
Network Access Control Interoperation using
Semantic Web Techniques

William M. Fitzgerald1,2, Simon N. Foley1, and Mı́cheáĺO Foghlú2

1 Department of Computer Science, University College Cork, Ireland.
s.foley@cs.ucc.ie

2 Telecommunications Software & Systems Group, Waterford Institute of Technology, Ireland
{wfitzgerald,mofoghlu}@tssg.org

Abstract. Network Access Control requirements are typically implemented in
practice as a series of heterogeneous security-mechanism-centric policies that
span system services and application domains. For example,a Network Access
Control (NAC) policy might be configured in terms of firewall,proxy, intrusion
prevention and user-access policies. While defined separately, these policies may
interoperate in the sense that the access requirements of one may conflict and/or
be redundant with respect to the access requirements of another policy. Thus,
managing a large number of distinct policies becomes a majorchallenge in terms
of deploying and maintaining a meaningful and consistent configuration. It is
argued that the Semantic Web—an architecture that supportsthe formal repre-
sentation, reasoning and sharing of heterogeneous domain knowledge—provides
a natural solution to this challenge. A risk-based approachto configuring inter-
operating policies is described. Each NAC mechanism has an ontology that is
used to represent its configuration. This heterogeneous andinteroperating pol-
icy knowledge is unified with higher-level business (risk) rules, providing a sin-
gle (extensible) ontology that supports reasoning across the differentNACpolicy
configurations.

1 Introduction

While application-level services may provide their own access controls, it is standard
practice to deploy additional ‘layers’ of security, such asfirewalls, proxies, and so forth.
In practice, security requirements are implemented as a series of independent security-
mechanism-centric policies that span multiple system services and application domains.
As a consequence, proper application operation is dependent on each security policy.
An overly-restrictive policy configuration may prevent normal interaction of services
with the resulting failure of the application. An overly-permissive policy configuration,
while permitting normal operation of the application, may render the layers of security
ineffective; a service hosted on a subnet is at greater risk of compromise if the firewall
is configured with an open-access policy.

In this paper we are interested in Network Access Control (NAC) policies. Con-
figuration of NAC policies can be complex, for example, a firewall policy may run to
many thousands of rules and are typically maintained on an ad-hoc basis [1, 2]. New
access control rules are often added to access control policies with little regard to how

they interoperate with existing rules and likely resultingin an overly-restrictive and/or
overly-permissive configuration. Similarly, changes to the policy of one NAC mecha-
nism (for example, a firewall) may indirectly impact the intent of a policy of another
NAC mechanism (for example, a proxy). The ideal NAC configuration provides for con-
sistent interoperating NAC policies that support valid service traffic, and, preferably, no
more and no less.

The vision of the Semantic Web is the ability to express WorldWide Web informa-
tion in a natural and formal language that can be interpretedby intelligent agents, thus
permitting them on behalf of the human user to locate, share and integrate information
in an automated way. It provides a framework for dynamic, distributed and extensible
structured knowledge (ontology) founded on formal logic [3, 4]. An ontology is an ex-
plicit specification of a conceptualization using an agreedvocabulary and provides a
rich set of constructs to build a more meaningful level of knowledge. Ontologies and
their associated reasoners are the building blocks of the Semantic Web initiative.

We argue that the Semantic Web framework provides a natural approach to con-
structing, reasoning about and managing security policies: a security policy can be
regarded as an explicit specification of terminological knowledge regarding security
mechanism configuration, that is, an ontology. Separate ontologies can be developed
for different security policies that are naturally composable under the open-world as-
sumption, providing a unified view of the enterprise-wide policy configuration. It pro-
vides for separation of concerns, whereby security concerns (security policies) and
business concerns (business policies) can be separately developed, with reasoning and
deployment over their composition. It also means that information about new mecha-
nisms/policies and vulnerabilities can be incorporated asnew facts within the existing
policy knowledge-base.

