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Abstract

We study the Hankel transforms of sequences related to the central coefficients of a

family of Pascal-like triangles. The mechanism of Riordan arrays is used to elucidate

the structure of these transforms.

1 Introduction

This note concerns the characterization of the Hankel transfoms of the central coefficients
T (2n, n, r) of a family of Pascal-like triangles that are parameterised by an integer r. Specif-
ically, we define a family of number triangles with general term T (n, k, r) by

T (n, k, r) =
n−k
∑

k=0

(

k

j

)(

n − k

j

)

rj.

For instance, r = 1 gives Pascal’s triangle A007318, while r = 2 gives the triangle of Delannoy
numbers [1], A008288.

Proposition 1. The Hankel transform of the sequence a(n, r) = T (2n, n, r) is given by

2nr(
n+1

2 ).

Proof. We proceed as in [9] and [7] by means of the LDLT decomposition of the Hankel
matrix H(r) of T (2n, n, r). We take the example of r = 2. In this case,

H(2) =















1 3 13 63 . . .
3 13 63 321 . . .
13 63 321 1683 . . .
63 321 1683 8989 . . .
...

...
...

...
. . .
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Then

H(2) = L(2)D(2)L(2)T

=















1 0 0 0 . . .
3 1 0 0 . . .
13 6 1 0 . . .
63 33 9 1 . . .
...

...
...

...
. . .





























1 0 0 0 . . .
0 4 0 0 . . .
0 0 8 0 . . .
0 0 0 16 . . .
...

...
...

...
. . .





























1 3 13 63 . . .
0 1 6 33 . . .
0 0 1 9 . . .
0 0 0 1 . . .
...

...
...

...
. . .















Hence the Hankel transform of T (2n, n, 2) is equal to the sequence with general term

n
∏

k=0

(2.2k
− 0k) = 2n2(n+1

2 ).

L(2) is in fact the Riordan array

(
1

√

1 − 6x + x2
,
1 − 3x −

√

1 − 6x + x2

4x
)

or

(
1 − 2x2

1 + 3x + 2x2
,

x

1 + 3x + 2x2
)−1.

In general, we can show that H(r) = L(r)D(r)L(r)T where L(r) is the Riordan array

(
1

√

1 − 2(r + 1)x + (r − 1)2x2
,
1 − (r + 1)x −

√

1 − 2(r + 1)x + (r − 1)2x2

2rx
)

and D(r) is the diagonal matrix with n-th term 2.rn
− 0n. Hence the Hankel transform of

T (2n, n, r) is given by
n

∏

k=0

(2.rk
− 0k) = 2nr(

n+1
2 ).

We note that the Riordan array L(r)

(
1

√

1 − 2(r + 1)x + (r − 1)2x2
,
1 − (r + 1)x −

√

1 − 2(r + 1)x + (r − 1)2x2

2rx
)

is the inverse of the Riordan array

(
1 − rx2

1 + (r + 1)x + rx2
,

x

1 + (r + 1)x + rx2
).

Its general term is given by
n

∑

j=0

(

n

j

)(

n

j − k

)

rj−k =
n

∑

j=0

(

n

j

)(

j

n − k − j

)

rn−k−j(r + 1)2j−(n−k).

Its k-th column has exponential generating function given by

e(r+1)xIk(2
√

rx)/
√

r
k
.
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Corollary 2. The sequences with e.g.f. I0(2
√

rx) have Hankel transforms given by 2nr(
n+1

2 ).

Proof. By [1] or otherwise, we know that the sequences T (2n, n, r) have e.g.f.

e(r+1)xI0(2
√

rx).

By the above proposition and the binomial invariance property of the Hankel transform [6],
B−r−1T (2n, n, r) has the desired Hankel transform. But B−r−1T (2n, n, r) has e.g.f. given by

e−(r+1)xe(r+1)xI0(2
√

rx) = I0(2
√

rx).

