
2006-01-1242

Using Model Driven Architecture for the Development and
Integration of Platform-Independent Vehicle Application

Software across Different OEMs
Brendan Jackman

Waterford Institute of Technology, Ireland.

Shepherd Sanyanga
Ford (Europe), United Kingdom.

Copyright © 2006 SAE International

ABSTRACT

This paper proposes a solution to the challenge of
developing vehicle software application functions which
are decoupled from their intended target hardware
platforms. Once developed, these software application
functions can be utilised across any OEM vehicle
platform and vehicle variants, saving the supplier time
and money in terms of system development and giving a
number of OEMs similar tried-and-tested system
application software.

The proposed solution is to use the Model Driven
Architecture (MDA)1, a UML-based development
approach that separates the specification of system
functionality from the specification of the implementation
of that functionality on a specific technology platform.
MDA allows a vehicle function to be modelled in a
semantically rich UML [1,2] model which is completely
independent of any implementation detail.

INTRODUCTION

The amount of software and electronics in vehicles is
increasing at a steady rate in response to customer
demands for increased safety, comfort and performance.
Many new vehicle functions are implemented by
integrating existing vehicle applications and by so-called
sensor fusion, where data is shared on vehicle networks
between many co-operating functions. Usually these
software applications are developed by different
suppliers, presenting a big integration problem together
with associated costs for both the supplier and the OEM.

1 MDA, Model Driven Architecture, UML and Unified
Modeling language are trademarks of the Object
Management Group.

The burning question is: How can suppliers stay
competitive in terms of system cost, resource utilisation
and resource allocation when they are required to
implement similar vehicle application functions across
different OEMs with differing technology platforms and
vehicle variants ?

MODEL-BASED DEVELOPMENT

Software engineering has seen many developments over
the past few decades, from the first high-level languages
such as FORTRAN and BASIC, to 4GLs and
Frameworks, to the recent growth in the use of graphical
development environments, object-based technologies
and middleware platforms. The underlying trend in all of
these developments has been the use of increasingly
higher levels of abstraction to specify and develop
software systems. The increasing complexity of
software systems and the decreasing time-to-market
require software engineers to look to more abstract
development techniques to improve productivity and
manage complexity. This is evident in the automotive
software development domain, where software systems
are usually developed by geographically-dispersed
teams to operate in a complex electro-mechanical
environment.

Automotive software engineers have been using model-
based development techniques for some time to develop
and test vehicle software functions. Model-based
development is used primarily to design vehicle
networks and control algorithms. Proprietary tools exist
for configuring network communication modules based
on message communication matrices and for optimizing
software function allocation to Electronic Control Units
(ECUs) based on models of application data flows and
the physical network architecture. Hardware-in-the-Loop
(HIL) simulation is widely used to verify control

algorithms against models of the vehicle systems before
the target system is generated, usually by some kind of
auto code-generator. In such systems the control
algorithms are specified with modeling tools such as
Matlab/Simulink using dataflow and state diagram
notations. The model can be functionally verified on a
PC against models of the vehicle-driver environment.
Only when the models are verified is the physical target
system code generated from the model.

System development using models at a high level of
abstraction offers the following benefits:

 Faster design iterations;

 A reduction in design, development and
implementation costs;

 Earlier verification of designs with a resulting
decrease in system integration problems;

 Better traceability from requirements to
implementation, since the model is both the
specification and the implementation.

Figure 1 illustrates the current use of models in the
development process.

Figure 1. Models in the development process

MODEL DRIVEN ARCHITECTURE

Model Driven Architecture (MDA) is an initiative by the
Object Management Group (OMG) [1] that takes model-
based development to the next level. One of the

problems with the models used in today’s development
tools is that even though they are at a relatively high
level of abstraction they still contain much
implementation detail. For example, software function
models usually contain details of how sensors and
actuators are interfaced, how signals are transmitted on
vehicle networks, how functions are deployed to
processors and so on. All of this embedded
implementation detail makes it very difficult to port the
models to different target platforms. Developers typically
use modular design and encapsulation principles to limit
the platform-specific details to a small portion of the
model. The MDA solution to this problem is to divide an
application into a set of models of different levels of
abstraction. MDA defines the following model types,
from the most abstract to the most concrete:

 Computation Independent Model (CIM);

 Platform Independent Model (PIM);

 Platform Specific Model (PSM);

 Code Model.

Figure 2. MDA models and their relationship

COMPUTATION INDEPENDENT MODEL

The CIM operates at the application domain level and
describes the interactions between processes and
elements in the application environment. The CIM is
usually expressed in a domain-specific language and
avoids specialized knowledge of procedures. An
automotive example would be the use of differential
equations and other mathematical means to describe
control algorithms.