This paper describes a risk-based model for NAC policy interoperation. A series
of ontologies are developed usingDescription Logicthat describe network host-based
access-control knowledge at the application-layer and at the systems-layer. Ontologies
are described for the Netfilter/iptables firewall [2],TCP-Wrapper [5] and an application-
level access policy that reflects high-level business goals.

The contribution of this paper is a NAC policy model ontology, over which, intra-
policy and inter-policy interoperation can be reasoned about. At the individual policy
level, one can reason about conflicts within a policy configuration; for example, firewall
consistency checking can be performed over the Netfilter ontology. One can also reason
across different policies; by combining the firewall ontology with the application-level
risk access ontology, one can reason about service reachability and access permissive-
ness. The resulting model also demonstrates the practical effectiveness of using Seman-
tic Web techniques in constructing, reasoning about and managing security policies.

The paper is organized as follows. Section 2 introduces Description Logic (DL)
[6]. Section 3 outlines the policy architecture. Individual ontologies for Netfilter, TCP-
Wrapper proxy and an application-level access policy are described in Section 4. Sec-
tion 5 defines a model that is used to represent configuration of a network of systems,
services, proxies, and so forth. This model provides the basis for configuration reason-
ing, which is considered in Section 6.

2 Description Logic & Ontologies

Description Logic (DL) is a family of logic-based formalisms that are well-suitedfor
the representation of and reasoning about terminological (T-box) and assertional (A-
box) knowledge based on the Open World Assumption (OWA) [6, 7].DL represents a
decidable portion of first-order logic and forms part of the W3C recommendation for
the Semantic Web [4, 8].

DL uses classes (concepts) to represent sets of individuals (instances) and proper-
ties (roles) to represent binary relations applied to individuals. For example, theDL
assertion:

Server ⊑Node ⊓

∃hasHost.BusinessService ⊓ ∃hasProtection.ProtectionService

specifies that a server node (class) hosts business services(class) and has (property)
a protection service (class) protecting them. Note that properties are conventionally
prefixed by “has”; for instance,hasHost, is the property over the individuals of the
classServer (domain) that hosts a business serviceBusinessService (range).

The Semantic Web Rule Language, (SWRL), complementsDL providing the ability
to infer additional information inDL ontologies, but at the expense of decidability.
SWRLrules are Horn-clause like rules written in terms ofDL concepts, properties and
individuals. ASWRLrule is composed of an antecedent (body) part and a consequent
(head) part, both of which consist of positive conjunctionsof atoms [9]. For example,
the requirement:servers hosting ssh based business services protected by a firewall
require that firewall to open port 22is expressed in SWRL as:

Server(?n) ∧ hasHost(?n, s) ∧ hasPort(?s, ssh) ∧ hasF irewall(?n, ?f)

→ hasPortOpen(?f, ssh)

3 Security Policy Model

It is considered best practice to secure business critical applications (regardless of their
own ability to secure themselves at a service level) using a layered approach, in par-
ticular, by employing low-level infrastructure access control (firewalls, intrusion pre-
vention and so forth). Figure 1 provides an abstract policy architecture whereby the
elements representDL classes that are defined in later sections and arcs representre-
lationships between the classes. The architecture provides for three security policies:
Netfilter, TCP-Wrapper and a business-risk policy. The Netfilter and TCP-Wrapper
policies are explicitly enforced by their underlying mechanisms. Section 6 considers
how the overall configuration is reasoned over to determine whether the business-risk
policy is upheld.

A network is a collection of systemsNodes that may hostBusiness Services.
A serviceRisk policy defines the risk of allowing particular clients (Client Range)
having access to the service. For example, a particular range of IP addresses may be
considered high-risk to a mail server due to a large volume ofspam messages, while

Fig. 1.Ontology Policy Architecture

IP addresses with a service agreement are considered low-risk. Each node is deployed
with zero or moreProtection Service(s) that provide access control mechanisms such
asFirewall(s) andProxy(s). These protection services are configured in terms of a set
of Protection Rule(s) that define itsProtection Policy. A protection rule, amongst
other components, is defined in terms of a range of IP addresses (Client Range) that
may be permitted access.

