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Ultrafast Gain and Refractive Index Dynamics in
AlInAs/AlGaAs Quantum Dot Based Semiconductor

Optical Amplifiers Operating at 800 nm
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Merghem, Aristide Lemaître, Abderrahim Ramdane, and Robert Kuszelewicz

Abstract— The ultrafast gain and refractive index dynamics in
AlInAs/AlGaAs quantum dot (QD) based semiconductor optical
amplifiers is reported. Measurements in the forward bias regime
indicate a complete gain recovery timescale of ∼5 ps, while the
phase dynamics occur over a much longer timescale. At increased
pump powers, the impact of nonresonant carriers created by two-
photon absorption is visible as an increased injection in both
gain and phase dynamics. Reverse-biased measurements reveal a
similar behavior to previous measurements on InAs QD devices.

Index Terms— Optical amplifiers, optical materials, semi-
conductor device measurements.

I. INTRODUCTION

SEMICONDUCTOR quantum dots have potentially very
interesting properties for use as a nonlinear optical mate-

rial due to the 3D confinement of charge carriers that results
in unique properties not achievable with conventional material
systems. They are often considered as a solid-state analog of
atoms. Although this picture has proven to be very naive for
single quantum dots [1], it is likely that some key nonlinear
optical properties will survive for larger QD densities. For
instance, enhanced four wave mixing efficiency has been
reported in the InAs/GaAs quantum dots [2] and InAs/InP
quantum dot/dash material systems [3]. In particular, this has
enabled short pulse generation from single section Fabry-Perot
lasers [4]. One interesting property of quantum dots is that it
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may be possible to tune the sign of the nonlinear index of
refraction i.e. they can exhibit both focusing and defocusing
nonlinearities [5]. This property cannot be found in other
passive bulk materials or in quantum wells. Another interesting
property is that their nonlinear absorption can be saturated at
low intensity with fast dynamics [6]. Hence, they can be used
as saturable absorbers to fabricate high-speed sources such
as mode-locked lasers [7]–[9]. Finally, in contrast to other
semiconductor materials (bulk or quantum wells), a noticeable
immunity of the physical properties to heat is expected for
quantum dots. This is especially interesting in the context of
nonlinear optics since the system must be driven at quite a high
intensity for nonlinearities to appear. AlInAs/AlGaAs quantum
dots are promising new quantum-dot materials emitting in the
750–850 nm range [10], [11], for both fundamental physics or
applications such as photodynamic therapy. While they emit in
the near-infrared (NIR) range where a lot of high-power and
low-cost sources exist, this material system offers the distinct
advantage of providing temperature insensitive operation. This
is because the emission states are deep states not affected by
thermal escape or other carrier escape mechanisms.

For the targeted applications, it is especially important to
understand the ultra-fast gain and refractive index dynamics.
Previous studies dealt with the non linear gain dynamics
of InAs(Ga)/GaAs QD amplifiers operating beyond 0.9 μm
[12]–[14]. It was shown in particular that at least three non
linear processes take place in InAs/GaAs QDs operating at
1150 nm corresponding to carrier relaxation to the ground
state, phonon scattering and carrier capture from the wetting
layer [12]. Also, the linewidth enhancement factor (LEF)
which is a fundamental parameter that determines the per-
formance of semiconductor lasers and amplifiers was studied
by means of pump probe experiments in InGaAs/GaAs QD
amplifiers operating at 0.92 μm [14]. It was shown that the
LEF amounts to about 1 at the dot GS transition and generally
increases with increasing carrier density [14]. However, no
detailed experimental investigation of the carrier dynamics of
AlInAs/AlGaAs QD material system has ever been reported.
In this paper, we experimentally analyse the optical response
of this material system whose physical properties are not
very well established yet. We report for the first time, the
measurement of the gain and refractive index dynamics in
AlInAs/AlGaAs QD based waveguides operating at 800 nm.
Applications in self-organization in optical systems and in
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laser mode-locking are expected [15], [16]. For both of these
applications, the properties of interest are the steady-state and
transient characteristics of the nonlinear susceptibility, and
in particular the nonlinear index of refraction and nonlinear
absorption. The measurements are performed on single-mode
ridge waveguides that can be injected with an electrical cur-
rent. We measure the ultra-fast dynamics of the system using
single-color pump probe spectroscopy and provide evidence
of a fast gain recovery of the system of the order of 5ps.