PLATFORM INDEPENDENT MODEL

The PIM describes the processes and structure of the
system without detailing the implementation platform. It
is thus independent of operating systems, networks,

Driver-
Vehicle
Models

Application Model

Target
System

simulation/ HIL

programming languages and hardware. PIMs are
usually expressed as Unified Modeling Language (UML)
models. The PIM is the main focus of system
development projects. Removing implementation-
specific concerns from the PIM has the following
advantages:

 It is easier to verify the functional correctness of
a model which is not burdened by platform-
specific semantics;

 Different systems can be integrated easier at the
PIM level and the combined models
subsequently mapped to a specific
implementation platform;

 It is easier to target the PIM to different
implementation platforms while ensuring that the
overall system functionality remains identical.

It is important to note that MDA allows the system to be
represented by a set of models at the PIM level. These
models may be related in a hierarchical manner (by
refinement) or they may not be directly related, for
example when each model represents a different system
viewpoint.

PLATFORM SPECIFIC MODEL

The PSM represents the platform-specific
implementation of the system. The PSM is derived
directly from the PIM using a transformation process
which is explained in a later section. A separate PSM
exists for each mapping of a PIM to a specific platform.
MDA allows the PSM to consist of multiple models,
representing different implementation concerns, such as

 Concurrency;

 Data storage formats;

 Time handling;

 Event handling;

 Exception handling.

The PSM can also be organized as a number of tiered
models when appropriate, for example when separating
the implementation concerns of different layers of a
network protocol.

CODE MODEL

The code model is the final deployable object code that
is executed on the target platform.

MODEL MAPPING

The aims of MDA can only be achieved if the platform-
specific details are kept completely separate from the
Platform Independent Models. While it is possible to
map a PIM to a PSM manually, the real benefits of MDA
are achieved only when the mapping process is
automated. The Object Management Group has defined
a number of supporting technologies that will eventually
allow MDA to be automated.

 UML 2.0 provides a semantically rich modeling
language for describing systems and software;

 UML Profiles are a means of extending the UML
notation to model domain-specific concepts.

 MOF (MetaObject Facility) is a fundamental
language for defining other modeling languages
(metamodels). UML has been defined in terms
of MOF;

 XMI (XML Metadata Interchange) is a
specification for importing/exporting models
between tools;

 CWM (Common Warehouse Metamodel) is a
specification for storing models in a repository.

MDA tools are currently in their infancy, with some
existing tool vendors providing limited support for some
of the MDA concepts. In a fully automated MDA
environment the mapping from abstract models to more
specific models will be guided by a separate set of
mapping models. This process is illustrated in Figure 3.

Figure 3. MDA Mapping Process

Even though the PIM is platform-independent, this is a
relative term. The PIM must at some stage provide
guidelines on how each functional concept is to be
implemented. These design decisions are really related
to the platform-specific concerns described in the PSM
and are required as input to the mapping process. For
example, a function in the PIM may be implemented on
a platform in a number of ways; as a task, as an interrupt

service routine or as a re-entrant ROM routine. The
concepts of Task, Interrupt and Routine would be
described by the PSM model, but to select the
appropriate implementation the PIM must be
supplemented with marks to indicate the desired design
decisions. The designer enhances the PIM with marks
related to the PSM, but these marks are stored in a
separate Marking Model. This keeps the PIM
uncluttered by any implementation detail and allows
different marking models to be applied when generating
different PSMs for various target platforms.

The mapping process is driven by a Transformer that
converts source models to target models based on the
markings indicated in the marking model. A separate
Mapping Model relates the source model elements to the
generated target model elements so that there is full
traceability between the models.

What makes the whole process very flexible and efficient
is the fact that all of the models, namely the PIM, PSM,
Marking and Mapping models, are expressed in UML or
some MOF-derived language. Even the transformations
from PIM to PSM can be expressed as models to
provide the ultimate in flexibility.

USING MDA IN THE AUTOMOTIVE INDUSTRY

The ideas of MDA can be applied to software
development in the automotive industry. Vehicle system
functionality could be described using Platform
Independent Models. These would be primarily UML
models describing the behavior of the required software
functions and the desired system structure. These
would have to be rigorously defined models that could be
executed for the purposes of functional verification.

Once the Platform Independent Model is verified it can
then be marked for transformation to a Platform Specific
Model such as an OSEK implementation. This would
involve the creation of a marking model to indicate
certain key design decisions related to OSEK
implementation. One approach to modeling PSM
concepts is to use a UML Profile for each target
platform. These profiles would define stereotypes for
key platform elements such as Task, Alarm etc.,
together with tagged values that are used to configure
the element. The marking process then consists of
labeling items in the PIM with the stereotypes and
tagged values of the PSM UML Profile. As mentioned
earlier, these markings can be stored in a related model
to keep the PIM free from implementation detail. A
partial example of using a UML profile is shown in Figure
4.