2 Hankel transform of generalized Catalan numbers

Following [1], we denote by c(n; r) the sequence of numbers

c(n; r) = T (2n, n, r) − T (2n, n + 1, r).

For instance, c(n; 1) = c(n), the sequence of Catalan numbers A000108. We have

Proposition 3. The Hankel transform of c(n; r) is r(
n+1

2 ).

Proof. Again, we use the LDLT decomposition of the associated Hankel matrices. For
instance, when r = 3, we obtain

H(3) =















1 3 12 57 . . .
3 12 57 300 . . .
12 57 300 1686 . . .
57 300 1686 9912 . . .
...

...
...

...
. . .















Then

H(3) = L(3)D(3)L(3)T

=















1 0 0 0 . . .
3 1 0 0 . . .
12 7 1 0 . . .
57 43 11 1 . . .
...

...
...

...
. . .





























1 0 0 0 . . .
0 3 0 0 . . .
0 0 9 0 . . .
0 0 0 27 . . .
...

...
...

...
. . .





























1 3 12 57 . . .
0 1 7 43 . . .
0 0 1 11 . . .
0 0 0 1 . . .
...

...
...

...
. . .















Hence the Hankel transform of c(n; 3) is

n
∏

k=0

3k = 3(n+1
2 ).
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In this case, L(3) is the Riordan array

(
1

1 + 3x
,

x

1 + 4x + 3x2
)−1.

In general, we can show that H(r) = L(r)D(r)L(r)T where

L(r) = (
1

1 + rx
,

x

1 + (r + 1)x + rx2
)−1

and D(r) has n-th term rn. Hence the Hankel transform of c(n; r) is given by

n
∏

k=0

rk = r(
n+1

2 ).

We finish this section with some notes concerning production matrices as found, for
instance, in [4]. It is well known that the production matrix P (1) for the Catalan numbers
C(n) = c(n, 1) is given by

P (1) =











0 1 0 0 . . .
0 1 1 0 . . .
0 1 1 1 . . .
...

...
...

...
. . .











Following [4], we can associate a Riordan array AP (1) to P (1) as follows. The second column
of P has generating function 1

1−x
. Solving the equation

u =
1

1 − xu

we obtain u(x) = 1−
√

1−4x

2x
= c(x). Since the first column is all 0’s, this means that AP (1) is

the Riordan array (1, xc(x)). This is the inverse of (1, x(1 − x)). We have

AP (1) =















1 0 0 0 . . .
0 1 0 0 . . .
0 1 1 0 . . .
0 2 2 1 . . .
...

...
...

...
. . .















Multiplying on the right by B, the binomial matrix, we obtain

AP (1)B =















1 0 0 0 . . .
1 1 0 0 . . .
2 3 1 0 . . .
5 9 5 1 . . .
...

...
...

...
. . .















= L(1)
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which is the Riordan array

(
1

1 − x
, xc(x)2) = (

1

1 + x
,

1

1 + 2x + x2
)−1.

Similarly the production matrix for the c(n; 2), or the large Schroeder numbers, is given
by

P (2) =











0 2 0 0 . . .
0 1 2 0 . . .
0 1 1 2 . . .
...

...
...

...
. . .











Here, the generating function for the second column is 2−x
1−x

. Now solving

u =
2 − xu

1 − xu

which gives u = 1+x−
√

1−6x+x2

2x
. Hence in this case, AP (2) is the Riordan array (1, 1+x−

√
1−6x+x2

2
).

That is,

AP (2) =















1 0 0 0 . . .
0 2 0 0 . . .
0 2 4 0 . . .
0 6 8 8 . . .
...

...
...

...
. . .















= (1,
x(1 − x)

2 − x
)−1.

The row sums of this matrix are 1, 2, 6, 22, 90, . . . as expected. Multiplying AP (2) on the
right by the binomial matrix B, we obtain

AP (2)B =















1 0 0 0 . . .
2 2 0 0 . . .
6 10 4 0 . . .
22 46 32 8 . . .
...