4 Security Policy Ontology

In this section, we developDL ontologies for the model components described in the
previous section. Note that due to space reasons, we provideonly fragments of theDL
model. CompleteDL definitions, for example; disjoint axioms, data type properties or
closure axioms are typically not included. The completeDL model has been coded in
the W3C Semantic Web languages (OWL-DLandSWRL) using the Protégé IDE [10].

4.1 System Ontology

ClassNode represents the set of system nodes. Nodes host business and protection
services and are connected to each other (hasConnectionTo) to form a network.

Node ⊑ ∃ hasConnectionTo.Node ⊓ ∀hasProtection.ProtectionService ⊓

∀hasHost.BusinessService ⊓ . . .

For example, aNode instancenode2 hosting business servicebs1 that is con-
nected to a gateway node, (node1) and is also protected by various access control
service mechanisms namely a gateway firewall (fw1), a local firewall (fw2) and a lo-
cal proxy (proxy2) is illustrated in the following expression. Note, atomic individuals
are written in atypewriter font, while inferred individuals are given in anitalic
font.

Node(node2)←hasConnectionTo.(node2, node1) ⊓ hasHost.(node2,bs1)⊓

hasProtection.(node2, (fw1,fw2,proxy2))

The BusinessService class represents the set of business services deployed to
nodes within the network.

BusinessService ⊑ Service ⊓ ∃hasDeployedTo.Node ⊓ . . .

The class of services,Service is a business service or a protection service.

ProtectionService, BusinessService ⊑ Service

Access control based services (for example, TCP-Wrapper, Netfilter) are subclasses
of ProtectionService, where membership of these classes requires protection of at
least one node.

ProxyService, F irewallService ⊑ ProtectionService ⊓ ∃isProtectionOf.Node

4.2 Risk Policy Ontology

Security Confidence.Every node has a security confidence; (high,medium andlow),
that indicates the degree to which the services that it hostsare protected.

Node ⊑ ∃=1hasAssurance.SecurityConfidence

Thus aNode individual must also have ahasAssurance relationship to an indi-
vidual of SecurityConfidence. This value could be based on an assessment of se-
curity of the node itself (for example, Unix or Security Enhanced Linux), the subnet
it resides in, and/or the protection services that it hosts.Incorporating the property
hasAssurance.(node2,high) into the same individualnode2 described earlier in-
dicates that thehigh security assurance reflects thatnode2 has multiple and combined
protection by various access control mechanisms namely a gateway firewall (fw1), a
local firewall (fw2) and a local proxy (proxy2).

Each business service has a minimum security confidence requirement for any node
on which it is hosted and is defined in the business service definition as:

BusinessService ⊑ ∃=1hasAssurReq.SecurityConfidence

Risk Metric. Each business service has associated risks (hasRisk) of permitting clients
(IP address) access to the service. Ideally the sum of the associated risks should not be
greater than the maximum acceptatble risk threshold (hasRiskThreshold).

BusinessService ⊑ ∃hasRisk.RiskPolicy ⊓ ∃=1hasRiskThreshold.F loat ⊓

While a service will have clients with which it has service agreements (risk value
of zero), there can be scenarios where it is expedient to tolerate potential service access

from other client/sourceshasRisk.RiskPolicy, (notwithstanding the service’s inter-
nal access controls). For example, it might be considered low to moderate-risk for a
mail service to accept packets from addresses that are believed to be spam sources,
while accepting packets from addresses that have been blacklisted as botnet sources is
considered high risk. The service risk threshold reflects anbusiness/security trade-off
decision. Section 6.1 considers how a configuration is tested against this measure.

RiskPolicy ⊑∃hasRiskIPStartRange.Integer ⊓ ∃hasRiskIPEndRange.Integer ⊓

∃hasRiskV alue.F loat ⊓ ...

