence of this is that

A = L−1H(Lt)−1 = L−1H(L−1)t.

If now H has an LDU decomposition H = L ·D · Lt then we obtain an LDU decomposition
for the symmetric Toeplitz plus Hankel matrix A:

A = L−1 · L ·D · Lt · (L−1)t,

or
A = (L−1L) ·D · (L−1L)t. (14)

Example 12. We continue our example with the Fibonacci numbers. Thus let

bn =
n+1∑
k=0

bn,kFk = [xn]
1− 4x2 + x

√
1− 4x2

(1− 2x)(1− 5x2)
.

For this sequence, we have the following LDU decomposition of H = (bi+j)i,j≥0.

1 3 7 17 39 91 . . .
3 7 17 39 91 207 . . .
7 17 39 91 207 475 . . .
17 39 91 207 475 1075 . . .
39 91 207 475 1075 2445 . . .
91 207 475 1075 2445 5515 . . .
...

...
...

...
...

...
. . .


=



1 0 0 0 0 0 . . .
3 1 0 0 0 0 . . .
7 2 1 0 0 0 . . .
12 6 2 1 0 0 . . .
39 13 7 2 1 0 . . .
91 33 15 8 2 1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
0 −2 0 0 0 0 . . .
0 0 −2 0 0 0 . . .
0 0 0 −2 0 0 . . .
0 0 0 0 −2 0 . . .
0 0 0 0 0 −2 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
3 1 0 0 0 0 . . .
7 2 1 0 0 0 . . .
12 6 2 1 0 0 . . .
39 13 7 2 1 0 . . .
91 33 15 8 2 1 . . .
...

...
...

...
...

...
. . .



t

Here, the first matrix L of the product is the inverse of the coefficient array of the orthogonal
polynomials for which the sequence bn is the moment sequence. These polynomials are
specified by

Pn(x) = xPn−1(x)− Pn−2(x), P0(x) = 1, P1(x) = x− 3, P2(x) = x2 − 2x− 1.
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We have

L−1L =



1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
3 1 1 0 0 0 . . .
5 2 1 1 0 0 . . .
8 3 2 1 1 0 . . .
13 5 3 2 1 1 . . .
...

...
...

...
...

...
. . .


,

and thus

A =



1 2 3 5 8 13 . . .
2 2 4 6 10 15 . . .
3 4 5 9 14 23 . . .
5 6 9 13 22 35 . . .
8 10 14 22 34 56 . . .
13 16 23 35 56 89 . . .
...

...
...

...
...

...
. . .


=



1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
3 1 1 0 0 0 . . .
5 2 1 1 0 0 . . .
8 3 2 1 1 0 . . .
13 5 3 2 1 1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
0 −2 0 0 0 0 . . .
0 0 −2 0 0 0 . . .
0 0 0 −2 0 0 . . .
0 0 0 0 −2 0 . . .
0 0 0 0 0 −2 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
3 1 1 0 0 0 . . .
5 2 1 1 0 0 . . .
8 3 2 1 1 0 . . .
13 5 3 2 1 1 . . .
...

...
...

...
...

...
. . .



t

.

We note that the matrix L−1L in this case is “almost” a Riordan array, in that it is the
Fibonacci “sequence-array”

(
1

1−x−x2 , x
)
with general term [k ≤ n]Fn−k+1, shifted once with

a first column of Fn+2 pre-pended.

Example 13. We take the example of the Jacobsthal numbers

Jn =
2n

3
− (−1)n

3
= [xn]

x

1− x− 2x2
.

We note that this is the the element corresponding to r = 2 of the family of sequences with
n-th term given by

[xn]
x

1− x− rx2
=

⌊n−1
2

⌋∑
k=0

(
n− k − 1

k

)
rk,

where the Fibonacci numbers correspond to r = 1. Thus we let

bn =
n+1∑
k=0

bn,kJk.
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Then the g.f. for bn is given by

(c(x), xc(x2)) ·

(
(1 + x)

(
x

1−x−2x2

)
− 0

x(1− x)

)
=

√
1− 4x2 + 3(1− 2x)

2(2− 9x+ 10x2)
.