In section II of the paper, we detail the structure of the
samples under investigation (sec. II-A) and present their basic
optical characterization under current injection (sec. II-B).
In sec. II-C, the pump-probe technique used to record the
gain and phase dynamics is described. Experimental results
obtained in various regimes and current injection conditions
are presented in sec. III. Finally, the results are discussed and
we conclude in section IV.

II. SAMPLE DESIGN, CHARACTERIZATION AND

EXPERIMENTAL SET-UP

A. Sample Design

The layer structure was designed to achieve transverse
single mode waveguide and optimized in terms of optical
confinement factor using a beam propogation algorithm. The
structure is composed of a planar waveguide with 5 layers
of In0.8 Al0.2 As/Al0.2Ga0.8 As QDs inserted in a lower index
Al0.86Ga0.14 As layer (1.5 μm). The waveguide thickness is
250 nm (1-lambda at 800 nm). Beam propagation modelling
showed that etching a 2 μm wide ridge waveguide yields
optical confinement factors of 77%, 22%, and less than 0.01%
in the core, cladding, and GaAs regions respectively. These
values preclude unintended absorption of the mode in the
GaAs substrate. The core waveguide consisted of the growth
of 5 sequences of 41.7 nm-thick Al0.2Ga0.8 As followed by
a QD layer formed by deposition of 3.54 monolayers of
In0.8 Al0.2 As, and finally a sixth 41.7 nm-thick Al0.2Ga0.8 As
layer. The QDs were grown by MBE with the standard
Stransky-Krastanov growth mode. A cap layer of highly-doped
GaAs (p-doped, 200 nm thickness) was deposited for the upper
gold contact. Broad area lasers were processed from the layer
structure and ground state emission was observed at 775 nm
at room temperature in a pulsed regime for cavities as short
as 545 μm. The as-grown structure was further processed into
narrow ridge single mode waveguides (2 μm-width). Specific
attention was paid to the etch depth. Using in-situ control by
means of interferometry, the upper cladding layer was almost
completely etched in order to achieve a single mode waveguide
and optimized optical confinement factors. The waveguides
were tilted with a 7 degree angle to minimize back reflection.
Both facets were ascleaved.

B. Amplified Spontaneous Emission

Figure 1(a) displays the amplified spontaneous emission
(ASE) properties of the device as a function of injection to
twice the transparency level (estimated to be 15 mA). At each
injection the shape could be fitted with a single Gaussian,
whose width varied by 10% over the range of injection
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Fig. 1. (a) Amplified Spontaneous Emission (ASE). (b) Peak emission (ASE)
as a function of current.

levels. We associate this peak with the inhomogeneously
broadened ground state (GS) of the QD ensemble and note
that no evidence of saturation of the peak occurred over the
range of injection currents used. No emission corresponding
to the QD’s Excited State (ES) was detected. The peak of
the ASE exhibits a blue shift as the current increased, as
shown on Figure 1(b). Its sub-linear dependence on current is
possibly due to the onset of a compensating thermal redshift
at increasing currents.

A similar blueshift has been seen in the below threshold,
Hakki-Paoli gain spectra of InAs based QDs [18]. Such a blue
shift can be understood in terms of the dependence of the
carrier capture and escape processes for QDs of different sizes.

It should be first noted that at room temperature, the capture
time depends marginally on the QDs’ size for both deep
and shallow QDs. In contrast, the escape time depends on
the energy barrier height and is shorter for shallow QDs
(higher transition energy) than for deep ones (smaller transi-
tion energy). At a given current injection, carriers are injected
almost equally in deep and shallow QDs. As a consequence
of the different escape times, a statistical redistribution of
the QDs population occurs and deeper QDs tend to be more
populated. As the injection is increased, GS saturation affects
the longer wavelength dots first and the population redis-
tributes because of Pauli blocking among the available sites,
i.e. towards shallower dots with higher transition energies,
resulting in a blue shift in the ASE spectrum.