4.3 Netfilter Firewall Ontology

Netfilter is a framework that enables packet filtering, network address translation (NAT)
and packet mangling. As a firewall, it is both a stateful and stateless packet filter that
is characterised by a sequence of firewall decisions againstwhich all packets traversing
the firewall are filtered. Each firewall decision takes the form of a series of conditions
representing packet attributes that must be met in order forthat decision to be applica-
ble, with a consequent action for the matching packet (accept, drop, log and so forth).
An in-depth description for the Linux Netfilter ontology is given in [11].

Netfilter requires the specification of atable(filter, NAT or mangle), achain,
the accompanying decisionconditiondetails and an associatedtargetoutcome. A table
is a set of chains and it defines the global context, while chains define the local context
within a table. Our research focuses on the firewalling aspects of Netfilter and hence
our current model only incorporates thefilter table attributes. A chain is a set of
firewall decisions and those decisions in a chain are appliedto the context defined both
by the chain itself and the particular table. A Netfilter firewall decision is composed of
exactly one chain, one or more condition filters and a single permission target. This is
expressed as theDL assertion:

NamedF irewallPolicy ≡NetfilterF irewall ⊓ ∃=1hasChain.Chain ⊓

∃≥1hasCondition.F ilter ⊓ ∃=1hasTarget.Target

The Netfilter/iptables decision that accepts incomingssh requests from a trusted
client IP address4.3.2.1 to a protected server (1.2.3.4) is written as:

iptables -t filter -A INPUT -s 4.3.2.1 -d 1.2.3.4
-p tcp --dport 22 -j ACCEPT

This decision is represented in our ontology by an individual id such that,

NamedF irewallPolicy(id)←hasChain(id, inputChain)⊓

hasSrcIP (id,ip4.3.2.1) ⊓ hasDstIP (id,ip1.2.3.4)⊓

hasProtocol(id,tcp) ⊓ hasDstPort(id,portSSH)⊓

hasTarget(id,acceptTarget)

Note that the low-level facts of a firewall configuration are presented as individuals
rather than classes on the basis that they are atomic and willnot be further decomposed.
Using instances (rather than subclasses) allows subsequent reasoning of collections of
firewall decisions usingSWRL, as outlined in [11].

4.4 TCP-Wrapper Proxy Ontology

The Linux/Unix-based TCP-Wrapper service is a host-based transport layer proxy that
provisions network access control to local daemons spawnedby the Internet services
daemon (inetd). Under typical circumstances Linux environments use a super server
(inetd) to invoke TCP/IP based network services, for example thessh service. Instead
of invoking thessh daemon directly theinetd daemon will invoke the TCP-Wrapper
daemon. The TCP-Wrapper proxy will permit or deny access to the requested service
daemons it protects based on the requesting client (for e.g.an IP address) as ascertained
from the inetd network connection. If a decision has concluded with a permit action
then the TCP-Wrapper proxy shall invoke the appropriate service daemon.

A TCP-Wrapper policy—a set access control rules to protect host-based services—
is specified in terms of access control fileshosts.allowandhosts.deny. Recent versions
allow the access-controls to be specified in a single file. Like firewall decisions, the
ordering of decisions is vital, thus once a decision has beenmatched no further decisions
are processed. A TCP-Wrapper decision at its simplest levelcan be described as having
the following components; one or more service daemons, one or more requesting client
and a exactly one permission target and is represented by thefollowing DL assertion:

NamedTCPDPolicy ≡ TCPWrapperDomain ⊓ ∃≥1hasDaemon.DaemonFilter ⊓

∃≥1hasTCPDClient.ClientF ilter ⊓ ∃=1hasAction.Action

A TCP-Wrapper decisiontwd, (an individual ofNamedTCPDPolicy) that states a
trusted client IP address is permitted access to the protectedssh daemon is represented
by the following:

NamedTCPDPolicy(twd)←hasDaemon.(twd,sshD)⊓

hasTCPDClient(twd, ip4.3.2.1) ⊓ hasAction(twd, allow)

The corresponding TCP-Wrapper syntax detailing the accesscontrol of the previous
knowledge base individualtwd is written as:

sshd: 4.3.2.1 : ALLOW

5 Systems Configuration

This section defines a model that represents network configuration. Intuitively, a con-
figuration is a collection of nodes, services, proxies, etc.and their relationships, and are
represented as collections of instances from the ontologies.