Figure 4. Example of using a UML Profile

The transformation process can then be guided by the
markings on the PIM so as to generate a PSM that
describes the implementation of the system on the
specified target platform. Remember that the PSM is
another UML model, but at a lower level of abstraction
than the PIM. It has details of the design decisions
required to implement the system on the target platform.
The final step is to transform the PSM to executable
code using a code generator.

While reverse engineering is not a goal of MDA, the
ability to reverse engineer code changes back to both
the PSM and PIM would be important in an automotive
environment where the target code is usually debugged
in a test vehicle away from any MDA tools. The
mapping models take on an important role in keeping the
models synchronized in such cases.

Automotive suppliers delivering systems to multiple
OEMs can leverage MDA by defining their system
functionality using a PIM and specifying a different PSM
for each OEM target platform. That way the same
functionality is delivered to each OEM platform with a
clear separation of OEM platform issues in each PSM.

MODEL-DRIVEN INTEGRATION

The successful integration of software functions in a
vehicle is still a challenge due to the tremendous
variations in ECU platforms, networking protocols and
network management strategies. System integration
activities typically concentrate on integrating the various
layers of the system in a bottom-up fashion. For
example, CAN Physical Layer problems are sorted out
first before network management and finally functional
integration problems are addressed. By using an MDA
approach functional integration can take place much

earlier in the development cycle, as soon as the PIMs for
each separate function are available. Likewise the
PSMs can be integrated at the PSM level to resolve any
platform-specific integration issues. It is also possible to
define mappings between different PSMs to abstract
interfacing details.

MDA AND AUTOSAR

AUTOSAR [3] is an effort by OEMs and suppliers to
standardize the electrical and electronic architectures of
vehicles. It proposes to define a standard set of
interfaces and functions to cover most vehicle
applications. While the AUTOSAR specification has not
yet been finalized, it is reasonable to assume that the
main concepts and interfaces of AUTOSAR could be
defined by a UML Profile. This would then pave the way
for UML models of vehicle functions to be enhanced with
AUTOSAR profile stereotypes and tagged values that
could guide a transformation to PSM and executable
target code. Suppliers would then be free to concentrate
on core functionality rather than AUTOSAR
implementation details. AUTOSAR is intended to
execute on many hardware platforms so the PSM
models would contain two tiers: an upper tier PSM
specifying an AUTOSAR implementation, and a lower
tier refining the model to a specific microprocessor. The
widespread adoption of AUTOSAR would provide a
great incentive to tool developers to incorporate MDA
concepts, allowing different AUTOSAR platforms and
configurations to be targeted in a platform-independent
manner. Perhaps the greatest benefits to be had are
from the early verification and integration of the Platform
Independent Models in the development process.

In addition to AUTOSAR, PSMs could be created for
other automotive platforms such as OSEK, FNOS etc.,
allowing suppliers to reach a global automotive market
with a single set of proven software functions.

CONCLUSION

This paper presented an overview of the Model Driven
Architecture concept and described some of the possible
benefits to the automotive industry from adopting MDA.
MDA is at an early stage of development and is
presented as a vision rather than a process or set of
tools. Many of today’s software development tools
exhibit some aspects of MDA, but none really take MDA
to its ultimate level: the complete separation of platform-
specific concerns from application models. MDA

provides a set of robust core technology specifications
and a vision that brings it all together. With the current
software crisis in the automotive industry, now might be
a good time for OEMs, suppliers and tool developers to
work together towards realizing the MDA dream.

REFERENCES

1. www.omg.org. Model Driven Architecture.
2. UML 2.0 in a Nutshell. Dan Pilone. O’Reilly Media,

2005.
3. www,autosar.org. AUTOSAR consortium.

CONTACT

Brendan Jackman B.Sc. M.Tech.

Brendan is the founder and leader of the Automotive
Control Group at Waterford Institute of Technology,
where he supervises postgraduate students working on
automotive software development, diagnostics and
vehicle networking research.. Brendan also lectures in
Automotive Software Development to undergraduates on
the B.Sc. in Applied Computing Degree at Waterford
Institute of Technology. Brendan has extensive
experience in the implementation of real-time control
systems, having worked previously with Digital
Equipment Corporation, Ireland and Logica BV in The
Netherlands.

Email: bjackman@wit.ie

Website: http://www.wit.ie/automotive

Shepherd Sanyanga (BEng BSc MSc PhD CEng
EurIng MIEE)

Shepherd has worked for United Nations in Africa in
infrastructure development programs, worked for some
years in the Aerospace Industry developing military
electronic systems and then worked for a number of Tier
One Automotive Suppliers (Lucas Electronics (UK),
Sagem (France) TRW (UK). He is currently involved in a
joint project between Ford Motor Company (Europe),
Johnson Controls (France) and Takosan (Turkey). In his
spare time he is also an external examiner on a masters
degree automotive programme in a university in Ireland.

Email: ssanyan2@ford.com