C. Pump-Probe Technique

The ultrafast dynamics were measured using a single color
pump probe technique with heterodyne detection similar to
that described in [19]. Briefly, pulses of duration shorter
than 200 fs (80 MHz repetition rate) are obtained from a
Coherent Chameleon ultrafast laser and split into three beams:
reference, pump, and probe. After propagation through the
SOA waveguide with suitable delays, the frequency shifted
probe and reference beams are overlapped on a detector, and
the amplitude of the difference frequency is detected using
a high frequency lock-in amplifier. The resulting signal is
proportional to the differential transmission �T of a probe
pulse at the same wavelength as the pump. The resulting
data are represented as the gain change �G by the formula
�G = 10log(�T/T0) where T0 is the transmission without
pump beam. Measurements are taken at room temperature
and performed both as a function of forward bias current and
reverse bias voltage.
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Fig. 2. Gain (a), phase (b) and alpha-factor (c) dynamics following the injection of pump pulse of average power 0.5 mW. The transparency case is shown
in red and measurements were also taken at 2 mA and 30 mA.

III. RESULTS - GAIN AND PHASE DYNAMICS

A. Low Pump Power

Pump-probe gain and phase dynamics are shown in Fig-
ures 2(a) and 2(b) respectively, at various injection levels for
an average pump power of 0.5 mW (pump energy of ∼6 p J ,
transparency case shown in red) and correspond to pump/probe
wavelengths of 800 nm.

Below transparency, the pump pulse causes an instantaneous
increase in the amplifier transmission due to the absorption
of part of the pump pulse. The signal then recovers towards
its unperturbed value. The recovery can be fitted with a
bi-exponential function, resulting in characteristic relaxation
times of ∼6 ps and ∼100 ps. In contrast, the correspond-
ing phase dynamics shows an approximately linear recovery
behaviour, as shown in Figure 2(b). The resulting dynamical
alpha-factor is calculated from the dynamical phase and gain
changes (see [21] for details of calculation). As shown in
Figure 2(c), it eventually reaches a constant value indicating
that, although their behaviours are quite different in the initial
stages, the gain and phase dynamics recover at the same
rate in the long time limit and are therefore connected to
the same carrier process i.e. interband recombination. The
value reached in the long time limit (∼1.2) is similar to that
measured for InAs quantum dot lasers using sub-threshold
ASE techniques [17], [18].

At transparency (red lines, Figure 2) the gain shows an
instantaneous reduction and recovery due to both coher-
ent/incoherent artifacts [20]. In addition, there is an overshoot
of the �G = 0 line which occurs at ∼2 ps which then
decays slowly over time. The corresponding phase dynamics
undergoes a slower transient before also crossing the �φ = 0
line at ∼5 ps and recovering in a similar fashion. Again, the
corresponding dynamical alpha factor is constant at a value
of ∼4 once the initial overshoot occurs, indicating that the
gain and phase dynamics are eventually connected to the same
carrier process.

At twice transparency, the gain shows a greater instanta-
neous decrease (when compared with the transparency case)
due to instantaneous carrier depletion induced by the pump
pulse, before recovering to its unperturbed level. This recovery
can be fitted by a bi-exponential function with characteristic
times of ∼1.5 ps and ∼5 ps. These recovery times are broadly
similar to those measured for the InAs/GaAs QD system at

1.3 μm with an important difference. The gain of the system
has fully recovered within 10ps while in the InAs/GaAs
case, a third time connected with dot re-filling processes is
present [21]. Thus, the limiting gain timescale of this device is
∼10 ps. After an initial increase due to the removal of carriers,
the corresponding phase also exhibits a fast recovery ∼10 ps,
which is associated with the gain recovery. However, unlike
the gain, the recovery contains an additional long timescale
and takes 100’s of picoseconds to recover completely to its
initial value.

The presence of an overshoot in both the phase and gain at
transparency may indicate some delayed pumping mechanism
due to non-linearities in the device. For example, additional
pumping due to two photon absorption (TPA) [22] or bound-
to-continuum absorption (BCA) [23] has been previously
suggested for QD structures and would result in pump-induced
carrier populations in barrier levels that can be subsequently
re-captured to the dot after some time. Such an effect should
depend on pump power and we will investigate this point in
the next section.