A small to medium enterprise network environment typicallydeploys a gateway
firewall as the initial step in provisioning access control and a succession of locally
hosted access control mechanisms may follow. Figure 2 illustrates an example of a net-
work access control architecture whereby internal nodes hosting business applications
are protected by low-level infrastructure namely a gatewayfirewall and may also be
further protected by a local firewall and/or local proxy deployed on those same nodes.
SWRLrules and queries can be defined to infer and discover facts about the current sys-
tems policy configurations within the network. For example,assuming that nodes?n
and business services?b have been assigned security confidence levels (by instantiating
thehasAssurance andhasAssurReq properties) we can reason over the knowledge

Fig. 2.Example SME Access Control Architecture

base to find suitable nodes on which to host services, that is ahosts confidence is suffi-
cient for the services it may host.

Node(?n) ∧BusinessService(?b) ∧ hasAssurance(?n, ?a) ∧ hasAssurReq(?b,?br) ∧

hasSecureConfidenceV alue(?a, ?nrate) ∧ hasSecureConfidenceV alue(?br, ?brate) ∧

swrlb : lessThanOrEqual(?brate, ?arate) → hasDeployedTo(?b,?a)

6 Policy Analysis

6.1 Risk Policy

The ideal security policy configuration is one that isalignedwith the business service
that is, it permits only valid service traffic, and, no more and no less. The following
example of a risk-based inter-policy query, tests whether the aggregate risk from clients
that are permitted (by the protection services) to reach a service exceeds the risk thresh-
old specified by the service.

BusinessService(?b) ∧RiskThreshold(?r) ∧ hasRiskThreshold(?b, ?max) ∧

hasRiskIPStartRange(?r,?iprs) ∧ hasRiskIPEndRange(?r,?ipre) ∧

hasRiskV alue(?r, ?v) ∧ hasProtectiveProxyDecision(?b, ?t) ∧ hasRisk(?b, ?r)∧

hasSrcIPStartRange(?t,?sip) ∧ hasSrcIPEndRange(?t,?eip) ∧

ipAddress(?sip,?x) ∧ ipAddress(?eip,?y) ∧ swrlb : greaterThanOrEqual(?iprs,?x)∧

swrlb : lessThanOrEqual(?ipre, ?y) → sqwrl : select(?max) ∧ sqwrl : sum(?v)

This compares the ranges of clients made visible by the proxydecisions
(hasProtectiveProxyDecision(?b, ?t)) with the associated risks of each client range.
Should the sum (sqwrl : sum) of individual risks be greater than the maximum ac-
ceptable risk threshold then that service is not protected sufficiently by its host TCP-
Wrapper proxy policy.

6.2 Policy Conflict Detection

Al-shaer et. al. [1] classify firewall conflicts into four categories: redundancy, shadow-
ing, correlation and generalisation. Due to page constraints, we focus our attention to
intra-firewall policy conflicts detected usingSWRLrules applied across theDL knowl-
edge base. Note for reasons of space, we do not consider all four conflict categories in
this paper, however they are modeled withinin our ontology.Table 1 provides a frag-
ment of a Linux Netfilter firewall access control configuration.

Table 1.Firewall Decision Policy Example Extract

Decision Chain Src IP Src Port Dst IP Dst Port State Action Conflict
1 Forward *.*.*.* any 192.168.1.2 80 Drop
2 Forward192.168.1.6 any 192.168.1.2 80 Accept Shadowed by (1)
3 Output192.168.1.1 any 10.37.2.* 21 Rel Drop
4 Output192.168.1.1 any 10.37.2.* 22 Est Drop
5 Output192.168.1.1 any 10.37.2.3 21,22 Rel,EstAcceptShadowed by (3,4)

Shadowing.In general, firewall decisions are activated in sequence starting at decision
1. A shadowed decision is one that is never activated due to previous decisions filtering
the same kinds of packets but those decisions having different target actions. Table 1, il-
lustrates that Decision 2 is shadowed by Decision 1. Since Decision 2 is never activated,
intendedhttp traffic from a specific host is not permitted.