...
...

...
. . .















which is the array

(
1 − x −

√

1 − 6x + x2

2x
,
1 − 3x −

√

1 − 6x + x2

2x
).

Finally

AP B















1 0 0 0 . . .
0 1

2
0 0 . . .

0 0 1
4

0 . . .
0 0 0 1

8
. . .

...
...

...
...

. . .















= AP B(1,
x

2
) =















1 0 0 0 . . .
2 1 0 0 . . .
6 5 1 0 . . .
22 23 8 1 . . .
...

...
...

...
. . .















= L(2)
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which is

(
1 − x −

√

1 − 6x + x2

2x
,
1 − 3x −

√

1 − 6x + x2

4x
)

or

L(2) = (
1

1 + 2x
,

x

1 + 3x + 2x2
)−1.

We can generalize these results to give the following proposition.

Proposition 4. The production matrix for the generalized Catalan sequence c(n; r) is given

by

P (r) =











0 r 0 0 . . .
0 1 r 0 . . .
0 1 1 r . . .
...

...
...

...
. . .











The associated matrix AP (r) is given by

AP (r) = (1,
x(1 − x)

r − (r − 1)x
)−1 = (1,

1 + (r − 1)x −

√

1 − 2(r + 1)x + (r − 1)2x2

2
).

The matrix L(r) in the decomposition L(r)D(r)L(r)T of the Hankel matrix H(r) for c(n; r),
which is equal to AP (r)B(1, x/r), is given by

L(r) = (
1 − (r − 1)x −

√

1 − 2(r + 1)x + (r − 1)2x2

2x
,
1 − (r + 1)x −

√

1 − 2(r + 1)x + (r − 1)2x2

2rx
).

We have

L(r) = (
1

1 + rx
,

x

1 + (r + 1)x + rx2
)−1.

We note that the elements of L(r)−1 are in fact the coefficients of the orthogonal poly-
nomials associated to H(r).

Proposition 5. The elements of the rows of the Riordan array ( 1
1+rx

, x
1+(r+1)x+rx2 ) are the

coefficients of the orthogonal polynomials associated to the Hankel matrix determined by the

generalized Catalan numbers c(n; r).

3 Hankel transform of the sum of consecutive general-

ized Catalan numbers

We now look at the Hankel transform of the sum of two consecutive generalized Catalan
numbers. That is, we study the Hankel transform of c(n; r) + c(n + 1; r). For the case r = 1
(the ordinary Catalan numbers) this was dealt with in [3], while the general case was studied
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in [8]. We use the methods developed above to gain greater insight. We start with the case
r = 1. For this, the Hankel matrix for c(n) + c(n + 1) is given by

H =















2 3 7 19 . . .
3 7 19 56 . . .
7 19 56 174 . . .
19 56 174 561 . . .
...

...
...

...
. . .















Proceeding to the LDLT decomposition, we get

H = LDLT

=















1 0 0 0 . . .
3
2

1 0 0 . . .
7
2

17
5

1 0 . . .
19
2

11 70
13

1 . . .
...

...
...

...
. . .





























2 0 0 0 . . .
0 5

2
0 0 . . .

0 0 13
5

0 . . .
0 0 0 34

13
. . .

...
...

...
...

. . .





























1 3
2

7
2

19
2

. . .
0 1 17

5
11 . . .

0 0 1 70
13

. . .
0 0 0 1 . . .
...

...
...

...
. . .















This indicates that the Hankel transform of c(n) + c(n + 1) is given by

n
∏

k=0

F (2k + 3)

F (2k + 1)
= F (2n + 3).

This is in agreement with [3]. We note that in this case, L−1 takes the form

L−1 =















1 0 0 0 . . .
−

3
2

1 0 0 . . .
8
5

−
17
5

1 0 . . .
−

21
13

95
13

−
70
13

1 . . .
...

...
...