B. Increased Pump Power

The results outlined in this section were recorded for a pump
power of 1 mW. Figure 3 displays transient gain and phase
dynamics, measured at a variety of currents (transparency
in red) and the calculated dynamical alpha factors below
and at transparency to compare with the previous section.
The gain dynamics are similar to those recorded at lower
pump power except the presence of an increased overshoot
which is additionally present above transparency. The phase
dynamics display greater changes due to the increased pump
power. The initial phase offsets due to the pump pulse are
similar to those measured in the previous section i.e. negative
below transparency and positive above transparency. However,
after the initial perturbation, each phase transient contains
a component that gradually reduces the phase over the first
10 ps. Beyond this, each phase transient then recovers towards
zero with a similar timescale. The corresponding dynamical
alpha-factors at lowest injection and transparency levels have
also increased, as shown on figure 3(c).

The increased overshoot in the gain and gradual reduction of
the phase over the first 10 ps are consistent with an additional
pumping mechanism at increased pump powers due to either
BCA or TPA. Such processes result in additional carriers being
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Fig. 3. Gain (a), phase (b) and alpha-factor (c) dynamics following the injection of pump pulse of average power 1 mW. The transparency case is shown in
red and measurements were taken up to twice transparency (from 2 mA to 30 mA).

promoted to high lying barrier layers from where they gradu-
ally relax into adjacent layers and eventually the dots. As the
phase change includes contributions from carrier populations
in adjacent layers (due to the the Kramers-Kronig relations),
the gradual carrier buildup in the dot and adjacent layers over
the first 10 ps results in a gradual phase reduction, present
at all injection levels. The dot population is also affected by
these changes through changes in the capture/escape rates.
However, the resulting effect on the gain is not as dramatic.
This process also results in a larger dynamical alpha factor as
seen in Figure 3(c).

C. Effect of Detuning

In order to investigate the effect of detuning on the gain
and phase recovery dynamics, the same kind of measurements
were performed on either side of the ASE peak (at ∼800 nm)
and at a 1 mW pump power. Figures 4(a) and 4(b) show
the shorter wavelength (775 nm) gain and phase dynamics
respectively while Figures 4(c) and 4(d) show the longer
wavelength (825 nm) gain and phase dynamics respectively.

For the 775 nm case, the transmission of the device is
always increased by the pump and thus is absorbing over the
range of currents used. In the corresponding phase dynamics,
a similar behaviour to that seen in Figure 2(a) (lowest injection
case) is observed at most injections with some transient
pumping type behaviour occurring for the highest two injection
levels. This behaviour of the phase dynamics is consistent with
the large absorption visible in the transmission which depletes
the pump pulse and thereby minimises non-linear processes
such as TPA or BCA.

For the 825 nm case, the opposite situation is present. When
the pump pulse arrives, Figure 4(c) indicates that, apart from
a weak signature at the lowest injection, we do not observe
an increase of the transmission at any injection level and so
the waveguide is always above or very close to transparency
at this wavelength. In the above transparency cases, the gain
recovery dynamics is very similar to the cases in the previous
section where the gain depletion quickly recovers and we
observe an over-shoot at ∼10 ps. The corresponding phase
dynamics is shown in Figure 4(d). After the pump induced
phase increase due to depleted carriers (present at all but
the lowest injection case), a gradual decrease in the phase
occurs over ∼10 ps before it again increases towards the
unperturbed level. This phase behaviour is very similar to that
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Fig. 4. Detuned pump probe measurements at 775 nm for (a) gain and (b)
phase and at 825 nm for (c) gain and (d) phase. The average pump power
was 1 mW, the case corresponding to transparency at 800 mn is shown in red
and measurements were taken up to twice this level (from 2 mA to 30 mA).

in Figure 3(b) (highest injection) and the gradual decrease
over 10 ps can be again attributed to transient pumping
due to TPA or BCA. The effect is more pronounced at this
wavelength due to the reduced interband absorption (as seen
in the gain transients) which preserves the energy of the
pump pulse for stronger TPA or BCA processes.