SWRLrules detect conflicts within a firewall configuration. For example, the fol-
lowing ‘partial’ SWRLrule provides a list of tuplesx 7→ y, wherex is a decision and
y is the decision that shadowsx. When executed against the knowledge in Table 1 it
returns tuples2 7→ 1.

F W1(?fwrule1) ∧ F W1(?fwrule2) ∧

decisionOrder(?fwrule1, ?order1) ∧ decisionOrder(?fwrule2, ?order2) ∧

hasSrcIP StartRange(?fwrule1, ?ip1start) ∧ hasSrcIP EndRange(?fwrule1, ?ip1end)∧

hasSrcIP StartRange(?fwrule2, ?ip2start) ∧ hasSrcIP EndRange(?fwrule2, ?ip2end)∧

ipAddress(?ip1start, ?ip1s) ∧ ipAddress(?ip1end, ?ip1e) ∧

ipAddress(?ip2start, ?ip2s) ∧ ipAddress(?ip2end, ?ip2e) ∧

hasDstP ortStartRange(?fwrule1, ?dst1ps) ∧ hasDstP ortEndRange(?fwrule1, ?dst1pe)∧

hasDstP ortStartRange(?fwrule2, ?dst2ps) ∧ hasDstP ortEndRange(?fwrule2, ?dst2pe)∧

portNumber(?dst1ps, ?dst1ns) ∧ portNumber(?dst1pe, ?dst1ne)∧

portNumber(?dst2ps, ?dst2ns) ∧ portNumber(?dst2pe, ?dst2ne)∧

hasT arget(?fwrule1, ?tar1) ∧ hasT arget(?fwrule2, ?tar2) ∧

differentF rom(?fwrule1, ?fwrule2) ∧

swrlb : greaterT hanOrEqual(?order2, ?order1) ∧ swrlb : lessThanOrEqual(?ip1s, ?ip2s) ∧

swrlb : greaterT hanOrEqual(?ip1e, ?ip2e) ∧ swrlb : lessThanOrEqual(?dst1ns, ?dst2ns) ∧

swrlb : greaterT hanOrEqual(?dst1ne, ?dst2ne)∧

. . . → sqwrl : select(?fwrule1, ?fwrule2)

Our DL model not only detects pair-wise conflicts between twofirewall decisions
(like the approach taken by [1]) but it can readily detect theconjunctions of partial
conflicts in a set-wise fashion that may occur across multiple decisions in regard to

a specified decision being analysed. For example, Decisions3-5 of Table 1 captures
the filtering of stateful outwardftp and ssh traffic of the firewall itself towards the
10.37.2.* subnet and10.37.3.3 node respectively whereby connections areRelated
or Established. Our model can capture that Decision 5 is ‘partially shadowed’ by the
conjunction of a number of individual proceeding decisionsnamely 3 & 4 (ports and
state).

The same techniques of intra-policy conflict detection are applicable to TCP Wrap-
per proxy policies. A risk-based inter-policy analysis wasdiscussed in Section 6.1.
Inter-policy conflict detection between firewall and proxy configurations to analyze how
one may impact on the other can also be reasoned over within the knowledge base by
the previous conflict categorisation methods. While individual configurations may be
conflict free their interoperation may not be, for example; anetfilter firewall decision
may unintentionally ‘shadow’ an intended TCP-Wrapper decsion.

7 Related Research

An ontology-based model that can be used to (binary) test thesafety of an individual
firewall policy with respect to a Semantic Web application policy is described in [11].
This paper builds on the results of [11] by considering how interoperation of multiple
NAC policies (involving multiple firewalls and proxies) areinfluenced by more gen-
eral network service requirements. With this extended model, it is possible to analyze
configurations for intra- & inter-policy conflicts, and to also search for suitable configu-
rations based on partial configuration knowledge. Furthermore, the risk-metric provides
a quantitative approach to aligning NAC policy to service requirements.