This is equivalent to the expansion

1

1− 3x+
x2

1−
x2

1−
x2

1− · · ·

,

from which we deduce that the Hankel transform of the B-transform of the Jacobsthal
numbers is (−1)n. Using Eq. (9), we can also write the g.f. of bn as(

1− x

1 + x2
,

x

1 + x2

)−1

·

(
(1 + x) x

(1+x)(1−2x)

x

)
=

(
1− x

1 + x2
,

x

1 + x2

)−1

· 1

1− 2x
,

and hence we have
n+1∑
k=0

bn,kJk =
n∑

k=0

(
n

⌊n−k
2
⌋

)
2k.

The Hankel matrix H for bn has LDU decomposition LDLt as follows:

H =



1 3 8 21 54 138 . . .
3 8 21 54 138 350 . . .
8 21 54 138 350 885 . . .
21 54 138 350 885 2230 . . .
54 138 350 885 2230 5610 . . .
138 350 885 2230 5610 14088 . . .
...

...
...

...
...

...
. . .


=



1 0 0 0 0 0 . . .
3 1 0 0 0 0 . . .
8 3 1 0 0 0 . . .
21 9 3 1 0 0 . . .
54 24 10 3 1 0 . . .
138 64 27 3 1 1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
0 −1 0 0 0 0 . . .
0 0 −1 0 0 0 . . .
0 0 0 −1 0 0 . . .
0 0 0 0 −1 0 . . .
0 0 0 0 0 −1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
3 1 0 0 0 0 . . .
8 3 1 0 0 0 . . .
21 9 3 1 0 0 . . .
54 24 10 3 1 0 . . .
138 64 27 3 1 1 . . .
...

...
...

...
...

...
. . .



t

.

In this case, the matrix L is a Riordan array, equal to

L =

(√
1− 4x2 + 3(1− 2x)

2(2− 9x+ 10x2)
, xc(x2)

)
=

(
1− 3x+ 2x2

1 + x2
,

x

1 + x2

)−1

.
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Here,
(

1−3x+2x2

1+x2 , x
1+x2

)
is the coefficient array of the family of orthogonal polynomials given

by
Pn(x) = xPn−1 − Pn−2(x), P0(x) = 1, P1(x) = x− 3, P2(x) = x2 − 3x+ 1.

The B-transform of the Jacobsthal numbers Jn is thus the moment sequence for this family
of orthogonal polynomials. Finally, we have

L−1L =

(
1− x

1 + x2
,

x

1 + x2

)
·
(√

1− 4x2 + 3(1− 2x)

2(2− 9x+ 10x2)
, xc(x2)

)
=

(
1− x

1 + x2
,

x

1 + x2

)
·
(
1− 3x+ 2x2

1 + x2
,

x

1 + x2

)
=

(
1

1− 2x
, x

)
.

Thus the Toeplitz plus Hankel matrix A associated to the Jacobsthal numbers Jn has LDU
decomposition

A =



1 2 4 8 16 32 . . .
2 3 6 12 24 48 . . .
4 6 11 22 44 88 . . .
8 12 22 43 86 172 . . .
16 24 44 86 171 342 . . .
32 48 88 172 342 683 . . .
...

...
...

...
...

...
. . .


=



1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
4 2 1 0 0 0 . . .
8 4 2 1 0 0 . . .
16 8 4 2 1 0 . . .
32 16 8 4 2 1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
0 −1 0 0 0 0 . . .
0 0 −1 0 0 0 . . .
0 0 0 −1 0 0 . . .
0 0 0 0 −1 0 . . .
0 0 0 0 0 −1 . . .
...

...
...

...
...

...
. . .





1 0 0 0 0 0 . . .
2 1 0 0 0 0 . . .
4 2 1 0 0 0 . . .
8 4 2 1 0 0 . . .
16 8 4 2 1 0 . . .
32 16 8 4 2 1 . . .
...

...
...

...
...

...
. . .



t

.
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