To further investigate the nature of the non-linear transient
pumping effect that results in a gradual decrease in phase over
the first 10 ps (for high pump power cases), we further detuned
the pump-probe wavelength by 25 nm to 850 nm and examined
the effect of varying the pump at different injection levels. The
corresponding gain transients are shown in Figure 5(a) for
pump powers of 1 mW (black) and 3 mW (red) at injection
levels of 2 mA and 30 mA. As the wavelength is much longer
than the ASE wavelength range, we do not expect the pump
pulse to induce interband effects. As shown in Figure 5(a), this
is the case, and the very fast gain dynamics (which follows
the original laser pulse’s auto-correlation) are only present
when pump and probe pulses overlap and so are due to non-
linear absorption effects such as TPA, possibly combined with
coherent effects such as four wave mixing. As is apparent from
the graph, increasing the injection has much less impact on the
transients than increasing the pump energy. In Figure 5(b), the
corresponding phase dynamics is presented. Again, changes
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due to increased pump power are much more pronounced than
changes due to increased injection. The characteristic phase
decrease over the first 10 ps is equally present at both injection
levels for increased pump power, while it is barely visible at
lower pump power. Thus, this behaviour is largely independent
of the dot population and pump power is the most important
factor suggesting TPA as the most likely cause. BCA should
depend on the dot population and would not appear to play a
strong role.

D. Reverse Bias

To investigate the suitability of this material system for
active absorber applications, a reverse bias was applied to the
device and transmission and phase dynamics were recorded.
The results are displayed in Figure 6. The recorded dynamics
are very similar to the InAs/GaAs dot case for both the absorp-
tion [6] and phase [5] dynamics. In the case of the absorption
dynamics, shown in Figure 6(a), the initial pump induced
absorption bleaching decreases as the reverse bias increases
due to the corresponding increase of spatial separation of QD
electron and hole wavefunctions [24]. The absorption recovery
in this voltage range is primarily due to thermionic emission
from the dot [6]. As the reverse bias voltage is increased,
the effective barrier height reduces and thus the absorption
recovers more quickly. The recovery time τR can be extracted
from a single exponential fitting and its voltage dependence
is described by the expression τR = τR0 exp(−V/V0) with
τR0 = 14 ps and V0 = −3V (see Figure 6(inset)) . In InAs
based dots, the corresponding values are τR0 = 18 ps and
V0 = −2V [25]. As shown in Figure 6(b), the phase changes
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Fig. 6. Gain (a) and phase (b) dynamics in reverse bias mode 800 nm. The
reverse voltage range was 0−5 V and pump power was 1 mW. The inset
shows the dependence of the single exponential recovery time on voltage.

due to this process are very small and diminish as the reverse
bias increases. A similar behaviour was reported in [5] at the
peak of the absorption spectrum and attributed to cancelling
effects from positively and negatively detuned dots, each of
which exhibits atom-like dispersion.

IV. DISCUSSION AND CONCLUSION

The ultrafast gain and refractive index dynamics in
AlInAs/AlGaAs quantum dot based semiconductor optical
amplifiers operating at ∼800 nm is reported, to our knowledge
for the first time. The amplified spontaneous emission dis-
played a blueshift with increasing injection, similar to previous
reports for laser structures [18] and is explained in terms
of the capture and escape dynamics that occur for different
sized dots at room temperature. Pump probe measurements in
the forward biased regime indicate a complete gain recovery
timescale of ∼5 ps, while the phase dynamics occur over a
much longer timescale. To further investigate the appearance
of an overshoot in both gain and phase dynamics at trans-
parency, measurements at increased pump were performed.
Here, the impact of nonresonant carriers created by two
photon absorption was visible as an increased injection in both
gain and phase dynamics both on resonance and at detuned
wavelengths, a process suggested theoretically in Ref. [22].
Reverse biased measurements reveal a similar behaviour to
previous measurements on InAs quantum dot devices [25]. The
experimental results shown here will prove useful in clarifying
the potential applicative fields of AlInAs/AlGaAs QDs. The
very fast gain recovery dynamics measured here suggests that
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this material system could be exploited for ultra-short pulse
generation in mode-locked lasers in the visible range.
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