Previous research in relation to applying ontologies to thesecurity domain had pri-
marily focused on security classifications and tended to go no further than providing
abstract taxonomy’s [12, 13]. However, our research provides, in conjunction with pro-
viding an explicit specification and basicDL reasoning from a taxonomy perspective,
inferences at a lower level of granularity. Thus, low-levelfacts of a NAC configuration
are presented as individuals rather than classes on the basis that they are atomic and
will not be further decomposed. Using instances (rather than subclasses) allows sub-
sequent reasoning of collections of NAC configuration policies usingSWRLto extend
the expressive capabilities ofDL. Policy specific languages such as KAoS utilize the
Semantic Web approach [14]. However, these languages tend to have a number of short
comings, for example, KAoS’s dependence on Deontic Logic unlike SWRL[15]. SWRL
provides a more generic form of expression with its horn-like rules that can represent
varying degrees of policy configuration (enforcement, conflict analysis), business rules,
risk metrics and so forth.

Due to the complexity of NAC policy configurations, being able to perform con-
figuration analysis can greatly improve network configuration management issues. For
example, a number of approaches have been proposed for the formal analysis of fire-
walls [16–20]. For example, model-checking techniques [16, 19] are used to test that
a configuration of firewalls uphold a global routing policy that restricts certain data to
certain sub-nets. In [18] constraint programming is used asan approach to finding suit-
able firewall rules from higher level policy constraints. The focus in these approaches

is more on analyzing that firewall rules uphold particular ‘correctness’ properties, or on
synthesising firewall rules from specified ‘correctness’ properties. While this notion of
‘correctness’ does, in effect, provide semantics for firewall configuration under a lim-
ited number of a priori properties, it is not intended to provide a framework for general
knowledge representation about firewalls. TheDL & SWRLapproach, while not as ex-
pressive as the logics that underlay [16–20], is intended toallow the knowledge base to
be extended and managed in general.

The policy conflict detection aspects of this paper focus on the issues of firewall con-
flicts classified by [1] as an example. Al-Shaer’s research provides a filtering decision
tree approach to discover and generate an effective and anomaly-free firewall policy de-
cisions [1, 21]. However, we argue that the practicalities of the Semantic Web approach
outlined in this paper greatly extends the research of [1] and other such related research.
Utilising this approach provisions the expressive semantics to interpret not just firewall
configurations but those of NAC’s in general in a much more diverse and expressive
way. The provision of reasoning, in particular within the context of OWA, provides our
model with flexibility and extendability of incorporating new knowledge.

8 Discussion & Conclusion

This paper outlined an approach to using a DL constrained ontology to construct, rea-
son about and manage NAC policy configurations. We demonstrated how NAC policies
(for example; Netfilter, TCP-Wrapper and business-level risk policies) could be repre-
sented using Semantic Web techniques. The effectiveness ofan access control policy
may be limited or compromised by poor configuration and management of policy de-
cisions. The paper describes how reasoning facilitated access control (inter-policy &
intra-policy) interoperability and measured the level of risk between protection policies
and higher-level business goals. Further investigation isrequired, for example, extend-
ing the risk metric model, scalability issues and how this work might be used in practice.

Typical errors in a security policy configuration range frominvalid syntax and in-
appropriate decision ordering to errors resulting from comprehending the configuration
given its scale and complexity. This paper illustrated how Semantic Web techniques
could be employed to resolve policy conflicts (Section 6.2).

Future research will investigate developing a prototype autonomic architecture that
is based on this ontology and reasoning framework. ExistingSemantic Web techniques
can be used to provide an agent-based approach to deploying and maintaining security
policy configurations in a automated/autonomic manner. Semantic NAC agents are re-
sponsible for managing the configuration of access controls(firewalls, proxies, IDS’s
and so forth). These semantic agents negotiate NAC settingsthat are constrained by
the current knowledge base, which is in turn controlled by the NAC agents and other
application agents, managing for example, the business rules. The knowledge base is
controlled by adding or deleting facts based on new knowledge and inferences by the
agents. For example, a business agent informs a firewall agent of a new service offering
whereby the firewall agent must reconfigure (new facts) to enable access.