...
. . .















=















1 0 0 0 . . .
0 1

2
0 0 . . .

0 0 1
5

0 . . .
0 0 0 1

13
. . .

...
...

...
...

. . .





























1 0 0 0 . . .
−3 2 0 0 . . .
8 −17 5 0 . . .

−21 95 −70 13 . . .
...

...
...

...
. . .















where we see the sequences F (2n + 1) and (−1)nF (2n + 2) in evidence.
Now looking at the case r = 2, we get

H =















3 8 28 112 . . .
8 28 112 484 . . .
28 112 484 2200 . . .
112 484 2200 10364 . . .
...

...
...

...
. . .















Proceeding to the LDLT decomposition, we obtain

H = LDLT

=















1 0 0 0 . . .
8
3

1 0 0 . . .
28
3

28
5

1 0 . . .
112
3

139
5

146
17

1 . . .
...

...
...

...
. . .





























3 0 0 0 . . .
0 20

3
0 0 . . .

0 0 272
20

0 . . .
0 0 0 7424

272
. . .

...
...

...
...

. . .





























1 8
2

28
3

112
3

. . .
0 1 28

5
139
5

. . .
0 0 1 146

17
. . .

0 0 0 1 . . .
...

...
...

...
. . .
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Thus the Hankel transform of c(n; 2)+ c(n +1; 2) is 3, 20, 272, 7424 . . .. This is in agreement
with [8]. We note that different factorizations of L−1 can lead to different formulas for hn(2),
the Hankel transform of c(n; 2) + c(n + 1; 2). For instance, we can show that

L−1 =















1 0 0 0 . . .
−

8
3

1 0 0 . . .
28
5

−
28
5

1 0 . . .
−

192
17

345
17

−
146
17

1 . . .
...

...
...

...
. . .















=















1 0 0 0 . . .
0 1

3
0 0 . . .

0 0 1
5

0 . . .
0 0 0 1

17
. . .

...
...

...
...

. . .





























1 0 0 0 . . .
−8 3 0 0 . . .
28 −28 5 0 . . .

−192 345 −146 17 . . .
...

...
...

...
. . .















We note that the diagonal elements of the last matrix correspond to the sequence a(n) of
terms 1, 3, 5, 17, 29, 99, . . . with generating function

1 + 3x − x2
− x3

1 − 6x2 + x4
.

This is A079496. It is the interleaving of bisections of the Pell numbers A000129 and their
associated numbers A001333. We have

a(n) =

⌊n+1
2

⌋
∑

k=0

(

n + 1

2k

)

2n+1−k−⌊n+2
2

⌋

= −(
√

2 − 1)n((

√

2

8
−

1

4
)(−1)n

−

√

2

8
−

1

4
) − (

√

2 + 1)n((

√

2

8
−

1

4
)(−1)n

−

√

2

8
− 1/4)

Multiplying a(n) by 4⌊
(n+1)2

4
⌋, we obtain 1, 3, 20, 272, 7424, . . .. Hence

1, 3, 20, 272, . . . = 4⌊
(n+1)2

4
⌋
⌊n+1

2
⌋

∑

k=0

(

n + 1

2k

)

2n+1−k−⌊n+2
2

⌋

= 4⌊
(n+1)2

4
⌋2n+1−⌊n+2

2
⌋
⌊n+1

2
⌋

∑

k=0

(

n + 1

2k

)

2−k

= 2(n+1
2 )

⌊n+1
2

⌋
∑

k=0

(

n + 1

2k

)

2−k

That is, the Hankel transform hn(2) of c(n; 2) + c(n + 1; 2) is given by

hn(2) = 2(n+2
2 )

⌊n+2
2

⌋
∑

k=0

(

n + 2

2k

)

2−k.

For our purposes, the following factorization of L−1 is more convenient.

L−1 =















1 0 0 0 . . .
−

8
3

1 0 0 . . .
56
10

−
56
10

1 0 . . .
−

384
34

690
34

−
292
34

1 . . .
...