Acknowledgements. This research has been funded by SFI Autonomic Management of
Communications Networks and Services PI Cluster Award: 04/IN3/I404C.

References

1. Al-Shaer, E., Hamed, H., Boutaba, R., Hasan, M.: Conflict Classification and Analysis of
Distributed Firewall Policies. In IEEE Journal on SelectedAreas in Communications, Vol-
ume 1-1 (2005)

2. Gheorghe, L.: Designing and Implementing Linux Firewalls with QoS using netfilter,
iproute2, NAT and l7-filter. PACKT Publishing (2006)

3. Alesso, H.P., Smith, C.F.: Thinking on the Web: Berners-Lee, Gdel and Turing. Wiley-
Interscience (2006)

4. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. (W3C
Recommendation, Technical Report)

5. Venema, W.: TCP Wrapper: Network monitoring, access control, and booby traps. Third
UNIX Security Symposium (Baltimore, September’92) (1992)

6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook: Theory, Implementation and Applications.Cambridge University Press
(2003)

7. Haarslev, V., Mller, R.: Description Logic Systems with Concrete Domains: Applications
for the Semantic Web. In: Proceedings of the International Workshop on Knowledge Repre-
sentation meets Databases, (KRDB), Hamburg, Germany. (2003)

8. Taniar, D., Rahayu, J.W.: Web Semantics Ontology. Idea Publishing (2006)
9. O’Connor, M.J., Knublauch, H., Tu, S.W., Grossof, B., Dean, M., Grosso, W.E., Musen.,

M.A.: Supporting Rule System Interoperability on the Semantic Web with SWRL. (Fourth
International Semantic Web Conference (ISWC2005)

10. Standford: Protege IDE. (http://protege.stanford.edu/)
11. Foley, S.N., Fitzgerald, W.M.: Semantic Web and Firewall Alignment. First International

Workshop on Secure Semantic Web (SSW’08), Cancun, Mexico (2008)
12. Anya Kim, J.L., Kang, M.: Security Ontology for Annotating Resources. 4th Interna-

tional Conference on Ontologies, Databases, and Applications of Semantics, (ODBASE),
Agia Napa, Cyprus. (2005)

13. Herzog, A., Shahmehri, N., Duma, C.: An Ontology of Information Security. International
Journal of Information Security and Privacy (2007)

14. Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate,A., Dalton, J., Aitken, S.: KAoS
Policy Management for Semantic Web Services. In IEEE Intelligent Systems, Vol. 19, No.
4, (2004)

15. Prez, G.M., Clemente, F.J.G., Blaya, J.A.B., Skarmeta,A.F.G.: Representing Security Poli-
cies in Web Information Systems. Policy Management for the Web (PM4W) Workshop in
the 14th International World Wide Web (WWW) Conference (2005)

16. Guttman, J.D.: Filtering Postures: Local Enforcement for Global Security Policies. IEEE
Symposium on Security and Privacy, Oakland (1997)

17. Mayer, A., Wool, A., Zishind, E.: Fang: A Firewall Analysis Engine. 2000 IEEE Symposium
on Security and Privacy, p. 0177 (2000)

18. Eronen, P., Zitting, J.: An Expert System for Analyzing Firewall Rules. (In: In Proceedings
of the 6th Nordic Workshop on Secure IT Systems (NordSec 2001), pages 100-107)

19. Hazelhurst, S.: A Proposal for Dynamic Access Lists for TCP/IP Packet Filtering. South
African Computer Journal, Vol. 33 (2004)

20. Marmorstein, R., Kearns, P.: A Tool for Automated iptables Firewall Analysis. (USENIX
Annual Technical Conference, FREENIX Track)

21. Golnabi, K., Min, R., Khan, L., Al-Shaer, E.: Analysis ofFirewall Policy Rule Using Data
Mining Techniques. In the 10th IEEE/IFIP Network Operations and Management Sympo-
sium, (NOMS) (2006)