...
...

...
. . .















=















1 0 0 0 . . .
0 1

3
0 0 . . .

0 0 1
10

0 . . .
0 0 0 1

34
. . .

...
...

...
...

. . .





























1 0 0 0 . . .
−8 3 0 0 . . .
56 −56 10 0 . . .

−384 690 −292 34 . . .
...

...
...

...
. . .
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We now note that the sequence hn(2)

2(
n+1

2 )
is the sequence b2(n + 1), where b2(n) is the

sequence 1, 3, 10, 34, 116, . . . with generating function 1−x
1−4x+2x2 and general term

b2(n) =

⌊n

2
⌋

∑

k=0

(

n − k

k

)

(−2)k4n−2k
−

⌊n−1
2

⌋
∑

k=0

(

n − k − 1

k

)

(−2)k4n−2k−1.

Hence
hn(2) = 2(n+1

2 )b2(n + 1).

Noting that b2(n) is the binomial transform of the Pell A000129(n + 1) numbers whose
generating function is 1

1−2x−x2 , we have the following alternative expressions for b2(n):

b2(n) =
n

∑

k=0

(

n

k

) k
∑

j=0

(

j

k − j

)

22j−k

=

n
∑

k=0

(

n

k

) ⌊k

2
⌋

∑

j=0

(

k − j

j

)

2k−2j.

For r = 3, we have

H =















4 15 69 357 . . .
15 69 357 1986 . . .
69 357 1986 11598 . . .
357 1986 11598 70125 . . .
...

...
...

...
. . .















We find that

L−1 =















1 0 0 0 . . .
0 1

4
0 0 . . .

0 0 1
17

0 . . .
0 0 0 1

73
. . .

...
...

...
...

. . .





























1 0 0 0 . . .
−15 4 0 0 . . .
198 −131 17 0 . . .

−2565 2875 −854 73 . . .
...

...
...

...
. . .















where the sequence b3(n) or 1, 4, 17, 73, 314, . . ., A018902 has generating function 1−x
1−5x+3x2

and

b3(n) =

⌊n

2
⌋

∑

k=0

(

n − k

k

)

(−3)k5n−2k
−

⌊n−1
2

⌋
∑

k=0

(

n − k − 1

k

)

(−3)k5n−2k−1

=

n
∑

k=0

(

n

k

) k
∑

j=0

(

j

k − j

)

32j−k

=

n
∑

k=0

(

n

k

) ⌊k

2
⌋

∑

j=0

(

k − j

j

)

3k−2j.
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Then 3(n

2)b3(n) is the sequence 1, 4, 51, 1971, 228906, . . .. In other words, we have

hn(3) = 3(n+1
2 )b3(n + 1).

We now note that F (2n + 1) has generating function 1−x
1−3x+x2 with

F (2n + 1) =

⌊n

2
⌋

∑

k=0

(

n − k

k

)

(−1)k3n−2k
−

⌊n−1
2

⌋
∑

k=0

(

n − k − 1

k

)

(−1)k3n−2k−1.

We can generalize this result as follows.

Proposition 6. Let hn(r) be the Hankel transform of the sum of the consecutive generalized

Catalan numbers c(n; r) + c(n + 1; r). Then

hn(r) = r(
n+1

2 )(

⌊n+1
2

⌋
∑

k=0

(

n − k + 1

k

)

(−r)k(r + 2)n−2k+1
−

⌊n

2
⌋

∑

k=0

(

n − k

k

)

(−r)k(r + 2)n−2k).

In other words, hn(r) is the product of r(
n+1

2 ) and the (n + 1)-st term of the sequence with

generating function 1−x
1−(r+2)x+rx2 . Equivalently,

hn(r) = r(
n+1

2 )(

n+1
∑

k=0

(

k

n − k + 1

)

(r + 2)2k−n−1(−r)n−k+1
−

n
∑

k=0

(

k

n − k

)

(r + 2)2k−n(−r)n−k)

= r(
n+1

2 )
n+1
∑

k=0

(

n + 1

k

) k
∑

j=0

(

j

k − j

)

r2j−k

= r(
n+1

2 )
n+1
∑

k=0

(

n + 1

k

) ⌊k

2
⌋

∑

j=0

(

k − j

j

)

rk−2j.

The two last expressions are a result of the fact that 1−x
1−(r+2)x+rx2 is the binomial transform

of 1
1−rx−x2 .

4 Berlekamp Massey triangles associated to general-

ized Catalan numbers

A natural question that arises when dealing with Hankel matrices is one that is inspired by
consideration of the Hankel matrix interpretation of the Berlekamp Massey algorithm [2].
In our context, this question is that of characterizing the solutions of equations such as the
following (taking c(n, 3) as an example)









1 3 12 57
3 12 57 300
12 57 300 1686
57 300 1686 9912

















g1

g2

g3

g4









=









300
1686
9912
60213
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or








g1

g2

g3

g4









=









−81
142
−75
15









We can define the B-M triangle of a sequence a1, a2, a3, . . . to be the lower triangular matrix
whose n-th row is the solution of the Berlekamp Massey equations determined by the n-th
order Hankel matrix of the sequence.

Example 7. The B-M triangle of the Catalan numbers. We must solve

(1)(x) = (1)

(

1 1
1 2

) (

x
y

)

=

(

2
5

)





1 1 2
1 2 5
2 5 14









x
y
z



 =





5
14
42





and so on. We obtain the triangle















1 0 0 0 . . .
−1 3 0 0 . . .
1 −6 5 0 . . .
−1 10 −15 7 . . .
...

...
...

...
. . .















with general term (−1)n−k(
(

n+k+1
2k

)

−

(

0
n−k+1

)

) and generating function

(1 + x) + xy

(1 − xy)(1 + 2x + x2
− xy)

.

Regarding the entries as polynomial coefficients, we see that these polynomials are related
to the Morgan-Voyce polynomials, themselves a transformation of the Jacobi polynomials.

In fact, the generating function of the B-M triangle for c(n; r) has generating function

r(1 + x) + xy

(1 − xy)(1 + (r + 1)x + rx2
− xy)

.

These matrices are closely related to the matrices L already studied. The standard Berlekamp
Massey theory studies the polynomials

xd
−

d−1
∑

i=0

gix
i.
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For the above example, this is

x4
− 15x3 + 75x2

− 142x + 81.

Note that the companion matrix of this polynomial is given by









1 3 12 57
3 12 57 300
12 57 300 1686
57 300 1686 9912









−1 







3 12 57 300
12 57 300 1686
57 300 1686 9912
300 1686 9912 60213









=









0 0 0 −81
1 0 0 142
0 1 0 −75
0 0 1 15









In other words, the characteristic polynomial of the last matrix is

81 − 142x + 75x2
− 15x3 + x4.

Thus we get

(1)−1(3) = (3) gives − 3 + x
(

1 3
3 12

)−1 (

12
57

)

=

(

−9
7

)

gives 9 − 7x + x2





1 3 12
3 12 57
12 57 300





−1 



57
300
1686



 =





27
−34
11



 gives − 27 + 34x − 11x2 + x3.

and so on. Forming the matrix of coefficients, we obtain



















1 0 0 0 0 . . .
−3 1 0 0 0 . . .
9 −7 1 0 0 . . .

−27 34 −11 1 0 . . .
81 −142 75 −15 1
...

...
...

...
...

. . .



















which is the Riordan matrix

(
1

1 + 3x
,

x

1 + 4x + 3x2
).

The inverse of this matrix is the L matrix in the LDLT decomposition of the Hankel matrix
for c(n; 3). The corresponding B-M matrix as defined above is given by the negative of the
sub-diagonal matrix.
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